
Designing and Evaluating a Board
Game Recommender System

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Michael Ion, B.Sc.

Registration Number 1005233

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Hannes Werthner

Assistance: Univ.Ass. Dimitris Sacharidis, Ph.D.

Vienna, 12th December, 2018

Michael Ion Hannes Werthner

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Erklärung zur Verfassung der
Arbeit

Michael Ion, B.Sc.

michael.antonius.ion@gmail.com

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Dezember 2018

Michael Ion

iii

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Abstract

Board games have gained an unbelievable traction over the last few years. The number of
board game releases grows exponentially and customers have a variety of choice like never
before. This increases decision paralysis and makes it harder to decide what game to buy
next. Consequently, recommendation systems were applied in various domains over the
last decade to relieve this issue for customers. In this thesis, we will investigate and create
various recommendation systems for this specific use case. We apply both collaborative
as well as content-based approaches. We conclude the thesis with a thorough evaluation
of the different recommender systems.

v

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Contents

Abstract v

Contents vii

1 Introduction 1
1.1 Motivation . 1
1.2 What problem needs to be solved? . 3
1.3 Aim of the work . 3
1.4 Methodological approach . 4

2 Background 7
2.1 History of Recommender Systems . 7
2.2 Types of Recommender Systems . 8

3 History of Board Games & Data 23
3.1 History of Boardgames: Then to Now 23
3.2 The Data - boardgamegeek.com . 26
3.3 Collecting the Data & Data Models 28
3.4 Available board game recommendation systems 29

4 Recommenders 35
4.1 Implementation . 35
4.2 Collaborative Filtering Approaches . 37
4.3 Content-Based Approaches . 42
4.4 Hybrid Recommender . 44
4.5 Baseline: Popularity-Based Recommender 45

5 Software 47
5.1 Existing Recommendation Software . 47
5.2 Applied Software and Technologies . 58

6 Results 65
6.1 Evaluation Methodology . 65
6.2 Evaluation Metrics . 66

vii

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.3 Training and Test Data Selection . 70
6.4 Discussion of Results . 72
6.5 Summary of Results . 76

7 Summary & Future work 79
7.1 Summary of this thesis . 79
7.2 Answered Research Questions . 79
7.3 Opportunities for future research - open issues 80

List of Figures 83

List of Tables 87

Bibliography 89

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 1
Introduction

In this chapter, we will give an introduction to the topics that are tackled by this thesis.
We will establish the motivation behind this research subject and the end goal of the
thesis. We will also present the methodological approach taken to fulfill the research
goals.

1.1 Motivation

1.1.1 The rise of the Recommender Systems

In the last few years, the practical use of Recommender Systems (RSs) has skyrocketed.
They have become very common in a wide range of areas. Most commonly, they are
associated with different consumer products like movies, music or news paper articles.
There are a lot of companies that come to mind: Streaming provider Netflix is known
for heavily including recommendations for movies and TV series in the User Interface
(UI) of their product. The New York Times or Wall Street Journal (and nearly every
major newspaper publisher) relies on the use of RSs to find interesting articles for their
readers. E-Commerce pioneer Amazon was one of the first companies to introduce
recommendations for general items, based on the sales habits of its customers(“Customers
who bought this...”).

RSs have become ubiquitous tools, aiming to save time and energy for users, while
increasing traffic and sales for providers. The economic success of these systems has
been shown in increasing sales volume and sales diversity [LH14]. For consumer media,
there is a lot of academic research available on the technical features of these media
recommender systems, as a simple search on Google Scholar shows [OTTK12] [SKKR01].
It is evident that Recommender Systems can provide a valuable service in domains where
users are faced with decisions between numerous options. For these reasons, we think it

1

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

Figure 1.1: Released games per year 1900 - 2010. Left: Linear Scale, Right: Logarithmic
Scale [Vat17]

is interesting to investigate the use of a RSs in the domain of Board Games. But firstly,
we need to specify the current development of this consumer media.

1.1.2 The comeback of board games

Sales and releases of new board games have been increasing proportionally with the rise
of video games, which is about 25% per year [Duf14] [Win14]. Never before in history
have there been as many board game releases as today. There are a variety of theories
why this has happened, despite the still rising popularity of digital games. For one, digital
versions of classic board games might have helped to keep this form of entertainment
alive. But the other, probably more relevant reason is, that, as the modern working
environment and everyday life is being pervaded more and more with Computers, smart
phones and other new technologies, people might look stronger for a pastime that they
can enjoy with friends and families that doesn’t involve “staring at a screen”.

The total market is estimated at around $750 million - if we would include collectible
tabletop games, this number would double [Gri17]. Even new research has been made
about this board gaming “phenomenon” [Woo12]. In fact, never before have there
been so many board games released as today [Vat17]. Figure 1.1 highlights the yearly
developments.

2

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.2. What problem needs to be solved?

1.2 What problem needs to be solved?

The increasing popularity is most certainly a great development for the board game
community. As for every type of item, good or form of popular art or entertainment,
more choice implies more supply, which further implies, overall, a quality improvement in
order to survive against the competition. But it has been shown, that too much freedom
of choice and too many options can make people feel lost and overwhelmed. Customers
can experience what is called “decision paralysis” [Sch09]. This can help the customer
facilitate their choices, save them time and protect them from feeling burnt out. It is
also one of several reasons why streaming providers like Netflix or Spotify use RSs.

To solve this, we propose the application of a RS in the domain of Board games. We
develop a board game recommender system, where the users specify one or multiple
games they like as an input. The system processes this information based on game
characteristics and existing user ratings. It outputs a list of games they will likely enjoy
as well. To properly construct a reliable system, we need appropriate data, techniques to
compute predictions and methods for evaluation. We discuss these in the following.

However, there is no straight answer to which techniques are best suitable to our problem
of recommending board games. As we have both user ratings as well as user-provided data
about the games themselves available, we can develop a new approach for this specific
use case. Especially for content-based techniques, where we use multinominal attributes
like “Mechanics” or “Family” of board games (where one item can have multiple values
in one attribute),we need to investigate fitting methods and adapt them, for example
TF-IDF (Term Frequency - Inverse Document Frequency).

1.3 Aim of the work

The aim of this work is to create a RS that provides board game suggestions. On top
of that, we test and evaluate different approaches of doing so. It should execute as
follows: The recommender system takes one or several games as an input. The output
consists of several board game titles that is very likely enjoyed by a user who also liked
the games provided as the input. The computation of the various recommendations is
based on different strategies, which need to be explored. Additionally, we use our data
for the evaluation and comparison of the performances of our various recommendation
techniques.

1.3.1 Research Questions and Expected Results

With our work, we aim to answer following research questions.

• Q1: Which recommendation methods are appropriate for recommending board
games?

• Q2: Which attributes can be used for recommendations?

3

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1. Introduction

• Q3: Which metrics can be applied for measuring the quality of board game
recommendations?

In addition to providing answers to these questions, we build models that can
take games and compute recommendations, based on various approaches. We also
develop metrics to evaluate, validate and justify our findings.

1.4 Methodological approach

1. Literature Review

Relevant literature that informs us about the best way to accomplish the tasks at
hand is gathered and dissected.

2. Data

To compute similarity between board games, we use two main data types: Infor-
mation about the games themselves, as well as users who rated these games. We
retrieved this data by using the API of the most important board game review site,
BoardGameGeek.com. We have collected:

• 71.343 Board games with a multitude of attributes. Attributes include genre,
category, playing time, player count, mechanics used in the game and many
more.

• 201.983 Users who provided a total of more than 20 million ratings. About
40% of users rated more than 100 games each, giving a reliable basis for
recommendation computing.

3. Application of Recommender Systems

The variety of the data allows us to employ different recommendation techniques.

• Collaborative Methods - recommendations based on users ratings (item-to-item
CF, Matrix Factorisation,...) [HKTR04].

• Content Based Methods - recommendations are computed based on similar
attributes from other games (using tf-idf, Self Organizing Maps, Decision
Trees...)

• Hybrid Approach - A combination of the two above [Bur02]

4. Evaluation and Findings

We measure the performance of our recommendation engine by employing metrics
utilizing data on existing users. Evaluation proceeds in following steps:

a) Use one (or several) of the user’s well-rated items as an input.

b) Calculate a list of games the user likely enjoys as well.

4

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1.4. Methodological approach

c) Compare these results to the rest of the user’s rated items (not including the
withheld items that were used in step 1 as an input). Ratings of the user are
normalized to ensure comparability. To achieve this, we employ a range of
selected metrics [SG09]:

• Precision is a metric that measures how many games that are relevant to
the user have been found in the recommendations.

• Recall is a metric that is defined as the ratio of relevant items selected to
total number of relevant items available. In our case, this means: How
many of the user’s well-liked items is the system able to recall, based
on a small subset of input? Evaluation can be based on prediction of
the actual rating or on a threshold: If a game is predicted to be “good”
(rating higher than 7) or “bad” by the user.

• NDCG (Normalized Discounted Cumulative Gain) is a ranking metric that
measures how good the recommendations are compared to the optimal
set of recommendations.

• MAP (Mean Average Precision) is another accuracy metric. It measures
how good Precision results are at different Recall levels.

• Diversity and Novelty: One shortcoming of recommender systems is that
they can recommend items that are too similar to each other. However,
there exist metrics to measure this. For deciding if a list of recommended
items is too similar or not very diverse, we would compare these to the
collection of a user’s rated games.

5

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 2
Background

In this chapter, we will look at the current available research. We will collect and present
available literature, as well as analyse and compare the most common approaches, their
implementations and key findings.

2.1 History of Recommender Systems

A lot of ideas in RS stem from the discipline of Information Retrieval (IR). The term
IR was coined in 1950 by Calvin Mooers [Moo50]. The necessity of such systems was
proposed around that time due to the concern of the abundance of (scientific) information
available and the inability to process all of it. This was closely related to the scientific
race between the US and USSR during the cold war [W+63]. The first formal IR research
groups were formed in the US. Not very long thereafter, IR systems in all kinds of
domains were developed, e.g. the MEDLARS project [Bec64] for medical literature or the
SMART system for general scientific literature [SM71]. First online systems appeared
in the 70s and improvements in models and evaluation methods continued. With the
emergence of the World Wide Web in the 90s, search engines for the web were developed
and became the nowadays most famous examples of IR application — which are arguably
also RS.

The first literal mention of a “Recommender System” was in a paper by Jussi Karlgren
in 1990 [Kar90], where a proximity measure for text documents to retrieve relevant
documents for readers was proposed - a classic application of IR methods. In 1992, the
term “collaborative filtering” was coined. It described the operating process of the PARC
Tapestry system [GNOT92]. “Tapestry” was developed by Goldberg et al. and used both
explicit metadata and implicit behavioral data to create personal recommendations in
an internal mailing system. Just two years later, Paul Resnick and other researchers
at MIT showed with the “GroupLens”-system that recommendations for news on the
net can be automated and served over a network [RIS+94]. In 1995, the research efforts

7

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Background

targeted multimedia system: Shardanand et al. developed the “Ringo” system at MIT
for recommending music albums [SM95]; Hill et al. created a video recommendation
system at Bellcore [HSRF95] [RV97].

A recent popularity boost was the announcement of the Netflix Prize in 2006. Netflix
would award prizes of up to one million dollar to the individuals who could come up
with effective recommendation algorithms for movies. This suddenly produced a lot of
interest into RSs. Even if the algorithm by the grand prize winners [Kor09] was not used
by Netflix due to engineering challenges [Ama12], the contest produced a lot of valuable
insight into RS architecture. As Netflix moved their business model from lending DVDs
to streaming and partly due to privacy concerns, they stopped the yearly contest after
awarding the prize money. Due to their success, various matrix factorization techniques
became the gold standard among the research community.

The increasing popularity of Deep Learning in recent years, most notably the successes of
the AlphaGo AI by Deep Mind [Che16], and general application of neural nets in various
domains might have pushed the RS community to investigate similar techniques.

Autoencoders are unsupervised artificial neural networks which create efficient encodings
from input data. With slight modifications, they have been shown to be applicable as
RS. By applying collaborative filtering techniques to Autoencoders, it was possible to
beat traditional approaches of recommendations [SMSX15]. Various improvements for
this exist by adding slightly noisy input during the training phase [WDZE16]. The most
recent developments is the Variational Autoencoder, which learns the parameters of a
normal distribution which approximates the distribution of latent variables [LKHJ18].

2.2 Types of Recommender Systems

In this section, we will investigate concrete State-of-the-Art recommendation techniques.
We can distinguish different types of RSs. Collaborative (or Social) Recommendation
systems rely on the ratings information provided by users. Content Based Recommenders,
on the other hand, use descriptive terms of the items. They work on the principle that
users will prefer items that have similar characteristics as items they previously enjoyed.
Both approaches can be used in connection with Autoencoders, which we discuss later.

2.2.1 Collaborative Filtering

Approaches that take into account user ratings can be split into two general classes: Mem-
ory based techniques and model based techniques. In Neighborhood-based approaches,
the ratings of items that are saved in the system are directly taken to predict ratings for
users. A defined neighborhood determines which ratings are used for a predicted rating.
Contrary to using saved user ratings, Model Based Collaborative Filtering aims to build
an abstracted representation of the user-item ratings. As a result, these model-based
approaches produce a predictive model that is tuned in the training phase according to a
set of training data. This model is then used to generate new ratings.

8

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. Types of Recommender Systems

Memory Based Collaborative Filtering

Neighborhood methods are a type of Memory Based Collaborative Filtering technique
where ratings that are part of a previously defined neighborhood are considered for rating
prediction. The neighborhood can be defined either based on users or based on users:

• User-based neighborhood calculates the rating prediction of an item based on the
ratings of the most similar users to the user the prediction is calculated for.

• Item-based neighborhood calculates the rating prediction of an item based to the
most similar items [LSY03] [SKKR01].

A common way to determine similarity is to use Pearson Correlation similarity. In
the case of User-based similarity, the similarity of a user u to a user v based on their
commonly rated items i ∈ Iuv is shown in equation 2.1.

sim(u, v) =

∑
i∈Iuv

(ru,i − r̄u)(rv,i − r̄v)

√ ∑
i∈Iuv

(ru,i − r̄u)2
√ ∑

i∈Iuv

(rv,i − r̄v)2
(2.1)

ru,i is the rating of an item i by a user u. r̄u is the average rating of all items rated by
user u. As you can see in equation 2.1, the average is always subtracted before every
rating. The reason is to eliminate user rating bias: Every user has different standards

— some users give generally higher ratings. Others are more critical, they have higher
standard and their scores are usually lower. If these users give an item a very high rating,
it is more significant than when another user, who usually gives high ratings does. This
is why we only use the offset - the difference of the rating to the mean [OTTK12].

Equation 2.2 shows the prediction formula. To calculate the prediction of an item i for a
user u, we take r̄u and then add the ratings of i by the other users. However, the ratings
of other users is weighted by a similarity factor (2.1). The factor k is one over the sum of
total similarities, used for normalization (see 2.3).

ru,i = r̄u + k
∑

u′∈U

sim(u, u′)(ru′,i − r̄u′) (2.2)

For efficiency and practicality reasons, not all users are considered for rating prediction.
Often, a neighborhood is defined: Only the 5, 10 or 20 most similar users are taken into
account.

k = 1/
∑

u′∈U

| sim(u, u′)| (2.3)

Figure 2.1 demonstrates the user-based collaborative filtering technique with a neighbor-
hood of 2.

9

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Background

Figure 2.1: We want to predict movie ratings for user un (yellow). We see that un shares
similar ratings on items i2 and i4 with u1 and u3 (highlighted blue). Consequently, these
are the users that are taken for predicting the ratings of items i1 and i3 - items that un

has not rated yet (highlighted red). User u2’s ratings are not very similar to un, therefore,
u2 does not appear in the neighborhood of un.

Model Based Collaborative Filtering - Matrix Factorization

Matrix Factorization involves building reduced representations of both users and items. It
maps users u and items i to a latent factor space of dimensionality k. Each dimension of k
represents a latent feature - for example, genre or difficulty or a completely uninterpretable
dimension. One entry in the user matrix mxk then defines the correlation off this particular
user with this feature (if the user prefers that items include this feature). Similarly, an
entry in the item matrix nxk specifies how much this item is correlated with the feature k.
Figure 2.2 shows an example of this reduced dimensionality approach [JZFF10] [KBV09].

How to get user and item matrices? Singular Value Decomposition (SVD) is a method
to factorize matrices. However, it does not work with sparse matrices like the ratings
matrix. To solve this problem, we approach it backwards: Instead of computing the
decomposition starting with the ratings matrix R, we generate first the two factors, P
and Q, calculate the derived rating matrix R′ and then compare to the original ratings
matrix. The difference between the original and the newly generated ratings matrix is
the error. To make it smaller, we modify the two factors accordingly. This modification
is given to us by computing the gradient. Then, this process is repeated. We realize this
process by applying Stochastic Gradient Descent (SGD) which we will describe in the
following.

The general idea behind SGD is to predict the ratings with our reduced matrices P and
Q, calculate the difference to the real ratings (which we call the error) and then adjust

10

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. Types of Recommender Systems

Figure 2.2: R is original user-item ratings matrix. It is sparse, since usually every user
only rates a handful of all existing items. The reduced dimensionality k is 3 in this
example. P and Q represent the reduced matrices of users and items. These are derived
by applying an algorithm like SVD. When P and Q are multiplied, we get a matrix R′.
It includes derived ratings for all items by all users.

the values (based on the error) of the matrices in order to approach a better prediction
and reduce the error in the next step. This is repeated for many times, as SGD is an
iterative procedure. One scan over all the ratings in the training set is called an epoch
and it takes multiple epochs to perform SGD. Before the start of each epoch, the order
of the ratings is shuffled.

The factors P and Q are initialized with random values. To begin, they are multiplied
together to get an initial prediction of ratings. The difference of these to the actual
ratings (in the training set) is called the error term. We also need a regularization term,
which is added to avoid overfitting (see figure 2.3). The total cost function consists of an
error term and a regularization term and is shown in equation 4.4.

To detail how the parameter adjustement works, it is helpful to regard a single rating.
The error term for one predicted rating is computed with 2.5. Adding a regularization
term, this results in the cost function shown in equation 2.6.

Tot.Cost =
1

|R|

∑

rui∈R

(rui − pT
u qi)

2 + λ(||P ||2 + ||Q||2) (2.4)

eui = rui − pT
u qi (2.5)

As already mentioned, the matrices P and Q are step-wise modified: Concrete ratings
are iterated through and compared to their representation in P and Q. To approach the
minimal error, we will be using the inverse of the gradients of the cost function. The
process to reach a global minimum in this way is illustrated in Figure 2.4.

The derivatives of equation 2.6 are shown in 2.7 and 2.8, for user and item gradient
respectively. We use a similar value to adjust the values in the user matrix P and item

11

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Background

Figure 2.3: When we only use the error term during learning, the problem emerges that
the model is tailored too much after the training data and can generalize badly (right
image). Introducing a regularization term that depends on the parameter can improve
generalization (middle image). The impact of this term can be controlled by a factor
and should not be exaggerated, otherwise the model might not be accustomed at all (left
image) [Ng08].

matrix Q respectively. The update of the user and item values are shown in equations
2.9 and 2.10. These are the negative gradients. The factor 2 has also been replaced by a
variable factor η, which is the learning rate of the algorithm and determines the step size
of each iteration.

It is possible to process multiple training examples in one step to reduce time complexity,
this is called “Mini-Batch” Gradient Descent. This also reduces variance during training
[BCN16].

Cost(u,i) = e2
ui + λ(||P ||2 + ||Q||2) (2.6)

∂Cost(u,i)

∂pu

= −2euiqi + 2λpu (2.7)

∂Cost(u,i)

∂qi

= −2euipu + 2λqi (2.8)

pu ← pu + η · (euiqi + λpu) (2.9)

qi ← qi + η · (euipu + λqi) (2.10)

12

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. Types of Recommender Systems

Figure 2.4: When performing SGD, we initialize random parameters for P and Q and
calculate the cost (1). The negative gradient is added to the parameters, which decreases
the cost (2). After a certain amount of iterations, a minimum value is reached (3).

2.2.2 Content based Recommenders

Content Based Recommender System (CBRS) use descriptions of items to create repre-
sentations thereof and then suggest items to users based on items they preferred in the
past. This happens by storing what attributes a user prefers and then retrieve items that
possess these attributes accordingly. These attributes can be explicitely given descriptive
terms (metadata) or extracted directly from the items, which can be movies or text
articles, by application of various algorithms.

We can represent a CBRS on a high level by abstracting three key modules [RRS15].

• Content Analyzer In this step, features are extracted from the item in question
to represent in a retrievable manner.

• Profile Learner Based on the interactions with items, a profile is constructed
that defines the preferences of a user. These interactions can be explicit feedback,
like giving user ratings, or implicit based on clicks or views.

• Filtering Component This part matches the user representation with existing
items. A subset of items is selected to recommend.

These modules are usually highly interdependent. Based on the type of recommender,
interactive user feedback is used to optimize recommendations. This concept is shown in
figure 2.5.

In the following, we present some types of common CBRS techniques. We will give
examples of different Content Analyzers and Profile Learners that have been successfully
applied.

13

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Background

Figure 2.5: High level architecture of a CBRS: Features are extracted from items via a
content analyzer. User are represented in user profile. Based on the feedback of an active
user, the profile learner adjusts this user’s profile. The filtering component matches users
to fitting items and composes a list of recommendations [RRS15].

Types of Content Analyzers

These are some techniques that are applicable to text documents, but also to items that
can be sufficiently described through text attributes.

These items can be represented in a Keyword-based Vector Space Model. This
model represents text documents in a vector in n-dimensional space, of which each item is
associated to one term in the vocabulary of the overall document collection. Text reduction
techniques like stemming and removal of stopwords can reduce the dimensionality of this
vector. Each item in the vector corresponds to one weighting value.

A very naïve approach to weight document terms is the Bag of Words Model. This
generates a feature vector from a text corpus. This vector contains each present word in
the document and assigns it the occurrence of this word. Very frequent term are regarded
as representative for a document.

Two commonly used weighting schemes are Term Frequency (TF) and Inverse Doc-
ument Frequency (IDF), which stem from IR research and are also applied in web
search engines. TF-IDF weighting aims to link each term to a sensible measure of
importance: Words that are not that frequent are not less relevant than frequent terms

14

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. Types of Recommender Systems

- in the contrary, if a term that is rare across the whole document collection appears
in a document, it is probably quite characteristic for it. This is what IDF describes.
Additionally, if a term occurs more frequently in a single document than in others, it
is again more descriptive of the document. This is characterized by TF. To combine
these two measures, we take the product as shown in Equation 2.11. dfk is the size of
the document collection in which the term tk occurs at least once, N is the total number
of documents in the collection and dj is a document from the collection.

TF − IDF (tk, dj) = TF (tk, dj) · log
N

dfk

(2.11)

Types of Profile Learners

Machine Learning algorithms that are used in text categorization are applicable for
learning user profiles. Building a user profile can be viewed as a task of building a binary
classification (either relevant or not relevant), a classification with multiple categories or
actually predicting numerical ratings (for example by using regression based methods).

The most common algorithms for learning in CBRS are:

• Probabilistic Methods

This creates a method based on previously observed items. An example is the
Naïve Bayes method. Given the probability of observing any document of class c
P (c), the probability of observing a document d P (d) and observing a document d
given the class c P (d|c), we can calculate P (c|d) using the Bayes Theorem. This
is the probability of an observed document d belonging to class c and is shown in
equation 2.12.

P (c|d) =
P (c)P (d|c)

P (d)
(2.12)

After a probability has been calculated for each class c, the highest one is taken as
a label for an document d. P (d) is usually uniform, thus removed (each document
only occurs once), P (c) and P (d|c) are estimated. To enable better estimation of
P (d|c), all occurring words in a document are supposed to be independent of each
other given the class and probabilities are estimated word for word, which does not
hinder performance [BP97]. Two commonly used models of this approach are th
multivariate Bernoulli event model and the multinomial event model [MN+98].

• Nearest Neighbors

Approaches based on Nearest Neighbors store all available training data into
memory. There is no actual training step. In the prediction phase, the algorithm
compares the new item to all available items and calculates a similarity. Therefore,

15

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Background

a similarity measure like cosine similarity or other distance functions must be used.
The label of a new item is then based to the nearest existing items in the collection.

The algorithm performs generally quite well, despite the simple concept. However,
the high computational cost at classification time, which is linearly dependent to
item count and the cost of computing the similarity, is a major drawback. Most RSs
prefer to optimize the cost at classification time, but allow for high computation
cost at training time.

• Relevance Feedback

Relevance Feedback allows for continuous refinement of a search query, in order to
optimize a user’s search results. This is realized by letting users rate recommended
documents, which is used to refine the user profile. For this end, the Rocchio
Formula is used and this classification uses also TF-IDF weighting [SM71].

Semantics-Aware CBRS

Semantic techniques can be separated roughly into top-down and bottom-up approaches.
The overall intention is to being able to include linguistic intricacies and inherent meaning
of words in the systems.

Top-Down Approaches use external knowledge, which can be derived from various
information sources to enrich items and represent interests more accurately in the user
profiles. Linguistic External knowledge is derived from various sources: Ontological
Resources like WordNet [Mil95], Encyclopedic Knowledge derived from Wikipedia
[BRG07] [EGM08] or Linked Open Data, an initiative to publish interlinked data sets,
which already counts more than 2300 data sets from various backgrounds [Biz09].

An interesting resource is BabelNet, which combined the encyclopedic knowledge con-
tained in Wikipedia with the linguistic knowledge of WordNet to create a semantic
network [NP12].

Bottom-Up Approaches do not rely on predefined constructs of semantics. It derives
the meaning of terms directly by analyzing its usage and the context of its occurrences.
This results in a semantic representation of items and user profiles. Discriminative
Models compute term-context matrices, which allows for discovery of related terms, as
shown in Figure 2.6. These are also called geometrical models, as they can be represented
in vectors and usual similarity measures can be applied [TP10].

As the vector space needed by these techniques can get very big, incorporation of
dimensionality reduction techniques are necessary. Latent Semantic Indexing (LSI) is one
approach which is based on SVD [DDF+90] and decomposes the term-context matrix
into matrices of reduced dimensionalities. Some applications of LSI in CBRS are an
algorithm for recommending TV-shows [BCT11] and source code examples [MCK06].

Another more scalable reduction approach is based on Random Projections (RP) [Vem05],
where high-dimensional vector spaces can be randomly projected into a lower-dimensionality

16

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. Types of Recommender Systems

Figure 2.6: Due to the co-occurrences of the terms glass and wine with the term beer in
documents c1, c3, c4 and c8; the term-context matrix shows them as being related to
each other [RRS15].

spaces, without losing distance information. The discriminative model built on RP is
called Random Indexing [Sah05] and has been used in a multimedia RS for TED talks
[PPB15], a knowledge recommender [SLBdG09] and as an enhancement of collaborative
filtering [SCJ11].

2.2.3 Autoencoders

In the past few years, there have been breakthroughs in the application of deep learning
algorithms in both academia and industry, across various domains [CAS16]. Consequently,
there have been similar advances in applying deep learning in recommender architectures.
Deep learning can reveal here non-trivial features and hidden relationships between
data items [ZYS17]. One of these deep learning techniques we shall focus on is the
autoencoder.

The autoencoder is an approach to representation learning. This allows for discovering
representative features of the samples in a data set. In this way, it is similar to other
mentioned techniques like SVD for matrix factorization.

An autoencoder is a neural network that is designed to recreate the input it receives using
back-propagation. If the number of hidden nodes is smaller than the number of nodes in
the input and output layer, we speak of an undercomplete autoencoder. In the case of
the number of hidden nodes being equal or bigger than the input nodes, the autoencoder
is called overcomplete. As we are interested in compact feature representation, we are
only discussing undercomplete autoencoders [GBCB16].

An autoencoder consists of two parts, an encoder and a decoder. The encoder function
compresses the input data set into an intermediary representation, writing information
into the hidden node layer. The decoder transforms it back into the original input format.

17

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Background

Figure 2.7: Example of an autoencoder. The encoder part converts input data (blue
circles) to a more compact representation (red circles). The decoder processes it back
into the original representation (green circles)

A simple autoencoder consists of only one hidden layer, as shown in figure 2.7. Stacked
autoencoders with multiple hidden layers are used for complex input data and are trained
layer by layer [GP17]. The design of an autoencoder is very flexible: The amount of
hidden layers, number of hidden nodes and various activation functions can be used
for the encoding or decoding process. When using an activation function like ReLu or
Sigmoid, it is necessary to scale the input data into a usable range.

Autoencoders are by design very flexible. While they have been mostly used for application
of collaborative filtering in regard to using recommendations, it is possible to apply
them to any kind of data. This leaves room to explore approaches like content-based
recommendations.

Collaborative Autoencoder

Autorec was the first application of collaborative filtering using an autoencoder [SMSX15].
It was implemented in both an item-based and a user-based model. In evaluation, item-
based Autorec showed the lowest RMSE compared to collaborative filtering using restricted
boltzmann machines (another deep learning method). Additionally to effectiveness,
collaborative autoencoder also beats other approaches in efficiency: The memory footprint
for training as well as for testing scales linearly, as only items are needed to be represented
in latent space (compared to factorization where items and users both are transformed
into latent matrices). These results apply to autoencoders with one layer, although the
authors hint at possible performance gains by experimenting with multiple hidden layers.

Autorec, as any autoencoder, aims at minimising the difference between input and
output layer during its training phase. This is shown in equation 2.13, which describes

18

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. Types of Recommender Systems

the training function of minimising the RMSE of all items of S, the data set used for
training, and h(r; θ), which represents the output of the autoencoder, i.e. the decoded
latent representation of r. The output is the end result of the process of encoding and
decoding, which is shown in equation 2.14. In this case, θ = W, V, µ, b, where W and
V depict transformations for decoding and encoding; µ, b are added biases after each
transformation.

min
θ

∑

r∈S

||r − h(r; θ)||2 (2.13)

h(r; θ) = f(W · g(V r + µ) + b) (2.14)

Denoising Autoencoder with Collaborative Filtering

Whereas the classic autoencoder aims to reconstruct provided inputs during training, the
denoising autoencoder modifies the actually used data that is feeded into it. It corrupts a
fraction of an input x ∈ [0, 1]d, creating a modified input vector x̃. This added noise can
either be reached by randomly masking out data entries (e.g. with binary data) or adding
Gaussian noise (when using continuous data). This aims to mitigate one shortcoming of
autoencoders, where the hidden layer just learns the identity function to replicate the
input and forces the neural net to discover more consistent features [VLBM08].

In order to apply collaborative filtering with a denoising autoencoder, it has been proposed
to include an additional node for the user whom the ratings belong to. This means that
there is a separate weight vector Vu associated with the user input node, which is unique
for each user, encoding the user’s preferences [WDZE16]. Similarly, a bias node is added
to the hidden layer for each user as a regularization parameter to avoid overfitting as
shown in figure 2.3. This concept is visualized in figure 2.8.

Variational Autoencoder

The Variational Autoencoder does not just learn an encoding function to transform the
input into a latent representation. It creates a latent variable model from the input
data and learns its parameters during training. These parameters describe a probability
distribution of a statistical model that is derived from the observed data. The latent
vectors that are generated follow this normal distribution [RMW14]. The concept is
shown in figure 2.9.

It is very interesting to note that the variational autoencoder can be used as a generative
model. By supplying arbitrary values for mean and variance to the decoder, we can
generate new instances in the output layer [KW13].

In order to optimize results from collaborative filtering with a variational autoencoder, it
has been proposed to use a multinomial distribution to describe the data (as opposed
to gaussian distribution like in figure 2.9). These multinomial likelihoods have been

19

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2. Background

Figure 2.8: A depiction of a Collaborative Denoising Autoencoder. The red links are the
user specific weights Vu. The other links are shared and user independent [WDZE16].

Figure 2.9: Like a normal Autoencoder, the Variational Autoencoder possesses an arbi-
trary number of hidden layers. However, at the core, there is a layer that transforms the
inputs to parameters of a normal distribution, then transforms the sampled distribution
back through one or multiple dense neural layers.

20

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.2. Types of Recommender Systems

used for modeling implicit feedback data in a more accurate way, for example mouse
clicks by users [LKHJ18]. Additionally, there are also adjustements with regard to the
regularization parameters.

21

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 3
History of Board Games & Data

In this chapter, we reflect on the subject of Board Games. We highlight briefly their
history, discuss their characteristics and we explain in-depth the technical challenges of
building an extensive collection of data on top of which to build a recommender system.

The term ’board game’ generally refers to all sorts of tabletop games, card games,
miniature games. In essence, a game is a system where participants strive to reach goals,
acting within a certain framework of rules.

3.1 History of Boardgames: Then to Now

Board games are not a modern pastime at all — they have been around for more than
5000 years, their creation coinciding with the cultural heights of the first advanced
civilizations. The earliest found artifact is the game of “Senet”, found in a tomb of
Predynastic Egypt dating back to 3500 b.c.e. [CDVdV16]. Other ancient examples across
the globe include: “Backgammon” from Persia, “Go” from China, “Mancala” across
Eastern Africa, “Chess” and “Pachisi” from India and “The Royal Game of Ur” from
Mesopotamia. They all have in common that they were played on a board that indicated
a grid-like playing field, included tokens to mark the current game state and were enjoyed
by people of all social strata - commoners and noblemen alike [Mur52] [F+07].

These games spread around the world and transformed during the centuries. Chess
evolved into its current form in Europe in the 15th century. Backgammon spread widely,
originating from Persia and Mesopotamia: To Greece and the Roman Empire in 500
c.e. ; to the Ottoman Empire, Western Europe and East Asia in the 11th Century. A
similar game to Senet and The Royal Game of Ur emerged in the 10th century under the
name “Quirkat” in the Middle East and was later brought to Spain and France, where it
was played with backgammon pieces on chess boards. Therefore, it was named after the
queen piece in chess: “Dames”. Today, it is known as “Checkers” or “Draughts” [Par99].

23

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. History of Board Games & Data

Figure 3.1: Examples of historic board games. From left to right: Senet with game
pieces found in the tomb of Tutankhamun (1332 b.c.e.), from [Wik18b]; The Game

Of The Goose (1880s), from [Wik18a]; Gaming pieces of the Kriegsspiel by Lieutenant
Georg Leopold, Baron of Reiswitz (1812) from [Hil00]. Modular game pieces like the
ones depicted are a mechanic featured in lots of contemporary games.

This evolutionary process that occurred over centuries is still very evident in modern
games today. To innovate, mechanics and components from different games are mixed
and refined: Some combinations that work well are integrated into new games, others
are abandoned.

From the late 17th century onwards, so-called “Kriegsspiel” games were used in german
military circles to demonstrate tactical maneuvers and political principles. During the
following 200 years, rules were increasingly adapted to fulfill the needs of sophisticated
simulation of combat. In the 20th century, these games evolved to “War Games”, featuring
meticulous rule sets to realistically simulate historical battles. They still enjoy a niche
following by history enthusiasts. [Pet12]

“The Game of the Goose” originated in the 16th century in Europe, which established the
genre of racing games. These became very popular in the late 18th century - not primarily
as a fun pastime, but rather as a tool for teaching morals and behavior for children.
Spaces on the board featured vices to avoid (e.g. the pub, or, ironically, gambling) and
noble deeds to collect (e.g. going to church or school). As industry advanced and the
middle class grew stronger, these kind of board games featured in numerous households
[Car65].

Milton Bradley created the “Game Of Life” (still featuring virtues and vices) in 1860
and launched the commercialization and wide adaption of board games. Antique games
like “Pachisi” and “Gyan Chauper” of Indian origin were transformed to the more
commercially friendly games of “Ludo” and “Snakes and Ladders”, which became a
success.

Starting in the 1880s, games that emulated the famous rags-to-riches story became very
popular in the United States. The most notable example is “Monopoly”, published in
1935 by “The Parker Brothers”. Ironically, it was designed originally by Elizabeth Magie

24

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.1. History of Boardgames: Then to Now

Figure 3.2: New releases of Board Games per year since 1930 with blue lines indicating
certain industry-shaping events.

as a critique of unregulated capitalism under the name “The Landlord’s Game”. Not long
thereafter, the games of “Risk” and “Clue” were released and enjoy huge commercial
success to this day. For decades, the board game market was characterized by a few
different games that made up the majority of sales. What all these games have in common
is the heavy use of dice and thus the big factor of luck involved in winning.

In 1960, the “3M” company released “The Bookshelf Game Series”, which included
classics like Chess and Go, but also new designs, most notably “Acquire”. These strategic
games were targeted to adults. Acquire became very popular in Germany, and the term
“Eurogame” (also known as “German-style board game”) was coined [Woo12]. These
types of games rely less on luck but more on planning and strategical thinking. Starting
in the 70s, a lot of games in this vein were created and sold in Germany. Another common
theme of these games is indirect competition. Players compete for resources, but have
no means of directly inflicting damage on each other. This proved to be popular due
to the tendency of conflict aversion in education of post-war Germany: Parents didn’t
want their children to play games featuring combat, war and fighting. Most of modern
board games released today have their roots in these classic “Eurogames”. The most
famous and successful example of this category is “The Settlers of Catan” from 1995. It
is attributed with popularizing the genre across the world, selling more than 22 million
copies in more than 30 languages.

Meanwhile, the board game scene in the United States focused more on vivid storytelling.

25

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. History of Board Games & Data

“War Games” started to feature in Fantasy or Sci-Fi settings and would increasingly add
elements of chance. They evolved to “Role Playing Games” like “Dungeons and Dragons”
and “Collectible Card Games” like “Magic The Gathering” [Pet12]. It is increasingly
common to find games that modeled after famous book series or movies [Boo15]. Figure
3.2 depicts the meteoric rise of board game during the last decades. The number of
releases rises exponentially.

The increase from the 1970s onwards is heavily attributed with the popularity in Germany.
The blue lines indicate certain events: Introduction of the “Spiel des Jahres” award (1978),
known as the “Oscar of Board Games”; the inauguration of the first dedicated trade fair,
the “Spiel Messe” in Essen, Germany (1983); the release of the game “Catan” (1994); and
launch of the site boardgamegeek.com (2000). All these events are attributed to increasing
the popularity of board games. As a source of data, the website boardgamegeek.com is
very important for our purposes. We discuss it in the following section.

Nowadays, there are plentiful of examples from each type of game mentioned until now.
A lot of games involve dice in some way, but lots of other mechanics have also emerged.
Sometimes it is hard to draw strict lines between genres. Board Games seem to win
popularity everywhere, and new Game Designers from countries like Japan and Taiwan
try their luck in the board game industry. An overview of the most popular mechanics
and categories is shown in Figure 4.3.

Due to the vast, but finite number of different game states, board games - especially
Chess with its ∼ 1046 different combinations [Chi96] - were a good application domain
for Computers. In fact, Alan Turing designed one of the first heuristics for chess playing
in 1948 and tested it some years later [Tur53], as did Claude Shannon in 1950 [Sha88].
Performance in the game of Chess, and later “Shōgi” and Go (having an even bigger
number of valid plays) was used as a measuring tool for the advances of artificial
intelligence. When the algorithms of IBM’s Deep Blue beat Chess Grandmaster Garry
Kasparov in 1997 (see Figure 3.4) or Google’s neural net AlphaZero beat Go world
champion Lee Sedol in 2016, it made waves in the media.

3.2 The Data - boardgamegeek.com

The most popular existing website on board games is BoardGameGeek.com (BGG) [DSa].
Since its inception in 2001, more than 250.000 users have rated over 84.000 games and
provided a wealth of information about these games. Ratings can be given in the inclusive
range of 0 to 10 (= worst to best) points. The site has 1.5 million registered users (the
majority of users doesn’t rate games) and 4 million unique monthly visitors. It is a very
active community where users also contribute in forums, share news and upload images.
The characteristics of each game are presented in a very condensed format, as you can
see in Figure 3.5. Ratings and a wealth of other information like complexity and playing
time is clearly visible, which we collect and use in our recommendation algorithms.

26

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.2. The Data - boardgamegeek.com

Figure 3.3: Top: Histogram of the most common mechanics in board games. Bottom:
Histogram of the most common categories.

27

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. History of Board Games & Data

Figure 3.4: Chess enthusiasts watch Garry Kasparov (lower right) play his final game
against the Deep Blue Computer, New York, 11 May 1997, from [Sta18]

3.3 Collecting the Data & Data Models

To get the data from the site into an easy-to-use format for our purposes, we need to
collect it in some way. BGG does not provide downloadable snapshots of their data, so
we need to collect it ourselves. The site, however, provides an Application Programming
Interface (API) [McG], over which it is possible to extract the information visible in
Figure 3.5. The API allows for access on the games as well as the users.

In total, we have collected information on 80.474 games. They accumulate over 13 million
ratings in total, from about 249.186 different users. About 40% of users have rated 250
games or more, as can be seen in Figure 3.6. An interesting observation is that the ratings
per user are not given evenly distributed. About 50% of ratings per user are given in the
range of 6 - 8, as shown in Figure 3.7. Another peculiarity is that the average rating of
games increases in average over the years, implying released games get better with time
(see Figure 3.9). This might be linked to growing competition and better understanding
of customer needs.

We implemented the scraper using best practices and Python’s standard libraries described
in [Mit15]. We extended our web scraping efforts over many hours in order to not bombard
the BGG servers with too many requests (and to avoid the possibility to get blacklisted).
We iterated over all the existing games and users, saving their respective attributes and
ratings. A detailed diagram of the data retrieval processes involved is shown in Figure
3.8. The usage of this API is unrestricted for non-commercial purposes as specified in
the Terms of Use [Boa18] and would additionally fall under the case of fair use [Ger06].

This careful approach has one side effect: By spreading the collection over a long
timeframe, the data we collected in the beginning of the process is not as recent as the

28

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.4. Available board game recommendation systems

Figure 3.5: A screenshot of the BGG web site with an example game selected. Users can
easily see average rating, rankings, categories, complexity and more details on this game
(site accessed October 2018) [DSb].

data collected later. They are snapshots off different parts of the database at different
points of time. However, we are sure that this does not invalidate any collected data and
their ratings. The variation should have no effect on our recommendation techniques.

The collected information is stored in databases by using a normalized data model
described in Figure 3.10. It is designed in order to avoid redundancies and duplicate data.
It features a multitude of many-to-many relations expressed through IDs. In order to use
the data for certain applications (especially content-based recommenders), appropriate
joins of needed tables are necessary in a pre-processing step.

3.4 Available board game recommendation systems

The only recommender system of board games we are aware of is boardgamefinder.net,
which operates on using a combination of Exponential Family Embedding (EF-EMB) in

29

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. History of Board Games & Data

Figure 3.6: Number of total ratings per user in the dataset. More than 85% of users
rated more than 50 games, giving a healthy data set for recommendation purposes.

Figure 3.7: Histogram of game ratings per user. It is more likely that users give ratings
ranging from 6 to 9.

30

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.4. Available board game recommendation systems

Figure 3.8: Board game collection process view. The API does not allow to iterate
directly over users IDs, but game IDs. This is why we start with iterating over the games:
The top process “Collect Board Games” loops over all existing board game IDs and
extracts descriptive attributes. At each game, we also loop over all associated comments.
This is how we collect user information and is shown in the blue box “Collect Users -
Step wise Aggregation” on the lower right. The user ID is associated with the comments,
which is why we can iterate now over the ratings and comments from each user by sending
requests with user IDs. The data is saved in a separate database.

31

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. History of Board Games & Data

Figure 3.9: Average ratings of games in the years 1960 - 2018 with standard error bars.

combination with matrix factorisation in their recommendation approach as stated on
their website [R+16]. However, they do not provide a paper containing details on their
implementation or any evaluation. On their website, they announce a paper with results
to “be coming soon”. However, we present now the concept of EF-EMB for purposes of
completeness.

EF-EMB are a form of word embeddings, which aim to model similarity of terms in a
vocabulary [RRMB16]. The principle of word embeddings stems from Natural Language
Processing, but EF-EMB can be used for any form of multidimensional data, so they are
applicable to many domains.

To create EF-EMBs, you need three parts: A context function, which decides what items
are relevant to a given data point. An example would be items on an e-Commerce site.
Items in the same shopping basket are in the context of each other. For boardgamefinder.net,
the context is created from games which were rated by the same people.

Then, you need a conditional distribution which takes a function of the embeddings of both
the items and its context items as a parameter. The third part is the embedding structure,
which finds embeddings and context vectors to describe the given data point. The model
trains the latent vectors for both embeddings and context for each example. The
interesting aspect of this recommendation approach is that it considers both complement
items as well as exchangeable items. Complements are found through the context vectors,

32

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.4. Available board game recommendation systems

Figure 3.10: The data model of the collected board games and users. Users are associated
to their respective ratings. A game contains all critical information and has many-to-many
relations to other tables containing information to categories or mechanics in order to
save storage space.

33

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3. History of Board Games & Data

which return the most probable items that appear in the context of an item. Exchangable
items are found thanks to their similar context functions.

We investigate several recommendation methods, including collaborative methods, and
then compare in an exhaustive evaluation.

34

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 4
Recommenders

In this chapter, we investigate specific details about our implementation of the discussed
recommendation techniques and approaches taken to fit our use case.

4.1 Implementation

Most parts of this project are written in the Python programming language [VRDJ95].
There are numerous available modules for data intensive applications. These include
modules for data cleansing, processing and performing machine learning or other tasks
related to Data Science. The availability of these modules, combined with the relative
ease of learning the Python programming syntax made the language very popular among
professionals with a non-computer science background. It is now among the most
commonly used programming languages worldwide, and the most popular one taught in
introductory university programming courses [Guo14].

The resulting artifacts of this thesis are delivered in standard Python (.py) files and
“Jupyter Notebook” (.ipynb) files, which is a format for interactive scientific computing
in Python [PG07].

As mentioned in the previous section, the web scraping was done by using the xml parser
class contained in the Python standard modules. The contained xml structure made
it easy to encapsulate the scraped data in object instances that translated easily into
database models. The data was collected during the time frame of several weeks, as the
requests to BGG were not too excessive in order to avoid being blacklisted by server
protection mechanisms.

Apart from the various standard modules contained in Python, which we mention in the
following.

35

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Recommenders

4.1.1 Data Management

For storing the collected data we use the relational database management system SQLite.
Advantages for this choice include that it doesn’t have to be run as a service, databases
can be saved as simple text-based files and it is straightforward to export it to other
formats. Setup and integration is fairly easy as it is a weakly typed database engine
and offers interfaces for a variety programming languages. Our data model fulfills the
requirements of the third normal form.

4.1.2 Data Processing & Visualization

We cannot rely on standard data structures like arrays and lists, we use specific modules
in order to manipulate and transform the data more easily. These are Scipy [JOP+],
Numpy [Oli06] and Pandas [McK10]. Scipy is a module for scientific computing, for
example, it includes functions for calculating distance measures. Numpy makes it easier
to handle and manipulate vectors and matrices. Pandas extends on this by including
dataframe objects which are constructs containing different types of data, similar to
tables in a database. It also includes transformations similar to SQL for adapting data
in-memory.

For visualizing purposes in this thesis, we utilize the Matplotlib module [Hun07].

4.1.3 Recommendation Computation

We engineered our recommender systems in most cases with standard modules and
already mentioned data processing focused modules like pandas and numpy.

For constructing the Autoencoder, we utilize the Keras library to build appropriate
neural net models [C+15]. Keras consists of mappings to lower level modules like Tensor
Flow and facilitates building machine learning models, so we do not need to worry about
the concrete, low-level implementation of our neural nodes and their activation functions.

For creating the kNN classifier, we utilize similarity measures contained in the scikit-
learn module [PVG+11].

4.1.4 Hyperparameter Tuning

Our RS have attributes which can be configured and tuned. In order to find the
configuration with the best performance, we apply Hyperparameter tuning on a subset
of the data (about 500.000 ratings).

The best practice is to create applicable value ranges for each parameter and then run
a certain number of training sessions with evaluation. For each run, the values for
parameters are picked at random from these ranges (“grid search”). The best performing
configuration is then the basis for the full evaluation with the complete dataset.

In the following sections, we highlight some details about our RS implementations, while
not repeating the general information already mentioned in chapter 2. In a later chapter,

36

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.2. Collaborative Filtering Approaches

we describe the evaluation results. We also note which values were used and tested during
hyperparameter tuning.

4.2 Collaborative Filtering Approaches

The approaches discussed in the following section have one thing in common: The
similarity estimation for making recommendations is based solely on user ratings.

Due to this, the techniques vary in the way they process these ratings, and as a result, they
all differ in complexity, computation time and effectiveness. They stem from collaborative
approaches discussed in the previous chapter on the State of the Art.

For all their conceptual differences, there are certain parallels between the RSs. In order
to compare our RSs to each other in the evaluation step, they have a common input
and output protocol: Input is a list of Game IDs that a user enjoyed, which are games
that the user rated with a 7.0 or higher. The output is a list of recommended game IDs.
Another commonality is the use of regularization parameters.

For the training and test set, we split up each users ratings as described in section 6.3.
They consist of user ratings equal or above 7.0.

4.2.1 Memory Based Collaborative Filtering

User - User based

Our user based collaborative filtering approach was adapted to fit with the requirement
of input of game IDs.

For all ratings > 7.0, a similarity matrix of all users to each other is computed. It is
calculated using mean-adjusted cosine similarity. The similarity of a user u to a user v
based on their commonly rated items i ∈ Iuv is shown in equation 4.1.

sim(u, v) =

∑
i∈Iuv

(ru,i − r̄u)(rv,i − r̄v)

√ ∑
i∈Iuv

(ru,i − r̄u)2
√ ∑

i∈Iuv

(rv,i − r̄v)2
(4.1)

For each game in a given input of games, a neighborhood of users which provided
the highest rating to these games are found. We experimented with different sizes of
neighborhoods, i.e. how many other users’ ratings are considered. We tried the sizes 1, 2,
5 and 10 in hyperparameter testing. We have found that a neighborhood of 5 users gave
the best result.

All these ratings are merged together and weighted. The weighting depends on the rating
the user gave to the game used in the input. Then, a weighted average of the ratings
of the users (if one game appears in several users’ ratings) in the neighborhood is given
back as a recommendation.

37

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Recommenders

Item - Item based

For the item based collaborative filtering, it was enough to calculate the cosine similarity
between the ratings of all games. The recommendations are the games that match the
rating patterns of a game in the input the most. If multiple games are given as an input,
it can happen that the same game is returned with different similarities in the output -
in that case, the average is calculated.

Similar to the User - User approach, we consider all ratings > 7.0 and calculate a similarity
matrix of all games to each other. We use here mean-adjusted cosine similarity as well.
The similarity of a game i to a game j is based on their rating score by the same user
u ∈ Uij , which is shown in equation 4.2.

sim(i, j) =

∑
u∈Uij

(ri,u − r̄i)(rj,u − r̄j)

√ ∑
u∈Uij

(ri,u − r̄i)2
√ ∑

u∈Uij

(rj,u − r̄j)2
(4.2)

4.2.2 Model Based Collaborative Filtering - Matrix Factorisation

As mentioned in section 2.2.1, we generate latent matrices P for users and Q for items from
ratings matrix R. The multiplication of P and Q results in generated item predictions
in the matrix R′. An example for the predicted rating of item i for user u is shown in
equation 4.3. pu is the column for user u in P and qi is the column i in item matrix Q.

r′
ui = pT

u qi (4.3)

These matrices are initially random and step wise adjusted to approach values that
approach the existing ratings in the training set the best. To determine how much
adjustement is needed, we need a cost function as shown in 4.4.

Tot.Cost =
1

|R|

∑

rui∈R

(rui − pT
u qi)

2 + λ(||P ||2 + ||Q||2) (4.4)

The appropriate user columns, respectively, item column is updated by adding the error
gradient after each step. This is shown in equations 4.5 and 4.6 respectively. The error
gradient is derived from the cost function.

pu ← pu + η · (euiqi + λpu) (4.5)

qi ← qi + η · (euipu + λqi) (4.6)

Our Matrix Factorisation approach provides five modifiable parameters which were
adjusted via Hyperparameter Tuning.

38

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.2. Collaborative Filtering Approaches

The Encoding Dimension specifies the dimensions of our factorised matrices and was
set to 5. The values tested during hyperparameter tuning were 1, 2, 5, 7 and 10.

The Epochs specifies how many iterations we need to adjust the factorised matrices and
was set to 20. The tested values were 10, 20 and 50.

There is a Regularization parameter to avoid overfitting, set at 1e-4. Values tested
were 1e-2, 1e-3, 1e-4 and 1e-5,

The Learning Rate determines the step size during SGD and is set at 1e-4. Additionally,
we tested 1e-3, 1e-2 and 1e-1, which returned worse values.

4.2.3 Basic Autoencoder

For all the Autoencoders, the input and expected output are a vector of the length of
all existing games. This means during training, the input consists of the ratings of all
items a user has rated (without the ratings that are reserved for the evaluation set as
explained in section 6.3).

Among all Autoencoders, we have a set of common parameters: The number of Hidden
Nodes in the intermediate layer, the Epochs i.e. the iterations for training the hidden
layer, the Batch Size determines the amount of throughput during each iteration.

For the basic autoencoder, we tested 512, 1024, 2048 and 4069 hidden nodes; 10, 20, 50
and 100 epochs; batch sizes of 32, 64 and 128; regularization of 0.01, 0.001 and 0.0001.

After tuning, we found that best results are given by using 1024 hidden nodes, 50 training
epochs processing batch sizes of 128. The Regularization term is 0.01.

During training, each node learns a weight value W to apply to an input x. It adds a
bias b and then feeds the result to an activation function σ. The process is shown in
equation 4.7.

z = σ(Wx + b) (4.7)

We experimented with both ReLu and Sigmoid activation functions and adadelta and
adam optimizer functions. The activation functions are used for encoding to the neural
layer. It determines the output range of every node. The range of ReLu is between -1
and 1 and the range of Sigmoid is from 0 to 1. The functions are shown in figure 4.1.
For the sigmoid input function, we needed to normalize ratings to have a mean of 0.

The optimizers adam [KB14a] and adadelta [Zei12] were also included in hyperparameter
tuning. They are responsible for adjusting learning rates based on the most recent
gradient updates.

We receive the best results by using the ReLu activation function and the adadelta

optimizer.

39

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Recommenders

Figure 4.1: The sigmoid and ReLu functions, often used as activation functions in neural
networks. The sigmoid function maps inputs to a range of [0,1]; the ReLu function maps
inputs to a range of [-1, 1]

We needed to modify the loss function of the Keras library, so that it calculate the Mean
Squared Error for each step, but ignores the nodes where we do not have input values
for. This is shown in equation 4.8, where n is the number of samples and Yi and Ŷi are
the input and output values respectively.

1

n

n∑

i=1

(Yi − Ŷi)
2. (4.8)

4.2.4 Denoising Autoencoder

In addition to the parameters in the Basic Autoencoder, we have a denoising factor which
distorts the provided input during training. We sample values from X and add a noise
factor u to our input Yi. This is shown in equation 4.9. X follows a standard normal
distribution as shown in equation 4.10.

Y ′
i = Yi + uX (4.9)

X ∼ N(0, 1) (4.10)

We tested denoising factors of 0.05, 0.1, 0.2 and 0.5 during hyperparameter testing.

Regarding the other parameters, we tested 512, 1024, 2048 and 4069 hidden nodes; 10,
20, 50 and 100 epochs; batch sizes of 32, 64 and 128; regularization of 0.01, 0.001 and
0.0001.

40

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.2. Collaborative Filtering Approaches

Figure 4.2: The encoder part of the variational autoencoder. It features a hidden layer
for encoding the mean and another for the variance.

Setting the denoising factor to 0.1 seems to give the biggest performance boost compared
to the Basic Autoencoder. For the rest of the configurable parameters, we found an
optimal configuration by using 1024 hidden nodes, 100 training epochs processing batch
sizes of 128. The Regularization term is 0.1. As in the basic autoencoder, we found that
ReLu activation functions and adadelta optimizer gave the best result.

4.2.5 Variational Autoencoder

During hyperparameter testing, we tested 256, 512, 1024 and 2048 hidden nodes; 10, 20,
50 and 100 epochs; batch sizes of 32, 64 and 128; regularization of 0.01, 0.001 and 0.0001.

The variational autoencoder has a hidden layer that encodes the parameters of a normal
distribution. These are again two hidden layers for mean and variance respectively.
This is shown in figure 4.2. The variational autoencoder needs less nodes than the
previous autoencoders. We found that 256 hidden nodes, 50 epochs, batches of 64 and
regularization of 1e-05 give the best result. Additionally, the optimizer function used is
Adam [KB14b]. The used loss function between in- and outputs is Binary Crossentropy,
as it gave better results than MSE.

We based our approach on a proposed variational autoencoder on implicit feedback data
sets [LKHJ18], so we adapted the activation functions to work with our input data
accordingly. The training phase is the same as in the basic or the denoising autoencoder.

41

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Recommenders

4.3 Content-Based Approaches

In contrast to the ratings based approaches, the methods in this section only use
characteristics of games to compute recommendations. These can be the used mechanics
in the games, their genre and other descriptive information like playing time or number
of players involved. We name the explicit attributes used in the recommenders below.

So, for a game that the user picked out, the algorithms recommend games that share
certain attributes with it. This is facilitated by the fact that certain combinations of
attributes occur more often together, as shown in the correlation matrix in figure 4.3.

4.3.1 k-Nearest-Neighbor

The principle of our kNN recommender is as follows. We use all the attributes that make
sense to compare with a distance function. This means, we use Categories, Mechanics,
Playing Time, Weight, Minimum Players and Minimum Age. There exist 84 different
possible category values and 51 different mechanics. Both of these are turned into a
binary attribute vector for distance calculation. Playing time can have any value, but
is most commonly around 30 - 180 (minutes). The same goes for the other attributes:
Weight is a measure of the games complexity or difficulty and is approximately normal
distributed around the mean value 2.5 (on a scale of 0 to 5). Minimum Players are often
2 or 3, minimum age is most commonly in the range of 8 — 14.

All these attributes are equally weighted in the distance calculation. After the distance
is measured, the results are sorted and the games with the k smallest distances returned.

We do not include the attribute Family, as it has 2761 different values and they are not
very consistent - they can be very specific or very vague.

In our k-nearest-neighbor algorithm, we experimented with different functions (either
euclidean or manhattan distance). We found the best results with euclidean distance,
although the results are all very similar. The euclidean metric for calculating the distance
d between two vectors X and Y is shown in Figure 4.11.

d(X, Y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xi − yi)2 + · · ·+ (xn − yn)2. (4.11)

4.3.2 IDF-based recommender

The IDF-based recommender calculates the importance of each attribute, which is
inversely related to its occurrence frequency (fitted to a logarithmic scale, as discussed in
chapter 2): Rare categories are usually more descriptive of a game. For calculating IDF,
we only use the Category and Mechanic attribute vectors of each game because of their
categorical nature. We can’t calculate IDF based on continuous measures like complexity

or playing time or non-distinct values like minimum player age.

42

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.3. Content-Based Approaches

Figure 4.3: Correlation of mechanics in board games. The same mechanics are listed
horizontally and vertically. A green field indicates that mechanics are more likely to
appear together, a red field implies they are more likely to not occur together.

43

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Recommenders

The IDF formula for one attribute is shown in equation 4.12. In our case, N is the
number of all existing games. dfk are the occurences of an attribute across all games.
Therefore, IDF is very high for rare attributes and low for frequent attributes. This
IDF value is assigned to each existing category value. This means, that all 84 distinct
category values and each of the 51 mechanics values have an IDF value attached to them.
Therefore, we have an IDF vector for categories and one for mechanics.

IDF = log
N

dfk

(4.12)

The recommendation process is as follows. Let’s assume we want to have recommendations
based on one input game. First, we get all the existing mechanics and categories of
this game as a binary vector. We then proceed to create a bitwise AND operation with
the binary mechanics and categories vectors of all other games. Now, we have all the
mechanics and categories all games have in common with the input game. Then, we
replace these with the IDF values for mechanics and categories. When we sum these
together, we have a score for each game based on one input game. The higher the score,
the higher the ranking of the recommended game. The games with the highest scores are
output as recommendations.

As we have multiple games as inputs, we compared two approaches of merging the games
in the input. In the first, we merged the occurring attributes of all input games and only
after, based on this merged representation, calculated a score for the recommendations.
In the second, we calculated scores for each single input game and got recommended sets
of games for each separate game. The recommended results were sorted after overall
score. We found that this latter approach gave vastly superior results.

4.4 Hybrid Recommender

In this section, we present a hybrid autoencoder approach. This method aims to combine
some of the best properties of the recommendation techniques presented in the previous
section.

This RS can be viewed as an extended version of the previously presented autoencoder
approaches. We intend to merge ratings data together with data descriptive of the
content of our items. In the training phase, the parameters of the hidden layers are still
trained on a per user basis. The target is to most closely resemble the output layer, which
still consists of the user’s real ratings of their chosen items. However, there is an extra
layer now that abstracts additional information on the input side: This is categorical
information describing the overall type of items the user prefers.

This categorical information can consist of three types: Categories, Mechanics and
“Other attributes”. Categories depict the different genres of the games on a broader
scale, e.g. “Economic”, “Science Fiction” or “Negotiation”. Mechanics are a more fine-
grained characteristic and describe the gameplay elements of the board game in question.

44

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.5. Baseline: Popularity-Based Recommender

Examples are “Dice Rolling”, “Modular Board” or “Set collection”. Finally, the third
group, here simply called “Other attributes” consists of “average playing time”, “weight”,
“minimum player count” and “minimum age”. “Weight” is a measure of the complexity of
the game’s rules. It is based on a vote by the BGG community and ranges from 1 (least
complex) to 5 (most complex). For “player count” and “age” we chose the minimum
values as these are more restrictive (and more expressive) than the upper bound.

To make the recommender work, we had to compute values for this categorical information
for each user. For the first two attributes, “Categories” and “Mechanics”, we used the
concept of TF-IDF (described in section 2.2.2). For each user, we took the games the
user rated above 7.0 were as a basis for the calculation and computed a TF-IDF value
of each possible category and mechanic, as defined in equation 2.11. For the ‘other
attributes‘ we simply calculated the average values of all games. For the recommendation
phase, this means that those values need to be calculated for each set of inputs as well.

We combined these three sets of categorical data with the ratings of the users. A
visualization of this technique is shown in figure 4.4.

During hyperparameter training, we tested 512, 1024, 2048 and 4069 hidden nodes; 10,
20, 50 and 100 epochs; batch sizes of 32, 64 and 128; regularization of 0.01, 0.001 and
0.0001.

After tuning, we found that best results are given by using 1024 hidden nodes, 50 training
epochs processing batch sizes of 128. The Regularization term is 0.01.

4.5 Baseline: Popularity-Based Recommender

This recommender generates a set of fixed predictions for each user during the evaluation
step. The predictions are the most rated games in the dataset. The idea is, that usually,
the best games are played and therefore rated by users. Another possibility would have
been to order by decreasing mean rating, but that would overvaluate games that are
well-rated, but not so popular.

The same metrics that are applied in the other approaches are applied here. It serves as
a baseline comparison for all our RSs and gives an answer to the crucial question: Are
our recommendations better than just selecting the most popular games?

45

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4. Recommenders

Figure 4.4: The hybrid autoencoder we tested. It uses information about preferred
mechanics, categories and other attributes (orange) in addition to the ratings of each
user (blue). The intermediate layers (red, purple) are a reduced representation which is
trained to match the output layer, consisting of the game ratings (green).

46

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 5
Software

In this chapter, we will talk about recommendation software. We will first present what
software products and libraries are available to build recommender models. We will
separate Open Source libraries, Academic RS and commercial products. Then, we will
discuss the software and tools we used to conduct our research results.

5.1 Existing Recommendation Software

It is not essential to build a RS from scratch if one wants to use one for their own dataset.
There exist quite a few libraries and frameworks with differing degrees of adaptability. We
will present the most popular and sophisticated ones in the following. The requirements
are that the libraries presented here are still actively maintained and that they are
explicitly devised for computing recommendations (general deep learning or machine
learning frameworks themselves do not count). In a later chapter we will discuss what
pieces of software were used to develop our own recommendation techniques.

5.1.1 Open Source RS

The following recommendation systems libraries are available as Open Source Projects.
That means that anyone can clone the project’s repository, modify it and even request to
add changes to the project. Most of these projects are released under the Apache 2.0
or MIT License, which grant substantial freedoms for modifying the projects and using
them, even for commercial purposes.

• Surprise is a SciKit library written in Python. SciKit is short for SciPy Toolkit
and represents an add-on package for the SciPy Python distribution. SciPy is
an open-source Python library that consists of tools for scientific computing and
technical computing. Surprise contains various collaborative recommendation

47

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Software

from surprise import SVD

from surprise import Dataset

from surprise.model_selection import cross_validate

Using movielens-100k data

data = Dataset.load_builtin(’ml-100k’)

recommender_algorithm = SVD() # Use Singular Value Decomposition

algorithm

Run 5-fold cross-validation and print results

cross_validate(recommender_algorithm, data, measures=[’RMSE’],

cv=10s)

Figure 5.1: Utilising Surprise’s built-in algorithms and datasets, it is very easy to run a
RS. In this example, we load a subset of the movielens dataset and then instantiate a
SVD algorithm. It is then cross-validated five times and evaluated using RMSE [Hug17].

algorithms that can be used out-of-the-box with included datasets. This includes
baseline algorithms, neighborhood methods and several matrix factorization-based
approaches. It provides similarity measures like cosine or pearson similarity. It
provides interfaces to extend the framework with own algorithm ideas. It comes
with two datasets, one containing movie ratings and one being a collection of jokes
with user ratings.

Furthermore, Surprise includes tools for evaluation. It provides methods to analyse
recommender performance using cross-validation and compare it to other techniques.
Figure 5.1 shows a simple cross-validation procedure using an algorithm and a
dataset included in the library. It also includes the possibility to run a search over
various parameter values to find the best configuration for a RS [Hug17].

• QMF has been originally built by engineers at Quora and therefore it is designed
to serve the specific needs of a large-scale web company and its data. It is scalable
to very large data sets including millions of users. The scalability and speed is due
to the fact that it has been built in C++.

QMF uses matrix factorization models for recommendations with implicit feedback
as the input. This means that no explicit rating is given by the user to measure
the degree they like or dislike an item. Implicit feedback consists of actions the
user performed, for example, an item the user clicked on. QMF includes two
different algorithms to compute recommendations using implicit datasets, namely
“Weighted Alternating Least Squares” [HKV08] and “Bayesian Personalized Ranking”
[RFGST09].

It can be run from the command line with a wide variety of parameters. It supports
computation of ranking metrics like Average Precision, Precision@k and Recall@k

48

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.1. Existing Recommendation Software

from spotlight.cross_validation import user_based_train_test_split

from spotlight.datasets.synthetic import generate_sequential

from spotlight.evaluation import precision_recall_score

from spotlight.sequence.implicit import ImplicitSequenceModel

dataset = generate_sequential(num_users=300,

num_items=5000,

num_interactions=50000)

train_set, test_set = user_based_train_test_split(dataset)

train_set = train_set.to_sequence()

test_set = test_set.to_sequence()

model = ImplicitSequenceModel(n_iter=10,

representation=’cnn’,

loss=’pointwise’)

model.fit(train)

mrr = precision_recall_score(model, test)

Figure 5.2: This code generates a sequential prediction model in Spotlight. It uses a
randomly generated sequence of user interactions as an input and splits it into training
and test data. The trained model is evaluated with Precision and Recall scores.

[YB16].

• Spotlight is a recommendation framework based on the PyTorch machine learning
library. It is written in Python and claims to allow creation of both “deep” and
“shallow” RSs. The “shallow” models are matrix factorisation approaches with
either implicit or explicit feedback. The “deep” RS sequential models on the other
hand take sequences of user interactions as the input and predict the next item in
the sequence. Figure 5.2 shows how such a sequential model can be created and
validated.

Spotlight allows for cross validation and has methods to calculate evaluation metrics
like Precision@k and Recall@k. It provides various building blocks to customize
the RS. Spotlight allows the use of different loss functions and recommendation
models. It includes the Goodbooks dataset, the Movielens dataset in various sizes
for experimentation and has methods to generate synthetic datasets according to
user-defined parameters [Kul17] .

• LightFM provides implementations of multiple collaborative- and content-based
learning-to-rank recommender algorithms. Additional to a slew of parameters the
user can modify, it offers the choice of four different loss functions and two learning

49

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Software

CREATE RECOMMENDER MovieRec ON ml_ratings

USERS FROM userid

ITEMS FROM itemid

EVENTS FROM ratingval

USING ItemCosCF

Figure 5.3: Recommenders in RecDB are created using the “CREATE” command. The
“ON” clause defines what table is used as the source of user input. The user can specify the
columns used for users, items and ratings with the “USERS”, “ITEMS” and “EVENTS”
keywords respectively. The “USING” clause finally selects which type of recommendation
algorithm should be used for calculating recommendations.

rate schedulers. It is written in Python, but by using Cython extensions it allows
for very efficient and scalable recommendations.

It includes metrics like precision@k, recall@k and reciprocal rank. LightFM provides
methods for cross validation while training models. It includes the movieset dataset
and also two variants of a snapshot from the “StackExchange” network. This is a
website where users ask questions and answer other users’ questions. It is developed
and used by luxury fashion e-commerce company Lyst and is also being applied in
production by a couple other companies [Kul15].

• LensKit is a RS that allows for user- and item-based collaborative filtering, matrix
factorisation and the slope-one algorithm [LM07]. Every recommender class is
shipped within LensKit as a separate module. There is also an evaluation module
that contains evaluator classes for applying metrics to results. Due to the fact that
every module is easily extendible, LensKit is a handy tool for conducting research
on recommender algorithms or evaluation techniques. It is also possible to use
LensKit from the command line using its CLI module.

It is written in Java and an open-source project. It is best suitable for medium-
scale operations. It is built and deployed with Gradle and can be integrated as a
plugin into Gradle build pipelines. It even supports Groovy DSL for configuration
[ELKR11].

• RecDB is an Open Source Recommendation Engine and written in C. It is available
as an extension for PostgreSQL 9.2, as it is designed to be used from fully within the
database. The recommendation algorithms are executed directly in the database
when specific queries for recommendations are executed. The queries look very
similar to normal SQL queries. The “FROM” clause selects which dataset to use.
with additions of the choice of recommender algorithm and choice of similarity
measure used. Similarly, already configured recommenders can be removed using
the “DROP” command. Refer to Figure 5.3 for an example.

It includes algorithms like user-user collaborative filtering, item-item collaborative
filtering and singular value decomposition. It allows the user to choose Cosine

50

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.1. Existing Recommendation Software

Figure 5.4: An example recommendation pipeline in LibRec, starting from the input
Data, processing it to enable training of the recommender all the way to getting the
recommendation result and evaluating them [GZSYS15].

Similarity measure or Pearson similarity. It does not come with any datasets
but it is bundled with scripts which download variations of the Movielens dataset
[SMMA17].

5.1.2 Academic RS

• LibRec is a library for RS that implements various collaborative approaches. Its
focus lie on providing methods for rating prediction and item ranking. For that
end, it includes more than 70 variants of implemented algorithms. It consists of
six main components, namely data split, data conversion, similarity, algorithms,
evaluators and filters. You can see the execution of the different components in a
typical recommendation process in Figure 5.4.

This means that LibRec comes bundled with tools to create an encompassing end-
to-end recommendation pipeline, which includes data pre-processing and evaluation.
However, the components are designed to be lowly coupled with each other, so
combination with other frameworks is possible.

It is fully written in Java and distributed over the Maven package manager. The
project is well documented and even provides a command line tool to easily
generate recommender classes and run algorithms from a configuration file. It
provides interfaces that make it straightforward to extend the library with custom
algorithms and embed them with the library’s components [GZSYS15].

• RankSys is a another recommendations engine framework for the implementation
and evaluation of recommendation techniques. It focuses on ranking tasks rather

51

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Software

rating_prediction --training-file=u1.base --test-file=u1.test

--recommender=BiasedMatrixFactorization

Figure 5.5: Training a Matrix Factorisation model with MyMediaLite.

than rating prediction. What distinguishes it from other offerings is that it contains
lots of variations of novelty and diversity metrics. Besides the standard matrix
factorisation and collaborative filtering approaches, it includes algorithms like
nearest-neighbor recommendation.

It consists of 13 different modules that include algorithms, evaluation techniques
and examples. There is one separate module that contains diversity metrics and
enhancement techniques, as well as one for novelty. It has been written in Java 8
using state-of-the-art capabilities of the modern language, like streams and lambda
functions. [CHV15].

• MyMediaLite is a in-memory recommender system that has implementations
of more than a dozen recommendation algorithms. It includes algorithms for
both implicit and explicit feedback systems, offering ratings prediction as well
as item recommendation respectively. In addition to collaborative models it also
allows for content-based approaches using attribute data. It is also possible to run
MyMediaLite from the command line, offering most of the functionality of the library.
The two command line tools are “item_recommendation” and “rating_prediction”.
And example is shown in Figure 5.5.

It allows to read and write trained models from disk and incremental real-time
updates for its deployed recommenders. It is written in C#, for the .NET platform.
However, using the cross-platform mono framework, it is available for Linux, Mac
and Windows. It includes evaluation routines using the evaluation metrics MAE,
RMSE, Precision@N, MAP, and NDCG among others. It has a long history of
being used in both academic institutions and commercial research [GRFST11].

• SMORe, formerly proNet-core, is a framework for variant weighted network
embedding techniques. Refer to Figure 5.6 for a demonstration of how SMORe
generates embeddings of various input data.

One of the common use cases for this frameworks is generating recommendations.
It allows for interaction through a command line interface. Included models are
BPR [RFGST09], DeepWalk [PARS14], HOP-rec [YCWT18], CSE [CWTY19], and
HPE [CTLY16]. It is written in C++ [CYCT17].

• LIBMF is a matrix factorization tool for recommenders that includes a few
optimisations. It supports on-disk training, which reduces memory load and
parallel computing for multi-core CPUs using CPU instructions to accelerate vector
operations. It also supports cross validation. There are APIs available to include

52

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.1. Existing Recommendation Software

Figure 5.6: The input for SMORe recommenders is a network graph. In this example,
we have music titles, artists and songs. The framework generates embeddings for each
separate entity [CYCT17].

LIBMF into R and Python projects, respectively called “R LIBMF” and “Python
LIBMF” [CZJL15].

5.1.3 Commercial and Software-as-a-service applications

There exist a couple of commercial recommendation offerings. Most of these are dis-
tributed as SaaS (Software-as-a-service) applications, which is a software distribution
method where the software is licensed on a subscription basis. In most cases, there is a
set fee for a certain amount of API calls (e.g. recommended item requests for 100 users).

• Amazon Personalize In June 2019, AWS added another Software-as-a-service
product among there vast range of cloud-based products. Amazon Personalize makes
the promise to bring the recommendation technology that powers the e-commerce
site amazon.com to the masses. The stand out feature is support for real-time
refinement in the recommendation feature, so that the user can get instantaneous
suggestions while interacting with an application. Figure 5.7 shows the capabilities
of Amazon Personalize and how it is integrated into the AWS ecosystem.

It is essentially a machine learning API that enables developers to fetch individu-
alized recommendations for the customers who are using their applications. The
application of the service is flexible: It’s up to the developer to decide what sort of
recommendations these are - clicks, page views, signups, purchases or other. These
can be added as search results, personalized notifications or just recommended
items in a user interface. It also brings a range of pre-trained models. In Figure
5.8, we show a short example of how to bootstrap Amazon Personalize to create

53

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Software

Figure 5.7: In the middle orange box, this figure shows the capabilities and feature
offerings that Amazon Personalize includes. The user has the possibility to choose a
recommendation model, configure used hyperparameters and run optimizations. On the
left we have the input of the recommender systems. These can stream input data from
an app directly to refine the recommenders in real time. Another way is to use data at
rest in S3 (AWS’ cloud storage offer). The output of Amazon Personalize on the right
side makes it easy to integrate recommendations into user interfaces.

suggestions for a user. It only uses the Python library boto3, which allows for
programmatic configuration of AWS resources.

• Yusp Yusp, formerly Gravity R&D, is a company formed by team “Gravity”,
the finalists of the Netflix Prize Competition. They were founded in 2007 and
are headquartered in Budapest, Hungary. They offer tailored recommendation
services for various industries like Brick and Mortar franchises, retail banking and
streaming services. The type of recommendation service provided ranges from
E-mail personalization to product recommendations and online advertising.

They are openly and regularly contributing their research findings to the public,
however, some patents exist on certain algorithms. In 2016, Gravity served over
4 billion recommendations per month, which accounted for about 30 million $ in
revenue. They have a close cooperation with Deloitte for business solutions. Some
of their customers include T-Mobile and dailymotion [TPNT07].

• Peerius Peerius is a company that was founded in 2007 in the US and offered
similar services to Yusp. Since it has been acquired by Episerver, and was integrated
into their enterprise offerings. They distribute a Content Management System
(CMS), which allows customers to build commerce websites. This includes retail
digital commerce, B2B commerce and financial services. The recommendation

54

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.1. Existing Recommendation Software

import boto3

personalize = boto3.client(’personalize’)

1. Create a "solution" and specify the Algorithm

response = personalize.create_solution(

name = "SolutionName",

datasetGroupArn = "ARN for the input dataset",

performAutoML = True)

solution_arn = response[’solutionArn’]

2. Create a ’campaign’ based of this solution.

response = personalize.create_solution_version(solutionArn =

solution_arn)

solution_version_arn = response[’solutionVersionArn’]

response = personalize.create_campaign(

name = ’campaign name’,

solutionVersionArn = ’solution_version_arn’,

minProvisionedTPS = 10)

3. Generate recommendations for a user

camapaign_arn = response[’campaignArn’]

personalizeRt = boto3.client(’personalize-runtime’)

response = personalizeRt.get_recommendations(

campaignArn = camapaign_arn,

userId = ’User ID’)

Figure 5.8: How to use Amazon Personalize to generate item recommendation. First,
you have to create a solution by specifying an algorithm to use. If none is specified, as
in this example, AWS will choose one for the user. By creating a solution version, the
model is trained. This is used in the second step when creating a pointer to the solution
campaign. In the third step, the campaign is used to query recommendations for a user.
It is important to note that these 3 steps would be usually called in different parts of the
application, depending on the use case.

55

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Software

RecombeeClient client = new RecombeeClient("DataBase", secret);

client.send(

// user "user_id" viewed item "item_x"

new AddDetailView("user_id", "item_x"))

);

RecommendationResponse recommended = client.send(

// fetch 10 recommendations for user "user_id"

new RecommendItemsToUser("user_id", 10)

);

Figure 5.9: How to use Recombee’s provided library to update information on users
and get recommendations. The piece of code shows how to get a new connection to a
database stored at Recombee. Then, updates to user views can be made. This is possible
as Recombee allows for real-time modification of its algorithms. Then, recommendations
can be fetched and presented to the user.

capabilities of Peerius include personalised search, content recommendation and
product recommendations.

• Recombee Recombee is a recommender engine which promises its clients to reach
their KPIs, increase conversion rate and maximise the enterprise’s turnover. One
big selling point is the ability to scale flexibly with the client. They apply a variety
of machine learning and artificial intelligence algorithms to generate results, however
they are unclear about specific algorithms and technologies used.

On their website, they mention using a mix of deep-learning and collaborative
filtering for numeric information. The collaborative methods they use are based on
Matrix Factorization, Nearest-Neighbour and association rules, however, they do
not disclose to what amount they factor in each type of algorithm. For images and
textual data, they also apply content-based recommendation algorithms (detecting
similar images or textual descriptions). Needless to add, their models are optimized
automatically, with no possibility to modify the training.

A unique selling point are the specialised models they provide for very narrowly
focused business needs. This includes models that recommend items which are
very different to each other (increasing diversity), models that take into account
popularity trends or periodicity models that suggest items based on repeating
behaviour of users.

They offer libraries for JavaScript, Python, Ruby, Java, PHP and Node. General
integration over a REST interface is also possible. An example of using their Java
library and interacting with the Recombee API is shown in Figure 5.9. Recombee
allows for modification of the rules that the recommendation software uses. It
provides the functionality to specify rules through filtering or boosting the results
based on client-defined attributes of the items in the client’s database. For easier

56

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.1. Existing Recommendation Software

interaction, they offer a custom query language, ReQL, in addition to their library
offerings.

• Segmentify Segmentify is another SaaS tool that offers businesses the possibility
to integrate product recommendations into their website. On top of that, it offers
personalized search, personalized email and push notifications. As the name implies,
one big selling point is the possibility to segment customers into three different
groups: Active loyals, churned customers and one time shoppers. Strategies of how
to target each segment vary. Segmentify offers a real-time dashboard to gather
insights about customer behaviour. Unfortunately, the recommendation process is
a black box. They do not reveal how recommendations are made.

5.1.4 Summary of Existing Recommendation Software

As we have just shown, there are a lot of available libraries to build recommendation
engines out-of-the-box.

The advantages are that these are easily adaptable and accessible. Lots of frameworks are
written in very popular languages like Python or Java and are therefore easily extendable.
They tend to be very fast to set up, and are used often for prototyping and experimenting
with new concepts.

However, they are rarely optimized (often due to the technologies used) and the perfor-
mance drops considerably with huge data sets. Most of these frameworks are also not
optimized to work on multi core processors or on distributed infrastructure and are rarely
used in a production environment for these reasons.

For the commercial and SaaS offerings, the arguments change slightly. The advantage of
these platforms is that a lot of the heavy lifting disappears when using these services.
There is no need to hire a specialised machine learning engineer when the model is chosen
and trained for you. You even do not need to hire many operations-focused engineers as
the recommendation system runs in the cloud, using third parties’ resources. Tasks like
hyperparameter tuning are automated.

However, there are also a few disadvantages to use these platforms. First of all, a lot of
the models use aim to provide a one-size-fits-all approach. Some services like Amazon
Personalize can choose a RS for you. However, there is no guarantee that the solutions
provided are the best, or even remotely good. These services usually offer metrics, but
to interpret and adjust them you need specialised personnel. Since the SaaS solutions
are not open-source, you cannot inspect the source code and deep dive on the algorithms
implemented.

The last disadvantage is that these services are expensive. In most cases, there is no
flat-rate available, you pay for every time recommendations are computed for a user. It
can happen that this type of recommendation software was chosen for it’s ease of use and
rapid deployment, but as an application’s lifecycle unfolds and it scales, it can become
very expensive. Arriving at the point where you have thousands of users or more, chances

57

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Software

Figure 5.10: An example of a Jupyter Notebook instance running in a web browser while
working with code in Python.

are, that your application is already so tightly integrated with the SaaS solution that it
is hard to migrate (vendor lock in).

We have not discovered one framework that provides an easily adaptable recommendation
solution that operates on Autoencoders or neural nets. The reason might be that this
is a fairly new approach in the community. It is one of the approaches that we heavily
focus on and, as we see later, shows to give excellent results.

For these reasons, all the techniques we applied were implemented by us from scratch in
Python, as we will discuss in the next section.

5.2 Applied Software and Technologies

In this section, we will highlight the technologies that we used to reach our conclusions. We
will discuss the programming languages used for our project, the editors and development
environment utilised and which libraries we made use of.

5.2.1 Editor - Jupyter Notebook

Jupyter Notebook is one of the products that emerged from the nonprofit organisation
known as “Project Jupyter”. The group has been formed in 2014 by Colombian physicist
and software developer Fernando Pérez. Jupyter Notebook is cloned from the “IPython”

58

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.2. Applied Software and Technologies

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

Figure 5.11: Printing “Hello, World!” to the console output using Java 8.

command shell, which is a command shell for interactive computing. It lends itself very
well for scientific computing. It is open-source, free to use and released under a very
generous software license.

Code snippets, their execution and supporting formulas, explanations and diagrams are
all integrated into the same document. This type of development environment is known as
a “notebook interface”. It has first been popularized in 1988 by Wolfram Mathematica 1.0
on the Macintosh. The name “Jupyter” refers to the supported programming languages
- Julia, Python and R. These languages are the most popular amongst practitioners
of scientific computing, statistics or data science. Some of the features include type
introspection, integration of rich media like interactive data visualisation, tab completion
and a log of past executions. Figure 5.10 demonstrates an example of the application.
Many extensions exist for Jupyter Notebooks, for example a plug-in that allows to
generate PDF documents out of a notebook file.

One of the most important reasons for the widespread adoption of Jupyter Notebooks
is the separation of the interface and the execution of the programming logic. The
execution is done in a so-called Jupyter Kernel. Kernels can be connected to multiple
instances of notebooks. During our research, all development has been done using a
Jupyter Kernel on a local machine - the same one where the Notebook instance resided.
However, for large-scale tasks, it is essential to use the increased capabilities of distributed
computing. It is possible to launch Jupyter kernels in a distributed cluster. The big
cloud providers provide already their own versions of Jupyter Notebooks - examples are
Amazon’s SageMaker Notebooks, Google’s Colaboratory and Microsoft’s Azure Notebook.
The notebook interface has become so popular, that many projects exist now for a lot of
different programming languages, like JavaScript.

5.2.2 Programming Language - Python 3.7

Python has become one of the most popular programming language. According to the
TIOBE index, which measures the popularity of programming languages, it currently
resides in the “Top 3” of all languages (Status: November 2019). Python has been first
released by Dutch software engineer Guido von Rossum in 1991, who developed it first
as a hobby software development project to keep him busy during Christmas holidays.
He named it after British comedy group Monty Python.

59

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Software

print("Hello, World!")

Figure 5.12: In contrast, printing “Hello, World!” using Python 3.7 to the console only
takes one line.

Some of the characteristics that make Python unique from other programming languages
are also the reason for its widespread success. First and foremost, it is a general-purpose
language that can be used in a wide variety of application domains. Its usage ranges from
scientific computing to running lightweight servers to enterprise software development. It
is an interpreted language, which means that the instructions in the code are executed
directly. There is no intermediate compilation step to produce machine-readable byte
code, like in Java for example. This is made possible by the interpreter, which directly
translates every line into subroutines readable by the execution environment.

Finally, Python is a high-level programming languages. It means it abstracts a lot of
responsibilities that are inherent to computing, like memory management, away from the
user. This level of thinking is visible when considering the language syntax of Python. It
is very clean, minimal and expressive. For an example comparison, we show two variants
of printing the line “Hello, World!”. The Java implementation is shown in Figure 5.11.
The equivalent in Python only needs one line of code and is displayed in Figure 5.12.

The ability to express programming logic in a very concise manner without much
boilerplate or overhead makes Python very easily readable. It includes a very sophisticated
standard library. It has functionality for building user interfaces, executing unit tests,
building network interfaces or methods for statistics and maths. This is probably the
main reason why it garnered so much popularity among the Data Science community.
Expressing the idea of an algorithm in Python is not much more complex than formulating
it using pseudo code - with the added benefit, that, in Python, the algorithm is ready to
be executed and tested. One such example is shown in Figure 5.13, where we show the
code for a function that computes a factorial. One remarkable oddity of the programming
language that is visible here, is how Python uses only whitespace for indentation. Usually,
in languages like Java or C, curly brackets or keywords have been used to indicate the
begin and end of assignment blocks. In Python, assignments that are indented the same
are on the same level of code execution. Python uses duck typing, meaning that the
nature of an object is determined by existing methods or functionality, rather than an
explicit type. This is possible as type constraints are only checked at run time, not
compile time. Python is still strongly typed however, only allowing for well-defined
operations.

Additional functionality can be included by using the import statement. Extensions to the
Python language are distributed via modules. In the following, we will discuss additional
modules for the Python 3.7 programming language that we used for our research.

Python features a garbage collection for memory management and is dynamically typed,

60

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.2. Applied Software and Technologies

def factorial(f):

if f < 0:

return 0

else:

result = 1

i = 2

while i <= f:

result = result * i

i += 1

return result

Figure 5.13: A function that calculates the factorial of an input f. It uses result as a
temporary variable to store intermediary computation results and returns it when the
iteration is done.

allowing for liberal modifications of objects. It does allow writing application code by using
many different paradigms, for example procedural code, object oriented programming
or functional programming. Python 2.0 was released around 10 years after the original
Python. Python 3 was first released in 2008 and featured lots of major structural revisions.
Applications written in Python 2 were not compatible, however, support continued for
Python 2 due to the widespread adoption. In 2020, Python 2.7 will be officially deprecated
and will cease to be supported. There exist reference implementations of Python, most
notably CPython, which can compile Python code into intermediary byte code.

5.2.3 Libraries and Modules

The established standard to installing extensions for the Python programming environ-
ment is by using the package manager “pip” in conjunction with the Python Package
Index, or short, “PyPI”, and this is what we used in our project to manage third-party
packages as well.

PyPI is the official software repository for third-party extensions for Python. Currently,
there are over 200.000 packages available, accumulating more than 1.5 million releases
and over 380.000 users (Status: November 2019). When publishing a package to PyPI,
it is necessary to provide some metadata in addition to the raw package files. PyPI is
capable to handle version histories of packages as well as different builds for different
Python versions.

Pip is the standard package management system for Python. It is a tool to install and
update Python packages on a machine. The acronym ‘Pip‘ is a recursive acronym -
as it was in fashion among computing enthusiasts and hackers since the 1960s - that
means “Pip installs packages”. Pip comes preinstalled with most Python distributions
and is used over the command line. For bigger projects, it is possible to create a text
file containing all dependencies and pass it to pip, which installs the correct libraries in
the specified versions. When working on several projects, it is recommended to create

61

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Software

requirements.txt

Dependencies without version

numpy

beautifulsoup4

#

Dependencies with version

pandas == 1.5.1 # Must be version 1.5.1 ##

csv >= 2.2.1 # At least version 2.2.1 ##

####### end requirements.txt ##########

pip install -r requirements.txt

Figure 5.14: This figure shows a text file with the name requirements.txt. It contains
all packages that must be installed for the project in which this file is contained to run
correctly. It is possible to specify a version number, but not obligatory. When specifying
a version number, one can be specific or give minimum or maximum version specifications.
In the last line, we feed this file to the “pip install” command.

a virtual environment for each, so that there is no conflict among interfering version
numbers. Figure 5.14 shows how to install packages from a given requirements file via
the command line. It is not necessary to use PyPI as a software repository, but it is set
as the default setting. It is possible to set multiple sources, which is handy for companies
maintaining their own private repositories.

Boardgamegeek

“Boardgamegeek” is a library for Python 3 that makes it easy to interact with the official
XML API from BoardGameGeek.com. The XML API allows to send HTTP requests
with the use of and URI of the format boardgamegeek.com/xmlapi2/type?parameters.
For the type, it is possible to specify games, users or communities. The given parameters
have to include an ID or name of the item to retrieve but can contain additional boolean
flags to add or dismiss certain criteria, for example to include comments by a user or
not. When executing a correctly formatted request, the resulting response is an XML file
containing information of the specified object. If it was a game, it will contain data on
ratings, game details etc., which are navigable by their respective XML tags.

The Boardgamegeek Python library provides a layer of abstraction over this. The library
is based on an older library called “libBGG”. The advantage of the use of this library
over the API is that it allows a structured approach to execute requests. All the entities
that are retrievable over the XML API are modeled as Python classes, which allow for
more intuitive handling of data than parsing an XML file. The available classes are Users,
Games, User collections, Player Guilds, Plays and Hot items (currently popular items).
For our purposes, we use data on Users and Games to build our recommendation engines.

62

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.2. Applied Software and Technologies

Users give us the individual ratings on collections owned by users while Games provide
us with information on attributes like mechanics or game types. As we effectively mirror
the BoardGameGeek database on user ratings and need data on all present games, it is
important to space out requests being sent to the BoardGameGeek server. When sending
a lot of requests in a very short amount of time, the risk exists that your requests are
being classified as a DOS (Denial of service) attack and you are being blacklisted as a
result.

Keras

Keras is an open-source library written in Python. Its aim is to provide very high level
abstractions for programmers to build neural networks. As such, it doesn’t implement
the actual neural networks, but runs as a layer on top of a neural network backend such
as TensorFlow, CNTK or Theano. The goal is to facilitate rapid prototyping of ideas
for neural networks and get results as quickly as possible. Its components are designed
to be modular and extensible. Computation can be run on either GPU or CPU. Since
2017, both Google and Microsoft support Keras in the core libraries of Tensor Flow and
CNTK respectively. It has become one of the most commonly used tools among machine
learning engineers with over 200.000 users.

Keras is roughly split up into three different modules, Models, Layers and Preprocessing.
A model is the starting point of a neural network, it denotes a way how to organize the
neural layers. There are two model classes available in the Keras Models module: The
Sequential model, which allow for stacking neural layers one after the other, as well as a
generalised Model class that is fully configurable with a functional API and allows for
more complex network architectures. The Layers module provide the computational
components for a model. Keras provides a variety of layers, including convolutional layers,
recurrent layers, embedding layers, normalization layers and many more. Finally, the
Preprocessing module includes tools for image, text and sequence preprocessing. Keras
provides a variety of optimizer and activation functions for neural network training as
well as metrics for evaluation. We used Keras in combination with a TensorFlow backend
for the development of our Autoencoders.

Pandas

Pandas, originally developed by Wes McKinney, is a software library for Python that
facilitates manipulation and processing of data for data analysis tremendously. It is open
source and released under the very permissive BSD software license.

The core object in Pandas is the dataframe. A dataframe is a multi-dimensional store of
data values that can be accessed by indices. In most cases, a dataframe is two dimensional,
containing rows and columns. Columns and rows can be labeled. Slicing and creating
subsets is possible by either using labels or indices. It is possible to store time-series data
in dataframes as well and to execute domain specific operations such as moving window
statistics. Pandas allows for many operations that are commonly found in database

63

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5. Software

query languages, such as aggregation, grouping and filtering. It is possible to import and
export from two-dimensional textual representation file formats like *.csv, *.tsv (comma-
and tab-separated values) as well as Excel files. It also includes functionality for data
preparation, like handling of empty and null values.

We use Pandas in almost all aspects of our work. All the input data is parsed into
dataframes, which is then processed by using pandas capabilities to operate on all the data
at once. For example, we apply the normalisation of ratings in this manner. Pandas is
also used for recommendation computation itself, with the exception of the autoencoders,
which are handled by Keras. We use dataframes to store information on users and ratings.
For our content-based recommenders, we store categorical information in them.

SciPy, NumPy and Matplotlib

SciPy is an open-source library for Python aimed at scientific computing. It extends on
the array object contained in NumPy, which allows for calculation with multi-dimensional
arrays and matrices. Matplotlib is a data visualisation library for Python that makes
plotting and graphical representation of data easy. These three tools work very well
together and therefore are often used together in practice.

In our project, we use the stats module of the SciPy library to calculate our evaluation
metrics, namely: Precision, Recall, NDCG, Novelty and Diversity. The stats module,
which makes it easy to calculate the separate components of the metrics formulas, uses
NumPy in the background. We used Matplotlib to create the figures representing our
data sets in this paper.

64

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 6
Results

6.1 Evaluation Methodology

The performance of RS has been evaluated in research literature since 1994 with the
GroupLens recommender [RIS+94]. Evaluation can be done using offline analysis or
live user experiments (“online” evaluation) [HKTR04].

In offline evaluation, the RS is used to predict several withheld values from the dataset.
The data is split in training set and test set. The advantages of offline evaluations are that
they are relatively simple, quick and efficient. The only requirement is to have the dataset
ready. A major weakness, however, is that they do not exactly tell if users themselves
will prefer one RS over the other, as there is no feedback on how the recommended sets
are perceived. All that is available is a set of ratings.

Online approaches, however, needs the participation of a community of users who interact
with the RS. They can be either performed in a controlled environment or with “real”
users in a production system. Depending on the form, the evaluation of online approaches
vary. Performance can be determined with surveys about user satisfaction or keeping
track of various user metrics (e.g. participation rate).

While online approaches give a better feedback on the perceived performance, they
involve more preparation to execute. In a controlled user study, participants and useful
questionnaires have to be prepared. Well-defined hypotheses that need to be tested
should be prepared. In these cases, a certain bias still pertains. To avoid this, a RS can
also be evaluated in a field study. This involve the integration into a live production
system where users already exist. In these cases, conclusions can be drawn from recorded
user interactions or with explicit feedback. While these reveal more of the real users in
their own context, they might not be as focused as controlled experiments.

65

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Results

We perform our evaluation with offline metrics. They can be differentiated into three met-
ric categories measuring different qualitative aspects: Predictive accuracy, classification
accuracy and rank accuracy.

Predictive accuracy metrics measure how close the predicted rating of an item by
a user resembles the actual rating given. An example would be to calculate the mean
absolute error of the rating difference. This is useful for systems where an exact rating
is given to users and relevant to them. However, if users are only interested in the top
results, it is unnecessary to calculate this metric for all rating predictions.

Classification accuracy metrics quantify how often the predictions of a RS are, overall,
good. This is valuable for RSs where the general goal is to recommend good items, but no
interest is given to an assumed rating or strict ranking. The users taste should be binary,
they either like or dislike an item. Recall, Precision and related measures like Mean
Average Precision (mAP) are classification accuracy metrics we present in the following.
They are often implemented with a cutoff point, simulating how a user generally only
considers the first few items.

Finally, rank accuracy metrics are used to evaluate the order of a set of recommended
item. These are useful in domains where the order of recommendations matter to the
user. It is not useful in domains where the ordering does not matter too much - a rank
accuracy metric will give different results if the best result is ranked fifth instead of first.
An example metric is Normalized Discounted Cumulative Gain (nDCG).

6.2 Evaluation Metrics

To reliably judge the performance of our models, we are using Precision at k, nDCG
at k and mAP [SMR08] as our main guiding metrics. Precision at k and mAP are
related to Precision and Recall, which are standard metrics in RS literature for tracking
performance. Furthermore, we use Diversity and Novelty to describe certain characteristics
of recommended sets.

To ensure comparability, each RS is evaluated on the same metrics and therefore provides
identical input/output formats.

6.2.1 Precision and Recall

We first discuss Precision and Recall as they are heavily drawn upon by the other metrics.
Precision and Recall have been the most popular evaluation metrics for information
retrieval systems since their introduction in 1966 [CMK66].

In our use case, we want to determine how many games out of a recommended set of
games are relevant to a user. Relevant games are defined as games that were rated with a
rating of 7.0 out of 10.0 or higher by said user (i.e. games that the user judged as ’good’).

66

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.2. Evaluation Metrics

Precision presents the fraction of the relevant games in the recommended set to the total
number of games in the recommended set, as shown in 6.1. In our evaluation, we fix the
set size to k=100, so the denominator in the Precision formula is always 100.

Precision =
|{relevant games} ∩ {retrieved games}|

|{retrieved games}|
(6.1)

Recall is the fraction of relevant games in the recommended set compared to the total
count of relevant games, as shown in 6.2.

Recall =
|{relevant games} ∩ {retrieved games}|

|{relevant games}|
(6.2)

In most cases, it is necessary to show Precision and Recall together, as they are inversely
related to each other [Jiz00]. This conclusion is quite intuitive: When the size of the
recommended set increases, it is likelier that relevant games appear - Recall increases.
However, at the same time, the denominator in the Precision formula increases - Precision
drops. The F1-score is one approach to combine the two metrics, shown in 6.3. By
comparing the F1 measures of different simulation runs, it is possible to select an overall
best configuration.

F1 =
2 · Precision ·Recall

Precision + Recall
(6.3)

6.2.2 Precision@k & Recall@k

While Precision usually takes into account all retrieved items, Precision@k (Precision
at k) only concerns the very first k retrieved items into the calculation. k can be set
arbitrarily, e.g. at 5, 10 or 100. Precision at k considers the fact that users will only look
at a fixed number of top results when using a recommendation system. For example,
when people use a search engine, they only look at the first results page but barely more.
The same goes for Recall@k.

6.2.3 Normalized Discounted Cumulative Gain (nDCG)

nDCG takes the notion of Precision at k a bit further. The metric uses a graded relevance
scale to attribute the usefulness of recommended results based on their rank. This gain
is based on the position in the result list. Higher results have a higher usefulness, visible
in the numerator in the formula, while the gain is discounted at lower ranks, apparent in
the denominator in equation 6.5. Consequently, it is also executed over a set number
of top results k [SMR08]. This metric is executed over a set of users U. 1

IDCGkj
is a

normalization factor that transforms the nDCG of a perfect user for the user j at k to
1. rel(j, m) is the relevance of the item m in the user j. In our case, this would be the
rating of the game (given by user j for the item m). optrel(j, m) is the ideal relevance

67

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Results

Figure 6.1: An example of a Precision-Recall curve. [Ber16]

factor that is possible for the item at position m. In our case, the ideal values are taken
from the existing user’s rating.

NDCG(U, k) =
1

|U |

|U |∑

j=1

1

IDCGkj

k∑

m=1

2rel(j,m) − 1

log2(m + 1)
(6.4)

IDCGkj =
k∑

m=1

2optrel(j,m) − 1

log2(m + 1)
(6.5)

6.2.4 Mean Average Precision

mAP is calculated over a set of users. It is the mean of the Average Precision (AP) for
each of these users. In our case, the set of users consists of “recommendation” users for
one user.

The AP for a specific user is calculated as the average precision score from every recall
value from 0 to 1. Usually, Precision and recall are inversely correlated. It is possible to
plot the precision at each recall value, as seen in figure 6.1. The AP can therefore also
be understood as the area under the precision-recall curve.

The AP for one user is shown in equation 6.6, where r ∈ R symbolizes the set of ratings
for each recall level. mAP for each user u ∈ UR is shown in equation 6.7.

AP =
1

|R|

∑

r∈R

precision(r) (6.6)

68

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.2. Evaluation Metrics

mAP =
1

|UR|

∑

u∈UR

AP (u) (6.7)

6.2.5 Diversity and Novelty

Contrary to Precision and Recall, which are based on the ratings of users, we also use
metrics that are based on the characteristics of the games itself. The idea is that the user
of the RS perceives the recommendations as interesting and fresh - if the recommendations
are too similar to their already preferred games, users might not find the recommendations
too exciting. To achieve this, we use Novelty and Diversity [CVW11], which we tailored
to fit the characteristics of our items.

Novelty of a recommended item refers to how different it is to the items that the user
already knows and likes. Formulated in another way: How different is the output of the
RS to the input used for computation?

Diversity, on the other hand, only regards the recommended set itself. How different
are the items in it to each other? Recommendations are more interesting to the user if
they are more dissimilar to each other, offering the user a broader spectrum of items to
investigate.

We calculate Diversity and Novelty by computing the pairwise distances of the games’
mechanics and categories to each other. These attributes are stored as boolean arrays,
which makes it practical to use Hamming Distance to calculate similarity. Hamming
Distance between two vectors of identical sizes is defined as the count of positions at which
both vectors differ. The higher the hamming distance, the more dissimilar the items are.
In our formulas of Diversity and Novelty, we divide the Hamming Distance (absolute
count of varying attributes) by total number of present attributes and then take the mean
of all games. This is illustrated in the formula in 6.8. The essential difference between
Diversity and Novelty is that the former represents the total of pairwise differences
between items of the same set (6.9), whereas the latter represents the pairwise differences
in two distinct sets (6.10). X and Y are binary attribute matrices. X is the list of
recommendations. Y is the list of the user’s liked items. The difference Xi − Yj denotes
essentially the Hamming Distance between column j of matrix Y and column i of X.

Diversity/Novelty =

#DiffMechanics
#T otalMechanics

+ #DiffCategories
#T otalCategories

2
(6.8)

DiffDiversity =
k∑

i=1

k∑

j=1

|Xi −Xj | (6.9)

DiffNovelty =
k∑

i=1

l∑

j=1

|Xi − Yj | (6.10)

69

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Results

6.3 Training and Test Data Selection

We perform the training of our RS with the total available data. To find the best
parameters for our algorithm, however, we perform hyperparameter tuning with a
representative subset of the available data.

In machine learning, a “hyperparameter” denotes a parameter that is set to an arbitrary
value, before the system is trained. All other parameters are then derived during the
training process. Hyperparameters can not be inferred during the training phase. When
setting the hyperparameters of a model, we can speak of its “configuration”. The amount
of hyperparameters is different from model to model. Some simple models do not require
any, but usually machine learning models demand a few hyperparameters to be able to
run.

“Hyperparameter tuning” or “Hyperparameter optimization” describes an approach to
discover the best fitting set of values for the hyperparameters. As it is most often not
straightforward to understand the effect that one value for a parameter as opposed to
another, it is necessary to train a few models with different hyperparameter configuration,
evaluate them and then compare the performance. Since most hyperparameters are
integer or floating point based, there are many possible values with which they can be
configured with. It would be impossible to try every value for them; and even less possible
to try every single combination of parameter values if the model has multiple values.

Therefore, the most common approach is to define a range of representative values
for each hyperparameter. As there are a few values for each parameter, this can be
represented as a “grid”. During training, the values for each hyperparameter are picked by
random from this grid. Usually, a representative number of training and evaluation runs
is defined per model. This procedure is commonly known as “hyperparameter tuning” or
“hyperparameter optimization”.

To efficiently compute many different permutations of hyperparameters, we only use
a subset of the total available data. This is possible, as the performance of the RSs
techniques is assumed to only improve marginally with more data. This has been shown
in academic studies [ZVRF12] as well as production systems [Ama12]. The relation of
more data vs. better performance approaches a logarithmic curve, as shown in 6.2. We
can run lots of different hyperparameter combinations with a subset of training data.
Then, to compare the algorithms (with the discovered best parameters) to each other,
we use the total data.

Therefore, we perform hyperparameter training with a subset of the full ratings set. The
subset consists of 500.000 user ratings. These ratings subset are ratings that are created
by 1171 different users (426 ratings per user in average). They are ratings on 27581
unique games, which represent about 40% of all the games in the full set. This is the
data that we use to sufficiently determine the best configuration of the parameters of the
recommenders.

For generating metrics evaluation, we need the whole dataset. The full set consists of

70

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.3. Training and Test Data Selection

Data

P
er

f
or

m
a
n

ce

Figure 6.2: Relation of data vs. performance in machine learning applications [ZVRF12]

collected attribute information on 80.474 games in total. There exist over 13 million
ratings in total, which are given by around 250.000 users of BGG.

In order to produce training and test set, we partition the existing data. This happens by
randomly splitting the ratings of each user. From each user, we take 80% of the data for
training and 20% of data for testing. The RS is therefore trained with 80% of the totally
available data. Consequently, this means that in the prediction step of the evaluation,
20% of the user’s ratings are taken as an input for the trained RS. The other 80% of
the users’ ratings are then compared to the actual output of the system according to
our metrics. We only consider users for training that have a minimum of 200 ratings, in
order to draw useful conclusions.

This is how the number of millions of actual existing users that exist on the website BGG
shrinks to the comparably minuscule figure of about 250.000 in the full dataset. The vast
majority of registered users do not rate any games on the website and are therefore not
needed to be included in the evaluation. Similarly, there exist hundreds of thousands of
entries for games on BGG. However, a lot of these games might never get any commercial
appeal or are never printed in high numbers.

Quite a few of these games are also more “passion projects” by enthusiast board game de-
velopers and therefore never amass a high number of ratings. Having a RS recommending
items that cannot be bought or easily obtained does not make much sense. These kind
of games are automatically omitted from the data set by introducing the lower bound
limit of 200 ratings.

71

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Results

6.4 Discussion of Results

In the following, we present the results of the evaluation. We use the mentioned metrics
and discuss the performance of each technique in regard to all others. The results of
all metrics for each RS are presented in Table 6.1. The best results for each evaluation
metric are highlighted and conclusions why certain models performed better than others
will be mentioned.

72

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.4. Discussion of Results

R
ec

o
m

m
e
n

d
e
r

T
y

p
e

C
o

ll
a

bo
ra

ti
v
e

F
il

te
r
in

g
A

u
to

e
n

co
d

e
r

(A
E

)
C

o
n

te
n

t
H

y
b
r
id

B
a

se
-

li
n

e
R

ec
.

N
a
m

e
→

E
va

lu
a
ti

on
T

y
p

e
↓

M
em

or
y

(U
se

r)
M

em
or

y
(I

te
m

)
M

a
tr

ix
F

ac
t.

C
la

ss
ic

D
en

.
A

E
V

ar
.

A
E

k
N

N
ID

F
H

y
b
ri

d
P

o
p
u
-

la
ri

ty

P
re

ci
si

o
n

a
t

5
0.

01
6

0
.3

98
0.

68
9

0.
69

1
0

.6
9

7
0.

69
2

0.
06

9
0.

11
5

0.
69

6
0.

54
8

P
re

ci
si

o
n

a
t

1
0

0.
01

4
0
.3

79
0.

62
8

0.
64

0
0

.6
5

1
0.

64
8

0.
06

8
0.

10
6

0.
63

9
0.

54
4

P
re

ci
si

o
n

a
t

2
0

0.
01

2
0
.3

03
0.

55
1

0.
57

4
0.

58
2

0
.5

9
4

0.
06

5
0.

10
0

0.
56

7
0.

50
6

P
re

ci
si

o
n

a
t

1
0
0

0.
01

1
0
.1

30
0.

36
4

0.
40

4
0.

40
8

0
.4

1
8

0.
04

0
0.

07
2

0.
40

3
0.

36
1

R
ec

a
ll

a
t

5
0.

00
0

0
.0

11
0

.0
1

9
0

.0
1

9
0

.0
1

9
0

.0
1

9
0.

00
2

0.
00

3
0

.0
1

9
0.

01
5

R
ec

a
ll

a
t

1
0

0.
00

1
0
.0

20
0.

03
4

0.
03

5
0

.0
3

6
0

.0
3

6
0.

00
3

0.
00

5
0.

03
5

0.
03

0
R

ec
a
ll

a
t

2
0

0.
00

1
0
.0

32
0.

05
9

0.
06

2
0.

06
3

0
.0

6
4

0.
00

6
0.

01
0

0.
06

1
0.

05
5

R
ec

a
ll

a
t

1
0
0

0.
00

6
0
.0

66
0.

18
4

0.
20

6
0.

20
9

0
.2

1
4

0.
01

9
0.

03
4

0.
20

6
0.

18
8

N
D

C
G

a
t

5
0.

00
2

0
.1

29
0

.3
3

9
0

.3
3

9
0

.3
3

9
0.

31
7

0.
02

4
0.

04
6

0
.3

3
9

0.
24

4
N

D
C

G
a
t

1
0

0.
00

2
0
.1

38
0.

33
7

0
.3

4
0

0
.3

4
0

0.
31

6
0.

02
4

0.
04

6
0.

33
9

0.
25

9
N

D
C

G
a
t

2
0

0.
00

2
0
.1

33
0.

33
5

0
.3

3
7

0.
33

2
0.

31
9

0.
02

6
0.

04
9

0.
33

5
0.

26
4

N
D

C
G

a
t

1
0
0

0.
00

3
0
.1

08
0.

33
1

0
.3

4
4

0.
34

3
0.

33
7

0.
02

8
0.

05
7

0
.3

4
4

0.
28

4
M

A
P

0.
02

3
0
.0

17
0.

01
7

0.
02

2
0.

02
2

0
.0

7
3

0.
00

0
0.

00
5

0.
02

1
0.

00
6

D
iv

er
si

ty
0.

06
7

0
.0

68
0.

08
7

0.
08

5
0.

08
6

0.
08

4
0.

02
9

0
.1

1
0

0.
08

5
0.

08
3

N
o
ve

lt
y

0.
07

6
0
.0

75
0.

08
4

0.
08

3
0.

08
4

0.
08

2
0.

06
3

0
.1

0
9

0.
08

3
0.

08
1

T
ab

le
6.

1:
E

va
lu

at
io

n
re

su
lt

s.
C

ol
u
m

n
s

in
d
ic

at
e

th
e

va
ri

ou
s

re
co

m
m

en
d
er

s.
R

ow
s

in
d
ic

at
e

d
iff

er
en

t
m

et
ri

cs
.

H
ig

h
es

t
re

su
lt

s
p

er
m

et
ri

c
(r

ow
)

ar
e

h
ig

h
li
gh

te
d
.

73

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Results

6.4.1 Baseline: Popularity Recommendations

We use popularity recommendations as a baseline. This RS returns the overall most
popular games, regardless the input. These games are sorted by the number of ratings.
As we see, the evaluation metrics perform rather well for such a simple approach. This is
easily explainable: The most popular games are generally well rated, and lots of users
have these games in their collection.

Now, we go through the evaluations of all just discussed techniques. In order to be a
recommender of good quality, the results for Precision@k, Recall@k, NDCG@k and MAP
should be higher than the presented picks by popularity. Increases in Diversity and
Novelty are nice-to-have.

Our baseline beats the content and memory based RS in terms of Precision@k, Recall@k
and NDCG@k. The degree of outperformance varies and we make a more detailed
comparison with this baseline for each recommender in the following.

6.4.2 Memory Based Collaborative Filtering

User - User based

All of the metric results for User - User based collaborative filtering seem to be at the
bottom of the range of performance. Only in terms of Diversity and Novelty it gives
results that are comparable to other approaches, which is what this type of recommender
is also good for (predicting obscure, unknown games).

Item - Item based

This recommender gives us way better results, which are quite remarkable for the
simplicity of its principles. Precision@k vastly improved and is 0.398 for k=5 and still
0.303 for k=20. For k=100 it deteriorates to 0.130. Recall@k improved compared to the
User based approach and is the best for k=100 at 0.066. Compared to all our approaches,
these results are still mediocre as we see in the following. The NDCG@k results are
the best after all the Autoencoder and Matrix Factorisation approaches. They also did
not beat the popularity baseline for NDCG@k. Overall, the MAP is the lowest among
collaborative approaches due to the bad results for recall. Diversity and Novelty are
higher than in the previous approach.

6.4.3 Model Based Collaborative Filtering - Matrix Factorisation

Using factorized matrices seems to yield an overall improvement in our metrics. Preci-
sion@k and Recall@k show results that are among the best for all our approaches, only
beaten slightly by the Autoencoders. The advantage compared to the previous user- or
item-based approaches is, that it is always possible to predict ratings for all items in the
dataset, even if only few users rated it (the user approach only takes ratings contained in
a certain user neighbourhood; the item-based approach can only calculate coorelation of

74

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.4. Discussion of Results

existing ratings). This is due to the use of latent user and item vectors. The autoencoders
have a similar approach, but their hidden layers seem to be an even better fit for modeling
latent relationships in the ratings, explaining their slight evaluation improvements.

Adding to that, NDCG is comparably better than in the previous approaches. The
Autoencoders have comparable NDCG@k and it is better than the popularity baseline.
MAP seems also to be mediocre indicating a big Recall/Precision tradeoff.

The factorised approach also seems to improve diversity and novelty of recommended
sets, as they yield the second best result among our recommenders, together with the
autoencoders.

6.4.4 Basic Autoencoder

The Autoencoder techniques exhibit the best results overall. They are comparable to
those of Matrix Factorisation, but a notch better. Precision@5 has the highest value
with 0.691, dropping only slightly with Precision@20 at 0.574. Precision@100 is still 0.40,
meaning that, in average, across all users, 40 of the recommended 100 games are indeed
games the users rated well (without counting the good games used as input).

Recall@k is comparable to Matrix Factorisation, but even here, there’s an improvement.
Recall@100 is higher with 0.206, which means that, in average, the Basic Autoencoder
manages to find a fifth of all the well-rated games of a user when computing a recom-
mendation set of 100 games based on a fraction of the user’s other ratings.

NDCG@k performed similar as in Matrix Factorisation and has the best values together
with the other Autoencoders. NDCG@5 is 0.340 and is about the same for all k. Diversity
and Novelty are also above average, as hinted in the previous section.

6.4.5 Denoising Autoencoder

The slightly noisy input that is characteristic of the Denoising Autoencoder doesn’t
change evaluation drastically. Precision@k and Recall@k results improve only by a very
small margin. NDCG@k, Diversity and Novelty stay relatively the same as in the Basic
AE.

6.4.6 Variational Autoencoder

The changes from Denoising AE to Variational AE are similar to the step up from Basic
to Denoising AE. This is especially observable in the MAP, giving us the best result
overall with 0.073.

NDCG@k is, again, among the highest overall. It is slightly worse than in the other
Autoencoders. It is worth mentioning that it seems to slightly increase with increasing k.

The improvements for Precision@k and Recall@k for k=20 and k=100 are still small, but
slightly bigger than previously, making them the best results among all our recommenders.
Interestingly, Diversity and Novelty increased slightly too.

75

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6. Results

6.4.7 k-Nearest-neighbor

Coming to the content based recommenders, it was expected that Precision and Recall
would fare worse than in the ratings-based approaches. In the following, we debate the
usefulness of content-based approaches and possible advantages.

The kNN approach yields only mediocre results for the metrics Precision, Recall, MAP
and NDCG. Additionally, Diversity and Novelty are remarkably low. Considering that
the similarity is computed based on the attributes, this is not surprising.

These RS could be still interesting to be used as part of a recommendation process. They
offer thematically similar, but unknown recommendations that not a lot of users might
be aware of.

6.4.8 IDF-based recommender

This type of RS is based on utilising the inverse document frequency measure. It
outperforms kNN overall based on our metrics. Precision@k, Recall@k and NDCG@k
performance is 50% to 100% better here, MAP improved a bit.

On the other hand, Diversity and Novelty are quite notable here, yielding the best results
across all recommenders. This is explained by the definition of IDF itself: Rare categories
get a bigger importance, increasing overall variety.

6.4.9 Hybrid Autoencoder

The results of the hybrid approach turned out to be nearly identical to the other
autoencoders we investigated. It mirrors Precision@k, Recall@k, NDCG@k and MAP
values of the standard autoencoder. This shows that ratings are a more expressive
indicator of good recommendations (based on our metrics). Just including similar
attributes does not necessarily have added value when ratings are already involved. The
results of the RS are, overall, still one of the best, but the feature extraction of the
attributes involved seems like unnecessary overhead.

6.5 Summary of Results

It is enough to take a quick glance at the evaluation table (Figure 6.1) to see that, overall,
the Autoencoder approaches return the best evaluation results. It is fairly evident that
in terms of Precision, Recall, MAP and NDCG, the Autoencoder approaches get the best
results. Depending on the metric, the results for Classic Autoencoder, Denoising AE
and Variational AE variate a bit. A substantial difference is evident in the MAP metric,
where the Variational AE has a big advantage compared to the other recommenders, and
even the other Autoencoders. We conclude that the Variational AE is the most promising
kind of AE, confirming recent research [LKHJ18].

However, we also notice that other approaches work well considering the context. Con-
sidering what the goals of the recommendations are, other approaches seem to be more

76

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6.5. Summary of Results

useful for recommending board games. For recommending diverse and novel sets, our
diversity and novelty metrics indicate that it would be commendable to use the IDF
recommender.

Additionally, we remarked that a hybrid approach did not give us an advantage in our
case. However, even if the hybrid recommender did not outperform the other models in
terms of metrics, the results are not terrible. This might be due to the influence of the
ratings-based Autoencoder “carrying over” the good results.

As for memory-based recommendation approaches, we can disregard them entirely as
they did not measure up to the baseline of popularity-based recommendations. Contrary
to that, the results of the matrix factorisation approach seem to be solid. The question is,
if this model might be more computationally efficient in application. Then a industrial
application might be reasonable. This would highlight other possible research topics.

In the next chapter, we present a summary of this thesis and present possible future
research questions.

77

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

CHAPTER 7
Summary & Future work

7.1 Summary of this thesis

In this thesis, we have discussed possible methods to build recommendation systems for
board games.

We started by presenting our approach and stating our motivation. We then discussed
how far recommendation systems have come and showed the most popular and most well
known systems. We also gave examples for appropriate libraries that can be used.

We moved on to discuss the history of board games and showed that due to their rapid
growth and huge selection it would be a good application of recommendation systems.
We also demonstrated how we were able to build a huge data set that served us as a
starting point. In the next section, we discussed the RSs we chose for recommending
board games and discussed specifics of their implementation.

Finally, we were able to conduct an evaluation of their performance. For this end, we
presented certain metrics that would let us do a meaningful comparison. We ended with
a discussion of the evaluation results and drew conclusions.

7.2 Answered Research Questions

With our work, we were able to find answers to our research questions.

• Q1: Which recommendation methods are appropriate for recommending board
games?

A1: The collaborative methods outweighed the content-based methods by far. Out
of these, we have found the Autoencoder approach to work the best. Out of the

79

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Summary & Future work

Autoencoders, the Variational Autoencoder gave us a bit of an advantage over the
others.

The content based recommenders did not deliver great results at all. Only the IDF
recommender surpassed the results of a naive popularity based recommender.

• Q2: Can attributes be used for recommendations?

A2: Yes, and we showed the possibility with our IDF and kNN recommender.
The IDF recommender’s result were the best among attribute-based methods. It
showed that weighting attributes of games to their relative occurrence is successful
in modeling the taste of a user.

While we showed that they certainly can be used to this end, we want to emphasize
that according to our evaluation results they might not be the most effective way
to do so.

• Q3: Which metrics can be applied for measuring the quality of board game
recommendations?

A3: The standard metrics that are commonly used in RS research gave us good
and discernible results. These were: Precision@k, Recall@k, Mean Average Pre-
cision (MAP) and Normalized Discounted Cumulative Gain (NDCG). We also
introduced Diversity and Novelty as additional metrics to describe the quality of
recommendations.

7.3 Opportunities for future research - open issues

It is possible to build on the results of the thesis and extend it further. Possible research
question for future endeavors could be:

• Hybrid recommendation approaches

We presented and evaluated one method to combine different RS together. Needless
to say, there are many more possibilities to accomplish this. An additional research
opportunity would therefore be to expand on this, merging the techniques of two
or more approaches and see how the results variate.

In our hybrid approach, we extracted content based features for every user and added
the respective ratings. Another approach to hybrid recommendation techniques
would be to use weighted averages. The output of each RS is considered to have
a different weight attached to the recommendation results. The best ratio could
be found by testing varying degrees of distribution in multiple runs, for example
90-10, then 80-20, and so on - similar to Hyper-parameter tuning.

• In-depth survey or user study Instead of using existing ratings for evaluation,
a meticulous case study could be done with real people. Their backgrounds, habits
and personal preferences can be registered beforehand. This approach would allow

80

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7.3. Opportunities for future research - open issues

the users to fill out a very detailed survey about the recommendations they receive.
It could highlight a lot of subjective impressions that other evaluation methods miss.
This would be most feasible if building a product and delivering recommendations
over a user-friendly user interface. We highlight this research possibility below as
well.

• Evaluation of other metrics

In this paper, we have only taken into account the goodness of the predictions in
our evaluation. All our metrics dealt with different ways of how the generated
ratings and the recommended games could be perceived by the user. Indeed, there
are some other metrics that can also be used to measure this, including variations
and modifications of metrics we did use in our research.

However, there are other factors that influence the user experience when utilis-
ing a recommendation engine. One example would be the interface used, if the
recommendation engine is packaged into a presentable product for the user.

Another interesting key factor for the success of a recommendation model would be
its computational characteristics. This could be the speed with which the model
generates recommendations, how much memory or disk space it utilizes or how
many resources it needs to function properly. One system might be preferable to
another just due to the fact it is more computationally efficient, even if the more
inefficient one produces marginally better recommendations.

• Additional recommenders

It is always a possibility to investigate other forms of RSs. On the one hand, there
exist other variations of the recommendation techniques we presented in this paper.
In the most cases, it’s just minor technical differences that distinguish them, for
example different configurations or other optimizer algorithms.

On the other hand, there exist entirely different recommenders that one might want
to investigate. We focused in this research paper on the models that are the most
commonly used, and the most promising to our knowledge. However, other models
might be interesting to investigate as well.

• Build a product

Using our RSs, it would be possible to build a product for users. For example, a
web application where users can get game recommendations. This would introduce
range of research points: What information should be displayed, what should the
User Interface look like and how do users interact with it. Lessons can be learned
from existing products, but they should also be reviewed and scrutinized.

A user study should be conducted in this case to evaluate the resulting product. The
final product can be compared to the ease of use of existing solutions, for example
the interface provided by Amazon or Netflix. Even if they concern different types
of media, this study would only concern the user-friendliness of the interaction.

81

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

7. Summary & Future work

However, this topic could span a whole new research paper and would be belong
more to the topic of human computer interaction.

82

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

List of Figures

1.1 Released games per year 1900 - 2010. Left: Linear Scale, Right: Logarithmic
Scale [Vat17] . 2

2.1 We want to predict movie ratings for user un (yellow). We see that un

shares similar ratings on items i2 and i4 with u1 and u3 (highlighted blue).
Consequently, these are the users that are taken for predicting the ratings
of items i1 and i3 - items that un has not rated yet (highlighted red). User
u2’s ratings are not very similar to un, therefore, u2 does not appear in the
neighborhood of un. 10

2.2 R is original user-item ratings matrix. It is sparse, since usually every user
only rates a handful of all existing items. The reduced dimensionality k is 3
in this example. P and Q represent the reduced matrices of users and items.
These are derived by applying an algorithm like SVD. When P and Q are
multiplied, we get a matrix R′. It includes derived ratings for all items by all
users. 11

2.3 When we only use the error term during learning, the problem emerges that
the model is tailored too much after the training data and can generalize
badly (right image). Introducing a regularization term that depends on the
parameter can improve generalization (middle image). The impact of this
term can be controlled by a factor and should not be exaggerated, otherwise
the model might not be accustomed at all (left image) [Ng08]. 12

2.4 When performing SGD, we initialize random parameters for P and Q and
calculate the cost (1). The negative gradient is added to the parameters,
which decreases the cost (2). After a certain amount of iterations, a minimum
value is reached (3). 13

2.5 High level architecture of a CBRS: Features are extracted from items via
a content analyzer. User are represented in user profile. Based on the
feedback of an active user, the profile learner adjusts this user’s profile. The
filtering component matches users to fitting items and composes a list of
recommendations [RRS15]. 14

2.6 Due to the co-occurrences of the terms glass and wine with the term beer in
documents c1, c3, c4 and c8; the term-context matrix shows them as being
related to each other [RRS15]. 17

83

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2.7 Example of an autoencoder. The encoder part converts input data (blue
circles) to a more compact representation (red circles). The decoder processes
it back into the original representation (green circles) 18

2.8 A depiction of a Collaborative Denoising Autoencoder. The red links are the
user specific weights Vu. The other links are shared and user independent
[WDZE16]. 20

2.9 Like a normal Autoencoder, the Variational Autoencoder possesses an arbitrary
number of hidden layers. However, at the core, there is a layer that transforms
the inputs to parameters of a normal distribution, then transforms the sampled
distribution back through one or multiple dense neural layers. 20

3.1 Examples of historic board games. From left to right: Senet with game
pieces found in the tomb of Tutankhamun (1332 b.c.e.), from [Wik18b];
The Game Of The Goose (1880s), from [Wik18a]; Gaming pieces of the
Kriegsspiel by Lieutenant Georg Leopold, Baron of Reiswitz (1812) from
[Hil00]. Modular game pieces like the ones depicted are a mechanic featured
in lots of contemporary games. 24

3.2 New releases of Board Games per year since 1930 with blue lines indicating
certain industry-shaping events. 25

3.3 Top: Histogram of the most common mechanics in board games. Bottom:
Histogram of the most common categories. 27

3.4 Chess enthusiasts watch Garry Kasparov (lower right) play his final game
against the Deep Blue Computer, New York, 11 May 1997, from [Sta18] . 28

3.5 A screenshot of the BGG web site with an example game selected. Users can
easily see average rating, rankings, categories, complexity and more details
on this game (site accessed October 2018) [DSb]. 29

3.6 Number of total ratings per user in the dataset. More than 85% of users rated
more than 50 games, giving a healthy data set for recommendation purposes. 30

3.7 Histogram of game ratings per user. It is more likely that users give ratings
ranging from 6 to 9. 30

3.8 Board game collection process view. The API does not allow to iterate directly
over users IDs, but game IDs. This is why we start with iterating over the
games: The top process “Collect Board Games” loops over all existing board
game IDs and extracts descriptive attributes. At each game, we also loop over
all associated comments. This is how we collect user information and is shown
in the blue box “Collect Users - Step wise Aggregation” on the lower right.
The user ID is associated with the comments, which is why we can iterate
now over the ratings and comments from each user by sending requests with
user IDs. The data is saved in a separate database. 31

3.9 Average ratings of games in the years 1960 - 2018 with standard error bars. 32

84

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3.10 The data model of the collected board games and users. Users are associated
to their respective ratings. A game contains all critical information and has
many-to-many relations to other tables containing information to categories
or mechanics in order to save storage space. 33

4.1 The sigmoid and ReLu functions, often used as activation functions in neural
networks. The sigmoid function maps inputs to a range of [0,1]; the ReLu
function maps inputs to a range of [-1, 1] 40

4.2 The encoder part of the variational autoencoder. It features a hidden layer
for encoding the mean and another for the variance. 41

4.3 Correlation of mechanics in board games. The same mechanics are listed
horizontally and vertically. A green field indicates that mechanics are more
likely to appear together, a red field implies they are more likely to not occur
together. 43

4.4 The hybrid autoencoder we tested. It uses information about preferred
mechanics, categories and other attributes (orange) in addition to the ratings
of each user (blue). The intermediate layers (red, purple) are a reduced
representation which is trained to match the output layer, consisting of the
game ratings (green). 46

5.1 Utilising Surprise’s built-in algorithms and datasets, it is very easy to run a RS.
In this example, we load a subset of the movielens dataset and then instantiate
a SVD algorithm. It is then cross-validated five times and evaluated using
RMSE [Hug17]. 48

5.2 This code generates a sequential prediction model in Spotlight. It uses a
randomly generated sequence of user interactions as an input and splits it
into training and test data. The trained model is evaluated with Precision
and Recall scores. 49

5.3 Recommenders in RecDB are created using the “CREATE” command. The
“ON” clause defines what table is used as the source of user input. The user
can specify the columns used for users, items and ratings with the “USERS”,
“ITEMS” and “EVENTS” keywords respectively. The “USING” clause finally
selects which type of recommendation algorithm should be used for calculating
recommendations. 50

5.4 An example recommendation pipeline in LibRec, starting from the input Data,
processing it to enable training of the recommender all the way to getting the
recommendation result and evaluating them [GZSYS15]. 51

5.5 Training a Matrix Factorisation model with MyMediaLite. 52

5.6 The input for SMORe recommenders is a network graph. In this example, we
have music titles, artists and songs. The framework generates embeddings for
each separate entity [CYCT17]. 53

85

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5.7 In the middle orange box, this figure shows the capabilities and feature
offerings that Amazon Personalize includes. The user has the possibility to
choose a recommendation model, configure used hyperparameters and run
optimizations. On the left we have the input of the recommender systems.
These can stream input data from an app directly to refine the recommenders
in real time. Another way is to use data at rest in S3 (AWS’ cloud storage
offer). The output of Amazon Personalize on the right side makes it easy to
integrate recommendations into user interfaces. 54

5.8 How to use Amazon Personalize to generate item recommendation. First, you
have to create a solution by specifying an algorithm to use. If none is specified,
as in this example, AWS will choose one for the user. By creating a solution
version, the model is trained. This is used in the second step when creating a
pointer to the solution campaign. In the third step, the campaign is used to
query recommendations for a user. It is important to note that these 3 steps
would be usually called in different parts of the application, depending on the
use case. 55

5.9 How to use Recombee’s provided library to update information on users and
get recommendations. The piece of code shows how to get a new connection
to a database stored at Recombee. Then, updates to user views can be made.
This is possible as Recombee allows for real-time modification of its algorithms.
Then, recommendations can be fetched and presented to the user. 56

5.10 An example of a Jupyter Notebook instance running in a web browser while
working with code in Python. 58

5.11 Printing “Hello, World!” to the console output using Java 8. 59
5.12 In contrast, printing “Hello, World!” using Python 3.7 to the console only

takes one line. 60
5.13 A function that calculates the factorial of an input f. It uses result as a

temporary variable to store intermediary computation results and returns it
when the iteration is done. 61

5.14 This figure shows a text file with the name requirements.txt. It contains all
packages that must be installed for the project in which this file is contained
to run correctly. It is possible to specify a version number, but not obligatory.
When specifying a version number, one can be specific or give minimum or
maximum version specifications. In the last line, we feed this file to the “pip
install” command. 62

6.1 An example of a Precision-Recall curve. [Ber16] 68
6.2 Relation of data vs. performance in machine learning applications [ZVRF12] 71

86

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

List of Tables

6.1 Evaluation results. Columns indicate the various recommenders. Rows
indicate different metrics. Highest results per metric (row) are highlighted. 73

87

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Bibliography

[Ama12] Xavier Amatriain. Netflix recommendations: Beyond the 5 stars. Online,
2012.

[BCN16] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-
Scale Machine Learning. ArXiv e-prints, June 2016.

[BCT11] Riccardo Bambini, Paolo Cremonesi, and Roberto Turrin. A recommender
system for an iptv service provider: a real large-scale production environment.
In Recommender systems handbook, pages 299–331. Springer, 2011.

[Bec64] Joseph Becker. The medlars project. ALA bulletin, 58(3):227–230, 1964.

[Ber16] Andy Berger. Precision-recall curves. Online, 2016.

[Biz09] Christian Bizer. The emerging web of linked data. IEEE intelligent systems,
(5):87–92, 2009.

[Boa18] LLC ("BGG") BoardGameGeek. Xml api terms of use, 2018. [Online;
accessed 26-October-2018].

[Boo15] Paul Booth. Game play: paratextuality in contemporary board games.
Bloomsbury Publishing USA, 2015.

[BP97] Daniel Billsus and Michael Pazzani. Learning probabilistic user models. In
UM97 Workshop on Machine Learning for User Modeling. Citeseer, 1997.

[BRG07] Somnath Banerjee, Krishnan Ramanathan, and Ajay Gupta. Clustering short
texts using wikipedia. In Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 787–788. ACM, 2007.

[Bur02] Robin Burke. Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction, 12(4):331–370, 2002.

[C+15] François Chollet et al. Keras. https://github.com/fchollet/keras,
2015.

89

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[Car65] Jane Carson. Colonial Virginians at play. University of Virginia Press, 1965.

[CAS16] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems, pages 191–198. ACM, 2016.

[CDVdV16] Walter Crist, Anne-Elizabeth Dunn-Vaturi, and Alex de Voogt. Ancient
Egyptians at Play: Board Games Across Borders. Bloomsbury Publishing,
2016.

[Che16] Jim X Chen. The evolution of computing: Alphago. Computing in Science
& Engineering, 18(4):4–7, 2016.

[Chi96] Shirish Chinchalkar. An upper bound for the number of reachable positions.
ICGA Journal, 19(3):181–183, 1996.

[CHV15] Pablo Castells, Neil J. Hurley, and Saul Vargas. Novelty and Diversity in
Recommender Systems, pages 881–918. Springer US, Boston, MA, 2015.

[CMK66] Cyril W Cleverdon, Jack Mills, and Michael Keen. Factors determining the
performance of indexing systems. 1966.

[CTLY16] Chih-Ming Chen, Ming-Feng Tsai, Yu-Ching Lin, and Yi-Hsuan Yang. Query-
based music recommendations via preference embedding. In Proceedings
of the 10th ACM Conference on Recommender Systems, RecSys ’16, pages
79–82, New York, NY, USA, 2016. ACM.

[CVW11] Pablo Castells, Saúl Vargas, and Jun Wang. Novelty and diversity metrics
for recommender systems: choice, discovery and relevance. 2011.

[CWTY19] Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai, and Yi-Hsuan Yang.
Collaborative similarity embedding for recommender systems. CoRR,
abs/1902.06188, 2019.

[CYCT17] Chih-Ming Chen, Yi-Hsuan Yang, Yian Chen, and Ming-Feng Tsai.
Vertex-context sampling for weighted network embedding. arXiv preprint
arXiv:1711.00227, 2017.

[CZJL15] Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A fast
parallel stochastic gradient method for matrix factorization in shared memory
systems. ACM Transactions on Intelligent Systems and Technology (TIST),
6(1):2, 2015.

[DDF+90] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of
the American society for information science, 41(6):391–407, 1990.

[DSa] Scott Alden Derk Solko. Boardgamegeek main site.

90

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[DSb] Scott Alden Derk Solko. Boardgamegeek sub page about "catan".

[Duf14] Owen Duffy. Board games’ golden age: sociable, brilliant and driven by the
internet. The Guardian, 2014.

[EGM08] Ofer Egozi, Evgeniy Gabrilovich, and Shaul Markovitch. Concept-based
feature generation and selection for information retrieval. In AAAI, volume 8,
pages 1132–1137, 2008.

[ELKR11] Michael D Ekstrand, Michael Ludwig, Joseph A Konstan, and John T Riedl.
Rethinking the recommender research ecosystem: Reproducibility, openness,
and LensKit. In Proceedings of the Fifth ACM Conference on Recommender
Systems, RecSys ’11, pages 133–140. ACM, 2011.

[F+07] Irving L Finkel et al. Ancient board games in perspective. In British Museum
Colloquium, 2007.

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

[Ger06] Robert S Gerber. Mixing it up on the web: Legal issues arising from internet"
mashups". Intellectual Property & Technology Law Journal, 18(8):11, 2006.

[GNOT92] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. Commun. ACM,
35(12):61–70, December 1992.

[GP17] Antonio Gulli and Sujit Pal. Deep Learning with Keras. Packt Publishing
Ltd, 2017.

[GRFST11] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme. MyMediaLite: A free recommender system library. In 5th ACM
International Conference on Recommender Systems (RecSys 2011), 2011.

[Gri17] Milton Griepp. Hobby games market over $1.4 billion in 2016, 2017. [Online;
accessed 26-April-2018].

[Guo14] Philip Guo. Python is now the most popular introductory teaching language
at top us universities. BLOG@ CACM, July, page 47, 2014.

[GZSYS15] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. Librec: A java
library for recommender systems. In UMAP Workshops, volume 4, 2015.

[Hil00] Philipp Hilgers. Eine anleitung zur anleitung. das taktische kriegsspiel
1812-1824. pages 59–77, 01 2000.

[HKTR04] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T.
Riedl. Evaluating collaborative filtering recommender systems. ACM
TRANSACTIONS ON INFORMATION SYSTEMS, 22:5–53, 2004.

91

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[HKV08] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE International Conference
on Data Mining, pages 263–272. Ieee, 2008.

[HSRF95] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending
and evaluating choices in a virtual community of use. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 194–201.
ACM Press/Addison-Wesley Publishing Co., 1995.

[Hug17] Nicolas Hug. Surprise, a Python library for recommender systems. http:
//surpriselib.com, 2017.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science
Engineering, 9(3):90–95, May 2007.

[Jiz00] Richard Jizba. Measuring search effectiveness. Creighton University Health
Sciences Library and Learning Resources Center, 2000.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed <today>].

[JZFF10] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender
Systems: An Introduction. Cambridge University Press, 2010.

[Kar90] Jussi Karlgren. An algebra for recommendations: using reader data as a
basis for measuring document proximity, 1990.

[KB14a] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[KB14b] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer, 42(8), 2009.

[Kor09] Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize
documentation, 81:1–10, 2009.

[Kul15] Maciej Kula. Metadata embeddings for user and item cold-start recommen-
dations. In Toine Bogers and Marijn Koolen, editors, Proceedings of the
2nd Workshop on New Trends on Content-Based Recommender Systems
co-located with 9th ACM Conference on Recommender Systems (RecSys
2015), Vienna, Austria, September 16-20, 2015., volume 1448 of CEUR
Workshop Proceedings, pages 14–21. CEUR-WS.org, 2015.

[Kul17] Maciej Kula. Spotlight. https://github.com/maciejkula/

spotlight, 2017.

92

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[LH14] Dokyun Lee and Kartik Hosanagar. Impact of recommender systems on
sales volume and diversity. 2014.

[LKHJ18] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Je-
bara. Variational autoencoders for collaborative filtering. arXiv preprint
arXiv:1802.05814, 2018.

[LM07] Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-
based collaborative filtering. CoRR, abs/cs/0702144, 2007.

[LSY03] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet computing,
7(1):76–80, 2003.

[McG] Jesse McGatha. Bgg xml api2.

[MCK06] Frank McCarey, Mel O Cinneide, and Nicholas Kushmerick. Recommending
library methods: An evaluation of the vector space model (vsm) and latent
semantic indexing (lsi). In International Conference on Software Reuse,
pages 217–230. Springer, 2006.

[McK10] Wes McKinney. Data structures for statistical computing in python. In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th
Python in Science Conference, pages 51 – 56, 2010.

[Mil95] George A Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39–41, 1995.

[Mit15] Ryan Mitchell. Web scraping with Python: collecting data from the modern
web. " O’Reilly Media, Inc.", 2015.

[MN+98] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for
naive bayes text classification. In AAAI-98 workshop on learning for text
categorization, volume 752, pages 41–48. Citeseer, 1998.

[Moo50] Calvin N Mooers. The theory of digital handling of non-numerical infor-
mation and its implications to machine economics. Number 48. Zator Co.,
1950.

[Mur52] Harold James Ruthven Murray. A history of board-games other than chess.
Clarendon press, 1952.

[Ng08] Andrew Ng. Stanford cs229 - machine learning - ng. 2008.

93

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[NP12] Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic
construction, evaluation and application of a wide-coverage multilingual
semantic network. Artificial Intelligence, 193:217–250, 2012.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

[OTTK12] Ante Odic, Marko Tkalcic, Jurij F Tasic, and Andrej Košir. Relevant context
in a movie recommender system: Users’ opinion vs. statistical detection.
ACM RecSys, 12, 2012.

[Par99] David Sidney Parlett. The Oxford history of board games. Oxford University
Press, USA, 1999.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learn-
ing of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’14, pages 701–710, New York, NY, USA, 2014. ACM.

[Pet12] Jon Peterson. Playing at the world: A history of simulating wars, people
and fantastic adventures, from chess to role-playing games. Unreason Press
San Diego, 2012.

[PG07] F. Perez and B. E. Granger. Ipython: A system for interactive scientific
computing. Computing in Science Engineering, 9(3):21–29, May 2007.

[PPB15] Nikolaos Pappas and Andrei Popescu-Belis. Combining content with user
preferences for non-fiction multimedia recommendation: a study on ted
lectures. Multimedia Tools and Applications, 74(4):1175–1197, 2015.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of machine learning research, 12(Oct):2825–2830, 2011.

[R+16] Francisco J.R. Ruiz et al. Boardgamefinder.net. https://www.

boardgamefinder.net/#ourpaper, 2016.

[RFGST09] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In
Proceedings of the twenty-fifth conference on uncertainty in artificial intelli-
gence, pages 452–461. AUAI Press, 2009.

[RIS+94] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and
John Riedl. Grouplens: an open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM conference on Computer supported
cooperative work, pages 175–186. ACM, 1994.

94

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
backpropagation and approximate inference in deep generative models. arXiv
preprint arXiv:1401.4082, 2014.

[RRMB16] Maja Rudolph, Francisco Ruiz, Stephan Mandt, and David Blei. Exponential
family embeddings. In Advances in Neural Information Processing Systems,
pages 478–486, 2016.

[RRS15] F. Ricci, L. Rokach, and B. Shapira. Recommender Systems Handbook.
Springer US, 2015.

[RV97] Paul Resnick and Hal R Varian. Recommender systems. Communications
of the ACM, 40(3):56–58, 1997.

[Sah05] Magnus Sahlgren. An introduction to random indexing. 2005.

[Sch09] Barry Schwartz. The paradox of choice, 2009.

[SCJ11] Andrzej Szwabe, Michal Ciesielczyk, and Tadeusz Janasiewicz. Semantically
enhanced collaborative filtering based on rsvd. In International Conference
on Computational Collective Intelligence, pages 10–19. Springer, 2011.

[SG09] Guy Shani and Asela Gunawardana. Evaluating recommender systems.
Technical report, November 2009.

[Sha88] Claude E Shannon. Programming a computer for playing chess. In Computer
chess compendium, pages 2–13. Springer, 1988.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-
based collaborative filtering recommendation algorithms. In Proceedings
of the 10th international conference on World Wide Web, pages 285–295.
ACM, 2001.

[SLBdG09] Giovanni Semeraro, Pasquale Lops, Pierpaolo Basile, and Marco de Gemmis.
Knowledge infusion into content-based recommender systems. In Proceedings
of the third ACM conference on Recommender systems, pages 301–304. ACM,
2009.

[SM71] Gerard Salton and M McGill. The smart retrieval system—experiments in
automatic document retrieval, 1971.

[SM95] Upendra Shardanand and Pattie Maes. Social information filtering: algo-
rithms for automating “word of mouth”. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 210–217. ACM
Press/Addison-Wesley Publishing Co., 1995.

95

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[SMMA17] Mohamed Sarwat, Raha Moraffah, Mohamed F Mokbel, and James L Avery.
Database system support for personalized recommendation applications. In
Data Engineering (ICDE), 2017 IEEE 33rd International Conference on,
pages 1320–1331. IEEE, 2017.

[SMR08] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Evalu-
ation in Information Retrieval, volume 39, chapter 8, pages 151–175. Cam-
bridge University Press, 2008.

[SMSX15] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie.
Autorec: Autoencoders meet collaborative filtering. In Proceedings of the
24th International Conference on World Wide Web, pages 111–112. ACM,
2015.

[Sta18] Stan Honda,AFP, Getty Images. Man versus machine: chess enthusiasts
watch garry kasparov in his final match against deep blue, new york, 11 may
1997., 2018. [Online; accessed October 26, 2018].

[TP10] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space
models of semantics. Journal of artificial intelligence research, 37:141–188,
2010.

[TPNT07] Gabor Takacs, Istvan Pilaszy, Bottyan Nemeth, and Domonkos Tikk. On the
gravity recommendation system. In Proceedings of KDD cup and workshop,
volume 2007, 2007.

[Tur53] Alan M Turing. Digital computers applied to games. Faster than thought,
1953.

[Vat17] Dinesh Vatvani. An analysis of board games: Part i - introduction and
general trends, 2017. [Online; accessed 26-April-2018].

[Vem05] Santosh S Vempala. The random projection method, volume 65. American
Mathematical Soc., 2005.

[VLBM08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Extracting and composing robust features with denoising autoencoders.
In Proceedings of the 25th international conference on Machine learning,
pages 1096–1103. ACM, 2008.

[VRDJ95] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Technical Report
CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
May 1995.

[W+63] Alvin M Weinberg et al. Science, government, and information: The respon-
sibilities of the technical community and the government in the transfer of
information. 1963.

96

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[WDZE16] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. Collabora-
tive denoising auto-encoders for top-n recommender systems. In Proceedings
of the Ninth ACM International Conference on Web Search and Data Mining,
pages 153–162. ACM, 2016.

[Wik18a] Wikipedia, the free encyclopedia. Goosy goosy gander, 2018. [Online;
accessed October 26, 2018].

[Wik18b] Wikipedia, the free encyclopedia. Senet game pieces (tutankhamun), 2018.
[Online; accessed October 26, 2018].

[Win14] Nick Wingfield. High-tech push has board games rolling again. The New
York Times, 2014.

[Woo12] S. Woods. Eurogames: The Design, Culture and Play of Modern European
Board Games. McFarland & Company, 2012.

[YB16] Denis Yarats and Alberto Bietti. Qmf. https://github.com/quora/
qmf, 2016.

[YCWT18] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai.
Hop-rec: High-order proximity for implicit recommendation. In Proceedings
of the 12th ACM Conference on Recommender Systems, RecSys ’18, pages
140–144, New York, NY, USA, 2018. ACM.

[Zei12] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

[ZVRF12] Xiangxin Zhu, Carl Vondrick, Deva Ramanan, and Charless C Fowlkes. Do
we need more training data or better models for object detection?. In BMVC,
volume 3, page 5. Citeseer, 2012.

[ZYS17] Shuai Zhang, Lina Yao, and Aixin Sun. Deep learning based recommender
system: A survey and new perspectives. arXiv preprint arXiv:1707.07435,
2017.

97

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

	Abstract
	Contents
	Introduction
	Motivation
	What problem needs to be solved?
	Aim of the work
	Methodological approach

	Background
	History of Recommender Systems
	Types of Recommender Systems

	History of Board Games & Data
	History of Boardgames: Then to Now
	The Data - boardgamegeek.com
	Collecting the Data & Data Models
	 Available board game recommendation systems

	Recommenders
	Implementation
	Collaborative Filtering Approaches
	Content-Based Approaches
	Hybrid Recommender
	Baseline: Popularity-Based Recommender

	Software
	Existing Recommendation Software
	Applied Software and Technologies

	Results
	Evaluation Methodology
	Evaluation Metrics
	Training and Test Data Selection
	Discussion of Results
	Summary of Results

	Summary & Future work
	Summary of this thesis
	Answered Research Questions
	Opportunities for future research - open issues

	List of Figures
	List of Tables
	Bibliography

