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We develop a method to obtain fermion spectral functions non-perturbatively in a non-Abelian gauge 
theory with high occupation numbers of gauge fields. After recovering the free field case, we extract 
the spectral function of fermions in a highly occupied non-Abelian plasma close to its non-thermal fixed 
point, i.e., in a self-similar regime of the non-equilibrium dynamics. We find good agreement with hard 
loop perturbation theory for medium-induced masses, dispersion relations and quasiparticle residues. We 
also extract the full momentum dependence of the damping rate of the collective excitations.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Nonperturbatively strong color fields play an important part in 
the physics of ultrarelativistic heavy ion collisions and the early 
universe. The pre-equilibrium initial stages of the collision are 
characterized by highly occupied glasma field configurations [1–4]
resulting from the collision of two dense gluonic systems. Similarly 
states with large occupation numbers of scalars or gauge bosons 
can emerge from instabilities in the reheating of the early universe 
[5–7]. Also in an equilibrated quark-gluon plasma, the infrared sec-
tor is dominated by gluon fields with high occupation numbers.

Even if the energy density of the system is dominated by 
bosons, it is important to understand the interactions of fermions 
with these strong bosonic fields. In heavy-ion collisions, jets 
formed by light energetic quarks are created in the earliest stage 
of the collision. They propagate through the dense gluonic sys-
tem, which has an effect on their energy loss [8]. Electromagnetic 
observables provide another experimental window into the earli-
est stage of heavy-ion collisions [9,10], and originate from quarks 
which are the only carriers of electric charge in the medium. In 
order to develop a microscopic description of such observables, 
one must understand the interactions of quarks with a system of 
overoccupied gluon fields.
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Since the dynamics of bosonic states with occupation numbers 
of the order of the inverse self-coupling ∼ 1/αs, can be naturally 
described in terms of classical fields [11–13] to leading order in αs, 
classical statistical field simulations are commonly used in heavy-
ion physics [14,15] and cosmology [16]. We will here use this 
classical field picture to study the microscopic properties of Dirac 
fermions (quarks) interacting with a over-occupied non-abelian 
gauge field.

The interaction of a fermion with the background field is en-
coded in its spectral function. The purpose of this paper is to com-
pute this spectral function. Based on earlier calculations of spectral 
functions for gluons [17,18] and the real time lattice fermion code 
developed in [19,20], we will first develop a numerical method 
to calculate the spectral function in an out-of-equilibrium ove-
roccupied background gauge field configuration. We are studying 
fermion interactions with a strongly overoccupied gluon field, thus 
the dynamics is dominated by gluons and the physical situation is 
very different from systems at large baryon density (see, e.g., re-
cent work in [21]). Our classical-statistical method is similar to the 
ones used to extract spectral functions in scalar theories both far 
from equilibrium [22–24] and for a thermal system [25–27], and 
can also be applied to study the dynamics of fermionic excitations 
in the presence of scalar or abelian gauge fields.

We will compute the spectral function in momentum space, 
in both the time and frequency domains. From this spectral func-
tion we can extract medium-induced masses, dispersion relations 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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and quasiparticle residues for the different spinor structures of the 
spectral function. These quantities will then be compared to pre-
dictions of hard-thermal loop (HTL) perturbation theory [28–31]. 
We can also extract the damping rate of fermionic quasiparticles 
for different momenta, which is a much more nontrivial quantity 
to obtain in perturbation theory [28,32,33,29].

This paper is structured as follows. We first describe the nu-
merical method for extracting the fermion spectral function in 
Sec. 2, and test it for the analytically solvable case of free fermions. 
We then move to a nontrivial background field in Sec. 3, where we 
first briefly describe the overoccupied universal UV-cascade gluon 
field configuration that we are using, and then present our nu-
merical results and compare them to the expectation from HTL 
perturbation theory. We briefly conclude in Sec. 4. For complete-
ness, the HTL formulas for the spectral function from the literature 
are provided in Appendix A.

2. Spectral functions from classical-statistical lattice simulations

2.1. Classical-statistical simulations

We consider a non-abelian SU(Nc) gauge theory discretized on 
a lattice with N3

s sites and lattice spacing as . We use Nc = 2 in this 
work. The gauge fields are expressed in terms of lattice gauge links 
U (t′, x) ≈ exp

(
igas A j(t′,x)

)
and electric field variables E j(t′, x) ≈

ga2
s ∂t A j(t′, x) in temporal axial gauge (A0 = 0), where g = √

4παs

denotes the gauge coupling. The evolution equations for the gauge 
field sector then result from the lattice Hamiltonian

HYM = 1

g2as

∑
x,i

Tr[Ei(t
′,x)2] + 1

2

∑
j

ReTr[1 − Uij(t
′,x)], (1)

where Uij(t′, x) = Ui(t′, x)U j(t′, x + ı̂)U †
i (t

′, x + ĵ)U †
j(t

′, x) are the 
usual plaquette variables and ı̂, ̂j denote the unit lattice vectors in 
the i, j = 1, 2, 3 spatial directions.

While the gauge fields are treated as classical fields, fermions 
are described in terms of quantum mechanical field operator 
ψ̂(t′, x), whose evolution is governed by the Hamiltonian

ĤW = 1

2

∑
x

[
ψ̂†(t′,x), γ 0 (−i/Ds + m

)
ψ̂(t′,x)

]
(2)

in the presence of the classical background gauge fields. With re-
gards to the lattice discretization of fermions, we follow previous 
works [19,20] and discretize the Hamiltonian with a tree-level im-
proved Wilson Dirac operator

−i/Dsψ̂(t′,x) = (3)
1

2

∑
n,i

Cn

{[ − iγ i − nrW
]
U+nı̂(t

′,x)ψ̂(t′,x + nı̂)

+ 2nrW ψ̂(t′,x) − [ − iγ i + nrW
]
U−nı̂(t

′,x)ψ̂(t′,x − nı̂)
}

.

Here i = 1, 2, 3 is the spatial Lorentz index and rW = 1 is the 
Wilson parameter. The parallel transporters accross multiple lat-
tice sites are given by products of individual link matrices, and 
are denoted by U+nı̂(t

′, x) = ∏n−1
k=0 Ui(t′, x + kı̂) and U−nı̂(t

′, x) =∏n
k=1 U †

i (t
′, x −kı̂). For a leading order tree-level improvement [19,

20] we set the coefficients Cn as C1 = 4/3, C2 = −1/6 and Cn>2 =
0.

Since the equation of motion for the fermion field operator

iγ 0∂0ψ̂(t′,x) =
(
−iγ j Ds

W , j + m
)

ψ̂(t′,x) (4)

is linear in the fermion field ψ̂(t′, x), it can be conveniently solved 
in terms of a mode function expansion [34,35]. This means that 
2

we expand the operator ψ̂(t′, x), in terms of creation and annihi-
lation operators of particles (b) and anti-particles (d) with definite 
momenta p at a reference time t

ψ̂(t′,x) = 1√
V

∑
λ,p

b̂λ,p(t)φu
λ,p(t′,x) + d̂†

λ,p(t)φv
λ,p(t′,x) , (5)

where λ = 1, · · · , 2Nc collectively labels the spin and color indices. 
The operator structure is determined by the action of the b̂λ,p(t)

and d̂†
λ,p(t) at a fixed reference time t , where the creation and an-

nihilation operators satisfy the usual equal-time anti-commutation 
relations{

b̂λ,p(t), b̂†
λ′,p′(t)

}
=

{
d̂λ,p(t), d̂†

λ′,p′(t)
}

= V δp,p′ δλλ′ . (6)

With these fixed equal-time commutation relations, the time evo-
lution of the field operator ψ̂(t′, x) is, on the other hand, en-
coded in the set of 4Nc N3

s wave-functions (or N3
s colored spinors) 

φ
u/v
λ,p (t′, x). They describe the propagation of a state that is given 

by a plane wave at the reference time t , i.e., satisfying the initial 
condition

φu
λ,p(t′,x)

∣∣∣
t′=t

= uλ(p)e+ip·x (7)

φv
λ,p(t′,x)

∣∣∣
t′=t

= vλ(p)e−ip·x (8)

Each of these wave-functions satisfies the Dirac equation in the 
classical background field (4).

Due to the large phase-space occupancy of gluons, the fermionic 
sector is suppressed relative to the gauge fields by one power of 
αs in weak coupling. Working at leading order accuracy, we can 
therefore neglect the backreaction of fermions on the dynamical 
gauge fields, just as we are neglecting gluonic quantum correc-
tions in the gluon field dynamics. Neglecting the backreaction also 
makes our calculation computationally significantly less demand-
ing, as we will explain further below. Employing a leap-frog type 
scheme for the discretized time evolution then results in the fol-
lowing update rules for the gauge field and fermion sectors [20]

U j(t
′,x) = eiat/as E j(t′−at/2,x)U j(t

′ − at,x) , (9)

E j(t′ + at/2,x) − E j(t′ − at/2,x) = (10)

− at

as

∑
j �=i

[
Uij(t

′,x) + Ui(− j)(t
′,x)

]
ah ,

φ
u/v
λp (t′ + at,x) − φ

u/v
λp (t′ − at ,x) = (11)

− 2iatγ
0
(
−iγ j Ds

W , j[U ] + m
)

φ
u/v
λp (t′,x) ,

with [.]ah denoting the anti-Hermitian part of a matrix. This can 
be solved iteratively to calculate the time evolution.1

2.2. Spectral function of fermions

Generally, the spectral function is defined as the expectation 
value of the unequal time anti-commutator of fermion fields

ραβ(x, y) =
〈〈{

ψ̂α(x), ˆ̄ψβ(y)
}〉

ψ

〉
(12)

where ˆ̄ψ = ψ̂†γ 0 and α, β are Lorentz indices, which should not 
be confused with the indices λ, λ′ denoting the spin and color 

1 If not stated otherwise, we employ at/as = 0.005 for the discretized time evo-
lution.
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states, that we will write as subscripts. Here 〈.〉ψ denotes ex-
pectation values of fermionic operators in the presence of gauge 
fields, and 〈.〉 denotes the classical-statistical average over gauge 
field configurations, as is usually performed for observables in the 
classical-statistical framework [22]. Since the spectral function has 
a 4 ×4 matrix structure, it is useful to decompose it into scalar (S), 
pseudo-scalar (P), vector (V), axial-vector (A) and tensor (T) com-
ponents according to

ρ = ρS + iγ5ρP + γμρ
μ
V + γμγ5ρ

μ
A + 1

2
σμνρ

μν
T . (13)

Due to rotational symmetry the vector spectral function is propor-
tional to the momentum, and we can express its spatial compo-
nents in terms of a scalar function ρV as

ρ i
V (p) = pi

Ep
ρV , (14)

where Ep is the free dispersion relation that will be discussed in 
Sec. 2.3. The temporal and spatial components of the spectral func-
tion can then be extracted as

ρ0
V = 1

4
Tr(ργ 0) , ρV = − Ep p j

4 p2
Tr(ργ j) . (15)

On a discrete lattice, rotational symmetry is broken, and such a re-
lation does not hold exactly. For momentum modes far from the 
UV cutoff that we will consider it should, however, be satisfied. On 
the lattice we will determine the function ρV by replacing pi by 
the effective lattice momentum p̂i corresponding to the discretiza-
tion of the derivative operator (Sec. 2.3).

By inserting the mode function expansion of the fermion fields 
in Eq. (5) into the definition of the spectral function Eq. (12), one 
obtains

ραβ(x, y) =
∑
λ,p

〈
φ

u,α
λ,p (x0,x)

(
φ

u,γ
λ,p (y0,y)

)∗
(16)

+ φ
v,α
λ,p (x0,x)

(
φ

v,γ
λ,p (y0,y)

)∗〉
γ

γ β

0 ,

where we used the equal-time anti-commutation relations in 
Eq. (6) to evaluate the anti-commutators. By changing to central 
and difference coordinates X = (x + y)/2 and �x = (x − y) in the 
spatial direction, we perform a spatial average over the position X
and a Fourier transform w.r.t. to difference coordinates �x accord-
ing to

ραβ(x0, y0,p) = (17)

1

V

∫
d3X

∫
d3�x e−ip(x−y)ραβ(x0,x, y0,y) .

Since we are studying a system where expectation values are 
translationally invariant, the momentum space spectral function 
does not depend on the central coordinate X. We thus arrive at a 
compact expression for the spectral function in terms of the mode 
functions as

ραβ(x0, y0,p) = 1

V

∑
λ,q

〈
φ̃

u,α
λ,q (x0,p)

(
φ̃

u,γ
λ,q (y0,p)

)∗
(18)

+ φ̃
v,α
λ,q (x0,p)

(
φ̃

v,γ
λ,q (y0,p)

)∗〉
γ

γ β

0 ,

where φ̃λ,q(x0, p) = ∫
d3x φλ,q(x0, x)e−ip·x denotes the spatial 

Fourier transform of the wave-functions. We note that the wave 
functions φ̃λ,q(x0, p) depend on two momentum arguments: q
which is the wavenumber at the initial time t , and p which is 
3

the momentum where the wave function is evaluated. By choos-
ing the reference time for the mode function expansion in Eq. (5)
as t = y0, we can simplify the momentum structure of the spec-
tral function. The initial condition, Eqs. (7) and (8), corresponds 
to φ̃λ,q(t, p) ∝ δ(3)(p − q) in momentum space. This can be used 
to evaluate the sum over the momenta q, leading to an expres-
sion for the spectral that is particularly convenient for numerical 
evaluation

ραβ(x0, y0,p) (19)

= 1

V

∑
λ

〈
φ̃

u,α
λ,p (x0,p)u†,γ

λ (p) + φ̃
v,α
λ,−p(x0,p)v†,γ

λ (−p)
〉
γ

γ β

0 .

In general, the knowledge of the full set of 4Nc N3
s wave-

functions is required to construct the time evolution of the fermion 
field operator ψ̂(t′, x) according to Eq. (5). However, the spec-
tral function in Eq. (19) can be expressed in terms of the 4Nc

components of a single momentum mode φu/v
λ,p (t′, x). Since each 

momentum mode p can be computed completely independently, 
the calculation of the fermion spectral function is computation-
ally significantly less demanding than simulations including the 
backreaction of dynamical fermions. This makes it possible to use 
significantly larger lattices, leading to a better resolution of differ-
ent momentum scales.

Our algorithm to calculate the fermion spectral function can be 
summarized as follows:

1. Generate a configuration of lattice gauge links U and electric 
fields E , and evolve it by the classical Yang Mills equations 
(9), (10) up to the reference time t from which the spectral 
function is measured.

2. Select a subset of Nmodes momentum (p) modes, for which the 
spectral function is computed, and initialize the Nφ = 4Nc ×
Nmodes fermion wave-functions φu/v

λ,p (t) at the reference time t
according to Eqs. (7), (8).

3. Solve the Dirac equation in (11) for all Nφ modes along with 
the classical Yang Mills equations (9), (10) to compute the time 
evolution for t′ > t .

4. Calculate the spectral function ρ(t′, t, p) for the Nmodes mo-
menta p and t′ > t by projecting out the appropriate plane 
wave component according to Eq. (19).

This algorithm is completely analogous to the one for the gluon 
spectral function developed in [17,18]. One initializes a fluctuation 
in a specific momentum mode, evolves forward in time in coor-
dinate space, and projects back to the momentum state after the 
evolution. In the case of gluons, this projection involves a projec-
tion to the appropriate polarization state, while for fermions one 
uses the free spinors u, v to project out the appropriate helicity 
and positive and negative energy states.

Before we proceed with the calculation of fermion spectral 
functions based on the above algorithm, some further comments 
on the gauge dependence are in order. Evidently, the fermion spec-
tral function defined in Eq. (12) is a gauge dependent quantity, 
whose non-perturbative calculation requires the implementation of 
a suitable gauge fixing procedure. While the temporal axial gauge 
condition A0 = 0 is naturally implemented in the Hamiltonian 
lattice gauge theory formulation, this leaves the residual gauge 
freedom to perform time independent gauge transformations. We 
eliminate the residual gauge freedom by fixing Coulomb gauge 
∂ j A j(t, x) = 0 at the time t′ = t when the calculation of the spec-
tral function is initialized, i.e., between the first and the second 
step in the above algorithm. We note that this procedure is analo-
gous to the linear response framework employed in Refs. [36,17,18]
to extract the gluon spectral function, where similarly, one fixed 
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Coulomb gauge and subsequently studies the response of the gauge 
fields to plane wave perturbations in order to extract the spectral 
function.

2.3. Benchmark for free fermions

We first illustrate and check the method by calculating the 
spectral function for free fermions. This is achieved by setting the 
background gauge links U i(t′, x) = 1 and electric fields Ei(t′, y) =
0. The free fermion spectral function is simply given by [31]

ρfree(ω,p) = 2π sgn(ω)
(

pμγ μ + mp
)
δ(ω2 − E2

p) . (20)

In the lattice discretization the three-momentum part of the four-
momentum pμ in this expression must correspond to the dis-
cretization of the derivatives that we are using. Thus we have 
pμ = (ω, ̂p), where the effective quasi-particle momentum is

p̂i = −
∑

n

Cn

as
sin

(
n

2πni

Ns

)
, (21)

with the discrete lattice momentum mode index ni = 0, · · · , Ns −
1 [20]. The Wilson term generates an effective mass that makes 
the doubler modes more massive (and breaks chiral symmetry), so 
that

mp = m + 2rW

∑
i,n

nCn

as
sin2

(
n
πni

Ns

)
. (22)

In terms of the effective momentum p̂ and mass mp the energy 
of the single free fermion satisfies the usual relativistic dispersion 
relation Ep =

√
p̂2 + m2

p . It is convenient to express the spectral 
function in terms of particle and anti-particle excitations as

ρfree(ω,p) = 2π

2E p

(
�+(p) δ(ω − E p) + �−(−p) δ(ω + E p)

)
,

(23)

where �±(p) denote the usual projections of the Dirac compo-
nents2

�±(p) = γ 0 Ep − γ j p̂ j ± mp . (24)

The free spectral function ρfree(�t, p) in the time domain is then 
obtained as

ρfree(�t,p) = 1

2E p

(
�+(p)e−iE p�t + �−(−p)eiE p�t

)

= γ 0 cos(Ep�t) + i

(
γ j p̂ j

Ep
− mp

Ep

)
sin(Ep�t) . (25)

Comparing this to the general spinor decomposition of the 
spectral function in Eq. (13) we see that the only non-vanishing 
components are the scalar Imρfree

S = −mp
Ep

sin(Ep�t), the temporal 

part of the vector Reρ0,free
V = cos(Ep�t) and the spatial part of the 

vector spectral function Imρfree
V = − sin(Ep�t).

We show our numerical results for the free spectral function 
in Fig. 1, where we present the time evolution of the components 
ImρS , Reρ0

V and ImρV calculated on a 643 lattice with momentum 
asp = (0.098, 0.195, 0.29) and mass parameter mas = 0.003125
corresponding to nearly massless fermions. An excellent agreement 
between continuous lines, depicting the analytical expressions in 

2 Note that the particle and anti-particle projections are given by �+(p) =
1 ∑

λ uλ,p ūλ,p and �−(p) = 1 ∑
λ vλ,p v̄λ,p .
Nc Nc

4

Fig. 1. Components of the spectral function ρS , ρ0
V and ρV of free (Wilson) fermions 

for a fixed momentum asp = (0.098, 0.195, 0.29) as a function of �t . Solid curves 
correspond to the analytical results in (25).

Eq. (25), and points, corresponding to the numerical lattice data, is 
observed for all components,3 validating our procedure to calculate 
spectral functions.

3. Nonperturbatively computed spectral functions

We now turn to the investigation of quark spectral functions in 
a non-equilibrium plasma. We consider a highly occupied plasma 
of gluons, as described by the initial phase-space distribution of 
gluons

g2 f g(t = 0, p) = n0
Q

p
e
− p2

2Q 2 , (26)

with p = |p| and where n0/g2 � 1 is the initial occupancy and 
Q is the characteristic energy scale. Such initial conditions can 
be represented by a classical-statistical ensemble of fluctuating 
gauge fields, which we implement numerically as in Ref. [17]. Such 
overoccupied gluonic systems have been studied in several recent 
works [37–43,14,17]; they encounter a rapid memory loss about 
the details of the initial conditions, and subsequently experience 
a self-similar scaling behavior where the dynamics of the phase-
space distribution

g2 f g(t, p) = (Q t)α f s

(
(Q t)β p/Q )

)
, (27)

can be described in terms of a scaling function f s and univer-
sal scaling exponents α = −4/7, β = −1/7 [37–43,14]. Since the 
scaling behavior in Eq. (27) can be realized for a variety of dif-
ferent initial conditions [44,39,45,14,46], this non-thermal fixed 
point state represents a generic non-equilibrium state of a highly 
occupied plasma, and we will calculate the quark spectral func-
tion in this self-similar scaling regime. Here we will start from a 
moderate occupancy of n0 = 0.24 and first consider quark spec-
tral functions at a fixed reference time Q t = 1500, which is well 
within the self-similar regime. We will then investigate the Q t de-
pendence of the spectral functions. In the scaling solution the time 
dependence of the hard scale and screening scale is known, and 
the dependence of the fermion spectral function on the reference 
time Q t can be used to understand its structure in terms of these 

3 We have also checked that numerical results for the vanishing components van-
ish to machine precision of 10−16 for this test case.

4 We note that in order to allow for a direct comparison, our initial conditions 
and our choice for the extraction time Q t are the same as in Ref. [17], where the 
gluon spectral function was extracted.
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Fig. 2. The components of the spectral function ρ0
V and ρV as functions of �t ≥ 0.

microscopic scales of the gluon field configurations. Note that the 
dependence of the spectral function on the relative time t′ − t hap-
pens at a much shorter timescale ∼ 1/mg than the dependence of 
the universal cascade solution on Q t , which is a consequence of 
the self-similar dynamics. Thus measurements of the spectral func-
tion at different Q t effectively study different quasi-static systems 
characterized by different scale separations between the hard and 
soft scales. If not stated otherwise, our simulations are performed 
on Ns = 256 lattices for nearly massless fermions m = 0.003125 Q
with lattice spacing Q as = 0.75.

3.1. Spectral functions in relative time

Starting from the initial conditions in Eq. (26), we evolve the 
classical Yang-Mills simulations up to the time Q t = 1500, where 
we start the calculation of the quark spectral function. Based on 
the algorithm presented in Sec. 2, we then directly obtain the dif-
ferent components of the spectral function ρ(t + �t, t, p) in the 
time domain. Due to the underlying symmetries, and since we 
consider massless fermions, we will focus on the non-vanishing 
vector components Reρ0

V and ImρV of the spectral function.5 They 
are depicted in Fig. 2 for a range of momenta p/Q = 0, . . . , 0.21. 
Based on the results in Fig. 2 one observes that the spectral func-
tion in the time domain features a damped oscillatory behavior, 
with

Reρ0
V (t + �t, t, p) ≈ e−γ (t,p)�t cos(ω(t, p)�t) ,

ImρV (t + �t, t, p) ≈ −e−γ (t,p)�t sin(ω(t, p)�t) . (28)

Clearly, the main differences to the free spectral function discussed 
in Sec. 2.3 concern the finite damping rate γ (p) as well as the 
non-trivial dispersion relation ω(p), which is nonzero even at p =
0 due to the (non-)thermal mass induced by the medium.

5 Numerically, we find that the pseudoscalar, axial vector and tensor components, 
as well as Imρ0

V and ReρV , are suppressed by at least 2 orders of magnitude.
5

Fig. 3. The spectral function ρ+(t,ω, p) at Q t = 1500.

3.2. Spectral functions in the frequency domain

Next, in order to obtain the corresponding spectral functions in 
the frequency domain, we perform a Fourier transform with re-
spect to the time difference �t = t′ − t according to

ρ0
V (t,ω, p) = 2

∞∫
0

d�t cos(ω�t)Reρ0
V (t + �t, t, p) ,

ρV (t,ω, p) = −2i

∞∫
0

d�t sin(ω�t) ImρV (t + �t, t, p) ,

(29)

where we assumed that Reρ0
V (t + �t, t, p) and ImρV (t + �t, t, p)

are even / odd functions in �t for fixed reference time t . We 
note that in practice, the integrals in Eq. (29) are approximated 
with Q �tmax ∼ 400 − 500 for the upper integration limit. We use 
zero padding, which implies that we interpret the Fourier trans-
form as a usual integral with a continuous argument ω that we 
evaluate using standard integration techniques at more intermedi-
ate frequencies than provided by a discrete Fourier transform. We 
have checked that using a Hann windowing function in the Fourier 
transformation similarly to Ref. [18] did not change the results.

We provide a compact summary of our results in Fig. 3, where 
we present a three dimensional view of the behavior of the quark 
spectral function

ρ+(t,ω, p) = ρ0
V (t,ω, p) + ρV (t,ω, p) (30)

as a function of frequency ω and momentum p, noting that based 
on Eq. (29) the corresponding spectral function for anti-quarks 
ρ−(t, ω, p) = ρ0

V (t, ω, p) − ρV (t, ω, p) can be directly obtained 
as ρ−(t, ω, p) = ρ+(t, −ω, p). Starting from a symmetric spec-
tral function at zero spatial momentum p = 0, one observes that 
the spectral function becomes asymmetric along the frequency di-
rection for p > 0, with a dominant peak at a positive frequency 
ω+(p) and a rapidly decreasing peak at negative frequency ω−(p). 
While the positive frequency peak corresponds to the usual quasi-
particle excitation of a quark, the excitations at ω− are referred 
to as ‘antiquark holes’ or ‘plasminos’ and arise from collective ex-
citations, which emerge in thermal equilibrium [29,31] or in a 
non-equilibrium state as in this work.

3.3. Comparison to HTL perturbation theory

The properties of the gluon spectral function in the same field 
configurations that we are studying have been extensively com-
pared to HTL perturbation theory in Ref. [17]. We will here per-
form a similar comparison for the quark spectral function. The 
general structure of the HTL spectral function is given by
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Fig. 4. The spectral function ρ+ as a function of ω. The HTL predicted Landau damping part (green dashed) and a fit to the quasiparticle peaks (black dash-dotted) are shown 
separately, together with the HTL curve resulting from their sum as in (34) (blue continuous). As in all figures, error bars are shown for the data curves. They are computed 
as the standard error of the mean and are here of the order of the line width.
ρHTL+ (ω, p) = 2π β+(ω/p, p) (31)

+ 2π [Z+(p)δ(ω − ω+(p)) + Z−(p)δ(ω + ω−(p))] ,

where ω±(p) and Z±(p) denote the positions and residues of the 
quasi-particle and plasmino poles, while β+ describes the contri-
bution from the Landau cut. We provide the detailed expressions 
in App. A, noting that in HTL perturbation theory, these quanti-
ties are uniquely determined in terms of the momentum p and 
the quark screening mass m f . In leading order HTL perturbation 
theory this is given by

m2
f = C F

∫
d3 p

(2π)3

g2 f g(p)

p
, (32)

with C F = (N2
c − 1)/(2Nc). Within our numerical simulations we 

determine the quark screening mass from the relation m2
f =

C F

2Nc
m2

g . Here, following [17], the gluon asymptotic mass m2
g is ob-

tained from the self-consistent solution of

m2
g = 2Nc

(N2
c − 1)

∫
d3 p

(2π)3

g2 Tr
(〈

ET (p)E∗
T (p)

〉)
p2 + m2

g
, (33)

with the transverse field correlator ET (p)E∗
T (p) = (δi j − pi p j/p2)×

Ei(p)E∗
j (p). Once the mass parameter m2

f is determined, HTL per-
turbation theory gives us a prediction for the fermion spectral 
function without any further parameters.

In order to compare our results to HTL perturbation theory, we 
fit our numerical data to the following functional form

ρ
HTL+γ
+ (ω, p) = 2πβ+(ω/p, p) (34)
6

+ 2Z+(p)γ+(p)

(ω − ω+(p))2 + γ 2+(p)
+ 2Z−(p)γ−(p)

(ω + ω−(p))2 + γ 2−(p)
,

where ‘HTL+γ ’ refers to the HTL form supplemented with a finite 
width γ . While the leading order HTL spectral function (see Ap-
pendix A) features stable quasiparticles represented by delta peaks, 
this parametrization allows for a finite width of the peaks, which 
are taken to have a Lorentzian form. The free parameters in the fit 
are the locations of the quasiparticle peaks ω±(p), their residues 
Z±(p) and the widths γ±(p) for each value of the momentum p. 
The Landau cut contribution β+(ω/p, p) is taken to be the one 
from HTL perturbation theory (see Appendix A for the explicit 
functional form).

We demonstrate the quality of this fit, (henceforth denoted as 
‘HTL+γ ’ referring to Eq. (34)) in Fig. 4, where full fits are shown 
as blue continuous lines. The individual quasi-particle, plasmino 
and Landau damping contributions are also shown separately as 
black dash-dotted and green dashed lines. Overall, one observes an 
excellent agreement between our data and the HTL+γ fits. Small 
deviations occur only for p = 0, where the approximation of a 
width much smaller than the dispersion is not valid, and in the 
vicinity of ω � −p, where the Landau cut is smeared due to inter-
actions.

We use the HTL+γ fits to extract the dispersion relations 
ω±(p), residues Z±(p), and damping rates γ±(p) separately for 
each momentum p from our numerical lattice data, averaging over 
the direction p/p where available. Error bars are obtained as the 
sum of the fitting error and the standard error of the mean. The 
extracted values of ω±(p), Z±(p) and γ±(p) are shown in Fig. 5
as functions of momentum, together with the HTL predictions for 
ωHTL± (p) and Z HTL± (p) depicted as dashed or dotted lines. Beside the 
extracted values for Ns = 256, Q as = 0.75, we also show results 
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Fig. 5. Extracted values for the dispersion relations ω±(p), residues Z±(p), and 
damping rates γ±(p) using (34). Results from a smaller lattice with N = 64, Q as =
1 are shown for comparison. HTL predictions for ωHTL± (p) and Z HTL± (p) are added as 
gray dashed or dotted lines. The red arrows show the position of the fermion mass 
m f .

obtained with larger lattice spacing N = 64, Q as = 1, to indicate 
that, apart from possibly the width γ , the results are not very sen-
sitive to discretization artifacts.

We find that our results for the dispersion relations and 
residues agree remarkably well with the predictions from HTL per-
turbation theory, for which red arrows indicate the position of the 
fermion screening mass m f computed within HTL. Even the ex-
pected non-monotonic behavior of the ω−(p) dispersion is clearly 
visible in our data, and one also observes that, as expected from 
HTL, the plasmino excitation gets strongly suppressed for momenta 
p � m f .
7

Clearly, the most significant deviation from leading order HTL 
perturbation theory is the emergence of a finite decay width of 
quasi-particles and plasminos γ±(p) depicted in the lower panel 
of Fig. 5. While perturbative calculations of the fermion damp-
ing rate suffer from an infrared sensitivity to the soft gauge field 
propagator [29],6 our non-perturbative calculation can yield first 
principles insights into the magnitude and momentum dependence 
of the damping rate. Generally, we find that γ+(p) is smaller, but 
of comparable size to the quark screening mass m f . One also ob-
serves from Fig. 5 that the fermion damping rate γ+(p) decreases 
monotonically as a function of momentum, which is qualitatively 
different from gluonic spectral functions in non-equilibrium ove-
roccupied plasmas, where a monotonically increasing damping rate 
has been observed [17,18].

3.4. Time evolution

So far we have studied the behavior of the quark spectral func-
tion at a fixed reference time Q t = 1500, in the self-similar evolu-
tion of a highly occupied gluon plasma. By focusing on the behav-
ior of the quark spectral function at vanishing spatial momentum 
p = 0, we will now investigate the non-equilibrium evolution of 
the quark screening mass and damping rate, where at different 
evolution times Q t different separations of hard and soft scales 
in the system can be accessed [39,14,42,43].

We present our results for the zero momentum spectral func-
tion ρ+(t, ω, p=0) in the top panel of Fig. 6, where we show the 
frequency dependence of the spectral function at different times 
Q t = 245, 735, 1960. When plotting all dimensionful quantities in 
terms of Q , the qualitative features of the quark spectral function 
in Fig. 6a) still remains essentially the same at all times. By ex-
pressing all dimensionful scales in units of the mass mF (t), this 
statement can be made quantitative, as shown in Fig. 6b), where 
all curves fall on top of each other to good accuracy, indicating that 
m f (t) is the only relevant scale.

The time dependence of the fermion mass m f (t) ≡ ω±(t, p=0)

and damping rate γ (t, p=0) are depicted in Fig. 6c). We find 
that the time dependence of the effective quark mass exhibits an 
approximate m f (t)/Q ∝ (Q t)−1/7 scaling behavior, as can be ex-
pected by evaluating the perturbative expression in Eq. (32) for the 
self-similar scaling behavior of the gluon distribution in Eq. (27). 
Direct comparison of the perturbative expression in Eq. (32), which 
is shown in terms of a black dashed line in Fig. 6, indicates that 
the extracted value of m f (t) can be described rather accurately 
with deviations up to a � 10% level.

Similarly to the effective quark mass, the quark damping rate 
γ (t, p=0) also decreases as a function of time, as visible in 
Fig. 6c). More precisely, its time-evolution is approximately the 
same γ (t, p=0) ∼ m f (t) in the plotted time range. This is in con-
trast to perturbative HTL expectations [28,29], where the damping 
rate is expected to be proportional to the effective temperature 
that scales as γ HTL(t, p=0) ∝ g2T ∗(t) ∼ Q (Q t)−3/7 in the self-
similar regime. The latter would imply that the associated damping 
rate would decrease more rapidly in time than the thermal mass, 
resulting in increasingly sharp quasi-particle peaks at late times. 
Such behavior has indeed been observed for the gluon spectral 
function in Ref. [17]. In contrast, we find that due to the similar 
decrease of quark mass and damping rate, the spectral functions 

6 The analytical expression for γ (p=0) has been calculated in thermal equilib-
rium in Ref. [28]. However, this calculation does not directly give a precise estimate 
in the overoccupied regime. We are not aware of an extension of this calculation 
to our non-equilibrium system. It is interesting to note that in thermal equilibrium 
the gluon [47] and fermion [28] damping rates are similar in magnitude whereas 
for our system the quark damping rate is an order of magnitude larger than the 
gluon damping rate extracted in Ref. [17].
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Fig. 6. Spectral function ρ+ = ρ0
V at p = 0 for different times as a function of 

frequency, with all dimensionful quantities rescaled a) by Q and b) by mF (t). c)
Evolution of the mass mF (t) and width γ (t, p=0) for the zero mode p = 0 as func-
tion of time Q t , shown on a log-log scale. Open circles / crosses correspond to 
extractions in the frequency / time domain using Eq. (34) / Eq. (28), respectively, 
which are in excellent agreement with each other. The black dot-dashed line shows 
the HTL fermion mass using Eq. (32).

in Fig. 6b) do not experience a significant sharpening of the quasi-
particle peaks over the course of the evolution, contrary to the 
perturbative expectation.

4. Conclusions and outlook

In this work, we have presented a novel method to perform 
non-perturbative real time calculations of fermion spectral func-
tions in highly occupied plasmas. Based on a classical-statistical 
description of bosonic quantum fields, the fermion spectral func-
tion can be calculated by solving linearized evolution equations for 
fermions in the background of dynamical bosonic fields. Since only 
an individual momentum mode needs to be simulated at the same 
time, obtaining the spectral function is comutationally much less 
demanding than a full simulation of the fermion sector [19,20].

Based on this approach, we studied the behavior of the quark 
spectral function in the vicinity of a so-called non-thermal fixed 
point where the non-equilibrium plasma exhibits a self-similar 
scaling behavior. We observe Landau damping and clear quasi-
particle peaks for which we extracted dispersion relations, decay 
widths and residues as function of the momentum. Generally the 
dispersion relation and residues are well reproduced by leading or-
der HTL perturbation theory, with a single parameter – the quark 
screening mass m f – which we extract consistently within the 
HTL framework. Beyond the familiar structures of leading order 
HTL perturbation theory, we find that the non-perturbative spec-
tral functions also exhibit a finite decay width γ +(t, p), and we 
extracted its time and momentum dependence from our simu-
lations. Unexpectedly, the damping rate of the zero momentum 
8

γ +(t, p=0) decreases much slower than in HTL perturbation the-
ory and remains of the same order as the mass γ +(t, p=0) ∼
m f (t), a feature that has been observed also in lower dimensional 
gluon spectral functions [18].

Beyond the results presented in this paper, the methodology 
to perform non-perturbative calculations of fermion spectral func-
tions provides an interesting new tool to benchmark and perhaps 
improve perturbative calculations in the presence of strong gauge 
or scalar fields. Some possible extensions could include, e.g., the 
analysis of quark spectral functions in an expanding QCD plasma, 
or the investigation of the behavior of highly-energetic or heavy-
flavor quarks, which we intend to pursue in the future.
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Appendix A. Spectral functions in HTL perturbation theory

We recall here the results of perturbative calculations in the 
HTL framework that serve as a point of reference for interpret-
ing our numerical results. We consider here the fermionic spec-
tral function as computed within the hard-loop (HTL) framework 
at leading order. The fermionic HTL self-energy � is known (see 
[48,31], and [30,49] in the case of a more general non-thermal 
state) and reads

�(ω,p) = m2
f

∫
d�

4π

γ μ K̂μ

P · K̂
(A.1)

with K̂ = (1, k/k), P = (ω + iε, p) and metric signature (1, −1). 
The fermion mass m f is given by

m2
f = (d − 1) g2C F

4

∫
dd p

(2π)d

2 f g(p) + N f ( fq(p) + f̄q(p))

p
(A.2)

with C F = (N2
c − 1)/(2Nc), N f fermionic fields with distributions 

fq(p) (and f̄q(p)) for particles (anti-particles) and the distribution 
function of gauge fields f g(p). We are here working in the limit 
f g � 1, where the fermionic contributions can be neglected and 
we can connect the formula to the asymptotic mass of gluons as
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m2
f = (d − 1) g2C F

2

∫
dd p

(2π)d

1

p
f g(p)

= C F

2Nc
m2

g . (A.3)

After evaluating the angular integration in Eq. (A.1), the dressed 
propagator can be written as

i S−1(ω,p) = pμγ μ − �(ω,p)

= A0(ω, p)γ 0 − AV (ω, p)
p j

p
γ j , (A.4)

with functions

A0(ω, p) = ω − m2
f

p
Q 0(x)

AV (ω, p) = p + m2
f

p
(1 − xQ 0(x)) , (A.5)

for x = ω/p and the Legendre function

Q 0(x) = 1

2
ln

(
x + 1

x − 1

)

= 1

2
ln

∣∣∣∣ x + 1

x − 1

∣∣∣∣ − iπ

2
θ(1 − x2) . (A.6)

The HTL propagator can be brought into the form

S(ω,p) = 1

2E p
(�+(p)�+(ω, p) + �−(−p)�−(ω, p)) , (A.7)

with the propagators

�±(ω, p) = (A0(ω, p) ∓ AV (ω, p))−1

=
(
ω ∓ p − m2

f

2p

[(
1 ∓ ω

p

)
ln

ω + p

ω − p
± 2

])−1

. (A.8)

This can be checked explicitly by multiplying i S−1(ω, p) ×
(−i S(ω, p)) = 1 using (A.4) and (A.7). It is important to note that 
�±(ω, p) are related by symmetry as

Re�±(ω, p) = −Re �∓(−ω, p)

Im �±(ω, p) = Im �∓(−ω, p). (A.9)

Therefore, it is sufficient to restrict oneself to only �+(ω, p) since 
it already contains all the relevant information, or, alternatively, to 
consider both �± but to restrict the frequency domain to positive 
values. In this paper we follow the former strategy, and only con-
sider the particle components, but including both signs of ω. Thus 
we define the dispersion relations ω±(p) as the poles of �+(ω, p)

at ω = ω+(p) for ω > 0 and ω = −ω−(p) for ω > 0, i.e., by solv-
ing A0 + AV = 0 for both signs of the frequency. The symmetries 
imply that �− will have a pole at ω = −ω+ and another one 
at ω = ω− . Note that the quasiparticle at ω+ corresponds to a 
particle-like state with positive helicity over chirality ratio χ = +1
since it is the positive frequency pole of the function �+ multi-
plying the operator �+(p) ≈ γ 0 p + γ j p j , where we neglected a 
possible mass m. Likewise, the quasiparticle at ω− is associated 
to an antiparticle-like ratio χ = −1 due to its multiplication with 
�−(−p).

To discuss the excitation spectrum in more detail, we com-
pute the spectral function as the imaginary part of the propagators 
�±(ω, p) as
9

ρ±(ω, p) = − 2 Im �±(ω, p)

=2π [Z±(p)δ(ω − ω±(p)) + Z∓(p)δ(ω + ω∓(p))]

+ 2π β±(ω/p, p). (A.10)

As commonly done, we distinguish here quasiparticle excitations 
that correspond to the delta-function peaks and a Landau damping 
part β± for p > 0 given by

β±(x, p)

= m2
f

2p
(1 ∓ x)θ(1 − x2)

[(
p(1 ∓ x) ± m2

f

2p
[(1 ∓ x)

× ln

∣∣∣∣ x + 1

x − 1

∣∣∣∣ ± 2

])2

+ π2m4
f

4p2
(1 ∓ x)2

]−1

. (A.11)

This region only exists at low frequencies |ω| < p and vanishes at 
p = 0 identically, as can be seen in (A.8) since

�±(ω, p=0) = ω

ω2 − m2
f

(A.12)

is real-valued with poles at ω±(p=0) = m f and residues
Z±(p=0) = 1/2. For p = 0 the HTL retarded propagator has there-
fore the simple form S(ω, p=0) = γ 0ω/(ω2 − m2

f ).
For general momenta, the dispersion relations cannot be solved 

analytically. For small momenta p � m f they read

ω±(p) � m f ± 1

3
p (A.13)

and for large momenta p � m f

ω+(p) � p + m2
l

2p
(A.14)

ω−(p) � p + 2p

e
exp

(
−2p2

m2
f

)
, (A.15)

where we have used the definition ml = √
2m f of the asymptotic 

fermion mass. In fact, the expression for ω+(p) at large momenta 
can be interpreted as a large p expansion of the relativistic disper-

sion relation ω+(p) �
√

m2
l + p2.

The quasiparticle residues are given by

Z±(p) = ω2±(p) − p2

2m2
f

. (A.16)

For low momenta p � m f , this leads to

Z±(p) � 1

2
± p

3m f
(A.17)

and for large momenta p � m f to

Z+(p) � 1 − m2
f

2p2

(
log

(
2p2

m2
f

)
− 1

)
(A.18)

Z−(p) � 2p2

m2
f

exp

(
−2p2

m2
f

− 1

)
. (A.19)

From canonical anticommutation relations, one obtains the impor-
tant sum rule



K. Boguslavski, T. Lappi, M. Mace et al. Physics Letters B 827 (2022) 136963
1 =
∞∫

−∞

dω

2π
ρ±(ω, p)

= Z+(p) + Z−(p) +
1∫

−1

dxβ±(x, p) , (A.20)

which is satisfied by the HTL spectral functions identically. Since 
β± ≥ 0 and Z± > 0, the residues are bound by unity from above. 
Numerically, the HTL result gives 0.8 ≤ Z+(p) + Z−(p) ≤ 1 for all 
momenta [31], implying that quasiparticle excitations always pro-
vide the dominant contributions to the spectral function. At low 
momenta p � m f both quasiparticle excitations have nearly equal 
residues around 1/2. At high momenta p � m f the residue of the 
plasmino Z−(p) falls off exponentially while the fermion with pos-
itive chirality survives with Z+(p) ≈ 1.
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