
Efficient problem solving based
on datalog transformations

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Informatik

eingereicht von

Christoph Singewald
Matrikelnummer 9619059

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ.Prof. Dr. Reinhard Pichler
Mitwirkung: Univ.Ass. Dipl.-Ing. Michael Jakl

Wien, 03.11. 2008
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Christoph Singewald

Pyrkergase 4a/14

1190 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich

die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich

die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die

anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen

sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht

habe.

Wien, 3. November 2008

1

Kurzfassung

Viele interessante algorithmische Probleme in der Computerwissenschaft können

im Allgmeinen nur mit hohem Aufwand auf einer Rechenmaschine gelöst wer-

den. In diesem Zusammenhang sind in den letzten Jahren parametrisierbare

Probleme immer wichtiger geworden. Es konnte gezeigt werden, dass viele harte

Probleme effizient lösbar werden, wenn ein Parameter durch eine Konstante be-

grenzt ist. Besitzt ein Problem diese Eigenschaft, bezeichnet man es als fixed-

parameter-lösbar (engl. fixed-parameter tractable). Bei Problemen aus dem

Bereich der Graphentheorie ist die Baumweite (engl. treewidth) ein solcher Pa-

rameter. Aufgrund des Courcelle’schen Theorems wissen wir, dass sämtliche

Grapheigenschaften, die sich mittels Monadic Second Order Logic (MSO) aus-

drücken lassen, auf Graphen mit beschränkter Baumweite effizient entscheidbar

sind. Gottlob et al. haben vor kurzem Monadisches Datalog (jedes Prädikat ist

einstellig) über Strukturen mit beschränkter Baumweite als Alternative zu (MSO)

vorgeschlagen. Dieser Ansatz sieht theoretisch vielversprechend aus. Eine prak-

tische Evaluierung war aber bislang ausständig. Das Ziel dieser Diplomarbeit

war es, den Monadischen Datalog Ansatz zu implementieren und mittels Tests

zu evaluieren.

Im Rahmen dieser Diplomarbeit wurde der Prozess zur allgemeinen Verar-

beitung - vom zugrunde liegenden Problem unabhängig - dieser Datalogregeln

implementiert. Am Beispiel des Programms SAT wurde die automatische Trans-

formation von Monadischem Datalog in ”normales” Datalog für die verwende-

ten Datalog Interpreter (DLV, DLV Complex und DLV Complex mit externem

Prädikat) durchgeführt und die Applikation mit unterschiedlichen Parametern

ausführlich getestet. Als Ergebnis konnte gezeigt werden, dass dieser Ansatz ein

großes Potential hat und mit Hilfe von allgemeinen Datalog Interpretern real-

isiert werden kann. Zudem hat sich herausgestellt, dass dieses Thema noch viel

Potential zur Verbesserung bietet.

2

Abstract

Many interesting algorithmic problems in computer science are well known to be

intractable and solvable only with high computational effort. In the recent years

parameterized complexity as a new paradigm came up and is getting more and

more important. It has turned out that many hard (intractable) problems be-

come tractable if some problem parameter is fixed or bounded by a fixed constant.

Problems having such a property are called fixed-parameter tractable (FPT). In

case of graph problems the treewidth of a graph is such a constant parameter. By

Courcelle’s Theorem, we know that all graph properties expressible in Monadic

Second Order Logic (MSO) can be efficiently decided on graphs with bounded

treewidth. Gottlob et al. have recently proposed monadic datalog (i.e., all in-

tensional predicates are unary) over structures with bounded treewidth as an

alternative to Monadic Second Order Logic (MSO). This approach looks theoret-

ically very promising. However, a practical evaluation has been missing so far.

The goal of this diploma thesis was to implement the monadic datalog approach

and to evaluate it by means of testing.

In this thesis we implement an evaluation process for datalog rules abstracted

from the underlying problem. Using the example of the program SAT we imple-

mented the automatic transformation from monadic datalog to ”normal” datalog

for the used datalog engine (DLV, DLV Complex and DLV Complex with exter-

nal predicate) and tested our application with various parameters. As a result

we could show that this approach is feasible, has (a lot of) potential and can be

implemented using a generic datalog system. Further more we discovered that

there is room for further improvements.

3

Dedication

I dedicate this master thesis to my daughter, Lena, who had to do without me a

lot of time during my studies.

4

Acknowledgements

I would like to thank my supervisor, Prof. Reinhard Pichler, for providing an

interesting, relevant and useful topic for this master thesis, for many constructive

critical comments, for all the support and for showing so much patience reviewing

this thesis. I would also like to thank Dr. Nysret Musliu, Dr. Fang Wei and Dipl.-

Ing. Michael Jakl for their helpful comments and suggestions during the work on

the practical part of this thesis. And finally, I am grateful to my mother and my

family for their support throughout the years.

This master thesis was supported by the Austrian Science Fund (FWF), project

P20704-N18.

5

Abbreviations

CNF conjunctive normal form

DLV disjunctive logic programming system

DLV-C disjunctive logic programming system complex

EDB extensional database

FOL first order logic

IDB intensional database

MSO monadic second order logic

SAT satisfiability problem

SQL structured query language

tw treewidth

6

List of Figures

2.1 Tree decomposition of formula F 16

2.2 Normalized tree decomposition of formula F 18

3.1 Transformation chain . 29

3.2 Primal graph of the formula F in Example 2.2.1 30

4.1 Implementation overview . 40

4.2 Architecture of the transformation module 41

4.3 Data structures of the application Dattrans 45

4.4 Hypergraph of Example 2.2.1 . 46

4.5 Tree decomposition of the hypergraph of Example 2.2.1 47

4.6 Class HypertreeNormalization . 47

4.7 Normalized tree decomposition of the hypergraph of Example 2.2.1 48

5.1 Results for DLV with treewidth 3 53

5.2 Results for DLV with treewidth 4 54

5.3 Results for DLV with treewidth 5 55

5.4 Results for DLV Complex with treewidth 3 56

5.5 Results for DLV Complex with treewidth 4 56

5.6 Results for DLV Complex with treewidth 5 57

5.7 Results for DLV Complex with ext. true with treewidth 3 58

5.8 Results for DLV Complex with ext. true with treewidth 4 59

5.9 Results for DLV Complex with ext. true with treewidth 5 59

7

List of Listings

3.1 Program SAT . 23

3.2 datalog tree representation of tree decomposition in Figure 2.2 . . 24

3.3 DLV command-line used in this work 27

3.4 Save program needing upper bounds 27

3.5 DLV-C command-line used in this work 28

3.6 Program SAT . 31

3.7 The InterpolateChild1 algorithm 33

3.8 The InterpolateChild2 algorithm 34

3.9 SAT program’s rule for the leaf node 35

3.10 Set operations for DLV . 36

3.11 Definition of diffel for DLV . 36

3.12 Leave rule for DLV Complex with external predicate 38

4.1 DIMACS graph format for satisfiability problems for Example 2.2.1 43

8

Contents

1 Introduction 11

1.1 Summary of results . 12
1.2 Organization . 12

2 Preliminaries 13

2.1 Finite structures and graphs . 13
2.2 The SAT Problem . 14
2.3 Tree decomposition . 15
2.4 Normalization . 16
2.5 Monadic Second Order Logic . 17
2.6 Datalog . 19
2.7 Monadic Datalog . 19

3 Evaluation and transformation 21

3.1 Monadic datalog program deciding SAT 21
3.2 Datalog tree representation . 22
3.3 Evaluation . 25

3.3.1 Disjunctive logic programming system DLV 25
3.3.2 Extension DLV Complex 27

3.4 Transformation . 28
3.4.1 Overview . 29
3.4.2 Reading the input and creating the data structures 30
3.4.3 Tree decomposition and normalization 32
3.4.4 Creating the datalog representation 32
3.4.5 Converting set variables 35
3.4.6 Additional steps for DLV 36
3.4.7 Additional steps for DLV Complex 37
3.4.8 Additional steps for DLV Complex with external predicate 37
3.4.9 Summary . 38

4 Implementation 39

4.1 Overview . 39
4.2 The preprocessor Dattrans . 40
4.3 Input . 41

4.3.1 DIMACS . 42
4.3.2 Monadic datalog parser . 43

4.4 Data structures . 44

9

4.5 Hypertree library . 44
4.6 Normalization . 47
4.7 Converting the datalog rules . 48
4.8 External predicate ”true” . 49

5 System test and experimental results 51

5.1 Testing . 51
5.2 Experimental Results . 52
5.3 Summary and evaluation of results 53

6 Conclusion 61

6.1 Future Work . 61

A Datalog programs 65

A.1 DLV . 65
A.2 DLV Complex . 67
A.3 DLV Complex with external predicate 70

B Parsers 72

B.1 Flex - scanner.l . 72
B.2 Bison - parser.y . 75

C Gnuplot 80

10

Chapter 1

Introduction

Many problems (e.g. in AI and operations research) are well known to be in-

tractable. In the recent years parameterized complexity as a new paradigm came

up and is getting more and more important. It has turned out that hard (in-

tractable) problems can be solved efficiently with this approach, if some problem

parameter is fixed or bounded by a fixed constant. Problems having such a prop-

erty are called fixed-parameter tractable (FPT). Considering the class of graph

problems such a parameter can be the treewidth of a graph, which can be ob-

tained from the tree decomposition of the graph. More generally the treewidth of

arbitrary finite structures can be such a parameter. One of the famous and pow-

erful methods to derive fixed-parameter tractable problems is Courcelles theorem

[7], which says that any property of finite structures, which is expressible by an

MSO sentence, can be decided in linear time (data complexity) if the structures

have bounded treewidth.

In [15] was proposed to express the MSO with datalog over finite structures.

This approach leads to monadic datalog. It was proven that if some property

of a finite structure is expressible in MSO, then this property can also be ex-

pressed by means of a monadic datalog program over this structure plus the tree

decomposition.

An interesting question, studied in this thesis, is how we may generalize the

evaluation process of the monadic datalog rules to abstract it from the underlying

problem. The fastest way to evaluate the datalog rules is to implement the

evaluation process using an imperative programming language (e.g. C++), but

this approach covers too many problem specific parameters and structures in the

program code. The goal should be a separation of the underlying problem and

the evaluation process, to allow replacing the underlying problem with another

one.

In this thesis we examine a flexible implementation for the transformation

11

from the monadic datalog program as proposed in [15] to the datalog language

for the Disjunctive Datalog System (also called DLV) without set semantics and

for an extension of DLV called DLV Complex with set semantics (for DLV and

DLV-C see [17]).

This whole translation process consists of the following parts:

1. Parsing the CNF formula and the monadic datalog program

2. Compute the tree decomposition

3. Normalize the tree decomposition

4. Generate and translate the internal predicates

5. Solve translated datalog program with DLV or DLV-C

1.1 Summary of results

Using the example of the program SAT we implemented the automatic transfor-

mation from monadic datalog to ”normal” datalog for the used datalog engine

(DLV, DLV Complex and DLV Complex with external predicate) and tested our

application with various parameters. As a result we could show that this promis-

ing approach is feasible and can be implemented using a generic datalog system.

Further more we discovered that there is room for further improvements.

1.2 Organization

The thesis is organized as follows. We start with Chapter 2 providing some

basic notions. Chapter 3 describes the datalog algorithm and the transformation

process. We use transformation and translation synonymously. In Chapter 4

we describe the implementation of the process and in Chapter 5 we present the

experimental results. We conclude with Chapter 6.

12

Chapter 2

Preliminaries

In this chapter we give basic definitions and preliminary results. In general this

work follows [15] and [14].

2.1 Finite structures and graphs

The finite model theory is an area of the mathematical logic. Basic concepts in

this field are e.g. finite graphs, databases etc. Many of the problems of complexity

theory and database theory can be formulated as problems of mathematical logic

limited to finite structures.

Definition 2.1.1 Let τ = {R1, .., RK} be a set of predicate symbols. A finite

structure A over τ (short τ -structure) is given by a finite domain A = dom(A)

and relations RA
i ⊆ Aα, where α denotes the arity of Ri ∈ τ

Typical examples of structures are finite graphs where the binary symbol E

denotes the edge-relation of the graph. We assume basic knowledge in graph

theory, but we give a little overview of the terminology that is used in this thesis.

Further information can be found e.g. in [16].

Definition 2.1.2 An undirected graph G is a pair (V, E) where V is a set of

vertices, and E is a set of edges. Each edge e ∈ E is an unordered pair (v1, v2)

with v1, v2 ∈ V . Two vertices are connected in a graph G if there is a path between

them. A graph G is connected if every pair of vertices of G is connected. A graph

with a finite number of nodes and edges is called finite graph.

Definition 2.1.3 A forest is an undirected cycle free graph. A connected forest

is a tree. A rooted tree is a tree in which one of the vertices is distinguished from

the others. This distinguished vertex is called the root of the tree.

13

In this thesis we assume that all graphs are undirected. We also assume that

the children of a node v in a tree T are in some fixed order, for example child1(v)

denotes the first, child2(v) denotes the second and childn(v) denotes the child n

of node v in tree T .

2.2 The SAT Problem

In this section we want to recall the widely (well) known satisfiability problem,

also called SAT problem, which is one of the most famous NP-complete [6] prob-

lems. We provide a running example to which is referred to in further sections.

Definition 2.2.1 Let F = (x1, x2, ..., xn) be a boolean formula built up from

propositional variables x1, ..., xn and the logical connectives ∨ , ∧ and ¬. An

interpretation of F is simply a subset of V ar(F) with the intended meaning that

variables in X evaluate to true, while all other variables evaluate to false. If

F evaluates to true in X, then X is called a model of F , written as X |= F .

Likewise, we write F1 |= F2 if every model of F1 is also a model of F2.

Example 2.2.1 An example formula in CNF notation

F = (x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x4 ∨ x5) ∧ (x3 ∨ x4 ∨ x6).

Example 2.2.2 A possible model of Example 2.2.1

T = {x1 = true, x2 = false, x3 = true, x4 = false, x5 = false, x6 = true}

A propositional formula in CNF can be represented as a finite structure over

the alphabet τ = {cl(.), var(.), pos(., .), neg(., .)}, where cl(c) means that c is a

clause, var(x) means that x is a variable, pos(x, c) means that x occurs positive

in c and neg(x, c) means that x occurs negative in c.

Example 2.2.3 Ground atoms of the structure S representing formula F in Ex-

ample 2.2.1

S = {cl(c1), cl(c2), cl(c3),

var(x1), var(x2), var(x3), var(x4), var(x5), var(x6),

pos(c1, x1), pos(c1, x2), pos(c1, x3),

neg(c2, x2), neg(c2, x4), pos(c2, x5),

pos(c3, x3), pos(c3, x4), pos(c3, x6)}

14

2.3 Tree decomposition

In this section we give a brief overview on tree decomposition and treewidth. For

further reading visit [2],[4],[18]. The concept of the tree decomposition has been

first introduced by Robertson and Seymour in [19].

Definition 2.3.1 A tree decomposition T of a τ -structure A is defined as a pair

〈T, (At)t∈T 〉 where T is a tree and each At is a subset of A with the following

properties:

1. Every a ∈ A is contained in some At.

2. For every Ri ∈ τ and every tuple (a1, ...aα) ∈ RA
i , there exists some node

t ∈ T with {a1, ..., aα} ⊆ At.

3. For every a ∈ A, the set {t|a ∈ At} induces a subtree of T .

The third condition is usually referred to as connectedness condition. The

sets At are called bags of T . The width w of a tree decomposition 〈T, (At)t∈T 〉 is

defined as max{|At||t ∈ T} − 1. The treewidth of A is the minimal width of all

tree decompositions of A and is denoted as tw(A). Trees and forests are precisely

the structures with treewidth 1.

An alternative definition of a tree decomposition based on graphs is provided

in [18].

Definition 2.3.2 A tree decomposition of a graph G = (V, E) is a pair (T, χ),

where T = (I, F) is a tree with node set I and edge set F , and χ = {χi : i ∈ I}

is a family of subsets of V , one for each node of T , such that

1.
⋃

i∈I χi = V .

2. For every edge (v, w) ∈ E, there is an i ∈ I with v, w ∈ χi.

3. For all i, j, k ∈ I, if j is on the path from i to k in T , then χi ∩ χk ⊆ χj.

According to Definition 2.3.2, the width w of a tree decomposition is maxi∈I |χi|−

1. The treewidth of a graph G, denoted by tw(G), is the minimum width over

all possible tree decompositions of G.

The following proposition was shown in [12]: Let be G the primal graph of the

τ -structure representing the CNF formula, then the treewidth of the τ -structure

(Definition 2.3.1) is equal to the treewidth of graph G (Definition 2.3.2).

15

For a given w ≥ 1, it can be decided in linear time if some structure (e.g. a

graph) has a treewidth ≤ w and in case of a positive answer, a tree decomposition

of width w can be computed in linear time [3].

If a set of finite structures have a tree decomposition with a bounded treewidth

by some bounded constant k, then many hard (intractable) problems can be

solved efficiently. This is the reason why the treewidth is such an important

parameter. Let G be a graph containing a cycle, then the minimal treewidth is

2, otherwise it must be a tree or a forest with tw = 1. As we show in section 2.4

a given tree decomposition can easily be translated into a binary rooted tree.

Figure 2.1: Tree decomposition of formula F

2.4 Normalization

In [15] following normal form of a tree decomposition is proposed and it was

shown that any tree decomposition can be normalized in linear time.

Definition 2.4.1 Normal form of a tree decomposition

1. The bags are considered as tuples of w+1 pairwise distinct values (a0, ..., aw)

rather then sets.

2. Every internal node t ∈ T has either one or two children.

3. If a node t with a bag (a0, ..., aw) has one child node, then the bag of the

child is either obtained via a permutation of (a0, ..., aw) or by replacing a0

with another element a′
0. We call such a node t a permutation node or an

element replacement node, respectively.

4. If a node t has two child nodes then these child nodes have identical bags as

t, which is called branch node.

The permutation node can be replaced with two other nodes called element

introduction and removal node. In this case the internal bags can not consist of a

constant number of values (a0, ..., ak). This leads to following equivalent normal

form:

16

Definition 2.4.2 Normal form of a tree decomposition

1. The bags consist of pairwise distinct values (a0, ..., ak) with k = w or k =

w − 1.

2. Every internal node t ∈ T has either one or two children.

3. If an internal node t has one child node t′, then the bag At is obtained from

the bag At′ by either removing one element or introducing a new element.

4. If a node t has two child nodes then these child nodes have identical bags as

t, which is called branch node.

Let 〈T, (At)t∈T 〉 an arbitrary tree decomposition then a normalized tree de-

composition 〈T ′, (A′
t)t∈T 〉 can be obtained by processing following steps.

1. Padding: All bags can be padded to the size of w + 1 by adding elements

from the neighbor nodes.

2. Binary split: If some node s has k + 2 children it is a standard technique

to insert copies of s to turn the tree into a binary shape.

3. Insert copy-node: Suppose some node s having two children t1 and t2 where

the bags of t1, t2 are not identical then insert a copy of s between s and

t1 and s and t2. On every node s with two children there should be no

difference between the children and s now.

4. Interpolate children: Between a parent node s and its child s′ should only

be a difference of one element. Let node s be the parent of node s′ and let

k = As \ As′ with k > 1, then interpolate such that there are new nodes

s1, ..sk − 1 between s and s′ and sk − 1 is the new parent of s′.

2.5 Monadic Second Order Logic

Monadic Second Order Logic (also called MSO) extends the First Order Logic

(also FOL) by the use of set variables, which range over subsets of domain ele-

ments. The identifiers of the set variables are usually denoted with upper case

letters.

Syntactically new atomic formulas x ∈ X are introduced, which means that

x is a member of X. Uppercase letters will denote set variables and lowercase

letters will denote first-order variables.

17

Figure 2.2: Normalized tree decomposition of formula F

Definition 2.5.1 SAT Problem expressed as MSO formula (see [8], [14])

(∃X)(∀c)(cl(c)→ (∃z)[(pos(z, c) ∨ z ∈ X) ∧ (neg(z, c) ∨ z /∈ X)])

Courcelle [7] has given a large class of graph properties, namely the class of

properties that are definable in Monadic Second Order Logic or MSO for graphs.

We define some of them used in this thesis.

MSO for graphs G = (V, E) consists of a language in which predicates can be

built with

1. the logic connectives ∨,∧,⇒ and ⇔ (with their usual meanings),

2. quantifiers ∃, ∀,

3. the following binary relations:

(a) the binary relation x ∈ A, which means that x is a member of A;

(b) e(x, y) which means e ∈ E is an edge from x to y with x, y ∈ V ;

(c) equality for variables.

The importance of MSO is motivated by the following theorem taken from [7].

Theorem 2.5.1 Let φ be a fixed MSO sentence and let k be a fixed constant.

Deciding whether φ holds for an input graph G (more generally, for an input

structure A) can be done in linear time if the treewidth of the graphs (resp. of

the structures) under consideration is bounded by k.

18

2.6 Datalog

This section covers a brief description of datalog, for more information see [20].

Datalog is a collection of rules, which are sets of Horn clauses with following form

Head← Body.

The head is an atom, which is a predicate applied with arguments, and the body

is a set of atoms.

pred(h1, ..., hn)← pred1(b1, ..., bn), ..., predr(b1, ..., bn).

The heads of rules having a body are called intensional database (IDB) and

the heads of rules without a body (also facts) are called extensional database

(EDB). Atoms occurring in the body of rules may be EDB or IDB predicates,

they are also called subgoals. Informal meaning of a rule is, the head with its

arguments is true whenever there exists a value for any local variable that makes

the subgoals true.

Datalog programs are function-free logic programs. All evaluation algorithms

of a datalog program P result in a fix-point calculation. We are interested in

the minimal model semantics (see [20]) and in datalog over τ -structures (see

[15]), especially graphs. Given a structure S and a datalog program P then the

structure provides additional EDB predicates so that the evaluation is a fix-point

calculation over P ∪ S.

As mentioned in [9] combined complexity of datalog is EXPTIME complete,

but some fragments can be evaluated much more efficiently.

1. Propositional datalog (no rule contains a variable that has to be grounded)

can be evaluated in linear time.

2. The guarded fragment of datalog (all variables of rule r occur in an EDB

atom in the body of r) can be evaluated in O(|P | × |S|).

3. Monadic datalog (described in section 2.7) is NP-complete in combined

complexity.

2.7 Monadic Datalog

Monadic datalog is a subset of datalog, where every intensional predicate is unary

(see [13]). In this work we are primarily interested in monadic datalog over finite

structures with bounded treewidth. We extend the set of predicate symbols τp of

the monadic datalog program P with

19

τext = τp ∪ {root, leaf, child1, child2, bag}

The unary predicate root(v) denotes the root node of the tree while the pred-

icate leaf(v) denotes the leafs. Because of the normalized tree every node has at

most two child nodes thus we have the binary predicates child1, child2 to indicate

the child parent relations. For instance child1(v1, v) indicates that node v1 is the

first or the only child of node v and child2(v2, v) denotes that v2 is the second

child of the node v. The predicate bag(t, x0, ..., xn) has the arity of n +2 < w +2

where w ≥ 1 denotes the treewidth of the decomposed tree.

Definition 2.7.1 Let τ be a set of predicate symbols and let w ≥ 1. A monadic

datalog program over τ -structures with treewidth w is a set of datalog rules where

all extensional predicates are from τext and all intensional predicates are unary.

As in Section 2.6 mentioned, the evaluation of monadic datalog is NP-complete

(combined complexity). The evaluation of the restricted fragment of datalog

called ”quasi-guarded” is tractable, which is shown in [15].

Definition 2.7.2 Let B be an atom and y a variable in some rule r. We call

y ”functionally dependent” on B if in every ground instantiation r′ of r, the

value of y is uniquely determined by the value of B. We call a datalog program

P ”quasi-guarded” if every rule r contains an extensional atom B, s.t. every

variable occurring in r either occurs in B or is functionally dependent on B.

An important theorem for this work is proved in [15].

Theorem 2.7.1 Let τ an w ≥ 1 be arbitrary but fixed. Every MSO-definable

unary query over τ -structures of a treewidth w is also definable in the quasi-

guarded fragment of monadic datalog over τext.

Depending on the implementation additional internal predicates for set oper-

ations are necessary. For this the set of predicate symbols τext will be extended

again with

τiext = τext ∪ {union, intersect, diffel}

where union(X, A, B) and intersect(X, A, B) representing the union respectively

intersection of A and B. The predicate diffel(A, B, el) with the sets A and B

(with B ⊂ A, el /∈ B) is true iff A = B ∪ {el}.

20

Chapter 3

Evaluation and transformation

In this chapter we present the datalog program for the SAT problem as proposed

in [15]. Furthermore we illustrate the datalog representation of the tree decom-

position and we discuss some issues of the datalog translation into the language

of DLV and DLV-C.

3.1 Monadic datalog program deciding SAT

Listing 3.1 shows the monadic datalog program which decides the SAT prob-

lem operating on the normalized decomposed tree. For a better readability the

predicates for the set operations (union, intersect , diffel) are written as symbols.

Usually in datalog variables are denoted with upper case letters and constants

with lower case letters. We follow the pattern of [15] and denote set variables with

upper case letters and variables (element variable furthermore) for a single bag,

for a single clause or for a single propositional variable with lower case letters.

Because of the normalization (see section 2.4) of the tree decomposition, the

SAT problem contains in its tree representation the following different types of

nodes:

1. Leaf node

2. Removal node (variable or clause)

3. Introduction node (variable or clause)

4. Branch node

5. Result node

The leaf node denotes a leaf of the tree i.e. a node without children. The

variable removal node differs from its child in one variable i.e. the bag of the

21

child node contains exactly one more variable. This is also the definition for the

clause removal node. The introduction node is the opposite type of the removal

node. A node of this type has exactly one variable or clause more than its

child. There is one rule for a result node, which denotes the root of the tree

and if the head (the predicate success) of this rule is true, then the formula is

satisfiable. The program contains three intensional predicates: solve, success,

true. The predicate solve(v, P, N, C) has an arity of four with v is a node of the

tree. P and N are subsets of the variables in the bag denoted by v containing

the positive respectively the negative variables. C is a subset of the clauses in

the bag identified by v which are true by the variables in P and N with P ∩N .

The predicate success has the arity of 0 and will be derived when the formula is

solvable. The third intensional predicate of the SAT program is true(P, N, C1, C).

The informal meaning of this predicate is to calculate the maximal number of the

clauses in C which are true with the interpretation given by P and N . In most

cases, e.g. in the leaf node rule, P and N are disjoint sets. In Chapter 4 we

will discuss this predicate again, as it is one of the critical parameters of the

evaluation process. The following theorem is proved in [15]:

Theorem 3.1.1 The datalog program in Listing 3.1 decides the SAT problem,

i.e. the fact ”success” is in the fix-point of this program iff the input τext-structure

encodes a satisfiable clause set C. Moreover for any clause set C with treewidth

w, the computation of the τext-structure and the evaluation of the datalog program

can be done in time O(f(w)× |C|) for some function f.

3.2 Datalog tree representation

The datalog tree representation of the normalized tree decomposition (Figure 2.2)

of the formula in Example 2.2.1 is shown in Listing 3.2. The tree structure pro-

vides additional extensional predicates and holds the knowledge about the tree

decomposition. As in Section 2.7 mentioned, the predicates used in this represen-

tation are {root, leaf, child1, child2, bag}. The predicate bag(v, X, C) represents

the set of variables X and set of clauses C of a node v. Let tw be the treewidth,

it is easy to see that |X ∪ C| ≤ tw + 1 holds.

22

Listing 3.1: Program SAT

/∗ l e a f node . ∗/
s o l v e (v ,P,N,C1) ← l e a f (v) , bag (v ,X,C) ,P ∪ N=X,P ∩ N=∅ ,
t r u e (P,N,C1 ,C) .

/∗ v a r i a b l e removal node . ∗/
s o l v e (v ,P,N,C1) ← bag (v ,X,C) , c h i l d 1 (v1 , v) , bag (v1 ,X ⊎ {x } ,C) ,
s o l v e (v1 ,P⊎{x } ,N,C1) .

s o l v e (v ,P,N,C1)← bag (v ,X,C) , c h i l d 1 (v1 , v) , bag (v1 ,X⊎{x } ,C) ,
s o l v e (v1 ,P,N⊎{x } ,C1) .

/∗ c l au s e removal node . ∗/
s o l v e (v ,P,N,C1) ← bag (v ,X,C) , c h i l d 1 (v1 , v) , bag (v1 ,X,C⊎{c }) ,
s o l v e (v1 ,P,N,C1⊎{c }) .
/∗ v a r i a b l e i n t r o du c t i o n node . ∗/
s o l v e (v ,P⊎{x } ,N,C1∪C2) ← bag (v ,X⊎{x } ,C) , c h i l d 1 (v1 , v) ,
bag (v1 ,X,C) , s o l v e (v1 ,P,N,C1) , t r u e ({ x } ,∅ ,C2 ,C) .
s o l v e (v ,P,N⊎{x } ,C1∪C2) ← bag (v ,X⊎{x } ,C) , c h i l d 1 (v1 , v) ,
bag (v1 ,X,C) , s o l v e (v1 ,P,N,C1) , t r u e (∅ ,{ x } ,C2 ,C) .

/∗ c l au s e i n t r o du c t i o n node . ∗/
s o l v e (v ,P,N,C1∪C2) ← bag (v ,X,C⊎{c }) , c h i l d 1 (v1 , v) ,
bag (v1 ,X,C) , s o l v e (v1 ,P,N,C1) , t r u e (P,N,C2 ,{ c }) .

/∗ branch node . ∗/
s o l v e (v ,P,N,C1∪C2) ← bag (v ,X,C) , c h i l d 1 (v1 , v) , bag (v1 ,X,C) ,
s o l v e (v1 ,P,N,C1) , c h i l d 2 (v2 , v) , bag (v2 ,X,C) , s o l v e (v2 ,P,N,C2) .

/∗ r e s u l t (a t t he roo t node) . ∗/
su c c e s s ← roo t (v) , bag (v ,X,C) , s o l v e (v ,P,N,C) .

23

Listing 3.2: datalog tree representation of tree decomposition in Figure 2.2

% root
roo t (n1) .
% l e a f s
l e a f (n5) .
l e a f (n12) .
l e a f (n19) .
l e a f (n22) .
% ch i l d 1 and c h i l d 2
c h i l d 1 (n2 , n1) . c h i l d 1 (n9 , n8) . c h i l d 1 (n16 , n15) .
c h i l d 1 (n3 , n2) . c h i l d 1 (n10 , n9) . c h i l d 1 (n17 , n16) .
c h i l d 1 (n4 , n3) . c h i l d 1 (n11 , n10) . c h i l d 1 (n18 , n17) .
c h i l d 1 (n5 , n4) . c h i l d 1 (n12 , n12) . c h i l d 1 (n19 , n18) .
%
ch i l d 2 (n6 , n1) . c h i l d 2 (n13 , n8) . c h i l d 2 (n20 , n15) .
c h i l d 1 (n7 , n6) . c h i l d 1 (n14 , n13) . c h i l d 1 (n21 , n20) .
c h i l d 1 (n8 , n7) . c h i l d 1 (n15 , n14) . c h i l d 1 (n22 , n21) .
% bag p r e d i c a t e s
bag (n1 ,{ x2 , x3 } ,{ c1 }) . bag (n12 ,{ x2 , x3 , x5 } ,{ }) .
bag (n2 ,{ x2 , x3 } ,{ c1 }) . bag (n13 ,{ x2 , x3 } ,{ c2 }) .
bag (n3 ,{ x2 } ,{ c1 }) . bag (n14 ,{ x3 } ,{ c2 }) .
bag (n4 ,{ x1 , x2 } ,{ c1 }) . bag (n15 ,{ x3 } ,{ c2 , c3 }) .
bag (n5 ,{ x1 } ,{ c1 }) . bag (n16 ,{ x3 } ,{ c2 , c3 }) .
bag (n6 ,{ x2 , x3 } ,{ c1 }) . bag (n17 ,{} ,{ c2 , c3 }) .
bag (n7 ,{ x2 , x3 } ,{ }) . bag (n18 ,{ x6 } ,{ c2 , c3 }) .
bag (n8 ,{ x2 , x3 } ,{ c2 }) . bag (n19 ,{ x6 } ,{ c3 }) .
bag (n9 ,{ x2 , x3 } ,{ c2 }) . bag (n20 ,{ x3 } ,{ c2 , c3 }) .
bag (n10 ,{ x2 , x3 } ,{ }) . bag (n21 ,{} ,{ c2 , c3 }) .
bag (n11 ,{ x2 , x3 , x5 } ,{ }) . bag (n22 ,{ x4 } ,{ c2 , c3 }) .

24

3.3 Evaluation

The evaluation of the datalog rules can be implemented in different ways. An ef-

ficient implementation using the programming language C++ has been proposed

in [14]. The aim of this work is to provide an implementation which is indepen-

dent of the underlying problem. This approach is useful for rapid development

and prototyping, because for instance the SAT problem can be replaced by an

other problem using the same system. For sure measured in absolute time an

individual implementation in C++ may be faster regarding the large number of

variables and clauses, but is less flexible and reusable.

Our proposed approach is to feed the disjunctive logic programming system

DLV1 and its recently published extension DLV Complex2 (also DLV-C) with

the merged and transformed datalog rules obtained from the SAT program plus

the tree decomposition of the formula. The evaluation is processed and measured

with three different methods:

1. DLV

2. DLV Complex

3. DLV Complex with an external ”true” predicate

In this place we want to give a short introduction to DLV and DLV-C which

follows the work of [17]. Please visit [17],[5] and the manual of DLV and DLV

Complex for a detailed description.

3.3.1 Disjunctive logic programming system DLV

The disjunctive logic programming system (short DLV) is a common datalog

engine which evaluates datalog rules under an answer set semantics. Disjunctive

logic programs are function free datalog programs where disjunction is possible in

the head. The language has been improved over the years since the DLV project

started in 1996.

We only cite those features of DLV and DLV-C (see Section 3.3.2) which are

relevant for this approach.

Definition 3.3.1 A disjunctive rule r is a formula

a1 ∨ ... ∨ an : − b1, ..., bk, not bk+1, ...not bm

1http://www.dlvsystem.com
2http://www.mat.unical.it/dlv-complex

25

where a1, ..., an, b1, ..., bk with n ≥ 0,m ≥ k ≥ 0 are classical literals, where

b1, ..., bk are called positive and not bk+1, ...not bm negative literals of the body

of rule r. The disjunction a1 ∨ ... ∨ an is called the head of the rule and the con-

junction b1, ..., bk, not bk+1, ...not bm is called the body of the rule. The : − sign

is the right-hand implication following the notation of prolog. A rule with exactly

one literal in the head is called normal rule while a rule without a literal in the

head is treated as an integrity constraint. A rule with an empty body is also called

a fact, where the : − sign is omitted.

Definition 3.3.2 A disjunctive datalog program P is a finite set of disjunctive

rules. A not-free disjunctive datalog program is called positive and a ∨-free pro-

gram is called (normal) datalog program.

In this thesis we are only interested in normal datalog programs. The dis-

junctive approach may play a major role in this topic in future.

Definition 3.3.3 A rule r is save if every variable which occurs in rule r also

appears in at least one positive literal of the body of the rule r. A logic program

is save if all rules of the program are save.

Example 3.3.1 The following disjunctive logic program

a ∨ b.

b ∨ c.

d ∨ −d : − a, c.

has following solution {b}, {a, c,−d}, {a, c, d}.

DLV supports similar to SQL the use of aggregate functions (see [10]), where

1. #sum calculates the sum of a result

2. #max,#min selects the maximum resp. minimum of a result

3. #count counts a result set

are the most important ones.

Definition 3.3.4 A Symbolic Set has the form {V ars : Conj} where V ars

is a list of local variables and Conj is a conjunction of non-aggregate liter-

als. An aggregate is used in combination with a Symbolic Set and has the form

#count{V ars : Conj},

26

Example 3.3.2 Rule using the aggregate function #count

countElements(X) : − #count{Set : elementOf(Set,)} = X.

Example 3.3.3 Rule using the aggregate function #max

maxNumber(X) : − #max{I : numbers(I)} = X.

DLV offers many command line options. In this thesis we only use few of them.

Listing 3.3: DLV command-line used in this work

$ >dlv −N=99999 [f i l ename [f i l ename [. . .]]]

The option N = x limits integers and their operations to the value of x, where

99999 is maximum value for this option. The upper bound is necessary because

of the definition of save rules. For example the following program is valid and

save:

Listing 3.4: Save program needing upper bounds

number (1) .
x (N) :− number (N) .
x (X) :− x (N) ,X=N+1.

If there are no upper bounds the recursion will be run infinite.

The version of DLV used in this thesis is based on

DLV [bu i ld BEN/Oct 11 2007 gcc 4 . 1 . 2 20061115 (Debian 4 .1 .1 −21)]

3.3.2 Extension DLV Complex

DLV Complex is a very young project and extents DLV by (recursive) functions,

sets, lists and external predicates definable as system library. The name of an

external predicate has to start with a ”#” sign. We only use sets and the provided

built in set-functions. Because DLV Complex extends DLV it has of course the

same language features of DLV plus the extensions.

The internal set functions used in this thesis are

1. #union(Set1, Set2, Set3) where Set3 is the result of the union of Set1 and

Set2

2. #intersection(Set1, Set2, Set3) where Set3 is the result of the intersection

of Set1 and Set2

27

3. #difference(Set1, Set2, Set3) where Set3 is the result of set difference of

Set1 and Set2

4. #member(El, Set) is true if El is an element of Set

5. #subSet(Subset, Set) is true if Subset is a subset of Set

6. #card(Set, Int) where Int is the cardinality of set Set

As mentioned above DLV Complex provides a facility to define external pred-

icates in an external dynamic link library (so,dll,. . .). The path to this library

has to be given via the command-line option −libpath =< LibPath >. Every

programming language which is able to build a system library can be used to

develop the external library. In this thesis we used C++ for our external library,

because DLV Complex provides an SDK for C++(for details see Section 4.8).

As in DLV we have to limit the integer operations with the option −N (see

Listing 3.5). The libraries used in the datalog program must be included on the

top of it via #include < LibraryName >. So DLV knows which library has to

be linked during execution.

Listing 3.5: DLV-C command-line used in this work

$ >dlv−c −N=99999 −l i bpa th=<LibPath> [f i l ename [f i l ename [. . .]]]

The version of DLV Complex used in this thesis is based on

DLV [bu i ld BEN/Jul 29 2008 gcc 4 . 1 . 2 20061115 (Debian 4 .1 .1 −21)]

3.4 Transformation

In this section we provide an overview of the transformation process from monadic

datalog with set semantics to the language of the destination system, which are

DLV and DLV-C in this thesis. The whole process should run in polynomial

time. We designed the application, we call it Dattrans, which implements the

transformation process, as a preprocessor for the used datalog engine. It takes

a command-line switch for generation of the datalog rules for the appropriate

destination engine. The implementation details are discussed in Chapter 4. First

we give an overview and afterwards we present the single steps more in detail.

28

D I M A C S r e a d e r

D a t a l o g r e a d e r
P r i m a l g r a p h

T r e e

d e c o m p o s i t i o n

D a t a l o g

r e p r e s e n t a t i o n

Addi t iona l

p r e d i c a t e s

T r e e

n o r m a l i z a t i o n

Figure 3.1: Transformation chain

3.4.1 Overview

In general the transformation process (Figure 3.1) is built up on the following

chain of subgoals, which may differ depending on the destination datalog engine.

1. Reading the CNF formula

2. Reading the datalog program (i.e. the SAT program)

3. Building the primal graph of the τ -structure representing the CNF formula

4. Creating the tree decomposition

5. Normalization of the tree decomposition

6. Creating the datalog representation of the tree decomposition and the struc-

ture of the formula

7. Converting the names of the variables

8. Creating additional and converting existing predicates

9. Converting sets into datalog rules in case DLV is used

29

We first describe the reading of the input (formula and monadic datalog) in

Section 3.4.2, then the computation of tree decomposition and the normalization

of the tree are discussed in Section 3.4.3.

The generation of the datalog representation consists of two parts, the com-

mon part and a post processing depending on the underlying datalog engine. We

present the common part in Section 3.4.4 and the post processing for DLV in Sec-

tion 3.4.6, for DLV Complex in Section 3.4.7 and for DLV Complex with external

predicate in Section 3.4.8. Afterwards we conclude this chapter with a summary

in Section 3.4.9 .

3.4.2 Reading the input and creating the data structures

The input format for the CNF formula is the well known DIMACS [1] format (see

Section 4.3). After reading the DIMACS graph format for satisfiability problems,

a primal graph is built up on the formula (see Figure 3.2) and is stored in an ap-

propriate data structure. The information about the negative variables is stored

in the edges of the graph and is important representing the graph in datalog (see

Example 2.2.3).

Figure 3.2: Primal graph of the formula F in Example 2.2.1

Independent from processing the CNF formula the file with the monadic dat-

alog program is parsed and the rules are stored in an appropriate data structure

(for implementation details see Chapter 4). The key to a fast and correct trans-

lation is a fast data structure.

We modified the monadic datalog program syntactically (see Listing 3.1)

using the syntax of DLV (see Listing 3.6). First we replaced the symbols ∩

and ∪ with the predicate union(X, P, N) where X = P ∪ N and the predicate

intersect(X, P, N) where X = P ∩ N . Next we introduced a new predicate

diffel(X, Y, el) which represents the expression X = Y ⊎ {el}. The informal

meaning of this predicate is that X and Y differ in exactly one element. To avoid

unsafe rules we added domain predicates for some variables (e.g. pset(X) and

cset(C)).

30

Listing 3.6: Program SAT

% l e a f node
s o l v e (v ,P,N,C1) :− l e a f (v) , bag (v ,X,C) , t rue (v ,P,N,C1 ,C) ,

union (X,P,N) , i n t e r s e c t ({} ,P,N) .
% i n t e r n a l node
% va r i a b l e removal node
s o l v e (v ,P,N,C1) :− bag (v ,X,C) , c h i l d 1 (v1 , v) ,

bag (v1 ,XX,C) , d i f f e l (XX,X, e lx) ,
s o l v e (v1 ,X3 ,N,C1) , d i f f e l (X3 ,P, e lx) , pset (,P) .

s o l v e (v ,P,N,C1) :− bag (v ,X,C) , c h i l d 1 (v1 , v) ,
bag (v1 ,X1 , C) , d i f f e l (X1 ,X, e lx) ,
s o l v e (v1 ,P,X2 ,C1) , union (X2 ,N, e lx) , pset (,N) .

% c l au s e removal node
s o l v e (v ,P,N,C1) :− bag (v ,X,C) , c h i l d 1 (v1 , v) ,

bag (v1 ,X,CX1) , d i f f e l (CX1,C, e l c) ,
s o l v e (v1 ,P,N,CX2) , union (CX2,C1 , e l c) .

% va r i a b l e i n t r oduc t i o n node
s o l v e (v ,PX,N,C1C2) :− bag (v ,XX,C) , d i f f e l (XX,X, e lx) ,

c h i l d 1 (v1 , v) , bag (v1 ,X,C) ,
s o l v e (v1 ,P,N,C1) , t rue (v , x ,{ } ,C2 ,C) ,
d i f f e l (PX,P, e lx) , union (C1C2 ,C1 ,C2) , pset (,PX) .

s o l v e (v ,P,NX,C1C2) :− bag (v ,XX,C) , d i f f e l (XX,X, e lx) ,
c h i l d 1 (v1 , v) , bag (v1 ,X,C) ,
s o l v e (v1 ,P,N,C1) , t rue (v ,{ } , e lx ,C2 ,C) ,
d i f f e l (NX,N, e lx) , union (C1C2 ,C1 ,C2) , pset (,NX) .

% c l au s e i n t r oduc t i o n node
s o l v e (v ,P,N,C1C2) :− bag (v ,X,CX) , ch i l d 1 (v1 , v) ,

bag (v1 ,X,C) , s o l v e (v1 ,P,N,C1) ,
t rue (v ,P,N,C2 , e l c) , d i f f e l (CX,C, e l c) ,
union (C1C2 ,C1 ,C2) , c s e t (,CX) .

% branch node
s o l v e (v ,P,N,C1C2) :− bag (v ,X,C) ,

c h i l d 1 (v1 , v) , bag (v1 ,X,C) ,
s o l v e (v1 ,P,N,C1) , c h i l d 2 (v2 , v) , bag (v2 ,X,C) ,
s o l v e (v2 ,P,N,C2) , union (C1C2 ,C1 ,C2) .

%r e s u l t (at root node)
s u c c e s s :− root (v) , bag (v ,X,C) , s o l v e (v ,P,N,C) .

31

3.4.3 Tree decomposition and normalization

After the graph has been created the tree decomposition is processed on it. The

negative edges in the graph have no relevance for computing the tree decomposi-

tion and its datalog representation, they are considered in the representation of

the CNF formula. Afterwards the tree is normalized (see section 2.4) by process-

ing the binary split, the insertion of a copy-node and the interpolation of nodes

between parents and its children. In this section we want to present the interpo-

lation algorithm called InterpolateChild. During the normalization of the tree,

the number of clauses C plus the number of variables X in one node n must never

exceed the treewidth plus 1, recall let tw be the treewidth then |X ∪C| ≤ tw + 1

holds for every node. Thus the algorithm InterpolateChild1 (Algorithm 3.7) re-

moves variables and clauses (further on called node elements) first and inserts

node elements afterwards.

The algorithm InterpolateChild1 first generates a list ∆P containing variables

and clauses which are present in the node NP but not in its child node NC .

Afterwards it generates a list ∆C containing the node elements which are present

in NC but not in its parent NP . After the initialization step, it repeats copying

the last node (initially NP) and removes the first element of ∆P from the node

and the list ∆P . If ∆P is empty, the algorithm repeats copying the last node and

inserts the first element of ∆C into the node and removes it from the list. The

algorithm terminates if the list ∆C is empty.

In case that the node elements of the node and its child node are disjoint

then the algorithm produces one empty node. Thus we propose the algorithm

InterpolateChild2 (Algorithm 3.8) which adds one node element of list ∆C to the

actual node before it removes the last element remaining in ∆P from the node.

3.4.4 Creating the datalog representation

The most important purpose is to reduce the grounding effort for the underlying

datalog system by avoiding the derivation of nonrelevant facts and keeping the

domains of predicates small.

We want to consider the implementation of the predicate diffel(X, Y, el) for

DLV Complex. The first approach could be

d i f f e l (Set1 , Set2 ,EL) :− s e t (Set1) , s e t (Set2) ,
#d i f f e r e n c e (Set1 , Set2 , EL) ,# card (EL)==1.

#difference(Set1, Set2, EL) and #card(EL) are internal predicates defined in an

external library shipped with DLV Complex (see Section 3.3.2). To avoid an

unsafe rule we have to define the domain of Set1 and Set2 by adding set(Set1)

32

Listing 3.7: The InterpolateChild1 algorithm

Algor i thm In t e r p o l a t eCh i l d 1
(∗ Var ia b l e s and Clauses in a node are t yped as node e l emen t s ∗)
Input NP parent node , NC c h i l d node of NP , X ,C nodes
var ∆C L i s t of node e lements ,

∆C L i s t of node e l emen t s
begin

∆P := node e l emen t s t h a t are in NP and not in NC ;
∆C := node e l emen t s t h a t are in NC and not in NP ;

X := NP ;
repeat

C := copy (X) ;
El := pop (∆P) ;
de l e t eE l emen t (C ,El) ;
s e tCh i l d (X ,C) ;
X :=C ;

unt i l (∆P i s empty) ;

repeat

C := copy (X) ;
El := pop (∆C) ;
in se r tE l emen t (C ,El) ;
s e tCh i l d (X ,C) ;
X :=C ;

unt i l (∆C i s empty or s i z eO f ∆C = 1) ;

s e tCh i l d (X ,NC) ;
end

33

Listing 3.8: The InterpolateChild2 algorithm

Algor i thm In t e r p o l a t eCh i l d 2
(∗ Var ia b l e s and Clauses in a node are t yped as node e l emen t s ∗)
Input NP parent node , NC c h i l d node o f NP , X ,C nodes
var ∆C L i s t o f node e lements ,

∆C L i s t o f node e l emen t s
beg in

∆P := node e l emen t s t h a t are in NP and not in NC ;
∆C := node e l emen t s t h a t are in NC and not in NP ;

X := NP ;
r e p ea t
i f |X |> 1 then

removeElement (X ,∆P) ;
e l s e

in ser tE l emen t (X ,∆C) ;
end ;
u n t i l (∆P i s empty) ;

r e pea t
in ser tE l emen t (X ,∆C) ;
u n t i l (∆C i s empty or s i z eO f ∆C = 1) ;

s e tCh i l d (X ,NC) ;
end

Procedure removeElement (inou t X : Node , inou t δ : L i s t)
beg in

C := copy (X) ;
El := pop (∆) ;
de l e t eE l emen t (C ,El) ;
s e tCh i l d (X ,C) ;
X :=C ;

end

Procedure in ser tE l emen t (inou t X : Node , inou t δ : L i s t)
beg in

C := copy (X) ;
El := pop (∆) ;
in se r tE l emen t (C ,El) ;
s e tCh i l d (X ,C) ;

X :=C ;
end

34

and set(Set2). This results in a calculation of the cross product of set Set1 and

set Set2. During generating we replace it with the term #difference(Set1, Set2,

EL),#card(EL)==1 and avoid this overhead.

The resulting datalog representation is obtained by merging three different

parts:

1. The monadic datalog program

2. The normalized tree decomposition

3. The structure of the propositional formula

The datalog rules representing the normalized tree decomposition are gener-

ated out of the tree decomposition and are merged with the rules of the formula

(see Section 3.4.2) into the base data structure of the monadic datalog program.

Next we generate necessary internal predicates. Recall the rule for the leaf node

of the SAT program in Listing 3.1.

Listing 3.9: SAT program’s rule for the leaf node

/∗ l e a f node . ∗/
s o l v e (v ,P,N,C1) ← l e a f (v) , bag (v ,X,C) ,P ∪ N=X,

P ∩ N=∅ , t r u e (P,N,C1 ,C) .

The set N and the set P are disjoint subsets of X i.e. they form all possible

partitions of X with two elements. It is easy to see that all possible values of P are

all elements of the power set of X and the values of N are their corresponding

complements with N = X \ P . Thus we generate these power sets and their

complements for the variables and clauses in every bag, which is more efficient

than creating them globally for all node elements. The result of this operation

are new extensional predicates pset(v, pvs) and cset(v, pcs) where v is the bag,

pvs and pcs are power sets of the variables X respectively the clauses C of the

bag. For further statistics we generate an unary predicate treewidth(tw) with tw

as the treewidth of the tree decomposition.

3.4.5 Converting set variables

In Section 3.1 we defined that the element variables are denoted with lower case

letters and set variables are denoted with upper case letters in the monadic data-

log program. DLV and DLV-C are using upper case letters for all variables. Thus

we have to loop through the symbol table containing the variables and convert

their identifiers from lower case to upper case. If an element and a set variable

35

have the same name, a naming conflict can occur during the conversion. We

resolve such a conflict by renaming the element variable. With an optimal data

structure e.g. using a symbol table and a handle for every identifier the renaming

is not a big effort.

3.4.6 Additional steps for DLV

DLV does not support set semantics, thus all sets have to be converted into

datalog rules. We represent a set as datalog rule by introducing the predicate

elementOf(s, el) where s is a constant representing the name of a set and el is

an element of the set s. We generate such a predicate for every set and for every

element of a set, as shown in Example 3.4.1.

Example 3.4.1 Let s = {a, b, c, d, e, f} be a set, which can be expressed in

normal datalog rules for DLV with the following rules

elementOf(s,a). elementOf(s,b). elementOf(s,c).

elementOf(s,d). elementOf(s,e). elementOf(s,f).

The empty set is represented as the constant empty. In addition we provide set

operations as datalog rules as follows:

Listing 3.10: Set operations for DLV

%
% d e f i n i t i o n o f a s e t
%
s e t (A) :− e l ement o f (A,) .
s e t (emptyset) .
%
% union o f two s e t s
%
union (S1 , S2 ,E) :− s e t (S2) , e l ement o f (S1 ,E) , S1!=S2 .
union (S1 , S2 ,E) :− s e t (S1) , e l ement o f (S2 ,E) , S1!=S2 .
%
% i n t e r s e c t : i n t e r s e c t i o n o f two s e t s
%
i n t e r s e c t (S1 , S2 ,E) :− e l ement o f (S1 ,E) , e l ement o f (S2 ,E) ,

S1!=S2 .

The definition of diffel is

Listing 3.11: Definition of diffel for DLV

%
% d i f f e l : d i f f e r e n c e o f two s e t s
%
d i f f e l (S1 , S2 ,E) :− s e t (S1) , s e t (S2) , e l ement o f (,E) ,

not i n t e r s e c t (S1 , S2 ,E) , S1!=S2 .

36

3.4.7 Additional steps for DLV Complex

In contrast to DLV, its extension DLV Complex supports set semantics. Therefore

the predicates for the set operations have to be replaced by their equivalent of DLV

Complex, as we already mentioned in Section 3.4.4. These external predicates are

defined in the library ListAndSet shipped with DLV Complex. Thus, we have to

insert the include directive #include<ListAndSet> for the external library. The

complete datalog program is shown in Appendix A.2.

3.4.8 Additional steps for DLV Complex with external

predicate

In the previous section we used the predicate true defined as intensional pred-

icate in datalog. In this section we present an external predicate ”true” as

#true(P, N, C1, C, POS, NEG).

As mentioned in Section 3.3.2, the name of the external true predicate has to

start with a ”#” sign. Furthermore in the external library we have no access to the

extensional predicates and their domains, so we extend the signature of true with

two set variables i.e. POS and NEG representing set of sets. These sets model

the structure of the propositional formula. More precisely, if a propositional

variable x occurs positive in a clause c then POS will contain the set x, c. If x

occurs negative in c then NEG will contain x, c. Example 3.4.2 illustrates the

set POS and NEG for the formula of Example 2.2.1

Example 3.4.2 Sets of sets for formula of Example 2.2.1

POS = {{c0,x2},{c2,x6},{c2,x3},{c0,x3},{c0,x1},{c2,x4},{c1,x5}}

NEG = {{c1,x2},{c1,x4}}.

First, for the external libraries we have to insert the include directives which

are #include<ListAndSet>, #include<exttrue>. Afterwards we replace all oc-

currences of true(P, N, C1, C) with the notation of the external predicate

#true(P, N, C1, C, POS, NEG). Furthermore the sets POS and NEG have to

be created by looping over all instances of the predicates pos and neg.

Recall the rule for the leaf node of the SAT program in Listing 3.1, the trans-

lated datalog rule with the sets is presented in Listing 3.12, the complete datalog

program is shown in Appendix A.3

37

Listing 3.12: Leave rule for DLV Complex with external predicate

s o l v e (V,P,N,C1):− l e a f (V) , bag (V,X,C) ,
#true (P,N,C1 ,C,POSSET,NEGSET) ,
po s s e t (POSSET) , negset (NEGSET) ,
X=#union (P,N) ,
#i n t e r s e c t i o n (N,P , { }) .

po s s e t ({{ c0 , x2 } ,{ c2 , x6 } ,{ c2 , x3 } ,{ c0 , x3 } ,{ c0 , x1 } ,{ c2 , x4 } ,{ c1 , x5 } }) .
negset ({{ c1 , x2 } ,{ c1 , x4 } }) .

3.4.9 Summary

The focus lies on the representation of the sets, the set operations and the pred-

icate true(P, N, C1, C). The way of the generation of datalog rules participates

in the success of a fast evaluation. DLV has no set semantics thus the sets have

to be translated into normal datalog rules and the set operations ∪ ∩ ⊎ have

to be implemented as intensional predicates. In DLV Complex it is possible to

define the predicate true in an external library. Beside the automatically gener-

ated internal predicates (e.g. root, leaf , child1, child2, bag, pos, neg, cset, pset)

there are some internal predicates, most defined in an additional file, which are

independent from the structure of the CNF formula.

38

Chapter 4

Implementation

In this chapter we go into more detail regarding the implementation of the eval-

uation, the transformation process and the test environment. We start with

an overview in Section 4.1, next we present the architecture of our application

Dattrans in Section 4.2. Section 4.3 provides information how the input is gen-

erated and processed. Used data structures are presented in Section 4.4 and in

Section 4.5 we discuss the implementation of the tree decomposition and the nor-

malization of the tree. Section 4.7 gives an insight into the conversion of the

datalog rules. The implementation of the external true predicate is shown in

Section 4.8.

4.1 Overview

We have implemented a prototype implementation of the transformation process

as a preprocessor for the underlying datalog system. Figure 4.1 gives an archi-

tectural overview over the system for our experiments. We call it Dattrans. The

preprocessing approach allows us to generate datalog rules for different evaluation

scenarios as we mentioned in Section 3.3.

Our implementation and testing environment consists of the following com-

ponents:

1. Mkcnf 1

2. Dattrans

3. Datalog engine (i.e. DLV and DLV Complex)

4. Evaluation script

1http://www.cs.ucsc.edu/∼avg/software.html

39

Figure 4.1: Implementation overview

5. Minisat 2

At first we use Mkcnf to generate a file containing the CNF formula (see

Section 4.3.1). Next our application Dattrans takes as input two files, the propo-

sitional formula and the SAT program, to generate the datalog rules for the

destination datalog system. The whole process is controlled by a script which

takes care about the calling order and the time measurement. After the data-

log system has finished the evaluation the control script produces the necessary

statistical records.

4.2 The preprocessor Dattrans

Within the scope of this thesis we developed the command line application Dat-

trans, which is a preprocessor for the requested datalog subsystem. The architec-

ture of the application is shown in Figure 4.2. It takes two input files, the CNF

formula and the monadic datalog program, and transforms the monadic datalog

rules into the datalog rules for the destination system by processing the steps we

described in Section 3.4. Dattrans takes the following command line options:

The command line option -prog specifies the name of the file containing the

monadic datalog rules (i.e. the SAT Program of Listing 3.6). By default Dattrans

reads the propositional formula via stdin, which is useful if shell redirection is

used, e.g. in conjunction with Mkcnf. Alternatively the filename of the CNF file

2http://minisat.se/

40

$ > dattrans [opt i ons] −prog < f i l e > [− cnf < f i l e >]
−prog Datalog f i l e
−cnf DIMACS f i l e (d e f a u l t s td in)
opt i ons :

−c generate f i l e f o r dlv−c
−e generate f i l e f o r dlv−c us ing

ex t e r na l #true (o v e r r u l e s opt ion c)
−h d i s p l a y s t h i s message

can be specified using the command line argument -cnf. The output is written

to stdout and if it is necessary it must be redirected via shell into a file. The

destination datalog system can be specified with the options -c, -e or without an

option. If this option is omit, the Dattrans will produce the output for DLV, if

option -c is specified, it will create the output for DLV Complex and with option

-e the output is generated for DLV Complex using the external true predicate.

For a usage message the switch -h must by specified. For implementational details

please visit the next sections.

Figure 4.2: Architecture of the transformation module

4.3 Input

As mentioned in the previous section, our implementation takes two input files,

the CNF formula using the DIMACS graph format (see Section 4.3.1) and the

monadic datalog program shown in Listing 3.6.

41

4.3.1 DIMACS

The propositional formula is represented using the well known DIMACS graph

format for satisfiability problems (see [1]). This graph coloring format is a simple

ASCII text file containing several lines, which are terminated by an end-of-line

character. Each line begins with a one-character identifier which specifies the line

type. The fields in one line are separated by at least one blank space.

1. Comments. The comment line starts with the character c. It gives a human-

readable information about the file and is ignored by programs. A comment

line can appear anywhere in the file.

c This i s a comment

2. Problem line. The problem line starts with the character p and has following

format

p FORMAT VARIABLES CLAUSES

where FORMAT must be cnf for satisfiability problems, V ARIABLES

takes an integer n specifying the number of variables and CLAUSES spec-

ifies the number of clauses. One file contains only one problem line and it

must appear before any clause line.

3. Clause line. The clause line appears immediately after the problem line.

The variables are assumed to be numbers by an integer of 1...n. Not every

variable must appear in every clause. A variable that occurs positive (non-

negated) in a clause is represented by i, the negative (negated) variable is

represented by −i. Each clause is terminated by the value 0 to support

multiple clauses per line.

Our DIMACS reader reads the text file (see Example 4.1) and provides the

clauses for the next module, which builds the primal graph of the structure of

the formula.

At the first step of our process we generate the CNF formula automatically

using the random CNF formula generator for DIMACS format called Mkcnf 3.

The usage of Mkcnf shows the following command line options: where vars rep-

resents the number of variables, clauses the number clauses and clauseLen the

length of one clause. The option seed is initially set to 50 by default, in our case

3http://www.cs.ucsc.edu/∼avg/software.html

42

Listing 4.1: DIMACS graph format for satisfiability problems for Example 2.2.1

c
c SAT program
c
p cnf 6 3
1 2 3 0
−2 −4 5 0

3 4 6 0
0

$ >mkcnf var s c l a u s e s c lauseLen [seed] [− f | −u] [o u t f i l e]

we always use 1. The option -f forces the formula to be satisfiable, by default

it is -u (unforced). In this thesis we use propositional formulas with the length

of three for clauses and the number of variables are three times the number of

clauses. Thus our command line for Mkcnf looks as follows

$ >mkcnf 3∗ c l a u s e s c l a u s e s 3 1 −f [o u t f i l e]

4.3.2 Monadic datalog parser

The monadic datalog parser of Dattrans is developed using the scanner generator

flex (version 2.5.34) 4 and the parser generator GNU Bison (version 2.3) 5.

Readers who are interested into the grammar files see Appendix B. The parser

reads the input file, checks the semantical correctness and builds a parse tree

which is converted into the appropriate data structure (see Section 4.4). The

parse tree is also used to check for semantic errors. If the parser finds an error

the application terminates and writes an appropriate error message to the output.

The parse tree is a binary tree consisting of nodes of the class ParseTreeNode.

Every node has a link to its parent, a node type and a value, which stores the

value of a constant (e.g. integer, a string,...) or the name of a variable. The node

also stores the line number and the position of the first character of the token

in the source file, to generate readable error messages. The parser maintains a

global stack. The function popErrorStack takes as argument a pointer to a node

of the parse tree, pops it on the top of the stack and returns the pointer. This

stack acts as a garbage collector especially if for example an error occurs.

4http://www.gnu.org/software/flex/
5http://www.gnu.org/software/bison/

43

4.4 Data structures

A fast data structure is the key for an efficient and correct processing. In this

section we present the essential part of the data structures (Figure 4.3). For a

better readability, we omit special pointers like short cuts to parent and other

classes.

• Term - a class representing constants, variables and numbers. The class

holds a vector containing its parents for fast access to them.

• Set - subclass of the term class representing a set of terms.

• Instance - is an instance of a term for a variable.

• SetInstance,MultisetInstance - are subclasses of the class instance rep-

resenting an instance for a set of terms respective set of sets.

• InstanceSet - a container holding a list of instances.

• Predicate - represents the predicates. Every predicate has a name and

an arity and holds a set of instances, the domain of the predicate. Every

predicate has a list of literals in which it appears.

• Literal - consists of a predicate and a number of arguments of terms. The

number of arguments is equal to the arity of the predicate. The literal

contains a list of rules in which it appears.

• Rule - represents a datalog rule and consists of the rule head, positive body

and the negative body.

• Program - represents the datalog program. It consists of a set of rules.

Every program has its own symbol tables containing the predicates, terms,

sets and variables used in this program. This is useful if for example the

name of a variable has to be changed.

• Symbol table - a class which stores the symbols fast accessible in a hash-

map.

4.5 Hypertree library

To compute the tree decomposition of the primal graph of the τ -structure rep-

resenting the formula we use the hypertree library 6 proposed in [11]. The hy-

6http://www.dbai.tuwien.ac.at/proj/hypertree/

44

�predicate

0..1 �args
0..1

�element

�instances

Rule
� posbody : list<Literal*>
� negbody : list<Literal*>
� head : list<Literal*>

Literal
� args : Term**
� predicate : Predicate

Set
+ elements : set<Term *>
+ isEmpty()() : bool

Program
� rules : list<Rule*>
� pred_symboltable : SymbolTable<Predicate>
� const_symboltable : SymbolTable<Term>
� set_symboltable : SymbolTable<Term>

Symboltable

Instance
� element : Term*

SetInstance
� elements : set<Term* >

MultiSetInstance
� elements : set<SetInstance* >

InstanceSet
� elements : std::map<string,Instance**>
� arity : int

Term
+ name : string
+ parents : vector<Term*>
+ toString(t : (t_stringRepType)

Predicate
� arity : int
� name : string
� type : enum
� instances : InstanceSet

Figure 4.3: Data structures of the application Dattrans

45

pergraph for our running Example 2.2.1 is shown in Figure 4.4. We decided to

integrate the library in our application to have direct access to the hypergraph

and hypertree. It is also possible to create an input file containing the hypergraph

for the application shipped with the hypertree library and parse the output to

create the decomposed hypertree (see Figure 4.5).

The hypertree library uses serval heuristic methods to find a small treewidth

(for further information see [11]). In our application the treewidth is calculated

by applying bucket eliminations using following heuristics:

• Maximum cardinality search order heuristic

• Minimum induced width order heuristic

• Minimum fill-in order heuristic

The resulting treewidth is the minimum of all calculated treewidths by the

heuristics above.

Figure 4.4: Hypergraph of Example 2.2.1

The hypertree library provides methods to check if it is a valid tree decompo-

sition according to Definition 2.3.1. We use this methods to check if the decom-

posed tree is valid. In this thesis we are only interested in the tree decomposition

of the primal graph, due to this we are ignoring the hyperedges (in Figure 4.4 e1

... e9) and are using the nodes of the hypergraph (in Figure 4.4 x1 ... x6 and c1

... c3). The hypertree library provides us the hypertree-width and the treewidth,

we are using the treewidth.

46

Figure 4.5: Tree decomposition of the hypergraph of Example 2.2.1

4.6 Normalization

After a valid tree decomposition is calculated, the tree is normalized as described

in Section 3.4.3 and this is done by the class named HypertreeNormalization.

Therefore the rooted hypertree is traversed in a preorder manner. The most

important methods are shown in Figure 4.6.

HypertreeNormalization

+ normalize(ht : Hypertree*) : Hypertree*
BinarySplit(node : Hypertree*)
InsertCopyNode(node : Hypertree*)
Interpolate(node : Hypertree*)

Figure 4.6: Class HypertreeNormalization

The only public method is normalize, which takes the root of the hypertree,

normalizes it and returns the node of the tree. Each of the protected methods

takes as argument a node of the hypertree and models one single step of the

normalization algorithm:

• BinarySplit - carries out the binary split if necessary,

• InsertCopyNode - inserts a copy node if necessary,

• Interpolate - interpolation between the node and its children.

The normalized hypertree is shown in Figure 4.7. Once the hypertree is cal-

culated, normalized and validated, we create the tree structure and merge it into

the data structure created in Section 4.3.2.

47

Figure 4.7: Normalized tree decomposition of the hypergraph of Example 2.2.1

4.7 Converting the datalog rules

The converter module converts the information held in the data structure (de-

scribed in Section 4.4) into the requested output format and has the following

tasks:

• Create datalog representation of the structure of the propositional formula,

• Create datalog representation of decomposed and normalized tree,

• Convert and create output dependent predicates and rules.

Generally converter module first creates the instances of the appropriate predi-

cate and after all instances for all predicates are calculated, the rules are generated

out of the instances. The objects for the predicates are created at the moment of

the instantiation of the object program. If a predicate has no instances, no rules

will be created and thus no output will be generated.

The Hypergraph (see Figure 4.4) consists of a list of nodes and a list of edges.

It is used to create the instances of the predicates cl, var, pos and neg, which

are representing the structure of the propositional formula (recall Example 2.2.3).

48

Therefore the converter visits all nodes of the graph and creates an instance either

for the predicate cl or for the predicate var depending on the type of the node.

After that it visits all edges and creates the instances either for the predicate

pos or neg, depending on the sign of the edge. In case the DLV Complex with

external predicate true is used as destination system the converter creates the

instances for the predicates posset and negset (see Listing 3.12).

To create the instances of the predicates modeling the structure of the decom-

posed and normalized tree, the tree is traversed in a preorder manner. For every

visited node the converter module creates an instance of the predicate bag. If the

node is a leaf node an instance of the predicate leaf will be created and if the node

is the root of the tree the instance for the predicate root will be created by the

converter module. During the tree traversal for every parent child relation the

converter module creates an instance of the predicate child1 or child2, depending

whether the child is the only, first or second child. Finally it creates the instance

for the predicate treewidth. Next it loops through all instances of the predicate

bag and generates the instances for all predicates, which represent the partitions

of the sets of variables and clauses.

In case the destination system is DLV the converter converts all instances

which are sets into datalog rules next. Therefore it loops through all instances of

all predicates, which have sets as arguments (e.g. bag or partition), creates the

instances of elementOf (see Example 3.4.1) and replaces the set instance of the

predicate with the term of the name of the set.

If all instances are calculated the converter creates the rules out of the in-

stances. This is done by looping through all instances of the predicates and

creating a new literal and new rule for every instance. In our case all resulting

rules are facts consisting of one literal in their head. The remaining conversions

are done when the rules are converted to strings for the output. An example

for such a conversion is the usage of an external true predicate. In the SAT

program the notation of true has the following form true(v, P, X, C1, C) and the

output #true(P, X, C1, C, POSSET, NEGSET) is needed for the external true

predicate.

4.8 External predicate ”true”

We have implemented the external ”true” predicate in C++ using the SDK

shipped with DLV Complex. The predicate is provided to DLV Complex as

system library containing mainly two functions:

49

bool t r u e i i i i i i (CONSTANT∗ argv , uns igned i n t argc) ;

bool t r u e i i o i i i (CONSTANT ∗ argv , uns igned i n t argc) ;

The class constant defined in the SDK contains the value, the type of the

argument and some useful operators (e.g. <,>,. . .). The type of an argument

can be an integer, a symbol, a string or a null constant (we only use the types

integer and symbol). As parameters the two functions take an argument vector

and its size. The function true iiiiii is called if all parameters are constants

or variables, which are save in the rule. In this case all arguments are input

parameters and the function decides if the given instance is valid or not. The

function will return true if the instance is valid otherwise it will return false.

If the third argument is a variable, which is not save, then DLV Complex will

expect an output value for this variable, otherwise it terminates with an error.

50

Chapter 5

System test and experimental

results

Primarily we are interested in the runtime performance of the evaluation of the

datalog system. We measure the processing time, the number of bags in the

normalized tree and the number of generated true predicates, which are ignored

if the destination system is DLV Complex with external ”true” predicate, because

in this case no true predicates are generated. The size of the input is measured by

the number of variables plus the number of clauses of the propositional formula.

Every input is evaluated three times by the whole process and the control

script calculates the average over the measured records. As DLV and DLV Com-

plex are closed source, we could not use the internal timing functions, thus our

time measurement is done by the gnu version of Unix tool time using the call

which tells us the time needed to execute a command.

$ >/ usr /bin/ time −o <output f i l e > −a −f \%U <commmand> 2>\&1

The experiments were conducted on Linux kernel 2.6.24-21 with a 2.66GHz

E6750 Intel R©Core2DuoTMCPU and 3 GB of memory.

5.1 Testing

If a formula is satisfiable, the predicate success will be derived by the datalog

system. In this section we present our testing environment. We mentioned in

Section 4.2 that the input e.g. generated from M kcnf can be passed to our

application via shell redirection. We do not use this feature yet, because we have

to test if our result is correct. Instead we store the generated DIMACS output of

51

M kcnf in a separate file and use it as input for M inisat 1. Afterwards we compare

after every run the result of M inisat and the derivation of predicate success. As

minisat is a widely used and tested application, we consider that minisat provides

correct results and we are able to use it as a reference to test our application.

5.2 Experimental Results

In this section we present the experimental results of our implemented system. In

the tables and figures below, we show our results of the three evaluation methods,

DLV, DLV Complex and DLV Complex with external predicate.

In this thesis we did not want to compete with an implementation in C++,

rather we wanted to examine a practical evaluation of the approach proposed in

[15], as a general-purpose method which allows to replace the underlying problem.

Therefore we do not compare our results with an implantation in C++. Our

purpose was comparing the results of the three evaluation methods. All tables

have five columns representing the measured values, where variables stands for

the amount of input variables, clauses for the amount of input clauses, nodes for

the number of generated bags in the normalized decomposed tree, true for the

number of generated true predicates by the datalog system and finally time stands

for the measured time. To create our plots, we used Gnuplot 2. Appendix C lists

the scripts used to produce the graphs in this section. Following we describe our

practical experiments and report some lessons learned.

As DLV does not support set semantics, the encoding of the sets and its

operations was the biggest challenge. We had to keep an eye on avoiding cycles

and minimizing the amount of derived predicates during grounding. As we can

see from Table 5.1, Table 5.2 and Table 5.3 there is a considerable number of the

predicate true. This is an effect of the encoding of the set semantics, thus DLV

has much grounding effort.

DLV Complex in contrast to DLV has less grounding effort. As DLV and

DLV Complex are closed source we could not determine how the set operations

are implemented and how much grounding effort is caused by the sets. Obviously,

the solution using DLV Complex is more performant than with DLV plain. In

Table 5.4, Table 5.5 and Table 5.6 we show the results of our experiments using

DLV Complex and treewidth of 3, 4, and 5. We got no surprise with DLV

Complex using an external true predicate the best results, because the external

true predicate is only evaluated if needed. In the previous approaches all possible

1http://minisat.se/
2Gnuplot is a standard plotting program available from http://gnuplot.sourceforge.net/.

52

instances of the predicate were derived, no matter if they were evaluated in some

rule. In Table 5.7, Table 5.8 and Table 5.9 we present the results with treewidth

3, 4 and 5.

variables clauses nodes true time
6 2 9 552 0.12
15 5 20 2112 0.19
21 7 24 4105 0.38
24 8 26 8401 1.60
39 13 43 10184 3.91
42 14 50 15339 5.61
45 15 55 30683 7.98
51 17 61 32326 11.02
54 18 68 53678 14.5

Table 5.1: Measurement for DLV with treewidth 3

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18

clauses

Treewidth: 3

Time (sec)
Nodes (x/10)

True (x/1000)

Figure 5.1: Results for DLV with treewidth 3

5.3 Summary and evaluation of results

Concluding this chapter we can say that we achieved best performance with DLV

Complex using an external true predicate. As mentioned in Section 3.3.2 DLV

Complex is a very young project and hopefully it will provide more useful features

53

9 3 18 2134 1.12
27 9 29 9114 2.33
30 10 39 10763 5.22
33 11 39 12652 7.27
36 12 46 17163 11.33
48 16 53 26891 16.14
57 19 64 29541 20.28
69 23 73 80185 35.17
84 28 97 99118 45.88
90 30 92 101693 50.91

Table 5.2: Measurement for DLV with treewidth 4

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

clauses

Treewidth: 4

Time (sec)
Nodes (x/10)
True (x/1000)

Figure 5.2: Results for DLV with treewidth 4

variables clauses nodes true time
60 20 72 82362 14.09
63 21 72 95032 19.23
66 22 70 112668 35.43
78 26 91 139836 55.22
87 29 92 173721 67.64
96 32 112 296183 73.23
105 35 115 314353 88.54

Table 5.3: Measurement for DLV with treewidth 5

54

 0

 50

 100

 150

 200

 250

 300

 350

 20 22 24 26 28 30 32 34 36

clauses

Treewidth: 5

Time (sec)
Nodes (x/10)
True (x/1000)

Figure 5.3: Results for DLV with treewidth 5

variables clauses nodes true time
6 2 9 252 0.04
15 5 20 1607 0.09
21 7 24 2005 0.14
24 8 26 2410 0.3
39 13 43 7184 0.83
42 14 50 9339 0.98
45 15 55 8683 1.58
51 17 61 12326 2.03
54 18 68 13678 4.17

Table 5.4: Measurement for DLV Complex with treewidth 3

variables clauses nodes true time
9 3 18 1454 0.08
27 9 29 8304 0.3
30 10 39 5864 0.42
33 11 39 6152 0.57
36 12 46 12563 1.73
48 16 53 14891 2.84
57 19 64 22345 3.25
69 23 73 25889 5.16
84 28 97 64548 23.28
90 30 92 42693 15.78

Table 5.5: Measurement for DLV Complex with treewidth 4

55

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18

clauses

Treewidth: 3

Time (sec)
Nodes (x/10)

True (x/1000)

Figure 5.4: Results for DLV Complex with treewidth 3

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

clauses

Treewidth: 4

Time (sec)
Nodes (x/10)

True (x/1000)

Figure 5.5: Results for DLV Complex with treewidth 4

56

variables clauses nodes true time
60 20 72 42261 14.26
63 21 72 43033 6.67
66 22 70 22658 4.67
78 26 91 99306 18.39
87 29 92 67021 18.31
96 32 112 136085 43.25
105 35 115 94529 50.3

Table 5.6: Measurement for DLV Complex with treewidth 5

 0

 20

 40

 60

 80

 100

 120

 140

 20 22 24 26 28 30 32 34 36

clauses

Treewidth: 5

Time (sec)
Nodes (x/10)
True (x/1000)

Figure 5.6: Results for DLV Complex with treewidth 5

variables clauses nodes true time
6 2 9 0 0.03
15 5 20 0 0.1
21 7 24 0 0.22
24 8 26 0 0.18
39 13 43 0 0.57
42 14 50 0 2.96
45 15 55 0 4.46
51 17 61 0 6.58
54 18 68 0 10.17

Table 5.7: Measurement for DLV Complex with ext. true and treewidth 3

57

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16 18

clauses

Treewidth: 3

Time (sec)
Nodes (x/10)

True (x/1000)

Figure 5.7: Results for DLV Complex with ext. true with treewidth 3

variables clauses nodes true time
9 3 18 0 0.04
27 9 29 0 0.14
30 10 39 0 1.1
33 11 39 0 1.31
36 12 46 0 1.49
48 16 53 0 0.68
57 19 64 0 1.5
69 23 73 0 2.2
84 28 97 0 5.03
90 30 92 0 4.68

Table 5.8: Measurement for DLV Complex with ext. true and treewidth 4

variables clauses nodes true time
60 20 72 0 2.89
63 21 72 0 2.05
66 22 70 0 2.0
78 26 91 0 4.29
87 29 92 0 5.04
96 32 112 0 8.08
105 35 115 0 9.06

Table 5.9: Measurement for DLV Complex with ext. true and treewidth 5

58

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30

clauses

Treewidth: 4

Time (sec)
Nodes (x/10)

True (x/1000)

Figure 5.8: Results for DLV Complex with ext. true with treewidth 4

 0

 2

 4

 6

 8

 10

 12

 20 22 24 26 28 30 32 34 36

clauses

Treewidth: 5

Time (sec)
Nodes (x/10)

True (x/1000)

Figure 5.9: Results for DLV Complex with ext. true with treewidth 5

59

in this direction. The set semantics of DLV Complex is already convenient and

raises the performance. Unfortunately the grounding effort is still high.

60

Chapter 6

Conclusion

In this chapter we summarize the results presented in this thesis and give some

remarks and directions for further improvements. The goal of this thesis was

not an efficient algorithm for the SAT problem, instead we were aiming to sepa-

rate the underling problem and the evaluation process. This allows us to replace

the underlying problem with others, e.g. the solvability problem, of abduction,

circumscription problem, etc. whose FPT was established via Courcelle’s Theo-

rem [7]. In Chapter 2 we have revisited the approach to express the MSO with

monadic datalog over finite structures as proposed in [15]. In Chapter 3 we have

presented the basic idea of a preprocessor for a datalog system, which converts

the monadic datalog program and a given CNF formula into a ”normal” datalog

program for the destination datalog engine. We have actually implemented a

prototype of our preprocessor, which we have presented in Chapter 4. We have

experimented with three approaches (DLV, DLV Complex, DLV Complex with

an external predicates) to evaluate the transformed datalog rules and have pre-

sented the results. In particular, we have tested the feasibility to create a more

generic system than an implementation using an imperative programming lan-

guage. In fact we think this approach points into a promising direction and we

have discovered that there is room for further improvements.

6.1 Future Work

A future improvement of the process would be to develop an automatic transfor-

mation from MSO to monadic datalog, as in [15] the proposed SAT program was

built by hand.

In [17] it is mentioned that disjunctive logic programming is strictly more

expressive than normal (disjunction-free) logic programming. Another possible

61

goal of future work is to evaluate if the use of disjunctive logic programming

in the monadic datalog approach will enhance the performance of DLV. As we

mentioned in the previous sections, the main goal is to reduce the grounding

overhead for DLV and to use extensively external predicates in DLV Complex to

improve the performance. This could be achieved by an efficient implementation

of predicates as external predicates, as we have implemented the external ”true”

predicate.

62

Bibliography

[1] Home page of center for discrete mathematics and theoretical computer sci-

ence (dimacs). http://dimacs.rutgers.edu/Challenges/.

[2] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybern.,

11(1-2):1–22, 1993.

[3] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions

of small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[4] Hans L. Bodlaender. Discovering treewidth. In SOFSEM’05, pages 1–16,

2005.

[5] Francesco Calimeri, Susanna Cozza, and Giovambattista Ianni. External

sources of knowledge and value invention in logic programming. Annals of

Mathematics and Artificial Intelligence, 50(3-4):333–361, 2007.

[6] Stephen A. Cook. The complexity of theorem-proving procedures. In

STOC’71, pages 151–158, 1971.

[7] B. Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook

of Theoretical Computer Science, volume B, pages 193–242. Elsevier Science

Publishers, 1990.

[8] B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter com-

plexity of graph enumeration problems definable in monadic second-order

logic. Discrete Appl. Math., 108(1):23–52, 2001.

[9] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Com-

plexity and expressive power of logic programming. In IEEE CCC’97, pages

82–101, 1997.

[10] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerald

Pfeifer. Aggregate functions in disjunctive logic programming: Semantics,

complexity, and implementation in dlv. In IJCAI’03, pages 847–852, 2003.

63

[11] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Benjamin J. McMahan,

Nysret Musliu, and Marko Samer. Heuristic methods for hypertree decom-

position. In MICAI’08, pages 1–11, 2008.

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, New

York, 1999.

[13] Georg Gottlob and Christoph Koch. Monadic queries over tree-structured

data. In LICS’02, pages 189–202, 2002.

[14] Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a

key to tractability of knowledge representation and reasoning. In AAAI’06,

pages 250–256, 2006.

[15] Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic datalog over finite

structures with bounded treewidth. In PODS’07, pages 165–174, 2007.

[16] Frank Harary. Graph theory. Addison-Wesley, 1969.

[17] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-

lob, Simona Perri, and Francesco Scarcello. The dlv system for knowledge

representation and reasoning. ACM Trans. Comput. Logic, 7(3):499–562,

2006.

[18] Nysret Musliu. An Iterative Heuristic Algorithm for Tree Decomposition

Studies in Computational Intelligence: Recent Advances in Evolutionary

Computation for Combinatorial Optimization, pages 133–150. Springer,

2008.

[19] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects

of tree-width. J. Algorithms, 7(3):309–322, 1986.

[20] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,

Volume I. Computer Science Press, 1988.

64

Appendix A

Datalog programs

A.1 DLV

s o l v e (V,P,N,C1):− l e a f (V) , bag (V,X,C) ,
t rue (V,P,N,C1 ,C) , union (X,P,N) ,
i n t e r s e c t (emptyset ,P,N) .

s o l v e (V,P,N,C1):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,XX,C) ,
d i f f e l (XX,X,ELX) , s o l v e (V1 ,X3 ,N,C1) ,
d i f f e l (X3 ,P,ELX) , pset (,P) .

s o l v e (V,P,N,C1):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,X1 ,C) ,
d i f f e l (X1 ,X,ELX) , s o l v e (V1 ,P,X2 ,C1) ,
union (X2 ,N,ELX) , pset (,N) .

s o l v e (V,P,N,C1):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,X,CX1) ,
d i f f e l (CX1,C,ELC) , s o l v e (V1 ,P,N,CX2) ,
union (CX2,C1 ,ELC) .

s o l v e (V,PX,N,C1C2):− bag (V,XX,C) , d i f f e l (XX,X,ELX) ,
ch i l d 1 (V1 ,V) , bag (V1 ,X,C) , s o l v e (V1 ,P,N,C1) ,
t rue (V,X, emptyset ,C2 ,C) , d i f f e l (PX,P,ELX) ,
union (C1C2 ,C1 ,C2) ,
pset (,PX) .

s o l v e (V,P,NX,C1C2):− bag (V,XX,C) , d i f f e l (XX,X,ELX) ,
ch i l d 1 (V1 ,V) , bag (V1 ,X,C) , s o l v e (V1 ,P,N,C1) ,
t rue (V, emptyset ,ELX,C2 ,C) , d i f f e l (NX,N,ELX) ,
union (C1C2 ,C1 ,C2) , pset (,NX) .

s o l v e (V,P,N,C1C2):− bag (V,X,CX) , ch i l d 1 (V1 ,V) , bag (V1 ,X,C) ,
s o l v e (V1 ,P,N,C1) , t rue (V,P,N,C2 ,ELC) ,
d i f f e l (CX,C,ELC) , union (C1C2 ,C1 ,C2) , c s e t (,CX) .

s o l v e (V,P,N,C1C2):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,X,C) ,
s o l v e (V1 ,P,N,C1) , c h i l d 2 (V2 ,V) , bag (V2 ,X,C) ,
s o l v e (V2 ,P,N,C2) , union (C1C2 ,C1 ,C2) .

s u c c e s s :− root (V) , bag (V,X,C) , s o l v e (V,P,N,C) .

c l (c1) .
c l (c2) .

65

c l (c0) .
var (x4) .
var (x3) .
var (x2) .
var (x1) .
var (x6) .
var (x5) .
pos (x2 , c0) .
pos (x6 , c2) .
pos (x3 , c2) .
pos (x3 , c0) .
pos (x1 , c0) .
pos (x4 , c2) .
pos (x5 , c1) .
neg (x2 , c1) .
neg (x4 , c1) .
root (n1) .
l e a f (n12) .
l e a f (n8) .
l e a f (n9) .
c h i l d 1 (n12 , n11) .
c h i l d 1 (n3 , n2) .
c h i l d 1 (n6 , n5) .
c h i l d 1 (n4 , n3) .
c h i l d 1 (n11 , n10) .
c h i l d 1 (n2 , n1) .
c h i l d 1 (n8 , n7) .
c h i l d 1 (n7 , n6) .
c h i l d 1 (n5 , n4) .
c h i l d 2 (n9 , n7) .
c h i l d 2 (n10 , n6) .
bag (n11 , emptyset , svc2) .
bag (n2 , emptyset , svc1) .
bag (n10 , svx2 , svc2) .
bag (n9 , svx3 , svc0c2) .
bag (n1 , svx5 , svc1) .
bag (n8 , svx1 , svc0) .
bag (n7 , svx2 , svc0c2) .
bag (n6 , svx2x4 , svc2) .
bag (n5 , svx2x4 , emptyset) .
bag (n4 , svx2x4 , svc1) .
bag (n12 , svx6 , svc2) .
bag (n3 , svx4 , svc1) .
t r eewidth (3) .

66

A.2 DLV Complex

#inc lude<ListAndSet>

s o l v e (V,P,N,C1):− l e a f (V) , bag (V,X,C) ,
t rue (V,P,N,C1 ,C) ,X=#union (P,N) ,
a s e t (,X) , a s e t (,P) , a s e t (,N) ,
#i n t e r s e c t i o n (N,P , { }) .

s o l v e (V,P,N,C1):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,XX,C) ,
#d i f f e r e n c e (XX,X,ELX),#card (ELX)==1,
s o l v e (V1 ,X3 ,N,C1) ,
#d i f f e r e n c e (X3 ,P,ELX),#card (ELX)==1,
pset (,P) .

s o l v e (V,P,N,C1):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,X1 ,C) ,
#d i f f e r e n c e (X1 ,X,ELX),#card (ELX)==1,
s o l v e (V1 ,P,X2 ,C1) ,X2=#union (N,ELX) ,
a s e t (,X2) , a s e t (,N) , a s e t (,ELX) ,
pset (,N) .

s o l v e (V,P,N,C1):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,X,CX1) ,
#d i f f e r e n c e (CX1,C,ELC),# card (ELC)==1,
s o l v e (V1 ,P,N,CX2) ,
CX2=#union (C1 ,ELC) ,
a s e t (,CX2) , a s e t (,C1) , a s e t (,ELC) .

s o l v e (V,PX,N,C1C2):− bag (V,XX,C) ,
#d i f f e r e n c e (XX,X,ELX),# card (ELX)==1,
ch i l d 1 (V1 ,V) , bag (V1 ,X,C) ,
s o l v e (V1 ,P,N,C1) , t rue (V,X,{ } ,C2 ,C) ,
#d i f f e r e n c e (PX,P,ELX),# card (ELX)==1,
C1C2=#union (C1 ,C2) ,
a s e t (,C1C2) , a s e t (,C1) , a s e t (,C2) ,
pset (,PX) .

s o l v e (V,P,NX,C1C2):− bag (V,XX,C) ,
#d i f f e r e n c e (XX,X,ELX),# card (ELX)==1,
ch i l d 1 (V1 ,V) , bag (V1 ,X,C) , s o l v e (V1 ,P,N,C1) ,
t rue (V,{ } ,ELX,C2 ,C) ,
#d i f f e r e n c e (NX,N,ELX),# card (ELX)==1,
C1C2=#union (C1 ,C2) ,
a s e t (,C1C2) , a s e t (,C1) , a s e t (,C2) ,
pset (,NX) .

s o l v e (V,P,N,C1C2):− bag (V,X,CX) , ch i l d 1 (V1 ,V) , bag (V1 ,X,C) ,
s o l v e (V1 ,P,N,C1) , t rue (V,P,N,C2 ,ELC) ,
#d i f f e r e n c e (CX,C,ELC),# card (ELC)==1,
C1C2=#union (C1 ,C2) ,
a s e t (,C1C2) , a s e t (,C1) , a s e t (,C2) ,
c s e t (,CX) .

s o l v e (V,P,N,C1C2):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,X,C) ,
s o l v e (V1 ,P,N,C1) , c h i l d 2 (V2 ,V) , bag (V2 ,X,C) ,
s o l v e (V2 ,P,N,C2) ,C1C2=#union (C1 ,C2) ,
a s e t (,C1C2) , a s e t (,C1) , a s e t (,C2) .

s u c c e s s :− root (V) , bag (V,X,C) , s o l v e (V,P,N,C) .

67

c l (c1) .
c l (c2) .
c l (c0) .
var (x4) .
var (x3) .
var (x2) .
var (x1) .
var (x6) .
var (x5) .
pos (x2 , c0) .
pos (x6 , c2) .
pos (x3 , c2) .
pos (x3 , c0) .
pos (x1 , c0) .
pos (x4 , c2) .
pos (x5 , c1) .
neg (x2 , c1) .
neg (x4 , c1) .
root (n1) .
l e a f (n12) .
l e a f (n8) .
l e a f (n9) .
c h i l d 1 (n12 , n11) .
c h i l d 1 (n3 , n2) .
c h i l d 1 (n6 , n5) .
c h i l d 1 (n4 , n3) .
c h i l d 1 (n11 , n10) .
c h i l d 1 (n2 , n1) .
c h i l d 1 (n8 , n7) .
c h i l d 1 (n7 , n6) .
c h i l d 1 (n5 , n4) .
c h i l d 2 (n9 , n7) .
c h i l d 2 (n10 , n6) .
bag (n11 ,{} ,{ c2 }) .
bag (n2 ,{} ,{ c1 }) .
bag (n10 ,{ x2 } ,{ c2 }) .
bag (n9 ,{ x3 } ,{ c0 , c2 }) .
bag (n1 ,{ x5 } ,{ c1 }) .
bag (n8 ,{ x1 } ,{ c0 }) .
bag (n7 ,{ x2 } ,{ c0 , c2 }) .
bag (n6 ,{ x2 , x4 } ,{ c2 }) .
bag (n5 ,{ x2 , x4 } ,{ }) .
bag (n4 ,{ x2 , x4 } ,{ c1 }) .
bag (n12 ,{ x6 } ,{ c2 }) .
bag (n3 ,{ x4 } ,{ c1 }) .
pset (n4 ,{ x2 }) .
pset (n5 ,{ x2 }) .
pset (n6 ,{ x4 }) .
pset (n4 ,{ x2 , x4 }) .
pset (n5 ,{ x2 , x4 }) .
pset (n1 ,{ x5 }) .
pset (n6 ,{ x2 }) .
pset (n10 ,{ x2 }) .
pset (n8 ,{ x1 }) .
pset (n12 ,{ x6 }) .
pset (n4 ,{ x4 }) .
pset (n5 ,{ x4 }) .
pset (n6 ,{ x2 , x4 }) .

68

pset (n9 ,{ x3 }) .
pset (n7 ,{ x2 }) .
pset (n3 ,{ x4 }) .
c s e t (n1 ,{ c1 }) .
c s e t (n4 ,{ c1 }) .
c s e t (n9 ,{ c2 }) .
c s e t (n2 ,{ c1 }) .
c s e t (n7 ,{ c2 }) .
c s e t (n10 ,{ c2 }) .
c s e t (n8 ,{ c0 }) .
c s e t (n12 ,{ c2 }) .
c s e t (n9 ,{ c0 }) .
c s e t (n6 ,{ c2 }) .
c s e t (n7 ,{ c0 }) .
c s e t (n3 ,{ c1 }) .
c s e t (n11 ,{ c2 }) .
c s e t (n9 ,{ c0 , c2 }) .
c s e t (n7 ,{ c0 , c2 }) .
t r eewidth (3) .

69

A.3 DLV Complex with external predicate

#inc lude<ListAndSet>

#inc lude<exttrue>

s o l v e (V,P,N,C1):− l e a f (V) , bag (V,X,C) ,
#true (P,N,C1 ,C,POSSET,NEGSET) ,
po s s e t (POSSET) , negset (NEGSET) ,
X=#union (P,N) , a s e t (,X) , a s e t (,P) , a s e t (,N) ,
#i n t e r s e c t i o n (N,P , { }) .

s o l v e (V,P,N,C1):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,XX,C) ,
#d i f f e r e n c e (XX,X,ELX),#card (ELX)==1,
s o l v e (V1 ,X3 ,N,C1) ,
#d i f f e r e n c e (X3 ,P,ELX),#card (ELX)==1,
pset (,P) .

s o l v e (V,P,N,C1):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,X1 ,C) ,
#d i f f e r e n c e (X1 ,X,ELX),#card (ELX)==1,
s o l v e (V1 ,P,X2 ,C1) ,X2=#union (N,ELX) ,
a s e t (,X2) , a s e t (,N) , a s e t (,ELX) , pset (,N) .

s o l v e (V,P,N,C1):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,X,CX1) ,
#d i f f e r e n c e (CX1,C,ELC),# card (ELC)==1,
s o l v e (V1 ,P,N,CX2) ,CX2=#union (C1 ,ELC) ,
a s e t (,CX2) , a s e t (,C1) , a s e t (,ELC) .

s o l v e (V,PX,N,C1C2):− bag (V,XX,C) ,
#d i f f e r e n c e (XX,X,ELX),#card (ELX)==1,
ch i l d 1 (V1 ,V) , bag (V1 ,X,C) , s o l v e (V1 ,P,N,C1) ,
#true (X,{ } ,C2 ,C,POSSET,NEGSET) ,
po s s e t (POSSET) , negset (NEGSET) ,
#d i f f e r e n c e (PX,P,ELX),#card (ELX)==1,
C1C2=#union (C1 ,C2) ,
a s e t (,C1C2) , a s e t (,C1) , a s e t (,C2) ,
pset (,PX) .

s o l v e (V,P,NX,C1C2):− bag (V,XX,C) ,
#d i f f e r e n c e (XX,X,ELX),#card (ELX)==1,
ch i l d 1 (V1 ,V) , bag (V1 ,X,C) , s o l v e (V1 ,P,N,C1) ,
#true ({} ,ELX,C2 ,C,POSSET,NEGSET) ,
po s s e t (POSSET) , negset (NEGSET) ,
#d i f f e r e n c e (NX,N,ELX),#card (ELX)==1,
C1C2=#union (C1 ,C2) ,
a s e t (,C1C2) , a s e t (,C1) , a s e t (,C2) ,
pset (,NX) .

s o l v e (V,P,N,C1C2):− bag (V,X,CX) , ch i l d 1 (V1 ,V) , bag (V1 ,X,C) ,
s o l v e (V1 ,P,N,C1) ,
#true (P,N,C2 ,ELC,POSSET,NEGSET) ,
po s s e t (POSSET) , negset (NEGSET) ,
#d i f f e r e n c e (CX,C,ELC),#card (ELC)==1,
C1C2=#union (C1 ,C2) ,
a s e t (,C1C2) , a s e t (,C1) , a s e t (,C2) ,
c s e t (,CX) .

s o l v e (V,P,N,C1C2):− bag (V,X,C) , c h i l d 1 (V1 ,V) , bag (V1 ,X,C) ,
s o l v e (V1 ,P,N,C1) , c h i l d 2 (V2 ,V) , bag (V2 ,X,C) ,

70

s o l v e (V2 ,P,N,C2) ,C1C2=#union (C1 ,C2) ,
a s e t (,C1C2) , a s e t (,C1) , a s e t (,C2) .

s u c c e s s :− root (V) , bag (V,X,C) , s o l v e (V,P,N,C) .

t r eewidth (3) .
po s s e t ({{ c0 , x2 } ,{ c2 , x6 } ,{ c2 , x3 } ,{ c0 , x3 } ,{ c0 , x1 } ,{ c2 , x4 } ,{ c1 , x5 } }) .
negset ({{ c1 , x2 } ,{ c1 , x4 } }) .

71

Appendix B

Parsers

B.1 Flex - scanner.l

extern char ∗ yytext ;
long l i n eno = 1 ;
long curchar = 0 ;

void yye r r o r (char ∗ s t) ;

i n t YYLeng()
{

r e turn s t r l e n (yytext) ;
}
char ∗ Copyyytext ()
{

i n t l en = YYLeng()+1;
char ∗ bu f f e r = new char [l en] ;
memset (bu f f e r , 0 , l en) ;
s t r cpy (bu f f e r , yytext) ;
r e turn bu f f e r ;

}

%}

COMMENT %.∗
SPACE [\ t \ r \b]∗
NEWLINE \n
DIGIT [0−9]
NUMBER {DIGIT}+
IDENT [a−z] [a−zA−Z0−9 ’] ∗
SETVARIABLE [A−Z] [a−zA−Z0−9’ ’] ∗
STRING \” [ˆ\”\n]∗\”
IF ”:””−”
ASSIGN ”=”
RULEEND ” .”
OBRACKET ”(”
CBRACKET ”)”
OACCOLADE ”{”
CACCOLADE ”}”
COMMA ” ,”

72

WEAKNOT not
UNION union
INTERECT i n t e r s e c t
PROPSUBSET propsubset
SUBSET subset
DIFFEL d i f f e l
CL c l
VAR var
POS pos
NEG neg
ROOT root
LEAF l e a f
TRUE true
CHILD1 ch i l d 1
CHILD2 ch i l d 2
BAG bag
NULLVAL NULL
EMPTYSET ”{””}”

%%

{SPACE} |{COMMENT} { curchar+=YYLeng () ; }
{NEWLINE} { curchar=0; l i n eno++; }
{CL} { curchar+=YYLeng () ; r e turn CL; }
{VAR} { curchar+=YYLeng () ; r e turn VAR; }
{POS} { curchar+=YYLeng () ; r e turn POS; }
{NEG} { curchar+=YYLeng () ; r e turn NEG; }
{ROOT} { curchar+=YYLeng () ; r e turn ROOT; }
{LEAF} { curchar+=YYLeng () ; r e turn LEAF; }
{TRUE} { curchar+=YYLeng () ; r e turn TRUE; }
{CHILD1} { curchar+=YYLeng () ; r e turn CHILD1; }
{CHILD2} { curchar+=YYLeng () ; r e turn CHILD2; }
{BAG} { curchar+=YYLeng () ; r e turn BAG; }
{NULLVAL} { curchar+=YYLeng () ; r e turn NULLVAL; }
{UNION} { curchar+=YYLeng () ; r e turn UNION; }
{INTERECT} { curchar+=YYLeng () ; r e turn INTERSECT; }
{SUBSET} { curchar+=YYLeng () ; r e turn SUBSET; }
{PROPSUBSET} { curchar+=YYLeng () ; r e turn PROPSUBSET; }
{DIFFEL} { curchar+=YYLeng () ; r e turn DIFFEL ; }
{EMPTYSET} { curchar+=YYLeng () ;

yy lva l . s = Copyyytext () ; r e turn EMPTYSET;
}

{WEAKNOT} { curchar+=YYLeng () ; r e turn WEAKNOT; }
{NUMBER} { curchar+=YYLeng () ;

yy lva l . l = s t r t o l (yytext ,NULL, 1 0) ; r e turn NUMBER;
}

{IDENT} { curchar+=YYLeng () ; yy lva l . s = Copyyytext () ;
r e turn IDENT;

}
{STRING} { curchar+=YYLeng () ; yy lva l . s = Copyyytext () ;

r e turn STRING;
}

{SETVARIABLE} { curchar+=YYLeng () ; yy lva l . s = Copyyytext () ;
r e turn SETVARIABLE;

}
{ IF} { curchar+=YYLeng () ; r e turn IF ; }
{RULEEND} { curchar+=YYLeng () ; r e turn RULEEND; }
{OBRACKET} { curchar+=YYLeng () ; r e turn OBRACKET; }

73

{CBRACKET} { curchar+=YYLeng () ; r e turn CBRACKET; }
{OACCOLADE} { curchar+=YYLeng () ; r e turn OACCOLADE; }
{CACCOLADE} { curchar+=YYLeng () ; r e turn CACCOLADE; }
{COMMA} { curchar+=YYLeng () ; r e turn COMMA; }
{ASSIGN} { curchar+=YYLeng () ; r e turn ASSIGN ; }

. {
char msg [2 5] ;
s p r i n t f (msg,”%s <%s >” ,” i n v a l i d cha ra c te r ” , yytext) ;
yye r r o r (msg) ;

}

<<EOF>> {
yyterminate () ;
}

%%

74

B.2 Bison - parser.y

%s t a r t program

%token <l> NUMBER
%token <s> IDENT SETVARIABLE STRING NULLVAL EMPTYSET
%token <s> IF WEAKNOT OBRACKET CBRACKET OACCOLADE CACCOLADE COMMA
%token <s> RULEEND CL VAR POS NEG ROOT LEAF CHILD1 CHILD2 BAG TRUE
%token <s> ASSIGN NOT UNION INTERSECT PROPSUBSET SUBSET DIFFEL
%type <pn> constant expr term expr 0 s e t
%type <pn> pa raml i s t l i t e r a l atom body element c o n s t a n t l i s t
%type <pn> program body ru l e r u l e s head bu i l d i n

%l e f t ASSIGN NUMBER VARIABLE PIPE UNION INTERSECT
%l e f t PROPSUBSET SUBSET DIFFEL
%l e f t NOT
%r i gh t OBRACKET
%l e f t CBRACKET
%l e f t COMMA
%r i gh t OACCOLADE
%l e f t CACCOLADE

%%

program : r u l e s
{ r oo t pa r s e node = $1 ; }
|
e r r o r
{ r oo t pa r s e node = NULL; }

;

r u l e s : r u l e
{ $$ = popErrorStack (

new ParseTreeNode(NT RULES,NULL, $1 ,NULL, l i n eno)) ;
}
|
r u l e r u l e s
{ $$ = popErrorStack (

new ParseTreeNode(NT RULES,NULL, $1 , $2 , l i n eno)) ;
}

;

r u l e : head RULEEND
{ $$ = popErrorStack (

new ParseTreeNode(NT RULE,NULL, $1 ,NULL, l i n eno)) ;
}
| head IF body RULEEND

{ $$ = popErrorStack (
new ParseTreeNode(NT RULE,NULL, $1 , $3 , l i n eno)) ;

}
| IF body RULEEND

{ $$ = popErrorStack (
new ParseTreeNode(NT RULE,NULL,NULL, $2 , l i n eno)) ;

}
;

head : l i t e r a l

75

{ $$ = popErrorStack (
new ParseTreeNode(NT HEAD,NULL, $1 ,NULL, l i n eno)) ;

}
| head COMMA l i t e r a l

{ $$ = popErrorStack (
new ParseTreeNode(NT HEAD,NULL, $3 , $1 , l i n eno)) ;

}
;

body : body element
{ $$ = popErrorStack (

new ParseTreeNode(NT BODY,NULL, $1 ,NULL, l i n eno)) ;
}
| body COMMA body element

{ $$ = popErrorStack (
new ParseTreeNode(NT BODY,NULL, $3 , $1 , l i n eno)) ;

}
;

body element : l i t e r a l
{ $$=$1 ; }
| expr
{ $$ = popErrorStack (

new ParseTreeNode(NT EXPR,NULL, $1 ,NULL, l i n eno)) ;
}

;

l i t e r a l : atom
{ $$ = popErrorStack (

new ParseTreeNode(NT LITERAL,NULL, $1 ,NULL, l i n eno)) ;
}
|
WEAKNOT atom
{ $$ = popErrorStack (

new ParseTreeNode(NT LITERAL,NULL, $2 ,NULL, l i n eno)) ;
((ParseTreeNode ∗) $$)−> i s n e g a t i v e=true ;

}

;

atom : IDENT
{ $$ = popErrorStack (

new ParseTreeNode(NT ATOM, $1 ,NULL,NULL, l i n eno)) ;
}
|
IDENT OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT ATOM, $1 ,NULL, $3 , l i n eno)) ;
}
|
bu i l d i n
{ $$ = $1 ; }

;

bu i l d i n : CL OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno , BI CL)) ;

76

}
|
VAR OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,BI VAR)) ;
}
|
POS OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno , BI POS)) ;
}
|
NEG OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,BI NEG)) ;
}
|
ROOT OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,BI ROOT)) ;
}
|
LEAF OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno , BI LEAF)) ;
}
|
CHILD1 OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,
BI CHILD1)) ;

}
|
CHILD2 OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,
BI CHILD2)) ;

}
|
BAG OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,BI BAG)) ;
}
|
TRUE OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,BI TRUE)) ;
}
|
UNION OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,BI UNION)) ;
}
|
INTERSECT OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,
BI INTERSECT)) ;

77

}
|
DIFFEL OBRACKET paraml i s t CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT BUILDIN,NULL,NULL, $3 , l ineno ,
BI DIFFEL)) ;

}
;

pa raml i s t : pa raml i s t COMMA term
{ $$ = popErrorStack (

new ParseTreeNode(NT PARAMLIST,NULL, $3 , $1 , l i n eno)) ;
}
|
term
{ $$ = popErrorStack (

new ParseTreeNode(NT PARAMLIST,NULL, $1 ,NULL, l i n eno)) ;
}
|
pa raml i s t COMMA expr
{ $$ = popErrorStack (

new ParseTreeNode(NT PARAMLIST,NULL, $3 , $1 , l i n eno)) ;
}
|
expr
{ $$ = popErrorStack (

new ParseTreeNode(NT PARAMLIST,NULL, $1 ,NULL, l i n eno)) ;
} ;

expr : expr 0
{ $$ = $1 ; }
|
term ASSIGN expr 0
{ $$ = popErrorStack (

new ParseTreeNode(NT EXPRNULL, $1 , $3 , l ineno ,EX ASSIGN)) ;
}

;

expr 0 : term
{ $$ = $1 ; }
|
SUBSET OBRACKET expr 0 COMMA expr 0 CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT EXPR,NULL, $3 , $5 , l ineno ,EX SUBSET)) ;
}
|
PROPSUBSET OBRACKET expr 0 COMMA expr 0 CBRACKET
{ $$ = popErrorStack (

new ParseTreeNode(NT EXPR,NULL, $3 , $5 , l ineno ,
EX PROPSUBSET)) ;

}
;

term : constant
{ $$=$1 ; }
|
SETVARIABLE

78

{ $$ = popErrorStack (
new ParseTreeNode(NT SETVARIABLE, $1 ,NULL,NULL, l i n eno)) ;

}
|
EMPTYSET
{ $$ = popErrorStack (

new ParseTreeNode(NT EMPTYSET, $1 ,NULL,NULL, l i n eno)) ;
}
|
s e t
{ $$=$1 ; }

;

s e t : OACCOLADE c o n s t a n t l i s t CACCOLADE
{ $$ = popErrorStack (

new ParseTreeNode(NT SET,NULL,NULL, $2 , l i n eno)) ;
}

c o n s t a n t l i s t : c o n s t a n t l i s t COMMA constant
{ $$ = popErrorStack (

new ParseTreeNode(NT CONSTLIST ,NULL, $3 , $1 , l i n eno)) ;
}
|
constant
{ $$ = popErrorStack (

new ParseTreeNode(NT CONSTLIST ,NULL, $1 ,NULL, l i n eno)) ;
}

;

constant : IDENT
{ $$ = popErrorStack (

new ParseTreeNode(NT IDENT, $1 ,NULL,NULL, l i n eno)) ;
}
|
NUMBER
{ $$ = popErrorStack (

new ParseTreeNode($1 ,NULL,NULL, l i n eno)) ;
}
|
STRING
{ $$ = popErrorStack (

new ParseTreeNode(NT STRING, $1 ,NULL,NULL, l i n eno)) ;
}
|
NULLVAL
{ $$ = popErrorStack (

new ParseTreeNode(NT NULL, $1 ,NULL,NULL, l i n eno)) ;
}
|
OACCOLADE CACCOLADE
{ $$ = popErrorStack (

new ParseTreeNode(NT EMPTYSET, $1 ,NULL,NULL, l i n eno)) ;
}

%%

79

Appendix C

Gnuplot

#se t g l o ba l opt i ons

s e t termina l png

s e t x l a b e l ’ c l aus e s ’
s e t key l e f t top
s e t data s t y l e l i n e s p o i n t s
s e t p o i n t s i z e 1 . 5

c r e a t e p l o t s Treewidth : 3
s e t t i t l e ’ Treewidth : 3 ’
s e t output ” s ta t s complex/ r e s u l t s 3 . png”
p lo t ’ s ta t s complex/ r e s u l t s 3 . dat ’ us ing 2 :7 \
t i t l e ”Time (s e c)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 3 . dat ’ us ing 2 : ($4 /10) \
t i t l e ”Nodes (x/10)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 3 . dat ’ us ing 2 : ($6 /1000) \
t i t l e ”True (x/1000)” with l i n e s p o i n t s

c r e a t e p l o t s Treewidth : 4
s e t t i t l e ’ Treewidth : 4 ’
s e t output ” s ta t s complex/ r e s u l t s 4 . png”
p lo t ’ s ta t s complex/ r e s u l t s 4 . dat ’ us ing 2 :7 \
t i t l e ”Time (s e c)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 4 . dat ’ us ing 2 : ($4 /10) \
t i t l e ”Nodes (x/10)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 4 . dat ’ us ing 2 : ($6 /1000) \
t i t l e ”True (x/1000)” with l i n e s p o i n t s

c r e a t e p l o t s Treewidth : 5
s e t t i t l e ’ Treewidth : 5 ’
s e t output ” s ta t s complex/ r e s u l t s 5 . png”
p lo t ’ s ta t s complex/ r e s u l t s 5 . dat ’ us ing 2 :7 \
t i t l e ”Time (s e c)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 5 . dat ’ us ing 2 : ($4 /10) \
t i t l e ”Nodes (x/10)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 5 . dat ’ us ing 2 : ($6 /1000) \
t i t l e ”True (x/1000)” with l i n e s p o i n t s

80

s e t t i n g termina l to p o s t s c r i p t
s e t termina l p o s t s c r i p t c o l o r s o l i d
s e t termina l p o s t s c r i p t eps

c r e a t e p l o t s Treewidth : 3
s e t t i t l e ’ Treewidth : 3 ’
s e t output ” s ta t s complex/ r e s u l t s 3 . eps ”
p lo t ’ s ta t s complex/ r e s u l t s 3 . dat ’ us ing 2 :7 \
t i t l e ”Time (s e c)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 3 . dat ’ us ing 2 : ($4 /10) \
t i t l e ”Nodes (x/10)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 3 . dat ’ us ing 2 : ($6 /1000) \
t i t l e ”True (x/1000)” with l i n e s p o i n t s

c r e a t e p l o t s Treewidth : 4
s e t t i t l e ’ Treewidth : 4 ’
s e t output ” s ta t s complex/ r e s u l t s 4 . eps ”
p lo t ’ s ta t s complex/ r e s u l t s 4 . dat ’ us ing 2 :7 \
t i t l e ”Time (s e c)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 4 . dat ’ us ing 2 : ($4 /10) \
t i t l e ”Nodes (x/10)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 4 . dat ’ us ing 2 : ($6 /1000) \
t i t l e ”True (x/1000)” with l i n e s p o i n t s

c r e a t e p l o t s Treewidth : 5
s e t t i t l e ’ Treewidth : 5 ’
s e t output ” s ta t s complex/ r e s u l t s 5 . eps ”
p lo t ’ s ta t s complex/ r e s u l t s 5 . dat ’ us ing 2 :7 \
t i t l e ”Time (s e c)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 5 . dat ’ us ing 2 : ($4 /10) \
t i t l e ”Nodes (x/10)” with l i n e s p o i n t s , \
’ s ta t s complex/ r e s u l t s 5 . dat ’ us ing 2 : ($6 /1000) \
t i t l e ”True (x/1000)” with l i n e s p o i n t s

81

