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Abstract: Implementing applicable security measures into system engineering applications is still one
of the most challenging processes in building secure infrastructure. This process needs to consider a
variety of security attributes to support securing system components against numerous cyberattacks
that could exploit vulnerable points in the system. The redundancy in these attributes is also another
challenge that could degrade system functionality and impact the availability of the system’s services.
Therefore, it is crucial to choose appropriate security properties by considering their ability to address
cyber threats with minimal negative impacts on the system’s functionality. This process is still
subjected to inconsistencies due to ad- oc determinations by a specialist. In this work, we propose a
novel algorithm for optimizing the implementation of security mechanisms in IoT applications for the
agricultural domain to ensure the effectiveness of the applied mechanisms against the propagation
of potential threats. We demonstrate our proposed algorithm on an IoT application in the farming
domain to see how the algorithm helps with optimizing the applied security mechanisms. In addition,
we used THREATGET to analyze cyber risks and validate the optimized security attributes against
the propagation of cyber threats.

Keywords: security measures; potential threats; attack propagation; IoT; cybersecurity; security
standard

1. Introduction

Cyber-physical production systems (CPPSs) are one of today’s major technological
driving factors. A wide range of current technologies, e.g., industrial automation, the
Internet of Things (IoT), robotics, big data and cloud computing are incorporated within
current CPPSs [1]. CPPSs consist of widely dispersed components which each contribute
to the overall industrial systems. Therefore, the IoT is a novel upgrade of industrial au-
tomation control systems (IACSs). It benefits from the communication between billions of
devices and enables sophisticated data processing methods over the Internet [2]. Formerly,
corporate networks for production planning, ordering of materials or job scheduling were
separated from IACS networks. Due to the required communication ties to the outside
world, this top-level company information technology infrastructure was already vulner-
able to external attacks. Moreover, IACS networks encompassing corporate networks
and proprietary IACS networks have been replaced with commercial-off-the-shelf (COTS)
equipment which is based on Ethernet TCP/IP. Therefore, cyber risks also affect the secu-
rity of IACS networks. Furthermore, total system complexity has skyrocketed in recent
years, and new threats are being introduced, jeopardizing the controllers within IACS
networks, as these COTS components were never designed to work with them. In many
circumstances, replacing them with attack-proof controllers is neither possible nor supplied
by the machinery provider. Moreover, this would also disrupt the industrial the continu-
ous operation of the production process. Multiple components are interacting with each
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other and communicating over networks or the public Internet. This means cybersecurity
risks, potential exploits and potential failures. Therefore, a company must ensure that the
confidentiality, integrity and availability (CIA) of data or system components are secured
at all times in order to guarantee functionality and privacy at all times. Threat modeling
has become an important tool in identifying potential threats to a system, including risk
management and mitigation measures. In recent years, AIT has developed an automated
approach towards threat modeling in the cyber-physical domain and the spreading of
threats throughout a technological system, based on a system model, a threat database and
security attributes.

In this paper, we will not only explain the concept of threat modeling but even go one
step further and identify the low-hanging fruit within the analyzed model and enhance the
results with the requirements of the IEC62443 standard. This is to identify certain “gate”
components where a threat can be mitigated before being propagated throughout the parts
of the system. Thus, we introduce an approach to find the minimum number of security
measures yielding the maximum security impact by considering the effectiveness of the
optimized security attributes against multiple types of cyber incidents. Consequently, we
seek to apply security measures at relevant points within the system, and thus mitigate
the risk for the following components while omitting the necessity to implement the same
security measure at all of the components. Formal verification (B-method) was used
to evaluate this approach and ensure that no violations for security measures over the
whole system exist. B-method can verify the model’s consistency through extracting proof
obligations that must hold through all operation states. Security measures were embedded
in the B-model as invariants.

2. Materials and Methods
2.1. Cyber Threats

We live in a highly networked culture in which human–computer interaction is essen-
tial. Intrusion can have a negative impact on safety, finances, operations, and performance.
Our technology is becoming increasingly complex, and as a result, more difficult to main-
tain. The larger the number of technological components, the greater the attack surface [3,4].
As a result, our products necessitate a high level of agility in security. The static approach
to security measures and analysis at design time is out of date and cannot keep up with the
constantly evolving new generation of threats as they get more diverse and complex.

Agriculture is distinct from industrial control systems due to outdoor field areas,
which demand the implementation of different types of security measures. Cybersecurity
standards and related regulations are insufficient to introduce an agriculture infrastructure
that is secure from current and future cyberattacks [5]. Kristen et al. [5] introduced initial
recommendations for addressing cyber vulnerabilities and securing an agriculture domain.

We regard cybersecurity as a vital component of system development lifecycles, es-
pecially in critical infrastructures. Cybersecurity is in charge of safeguarding assets from
cyberattacks such as integrity breaches, data leakage, and other destructive actions. Most
workplaces have changed to a remote work force infrastructure; the worldwide COVID-19
restrictions contributed heavily to this [6]. In order to design a secure system, it is necessary
to prevent future cyberattacks by learning from previous cyber incidents. Therefore, we
consider threat modeling as an effective method for discovering system security risks and
vulnerabilities [7]. It incorporates risk management approaches and the methods for threat
identification which we elaborate on in the following sections.

2.2. Risk Management

The goal of risk management is to detect, assess, and evaluate hazards in a given setting
and then address them. This method is intended to lessen the risk for a given system [8].

Adding, configuring and maintaining security in an application always remains a
trade-off between effort, effects, exploitability, and the costs associated with it. As a result,
risks must be addressed at all levels of an organization’s structure. Who is responsible for
decision making and how choices are made must be transparent [9].
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As the environment and parts of the application may undergo changes and adaptions,
risk management is regarded as an iterative process. New threats develop on a regular
basis, and established threats may evolve or even vanish. As a result, the system under
examination must be regularly monitored as new hazards to its operation are identified.
Furthermore, a good risk management strategy aids in the discovery of mitigation methods
and informing choices to enable prompt reactions. This is why it is crucial to integrate risk
management in conformance with the system’s objectives and to discover ways to tackle
conflicting objectives. Risk management consists of two major constituents, risk assessment
and risk treatment, which are discussed in the following Sections [9].

2.2.1. Risk Assessment

The risk assessment process can be divided into three stages: risk identification, risk
analysis, and risk evaluation [9,10].

Risk Identification deals with the determination of risks or threats that are interfering
with an application’s objectives. It explores potential risk factors, vulnerabilities, and
threats [9].
Risk Analysis is conducted once risks have been identified. It focuses on the ex-
ploitability of risk related events and their impacts on the system. However, the
outcomes of such an analysis may differ depending on the application domain, view-
points, and individual backgrounds [9].
Risk Evaluation builds on the results from the risk analysis. It is necessary in identi-
fying which risks must be addressed and how they must be addressed in terms of the
techniques used [9]. However, there may be various solutions to a certain challenge.
A strategy addressing even multiple weak spots may be suggested. The purpose of
a risk assessment is to aid in decision making. While certain hazards require more
investigation, others may not demand specific activity. Consequently, the assessment
may disclose circumstances that do not satisfy the intended goals, and as a result,
these goals must be re-evaluated.

Once the risk assessment procedure has been completed, measures must be imple-
mented for the evaluation results to take effect. This is accomplished through a procedure
known as risk treatment.

2.2.2. Risk Treatment

Once potential risk-reduction measures have been developed, professionals must
decide how to address specific risks. This entails assessing the efficacy of various treatment
methods. If the residual risk is unacceptable, other treatment options may be examined, or
additional treatment methods will be applied [9].

When deciding on the risk treatment, four options may be considered [11]. Figure 1
holds an illustration of abstract risk treatment measures inspired by ISO 27005 [12].

One may decide to avoid a risk when it has a high likelihood or a high potential
impact. This could be done by modifying the system under consideration (SuC) in a way
that eliminates the risk’s cause, involving potential removal of services.

It is also possible to transfer the risk, e.g., to other organizations. In cases where the
likelihood is low but the impact remains high, this may be the preferred solution (e.g.,
insurance or third-party providers).

Sometimes it may be sufficient to accept the risk if likelihood and impact are low, and
the consequences are therefore considered negligible.

The final option for risk treatment is the mitigation of risks. If the impact is low but
the exploitability is regarded as high, a modification with certain countermeasures can
reduce the impact or the exploitability even further.
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Figure 1. Risk treatment options.

What must be considered is that the outlined methods for risk treatment are not
universal. Sometimes, transferring or avoiding the risk is not an option, as it would
interfere with the intended objectives. Due to the work necessary for a successful attack, the
likelihood of the system under evaluation being subject to it is sometimes nearly negligible,
which may result in risk acceptance, despite a significant potential impact. However, the
presented approach is applicable to a variety of cases.

2.3. Security Requirements According to ISO/IEC62443

The primary purpose of the IEC 62443 series is to provide a framework for addressing
existing and potential cybersecurity vulnerabilities in industrial systems. For the whole
system lifecycle and all layers of network infrastructures, it provides security risk manage-
ment [13]. These include partitioning the system into security zones, specifying a security
level for each zone, and describing security capabilities that enable a component to be
integrated at a particular security level (SL). The IEC 62443 standard includes thirteen
documents organized into four major categories: General, Policies and Procedures, System,
and Component [14]. The first two categories include concepts, use cases, policies, and pro-
cesses related to industrial control system security (ICS security). Technical requirements
for networks and components are defined by the other two groups, namely, System and
Component [15]. The standard proposed to build a set of distinct security boundaries is
called a security zone; each has a set of common security requirements defined to achieve
a particular security target. Another type of zone proposed by this standard is called a
conduit, which is responsible for aggregating communication channels and building secure
mediums between zones [16].

2.3.1. IEC 62443 Categories

The standard is based on four main categories; these categories are described in the
following section.

Category1—General

The first category of this series is General, which includes discussion and topics
common throughout the entire series [14]. The second category of this series is Specific. The
International Electrotechnical Commission (IEC) Technical Specification 62443-1-1 provides
the terminology, concepts, and models for IACS security. The descriptions of terminology
and acronyms used during the IEC 62443 standards are provided in IEC/TS 62443-1-2.
There are seven foundational requirements (FRs) presented in this standard as follows [17]:

FR1: Identification and Authentication Control (IAC): The primary goal of the identi-
fication and authentication control is to verify a user’s identity before providing permission
to access a system or a resource. Depending on the circumstances, this permission could be
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granted to humans, processes, software, or hardware devices that require authorization to
access a system [18].

FR2: Use Control (UC): This fundamental requirement ensures that only authorized
users have access to the system. Its purpose is to prevent unauthorized system activities by
verifying that the requested permission has been granted before enabling any entities to
initiate communicating with the system [18].

FR3: System Integrity (SI): Individuals, procedures, software, and hardware are all
examples of authorized entities who may attempt to compromise any component of a
system’s security integrity [18].

FR4: Data Confidentiality (DC): In order to prevent the illegal disclosure of data over
communication channels or data storage in repositories, data confidentiality is an essential
consideration [18].

FR5: Restricted Data Flow (RDF): Security zones and conduits for communication
channels are used to restrict the flow of unnecessary data by establishing security borders,
which are also known as security zones [18].

FR6: Timely Response to Events (TRE): Create reports to respond to any malicious
activities detected on a system [18].

FR7: Resource Availability (RA): Protect against various kinds of denial-of-service
attacks so that a system remains operational [18].

Category2—Polices and Procedures

This category deals with the security of the IACS, and it provides security require-
ments that can be applied to determine the amount of protection provided by operational
IACS [14]. The IEC 62443-2-1 specifies who owns an asset for IACS and provides the
parameters for developing and maintaining a cybersecurity strategy. This series covers the
capabilities of the protection system that are required to ensure the proper operation of an
IACS. IEC/IS 62443-2-2 defines a methodology and framework for an IACS for assessing
defense in accordance with the security level and ensuring that the corresponding processes
are implemented. The third series in this category is IEC/TR 62443-2-3, which provides
information about the exchange of information from asset owners to product suppliers.
The next series provides information about the IACS service provider and asset owner [17].

Category3—System

The IEC 62443-3-1 standard gives an overview of the advantages and drawbacks of
currently available network security solutions. The IEC 62443-3-2 standard addresses the
assessment of security risks and the design of network architectures and systems. Part
3-3 of the standard defines broad system security requirements, with an emphasis on
ensuring that system performance is not compromised during the process of fulfilling these
requirements [19].

Category4—Component

It comprises two documents that make up the Component group. IEC 62443-4-1
specifies the development procedure for ICS products to restrict the number of security
vulnerabilities in control systems solutions. It is specified in the IEC 62443-4-2 standard
how to secure the separate components of an ICS network in terms of their technical
requirements.

2.3.2. Zones and Conduits Concept

The IEC 62443 security standard emphasizes performing a security analysis of a
manufacturing facility. The facility is broken up into sections that have been given the name
“security zones” [20]. In addition, data flows among connected security zones are suggested
in the standard via another type of zones for communication channels; these channels are
called conduits [16]. The standard outlines the zones and conduit requirements, abbreviated
as ZCRs, for the system under consideration. The SuC entails defining a collection of IACS
together with any assets associated with it in order to conduct a risk analysis. IEC 62443
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describes the procedures to be followed in order to set up zones and conduits, and their
connections to ZCRs [14,21].

According to the IEC 62443-3-2 [21], the ZCRs are described as follows:

• ZCR1—identification of the SuC: An identification of the system under consideration
(SuC) shall include a specified description of the security limits and an identification
of all access points to the SuC.

• ZCR2—high-level risk assessment: In order to detect unmitigated risks, a high-level
risk assessment of SuC is carried out. This clarifies the worst-case scenario that
SuC presents. The assessment assists in the grouping of assets in distinct zones
and conduits. High-level risk can be quantified using a risk matrix to define the
relationship between the likelihood and the impact values. There are five different
levels of parameter values for the likelihood and impact values. In the following, the
the likelihood levels are listed:

– Level 1: Trivial
– Level 2: Minor
– Level 3: Moderate
– Level 4: Major
– Level 5: Critical

The next listing shows the possible impact values:

– Level 1: Remote
– Level 2: Unlikely
– Level 3: Possible
– Level 4: Likely
– Level 5: Certain

• ZCR 3—Partition the SuC into zones and conduits: This phase splits up the complex
overall system into separate zones and conduits. Figure 2 illustrates an example of
splitting the system into distinct zones and a conduit.

Figure 2. Example of SuC partitioning in zones and a conduit.

Figure 2 illustrates components connected wirelessly to provide a particular function.
Two security zones are defined to represent a security boundary containing all components
that must be protected from multiple cyberattacks. The management security zone repre-
sents a system boundary with a set of common security properties to protect monitoring and
storage devices, such as cloud servers and computer. The second security zone describes an
aggregation of field components, such as actuators and electronic control units (ECU), that
need to be protected. Between these two zones, all communication challenges are defined
as a part of a conduit that securely creates a protected medium for data transmission.

• ZCR 4—document cyber security requirements, assumptions and constraints: This
is the last phase to assess the cyber risk for each zone and conduit to individually
evaluate target security levels [22].
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In the course of our research, we investigated the utilization of the IEC 62443 secu-
rity standard in terms of guidance for protecting a system model from multiple forms
of cyberattacks. The ontology approach was proposed before as one of the most effec-
tive solutions for building complete tractability between potential threats (i.e., security
issues) and security-related requirements (i.e., security solutions driven by standardization).
Shaaban [14] introduced an ontology-based cybersecurity framework that is capable of
automating the tracking of threats and related security attributes until the main security
objective and its associated security requirements can be specified. In order to address
existing security issues, the framework derives a set of security requirements for handling
identified potential cyber threats to protect system components/assets. It builds relation-
ships between various entities in the hierarchical ontology model. These relationships
are then used to deduce security requirements, which justify why a certain group of se-
curity requirements was chosen to address a specific vulnerability in the system. These
relationships are constructed in accordance with the security attributes that are collected
from threats, components/assets, and security requirements in order to estimate previously
established relationships and create new ones, as outlined below [14]:

• Components/Asset−→SecurityAttributes: “A component/asset has security attributes
to protect it from any type of cyberattack scenarios”

• SecurityAttributes−→Threat: “Security attributes could be vulnerable points that an
attacker can exploit by multiple perspectives, which are defined as potential cyber
threats”

• Threat−→Components/Asset: “A threat impacts a component/asset”
• Threat−→SeverityLevel: “Each threat has a degree of risk level, that represents the

severity level of its cyber risk”
• SeverityLevel−→SecurityLevel: “Severity level has an equivalent security level driven

by standardization that handles security issues”
• SecurityLevel−→SecurityRequirements: “Security requirements are classified accord-

ing to multiple security levels (i.e., ranging from 1.0 to 4.0)”
• SecurityRequirements−→SecurityAttributes: “A set of security properties can identify

security requirements to describe security measures applied to achieve particular
security objectives”

• SecurityRequirements−→Component/Asset: “According to that, security require-
ments are chosen to address/mitigate a threat that aims to protect component/asset”

• SecurityRequirements−→Threats: “Security requirements are chosen to address a
threat”

The framework gives a complete, trackable method for proceeding from cyber threats
to security requirements. It is an advanced method for automatically estimating an ap-
propriate set of security-related requirements to protect the system components, address
potential cyber threats, and mitigate related risks.

2.4. Theory of Threat Modeling

Threat modeling has evolved into a valuable tool for detecting potential safety and
security problems. Furthermore, it aids in finding vulnerabilities in the system architecture
and can disclose potential design mistakes. “Threat modeling should be regarded like any other
aspect of the design and specification process", says Torr [23].

Threat modeling is an iterative process and should be applied during the whole
lifecycle of the system, at design, implementation, testing, and maintenance phases. Each of
these phases may yield consequences for the system under consideration and can therefore
necessitate modifications, which in turn will have an impact on the overall system and its
security. AIT follows an approach involving a system model in diagram form and a threat
model (threat database) which are compared against each other, based on sophisticated anti-
patterns to identify misconfigurations of the system leading to potential vulnerabilities. The
result is a threat catalog depicting vulnerable components and related threats. Moreover,
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this threat catalog is built utilizing risk assessment methods based on expert knowledge.
The following sections discuss the components of threat modeling in more detail.

2.4.1. System Model

The system model is represented in the form of a data flow diagram (DFD). A DFD
can graphically represent a technical system and its security attributes. This DFD provides
a description of the components, and their interconnections and setup. The modeled data
may be utilized to do an analysis on a specific component or a set of components [23]. Even
the act of converting an application’s concept or real-world information into a graphical
representation can already affect the system’s architecture and identify potential design faults.

2.4.2. Threat Model

One of the essential parts of threat modeling is building an up-to-date threat database
that consists of a wide range of cyber threats based on the state-of-the-art. This database
supports the risk analysis process to deeply investigate all possible threats that could be
initiated from one or multiple existing security vulnerabilities in the system model. The
threat database holds the threat model which contains known flaws, vulnerabilities, and
weaknesses to be used for analysis in order to detect threats inside the system model.
Potential dangers can be found by automatically comparing the threat model with the
system model [3]. Using a database for storage and a rule-based technique for anti-pattern
representation, a suitable threat model can be defined. Anti-patterns are used to mimic
common configuration problems and are described by domain experts with a domain-
specific language (DSL). The phrase anti-pattern refers to a pattern that should not be
present in the system. They reflect well-known setup concerns, such as communication
over trust boundaries, a lack of encryption while using wireless connection, or a missing of
tamper protection in case of physical attacks.

In our study, we built a comprehensive threat database for IoT and CPS application
domains based on the IEC 62443 security standard. The newly developed database consists
of many potential threats inspired by the standard to give a complete image of the present
and future security issues. This database mainly focuses on parts 3-3 (i.e., system require-
ments) and 4-2 (i.e., component requirements). Figure 3 illustrate the number of developed
threats according to the coverage of these two parts (i.e., system requirements—part 3-3
and component requirements-part 4-2) of the standard.

According to our estimations, we addressed over 90% of the security requirements
that could be used to define a set of potential threats from the IEC 62443-3-3 standard, as
illustrate in Figure 3a. In addition, about 88% of the security requirements in IEC 62443-4-2
are utilized to identify a set of potential threats that may be encountered, as depicted in
Figure 3b.

(a) (b)

Figure 3. Threat coverage of developed threat database according to the IEC 62443 security standard.
(a) The coverage of threat database according to IEC 62443 part 3-3 (i.e., system requirements).
(b) The coverage of threat database according to IEC 62443 part 4-2 (i.e., component requirements).
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The threat modeling approach can be summarized in five main steps [3]. Figure 4
illustrates these steps in terms of how the threat modeling approach includes designing the
whole system with all security-related information until all potential threats are addressed.

The diagram shows that the process of threat modeling begins with building the entire
system model, including all of the relevant security information that must be integrated
into the design of the system. After that, the next step is to perform a threat analysis in order
to determine the possible threats that already exist and how they can exploit any security
vulnerabilities that may be present. In order to provide clear knowledge of the best risk
treatment plan for addressing identified threats, it is essential to evaluate every threat that
has been identified. In addition, all of the identified threats can be mitigated by keeping
the system model up to date with appropriate security measures. Consequently, the threat
analysis (i.e., step 2) shall be performed to examine the effectiveness of the previously
applied security measures and determine new potential risks could be propagated due to
the newly updated measures or if any existing ones need more security concerns.

Figure 4. Main steps of the threat modeling approach.

2.4.3. STRIDE

The basis of threat modeling is a brainstorming methodology referred to as STRIDE.
STRIDE is the abbreviation of the Spoofing, Tampering, Repudiation, Information Disclo-
sure, Denial of Service, and Elevation of Privilege. It was invented in 1999 and adopted
by Microsoft (www.microsoft.com, accessed on 15 May 2022) in 2002 [24] and is used
to identify threats for different threat categories. These threats categories are defined as
follows [7]:

• Spoofing: Attempting to get unauthorized access via a false identity.
• Tampering: Aiming to modify data with an unauthorized method.
• Repudiation: Denying an action that a legal/illegal user conducts.
• Information disclosure: Revealing confidential data.
• Denial of service: Making a specific service, system, or application unavailable.
• Elevation of privilege: A user with restricted access rights receives more elevated

privilege than they should.

www.microsoft.com
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STRIDE can be used together with a the data-flow diagram (DFD) to describe the
system entities, events, and the multiple levels of system zones [24]. As discussed in [3],
there are five basic annotations are utilized to clarify the system elements using DFD:

• Process: represents the system elements, input, output, and actions.
• Data store: represents a data storage or databases, which indicate the sources of the

system’s data.
• Data flow: represents the flow of the information between the different system entities

that could represent a communication protocol.
• External interactions: indicates external elements that interact externally with the

system elements.
• Trust boundaries: are used to divide the system structure into separate trust zones.

While developing software or hardware applications, the STRIDE approach helps
to identify potential threats during the all system lifecycle phases. When it comes to
executing threat modeling, STRIDE has two different approaches: per-element and per-
interaction [25].

STRIDE Per-Element

This approach observes the threats according to applicable elements in the diagram.
It concentrates on a certain set of threats for each specified system element. According to
Table 1, Microsoft uses this table as a core of its security development lifecycle [26,27].

Table 1. Microsoft’s STRIDE-Per-Element [26,28].

S T R I D E

External Entity X X
Process X X X X X X
Data Flow X X X
Data Store X ? X X

The “X” in Table 1 represents the class of threat that the element category could trigger.
“?” means that the logging data store element is applied in addressing the repudiation,
but in some cases, the logs could be used as a way for a repudiation attack. Consider the
following scenario: there is a network data flow, and an attacker has access to the same
network. In this situation, attackers can read, change, or broadcast a flood of packets in
order to prevent a specific service from being performed [26].

STRIDE Per-Interaction

The second approach of the STRIDE method that identifies threats against the tuples:
origin (i.e., source), destination (i.e., target), and interaction. This approach gets the same
number of threats as STRIDE-per-element. However, the STRIDE per-interaction is more
manageable because the threats could be more straightforward to comprehend than the
STRIDE-per-element. This approach requires a reference chart of software to obtain the
results [26,27].

2.4.4. Threat Analysis

An analysis may be performed once the system model and threat model have been
completed. The system model is compared to the threat model to identify and reveal
threats defined within the threat model. As a consequence, a list of threats targeting certain
components, communication channels, or their compounds has been created. The threat
catalog provides information about the threat´s impact and likelihood, and the STRIDE
category. These data may be utilized to assess the identified dangers and provide the basis
for risk management. It aids in determining which dangers—and as a result, risks—should
be addressed, and which should be avoided, transferred, or accepted.
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2.4.5. Security Attributes

When it comes to information security, security attributes are defined as abstractions
representing an entity’s fundamental properties or characteristics in terms of information
protection. Security attributes are generally related to the internal data structures (docu-
ments, buffers, etc.) within the information management system. The information security
policy is supported by security attributes, which enable the fulfillment of access control,
data flow, data processing, distribution instructions, and support additional characteristics
of the information security policy [29].

A set of security attributes is selected from the IEC 62443 security standard to define
a set of the most common security measures that need to be part of system components.
The attacker is always looking for multiple malicious activities to exploit existing security
measures to reach malicious goals. Therefore, the threat modeling approach could support
discovering these security vulnerabilities in the system design phase to predict similar
cyberattack scenarios in the actual operation of the system. Table 2 gives an overview of the
selected security attributes based on the IEC 62443 security standard in order to describe a
set of security measures for protecting system components.

Table 2. An excerpt of the proposed security attributes for system components [29].

Attribute Description

Authentication Verifying the identity of a user, process, or device

Authorization Dedicated management of roles and access right
to allow access to resources on a target system.

Input Validation
Input validation helps to ensure correct and accurate inputs
and prevent attacks such as cross-site scripting and a variety
of injection attacks.

Input Sanitization Input sanitization helps to correct invalid or security
critical inputs to prevent potential injection attacks.

Tamper Protection Protection against physical attacks.

Secure Boot A method of securely booting the system with only OS relevant
operations. No third party applications are executable.

Encryption Encrypting the data to prohibit information disclosure and to
protect data confidentiality.

DDoS Mitigation
Mechanisms to prohibit DDoS attacks. This means allowing only
a certain amount of traffic, reducing the attack surface, defining
firewall rules etc.

Intrusion Detection Applying network scanning tools, end-point protections, dedicated
intrusion detection or prevention systems.

2.4.6. Security Optimization Algorithm

Protecting the network systems of big enterprises introduces a variety of major diffi-
culties due to the complexity of the configurations. The management of these networks
demands analysis techniques that are both robust and comprehensive. An administrator
of a network needs to be aware of both the configurations that are susceptible to attacks
and the technologies that can be used to protect the networks [30]. It is essential to provide
sufficient security mechanisms to protect the system from multiple security issues. Today’s
technology suppliers are well aware of the significance of taking precautions to protect
users’ data, which is why there has been an increase in the number of security solutions
available on the market [31]. However, due to the high cost of security measures, most
customers choose the less expensive options rather than pay the additional cash for more
robust versions. This cost can be quantified in cash for the security modules. However, ad-
ditional overhead expenses are associated with performance and power consumption [32].
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In addition, there is a significant part played by security optimization, which involves
doing an analysis of the security system of an organization, locating any vulnerabilities,
and plugging them using appropriate security measures [33]. However, the main challenge
lies in maintaining a high level of security within a particular system while simultane-
ously optimizing security measures without compromising the measures that have been
optimized. Almohri et al. [30] presented a probabilistic graph model and algorithms for
studying the security of complicated systems with the end goal of minimizing the chance
of successful cyberattacks. This research was based on an optimization technique known
as sequential linear programming, which has been extensively used and researched in a
wide variety of engineering applications.

During our investigation into this topic, we primarily focused on the outcomes of
the threat analysis. These outcomes assist in deeply investigating the existing security
issues that need more security solutions. Based on these findings, we determined common
security attributes applied for system components that need to be optimized to maximize
their resistance to the various kinds of threats currently present within systems’ networks.
Furthermore, we propose an optimization algorithm that examines each component in
a system and aggregates security attributes, if applicable, in order to resist any attack
propagation that could spread among multiple connected components within a particular
network. However, adding the security attributes to all components is not very efficient.
Therefore, we introduce an algorithm for identifying the minimum number of security
attributes while still covering all attributes required by the components. The proposed
algorithm is defined as follows:

1. M is the THREATGET model.
2. C is the component.
3. SP is the security property.
4. M =< C, SP >.
5. connectsTo(c1,c2): “c1 as a source component connects to c2 as a target component.”
6. protectedBy(c,sp): “c is protected by a set of security properties.”
7. protected(c) = {sp | protectedBy(c,sp)}.
8. incomingCovered(c) =

⋂
c1.connectsTo(c1,c2) covered(c1).

9. covered(c) = (incomingCovered(c))
⋃

protected(c).
10. final(c) = protected(c)�IncomingCovered(c).

The algorithm is mainly based on the results from the THREATGET tool. Therefore, M
in line 1 represents the model of THREATGET, which includes a set of components, their
interconnections, their security properties/attributes, and a group of potential threats
for each affected component. The algorithm checks the data flow for pairs of connected
components in order to determine the security attributes that need to be covered in each
system component for the data flow path. Therefore, line 6 represents c1 and c2 as a source
component connected with a target component. As previously discussed, each component
has a set of security attributes defined as defensive measures against multiple cyberattack
scenarios. Therefore, the protectedBy (i.e., line 7) indicates that a set of security properties
are defined for the current component c. Furthermore, the algorithm creates a set of current
security attributes by which the component is protected. The algorithm creates a set of
attributes that are determined based on the intersection of all covered security attributes of
all previous data flows (i.e., the incomingCovered set), as illustrated in line 10. In line 11, the
algorithm creates another set of attributes based on the union of all previously textitcovered
sets with the ones from the current components (i.e., protected). Line 12, represents the
algorithm only selecting the security attributes that are not already covered by the prior
system’s component in a particular data flow (i.e., protected set minus incomingCovered).

2.4.7. Formal Verification

Formal proofs increase the trustworthiness of verified systems. The state-of-the-art
shows various attempts to formally verify security properties. Ruet in [34] provides the
formal security proofs of three standards that are formally verified using the proof assistant
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EasyCrypt. Andronick et al. [35] presented a method for verifying the security properties
of source code embedded on smart cards, through combining functional verification at the
source code level and the verification of high-level properties on a formal model built from
the program and its specification. Model checking is used in [36] to develop techniques that
support the development of tools to solve analysis problem instances in trust management
policy. In hardware, formal verification is also needed. The work presented in [37] proposes
a method to formally verify the correctness and the security properties of a network on chip
(NOC) router in order to provide the proper communication functionality and to avoid
NOC attacks. Detailed surveys on the use of formal verification for enhancing the security
in different levels across the system stack exist in [38–40]. It is shown in the literature that
formal methods and verification provide improved results in resilience against adversaries.
In this work, we chose the B-method as a formal verification method to prove that the
security properties of the optimized system still hold after optimization, and accordingly,
that the proposed algorithm is not deteriorating the system security.

Incorporating formal models into the design process results in more robust systems.
In order to increase trust in the system’s functionality, researchers study a wide range of
modeling and verification technologies. The fundamental goal of the verification process
is to investigate a model for the accuracy of functional requirements stated as formal
properties. The role of formal verification is to ensure the system being designed will
satisfy certain properties. Formal verification ensures the correctness of the system in early
design stages and consequently improves its reliability. Verification, validation, and hazard
analysis procedures on critical systems are usually carried out in separate stages of system
development and by different teams of engineers. However, formal verification can be
integrated with design tools to verify certain properties are satisfied at different stages
and also at run-time. Theorem proving and model checking are the two most prevalent
methods for automatic formal verification. The formal description can be used to guide
further development activities; moreover, it can be used to verify that the requirements for
the system being developed have been entirely and precisely specified. A variety of formal
methods and notations available are available, such as Z notation, VDM, and B-method.
Three categories can be used to classify the formal verification methods—equivalence
checking, model checking, and theorem proving [41].

Equivalence checking verifies that two designs have the same apparent behaviors (e.g.,
an optimized design has the same observable behavior as its earlier version). Two distinct
types of equivalence checking for digital systems are available according to the type of
circuits either combinational or sequential. For combinational systems, the two outputs
are passed into canonical representations, and if the representations are identical, the two
systems are equivalent.

In model checking, an automatic process is used to check if a system satisfies a known
property. The model checking process starts by describing the system being verified and
its required behavior formally. A formal model of the system is build as a collection of
finite state machines, and the behavior is modeled as a set of properties (usually defined
in terms of temporal logic formulas). Then, the properties’ satisfaction levels are checked
automatically by exhaustively exploring the state space of the system. The termination of
model checking is guaranteed by the finiteness of the model (there is a finite number of
states). There are various approaches to model checking. They depend on various technical
issues, such as the choice of the language that is used in expressing the system specifications
and the representation of the system. Automatic model checking is ideal. If the model was
selected properly, the required properties can be verified in one pass. Moreover, available
tools for model-checking provide a trace for each error path in the model. The model
checker will either terminate with the answer true, indicating the property is satisfied, or
give a counterexample that shows why the property is not satisfied. Model checking is
not suitable for very large systems, as the state space generally grows exponentially with
the size of the transition system. This problem is referred to as state explosion problem.
Another drawback of model checking is that it operates only on models, and the actual
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implementation might drift from the correct implementation of the model, so the verified
model is not equivalent to the actual implementation.

Theorem proving is a pure mathematical or logical approach where the verification
problem is described as a theorem in a formal theory. A formal theory is a language in
which formulas are written, a set of axioms are developed, and a set of inference rules are
used for proving. Theorems can be proved with rules and axioms. A desired property is
satisfied if a proof can be constructed from the system axioms and inference rules.

Security properties are all aspects related to the confidentiality of system data. Se-
curity policies including authenticity, authorization, secrecy, integrity, freshness, and fair
exchange [42] are enforced within a system when security must be verified. Formal verifi-
cation for security properties verification is an efficient technique to ensuring the security
measures are satisfied in various system components and in different design stages [43].

In this work, we used formal verification as part of the evaluation of the proposed
algorithm, through ensuring that the security measures hold after applying the algorithm.
We used B-method to describe a complete abstract model of the case study presented in
this work. Atlier B tool was used to verify the consistency of the described model and to
verify surface attack scenarios on the optimized model. In the next subsection, we briefly
introduce the B-method.

2.5. B-Method

B-method is a formal specification method invented by Jean-Raymond Abrial [44].
It provides highly precise descriptions of the attributes that specifications demand. The
B-method is a model-oriented comprehensive formal method that covers the entire de-
velopment cycle [45]. The method is based on the mathematical principles of set theory
and predicate calculus, and its semantics are given using a variant of Dijkstra’s weakest
precondition calculus [46]. The B specification consists of a hierarchy of components de-
scribed using the abstract machine notation (AMN). Each component in a specification
represents a state machine where a set of variables defines its state and a set of operations
query and modify that state. State transitions are described using generalized substitu-
tions. Constraints on the operation and variable types are described as invariants of a
machine. In B-models, abstract machines are the top-level components describing state
machines in an abstract way. Refinements represent enriched versions of either abstract
machines or other refinements. Implementations represent the ultimate refinement of an
abstract machine. The B-method has been shown to be useful in the development of various
applications [47,48].

3. Results

This section introduces an example of the agriculture domain as our research case
study. The first part represents the risk identification and analysis approaches using the
THREATGET tool to identify and rate relevant threats. Outcomes of THREATGET give
more detail about the effected elements and the violated security attributes. A set of security
attributes is determined for each system component to define which security measures were
proposed to mitigate cyber risks. Then, the proposed optimization algorithm is applied
to this example to see how these attributes could be minimized without changing the
efficiency of the applied security measures. A complete B-model for the system component
is described using the B-method. Surface attack scenarios were verified on the optimized
model to show that the security measures hold.

3.1. Agriculture Case Study

Figure 2 shows the application of THREATGET and threat modeling on the basis of
an agricultural example. The diagram contains a digital twin of automated agricultural
components on a generic basis. From bottom to top, the field devices represent components
located directly at the fields. These are sensors that conduct humidity, temperature, or
PH measurements; or actuators that conduct actions based on these measurements or on
a regular basis, such as watering the plants or applying nutrients. Please note that this
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diagram represents an abstraction of a real-world system on a generic basis. Therefore,
components such as sensors or actuators are only modeled once, since the detected threats
would be the same for multiple sensors from a cybersecurity perspective. Specific types
of sensors or actuators are out of scope for the presented example. The sensor fusion
takes care of correlating measurement data, validating the received data and detecting
and correcting discrepancies between different sensors. Once processing at the sensor
fusion component has finished, data are forwarded to an edge computing unit, which is
a computational device located close to the area of application, which is considered the
central processing unit of the whole system. It coordinates multiple field-level components
and triggers higher-level actions based on the sensor data provided. These actions are
forwarded to the actuator ECU, which then controls the actuators to perform their intended
operations. The communication devices, such as the field gateway, serve the purpose of
receiving and sensing information from/to that edge computing unit and connect it to a
cloud storage for data acquisition, learning, and optimization for the future. Finally, the
external environment represents the external interaction with our proposed agriculture
case study. This section illustrates that the external interactor communicates with our
architecture through two primary paths: cloud storage (i.e., Path 1) and sensor (i.e., Path 2)
data flow. Consequently, we believe that any attack propagation within the system network
originates from one of these two paths.

This example is based on the ThreatGet tool, and it includes all of the security attributes
required for each system component to build protective security mechanisms for mitigating
cyber risks. The results of the tool are introduced in the following section in terms of a
set of potential threats, affected elements, and associated security attributes described as
system vulnerabilities.

Risk Analysis Outcomes

THREATGET is utilized to identify existing security vulnerabilities that yield negative
consequences to the system under consideration. As described in Section 2.4.5, each
system component has security attributes that reflect the protection against multiple attack
scenarios, such as authentication, authorization, tamper protection, and encryption. In
order to provide a set of risk mitigation actions against potential threats, the system architect
can specify these characteristics [16]. Therefore, THREATGET checks for violations of these
characteristics and indicates if there is a security vulnerability that could allow malicious
activity to take place the system model shown in Figure 5.

Based on THREATGET’s database discussed in Section 2.4.2, the tool deeply investi-
gated all known security issues. The tool identified 83 threats which were classified into six
main categories based on the STRIDE methodology, as discussed in Section 2.4.3. Figure 6
illustrates the classification of all identified threats according to the STRIDE model.

The chart explains that 20 threats were categorized as tampering, whilst 18 threats
were classified as information disclosure. The spoofing category was considered to have
the highest rate of all identified threats, with 25 threats classified in this category. The
repudiation and elevation of privilege categories were considered to have the lowest rates,
with only three and two threats classified into each category, respectively.

Based on the outcomes of THREATGET, we investigated which threats had a high
impact on system components and related security attributes that were considered a set of
existing security vulnerabilities. Table 3 represents a set of some selected threats identified
by THREATGET and shows the affected system components and which of the related
security attributes are defined as security vulnerabilities in the system, which pave multiple
paths for an attacker to perform a set of malicious activities.
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Figure 5. Modeling an agriculture example using ThreatGet.

Figure 6. Classification of all identified threats according to the STRIDE model.
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Table 3. Some selected potential threats identified by THREATGET.

Threat Title Affected
Components

Violated Security
Attributes

Separation of execution environments IoT Gateway Input Validation

Update authenticity and integrity for
embedded/network devices

Edge Computing Tamper Protection,
Input Validation

Information confidentiality Interface1 Encrypted,
Authorization

Network protection from malicious code Field Gateway Input Validation

Automated audit log access Sensor Fusion Anomaly Detection

The table shows a sample of the identified threats by THREATGET and gives details on the
existing security vulnerabilities for each affected component. For example, the threat “Network
protection from malicious code”, according to IEC 62443 part 4-2 [13], network devices should
be protected against incoming malicious data that could have a harmful impact on the network
device and the other system components connected to it. As a result, THREATGET verifies the
integrity of incoming data to the Field Gateway system component in order to ensure that the
incoming data are legitimate. Consequently, the tool detects that the input validation security
attribute is not activated for this component (in this case, Field Gateway) in order to mitigate a
similar threat. It is defined in the table that the input validation security attribute is considered
to be a violated security attribute in this case and should be addressed.

The full investigation of identified threats is described in Appendix A.
Based on our investigation into the outcomes of THREATGET, we define all needed

security attributes for protecting the system model. Table 4, summarizes all affected
elements and related security attributes.

Table 4. Summary of all affected system components and related violated security attributes.

Affected Component Security Attributes

Sensor
Authentication, Secure Boot, Input Validation,
Anomaly Detection

Interface1 Authorization, Encrypted, Authentication

Edge Computing
Authentication, Tamper Protection, Input Validation,
Authorization, Updates, Secure boot, Encrypted,
Anomaly Detection

Interface2 Authentication, Authorization

Actuator ECU
Authentication, Authorization, Secure Boot,
Input Validation, Anomaly Detection

Actuator Authentication

Interface3 Authorization, Authentication, Anomaly Detection

Field Gateway
Activity Logging, Anomaly Detection, Tamper Protection,
Input Validation, Secure boot, Input Sanitization

IoT Gateway

Input Validation, Encrypted, Authentication,
Activity Logging, Anomaly Detection, Input Sanitization
Tamper Protection, Input Validation, Authorization,
Secure Boot, Encrypted, Anomaly Detection,

Cloud Storage Encrypted, Authorization

It is shown in the table which security attributes are required for each system com-
ponent in order to mitigate cyber threats. We assume that a surface attack on the system
model will be conducted through the previously discussed attack paths (i.e., Path 1 and
Path 2). This is illustrated in our case study in Figure 5. For this reason, based on Table A1
and the most prevalent security attributes for each component listed in Table 4, two attack
path scenarios in which a surface attack will be propagated are anticipated to present. We
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consider the edge computing component as the most essential unit and requires sophis-
ticated security measures. Therefore, in the following scenarios, we propose that attack
propagation shall proceed from an external unit until reaching the edge computing unit.

Surface Attack: Path 1

• The unauthorized access to the cloud storage component gives an attacker the way to
inject malicious code/data into the system network.

• The connected system component (i.e., IoT Gateway in this case) should receive a set
of compromised data/code, which lead to multiple negative consequences, such as
changing the configuration of any critical system component.

• The authenticity between connected network devices shall be guaranteed, which is consid-
ered essential to confirm the authenticity with which the component is communicating.

• In addition, the input sanitization and anomaly detection shall be considered in this
attack path in order to detect and prevent the flow of any compromised data/code
into the rest of the connected system components.

• The data transmitted through the network to the edge computing unit shall be en-
crypted and transmitted from authorized service, human, or component.

• Additionally, the edge computing unit needs to check all incoming data from this path
to ensure that it does not doubt the integrity of the received content.

• Furthermore, we consider that the system update for the edge computing unit is
essential to keep this device up-to-date with all required security measures.

Surface Attack: Path 2

• Sensor components shall authenticate and authorize external interactors in order to
ensure the authenticity of the incoming data.

• The sensor fusion plays an essential role in handling incoming data; therefore, input
validation and secure booting are needed to mitigate any such similar cyberattack
propagation.

• The data shall be encrypted; therefore, Interface1 shall be responsible for encrypting
all of the data transmission.

• The edge computing unit may check all integrity of all received data from
external environment.

• In addition, the edge computing unit shall be protected against any tampering activities.

Attack Propagation Towards System Actuator. Once the edge computing system
has been compromised, we cannot anticipate any additional consequences for the other
components of our system network connected to the edge computing system. Therefore,
we believe that the system updates for the edge computing unit are essential to keep this
device up to date with all required security measures.

• Interface2 needs to verify all connected components’ authorization to ensure the
validity of all incoming data.

• The lack of authorization could bypass other essential security attributes for the Actua-
tor ECU, such as anomaly detection, secure boot, input validation, and authentication.

• Once an attack successfully reaches the system Actuator ECU, an attacker may gain
full control of the component, leading to unexpected outcomes. For example, as
described in Section 3.1, the system actuators control the irrigation process or the
application of nutrients. Therefore, any unauthorized manipulation could lead to a
financially or operationally negative impact.

3.2. Optimization of Security Attributes

In this section, we report optimization of all previously discussed attributes (i.e.,
Table 4). According to the proposed algorithm, all existing properties are optimized, and
the algorithm is concerned with the presence or absence of any single attribute that could
be a vulnerable point in the system’s design. In order to maximize the overall attributes
of a system component and maintain their efficacy against any attack propagation, this
method examines each system’s component. It determines which of its security properties
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are covered by the components that came before it and which properties can be overlooked.
Employing attack propagation scenarios based on Path 1 and Path 2, we demonstrate the
effectiveness of the finally optimized attributes. Table 5 illustrates all steps, followed by the
algorithm to optimize all security properties defined in our agriculture system model.

Table 5. Optimized security attributes in our proposed agriculture system model.

Component Protected Incoming Covered Covered Final

Sensor
Authentication,
Authorization

Authentication,
Authorization

Authentication,
Authorization

Sensor
Fusion

Anomaly
Detection,
Authentication,
Input validation,
Secure boot

Authorization,
Authentication

Anomaly
Detection,
Authentication,
Authorization,
Input validation,
Secure boot

Anomaly
Detection,
Input
validation,
Secure
boot

Interface1
Authentication,
Authorization,
Encrypted

Anomaly
Detection,
Authentication,
Authorization,
Input validation,
Secure boot

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
validation,
Secure boot

Encrypted

Cloud
Storage

Authorization,
Encrypted

Authorization,
Encrypted

IoT
Gateway

Input
Sanitization
Activity
Logging,
Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection

Authorization,
Encrypted

Activity
Logging,
Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Sanitization,
Input
Validation,
Secure
boot,
Tamper
Protection

Activity
Logging,
Anomaly
Detection,
Authentication,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection

Field
Gateway

Activity
Logging,
Anomaly
Detection,
Input
Sanitization,
Input
Validation,
Secure
boot,
Tamper
Protection

Activity
Logging,
Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Sanitization,
Input
Validation,
Secure
boot,
Tamper
Protection

Activity
Logging,
Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Sanitization,
Input
Validation,
Secure
boot,
Tamper
Protection
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Table 5. Cont.

Component Protected Incoming Covered Covered Final

Interface3

Anomaly
Detection,
Authentication,
Authorization

Activity
Logging,
Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Sanitization,
Input
Validation,
Secure
boot,
Tamper
Protection

Activity
Logging,
Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Sanitization,
Input
Validation,
Secure
boot,
Tamper
Protection

Edge
Computing

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection,
Updates

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection,
Updates

Tamper
Protection,
Updates

Interface2
Authentication,
Authorization

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection,
Updates

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection,
Updates

Actuator
ECU

Anomaly
Detection,
Authentication,
Authorization,
Input
Validation,
Secure
boot

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection,
Updates

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection,
Updates

Actuator Authentication

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection,
Updates

Anomaly
Detection,
Authentication,
Authorization,
Encrypted,
Input
Validation,
Secure
boot,
Tamper
Protection,
Updates
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Table 5. Cont.

Component Protected Incoming Covered Covered Final

Actuator Authentication

Authentication,
Tamper
Protection,
Input
Validation,
Authorization,
Updates,
Secure
boot,
Encrypted,
Anomaly
Detection

In particular, the algorithm’s primary goal is to concentrate on which attributes of
system components will be required in order to ensure the system’s protection and to
preserve the security mechanisms of all system components, which will allow them to resist
any attack propagation from an untrusted external component. The table represents all
of the stages that the algorithm goes through in order to define a wide variety of security
properties for each component of the system. Each security attribute described as a set
of protective techniques for protecting a specific component from malicious activity is
represented by the first column (protected), which includes all existing security attributes.
The second column (i.e., Incoming Covered) represents the intersection of covered incoming
edges.The next column (i.e., Covered) includes all of the security attributes that were taken
into consideration from the first component in the attack path all the way up to the current
component. Consequently, the covered column is defined in order to determine which
attributes have already been evaluated before the data flow reaches the current component.
The final column (i.e., final) represents the final choice on which security attributes should
be included in the current component based on all covered and protected attributes.

3.3. Evaluation of the Proposed Algorithm

A complete abstract model for the system components is described using B-method.
Surface attack scenarios described in the previous subsection were verified on the optimized
model to show that the security measures holds. The security properties are expressed
inside the B-model through defining invariant predicates:

((state = authentication_attack) => authentication_attack_signal = TRUE)

((unauthorized_acess = TRUE) <=> (state = storage_attack))

((authentication_attack_signal = TRUE) => (state = update_sec_property))

Atelier B extracted proof obligations from the described model (48 in the case of surface
attack Path 1). Figure 7 shows the proof run on the environment machine that models
surface attack Path 1. This path starts with an authorization failure in the cloud storage;
this puts the storage in what we call storage attack state. As a result of the storage attack
indicated by authorization failure, authentication check is verified in the IOT gateway
through calling the authentication check operation in the IOT gateway machine. Some
proof obligations generated by the Atelier B prover appears on the right side of Figure 7.
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Figure 7. Proof obligations for the surface attack Path 1 scenario.

4. Discussion

In this work, we introduced a standard-conforming risk management approach for
cyber threats. We defined different risk treatment options and discussed their applicability
based on the likelihood and impact of occurring cyber threats. Moreover, THREATGET, a
threat modeling tool developed at AIT, was utilized and enriched with security properties
derived from the IEC 62443 series. An automated analysis of the system model based on IEC
62243-conforming anti-patterns revealed potential threats that may result in exploitation of
the developed system. In contrast to covering all security measures for every component, an
algorithm capable of identifying the minimum number of security attributes while keeping
the system security at a maximum was introduced, thereby reducing the implementation
effort required. Formal verification ensures the system’s correctness and consistency
against specifications. Formal verification is based on mathematical and logic proofs, not
on simulating execution scenarios. Verifying security measures increases the system’s
robustness against security attacks. An abstract model of the use case helped to extract
the proof obligations that must hold to ensure the system’s consistency. Incorporating the
minimum number of security attributes in the optimized system as invariants showed that
security measures are preserved after applying the proposed optimization.
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CPS Cyber Physical Systems
DFD Data-Flow Diagram
ECU Electronic Control Unit
SuC System Under Consideration
ZCR Zones and Conduits Requirements
IAC Identification and Authentication Control
UC Use Control
SI System Integrity
DC Data Confidentiality
RDF Restricted Data Flow
TRE Timely Response to Events
RA Resource Availability
IAC Industrial Control System
IACS Industrial Automation and Control Systems
SL Security Level
CIA Confidentiality, Integrity, and Availability
CPPS Cyber-Physical Production Systems
COTS Commercial-Off-The-shelf

Appendix A

This appendix gives more detail on the full investigation of THREATGET’s outcomes.
The following table discusses all potential threats identified by the THREATGET tool for
determining cyber risks in our proposed case study, as discussed in Section 3.

Table A1. Potential threats identified by THREATGET.

Title Affected
Components

Violated Security
Attributes

Separation of execution environments IoT Gateway Inpup Validation

Components secure by default IoT Gateway Encrypted

Violation of software/device identification
and authentication

IoT Gateway Authentication

Lack of security capabilities of IIoT network
device

IoT Gateway Activity Logging
Anomaly Detection

Breach of control system identification
and authentication Edge Computing Authentication

Update authenticity and integrity for
embedded/network devices

Edge Computing
Field Gateway
IoT Gateway

Tamper Protection
Input Validation
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Table A1. Cont.

Title Affected
Components

Violated Security
Attributes

Permission for information persistence

Sensor
Edge Computing
Actuator ECU
Interface3
IoT Gateway
Interface1
Interface2

Authorization

Embedded device updates authenticity
and integrity

Interface1
Edge Computing
Interface3

Authentication
Input Validation
Updates

Integrity of booting process for embedded
devices

Sensor Fusion
Actuator ECU
Edge Computing

Secure boot
Input Validation

Integrity of booting process for network
devices

IoT Gateway
Field Gateway

Secure boot
Input Validation

Information confidentiality

Interface1
Edge Computing
Cloud Storage
IoT Gateway

Encrypted
Authorization

Automated audit log access
Sensor Fusion
Edge Computing
Actuator ECU

Anomaly Detection

Network protection from malicious code
Field Gateway
IoT Gateway Input Validation

Machine-readable reporting of current
security settings

IoT Gateway
Field Gateway
Interface3

Anomaly Detection
Input Sanitization
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22. Kloibhofer, R.; Kristen, E.; Jakšić, S. Safety and Security in a Smart Production Environment. In Proceedings of the International
Conference on Computer Safety, Reliability, and Security, York, UK, 7–10 September 2018; Springer: Berlin/Heidelberg, Germany,
2018; pp. 190–201.

23. Torr, P. Demystifying the Threat-Modeling Process. IEEE Secur. Priv. Mag. 2005, 3, 66–70. [CrossRef]
24. Shevchenko, N. Threat Modeling: 12 Available Methods. 2018. Available online: https://insights.sei.cmu.edu/sei_blog/2018/1

2/threat-modeling-12-available-methods.html (accessed on 2 April 2022).
25. Karahasanovic, A.; Kleberger, P.; Almgren, M. Adapting threat modeling methods for the automotive industry. In Proceedings of

the 15th ESCAR Conference, Berlin, Germany, 7–8 November 2017; pp. 1–10.
26. Shostack, A. Threat Modeling: Designing for Security; Wiley: Hoboken, NJ, USA, 2014.
27. Swiderski, F.; Snyder, W. Threat Modeling; Microsoft Press: Redmond, WA, USA, 2004.
28. Shostack, A. Experiences Threat Modeling at Microsoft; Microsoft Corporation: Redmond, WA, USA, 2008.
29. Joint Task Force Transformation Initiative. Security and Privacy Controls for Federal Information Systems and Organizations; NIST:

Gaithersburg, MD, USA, 2013. [CrossRef]
30. Almohri, H.M.; Watson, L.T.; Yao, D.; Ou, X. Security Optimization of Dynamic Networks with Probabilistic Graph Modeling

and Linear Programming. IEEE Trans. Dependable Secur. Comput. 2016, 13, 474–487. [CrossRef]
31. Martínez-Rodríguez, B.; Bilbao-Arechabala, S.; Jorge-Hernandez, F. Security Architecture for Swarms of Autonomous Vehicles in

Smart Farming. Appl. Sci. 2021, 11, 4341. [CrossRef]
32. Better Security, Lower Cost. Available online: https://semiengineering.com/better-security-lower-cost/ (accessed on 15 May

2022).
33. Why You Need Security Optimization in 2021. Available online: https://www.descasio.io/why-you-need-security-optimization-

in-2021/ (accessed on 17 May 2022).
34. Baritel-Ruet, C. Formal Security Proofs of Cryptographic Standards. Ph.D. Thesis, Université Côte d’Azur, Nice, France, 2020.
35. Andronick, J.; Chetali, B.; Paulin-Mohring, C. Formal Verification of Security Properties of Smart Card Embedded Source Code.

In International Symposium on Formal Methods; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3582, pp. 302–317. [CrossRef]
36. Niu, J.; Reith, M.; Winsborough, W.H. Formal Verification of Security Properties in Trust Management Policy. J. Comput. Secur.

2014, 22, 69–153. [CrossRef]
37. Sepulveda, J.; Aboul-Hassan, D.; Sigl, G.; Becker, B.; Sauer, M. Towards the formal verification of security properties of a

Network-on-Chip router. In Proceedings of the 2018 IEEE 23rd European Test Symposium (ETS), Bremen, Germany, 28 May–1
June 2018; pp. 1–6. [CrossRef]

38. Avalle, M.; Pironti, A.; Sisto, R. Formal verification of security protocol implementations: A survey. Form. Asp. Comput. 2014,
26, 99–123. [CrossRef]

39. Demir, O.; Xiong, W.; Zaghloul, F.; Szefer, J. Survey of Approaches for Security Verification of Hardware/Software Systems.
IACR Cryptol. ePrint Arch. 2016, 2016, 846.

40. Kulik, T.; Dongol, B.; Larsen, P.G.; Macedo, H.D.; Schneider, S.; Tran-Jørgensen, P.W.V.; Woodcock, J. A Survey of Practical Formal
Methods for Security. arxiv 2021, arXiv:2109.01362.

41. Wahba, A.M.; El-Araby, N.A. Formal verification of real time distributed systems using B method. Int. J. Eng. Sci. Technol. (JEST)
2011, 3, 3427–3436.

42. Thapa, V.; Song, E.; Kim, H. An approach to verifying security and timing properties in UML models. In Proceedings of the 2010
15th IEEE International Conference on Engineering of Complex Computer Systems, Oxford, UK, 22–26 March 2010; pp. 193–202.

43. Elaraby, N.; Kühn, E.; Messinger, A.; Radschek, S.T. Towards a Hybrid Verification Approach. In Software Technologies: Applications
and Foundations; Mazzara, M., Ober, I., Salaün, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 367–386.

https://syc-se.iec.ch/deliveries/cybersecurity-guidelines/security-standards-and-best-practices/iec-62443/
https://syc-se.iec.ch/deliveries/cybersecurity-guidelines/security-standards-and-best-practices/iec-62443/
https://www.scribd.com/document/129590220/ISA-99-Security Levels-Proposal/
https://www.scribd.com/document/129590220/ISA-99-Security Levels-Proposal/
http://dx.doi.org/10.1109/MSP.2005.119
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
http://dx.doi.org/10.6028/NIST.SP.800-53r4
http://dx.doi.org/10.1109/TDSC.2015.2411264
http://dx.doi.org/10.3390/app11104341
https://semiengineering.com/better-security-lower-cost/
https://www.descasio.io/why-you-need-security-optimization-in-2021/
https://www.descasio.io/why-you-need-security-optimization-in-2021/
http://dx.doi.org/10.1007/11526841_21
http://dx.doi.org/10.3233/JCS-130490
http://dx.doi.org/10.1109/ETS.2018.8400692
http://dx.doi.org/10.1007/s00165-012-0269-9


Appl. Sci. 2022, 12, 5653 26 of 26

44. Abrial, J.R.; Hoare, A. The B-Book: Assigning Programs to Meanings; Cambridge University Press: Cambridge, UK, 1996; Volume 1.
45. El-Araby, N.A.; Wahba, A.M.; Taher, M.M. Implementation of formally verified real time distributed systems: Simplified flight

control system. In Proceedings of the 2011 International Conference on Computer Engineering Systems, Nanjing, China, 24–25
September 2011; pp. 25–32. [CrossRef]

46. Dijkstra, E.W.; Dijkstra, E.W.; Dijkstra, E.W.; Dijkstra, E.W. A Discipline of Programming; Prentice-Hall: Englewood Cliffs, NJ, USA,
1976; Volume 613924118.

47. Behm, P.; Benoit, P.; Faivre, A.; Meynadier, J.M. Météor: A Successful Application of B in a Large Project. In FM’99—Formal
Methods; Wing, J.M., Woodcock, J., Davies, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 369–387.

48. Butler, M. A system-based approach to the formal development of embedded controllers for a railway. Des. Autom. Embed. Syst.
2002, 6, 355–366. [CrossRef]

http://dx.doi.org/10.1109/ICCES.2011.6141006
http://dx.doi.org/10.1023/A:1016503426126

	Introduction
	Materials and Methods
	Cyber Threats
	Risk Management
	Risk Assessment
	Risk Treatment

	Security Requirements According to ISO/IEC62443
	IEC 62443 Categories
	Zones and Conduits Concept

	Theory of Threat Modeling
	System Model
	Threat Model
	STRIDE
	Threat Analysis
	Security Attributes
	Security Optimization Algorithm
	Formal Verification

	B-Method

	Results
	Agriculture Case Study
	Optimization of Security Attributes
	Evaluation of the Proposed Algorithm

	Discussion
	Appendix A
	References

