
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

D I P L O M A R B E I T

Disjunctive Answer Set Programming
with Backjumping and Learning

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Isabella Kammerhofer, BSc.

Matrikelnummer: 01226389

ausgeführt am Institut für Logic and Computation
der Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Associate Prof. Marco Maratea

und Associate Prof. Dipl.-Ing. Dr.techn. Stefan Woltran

Wien, am 10.02.2020 Isabella Kammerhofer Stefan Woltran

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Pseudocode wird in der Literatur häufig verwendet, um Solver oder Algorithmen zu beschrei-
ben und miteinander zu vergleichen. Alternativ dazu kann auch ein so genanntes abstrak-
tes Framework konstruiert werden. Dieses basiert auf Transitionssystemen. Niewenhuis,
Oliveras und Tinelli (2006) führten diese Methode ein, um den Davis-Putnam-Logemann-
Loveland-Algorithmus, einen Algorithmus zum Erfüllbarkeitsproblem der Aussagenlogik
(SAT), zu modellieren und zu analysieren. Die Verwendung abstrakter Frameworks ist
eine effektive Methode, mit der bestimmte Eigenschaften wie Endlichkeit, Azyklizität
und Korrektheit analysiert, verglichen und bewiesen werden können. Brochenin, Lierler
und Maratea (2015) griffen diese Idee auf, um sie auf disjunktives Answer Set Program-
ming anzuwenden. Darüber hinaus konstruierten die Autoren ein generalisiertes Template,
das eine Vielzahl möglicher Answer Set Solvers gleichzeitig erfasst. Ihre bisherige Arbeit
beschränkte sich jedoch auf disjunktive Answer Set Solver mit Backtracking. Dabei sind
die Solver, die sie in ihrer Arbeit erwähnt hatten, mit weiteren Methoden ausgestattet,
die in der Arbeit nicht berücksichtigt wurden. Zu diesen Methoden gehören Backjump-
ing, Learning, Forgetting und Restarting. In der vorliegenden Diplomarbeit werden wir
einen Schritt weiter gehen und die Arbeit von Brochenin, Lierler und Maratea (2015) um
diese weit verbreiteten Techniken erweitern. Wir zeigen, wie ein abstraktes Framework
auf diversen, häufig verwendeten Answer Set Solvern aussieht, die die genannten Regeln
Backjumping, Learning, Forgetting und Restarting verwenden. Da wir auf die frühere Ar-
beit aufsetzen, werden wir mit den Solvern cmodels, gnt und dlv arbeiten, wo wir die
zusätzlichen Techniken erfassen. Wir werden auch das generalisierte Template erweitern
und uns mit diversen Eigenschaften beschäftigen, die diese Solver mit sich bringen.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Pseudocodes are often used in literature to describe and compare solvers or algorithms.
Alternatively, we can take the approach of constructing an abstract framework using tran-
sition systems. Nieuwenhuis, Oliveras and Tinelli (2006) introduced this method to model
and analyse the Davis-Putnam-Logemann-Loveland algorithm for propositional satisfiabil-
ity. Using abstract frameworks is an effective way to analyse, compare and prove specific
features like finiteness, acyclicity and even correctness. Brochenin, Lierler and Maratea
(2015) picked up that idea to apply it to disjunctive answer set solvers. Additionally,
the authors created a general framework that captures a multitude of possible answer set
solvers. The work was restricted to disjunctive answer set solvers with backtracking even
though some of the solvers that were being mentioned in their work implement the more
general and advanced methods of backjumping and learning, as well as forgetting and
restarting. Therefore, we will go a step further and extend their work to these widely
used techniques. We illustrate how an abstract framework looks on various commonly
used answer set solvers that work with backjumping, learning, forgetting and restarting.
Extending the earlier work, we will work with the solvers cmodels, gnt and dlv, where
we will capture backjumping, learning, forgetting and restarting. We will also extend the
general template from the earlier work and observe the earlier mentioned features from a
more general point of view.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgement

At this point, I would like to express my gratitude to all people that have supported me
throughout my studies and in particular during the work on my thesis.
First of all, I want to thank my advisor Marco Maratea for his continuous advice, support

and insight througout my work on the thesis. He introduced me to this topic during a
seminar that he held on solving algorithms in terms of Abstract Solvers for Propositional
Satisfiability, while guest lecturing in Vienna. This led to an ERASMUS+ semester abroad
getting started on the thesis in Genova. Thanks for the many skype meetings and meetings
in person even though it wasn’t always easy due to the local distance. Thanks for giving me
the chance to work on an interesting topic, that can get quite challenging to think about.
It was my pleasure to work with you.
Also, I am thankful to Stefan Woltran, my official supervisor, for the support, the quick

responses and the opportunity of going to Italy to work with Marco. Thanks for the
valuable inputs and remarks on the manuscript!
Ein besonderer Dank gilt meinen Eltern. Danke für all die Liebe und Unterstützung, die

ihr mir entgegenbringt. Danke dafür, dass ich stets meine eigenen Entscheidungen treffen
durfte und ihr mir stets den Rücken gestärkt habt. Danke, dass ihr immer für mich da
seid.
Thanks to all my friends for making the years of studying such a great time that I will

always treasure.
And last, but not least, thank you Marcel, for being in my life. Thanks for being such a

wonderful, easy-going person. I’m looking forward to many more years with you.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am February 16, 2020
Isabella Kammerhofer

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

1 Introduction 1

2 Abstract DPLL 5

2.1 Preliminaries of SAT and propositional logic in general 5
2.2 Classical abstract DPLL . 7

2.2.1 The graph DPF . 8
2.2.2 The graph DPLF . 11
2.2.3 Further Extensions of the graph DPLF 15

3 Disjunctive ASP 17

3.1 Disjunctive Logic Programs . 17
3.2 Answer Sets . 19

3.2.1 Answer Set Programming . 19
3.2.2 Answer Sets of a Positive Program 19
3.2.3 Answer Sets of a Disjunctive Program 20
3.2.4 Classification of models . 23

4 Abstract ASP with Backtracking 25

4.1 A Two-Layer Abstract Solver . 25
4.2 Abstract cmodels . 25

4.2.1 An abstract two-layer solver via DPLL 26
4.2.2 The two layers of cmodels . 30

4.3 Abstract gnt . 31
4.3.1 Abstract Solver via smodels . 31
4.3.2 The graph SM2

g(Π),t . 32
4.3.3 The two layers of gnt . 33

4.4 Abstract solver dlv . 34
4.4.1 The graph (SM∗ ×DP)g(Π),t . 34
4.4.2 The two layers of dlv . 34

5 Abstract ASP with Backjumping and Learning 37

5.1 Extending cmodels to Backjumping and Learning 38
5.1.1 Extension of DPL2

g,t(Π) to Forgetting 43

5.1.2 Extension of DPL2
g,t(Π) to Restart 44

5.2 Extending gnt to Backjumping and Learning 46
5.3 Extending dlv to Backjumping and Learning 52

6 Graph Template 55

6.1 A Single Layer Graph Template . 55

i

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

6.2 A Two-Layer Graph Template . 58
6.2.1 Approximating and Ensuring Pairs 59
6.2.2 The graph template for cmodels . 62
6.2.3 The graph template for gnt . 63
6.2.4 The graph template for dlv . 63
6.2.5 A new solver . 64

7 Conclusion 65

Bibliography 67

ii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1 Introduction

Context In declarative programming we tell a program what needs to be done unlike to
imperative programming, where we answer the question of how to do something. Answer
set programming (ASP) is a form of declarative programming. It is oriented towards
difficult combinatorical search problems, see [MT99], [Nie99] and [Lif08]. A combinatorical
search problem is an optimization problem that is easy to state and has a finite, but often
large number of feasible solutions.

In ASP, we represent given problems by using so-called logic programs. A logic program
can be seen as a list of rules and facts that we know about the problem. These programs
have a similar syntax as programs in Prolog, which is another logic programming language,
but one of the main differences is the output.

In the following example, we see two facts: Mary is a woman. And Mary is a par-
ent. The third line is a rule expressing that for Mary being a mother, Mary has to be a
woman and Mary has to be a parent. We call mother(mary) the head of the rule and
woman(mary), parent(mary) the body.

woman(mary).

parent(mary).

mother(mary)← woman(mary), parent(mary).

(1.1)

The solution of such a program in ASP is a so-called answer set, see [Lif99], or stable
model, according to [GL88]. A program that calculates such answer sets is called answer
set solver. A search procedure they are typically based on is the boolean satisfiability
problem (SAT), where we are interested in the question whether a formula is satisfiable.
For a reference see [Lie10].

ASP has a broad range of applications in research and practice, for example in robotics,
see [EAP12], scheduling like in [DM17], or space shuttle control as described in [NBG+01].
But as there are many applications, answer set programming also has more theoretical
components to explore.

State of the Art The most common tool to describe and compare computation procedures
is pseudocode. A representation by pseudocode in ASP was used for example in [GM05]
and [GLM08]. Over the years, other formal approaches were created, like the one from
Gebser and Schnaub, using tableau calculi, see [GS06] or [GS13], and the one that we
will be using in this thesis, the use of abstract frameworks via transition systems that is
based on [NOT06]. There, the authors described the Davis-Putnam-Logemann-Loveland
(DPLL, see [DP60] and [DLL62]) procedure using a graph, where the nodes are states of
computation and the edges are the allowed transitions between the states. The DPLL-

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1 Introduction

algorithm can be used to solve the SAT problem. Executing the procedure leads to a path
in the graph. By ignoring heuristics and implementation issues, the abstract approach can
simplify comparison, understanding and proving features like completeness or termination
in an easier way.

This idea was taken up in [Lie11] and [LT11] to describe answer set solvers for non-
disjunctive programs such as smodels and cmodels. Non-disjunctive refers to the form
of the rules of the program. The rule in Equation 1.1 is a non-disjunctive rule, as there is
only one term in the head of the rule. In the rule below we express by a disjunctive rule
that when we know that Alex is a parent then he is either a father or she is a mother.

mother(alex), father(alex)← parent(alex). (1.2)

Later, an abstract framework was being created for disjunctive answer set solvers, such as
cmodels, gnt and dlv in [BLM14] and [BLM16]. For more information on cmodels we
refer to [Lie05], for gnt, see [JNS+06] and dlv was being introduced in [LFP+06].

The authors even created a general framework, a graph template that works for all the
mentioned disjunctive answer set solvers. However, major techniques like backjumping and
learning, critical for solver performance, were not taken into account.

Contribution In this thesis, we want to fill this gap by extending the existing work of
capturing disjunctive answer set solvers like cmodels, gnt and dlv in an abstract frame-
work with backjumping and learning.

We construct new graphs that capture backjumping and learning, as well as forgetting
and restarting. Backjumping is a form of backtracking that can improve efficiency by
changing a decision that is the reason for an inconsistency, which is an erroneous state,
without having to consider in what order the decisions were made. Applying backjumping
can lead to clauses that are worth remembering in the future, which is done by learning.
These learned clauses can be removed as well, in our terms ”forgotten”. Restart is being
used to do a reset to the starting point while keeping the learned clauses, which could lead
to a more efficient way of finding a solution.

We use the abstract framework to represent various answer set solvers that can han-
dle disjunctive programs and prove correctness and termination, and look at properties
like finiteness and acyclicity. In the earlier work, technically multi-sets are being used for
representing critical components of abstract frameworks. We will see, that by using sets
instead of multi-sets, we will obtain acyclicity in some cases as additional feature.

After having a look at the specific answer set solvers, we extend the graph template
presented in [BLM16] to backjumping and learning as well as forgetting and restarting. A
graph template is a general framework, that accounts for major techniques used in disjunc-
tive answer set solvers. Again, we will take a look at finiteness, acyclicity, termination and
completion. This graph template can be used to create new abstract answer set solvers

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

that work on disjunctive programs and can handle backjumping, learning, forgetting and
restarting.

Structure of the document The content of this thesis is structured as follows.
Chapter 2 introduces the abstract framework by revewing abstract DPLL using CNF for-
mulae. We present the preliminaries needed to discuss that topic, where the main references
come from [NOT06], while the notation coincides with [BLM16]. This chapter provides a
first understanding of the rules of backjumping and learning that we want to transfer to
disjunctive programs.

Chapter 3 is an introduction to disjunctive answer set programming, where we deal with
the basics of answer sets programming which we will need to understand the further work.

Chapter 4 reviews the work of Brochenin, Lierler and Maratea, where they presented
an abstract solver for three important answer set solvers, namely cmodels, gnt and dlv,
that can handle disjunctive programs. This chapter is limited to the status quo - answer
set solvers without backjumping and learning, that use backtracking to unravel conflicts.

The previous chapters provide the tools for the extension of the solvers to backjumping
and learning in Chapter 5. This chapter gives an overview of the changes made to the
previously done work to receive a system that captures backjumping and learning on three
main solvers, cmodels, gnt and dlv. Motivated by the results of [BLM16] we determine
whether some features like acyclicity, termination and correctness hold in the extended
versions. We also take a look at the extension to some other rules that were introduced in
Chapter 3, namely forgetting and restarting.

In Chapter 6 we discuss another main result of [BLM16] where they introduced an
abstract framework that captures the solvers in the previous chapter and elaborate the
extension to backjumping, learning, forgetting and restart as well.

In Chapter 7, we can find a small conclusion, summarizing the main contributions of the
thesis.

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2 Abstract DPLL

A common access point to get into the topic of abstract answer set programming is review-
ing the abstract DPLL framework. In 1962 the authors introduced the Davis-Putnam-
Logemann-Loveland (DPLL) procedure ([DP60], [DLL62]). DPLL can be used to de-
cide the satisfiability of propositional logic formulas in concunctive normal form. This is
achieved by exploring sets of literals to generating classical models of that formula. The
procedure is similar to the algorithms used in efficient boolean satisfiability problem (SAT)
solvers. For a reference see [GKSS08].
In 2006, the authors R. Nieuwenhuis, A. Oliveras and C. Tinelli picked up the procedure

and developed an ”abstract” way of describing SAT solvers. This abstract approach can
be extended to ASP solvers that use these features. Abstract DPLL is a transition-rule-
based formulation of DPLL to simplify the understanding of properties like completeness
or termination by neglecting heuristics and implementation issues and therefore getting a
more abstract point of view.
Additionally, several enhancements of DPLL were made in the last years, for example

non-chronological backtracking, also known as backjumping, conflict-driven lemma learning
and restarts.
In this chapter we want to get an overview of the original rules that were extended over

the years.

2.1 Preliminaries of SAT and propositional logic in general

In the following chapter, most definitions and notations were taken from [BLM16].

Definition 1. An atom a denotes a Boolean variable, i.e.

a ∈ {true, false},

which can be written as
a ∈ {⊤,⊥},

respectively.

Definition 2. A literal l is either an atom a or its negation ¬a. l is the complement of a
literal l, i.e. ¬a for a literal a and a for a literal ¬a.

Definition 3. A conjunction ∧ is the logical AND-function. A disjunction ∨ is the logical
OR-function.

Figure 2.1 and Figure 2.2 show the outcome of the application of the conjunction and
disjunction operator on two boolean values. We see that A ∧B is true only if both A and
B are true. In contrary, A ∨B is false only if both A and B are false.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2 Abstract DPLL

∧ true false

true true false

false false false

Figure 2.1: truth table of the
conjunction operator

∨ true false

true true true

false true false

Figure 2.2: truth table of the
disjunction operator

Definition 4. [BLM16] For a conjunction (respectively a disjunction) of literals D, by D
we denote the disjunction (respectively the conjunction) of the complements of the elements
of D.

Example 1. Let D be (¬a ∨ b) ∧ c. Then, D equals (a ∧ ¬b) ∨ ¬c.

Definition 5. A clause C is a finite disjunction of literals. We identify an empty clause
with the symbol ⊥.

Example 2. Examples of clauses include a ∨ ¬b, ⊥, b, c ∨ d.

Remark 1. A conjunction (respectively a disjunction) of literals can be viewed as a set,
containing each of the conjunction’s (disjunction’s) literals. As a clause is a disjunction of
literals, it can be identified as a set as well. Therefore, there are no repetitions of literals
in a clause.

Example 3. Let C = a ∨ b ∨ ¬c ∨ ¬d be a conjunction of literals. The according set is
{a, b,¬c,¬d}.

Definition 6. [BLM16] A CNF formula is a finite conjunction (alternatively, a set) of
clauses, where CNF stands for conjunctive normal form. Since a CNF formula is identified
with a set of clauses, there are no repetitions of clauses in a CNF formula.

Example 4. An example of an expression in conjunctive normal form is a∧(c∨¬d), which
is equal to the set {a, c ∨ ¬d}.

Definition 7. Let L be a set of literals. The disjunction of the elements of L can be
written as L∨, while the conjunction can be written as L∧. We define atoms(L) as the set
of atoms occurring in L.

Example 5. Let L = {a,¬b, c}. Then L∨ = a ∨ ¬b ∨ c, L∧ = a ∧ ¬b ∧ c and atoms(L) =
{a, b, c}.

Definition 8. Let L be a set of literals. The set L+ contains all atoms that occur positively
in L, the set L− contains all atoms that occur negatively in L.

Example 6. Let L = {a,¬b, c}. Then L+ = {a, c} and L− = {b}.

Definition 9. Let X be a set of atoms and L be a set of literals. By using L|X we mean
the maximal subset of L over the set X.

Example 7. {a, b,¬c}|{b,c} = {b,¬c}.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2 Classical abstract DPLL

Definition 10. A (total truth) assignment to a set X of atoms is a function

f : X → {false, true}.

Definition 11. An assignment M satisfies a formula F , if F evaluates to true under this
assignment. An assignment that satisfies a formula F is called a satisfying assignment or
a (classical) model for F . We also write

M |= F.

Reversely, an assignment contradicts a formula F , if F evaluates to false under an assign-
ment. If all assignments of a formula F contradict that formula, the formula F has no
model and we call F unsatisfiable.

Definition 12. A set L of literals is consistent, if it does not contain both, a literal and
its complement.

Let X, Y be sets of atoms such that X ⊆ Y . We identify X with an assignment to Y , if

a 7→

{

true, a ∈ X

false, a ∈ Y \X

for all atoms a ∈ X ∨ Y .
Now let L be a consistent set of literals. We can identify L with an assignment to atoms(L),
if

a 7→

{

true, a ∈ L

false, ¬a ∈ L

for all atoms a ∈ L.

Definition 13. A set M of literals is complete over the set of atoms X if atoms(M) = X.

Remark 2. A complete and consistent set of literals over X represents an assignment to
X.

Definition 14. Let F , F ′ be formulas. We say that F ′ is a logical consequence of F , if
each model in F is a model for F ′ as well. If F |= F ′ and F ′ |= F , we say that F and F ′

are logically equivalent.

2.2 Classical abstract DPLL

In abstract DPLL, so called transition systems are being used instead of pseudocode,
which makes it easier to prove features like correctness, compare different solvers or even
to design new solvers. In [NOT06], the authors introduced an abstract framework using
directed graphs, where every execution of the DPLL procedure corresponds to a path in
the graph. The nodes of the graph will be described by states. To describe the edges of
the graph we will use a transition system.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2 Abstract DPLL

Definition 15. [Lie11] A record M relative to a set of atoms X is a list of literals over X,
where

• some literals in M can be so-called decision literals, which are being marked by ∆,
and

• M contains no repetitions.

Note that a record is actually an assignment, where the decision literals can be seen as
literals, i.e.

l∆ = l and ¬l∆ = ¬l.

Additionally, we say that a literal l is unassigned by a record if it contains neither l nor ¬l.

A record can also be seen as a set containing all the elements of the record disregarding
their annotations. For instance, the record ¬ab∆c can be identified with the set {¬a, b, c}.

Definition 16. [BLM16] A state relative to a set of atoms X is either a record relative to
X, the state Ok(L), where L is a record relative to X or the distinguished state Failstate.

Example 8. [Lie11] The states relative to a singleton set {a} of atoms are

Failstate, ∅, a, ¬a, a∆, ¬a∆, a¬a, a¬a∆

a∆¬a, a∆¬a∆, ¬aa, ¬aa∆, ¬a∆a, ¬a∆a∆, Ok(a).
(2.1)

By ∅ we denote the empty list.

Remark 3. Note that in Example 8, only ∅, a, ¬a, a∆ and ¬a∆ are consistent, as they
are the only states that do not contain both the literal and its complement.

Definition 17. [Lie11] A transition rule is an expression of the form M =⇒M ′ followed
by a condition, where M and M ′ are nodes of the constructed graph.

Definition 18. [JNS+06] A step is an application of a transition rule.

Definition 19. [NOT06] A transition system is a set of transition rules defined over some
given set of states.

Definition 20. [NOT06] Let S and (Si)i=0,...,n be states. A transition relation S ⇒ S′ is
a binary relation that represents the transition from one state S to another state S′.

2.2.1 The graph DPF

Now we want to define a graph that represents the application of DPLL. Therefore, let F
be an arbitrary CNF formula. By applying the DPLL procedure to F , we can construct
the graph DPF . The set of nodes are the states relative to the set of atoms of F .
Note that the states Failstate and Ok(L) where L is a set of literals, due to Definition

16. In other words, a state in the DPLL graph is a hypothetical state of the DPLL com-
putation. We say, that a node in the graph is terminal, if no edge originates from it. The

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2 Classical abstract DPLL

state ∅ is the initial state. The edges of the graph DPF are defined by the transition rules
presented in Figure 2.3.

Here, the transition rules of DPLL are Conclude, Backtrack, Unit, Decide und Success.
There are different variations for these transition rules, e.g. in some papers the rule Success
is not being explicitly mentioned.
By applying the rule Unit we can add a literal that is the logical consequence of the given

formula and the previous decisions. The rule Decide lets us assign an arbitrary value to
an atom. By applying it, we add a new (decision) literal to the record. When we assign an
arbitrary value to the atom using Decide, we could find out at some point, that we made
the wrong choice earlier. In that case, we can apply the rule Backtrack. Here we can fix
the last decision that we made at an earlier point, by changing the decision literal to its
complement. The rule Success is an indicator that the current state of computation is a
model of our program. If the formula is not satisfiable, the rule Conclude will be applied.

Conclude : L =⇒ Failstate if

{

L is inconsistent and
L contains no decision literals

Backtrack : Ll∆L′ =⇒ Ll if

{

Ll∆L′ is inconsistent and
L′ contains no decision literals

Unit : L =⇒ Ll if

l does not occur in L and
F contains a clause C ∨ l and

all the literals of C occur in L

Decide : L =⇒ Ll∆ if

{

L is consistent and

neither l nor l occur in L

Success : L =⇒ Ok(L) if no other rule applies

Figure 2.3: Transition rules of classical DPLL, edges of the graph DPF .

Remark 4. By constructing the graph, we see, that a path in the resulting graph describes
the process of the search for a classical model of a formula. This is being visualized in
Example 9.

Example 9. Let F be represented by the set {a∨¬b,¬a∨c,¬a∨¬c}. One of the resulting
graphs is being shown in Figure 2.4.

The initial state is ∅. In a first step we apply the rule Decide. We can do this, because
∅ is consistent and the atom a does not occur in our assignment. In a next step we apply
the rule Unit, because adding the literal c to our assignment is a logical consequence of our
previous decision and the given formula. The literal c does not occur in our assignment yet
and the second clause ¬a ∨ c can only be satisfied, if we assign the value true to the atom
c, because we already mapped the atom a to true. The same statement holds for the third
clause of the formula and ¬c. But now the assignment is inconsistent. Therefore either
the rule Conclude or Backtrack hold. As there is a decision literal in our assignment, we

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2 Abstract DPLL

∅ a∆ a∆c a∆cc

¬a¬a¬b¬a¬bc∆Ok(¬a¬bc∆)

D U U

B

UDS

Figure 2.4: A possible graph of F

must apply Backtrack and therefore change the value of the atom a to false. Now the rule
Unit holds for the first statement, where we have to assign a value to the atom b. Then,
we could choose either c or ¬c, so we write c∆, using the Decide rule. We can see that no
more rule applies. Therefore we need to apply Success.

Using similar arguments, the path of the graph could also look like in Figure 2.5 or 2.6.

∅ a∆ a∆¬c a∆¬cc

¬a¬a¬b¬a¬bc∆Ok(¬a¬bc∆)

D U U

B

UDS

Figure 2.5: Alternative path: permute the order of c and ¬c

∅ ¬b∆ ¬b∆¬a ¬b∆¬ac Ok(¬b∆¬ac)
D U U U

Figure 2.6: Alternative path: without backtracking

An alternative way to describe the path of the graph DPF is to use transition relations.
Additionally, we write down the transition rule that was being used after each⇒ to justify
the presence of the edge in the graph. In the path of Equation 2.2 we can see the according
transcription of Figure 2.4.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2 Classical abstract DPLL

∅ ⇒ (Decide)
a∆ ⇒ (Decide)
a∆c∆ ⇒ (Unit)
a∆c∆¬c ⇒ (Backtrack)
¬a ⇒ (Unit)
¬a¬b ⇒ (Decide)
¬a¬bc∆ ⇒ (Success)

(2.2)

Definition 21. A graph is acyclic when there are no cycles, see [BM76, p. 25]. This means
that when we follow a graph from node to node, you will never visit the same node twice.

Proposition 1. [Lie11] For any CNF formula F

1. graph DPF is finite and acyclic,

2. any terminal state of DPF other than Failstate is Ok(L), where L is a model of F ,

3. Failstate is reachable from ∅ in DPF if and only if F is unsatisfiable.

Proof. For the finiteness consider a state S of the graph DPF . S can either be a record
relative to atoms(F), the state Ok(L) or the state Failstate. Since F is a CNF formula,
it is finite and therefore consists of finitely many atoms. These finitely many atoms plus
the special states Failstate and Ok(L) lead to a finite amount of states.

For a proof of the other properties see [Lie11, Proposition 1].

2.2.2 The graph DPLF

In practice, it may not be enough to implement the classical DPLL system as described
in Section 2.2.1, because of efficiency reasons. For example, if the CNF formula has many
atoms and the assignment contains many decision literals, there could be the case that the
rule Backtrack needs to be applied multiple times until we find the root of the inconsis-
tency, as we can only undo the latest decision. Most DPLL-based SAT solvers use a more
general and powerful form of backtracking, which is called backjumping. While backtrack-
ing always undoes the last decision being made, backjumping allows to skip decisions that
are not the reason of the inconsistency and change a decision literal that is part of the
inconsistent term. Therefore it is possible to undo several decisions at once and backtrack
further in the search tree.

In [Lie11, section 6] the graph DPF is being extended by adapting and adding some rules
of classical DPLL. The idea comes from [NOT06, section 2.4]. To do this, we need a new
form of state, an augmented state.

Definition 22. Let F be a CNF formula. An augmented state to F can either be a pair
M‖Γ with M being a record relative to atoms(F) and Γ being a set of clauses over atoms
of F that are entailed by F , the state Ok(L) or the distinguished state Failstate.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2 Abstract DPLL

Note that Γ is a set and not a multi-set like in the previous papers as this will give us
the chance to capture graphs that are acyclic.

One of the transition rules that will be added is Backjumping. Backtracking is a special
case of backjumping, where the decision literal that is being changed, is the last decision
that was made.

We can define a new graph that is basically the graph DPF , but the transition rule
Backtrack is being overwritten by the new rule Backjump in Figure 2.7.

Backjump : Ll∆L′‖Γ =⇒ Ll‖Γ if

{

Ll∆L′ is inconsistent and

F |= l ∨ L

Figure 2.7: Backjump rule

Example 10. Let’s consider the same CNF formula F as in Example 9. We recall, the
according set {a∨¬b,¬a∨c,¬a∨¬c}. One path of the graph DPF with the rule Backtrack
could be the following:

∅ ⇒ (Decide)
a∆ ⇒ (Decide)
a∆b∆ ⇒ (Unit)
a∆b∆c ⇒ (Backtrack)
a∆¬b ⇒ (Unit)
a∆¬bc ⇒ (Backtrack)
¬a ⇒ (Unit)
¬a¬b ⇒ (Decide)
¬a¬bc∆ ⇒ (Success)

(2.3)

We see, that we need to apply the rule Backtrack twice, as we can only undo the latest
decision. When a is assigned to true and c is assigned to true, then the third clause
¬a ∨ ¬c is not fulfilled. Therefore, we need to apply Backtrack. We see that b does not
have anything to do with the reason for inconsistency.
When changing the Backtrack rule to the Backjump, we can skip changing value of

the atom b. Therefore in the graph similar to DPF where we replace backtracking by
backjumping, the path could look as following:

∅ ⇒ (Decide)
a∆ ⇒ (Decide)
a∆b∆ ⇒ (Unit)
a∆b∆c ⇒ (Backjump)
¬a ⇒ (Unit)
¬a¬b ⇒ (Decide)
¬a¬bc∆ ⇒ (Success)

(2.4)

We know where the inconsistency lies and we skip the change of the assignment of the
atom b and can fix the value of the atom, where it is actually needed in one step.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2 Classical abstract DPLL

Whenever there is a conflict, where Backjump needs to be applied, there is always a
clause that is the reason for the inconsistency, according to [NOT06], where the authors
call such a clause a backjump clause.

In Example 10 the backjump clause is ¬a∨¬c, which we did not consider when assigning
c to true in Equation 2.4.

Remembering this backjumping clause will lead to conflict-driven learning. This is where
the set Γ from the augmented state comes into play. It is being used to capture newly
learned clauses without changing the original formula.

We add the possibility of learning additional clauses. The motivation to remember such
new clauses, is to prevent future similar conflicts from happening. We do this by adding
some clauses to a set of learned clauses.

Most modern SAT solvers use both, backjumping and conflict-driven learning, to receive
a more efficient way finding of a solution. The learned clause is being saved to the clause
database and used for further decisions, which transition rule should be applied. In this
framework, we describe backjumping in general, but we do not go into depth on how a
solver finds the backjump clauses, that can be learned.

As we can capture learned clauses, we need a transition rule that can add these to Γ,
which can be found in Figure 2.8.

Learn : M‖Γ =⇒M‖C,Γ if

{

every atom in C occurs in F and
F |= C

Figure 2.8: Learn rule

To use the learned clauses, we need to adapt the rule Unit Propagate accordingly, as we
want to consider the clauses in the CNF formula, as well as the learned clauses.

UnitDPL : M‖Γ =⇒Ml‖Γ if

{

C ∨ l ∈ F ∪ Γ and

C ⊆M

Figure 2.9: Unit Propagate rule in DPLF

We call the new graph DPLF . Its nodes are the augmented states relative to F . Its
transition rules Decide, Conclude and Success of DPF are being extended to

(M‖Γ =⇒M ′‖Γ) ⇔ (M =⇒M ′) and
(M‖Γ =⇒ Failstate) ⇔ (M =⇒ Failstate) and
(M‖Γ =⇒ Ok(M)) ⇔ (M =⇒ Ok(M)).

(2.5)

On the left we see the new form of the transition rule, on the right is the old form of the
transition rule.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2 Abstract DPLL

We see, that the rules stay basically the same, but the set of learned clauses is being
remembered when applying Decide. Besides the Decide, Conclude and Success rule from
Figure 2.3, that are being extended by using Equation 2.5, the transition rules of DPLF

can be found in Figure 2.7, 2.8 and 2.9.

From now on, we will omit the word ”augmented” before ”state” when it is clear from
the context.

Theoretically, the rule Learn is always applicable, so we can’t say that a state is terminal.
Therefore, we introduce semi-terminal nodes.

Definition 23. A node in the graph is semi-terminal if no rule other than Learn is
applicable to it.

The graph DPLF can be used for deciding the satisfiability of a formula F by construct-
ing an arbitrary path from the initial state ∅‖∅ to a semi-terminal node.

The following proposition describes the features of the graph DPLF .

Proposition 2. [Lie11] For any CNF formula F,

1. every path in DPLF contains only finitely many edges justified by the transition rules
Unit, Backjump, Decide and Conclude.

2. for any semi-terminal state M‖Γ of DPLF reachable from ∅‖∅, M is a model of F ,

3. Failstate is reachable from ∅‖∅ in DPLF if and only if F is unsatisfiable.

Proof. See [Lie11, Proposition 7]

Example 11. [Lie11] Let F be the formula

a ∨ b

¬a ∨ c.

One path in DPLF can be the following:

∅‖∅ ⇒ (Learn)

∅‖b ∨ c ⇒ (Decide)

¬b∆‖b ∨ c ⇒ (UnitDPL)

¬b∆c‖b ∨ c ⇒ (UnitDPL)

¬b∆ca‖b ∨ c ⇒ (Success)

Ok(¬b∆ca)

If we started with the literal a we have to apply UnitDPL and add c. Starting with the
literal ¬a would lead to the literal b on applying UnitDPL. Therefore, a rule that could
be learned in a first step is b ∨ c. It will be considered in the further steps.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2 Classical abstract DPLL

So when assigning the value false to b after learning the rule b∨c, we can apply UnitDPL,
which would not be possible by just using the rules of the formula. Afterwards we’d have
to assign a to true. Otherwise, the first disjunction would not be satisfied.

In total, the application of the transition rules of DPLF will lead to a semi-terminal
state {¬b, c, a}, which is a model of F by Proposition 2 (b).

2.2.3 Further Extensions of the graph DPLF

Modern SAT solvers often implement techniques as forgetting and restart in addition to
backjumping and learning.

Forget

As we can learn many different clauses, when applying Learn, there is a possibility that
the CNF formula including its learned clauses turns out to be very big, which could have a
negative effect on the performance of the solver. Therefore it can be helpful to introduce a
new transition rule: Forget. It is the opponent of the transition rule Learn, where learned
clauses can be removed when the conflicts are not very likely to be found again. When
a solver ”recognizes” that a clause, that was being learned earlier is not helpful anymore,
that clause is being deleted from the set of learned clauses. The transition rule in Figure
2.10 describes this process of forgetting a clause.

Forget : M‖Γ, C =⇒M‖Γ if
{

F |= C

Figure 2.10: Forget rule

Restart

In the case that the search is not making ”enough” progress according to some measure,
the transition rule Restart was being introduced. The idea is that the additionally learned
clauses will lead the heuristics for the rule Decide to behave differently, so that the search
space is being explored in a more compact way. This is done by starting the search from
scratch in addition to keeping the clauses that were being learned up to this point. The
motivation behind this, is that the additional knowledge that is gained by the learned
clauses will lead the heuristics to behave differently and more efficiently.

Restart : M‖Γ =⇒ ∅‖Γ

Figure 2.11: Restart rule

Remark 5. Keep in mind that restarting too early and too often could eventually lead
to the consequence that the program will not terminate. We could also lose completeness
due to the early termination of exploring the search space before we start over using the
rule Restart. To ensure in practice that a final state is being reached at some point, the
minimal number of steps is being increased between each pair of restart steps.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2 Abstract DPLL

Remark 6. The transition rules Restart and Forget are similar to Learn in a sense that
they can be applied at any time. Therefore the definition of a semi-terminal state has to
be changed: A node in the graph is semi-terminal if no rule other than Learn, Forget and
Restart is applicable to it.

Proposition 2 holds for both, adding the transition rule Forget and Restart. For the
first part, the new rules do not change the finiteness, as they are not being considered.
The second part is still valid, as both Restart and Forget are being treated like Learn,
so they do not lead to a semi-terminal state. Neither Forget nor Restart lead to the state
Failstate, so the third part of the proposition is independent of Forget and Restart as
well.

Remark 7. To keep finiteness as well as completeness, while including the transition rules
Learn, Forget and Restart, we need to add some constraints to our formulation. To
achieve this, we have to look at subderivations and periodicities.

Definition 24. [NOT06] A derivation is a sequence of transitions of the form
S0 ⇒ S1, S1 ⇒ S2, . . . , denoted by the following:

S0 ⇒ S1 ⇒ S2 · · ·

A subderivation is a subsequence of a derivation.

Definition 25. [NOT06] Restart has increasing periodicity in a derivation, if for each
subderivation Si ⇒ · · · ⇒ Sj ⇒ · · · ⇒ Sk with Si, Sj and Sk being Restart steps, the
number of transitions in Si ⇒ · · · ⇒ Sj is strictly smaller than in Sj ⇒ · · · ⇒ Sk.

Proposition 3. The graph DPLF that is being extended by the rules Forget and Restart
is finite if it contains no infinite subderivations consisting of only Learn and Forget steps
and if Restart has increasing periodicity in it.

Proof. The proof follows [NOT06, Theorem 2.16]

Remark 8. Proposition 2 holds for the extended graphs DPLF with forgetting as well as
the extended graph DPLF with forgetting and restarting, as the first and the second part
excludes learning, forgetting and restarting. Neither of the rules Forget and Restart lead
to Failstate, therefore the third part should follow the lines of [Lie11] as well.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3 Disjunctive ASP

Answer set programming (ASP) is a form of declarative programming commonly used for
solving difficult, primarily NP-hard search problems, according to [Lif08]. It consists of
rules that look like the rules in Prolog1, but the computational mechanism that is used
in ASP is different. In ASP these are based on fast satisfiability solvers for propositional
logic.
In ASP, search problems are reduced to computing stable models (answer sets). In prac-

tice, some of the answer set solvers are enhancements of the DPLL procedure. ASP solvers
like cmodels follow the so called SAT-based approach where a SAT solver is invoked for
search. Other ASP solvers are being influenced by SAT solvers by adopting computational
techniques from them. For instance, the solver dlv implements backjumping (cf. [RFL06]).
An early application of answer set programming was being introduced in 1997, where

the authors introduced a planning method, see [DNK97]. Some applications of answer set
programming are Configuration of systems, e.g. the Partner Units Problem for configuring
parts of a railway safety system of Siemens [Tep17], Planning and Scheduling, e.g. nurse
scheduling [DM17], Classification or Bioinformatics, to name a view. For more information
see [FFea18].
Here, we will work with disjunctive logic programs. The problem of deciding whether

it has an answer set is
∑P

2 -complete, because there is an exponential number of possible
candidate models and the hardness of checking whether a candidate model is an answer set
of a program is co-NP-complete (cf. [BLM14]). Because of the high complexity, only a few
solvers can handle this type of program. In the next chapters we will take a closer look at
some of these solvers, namely dlv, cmodels and gnt.

In this chapter, most definitions and notations are taken from [BLM16].

3.1 Disjunctive Logic Programs

Definition 26. A rule is a construct of the form

A← B, (3.1)

where A is the head and B is the body. If A is empty, it is being dropped from the
expression.

Definition 27. The head is a finite disjunction

A = a1 ∨ a2 ∨ ... ∨ an, (3.2)

1The logical programming language Prolog, whose name comes from ”programmation en logique”, is also

a common part declarative programming.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3 Disjunctive ASP

where each ai (1 ≤ i ≤ n) is either an atom or the symbol ⊥. If A consists of more than
one atom, the rule is called disjunctive. A non-disjunctive rule has at most one single atom
in the head.

Definition 28. The body is of the form

b1, ..., bl, not bl+1, ..., not bm, (3.3)

where each bi (1 ≤ i ≤ m) is an atom. We call b1, ..., bl the positive and not bl+1, ..., not bm
the negative part of the body, and can write B+ and B− respectively.

Definition 29. A non-disjunctive rule, where the body B is empty, is called a fact. The
syntax for a fact is

a1.

Remark 9. We can view Equation 3.3 as the conjunction

b1 ∧ ... ∧ bl ∧ not bl+1 ∧ ... ∧ not bm. (3.4)

Further, we can identify a rule with the clause

A ∪B = a1 ∨ ... ∨ an ∨ b1 ∨ ... ∨ bl, bl+1 ∨ ... ∨ bm. (3.5)

Conversely, we can identify CNF formulas with logic programs.
We say, that a rule A← B is equivalent to A ∪B.
For example the formula a ∨ b can be seen as rule ← not a, not b.

Remark 10. As seen in Example 3, we can identify a conjunction of literals as a set
containing all of its literals. Therefore, we can denote b ∈ B, where B is a given body,
meaning that the atom b occurs in the positive part of the body. Reversely we can write
¬b ∈ B, if the atom b occurs in the negative part of the body.

Definition 30. A (logic) program Π consists of finitely many rules. A program is called
disjunctive when there is at least one rule in the program, that is disjunctive. Vice versa,
we call a program non-disjunctive if it only consists of non-disjunctive rules. A program Π
is positive, if all rules consist of the positive part of the body only.

Definition 31. By Bodies(Π) we will refer to all the body parts of the rules of a program
Π.

Definition 32. Like in Definition 7 we denote the set of atoms occurring in the body of a
rule as atoms(B). By atoms(Π) where Π is a program, we refer to all the atoms occurring
in the program Π.

Example 12. An example for a program Π is

a ∨ b← c

← ¬b

c← d,¬e

e← e.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2 Answer Sets

This program consists of four rules. The heads of these rules are a ∨ b, ∅, c and d. The
bodies are c, ¬b, d,¬e and e. The rule a∨b← c is the only disjunctive rule in the program.
The positive part of the body of the rule c← d,¬e is d, the negative part of the body is ¬e.
The atoms of the program atoms(Π) = {a, b, c, d, e}. The according CNF formula would
be

a ∨ b ∨ ¬c

b

c ∨ ¬d ∨ e

e ∨ ¬e.

3.2 Answer Sets

3.2.1 Answer Set Programming

We recall, that answer set programming (ASP) is a form of declarative programming, where
the solution of a program consisting of one or more rules is an answer set, which is a stable
model. The stable model semantics of logic programming was introduced by Gelfond and
Lifschitz in 1988 [GL88]. The programs that generate answer sets are called answer set
solvers (cf. [Lif08]).

3.2.2 Answer Sets of a Positive Program

To get a better understanding of answer sets, we consider a positive, non-disjunctive pro-
gram Π, regarding to [Lie17].

Definition 33. Let X be a set of atoms. X satisfies a positive rule

a0 ← b1, ..., bl (3.6)

of a program when a0 ∈ X whenever {b1, ..., bl} ⊆ X.

By definition, every singleton a0 satisfies Equation 3.6. The truth table of Definition
33 matches with the truth table of the implication operator in propositional logic, where
A ← B ⇐⇒ B =⇒ A, see Figure 3.1. We can also view A ← B as logically equivalent
to A ∨B.

a1 b1 a1 ← b1
true true true

false false true

true false true

false true false

Figure 3.1: truth table of Definition 33

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3 Disjunctive ASP

Definition 34. Let X be a set of atoms. We say that X satisfies a positive program Π if
X satisfies every rule in Π.

Proposition 4. [Lie17] For any positive program Π, there exists a set of atoms satisfying
that program.

Proof. See [Lie17].

Proposition 5. [Lie17] Let Π be a positive, non-disjunctive program. The intersection of
all sets satisfying a program Π satisfies Π as well.

Proof. See [Lie17].

Remark 11. Because of Proposition 5, there is a minimal set of atoms that satisfies Π.

Definition 35. The smallest set of atoms satisfying a positive, non-disjunctive program
Π is called the answer set of Π.

Example 13. Consider the program

a.

c← a, b.
(3.7)

The sets of atoms satisfying the program in Equation 3.7 are

{a}, {a, b, c}, {a, c}.

The answer set is {a} as it is minimal amongst the sets of atoms satisfying the program.

Let Π be a program consisting of facts only. The set of these facts is indeed the only
answer set of the program. A fact states what is known, while an answer set reflects
this information by asserting that atoms that are a fact in the program are true, while
everything else is false. Any positive program has a unique answer set. This follows from
the definition of an answer set and Proposition 4.

3.2.3 Answer Sets of a Disjunctive Program

Now we look at answer sets in disjunctive programs that don’t necessarily have to be
positive programs.

Definition 36. Let Π be a disjunctive program consisting of rules in the form A← B1, B2,
where B1 is the positive and B2 denotes the negative part of the body of the rule and let
X be a set of atoms. The Gelfond-Lifschitz reduct or just ”reduct” ΠX of Π with respect
to X is obtained from Π by

1. removing each rule A ← B1, B2, where there exists an atom in B2 that is also in X,
i.e. X ∩ atoms(B2) 6= ∅, and

2. replacing the body of each remaining rule A ← B1, B2 with the positive part of the
body, i.e. A← B1.

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2 Answer Sets

Definition 37. A set of atoms X is an answer set of a program Π, if X is minimal among
the set of atoms that satisfy the reduct ΠX . [GL88] Therefore, X is an answer set of Π if
X is an answer set of the reduct ΠX . An answer set is also called a stable model.

While in the positive program in Section 3.2.2 we could say that we can generate the
head a0, as soon as we generated the atoms of the body b1, ..., bl, if none of the atoms of the
negative part of the body bl+1, ..., bm can be generated using the rules of the program. The
answer set is the set of all atoms that can be generated by applying rules of the program
in any order.
In a program with negation, the reduct ensures that we generate one of the atoms in the

head as soon as we generated the positive part of the body B+ and provides that the atoms
of the negative part of the body can not be generated using the rules of the program.

Example 14. Let Π be the program

a← ¬b,¬c

b← ¬c

c← a

d← d

e, f ← ¬a,¬b.

(3.8)

Consider the set {b} The reduct Π{b} is

b←

c← a

d← d.

(3.9)

In the first rule of Π, we apply the first rule of the reduct and therefore the rule is being
removed. In the second rule of Π, we apply the second rule of the reduct, hence the negative
part of the body is being removed. The other rules remain the same.
Note that in the reduct in Equation 3.9 the first rule b← is equivalent to the fact b. We

can rewrite Equation 3.9 as

b.

c← a

d← d.

Now we can see clearly that to satisfy the program, the atom b needs to be assigned to
true. The reduct Π{b} satisfies the program in Equation 3.8 and the set {b} is an answer
set, because the only subset would be the empty set ∅, which does not satisfy the reduct,
because of the fact b.

Consider the set {a, c}. The reduct Π{a,c} is

c← a

d← d.
(3.10)

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3 Disjunctive ASP

Here, the first and the second rule of Π are being removed due to rule 1 of the reduct. The
reduct is being satisfied by the set {a, c}. But it is not an answer set, as it is not minimal.

Consider the set ∅. The reduct Π{∅} is

a←

b←

c← a

d← d

e, f ← .

(3.11)

Only rule 2 of the reduct needs to be applied to the first two rules of Π.
In this case a and b and either e or f have to be assigned to value true. If a is true, c needs
to be true as well. The minimal set, satisfying the reduct is {a, b, c, e} or {a, b, c, f}. So
the empty set ∅ cannot be an answer set.

Consider the set {b, d}. The reduct Π{b,d} is

b←

c← a

d← d.

(3.12)

Here, the first rule is being removed due to rule 1 of the reduct. The body of the second
rule of Π is removed due to rule 2 of the reduct. The reduct is being satisfied by the set
{b, d}.
But the reduct Π{b,d} is not minimal, because the set {b} would satisfy the reduct and is a
subset of {b, d}. Therefore the set {b, d} is not an answer set.

Example 15. If the program Π consists of the rule a← ¬a then there is no answer set at
all.

If we look at the possibilities, we know, that we either can assign the atom a to the value
true or to the value false.

In the first case, let a be true. The reduct Π{a} is a program consisting of no rule. The
minimal set that would satisfy the empty program is the empty set. Thus, the set {a} is
not an answer set.

In the second case, let a be false. There are no atoms that were assigned value true,
therefore the equivalent reduct is Π{∅}. The reduct Π{∅} is

a←,

which is equivalent to
a.

The empty set ∅ does not satisfy the reduct and is not the answer set of the program.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2 Answer Sets

3.2.4 Classification of models

Up to this point, when talking about a model, we were talking about classical models that
satisfy formulas and in ASP we compute stable models. As we will take a further step
towards abstract ASP, we will give an overview of three types of models: classical models,
supported models and stable models.

Definition 38. A supporting rule for an atom a with respect to a set of literals L is a rule
of a program Π of the form

A ∨ a← B,

where holds
L ∩ (B ∪A) = ∅.

We say, that a rule is a supporting rule for an atom a with respect to a set of literals L
if a is in the head of a rule and there holds that the following sets are disjunct:

• the set of literals L and

• the clause we identify the rule with, if we removed the atom a from the head. (by
using Remark 3.5)

Example 16. Consider the program of Example 15. The rule a← ¬a for an atom a with
respect to the empty set of literals ∅ is a supporting rule, because it holds ∅ ∩ {a ∪ a} = ∅.
The rule a← ¬a is not a supporting rule for the atom a with respect to a set of literals a,
because there does not hold

L ∩ (B ∪A) = {a} ∩ ({a} ∪ {a}) = {a} ∩ {a} = {a} 6= ∅.

Definition 39. Let L be a consistent and complete set of literals over atoms(Π) of a
program Π. We call L

• a classical model of Π, if L satisfies every rule in Π.

• a supported model of Π if L is a classical model of Π and for every atom that occurs
positively in L, i.e. a ∈ L+ there is a supporting rule for a with respect to L.

• a stable model of a program Π if the set L+ is an answer set of Π.

Definition 40. The completion comp(Π) of a program Π consists of Π and the formulas

{

¬a ∨
∨

A∨a←B∈Π

(B ∧A|a ∈ atoms(Π)
}

.

Example 17. Assume a program consisting of the rule a ∨ b← c.
The set of literals {a, b, c} satisfies the rule, because a∨b∨¬c holds. But it does not satisfy
the completion, as {¬a ∨ (c ∧ ¬b)} does not hold.

Definition 41. [LRS97] Let Π be a program and L be a consistent set of literals over
atoms(Π). A set of atoms over atoms(Π) X is unfounded on L with respect to Π, when
for each atom a ∈ X and each rule A← B ∈ Π such that a ∈ A, either one of the following
conditions hold

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3 Disjunctive ASP

• L ∩B 6= ∅,

• X ∩B 6= ∅ or

• (A X) ∩ L 6= ∅.

An important theorem that helps understanding key computational ideas behind modern
ASP solvers stems from [LRS97]:

Proposition 6. [BLM16] For a program Π and a consistent and complete set L of literals
over atoms(Π), L is a stable model of Π if and only if L is a classical model of Π and no
non-empty subset of L+ is an unfounded set on L with respect to Π.

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4 Abstract ASP with Backtracking

Like in the case of DPLL, we are making an abstract approach to ASP. We do this for
the same reasons - better analysability, comparability between solvers, provability of the
correctness as well as it is easier to design new algorithms. We recall that only five answer
set systems are capable of solving disjunctive programs: dlv, gnt, cmodels, clasp, wasp.
In [BLM16], the authors built a framework to capture multiple solvers at once. We will
take a closer look at dlv, gnt and cmodels to understand the rules and build the base
for extending the work of the authors with the previously introduced transition rules of
backjumping and learning. Further, we will need this to understand the general framework
capturing all these solvers, that was being introduced in [BLM16], which we will also be
extending in the next chapter. Most of the background information in Chapter 4.2 is taken
from [Lie11], while the rest is based on [BLM16].

4.1 A Two-Layer Abstract Solver

A popular approach for disjunctive answer set solvers is the use of two layers: The generate
layer is used to find potential answer sets of a given program. By using transition rules,
a set of candidates is being obtained. The test layer determines whether the outcome of
the generate layer is indeed an answer set of the program.

The idea is to design abstract solvers made of two graphs, which are the layers. We can
construct a graph DP 2

g,t(Π) that captures these two-layer technology, where the two layers
of the graphs communicate with each other via transition rules.

4.2 Abstract cmodels

cmodels is one of the systems that computes answer sets, where the algorithm does not
explore the same part of the search tree more than once. The algorithm is called ASP-
SAT with Learning, according to [GLM06]. In this solver, a SAT-based approach is being
followed, as a SAT solver is being used as search engine. The two-layer architecture is based
on the DPLL procedure for both, the generating and the test layer, where the generate
layer is the completion of the program Π converted to conjunctive normal form and the
test layer is the conjunction of all so called ”loop formulas” of Π. They showed that a set
is an answer set if and only if it satisfies its completion and the set of all loop formulas, as
they found out that cycles are the reason why models of a logic program’s completion may
not be answer sets, but we won’t go into depth there. For further information see [LZ02].

cmodels tried to overcome the disadvantages of Lin and Zhao’s answer set solver assat,
which can only compute one answer set and works only with basic rules. Transition rules

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4 Abstract ASP with Backtracking

like UnitDPL, Success, Backjump, Decide and Conclude of graph DPLF are referred to
as basic, while Learn is not.

Like in DPLL, we want to take an abstract approach to cmodels. In a first step, we
look at a graph DP2

g,t(Π) of the two-layer architecture, where we describe a two-layer solver
using DPLL, which is exactly what the solver cmodels is based on. We will look at the
generate and test layer of cmodels in particular.

Later, in Chapter 5.1, we will take the graph that we reviewed here and extend it to
backjumping and learning.

4.2.1 An abstract two-layer solver via DPLL

To create a graph DP2
g,t(Π) with two layers that captures cmodels, we need to determine

the nodes and the edges accordingly by extending the definition of a state to capture
generate and test layers. For this, we need to define a label first.

Definition 42. A label is either the symbol L or R.

Definition 43. [BLM16] A state relative to sets X and X ′ of atoms is either

1. a pair (L,R)s, where L and R are records relative to X and X ′, respectively, and s
is a label (s ∈ {L,R}).

2. Ok(L), where L is a record relative to X, or

3. the distinguished state Failstate.

Definition 44. A function g from a program to another program is called a generating
(program) function, if there holds atoms(Π) ⊂ atoms(g(Π)) for any program Π.

Definition 45. Let Π be a program and Π′ be a non-disjunctive program. Let M be a
consistent set of literals covering the program Π. A function t : (Π,M) → Π′ is called a
witness (program) function with respect to Π and M . We denote

atoms(t,Π, X) =
⋃

L

atoms(t(Π, L)), (4.1)

for all possible consistent and complete sets L of literals over X, where Π is a given program
and t is a given witness function.

Now we have everything to construct the graph DP2
g,t(Π).

The nodes of the graph DP2
g,t(Π), where g is a generating function, t is a witness function

and Π is a program, are the states relative to the sets atoms(g(Π)) and
atoms(t,Π, atoms(g(Π)))), respectively. The initial state is (∅, ∅)L.

The edges of the graph are determined by the transition rules in the Figures 4.1, 4.2, 4.3.
The transition rules are being partitioned in Left-rules, Right-rules and Crossover-rules.
The rules are based on the classical DPLL transition rules. Especially, the left-rule
ConcludeL, both backtracking rules BacktrackL and BacktrackR remain in nearly the
same syntax as in DPF .

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2 Abstract cmodels

Left-rules

ConcludeL (L, ∅)L =⇒ Failstate if

{

L is inconsistent and
L contains no decision literal

BacktrackL (Ll∆L′, ∅)L =⇒ (Ll, ∅)L if

{

Ll∆L′ is inconsistent and
L′ contains no decision literal

UnitL (L, ∅)L =⇒ (Ll, ∅)L if

l is a literal over atoms(g(Π)) and
l does not occur in L and
a rule in g(Π) is equivalent to C ∨ l and

all the literals of C occur in L

DecideL (L, ∅)L =⇒ (Ll∆, ∅)L if

L is consistent and
l is a literal over atoms(g(Π)) and

neither l nor l occur in L

Figure 4.1: The left-rules of the graph DP 2
g,t(Π).

Right-rules

ConcludeR (L,R)R =⇒ Ok(L) if

{

R is inconsistent and
R contains no decision literal

BacktrackR (L,Rl∆R′)R =⇒ (L,Rl)R if

{

Rl∆R′ is inconsistent and
R′ contains no decision literal

UnitR (L,R)R =⇒ (L,Rl)R if

l is a literal over atoms(t(Π, L)) and
l does not occur in R and
a rule in t(Π, L) is equivalent to C ∨ l and

all the literals of C occur in L

DecideR (L,R)R =⇒ (L,Rl∆)R if

R is consistent and
l is a literal over atoms(t(Π, L)) and

neither l nor l occur in R

Figure 4.2: The right-rules of the graph DP 2
g,t(Π).

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4 Abstract ASP with Backtracking

Crossing-rule LR
CrossLR (L, ∅)L =⇒ (L, ∅)R if

{

no left-rule applies

Crossing-rules RL

ConcludeRL (L,R)R =⇒ Failstate if

{

no right-rule applies and
L contains no decision literal

BacktrackRL (Ll∆L′, R)R =⇒ (Ll, ∅)L if

{

no right-rule applies and
L′ contains no decision literal

Figure 4.3: The crossing rules of the graph DP 2
g,t(Π).

The left-rules of DP2
g,t(Π) capture the generate layer of the two layers. The program Π

is transformed to a program g(Π) by using the generating function. Then, the DPLL pro-
cedure is applied to the new program g(Π).

The right-rules of DP2
g,t(Π) capture the test layer. Here, we consider the witness program

and we again apply the right-rules to the transformed program t(Π,M).

The label L indicates that the current computation is within the generate layer, the label
R indicates that the current computation is within the test layer. These labels provide us
with information about the previous rule, that we applied, and what rules we are allowed
to apply next. A state with the label L (respectively R) suggests that the last rule we
applied to this state was one of the left-rules (right-rules) or a crossing-rule RL (LR).
Therefore, we can apply one of the left-rules (right-rules) or the crossing-rule LR (RL) in
the next step. The left-hand side L of the state (L,R)s belongs to the generate layer and
records the state of computation. The right-hand side R of the state (L,R)s records the
computation state due to the test layer, respectively.

Note that now the left-rule ConcludeR does not lead to Failstate as before, but to Ok(L).

As we consider an extended program consisting of the atoms atoms(g(Π)), that was
being received using the generating function, we need to slightly adapt the left-rules UnitL
and DecideL compared to the rules of DPF and its variations,, so we check the added rules
as well. Other than that the rules are similar to the classical case.

Analogously, using a right-rule, we consider the extended program consisting of the
atoms atoms((t(Π, L))), that was being received using the witness function. Here we need
to adapt the right-rules UnitR and DecideR as well.

The crossing-rules give us a method to change between left- and right-rules. In the case
of crossing from L to R we just switch the state whenever we find a model of g(Π) (see
Theorem 1). In the case of crossing from R to L we will either find out that there is no
answer set in our program and we will stop the procedure or we need to change the model
on the left side L and find a new model of our program, that is extended through the
generating function, that could lead to an unsatisfiable right side R.

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2 Abstract cmodels

To sum things up, we start the procedure at the initial state(∅, ∅)L, which suggests that
we find ourselves in the generate layer. Left-rules are being applied until we either find a
(classical) model of the generating program g(Π) or we arrive at Failstate. If we found
a model, there are no more left-rules that can be applied. Therefore, we apply CrossLR.
Then, we consider a witness program with respect to L, t(Π, L). When there is no classical
model for the witness program, then ConcludeR can be applied, which leads to a terminal
state Ok(L). This would mean that L is a solution to a given search problem. If there is
no right-rule that can be applied on a state (L,R)R, R is a (classical) model of the witness
program. Then, we have to apply the one of the crossing-rules RL. Either there is a chance
to find a new model of g(Π) by backtracking through BacktrackRL or we will arrive at
Failstate.

We describe some special features of the graph in the following theorem:

Theorem 1. [BLM16, Proposition 2] For a disjunctive program Π, a generating function
g and a witness function t, there holds

1. the graph DP 2
g,t is finite and acyclic,

2. any terminal state of DP 2
g,t reachable from the initial state is either Failstate or of the

form Ok(L), with L being a classical model of g(Π) such that t(Π, L) is unsatisfiable,

3. Failstate is reachable from the initial state if and only if g(Π) has no model such
that its witness is unsatisfiable.

Proof. See [BLM16, Proposition 2].

Direct Proof of Finiteness. To show, that the graph DP2
g,t(Π) is finite, we consider some

state (L,R)s of DP2
g,t(Π).

Assume s = L. L is a record to atoms(g(Π)), where g(Π) is the generating function
applied to the program. The program Π is bounded by its finitely many rules with finitely
many atoms in the head and in the body. Thus, L is bounded by the size of the program Π.
Also, L does not allow repetitions, as it is a record. By applying the generating function,
we remain finite, as the function g maps one program to another program. Thus, there is
a finite number of possible strings L.

Using the same argument, we see that s = R is a record to atoms(t,Π, atoms(g(Π)))).
From the first argument we know that atoms(g(Π)) is finite, atoms(Π) is finite per definition
and t is a function from a program to another program and therefore finite. Combining
them will again lead to a finite set of atoms.

There is a finite amount of labels for the state DP2
g,t(Π), which is either L or R. All

possible outcomes of L and R are finite and we have a finite amount of labels. Putting it
all together, we receive a finite amount of states. Therefore, the graph DP2

g,t(Π) is finite.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4 Abstract ASP with Backtracking

4.2.2 The two layers of cmodels

Now that we have constructed the abstract two-layer solver via DPLL, we take a closer
look at cmodels by reviewing the generating function gC and the witness function tC to
understand how such a solver can look in practice. The according theory is being taken
from [BLM16]. The following definition does not directly consider loop formulas, but deals
with minimal models.
For the generate layer, cmodels is using gC(Π), which corresponds to the completion of

the program Π. Then, the DPLL procedure is being applied to gC(Π).
For the test layer, cmodels is depending on the program produced by the witness

function tC , that tests the minimality of the found models of the completion.
For the construction of gC , we use an auxiliary atom αB for every body B in the program

Π. For B there holds the following:

αB =

{

true, if B is true

false, else

In addition, an auxiliary atom αa,B is created for every atom a in the head A of a
disjunctive rule of the form A← B. There holds

αa,B = B ∧ (A\{a})∨.

The definition of gC(Π) and tC(Π) for a program Π can be found in the Equations 4.2
and 4.3. In the definition of gC(Π), one can observe, that the introduced definitions αB

and αa,B affect the first four lines of the definition, while the other two lines encode the
completion with use of αB and αa,B.

gC(Π) = {αB ∨B|B ∈ Bodies(Π)}
{¬αB ∨ a|B ∈ Bodies(Π), a ∈ B}
{αa,B ∨ ¬αB ∨A|A ∨ a← B ∈ Π}
{¬αa,B ∨ b|A ∨ a← B ∈ Π, b ∈ A ∪ {αB}}
{¬αB ∨A|A← B ∈ Π}
{¬α

∨

a←B∈Π
αB

∨

A∨a←B∈Π
αa,B}

(4.2)

Intuitively, cmodels uses gC(Π) to approximate the program Π. Any stable model of Π
is a classical model of gC(Π). The reverse does not have to be true. Therefore, we need to
check whether a classical model of gC(Π) is a stable models of Π by using the test layer.

tC(Π,M) = {M+
|atoms(Π)

∨
}∪

{¬a|¬a ∈M|atoms(Π)}∪

{B ∨A|A← B ∈ ΠM+

, B ⊆M}

(4.3)

Let M be a classical model of gC(Π). M is a stable model of Π if and only if a program
produced by the witness function tC(Π,M) has no classical models. Any model N of
tC(Π,M) satisfies the reduct ΠM+

, while N+ ⊆ M+
|atoms(Π). Then M+

|atoms(Π) is not an
answer set of Π, as it is not minimal, and therefore M is not a stable model of Π.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3 Abstract gnt

4.3 Abstract gnt

The disjunctive solver gnt (Generate’n’Test) is an experimental implementation of the
stable model semantics for disjunctive logic programs, see [Jan]. It was being introduced in
2006 by Janhunen et al. [JNS+06]. In Chapter 4.2, we have seen that the solver cmodels
uses the DPLL procedure for generating and testing. In gnt, two smodels solvers are
involved instead. The purpose of these solvers is similar to cmodels: One smodels solver
instance is being used for generating model candidates, the other for checking minimality.
For a better understanding, we will take a look at smodels first. Then, we will use it

to give an overview of gnt. Similarly to cmodels, we will take a look at the graph and
its layers. In Chapter 5.2 we will extend the graph to backjumping and learning.

4.3.1 Abstract Solver via smodels

smodels is an algorithm for finding answer sets of non-disjunctive logic programs. To un-
derstand abstract gnt we need to take a look at abstract smodels . In [Lie11], the author
introduces the graph SMΠ, where the terminal nodes are answer sets of the program Π.
The nodes are the states relative to the sets of atoms occurring in Π. The transition rules
of the new graph are partly being taken from the graph DPF , namely Decide, Conclude,
Backtrack and Success. The other transition rules for the non-disjunctive case are pre-
sented in Figure 4.4 according to [BLM16]. The smodels procedure finds stable models
for non-disjunctive programs, while the DPLL procedure finds classical models.

UnitPropagate :

L =⇒ Ll if

{

a rule in Π that is equivalent to C ∨ l and

all the literals of C occur in L

AllRulesCancelled :

L =⇒ Ll if
{

there is no rule in Π supporting l with respect to L

BackchainTrue :

L =⇒ Ll if

there is a rule A ∨ a← B in Π

so that (i) a ∈ L, and (ii) either l ∈ A or l ∈ B and,
(iii) no other rule in Π is supporting a with respect to L

Unfounded :

L =⇒ Ll if

L is consistent and
there is a set X of atoms containing l such that
X is unfounded on L with respect to Π

Figure 4.4: Transition rules of the graph SMΠ.

Remark 12. Note that the rule UnitPropagate is syntactically the same as the rule Unit.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4 Abstract ASP with Backtracking

We only transformed the notation from clauses to rules.

In [Lie11], there is a proof for some features for the non-disjunctive case.

Proposition 7. [Lie11] For a non-disjunctive program Π,

1. graph SMΠ is finite and acyclic,

2. for any terminal state M of SMΠ other than Failstate, M+ is an answer set of Π,

3. Failstate is reachable from ∅ in SMΠ if and only if Π has no answer sets.

Proof. see [Lie11].

As smodels is not capable of capturing disjunctive programs, we will now proceed with
gnt, which is based on smodels and can capture disjunctive programs.

4.3.2 The graph SM
2
g(Π),t

As gnt, similarily to cmodels, uses the two-layer approach as well, we will review the
new rules on a two-layer basis according to [BLM14].

We will construct a graph SM2
g(Π),t to capture gnt. The nodes of the graph SM2

g(Π),t are
the states and the edges consist of the transition rules of smodels, where we introduce the
generate and test layer like in DP 2

g,t(Π) in Section 4.2.1 and add the crossing rules.
The left-rules of SM2

g(Π),t are then DecideL, BacktrackL, UnitL and ConcludeL from
Figure 4.1, as well as AllRulesCancelledL, BackchainTrueL and UnfoundedL from Figure
4.5.
The right-rules are DecideR, BacktrackR, UnitR and ConcludeR from Figure 4.2 and

AllRulesCancelledR, BackchainTrueR and UnfoundedR from Figure 4.6.
The crossing-rules consist of ConcludeRL, CrossLR and BackjumpRL from Figure 4.3.

Left-rules

AllRulesCancelledL :

(L, ∅)L =⇒ (Ll, ∅)L if
{

there is no rule in g(Π) supporting l with respect to L

BackchainTrueL :

(L, ∅)L =⇒ (Ll, ∅)L if

there is a rule A ∨ a← B in g(Π)

so that (i) a ∈ L, and (ii) either l ∈ A or l ∈ B and,
(iii) no other rule in g(Π) is supporting a with respect to L

UnfoundedL :

(L, ∅)L =⇒ (Ll, ∅)L if

L is consistent and
there is a set X of atoms containing l such that
X is unfounded on L with respect to g(Π)

Figure 4.5: Left rules of the graph SM2
g(Π),t.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3 Abstract gnt

Right-rules

AllRulesCancelledR :

(L,R)R =⇒ (L,Rl)R if
{

there is no rule in t(Π, L) supporting l with respect to R

BackchainTrueR :

(L,R)R =⇒ (L,Rl)R if

there is a rule A ∨ a← B in t(Π, L)

so that (i) a ∈ R, and (ii) either l ∈ A or l ∈ B and,
(iii) no other rule in t(Π, L) is supporting a with respect to R

UnfoundedR :

(L,R)R =⇒ (L,Rl)R if

R is consistent and
there is a set X of atoms containing l such that
X is unfounded on R with respect to t(Π, L)

Figure 4.6: Right rules of the graph SM2
g(Π),t.

4.3.3 The two layers of gnt

In [JNS+06], the generating function gG and the testing function tG were defined by the
authors. For the definitions, we need to divide the disjunctive program Π into a part
consisting of all the non-disjunctive rules of Π, which is being called ΠN . The set of
disjunctive rules Π\ΠN is bein called ΠD. Additionally, for each atom a in atoms(Π) two
new atoms ar and as are being introduced.

The generating function is defined as

gG(Π) = {a← B,¬ar|A ∨ a← B ∈ ΠD} ∪
{ar ← ¬a | A ∨ a← B ∈ ΠD} ∪
{← A,B | A← B ∈ ΠD} ∪
ΠN ∪

{as ← A\{a}, B | A ∨ a← B ∈ ΠD} ∪
{← a,¬as | a ∨A← B ∈ ΠD},

(4.4)

The definition of the testing function can be found in Equation 4.5.

tG(Π,M) = {a← B,¬ar | A ∨ a← B ∈ ΠM
D , a ∈M,B ⊆M} ∪

{ar ← ¬a | A ∨ a← B ∈ Π} ∪
{← A,B | A← B ∈ ΠM

D , B ⊆M} ∪
{a← B | a← B ∈ ΠM

N , a ∈M,B ⊆M} ∪
{←M|atoms(Π)}

(4.5)

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4 Abstract ASP with Backtracking

4.4 Abstract solver dlv

A third answer set solver, that is some form of blend between the previous solvers gnt and
cmodels, is called dlv, which is being introduced in [LFP+06]. The generate layer resem-
bles the smodels algorithm, but the rule Unfounded is not used. The test layer is using
the DPLL procedure. Knowing this, it makes sense to capture this solver using the graph
(SM∗ × DP)g(Π),t, where the asterisk symbol emphasizes that the generate layer is not
quite the same as in smodels, but still similar to it. Another difference to smodels will
be made clear when looking at the generate layer in Section 4.4.2 as smodels cannot deal
with disjunctive programs, while dlv can.

In [BLM14] and [BLM16], the authors introduced abstract dlv without backjumping.
Again, we will review the work they did in this section and extend this to backjumping
and learning in Chapter 5.3.

4.4.1 The graph (SM∗ ×DP)g(Π),t

As the graph (SM∗×DP)g(Π),t already describes how the layers are structured, we quickly
see that the generate layer, which is represented by SM∗, consists of the same left-rules as
SM2

g(Π),t without the transition rule UnfoundedL.

dlv handles disjunctive rules directly, which we will see when inspecting the instantia-
tion of the generate layer in Section 4.4.2. Therefore, it is important to make sure that the
conditions of the transition rules are stated in a way that can deal with disjunctive rules.
Looking at the generate layer in Figure 4.5 and Figure 4.2 makes clear that the conditions
are not restricted to non-disjunctive rules, so we do not need to change the rules explicitely.

The test layer of (SM∗×DP)g(Π),t is represented by the expressionDP , meaning that this
layer is being depicted by the DPLL procedure. The right-rules of (SM∗ ×DP)g(Π),t are
the right-rules of DP 2

g,t(Π), which can be found in Figure 4.1.

The crossing-rules remain the same as in cmodels and gnt, see Figure 4.3.

Both, the right-rules as well as the crossing-rules are stated in a way that can handle
disjunctive programs, so we do not need to change them.

Alternatively, we can say that the transition rules are basically the rules of DP 2
g,t(Π) in

Figure 4.1, 4.2 and 4.3 plus the rules from Figure 4.5 without the rule UnfoundedL.

The nodes of the graph (SM∗ ×DP)g(Π),t are the states that can be received using the
set atoms(Π) for the left side of the layer and the union of atoms(g(L)) for the right side,
where g is the generating function and L is the left part of the state (L,R)s.

4.4.2 The two layers of dlv

Like in cmodels and in gnt, we can have a closer look at the generating function gD,
as well as the witness function tD to see how they are being used in practice. Again, the

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4 Abstract solver dlv

theory is taken from [BLM16]. The generating function

gD(Π) = Π (4.6)

is the identity function and can therefore be omitted. dlv is special in a way that it can deal
directly with a disjunctive program and does not convert it to a non-disjunctive program
first. The more important it is that the conditions of the transition rules are stated in a
way that can deal with disjunctive rules.
The witness function is defined as

tD(Π,M) = {(B ∩M+)∨ ∨A′
∨
| A← B ∈ ΠM+

, B ⊆M,A′ = A ∩M+} ∪
{(M|atoms(Π))

∨}.
(4.7)

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Abstract ASP with Backjumping and

Learning

Now, as we have reviewed the structure of abstract cmodels, gnt and dlv with back-
tracking, we can extend these to backjumping and learning.

In Section 2.2.2, we have seen how the rules work for one layer. Now, we try to adapt
this mechanism to the two-layer abstract solvers that we have seen by adding a Backjump
and a Learn rule to the graphs.

We also want to look at some of the features that we will obtain by extending the graph.
We will give a proof of those features for cmodels and state some features for gnt and dlv.

In the next chapter, we will describe the features again for the framework that includes
all three solvers. There, we will prove these features for the remaining solvers at once.
In this chapter, we will also talk about adding some additional rules to the graph, that we
have seen in Section 2.2.3, namely Forget and Restart.

To extend the graph, we will define the extended state to describe the form that we will
be using.

Definition 46. An extended state relative to sets X and X ′ of atoms is either

1. a pair (L,R)s‖(ΓL,ΓR), where (L,R)s is the state described in Definition 43, ΓL is a
set of clauses over atoms of g(Π) that is entailed by g(Π) and ΓR is a set of clauses
over atoms of t(Π, L) that is entailed by t(Π, L),

2. Ok(L), where L is a record relative to X, or

3. the distinguished state Failstate.

To make the following chapter more readable, we will write state instead of extended state.
Whenever we talk about a graph with backjumping and learning a state will refer to an
extended state.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Abstract ASP with Backjumping and Learning

5.1 Extending cmodels to Backjumping and Learning

For cmodels, we reviewed the graph DP2
g,t(Π) in the previous chapter 4.2.

Now, we will do the same as we did with graph DPLF , where we extended, added
or removed some transition rules taken from DPF , to create a graph DPL2

g,t(Π) with

backjumping and learning out of DP2
g,t(Π).

Again, g(Π) and t(Π, L) will refer to the programs we receive by using the generating
and the witness function that are given, respectively.

We will also use the extended state that we defined in Definition 46, so we are able to
consider learned information, when applying one of the rules.
We find the new transition rules in Figure 5.1.

Looking at these transition rules, we see how the transition rules of the graph DPL2
g,t(Π)

relate to the graph DP2
g,t(Π):

Let s and t be labels, where s 6= t. The transition rules of the graph DPL2
g,t(Π) relate to

the transition rules of the graph DP 2
g,t(Π) in one the following ways:

(

(L,R)s‖(ΓL,ΓR) =⇒ (L′, R′)s‖(ΓL,ΓR)
)

⇔
(

(L,R)s =⇒ (L′, R′)s

)

(5.1)

(

(L,R)s‖(ΓL,ΓR) =⇒ Failstate
)

⇔
(

(L,R)s =⇒ Failstate
)

(5.2)

(

(L,R)s‖(ΓL,ΓR) =⇒ Ok(L)
)

⇔
(

(L,R)s =⇒ Ok(L)
)

(5.3)

(

(L,R)s‖(ΓL,ΓR) =⇒ (L′, R′)t‖(ΓL,ΓR)
)

⇔
(

(L,R)s =⇒ (L′, R′)t

)

(5.4)

The left-rules of DPL2
g,t(Π) consist of the extended version of ConcludeL according to

Equation 5.2 and DecideL according to Equation 5.1, and the new rules BackjumpL,
LearnL and UnitDPLL in the form of Figure 5.1.

The right-rules of DPL2
g,t(Π) consist of an extended version of ConcludeR according to

Equation 5.3 and DecideR according to Equation 5.1, and the new rules BackjumpR,
LearnR and UnitDPLR in the form of Figure 5.1.

The crossing-rules LR from the generate layer to the test layer becomes an extended ver-
sion of the rule CrossLR from DP2

g,t(Π) according to Equation 5.4 and the crossing-rules

RL in the other direction consist of ConcludeRL of DP2
g,t(Π) according to Equation 5.2

and the new rule BackjumpRL in the form of Figure 5.4.

The new initial state is (∅, ∅)L‖(∅, ∅).

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1 Extending cmodels to Backjumping and Learning

Left Rules

BackjumpL :

(Ll∆L′, ∅)L‖(ΓL, ∅) =⇒ (Ll, ∅)L‖(ΓL, ∅) if

{

Ll∆L′ is inconsistent and

g(Π) |= l ∨ L

LearnL :

(L, ∅)‖(ΓL, ∅) =⇒ (L, ∅)‖(C ∪ ΓL, ∅) if

{

every atom in C occurs in g(Π) and
g(Π) |= C

UnitDPLL :

(L, ∅)L‖(ΓL, ∅) =⇒ (Ll, ∅)L‖(ΓL, ∅) if

l is a literal over atoms(g(Π))) and
l does not occur in L and
a rule in g(Π) ∪ ΓL is equivalent to
C ∨ l and

all the literals of C occur in L

Right Rules

BackjumpR :

(L,Rl∆R′)R‖(ΓL,ΓR) =⇒ (Ll, ∅)L‖(ΓL,ΓR) if

{

Rl∆R′ is inconsistent and

t(Π, L) |= l ∨R

LearnR :

(L, ∅)‖(ΓL,ΓR) =⇒ L‖(ΓL, C ∪ ΓR) if

{

every atom in C occurs in t(Π, L) and
g(Π) |= C

UnitDPLR :

(L,R)R‖(ΓL,ΓR) =⇒ (L,Rl)R‖(ΓL,ΓR) if

l is a literal over atoms(t(Π, L)) and
l does not occur in R and
a rule in t(Π, L) ∪ ΓR is equivalent to
C ∨ l and

all the literals of C occur in R

Crossing Rules

BackjumpRL :

(Ll∆L′, R)R‖(ΓL,ΓR) =⇒ (Ll, ∅)L‖(ΓL, ∅) if

{

no right-rule applies and

g(Π) |= l ∨ L

Figure 5.1: New rules of the graph DPL2
g,t(Π) .

As before, the added transition rules can be divided into one of the groups Left rules,
Right rules and Crossing Rules, where the left rules capture the generate layer and the
right rules capture the test layer. The crossing rules capture the transition from one layer
to the other.

The transition rules BackjumpL, UnitL, BackjumpR and UnitR do not change the

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Abstract ASP with Backjumping and Learning

learned clauses when being applied. The rules BackjumpL and BackjumpR are being
used instead of BacktrackL and BacktrackR, respectively, to reverse not only the last made
decision, but also to skip some decisions that have nothing to do with the inconsistency.
The rules UnitL (UnitR) not only consider the rules of the generate (witness) layer, but
also the learned clauses that are being captured in ΓL (ΓR).

To learn a clause for the generate layer LearnL can be used, while LearnR is being used
to add clauses to the witness layer.
The transition rule BackjumpRL is being used instead of BacktrackRL, possibly to undo

multiple decisions at once when there are more than one decision literals in the generate
layer. If it cannot be applied, it follows that no other candidate L can be found by the
generate layer, so the transition ConcludeRL leading to Failstate is inevitable.
The reason for ΓR = ∅ on each left rule, as well as on BackjumpRL is, because ΓR are

the learned clauses for the witness layer t(Π, L), which is being dependent on the model L.
As the model L changes, the rules of t(Π, L) change. When it changes we cannot guarantee
that the learned clauses from the previous computations are still valid, when we apply a
left rule.
As we want to build a theorem about the features of the graph DPL2

g,t(Π) like in the
previous chapter, we have to take a closer look at finiteness. A change to some of the
previous papers is that we work with sets instead of multisets (a set, where elements do not
have to be unique) for ΓL and ΓR. In the case of using multisets we would lose finiteness
when we would learn the same clause over and over again.
Now, the transition rules LearnL and LearnR as they are stated at this moment could be

applied over and over again as well, because there is no restriction that implies otherwise.
The only difference is that the node of the graph doesn’t change when we learn the same
clause over and over again. Therefore, the graph is not acyclic, as learning the same clause
twice in a row leads to a cycle from one node to the same node, as learning the same rule
will not change the set of learned rules.

Theorem 2. For a disjunctive program Π, a generating function g and a witness function
t there holds

1. the graph DPL2
g,t(Π) is finite if there are no infinite subderivations of only Learn

steps.

2. Any terminal state in DPL2
g,t(Π) reachable from the initial state is either Failstate

or of the form Ok(L), with L being a model of g(Π) such that t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if g(Π) has no model such
that its witness is unsatisfiable.

Proof. 1. In order to show that the graph DPL2
g,t(Π) is finite, consider some state

(L,R)s‖(ΓL,ΓR) of DPL2
g,t(Π) . The rules that change the state (L,R)s, but not the clauses

(ΓL,ΓR) coincide with the ones in DP2
g,t(Π). Using only these rules, the amount of possible

states is finite, as it was proven in [BLM16]: Observing a string L of some state or of Ok(L)
we recognize multiple things:

1. L is built over a set of atoms that is bounded by the size of Π.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1 Extending cmodels to Backjumping and Learning

2. L does not allow repetitions.

It follows that there is a finite number of possible strings L in (L,R)s and Ok(L). If there
is only a finite number of L there is also a finite number of states Ok(L) in our graph.
Observing a string R of some state we see that because t(Π, L) has a finite number of atoms
and there are finitely many L, the set of atoms over which R is built is finite. It follows that
there are finitely many possibilities for R. In total, there are finitely many states (L,R)s.
The rules LearnL and LearnR could lead to infiniteness when applied over and over again,
but it is explicitely excluded in the theorem, as there are no infinite occurrences of Learn
steps.

2. For the second part, we recall that there are three states: Ok(L), Failstate and a
pair (L,R)s‖(ΓL,ΓR) with s being either L or R. We consider the state (L,R)s‖(ΓL,ΓR)
and show, that this is not a terminal state.
Case 1: Assume, that s = L. In this case either a left-rule or CrossLR applies. If none of
the left-rule applies, CrossLR applies in any case, as the only condition for the application
of the rule is, that no left-rule applies. Thus, (L,R)L is not a terminal state, as there is
always a rule, we can apply.
Case 2: Assume, that s = R. Neither ConcludeR nor ConcludeRL apply, as we want
a state of the form (L,R)R‖(ΓL,ΓR) to be a terminal state. Either a right-rule will be
applied, which will lead us to a new state of the form (L,R)R‖(ΓL,ΓR), or the crossing-rule
BackjumpRL holds, which would mean that L contains a decision literal. That rule leads
to an state (L,R)L‖(ΓL,ΓR), where we already have shown, that this is not terminal.

Recall that a terminal state is a state where a transition rule leads to it, but none leave
from it. Assume that Failstate is reachable from the initial state. Following the applied
transition rules that lead to Failstate either ConcludeL or ConcludeRL was applied. There
are no transition rules that origin at Failstate. Therefore Failstate is a terminal state.

Assume that Ok(L) is reachable from the initial state. There is a transition leading to
this state, as it is different from the initial state. The ingoing transition rule can only
be ConcludeR. By definition, it holds that R is inconsistent and does not contain any
decision literals. Thus, we already know that the program used for computing R, t(Π, L),
is unsatisfiable.

Looking at the rules, we know that Ok(L) is achieved by applying a right-rule. As the
initial state is (∅, ∅)L, the crossing-rule LR was applied earlier, as it is the only way to reach
the label R. The rule CrossLR is applied, when none of the left-rules hold. Assume that
L is not a model. Then L is either not complete, but consistent or inconsistent. Assume
that L is not complete, but consistent. If none of the left-rules BacktrackL, UnitDPLL
or LearnL hold, we can always apply DecideL, as L is consistent and there is a literal in
atoms(g(Π)) that does not occur in L, by the definition of completeness and consistency.
If we can apply DecideL, we cannot apply CrossLR, which is needed to reach Ok(L)

If L is inconsistent and it contains no decision literals then Failstate is being reached,
which is a terminal state. Thus, the rule CrossLR cannot be reached as well. If it contains
decision literals, the rule BackjumpL is being applied which results in an L that is either
not complete or inconsistent. There we have shown that the rule CrossLR cannot be
reached. Thus, if L is not a model, Ok(L) cannot be reached.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Abstract ASP with Backjumping and Learning

3. For the third part, first we want to prove that Failstate is reachable if F has no model
such that its witness is unsatisfiable.

Assume that Failstate is not reachable. From (2) we know that there are the terminal
states Failstate and Ok(L). As we need to reach a terminal state at some point, the only
terminal state possible is Ok(L). The only way to reach Ok(L) is by applying the right-rule
ConcludeR. Since F has no model such that its witness is unsatisfiable we cannot apply
ConcludeR. Thus, there is no way to get to Ok(L). We derive a contradiction.

Now we show that if Failstate is reachable, then there is no model of F such that
the witness is unsatisfiable. Assume that there is a model of F such that the witness is
unsatisfiable. Then, we can apply ConcludeR, which will lead us to Ok(L). But then
Failstate is not reachable and we derive a contradiction.

To make the graph finite, we can add some restriction like we did in Theorem 2. Using
the constraint of not having infinite subdervations of learn steps will not give us acyclicity,
as it is not forbidden to learn the same rule at least twice in a row which would lead to a
cycle on one node. What we can do to achieve both, finiteness and acyclicity, is to adapt
the transition rules LearnL and LearnR in Figure 5.1 and exchange them with LearnL
and LearnR from Figure 5.2.

For the rest of the paper, when we will talk about LearnL and LearnR the form from
Figure 5.2 will be referred to except stated otherwise. When talking about DPL2

g,t(Π) we
will mean the graph with the learn rules from Figure 5.2.

Left Rules

LearnL :

(L, ∅)‖(ΓL, ∅) =⇒ (L, ∅)‖(C ∪ ΓL, ∅) if

every atom in C occurs in g(Π) and
g(Π) |= C and
C /∈ ΓL

Right Rules

LearnR :

(L, ∅)‖(ΓL,ΓR) =⇒ L‖(ΓL, C ∪ ΓR) if

every atom in C occurs in t(Π, L) and
g(Π) |= C and
C /∈ ΓL

Figure 5.2: Adapted learn rules of the graph DPL2
g,t(Π) .

The following theorem is similar to Theorem 2 with the difference of using the learning
rules from Figure 5.2:

Theorem 3. For a disjunctive program Π, a generating function g and a witness function
t there holds

1. the graph DPL2
g,t(Π) is finite and acyclic.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1 Extending cmodels to Backjumping and Learning

2. Any terminal state in DPL2
g,t(Π) reachable from the initial state is either Failstate

or of the form Ok(L), with L being a model of g(Π) such that t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if g(Π) has no model such
that its witness is unsatisfiable.

Proof. 1. The proof of finiteness follows the lines of Theorem 2 up to the line ”... In total,
there are finitely many states (L,R)s.” Now we have to have a look at the Learn rules
LearnL and LearnR differently. The two learning rules change either ΓL or ΓR, which
are sets of clauses over atoms of g(Π). As g(Π) consists of finitely many atoms, there are
finitely many possibilities to put these atoms together to receive learning clauses. As a set
contains each possible clause only once and for each clause that we can learn we can apply
the according transition rule only once, we remain finite.

To show acyclicity, we write a string L of literals as L0l
∆
1 L1 . . . l

∆
k Lk, where (l∆t)1≤t≤k

are all the decision literals of L. |L| refers to the length of L and v(L) is the sequence
|L0|, |L1|, . . . |Lk|. For a set of clauses Γ, we define v(Γ) as the sum of numbers of atoms in
Γ, for example if Γ = {a ∪ b, a ∪ c}, then v(Γ) = 4.

L ≤ L′ if and only if v(L) ≤lex v(L′), where ≤lex is the lexicographic order. In this case,
the lexicographic order means, if we have two sequences a = (a1, a2, . . .) and b = (b1, b2, . . .)
then a ≤ b if the first i where ai and bi differ holds ai ≤ bi ∩ bi � ai or if a is a subset of b,
where ai = bi for each i ∈ a.
The length of the sequence v(L) is bounded, because of the finiteness of possible decision

literals, we got a well-founded order. There holds (L,R)s‖(ΓL,ΓR) ≤ (L′, R′)s′‖(Γ
′
L,Γ

′
R)

if and only if v(L,R, s,ΓL,ΓR) ≤lex v(L′, R′, s′,Γ′L,Γ
′
R), with L ≤ R. This is well-founded

as it is the lexicographic composition of well-founded orders.
For any transition (L,R)s‖(ΓL,ΓR) to (L

′, R′)s′‖(Γ
′
L,Γ

′
R) there holds (L,R)s‖(ΓL,ΓR) ≤

(L′, R′)s′‖(Γ
′
L,Γ

′
R) and (L,R)s‖(ΓL,ΓR) 6= (L′, R′)s′‖(Γ

′
L,Γ

′
R).

BackjumpL has the form (L0l
∆
1 L1, ∅)L‖(ΓL, ∅) =⇒ (L′0, ∅)L‖(ΓL, ∅), where L0 ≤ L′0 =

|L0|+ 1 + |L1|. Therefore, (L,R)s‖(ΓL,ΓR) ≤ (L′, R′)s′‖(Γ
′
L,Γ

′
R).

LearnL has the form (L, ∅)L‖(ΓL, ∅) =⇒ (L, ∅)L‖(C ∪ ΓL, ∅), where everything up until
ΓL is equal and |ΓL| ≤ |ΓL| + |C|. There holds (L,R)s‖(ΓL,ΓR) ≤ (L′, R′)s′‖(Γ

′
L,Γ

′
R).

Applying UnitL we quickly see that |L′| = |L| + 1 and therefore, (L,R)s‖(ΓL,ΓR) ≤
(L′, R′)s′‖(Γ

′
L,Γ

′
R). The right and crossing rules work analogously to the left rules.

Because the order is well-founded, there is no infinite path in the graph. Therefore, the
graph is acyclic.

2. + 3. These parts coincede with the proof of Theorem 2.

5.1.1 Extension of DPL2
g,t(Π) to Forgetting

As we have extended DPL2
g,t(Π) to a Learning rule, it makes sense to consider the opposite

of the rule, as we have done in Chapter 2.2.3. Therefore, we introduce the transition rules
ForgetL and ForgetR to delete some of the learned rules in ΓL or ΓR, respectively. The
rule ForgetL (ForgetR) is added to the left-rules (right-rules) of DPL2

g,t(Π) . A clause C
can be forgotten, when each atom in that clause occurs in g(Π) ∪ ΓL (t(Π, L) ∪ ΓR) and

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Abstract ASP with Backjumping and Learning

g(Π) (t(Π, L)) entails ΓL (ΓR).

Left-rules

ForgetL :

(L, ∅)L‖(C ∪ ΓL, ∅) =⇒ (L, ∅)L‖(ΓL, ∅) if

every atom in C occurs in
g(Π) and
g(Π) |= C

Right-rules

ForgetR :

(L,R)R‖(ΓL, C ∪ ΓR) =⇒ (L,R)R‖(ΓL,ΓR) if

every atom in C occurs in
t(Π, L) and
t(Π, L) |= C

Figure 5.3: Forgetting rules of the graph DPL2
g,t(Π) .

Theorem 4. For a disjunctive program Π, a generating function g and a witness function
t there holds

1. graph DPL2
g,t(Π) is finite, if it does not contain an infinite subsequence of only Learn

and Forget steps.

2. Any terminal state in DPL2
g,t(Π) reachable from the initial state is either Failstate

or of the form Ok(L), with L being a model of g(Π) such that t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if g(Π) has no model such
that its witness is unsatisfiable.

Proof. The case of finiteness under the condition that there is no clause, that is learned
and then forgotten for infinitely many times, leads to the same setting as in Theorem 3,
where we have showed that the graph remains finite.

The proof of the second part follows the lines of Theorem 3. The rules ForgetL and
ForgetR do not change the terminal states, as applying one of these transition rules to a
state of the form (L,R)s‖(ΓL,ΓR) will lead to a state of the same form, where we have
shown that these will lead to a terminal state that is either Failstate or Ok(L). This will
lead to the second part of the proposition.

For the third part we see that the transition rule Forget does not lead to Failstate.
Therefore the proof is equal to the proof of Theorem 3.

Remark 13. Note that using Learning and Forgetting rules may lead to graphs that are
not acyclic, as we can learn and forget the same rule over and over again.

5.1.2 Extension of DPL2
g,t(Π) to Restart

As seen in Chapter 2.2.3, adding the possibility of restarting the search for an answer
set while keeping the clauses that have been learned to that point, can lead to a more

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1 Extending cmodels to Backjumping and Learning

efficient computation of finding a model. For this reason, we introduce the transition rules
RestartL and RestartR for DPL2

g,t(Π) as seen in Figure 5.4. There is no condition needed,
as theoretically we could apply the restart rules at any time. When applying a Restart rule
we keep the learned clauses while resetting either L on applying RestartL or R on applying
RestartR in hope of a more efficient computation after the Restart.

Left-rules

RestartL :
(L, ∅)L‖(ΓL, ∅) =⇒ (∅, ∅)L‖(ΓL, ∅)

Right-rules

RestartR :
(L,R)R‖(ΓL,ΓR) =⇒ (L, ∅)R‖(ΓL,ΓR)

Figure 5.4: Restart rules of the graph DPL2
g,t(Π) .

Theorem 5. For a disjunctive program Π, a generating function g and a witness function
t there holds

1. graph DPL2
g,t(Π) is finite, if it does not contain an infinite subsequence of only Learn

and Forget steps and Restart has increasing periodicity in it.

2. Any terminal state in DPL2
g,t(Π) reachable from the initial state is either Failstate

or of the form Ok(L), with L being a model of g(Π) such that t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if g(Π)) has no model such
that its witness is unsatisfiable.

Proof. Assume there are infinitely many occurrences of Restarts, where s is a Label. It
is already known from Theorem 4, that the graph DPL2

g,t(Π) with Learn and Forget is
finite under the constraint of not having infinitely many Learn and Forget steps. Assume
that the number of possible states of the form (L,R)s‖(ΓL,ΓR) is n. Applying a transition
rule that is not restart on such a state will lead to a different state. There cannot be more
than n steps between applying Restart at the beginning and at the end, where it does
not matter whether we apply RestartL or RestartR. So, there cannot be infinitely many
Restarts if Restart has increasing periodicity.
The proof of the second and the third part follows the lines of Theorem 4. There, the

transition rule Restart can be handled like the transition rule Forget.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Abstract ASP with Backjumping and Learning

5.2 Extending gnt to Backjumping and Learning

In Chapter 4.3, we reviewed the graph SM2
g(Π),t. Now we will extend it to backjumping

and learning to reach the graph SML2
g(Π),t. As before, g(Π) is the generating function and

t(Π, L) is the witness function. To capture the rule Learn, we need to add the learned
clauses to the state, so we will use the extended state from Definition 46 in the graph
SML2

g(Π),t as state. We will also take a look at the features of the program, but we will
not prove the statements in this section, because the statement will only be a special case
of the proof in Chapter 6. The extension of the graph SM2

g(Π),t is similar to the graph

DPL2
g,t(Π) in cmodels.

In Figure 5.6, 5.5 and 5.7 we present the rules of abstract gnt with backjumping and
learning. The rules are a combination of the rules that we have seen in cmodels as well
as in abstract gnt with backtracking, where we extend the rules as seen in Equation 5.1,
5.2, 5.3 and 5.4.

We see that for extending to backjumping we will basically replace the rule Backtrack
with Backjump and Unit with UnitDPL, like in cmodels.

To extend the graph to the transition rule Learn, we can just use the rules LearnL and
LearnR from DPL2

g,t(Π) in Figure 5.2.

Similar to before, we can build the graph SML2
g(Π),t by using the states as nodes and

the transition rules from Figure 5.6, 5.5 and 5.7 as edges.

The following theorem will be proven in Chapter 6, as the general framework that we
will talk about will capture this solver. It is similar to Theorem 3.

Proposition 8. [BLM14] For a disjunctive program Π, a generating function g and a
witness function t there holds

1. graph SML2
g(Π),t is finite and acyclic.

2. Any terminal state of SML2
g(Π),t reachable from the initial state is either Failstate

or of the form Ok(L), with L+ being an answer set (stable model) of g(Π) such that
t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if there is no set L of literals
such that L+ is an answer set of g(Π) such that its witness is unsatisfiable.

Example 18. Assume a program Π

a← c

a, b←

c←

d← e

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2 Extending gnt to Backjumping and Learning

Applying the generating function gG(Π) from Equation 4.4 to the program leads to the
following generate layer:

gG(Π) =a← ¬ar

b← ¬br

ar ← ¬a

br ← ¬b

← ¬a,¬b

a← c

c←

d← e

as ← ¬b

bs ← ¬a

← a,¬as

← b,¬bs.

A possible path could look as the following:

(∅, ∅)L ⇒ (DecideL)

(¬a∆, ∅)L ⇒ (UnitDPLL)

(¬a∆ar, ∅)L ⇒ (UnitDPLL)

(¬a∆ar¬b, ∅)L ⇒ (DecideL)

(¬a∆ar¬bd∆, ∅)L ⇒ (BackchainTrueL)

(¬a∆ar¬bd∆e, ∅)L ⇒ (UnitDPLL)

(¬a∆ar¬bd∆ec, ∅)L ⇒ (BackchainTrueL)

(¬a∆ar¬bd∆ec¬c, ∅)L ⇒ (BackjumpL)

(a, ∅)L ⇒ (BackchainTrueL)

(ac, ∅)L ⇒ (UnitDPLL)

(ac¬ar, ∅)L ⇒ (UnitDPLL)

(ac¬ar¬b, ∅)L ⇒ (UnitDPLL)

(ac¬ar¬bbr, ∅)L ⇒ (AllRulesCancelledL)

(ac¬ar¬bbr¬d, ∅)L ⇒ (BackchainTrueL)

(ac¬ar¬bbr¬d¬e, ∅)L ⇒ (UnitDPLL)

(ac¬ar¬bbr¬d¬eas, ∅)L ⇒ (UnitDPLL)

(ac¬ar¬bbr¬d¬eas¬bs, ∅)L ⇒ (UnitDPLL)

On applying transition rules from Figure 5.2 to the generate layer, we decide that a is
negative which leads us to multiple applications of the transition rule UnitDPLL. After
deciding on the literal d we continue applying BackchainTrueL and UnitDPLL until we

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Abstract ASP with Backjumping and Learning

run into an inconsistent state. The reason for this seems to be the literal a and not d.
In the version from [BLM16] we would change the assignment of d first, reach another
inconsistent state and then change the assignment of a. Now, we can skip this middle part,
go right away to the source of the problem and change the assignment of a. Applying
further transition rules will lead to a consistent state

L = ac¬ar¬bbrdeas¬bs.

Now, we can look at the test layer. Applying Equation 4.5 leads to the program

tG(Π) = a← ¬ar

ar ← ¬a
¬a,¬b
a← c
c←
← a¬bc¬d¬e.

(5.5)

(L, ∅)L ⇒ (CrossLR)

(L, ∅)R ⇒ (UnitDPLR)

(L, c)R ⇒ (UnitDPLR)

(L, ca)R ⇒ (AllRulesCancelledR)

(L, ca¬d)R ⇒ (AllRulesCancelledR)

(L, ca¬d¬e)R ⇒ (BackchainTrueR)

(L, ca¬d¬ear)R ⇒ (AllRulesCancelledR)

(L, ca¬d¬ear¬b)R ⇒ ConcludeR

Ok(L)

Now, as the test layer is definded in Equation 5.5, we can apply a crossing rule to go
to the test layer to check for minimality. Applying multiple transition rules leads to an
inconsistent state, as the rule

← a¬bc¬d¬e

is not being fulfilled and there are no decision literals. Therefore, we reach the final state
Ok(L) with the set {a, c} being an answer set of g(Π) where t(Π, L) is unsatisfiable.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2 Extending gnt to Backjumping and Learning

Left Rules

ConcludeL :

(L, ∅)L‖(ΓL, ∅) =⇒ Failstate if

{

L is inconsistent and
L contains no decision literal

DecideL

(L, ∅)L‖(ΓL, ∅) =⇒ (Ll∆, ∅)L‖(ΓL, ∅) if

L is consistent and
l is a literal over atoms(g(Π)) and

neither l nor l occur in L

BackjumpL :

(Ll∆L′, ∅)L‖(ΓL, ∅) =⇒ (Ll, ∅)L‖(ΓL, ∅) if

{

Ll∆L′ is inconsistent and

g(Π) |= l′ ∨ L

LearnL :

(L, ∅)‖(ΓL, ∅) =⇒ (L, ∅)‖(C ∪ ΓL, ∅) if

every atom in C occurs in g(Π) and
g(Π) |= C and
C /∈ ΓL

UnitDPLL :

(L, ∅)L‖(ΓL, ∅) =⇒ (Ll, ∅)L‖(ΓL, ∅) if

l is a literal over atoms(t(Π, L)) and
l does not occur in R and
a rule in t(Π, L) ∪ ΓL is equivalent to
C ∨ l and

all the literals of C occur in L

AllRulesCancelledL :

(L, ∅)L‖(ΓL, ∅) =⇒ (Ll, ∅)L‖(ΓL, ∅) if

{

there is no rule in g(Π) supporting l
with respect to L

BackchainTrueL :

(L, ∅)L‖(ΓL, ∅) =⇒ (Ll, ∅)L‖(ΓL, ∅) if

there is a rule A ∨ a← B in g(Π)
so that (i) a ∈ L and

(ii) either l ∈ A or l ∈ B and
(iii) no other rule in g(Π) is supporting a
with respect to L

UnfoundedL :

(L, ∅)L‖(ΓL, ∅) =⇒ (Ll, ∅)L‖(ΓL, ∅) if

L is consistent and
there is a set X of atoms containing l such that
X is unfounded on L with respect to g(Π)

Figure 5.5: Left rules of the graph SML2
g(Π),t.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Abstract ASP with Backjumping and Learning

Right Rules

ConcludeR :

(L,R)R‖(ΓL,ΓR) =⇒ Ok(L) if

{

R is inconsistent and
R contains no decision literal

DecideR

(L,R)R‖(ΓL,ΓR) =⇒ (L,Rl∆)L‖(ΓL,ΓR) if

R is consistent and
l is a literal over atoms(t(Π, L)) and

neither l nor l occur in R

BackjumpR :

(L,Rl∆R′)R‖(ΓL,ΓR) =⇒ (Ll, ∅)L‖(ΓL,ΓR) if

{

Rl∆R′ is inconsistent and

t(Π, L) |= l′ ∨R

LearnR :

(L, ∅)‖(ΓL,ΓR) =⇒ L‖(ΓL, C ∪ ΓR) if

every atom in C occurs in t(Π, L) and
g(Π) |= C and
C /∈ ΓL

UnitDPLR :

(L,R)R‖(ΓL,ΓR) =⇒ (L,Rl)R‖(ΓL,ΓR) if

l is a literal over atoms(t(Π, L)) and
l does not occur in R and
a rule in t(Π, L) ∪ ΓR is equivalent to
C ∨ l and

all the literals of C occur in R

AllRulesCancelledR :

(L,R)R‖(ΓL,ΓR) =⇒ (L,Rl)R‖(ΓL,ΓR) if

{

there is no rule in t(Π, L) supporting l
with respect to R

BackchainTrueR :

(L,R)R‖(ΓL,ΓR) =⇒ (L,Rl)R‖(ΓL,ΓR) if

there is a rule A ∨ a← B in t(Π, L)
so that (i) a ∈ R and

(ii) either l ∈ A or l ∈ B and
(iii) no other rule in t(Π, L) is supporting a
with respect to R

UnfoundedR :

(L,R)R‖(ΓL,ΓR) =⇒ (L,Rl)R‖(ΓL,ΓR) if

R is consistent and
there is a set X of atoms containing l
such that X is unfounded on R
with respect to t(Π, L)

Figure 5.6: Right rules of the graph SML2
g(Π),t.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2 Extending gnt to Backjumping and Learning

Crossing-rule LR
CrossLR :
(L, ∅)L‖(ΓL,ΓR) =⇒ (L, ∅)R‖(ΓL,ΓR) if

{

no left-rule applies

Crossing-rules RL
ConcludeRL :

(L,R)R‖(ΓL,ΓR) =⇒ Failstate if

{

no right-rule applies and
L contains no decision literal

BackjumpRL :

(Ll∆L′, R)R‖(ΓL,ΓR) =⇒ (Ll, ∅)L‖(ΓL, ∅) if

{

no right-rule applies and

g(Π) |= l′ ∨ L

Figure 5.7: The crossing rules of the graph SML2
g(Π),t.

When extending the graph SML2
g(Π),t with the rules ForgetL and ForgetR, which we

can take from DPL2
g,t(Π) as well, we need to remember that we will have to restrict the

graph to a finite amount of Learn and Forget steps to remain finite. We find these rules
in Figure 5.3. The following propositions are similar to Theorem 4 and Theorem 5.

Proposition 9. Given a program Π, a generating function g and a witness function t,
there holds

1. graph SML2
g(Π),t with Forgetting is finite, if it does not contain an infinite subsequence

of only Learn and Forget steps.

2. Any terminal state in SML2
g(Π),t with Forgetting reachable from the initial state is

either Failstate or of the form Ok(L), with L+ being an answer set of g(Π) such that
t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if there is no set L of literals
such that L+ is an answer set of g(Π) such that its witness is unsatisfiable.

The extension to Restart is similar to the Extension of DPL2
g,t(Π) to Restart in Figure

5.4 as well.

Proposition 10. Given a program Π, a generating function g and a witness function t,
there holds

1. graph SML2
g(Π),t with Forgetting and Restarting is finite, if it does not contain an infi-

nite subsequence of only Learn and Forget steps and Restart has increasing periodicity
in it.

2. Any terminal state in SML2
g(Π),t with Forgetting and Restarting reachable from the

initial state is either Failstate or of the form Ok(L), with L+ being a answer set of
g(Π) such that t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if there is no set L of literals
such that L+ is an answer set of g(Π) such that its witness is unsatisfiable.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Abstract ASP with Backjumping and Learning

5.3 Extending dlv to Backjumping and Learning

Again, we want to extend the graph (SM∗×DP)g(Π),t to backjumping and learning, as well
as to forgetting and restarting. We proceed as we did for gnt and cmodels in Section 5.2
by remembering learned clauses. We already know that the abstract approach to dlv leads
to a subset of gnt. So this time we will not state the rules again, but just captures the
extension.

We use the given generating function g(Π) as well as the witness function t(Π, L) and the
extended state from Definition 46. As we have seen in Chapter 4.4 the generating function
for dlv is the identity function, so we can omit this part in the theorem.

To extend the graph to Backjumping, we will replace Backtrack with Backjump for
both layers.

To capture the transition rule Learn, we add the same rules as in Figure 5.2.

This will lead us to the following propositions:

Proposition 11. [BLM14] For a disjunctive program Π and a witness function t there
holds

1. graph (SML∗ ×DPL)g(Π),t is finite and acyclic.

2. Any terminal state of (SML∗×DPL)g(Π),t reachable from the initial state and other
than Failstate is Ok(L), with L+ being an answer set (stable model) of Π such that
t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if there is no set L of literals
such that L+ is an answer set of Π such that its witness is unsatisfiable.

Extending the graph (SML∗ × DPL)g(Π),t with the rules Forget can be realized by
adding ForgetL and ForgetR from Figure 5.3.

Proposition 12. Given a program Π and a witness function t there holds

1. graph (SML∗×DPL)g(Π),t with Forgetting is finite, if it does not contain an infinite
subsequence of only Learn and Forget steps.

2. Any terminal state in (SML∗×DPL)g(Π),t with Forgetting reachable from the initial
state is either Failstate or of the form Ok(L), with L+ being an answer set of Π
such that t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if there is no set L of literals
such that L+ is an answer set of Π such that its witness is unsatisfiable.

The rule Restart is the same as in cmodels, which can be found in Figure 5.4.

Proposition 13. Given a program Π and a witness function t, there holds

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3 Extending dlv to Backjumping and Learning

1. graph (SML∗×DPL)g(Π),t with Forgetting and Restarting is finite, if it does not con-
tain an infinite subsequence of only Learn and Forget steps and Restart has increasing
periodicity in it.

2. Any terminal state in (SML∗ ×DPL)g(Π),t with Forgetting and Restarting reachable
from the initial state is either Failstate or of the form Ok(L), with L+ being a answer
set of Π such that t(Π, L) is unsatisfiable.

3. Failstate is reachable from the initial state if and only if there is no set L of literals
such that L+ is an answer set of Π such that its witness is unsatisfiable.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Graph Template

We have seen that abstract cmodels, abstract gnt and abstract dlv are similar in a sense
that they are based on a two-layer approach and perform the task of computing answer
sets of logic programs. In [BLM16], an approach for having a unifying framework for
capturing two-layer methods was being made by introducing a graph template to encompass
these disjunctive solvers. The authors proved the same features as we have seen in the
earlier chapters, namely finiteness, termination, correctness and acyclicity for this general
framework. In this work, we will extend the earlier to backjumping, learning, forgetting
and restart. The special thing about the framework is that it can be used as a tool for
designing new algorithms by combining different techniques of different solvers.

The template uses so-called propagator conditions to capture the transition rules.

First, we will look at the single layer graph template according to [BLM16] to introduce
the notations. Then we will add the proposed rules like Backjump, Learn, Forget and
Restart to receive an extended form of the framework that will work for multiple solvers
at once.

6.1 A Single Layer Graph Template

Using the notation of [BLM16], we will start with recreating the single layer graph template
to use it for disjunctive answer set solvers with backjumping and learning.

Definition 47. A propagator condition (p-condition) is a function from a program Π and
a set of literals over atoms(Π) to a set of literals over atoms(Π).

The four p-conditions needed for the template, namely UnitPropagate, AllRulesCancelled,
BackchainTrue and Unfounded , were being introduced in [BLM16]. They are shown in
Figure 6.1.

Definition 48. Let Π be a program, M a set of literals and P a set of p-conditions.
P(Π,M) is the set of literals

⋃

p∈P p(Π,M). P(Π,M) can be seen as the union of the
possible outcomes obtained from P.

Definition 49. [BLM16] Given a program Π and a set P of p-conditions, the DPLL graph
template DPTLP,Π is a graph that is defined as follows:

• The set of nodes are the basic states relative to atoms(Π).

• The edges are specified by the transition rules Conclude, Decide, Success presented
in Figure 2.3, the transition rules Backjump from Figure 2.7, Learn from Figure 2.8
and the transition rule

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Graph Template

Propagate L‖Γ ⇒ Ll‖Γ′ if l ∈ P(Π, L). (6.1)

l ∈ UnitPropagate(Π, L)

iff

l does not occur in L and
a rule in Π that is equivalent to C ∨ l and

all the literals of C occur in L

¬a ∈ AllRulesCancelled(Π, L)

iff

{

¬a does not occur in L and
there is no rule in Π supporting a with respect to L

l ∈ BackchainTrue(Π, L)

iff

l does not occur in L and
there is a rule A ∨ a← B in Π

so that (i) a ∈ L, and (ii) either l ∈ A or l ∈ B and,
(iii) no other rule in Π is supporting a with respect to L

¬a ∈ Unfounded(Π, L)

iff

¬a does not occur in L and
L is consistent and
there is a set X of atoms containing a such that
X is unfounded on L with respect to Π

Figure 6.1: Propagator Conditions

Remark 14. The propagator conditions are basically a slightly different notation of those
transition rules, that differ in the solvers cmodels, gnt and dlv. We use this notation to
capture different subsets of the propagator conditions for different solvers. For example, in
cmodels, we only need the propagator condition UnitPropagate. Therefore, the according
instantiation is P = {UnitPropagate}. We can write

DPTL{UnitPropagate},Π = DPLF .

Both share the same nodes, which are basic states relative to atoms(Π). The transi-
tion rules that are not Unit also coincide, as they are taken from the original definition.
The last transition rule Propagate is only applicable if l ∈ UnitPropagate(Π, L) is ap-
plicable. The conditions coincide with the conditions of Unit. Therefore, in the case of
P = {UnitPropagate}, Propagate coincides with Unit in DPLF .

Remark 15. Note that the transition rules Backjump, Learn, Forget and Restart are
the same for cmodels, gnt and dlv. Therefore, we do not need to capture them in the
propagator conditions.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1 A Single Layer Graph Template

Remark 16. We will refer to the graph template with Forgetting as DPTLFP,Π, where
the additional edge of the graph DPTLP,Π is being captured by the transition rule Forget
in Figure 2.10.
The graph template with Forgetting and Restarting will be named DPT2P,Π. It will

capture the graph DPTLFP,Π with the additional transition rule Restart in Figure 2.11.

Now, as the template is done, we want to review its instantiation as we want to capture
different outcomes of a solver, like whether we compute a classical or a stable model. To
do this, we introduce types.

Definition 50. By type we refer to an element of the set T = {cla, sup, sta}. A cla-model
denotes a classical model, a sup-model a supported model and a sta-model a stable model.

Definition 51. Assume ω ∈ T , where T = {cla, sup, sta}, Π be a program, M be a set
of literals and M1 be any ω-model of Π, such that M ⊂ M1. A set P of p-conditions is
ω-sound if P(Π,M) ⊆M1.

Remark 17. Any cla-sound set of p-conditions is sup-sound. This is the case because
every supported model is a classical model by definition.
Any sup-sound set of p-conditions is sta-sound, because every stable model is a supported

model as well.

Definition 52. Let M be a consistent and complete set of literals over atoms(Π), where Π
is a program and P be a set of p-conditions. P is ω-complete when the set M is a ω-model
of Π if and only if P(Π,M) = ∅.

Definition 53. A set P of p-conditions is ω-enforcing if P is ω-sound and ω-complete.

Proposition 14. [BLM16] The following statements hold:

1. The set {UnitPropagate} is cla-enforcing.

2. All the subsets of {UnitPropagate,AllRulesCancelled,BackchainTrue} that con-
tain {UnitPropagate,AllRulesCancelled} are sup-enforcing.

3. All the subsets of {UnitPropagate,AllRulesCancelled,BackchainTrue,Unfounded}
that contain {UnitPropagate,Unfounded} are sta-enforcing.

Proof. see [BLM16]

Proposition 15. [BLM16] For any program Π, type ω and a ω-enforcing set of p-conditions
P, there hold

1. the graph DPTLP,Π is finite, if there are no infinite subderivations of only Learn
steps.

2. any terminal state of DPTLP,Π reachable from the initial state is either Failstate or
of the form Ok(L), with L|atoms(Π) being a ω-model of Π.

3. Failstate is reachable from the initial state if and only if there is no ω-model of Π.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Graph Template

Proof. The proof relies on the same proof techniques as the proof of Proposition 6.

Remark 18. Note that when constructing the transition rule Learn like in Figure 2.8 we
lose finiteness and acyclicity as there is no restriction of learning the same rule over and
over again. To gain these features, we have to adapt the transition rule as in the two-layer
structures, see Figure 5.2. We receive the transition rule in Figure 6.2.

Learn : M‖Γ =⇒M‖C,Γ if

every atom in C occurs in F and
F |= C and
C /∈ ΓL

Figure 6.2: Adapted learn rule of DPLF .

Remark 19. Here, the single layer graph template is used to understand the two-layer
graph template, so we will not restate the propositions forDPTLP,Π with the adapted learn
rule. It will add acyclicity to the proposition. The graph DPTLFP,Π with Backjumping,
Learning and Forgetting will be finite when there are no infinite subsequences of only
Learn and Forget steps. The graph DPT2P,Π with Backjumping, Learning, Forgetting and
Restarting will only be finite if there holds both, no infinite subsequences of only Learn
and Forget steps and increasing periodicity of Restart.

6.2 A Two-Layer Graph Template

As next step, we extend the two-layer graph template according to [BLM16] to Backjumping
and Learning.

Definition 54. [BLM16] Let Π be a program, PL and PR be sets of p-conditions, g be a
generating function and t be a witness function. The two-layer template graph STTLPL,g

PR,t

is defined as follows:

1. The set of nodes are the set of states relative to atoms(g(Π)) and
atoms(t,Π, atoms(g(Π))).

2. The edges are the transition rules from graph DPL2
g,t(Π) as being described in Figure

5.1, where the rules UnitDPLL and UnitDPLR are being replaced by the rules
PropagateL and PropagateR:

PropagateL (L, ∅)L‖(ΓL, ∅) ⇒ (L′, ∅)L‖(ΓL, ∅) if l ∈ PL(g(Π), L)
PropagateR (L,R)R‖(ΓL,ΓR) ⇒ (L,R′)R‖(ΓL,ΓR) if l ∈ PR(t(Π, L), R)

(6.2)

As in the cases of the specific solver, the state (∅, ∅)L is initial. PropagateL refers to the
rules in the generate layer, PropagateR refers to those in the test layer.

Remark 20. Note that the p-conditions do not change the learned clauses. A p-condition
that is applied to the generating (testing) layer does not change the testing (generating)
layer.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2 A Two-Layer Graph Template

Remark 21. Again, we see that the transition rules Backjump, Learn, Forget and
Restart are not considered a propagator condition, as PL and PR are sets of p-conditions
like in the single layer graph template.

6.2.1 Approximating and Ensuring Pairs

When using the model in practice, four parameters need to be set, namely the sets PL
and PR of p-conditions, the generating function g and the witness function t. To stay in
a general form, the authors of [BLM16] introduce approximating and ensuring pairs, that
translate into correctness of solvers once properly instantiated.

Definition 55. Let ω and ω1 be types. A generating function g is ω1-approximating with
resprect to ω if for any program Π there holds the following:

1. For any stable model L of Π there is a ω1-model L1 of g(Π) such that L = L1|atoms(Π).

2. For any ω1-model M of g(Π), M|atoms(Π) is a ω-model of Π.

Example 19. [BLM16] The generating function cnfcomp(Π) returns a CNF formula that
stands for the completion comp(Π). The function cnfcomp is cla-approximating with
respect to sup. This holds, because

• any stable model L of Π is also a cla-model of cnfcomp(Π) and

• any cla-model M of cnfcomp(Π) is a sup-model of Π.

Definition 56. Let ω and ω1 be types. A witness function t is ω1-ensuring with resprect
to ω when for any set M of literals covering Π such that M|atoms(Π) is a ω-model of Π,
M|atoms(Π) is a stable model of Π if and only if t(Π,M) leads to a program that has no
ω1-model.

Example 20. [BLM16] The witness function tC in Figure 4.2 is cla-ensuring with respect
to cla. Any sup-model is a cla-model. Therefore, tC is also cla-ensuring with respect to
sup.

Proposition 16. Let ω, ω1 and ω2 be types, g be a generating function that is ω1 approx-
imating with respect to ω, t be a witness function that is ω2-ensuring with respect to ω and
Π be a program. The set of all stable models of Π is

{L|atoms(Π)|L is a ω1-model of g(Π) and t(Π, L) has no ω2-models}.

Definition 57. An approximating-pair with respect to ω is a pair (P, g), which consists
of a set of p-conditions and a generating function, where P is ω1-enforcing and g is ω1-
approximating with respect to ω.

Example 21. The pair ({UnitPropagate}, cnfcomp(Π)) is an approximating-pair with
respect to sup as well as to cla, because cnfcomp(Π) is cla-approximating with respect to
sup and {UnitPropagate} is cla-enforcing according to Proposition 14.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Graph Template

Definition 58. An ensuring-pair with respect to ω is a pair (P, t), which consists of a set
of p-conditions and a witness function, where P is ω1-enforcing and t is ω1-ensuring with
respect to ω.

Example 22. The pair ({UnitPropagate}, tC) is an ensuring pair with respect to cla, be-
cause tC is cla-ensuring with respect to cla and {UnitPropagate} is cla-enforcing according
to Proposition 14.

Proposition 17. [BLM16] Let ω1 and ω2 be types. Let g be a generating function, P}
be a ω1-enforcing set of p-conditions, t be a witness function, P⊔ be a ω2-enforcing set of
p-conditions. For a program Π and a state (l1 . . . lk1 , r1 . . . rk2) of STTL

Pg ,g

Pt,t
(Π) reachable

from the initial state, there hold

1. any ω2-model of t(Π, l1 . . . lk1) satisfies ri if it satisfies all decision literals (rj)
∆ with

j ≤ i and

2. any ω1-model L of g(Π) such that t(Π, L) has no ω2-model satisfies li if it satisfies
all decision literals l∆j with j ≤ i.

Proof. see [BLM16][Lemma 5]

Proposition 18. [BLM16] Let ω, ω1 and ω2 be types, g be a generating function, that is
ω1-approximating with respect to ω, t be a witness function, that is ω1-ensuring with respect
to ω and Π be a program .Then the set of all stable models of Π is

{Latoms(Π)|L is a ω1-model of g(Π) and t(Π, L) has no ω2-models}.

Proof. see [BLM16][Propsition 4]

For the next theorem, we assume that the transition rules LearnL and LearnR are the
ones from Figure 5.2 to ensure acyclicity.

Theorem 6. Let Π be a program, ω be a type, (Pg, g) be an approximating-pair with respect
to ω and (Pt, t) be an ensuring-pair with respect to ω. There hold,

1. the graph STTL
Pg ,g

Pt,t
(Π) is finite and acyclic,

2. any terminal state of STTL
Pg ,g

Pt,t
(Π) reachable from the initial state is either Failstate

or of the form Ok(L), with L|atoms(Π) being a stable model of Π.

3. Failstate is reachable from the initial state if and only if g(Π) has no ω-model such
that its witness is unsatisfiable.

Proof. We assume that ω1 is a type with Pg being ω1-enforcing and g being ω1-approximating
with respect to ω and ω2 is a type with Pt being ω2-enforcing and t being ω2-approximating
with respect to ω.
1. In the proof of Theorem 3, we have already seen that the graph DPL2

g,t(Π) with back-

jumping and learning is finite and acyclic. As the nodes in DPL2
g,t(Π) and STTL

Pg ,g

Pt,t
(Π) are

built on the same sets as in the previous theorem that considers backjumping and learning,

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2 A Two-Layer Graph Template

namely states relative to atoms(Π) and atoms(t,Π, atoms(g(Π))), and neither L, R, ΓL or
ΓR allow repetitions, due to the fact that we use sets, we remain finite.

Now we want to show acyclicity. Graph DPL2
g,t(Π) and STTL

Pg ,g

Pt,t
(Π), that both include

backjumping and learning, share all the transition rules, but PropagateL and PropagateR
in STTL

Pg ,g

Pt,t
(Π) and UnitDPLL and UnitDPLR in DPL2

g,t(Π) . For all the transition
rules, but the Propagate rules, we can follow the lines of the proof of acyclicity in Theorem
3 which includes backjumping and learning. We have seen that the transition rule Unit
in DPL2

g,t(Π) and Propagate with P = {UnitPropagate} coincide. Recall, that to proof

acyclicity in cmodels, we wrote the string L as L0l
∆
1 L1 . . . l

∆
k Lk, where (l∆t)1≤t≤k are all

the decision literals of L and used the lexicographic order of the sequence |L0|, |L1|, . . . |Lk|.
We only have to look at the remaining propagator conditions, as they are the difference be-
tween the earlier proof of acyclicity in Theorem 3 with backjumping and learning. We see,
that applying AllRulesCancelled, BackchainTrue or Unfounded only change the length of
Lk or Rk, depending on whether Propagate is being applied as PropagateL or PropagateR.
Let’s assume Lk(Rk) translates to L′k(R

′
k). On applying PropagateL (PropagateR) with

some propagator condition p there holds |L′k| = |Lk| + 1 (|R′k| = |Rk| + 1). There-
for, the other propagator conditions fulfill v(L,R, s,ΓL,ΓR) ≤lex v(L′, R′, s′,Γ′L,Γ

′
R) and

STTL
Pg ,g

Pt,t
(Π) is acyclic.

2. We have seen in the proof of Theorem 2, that the terminal states of DPL2
g,t(Π) are

either Failstate or of the form Ok(L), where L is a model of g(Π) such that t(Π, L) is

unsatisfiable. We can use the same argumentation for STTL
Pg ,g

Pt,t
(Π). For the longer argu-

mentation, see Theorem 2 part 2. Here, I will review the idea: (L,R)s‖(ΓL,ΓR) is not a
terminal state, because if s = L (s = R) a Left-rule or CrossLR (right-rule, ConcludeRL,
ConcludeR or BackjumpRL) would apply, which would mean that the state is not termi-
nal. Additionally, there is no transition rule that origin at Failstate or Ok(L), so those are
terminal states. As well as in Theorem 2, the only transition rule that leads to Ok(L) is
ConcludeR, which is applied if t(Π, L) is unsatisfiable. R contains no decision literals and
because of Proposition 17(a), t(Π, L) has no ω2-model. Further, because of Proposition
17(b), the consistent set of literals obtained from L is a ω1-model of g(Π). By Proposition
18 Latoms(Π) is a stable model of Π.

3. The proof for this part is identical to the third part of proof of Theorem 2.

We see, that the graph template can be used to define transition systems that result in
correct algorithms for deciding whether a program has a stable model or not.

Extending the two-layer graph template to forgetting and restarting is very similar to
the previous chapter. Adding the transition rules ForgetL and ForgetR from Figure 5.3
to the graph STTL

Pg ,g

Pt,t
(Π) with backjumping and leraning to create graph STTLF

Pg ,g

Pt,t
(Π)

with backjumping, learning and forgetting. Keep in mind that we lose acyclicity as we
can learn and forget the same clause, which leads to a cycle. The same reason would also
impair finiteness, which is a feature that we do not want to lose. Therefore, we need a
restriction. Theorem 6 changes accordingly:

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Graph Template

Theorem 7. Let Π be a program, ω be a type, (Pg, g) be an approximating-pair with respect
to ω and (Pt, t) be an ensuring-pair with respect to ω. There hold,

1. the graph STTLF
Pg ,g

Pt,t
(Π) is finite if it does not contain an infinite subsequence of

only Learn and Forget steps,

2. any terminal state of STTLF
Pg ,g

Pt,t
(Π) reachable from the initial state is either Failstate

or of the form Ok(L), with L|atoms(Π) being a stable model of Π.

3. Failstate is reachable from the initial state if and only if g(Π) has no ω-model such
that its witness is unsatisfiable.

Proof. Due to the restriction of not having subsequences of inifinite length consisting of
only Learn and Forget steps, adding the transition rules ForgetL and ForgetR, we can
follow the lines of the proof of Theorem 6 to prove finiteness. The additional transition
rules do not change the terminal states, because both rules lead to another state, that is
known not to be a terminal state. Therefore, we can use the arguments from Theorem 6
for the second and third part of the theorem as well.

To receive a graph template that captures backjumping, learning, forgetting and restart-
ing, we add the restart rules from Figure 5.4 to the graph STTLF

Pg ,g

Pt,t
(Π) as additional

edges. We call the according graph STT2
Pg ,g

Pt,t
(Π). The theorem differs from STTLF

Pg ,g

Pt,t
(Π)

in a sense that we need another restriction to keep finiteness:

Theorem 8. Let Π be a program, ω be a type, (Pg, g) be an approximating-pair with respect
to ω and (Pt, t) be an ensuring-pair with respect to ω. There hold,

1. the graph STT2
Pg ,g

Pt,t
(Π) is finite if it does not contain an infinite subsequence of only

Learn and Forget steps and Restart has increasing periodicity in it,

2. any terminal state of STT2
Pg ,g

Pt,t
(Π) reachable from the initial state is either Failstate

or of the form Ok(L), with L|atoms(Π) being a stable model of Π.

3. Failstate is reachable from the initial state if and only if g(Π) has no ω-model such
that its witness is unsatisfiable.

Proof. The proof follows the lines of Theorem 7. From Proposition 14 we already know
that there are not infinitely many occurrences of Restart due to the restriction. Therefore,
we remain finite. As the transition rules RestartL and RestartR both lead to a state that
was showed not to be a terminal state, we can refer to the proof of Theorem 7 to show part
2 and 3 of the theorem.

6.2.2 The graph template for cmodels

The instantiation STTL
{UnitPropagate},tC

{UnitPropagate},gC
of the two-layer graph template results inDPL2

g,t.

They share the same nodes and most transition rules. The difference lies in the form

of the transition rule PropagateL in STTL
{UnitPropagate},tC

{UnitPropagate},gC
and UnitL in DPL2

g,t. But

as the set of p-conditions is only UnitPropagate, the rule PropagateL is applicable in

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2 A Two-Layer Graph Template

STTL
{UnitPropagate},tC

{UnitPropagate},gC
if and only if Unit is applicable in DPL2

g,t. The same statement

holds for the case of PropagateR and UnitR. We see, that the graph template captures
cmodels with backjumping and learning, as well as forgetting and restarting.

In the previous subsection, we have seen, that gC = cnfcomp(Π) is cla-approximating
with respect to cla, tC is cla-ensuring with respect to cla, the pair ({UnitPropagate}, gC)
is an approximating-pair with respect to cla and the pair ({UnitPropagate}, tC) is an
ensuring-pair with respect to cla.

Instead of the graph STTL with backjumping and learning we can use STTLF with
backjumping, learning and forgetting or STTL2 with backjumping, learning, forgetting
and restarting, accordingly. The previous argumentation does not change. Depending on
the used graph, one of the Theorems 6, 7 or 8 holds.

6.2.3 The graph template for gnt

As we have seen in Section 4.3, thy system uses the smodels procedure that finds stable
models for non-disjunctive logic programs, while cmodels uses the DPLL procedure to
find classical models. Instead of the graph DPL2

g,t for cmodels, the graph SML2
g(Π),t rep-

resents gnt. The graph STTL
{UnitPropagate,AllRulesCancelled,BackchainTrue,Unfounded},tG

{UnitPropagate,AllRulesCancelled,BackchainTrue,Unfounded},gG
(Π) is

the gnt representation using the graph template, where gG is being described in Equation
4.4 and tG in Equation 4.5. gG is sta-approximating with respect to cla and tG is sta-
ensuring with respect to cla according to [BLM16]. Therefore, the pair
({UnitPropagate,AllRulesCancelled,BackchainTrue,Unfounded}, gG) is an
approximating-pair with respect to cla, because gD is sta-approximating with respect to
cla and Pg = {UnitPropagate,AllRulesCancelled,BackchainTrue,Unfounded} is sta-
enforcing according to Proposition 14.

The pair ({UnitPropagate,AllRulesCancelled,BackchainTrue,Unfounded}, tG) is an
ensuring-pair with respect to cla, because tG is sta-ensuring with respect to cla and

Pt = {UnitPropagate,AllRulesCancelled,BackchainTrue,Unfounded} is sta-enforcing
according to Proposition 14.

Therefore, we can apply Theorem 6 to gnt. When we use STTLF (STT2), Theorem 7
(8) applies.

6.2.4 The graph template for dlv

In Section 4.4, we have seen, that dlv is similar to smodels without the rule Unfounded in
the generate layer and DPLL in the test layer, that results in the graph (SM∗×DP)g(Π),t,
while we still make sure that the transition rules are defined such that disjunctive rules are
captured as well.

The graph STTL
{UnitPropagate},tD

{UnitPropagate,AllRulesCancelled,BackchainTrue},gD
(Π) represents dlv using

the graph template, where gD is being described in Equation 4.6 and tG in Equation 4.7.

The generating function gD is sup-approximating with respect to cla and the witness
function tD is cla-ensuring with respect to cla according to [BLM16].

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Graph Template

The pair ({UnitPropagate,AllRulesCancelled,BackchainTrue}, gD) is an approximat-
ing - pair with respect to cla, because gD is sup-approximating with respect to cla and
Pg = {UnitPropagate,AllRulesCancelled,BackchainTrue} is sup-enforcing according to
Proposition 14.

The pair ({UnitPropagate}, tD) is an ensuring-pair with respect to cla. We have seen
in this subsection, that tD is cla-ensuring with respect to cla. The set Pt is cla-enforcing,
because of Proposition 14.
We can apply the Theorems 6, 7 and 8 to dlv, depending on what graph we use instead

of STTL.

6.2.5 A new solver

The graph template can be used to create new abstract solvers, simply by finding new
approximating-pairs with respect to a type ω and ensuring-pairs with respect to the same
type ω and combining them. Theorem 6 and its extensions Theorem 7 and Theorem 8
provide a proof of correctness and termination. To obtain new solvers we can combine
any approximating-pair on the generate layer with any ensuring pair on the test layer with
respect to the same type.

Example 23. STTL
{UnitPropagate,AllRulesCancelled,BackchainTrue},tD

{UnitPropagate},gD
(Π) could be an abstract

solver. When we compare it to the graph template for dlv, we see that the propagator
conditions for the generate layer and those for the test layer are interchanged. The generate
layer is being depicted by the DPLL procedure. The left-rules of the graph are the left-
rules of DPL2

g,t(Π) from Section 5.1. The test layer consists of the same right-rules as
SML2

g(Π),twithout the transition rule UnfoundedR as stated in Section 5.6.

From Section 6.2.2 we know that the pair {{UnitPropagate}, gD} is approximating-pair
with respect to cla, because we use a generating function gD, that is shown to be cla-
approximating in Section 6.2.4. Using Proposition 14 we see that the set
{UnitPropagate,AllRulesCancelled,BackchainTrue} is sup-enforcing and therefore cla-
enforcing. The test function tD is cla-enforcing according to 6.2.4. Thus, the pair
{{UnitPropagate,AllRulesCancelled,BackchainTrue}, tD} is an ensuring-pair with re-
spect to cla and Theorem 6 holds. Analogously as in the previous sections we can use the
graph STTLF (SST2) instead of STTL, so that Theorem 7 (8) holds.

Example 24. For any pair (P, g) that is ensuring with respect to cla the solver

STTL
{UnitPropagate},tC

P,g (Π) would fulfill Theorem 6. This graph is stated in a more gen-
eral way as the approximating-pair is not specified directly. It could be any ensuring-
pair. The DPLL procedure is used in the test layer. From Section 6.2.2 we know that
{{UnitPropagate}, tC} is an ensuring-pair with respect to cla.

Using STTLF
{UnitPropagate},tC

P,g (Π) would fulfill Theorem 7 and STT2
{UnitPropagate},tC

P,g (Π)
would fulfill Theorem 8.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7 Conclusion

This thesis has tried to show that we can depict disjunctive answer set solvers with more ad-
vanced rules like backjumping, learning, forgetting and restarting in an abstract framework
by extending the previous built frameworks for answer set solvers like cmodels, gnt and
dlv to said rules. Additionally, we analysed features like termination and correctness when
including these rules. To achieve features like finiteness and acyclicity, we have seen, that
sometimes we can or even need to add some restrictions to guarantee those. When we add
forgetting and restarting though, we lose acyclicity, because these rules theoretically allow
to revisit previously reached states. With the knowledge from the work with the specific
solvers, we went into even more abstract dimensions and saw that we can also extend the
graph template from [BLM16] that captures these disjunctive answer set solvers and can
be used to create new, unknown disjunctive answer set solvers. We have seen that we can
guarantee features like termination and completeness for those yet unknown answer set
solvers with a single theorem and observed finiteness and acyclicity in the graph template
as well, depending on the transition rules that we added previously.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[BLM14] R. Brochenin, Y. Lierler, and M. Maratea. Abstract disjunctive answer set
solvers. In Proceedings of the Twenty-First European Conference on Artificial
Intelligence, pages 165–170. IOS Press, 2014.

[BLM16] R. Brochenin, Y. Lierler, and M. Maratea. Abstract disjunctive answer set
solvers via templates. In Theory and Practice of Logic Programming, volume 16,
pages 465–497. Cambridge University Press, 2016.

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory With Applications. North-
Holland, 1976.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. In Communications of the ACM, volume 5, pages 394–397. Association
for Computing Machinery, 1962.

[DM17] C. Dodaro and M. Maratea. Nurse scheduling via answer set programming. In
M. Balduccini and T. Janhunen, editors, Logic programming and nonmonotonic
reasoning, volume 10377. Springer, 2017.

[DNK97] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in non-
monotonic logic programs. In S. Steel and R. Alami, editors, Recent Advances
in AI Planning, volume 1348, pages 169–181. Springer, 1997.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory. In
Journal of ACM, volume 7, pages 201–215. Association for Computing Machin-
ery, 1960.

[EAP12] E. Erdem, E. Aker, and V. Patoglu. Answer set programming for collaborative
housekeeping robotics: Representation, reasoning and execution. In Intelligent
Service Robotics, volume 5, pages 275–291. Springer, 2012.

[FFea18] A. Falkner, G. Friedrich, and Schekotihin et al. Industrial applications of answer
set programming. In Künstliche Intelligenz, volume 32, pages 165–176. Springer,
2018.

[GKSS08] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers. In
F. Van Harmelen, V. Lifschitz, and B. Porter, editors, Handbook of Knowledge
Representation, pages 89–134. Elsevier, 2008.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen, editors, Proceedings of International Logic
Programming Converence and Symposium, pages 1070–1080. MIT Press, 1988.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[GLM06] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based
on propositional satisfiability. In Journal of Automated Reasoning, volume 36,
pages 345–377. Springer, 2006.

[GLM08] E. Giunchiglia, N. Leone, and M. Maratea. On the relation among answer set
solvers. In Annals of Mathematics and Articial Intelligence, volume 53, pages
169–204. Kluwer Academic Publishers, 2008.

[GM05] E. Giunchiglia and M. Maratea. On the relation between answer set and sat
procedures (or, between smodels and cmodels). In M. Gabbrielli and G. Gupta,
editors, Proceedings of the 21st International Conference on Logic Programming,
volume 3668, pages 37–51. Springer, 2005.

[GS06] M. Gebser and T. Schnaub. Tableau calculi for answer set programming. In
S. Etalle and M. Truszczynski, editors, Proceedings of the 22nd International
Conference on Logic Programming, volume 4079, pages 11–25. Springer, 2006.

[GS13] M. Gebser and T. Schnaub. Tableau calculi for logic programs under answer
set semantics. In ACM Transactions on Computational Logic, volume 14, pages
15:1–15:40. Association for Computing Machinery, 2013.

[Jan] T. Janhunen. gnt (generate’n’test): A solver for disjunctive logic programs.
http://www.tcs.hut.fi/Software/gnt/. Accessed: 2019-03-06.

[JNS+06] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J.-H. You. Unfolding par-
tiality and disjunctions in stable model semantics. In ACM Transactions on
Computunational Logic, volume 7, pages 1–37. Association for Computing Ma-
chinery, 2006.

[LFP+06] N. Leone, W. Faber, G. Pfeifer, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello. The DLV system for knowledge representation and reasoning. In ACM
Transactions on Computational Logic, volume 7, pages 499–562. Association for
Computing Machinery, 2006.

[Lie05] Y. Lierler. cmodels - sat-based disjunctive answer set solver. In C. Baral,
G. Greco, N. Leone, and G. Terracina, editors, Logic Programming and Non-
monotonic Reasoning, volume 3662, pages 447 – 451. Springer, 2005.

[Lie10] Y. Lierler. SAT-based Answer Set Programming. PhD thesis, Department of
Computer Sciences, The University of Texas at Austin, Austin, TX, 2010.

[Lie11] Y. Lierler. Abstract answer set solvers with backjumping and learning. In The-
ory and Practice of Logic Programming, volume 11, pages 135–169. Cambridge
University Press, 2011.

[Lie17] Y. Lierler. Basics behind answer sets. http://works.bepress.com/yuliya_

lierler/71/, 2017. Accessed: 2020-02-09.

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Lif99] V. Lifschitz. Answer set planning. In M. Gelfond, N. Leone, and G. Pfeifer,
editors, Logic Programming and Nonmonotonic Reasoning, volume 1730, pages
23–37. Springer, 1999.

[Lif08] V. Lifschitz. What is answer set programming?. In Proceedings of the 23rd Na-
tional Conference on Artificial Intelligence, volume 3, pages 1594–1597. AAAI
Press, 2008.

[LRS97] N. Leone, P. Rullo, and F. Scarcello. Disjunctive stable models: Unfounded
sets, fixpoint semantics and computation. In Information and Computation,
volume 135, pages 69–112. Elsevier, 1997.

[LT11] Y. Lierler and M. Truszczynski. Transition systems for model generators - a
unifying approach. In Theory and Practice of Logic Programming, volume 11,
pages 629–646. Cambridge University Press, 2011.

[LZ02] F. Lin and Y. Zhao. Assat: computing answer sets of a logic program by sat
solvers. In Eighteenth National Conference on Artificial Intelligence, volume
157, page 112–117. American Association for Artificial Intelligence, 2002.

[MT99] V.W. Marek and M. Truszczynski. Stable models and an alternative logic pro-
gramming paradigm. In Apt K.R., Marek V.W., Truszczynski M., and Warren
D.S., editors, The Logic Programming Paradigm. Artificial Intelligence, pages
375–398. Springer, 1999.

[NBG+01] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An a-prolog
decision support system for the space shuttle. In Ramakrishnan I.V., editor,
Practical Aspects of Declarative Languages, pages 169–183. Springer, 2001.

[Nie99] I. Niemelä. Logic programs with stable model semantics as a constraint pro-
gramming paradigm. In Annals of Mathematics and Artificial Intelligence, vol-
ume 25, pages 241–273. Kluwer Academic Publishers, 1999.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving sat and sat modulo theories:
From an abstract davis–putnam–logemann–loveland procedure to dpll(t). In
Journal of the ACM, volume 53, pages 937–977. Association for Computing
Machinery, 2006.

[RFL06] F. Ricca, W. Faber, and N. Leone. A backjumping technique for disjunctive
logic programming. In AI Communications, volume 19, pages 155–172. IOS
Press, 2006.

[Tep17] E. Teppan. On the complexity of the partner units decision problem. In Artificial
Intelligence, volume 248, pages 112 – 122. Elsevier, 2017.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Introduction
	Abstract DPLL
	Preliminaries of SAT and propositional logic in general
	Classical abstract DPLL
	The graph DPF
	The graph DPLF
	Further Extensions of the graph DPLF

	Disjunctive ASP
	Disjunctive Logic Programs
	Answer Sets
	Answer Set Programming
	Answer Sets of a Positive Program
	Answer Sets of a Disjunctive Program
	Classification of models

	Abstract ASP with Backtracking
	A Two-Layer Abstract Solver
	Abstract cmodels
	An abstract two-layer solver via DPLL
	The two layers of cmodels

	Abstract gnt
	Abstract Solver via smodels
	The graph SMg(), t2
	The two layers of gnt

	Abstract solver dlv
	The graph (SM* DP)g(), t
	The two layers of dlv

	Abstract ASP with Backjumping and Learning
	Extending cmodels to Backjumping and Learning
	Extension of DPLg,t2() to Forgetting
	Extension of DPLg,t2() to Restart

	Extending gnt to Backjumping and Learning
	Extending dlv to Backjumping and Learning

	Graph Template
	A Single Layer Graph Template
	A Two-Layer Graph Template
	Approximating and Ensuring Pairs
	The graph template for cmodels
	The graph template for gnt
	The graph template for dlv
	A new solver

	Conclusion
	Bibliography

