
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Smart Contracts in a DAG Ledger

Blockchain 5.0

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Lukas Hetzenecker, BSc

Matrikelnummer 01225963

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ass.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn Monika di Angelo

Wien, 24. Jänner 2020

Lukas Hetzenecker Monika di Angelo

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Smart Contracts in a DAG Ledger

Blockchain 5.0

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Lukas Hetzenecker, BSc

Registration Number 01225963

to the Faculty of Informatics

at the TU Wien

Advisor: Ass.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn Monika di Angelo

Vienna, 24th January, 2020

Lukas Hetzenecker Monika di Angelo

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der
Arbeit

Lukas Hetzenecker, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. Jänner 2020

Lukas Hetzenecker

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

My parents, Wilhelm and Hilda, for supporting me during my studies.

My advisors for this thesis, Monika di Angelo and Gernot Salzer, with whom I created
the first “smart contracts” lecture at this university, that already provided me with a
vast knowledge for cryptotechnologies beforehand.

Our seminar group for providing valuable input and inspiring discussions.

Susanne and Alice for giving feedback on the first draft of this thesis.

David Sønstebø, Dominik Schiener, Serguei Popov.

Vitalik Buterin, Gavin Wood.

Guido van Rossum, and the Python Software Foundation.

Linus Torvalds.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Um Kryptowährungen enstand in den letzten Jahren ein enormer Hype. Das kann unter
anderem auch an den zahlreichen Lehrveranstaltungen unserer Universität beobachtet
werden, die innerhalb kurzer Zeit aufgekommen sind.

Im Zuge dieser Hype-Phase entsprang eine schier unübersichtliche Anzahl an Projekten
im Kryptowährungs-Umfeld, und jede einzelne davon mit scheinbar vielversprechenderen
Funktionalitäten als die zuvorgekommenden. Wir wollen mit dieser Arbeit zumindest wie-
der ein wenig Ordnung in diesen Bereich bringen. Dafür vergleichen wir die wichtigsten
Plattformen auf einer technischen Ebene, und analysieren welche der Versprechungen sie
wirklich halten können. Unsere Erfahrung zeigt, dass derzeit besonders Plattformen mit
Unterstützung für “Smart Contracts” besonders beliebt sind. Das ist auch nicht wirklich
verwunderlich, da diese neue Möglichkeiten zu Interaktionen innerhalb der Blockchains
bieten.

Ein weiterer Trend in der Blockchain-Forschung beschäftigt sich mit der Frage nach
nachhaltigen Lösungen, um die bestehenden Probleme der Skalierung von Blockchains,
die mit anderen Technologien verglichen nur einen äußerst geringen Durchsatz an Trans-
aktionen schaffen, in den Griff zu bekommen. Dazu werden wir in dieser Arbeit einige
Vorschläge besprechen.

Einer davon stellt sogar die Struktur von Blockchains an sich in Frage. Diese stelle einen
Engpass dar und daher sollte statt einer Kette (Chain) besser ein gerichteter Graphen
ohne Zyklus (Directed acyclic graph, DAG) verwendet werden. Dieser hat zwar bessere
Eigenschaften in Bezug auf die Skalierbarkeit, hat stattdessen aber den Nachteil, dass
“Smart Contracts” auf solchen Strukturen nur schwer zu implementieren sind.

In dieser Arbeit versuchen wir dennoch beide dieser Ansätze – “Blockchain 2.0”, also
“Smart Contracts” und “Blockchain 3.0”, wie Kryptowährungen basierend auf einer DAG-
Struktur manchmal genannt werden – unter einen Hut zu bringen. Solch eine Verbindung
könnte man dann als “Blockchain 5.0” bezeichnen.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Cryptocurrencies generated a lot of hype in the recent years. Following this hype lots of
different cryptocurrency projects were started, each of them promising awesome novel
features. We look at what those offer from a pure technical perspective. From our
experience, it seems that smart contract platforms are getting especially popular, and
rightly so – they open up a vast amount of new possibilities how users can interact with
cryptocurrencies. We will look into how different platforms try to advance this field.

A current trend in blockchain research is coming up with solutions for improving the at
this time still limited transaction throughput of blockchains, which arguably prevents
more widespread use. We will look into proposals for increased scalability.

One of the most promising solutions for better scalability is challenging the entire struc-
ture of organizing transactions in a blockchain. This bottleneck can be replaced with
a directed acyclic graph, which has better properties for transaction throughput. Al-
though this comes with the disadvantage that smart contract engines are more difficult
to implement on such ledger structures.

In this thesis, we researched how this apparent contradiction can be resolved to combine
“Blockchain 2.0” technologies, that are smart contracts, and “Blockchain 3.0” technolo-
gies, how DAG ledgers are sometimes called, to bring the best of both worlds together.
Such a unification could then fittingly be termed “Blockchain 5.0”.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Blockchain . 1
1.2 Blockchain 2.0 - Smart Contracts . 2
1.3 Blockchain 3.0 - Directed acyclic graphs 5
1.4 Research Questions and Methodological Approach 7
1.5 Related literature . 8
1.6 Aim of the Work . 9
1.7 Methodological Approach . 9
1.8 Structure of the Work . 10

2 Platforms 13
2.1 Most popular smart contract platforms 13
2.2 Ethereum VM . 14
2.3 EOS . 16
2.4 TRON . 16
2.5 Cardano . 17
2.6 NeoVM . 17
2.7 IOTA (Qubic) . 19
2.8 Lisk . 19
2.9 Solving Scalability With Sidechains . 20
2.10 Conclusion . 21

3 Ethereum 23
3.1 Definitions . 23
3.2 Forks . 24
3.3 Addresses . 26
3.4 Accounts . 27
3.5 Contracts . 27

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.6 Recursive Length Prefix . 34

4 IOTA 39
4.1 Definitions . 39
4.2 Trits and Trytes . 40
4.3 Addresses . 40
4.4 Signatures . 42
4.5 Transactions and Bundles . 42
4.6 Tip selection process and random walks 44
4.7 Consensus . 44
4.8 IXI modules . 46

5 Smart contracts in a DAG ledger 47
5.1 Relaxations . 47
5.2 Platforms . 48

6 tanglEVM - an EVM in the Tangle 51
6.1 Architecture . 52
6.2 Consensus . 52
6.3 Trytes . 53
6.4 TX Parser . 55
6.5 Py-EVM . 64
6.6 Future Work . 76
6.7 Summary . 76

7 Conclusion 79

A Smart contract platforms 81

B Ethereum snippets 86

C Solidity snippets 89

List of Figures 91

List of Tables 93

Acronyms 95

Bibliography 97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

1.1 Blockchain

Blockchain — an open, distributed ledger made of blocks linked using cryptographic
hash functions, with Bitcoin as its most prominent implementation — gained a lot of
media attention in the recent years. In this context, distributed means that consensus
is generated and maintained in a decentralized manner, and all members of the network
can check and verify transactions. Two prominent designs for maintaining consensus are
PoW and PoS.[13]

To give just one example, the research and advisory firm Gartner identified it as one
of the Top 10 technology trends for 2019[26]. Whereas the scientific community largely
ignored Bitcoin when it was first introduced, and only took it seriously after practice
showed it worked ([55]), subsequent developments often have an active research commu-
nity available from the start of the project.

Blockchain can be seen as a decentralized database, containing a public ledger of trans-
actions that were executed between participants of the decentralized network. Every
transaction gets verified independently by every participant, and a consensus is formed
by the majority. A transaction creates an irrefutable record in the public ledger. This
method frees the participants from the need of any centralized trustworthy arbitrator
or third party — one of the main reasons why Satoshi Nakamoto published the Bitcoin
protocol in January 2009, following the financial crisis.

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Figure 1.1: Blockchain 1.0 structure overview

Figure 1.1 shows the structure of a blockchain, with its name-giving structure of blocks,
back-linked until the very first Genesis block, at the top left in this figure. Every
block contains an ordered list of transactions, whose fields are hashed, and these hashes
are again structured in a Merkle Tree. The root of the tree, the Merkle Root, is the
only field needed in the header of the blocks. This simple, but powerful, structure
forms the fundamental forgery detection capability of blockchains — because any change
to any transaction carried out in retrospect would result in a change of every single
succeeding hash. Although used in cryptocurrencies, this feature is much older than
that: cryptographically secured chain of blocks date back to 1991, when they were
described by Stuart Haber and W. Scott Stornetta.[13]

Currently the most active research topics include the limited scalability of blockchains[86]:
estimates put transaction processing capacity between 3.3 and 7 transactions per sec-
ond for the Bitcoin blockchain[18], which severely limits its applicability as day-to-day
payment coin.

1.2 Blockchain 2.0 - Smart Contracts

While the goal of Bitcoin was to provide a form of electronic cash, the next evolutionary
step of blockchain technologies allowed autonomously executing algorithms without the
need of any third party or middleman. In literature such platforms were often called
“Blockchain 2.0” (e.g. [43]). They are the foundation for decentralized applications, or in

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Blockchain 2.0 - Smart Contracts

short DApps[3]. Several lectures at the TU Wien delve into the development of DApps
on the Ethereum platform, the first that enabled the so-called Smart contracts in a
cryptocurrency.

But the concept of smart contracts predates Ethereum’s release in 2013, Nick Szabo
mentioned digital contracts that form a set of promises already back in 1996[78]:

New institutions, and new ways to formalize the relationships that make up
these institutions, are now made possible by the digital revolution. I call
these new contracts "smart", because they are far more functional than their
inanimate paper-based ancestors. No use of artificial intelligence is implied.
A smart contract is a set of promises, specified in digital form, including
protocols within which the parties perform on these promises.

– Nick Szabo, 1996

Szabo mentions four key principles of contracts, derived from common law: observabil-
ity (that principals can observe the others performance, or prove their own), verifiability
(the ability of a principal to prove to an arbitrator that a contract has been performed or
breached), privity (knowledge and control over a contract should be distributed among
parties only as much as is necessary for the performance of that contract) and enforce-
ability.[79]

Bartoletti et al.[6] defined them as “computer programs that can be consistently exe-
cuted by a network of mutually distrusting nodes, without the arbitration of a trusted
authority”.

Trüeb[80] noted that smart contracts lack a clear-cut definition. They can be many
different things: (i) an automation process; (ii) a software script or program; and (iii)
the means by which blockchains or alternative ledger technologies will finally come into
the mainstream.

But while the term smart contracts would suggest that they are contracts in some legal
sense, this is not the case, as smart contracts lack the elements of offer, acceptance and
consideration typically found in legal contracts. Now that the term smart contracts has
already become a quasi-standard for such decentralized programs, Vitalik Buterin, the
founder of Ethereum, regrets choosing it for his implementation in Ethereum1:

To be clear, at this point I quite regret adopting the term “smart contracts”.
I should have called them something more boring and technical, perhaps
something like “persistent scripts”.

– Vitalik Buterin, 2018

1https://twitter.com/VitalikButerin/status/1051160932699770882

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Figure 1.2: Blockchain 2.0 (Smart Contracts) structure overview

Ethereum can be seen as a state machine, whose contracts encode the state transition
functions.[8] Only the valid updates to the contract states are recorded on the blockchain,
to ensure their correct execution.[6]

Figure 1.3: Pending transactions in the Ethereum network after the release of Cryp-
toKitties[85]

While the concept of smart contracts seems revolutionary, at least in the space of
blockchain technologies, they cannot solve the problems with scalability. In fact, smart
contracts tend to make this problem even worse, as the probably most prominent ex-
ample for this, the DApp CryptoKitties, shows. This app, the first big online game
on Ethereum, enables players to buy, trade and breed digital cats. When it got really
popular in December 2017 it caused a congestion in the Ethereum network within one
week of its launch, leaving many transactions pending (figure 1.3) and resulting in a
huge increase of transaction fees. During its most popular times, it accounted for more
than 13% of all transaction traffic in the Ethereum network. As solution to this growing
problem, the developers of the app increased the costs to interact with the app, particu-

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. Blockchain 3.0 - Directed acyclic graphs

larly the birthing fee of the kitties. This reduced the number of people willing to breed
these digital kittens, and therefore the traffic in the network.[36]

This example highlights that Ethereum suffers from the same fundamental scalability
problem as other blockchains like Bitcoin, presently only managing a global transaction
rate of 15 transactions per second. An often talked about possible solution to this is
Sharding, which will split the blockchain into discrete parts. While originally planned
to activate with Ethereum’s Casper upgrade, this feature got postponed to some later
date[15]. As of January 2020, no reasonable roadmap has been published yet.

That being said, the public interest in blockchains and smart contracts is still unabated,
as the search trend in Google (figure 1.4) shows.

Figure 1.4: Popularity of search terms blockchain and smart contracts, source: Google
Trends

1.3 Blockchain 3.0 - Directed acyclic graphs

An even newer generation of cryptotechnologies, sometimes called “Blockchain 3.0”[59],
tries to overcome these problems. They are still named blockchain, although that is
actually a misnomer, because many such implementations no longer order transactions
in a linked list. Cryptocurrencies such as IOTA[65] or NANO[54] use a DAG instead of
a chain to store its ledger. The big advantage hoped to be achieved with this method
is getting rid of the inherent transaction rate limit, therefore accomplishing unlimited
scalability (at least in theory). IOTA also does not use the concept of mining, resulting
in feeless transactions for its users.[3].

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Although this iterations of Blockchain provides desirable properties, combining the smart
contract capabilities of Blockchain 2.0 with the DAG ledger structure of Blockchain 3.0
is still an unsolved problem. Due to the graph structure of e.g. IOTA, no total ordering
of all transactions is possible - a requirement for existing smart contract platforms.

Figure 1.5: Blockchain 3.0 (DAG) structure overview

A blockchain consists of, as the name suggests, blocks that are linked. Blocks contain
possibly zero or more transactions, and one block must strictly follow the previous one.
This is done by adding a hash pointer to the previous block into the block header.

In mathematics, such a construct is called a chain (or a totally ordered set). This
set is paired with a total order, a binary relation (≤) on a set X, that is reflexive,
antisymmetric, transitive and total.[69] Formally these properties are defined as follows:
A binary relation ≤ is a total order on a set X if the following statements hold ∀x, y, z ∈
X:

1. Reflexivity: x ≤ x

2. Antisymmetry: x ≤ y ∧ y ≤ x =⇒ x = y

3. Transitivity: x ≤ y ∧ y ≤ z =⇒ x ≤ z

4. Totality: x ≤ y ∨ y ≤ x

Examples for such totally ordered sets, apart from the set of real numbers (R) ordered
by the usual less or equal than relation (≤), are the transactions in a blockchain. Miners
are responsible for this order by establishing links to predecessor blocks, and the order
of transactions within a block (which doesn’t necessarily mean that was the order in
which the transactions were made).

A DAG on the other hand is a more relaxed data structure. Similar to a blockchain it
contains a finite amount of vertices (blocks), but here the blocks are linked in a directed
graph, instead of a chain. With this the Totality axiom is lost, as some elements can be

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Research Questions and Methodological Approach

incomparable. The Reflexivity, Antisymmetry, and Transitivity axioms are still fulfilled
though. Such sets are called partially ordered sets (or posets for short).

This definition shows that every blockchain is also a DAG (with only one outgoing edge
per block), but the reverse is not true.

Figure 1.6: Structure of the DAG in IOTA (Tangle)

Figure 1.7: Structure of the DAG in NANO (Block lattice)

Figures 1.6 and 1.7 show different implementations in distributed ledger technologies.
Both of them fulfill the properties of a DAG.

1.4 Research Questions and Methodological Approach

The analysis of those mentioned problems should lead to the answer of the following
Research Questions:

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1.4.1 RQ1 - What do current smart contract platforms have in
common?

The purpose of this research question is to analyze currently existing smart contract
platforms, to find what they have in common and where they diverge from one another.
We are interested in the implementations of the currently most popular cryptocurrencies
(as ranked by coinmarketcap.com) that support some form of smart contracts, in
particular which execution engines (virtual machines or VMs) they are based on, and
how developers can program them.

1.4.2 RQ2 - How do smart contract VMs work in detail?

The main focus here will be on Ethereum and 1) how transactions are executed by
the EVM, and 2) how the order of transactions is established. Race condition attacks
are unavoidable in Ethereum, like the Transaction-Ordering Attack, where a miner can
choose the order in which the transactions are mined in a single block.[16]

1.4.3 RQ3 - How can the basic requirements of smart contracts be
applied in a DAG?

As already discussed, is is generally impossible to determine the order of transactions
in a DAG. The difficulty lies in the lack of total order of the transactions. As there is
only a partial order, there does not need to be a directed edge between two transactions,
A and B , and therefore one cannot say in general whether A or B happened first.

This makes it hard (or generally impossible) to implement smart contracts in such a
structure. To solve this, simplifications on the data structure of the transactions have to
be made. Besides introducing timestamps to the tangle, as Serguei Popov proposes[64],
other solutions without timestamps will be discussed as well.

1.4.4 RQ4 - How can a consensus of asynchronous transactions be
formed in a DAG with uncertain timestamps?

While the focus of RQ3 was on data structures in a DAG, RQ4 will deal with consensus
mechanisms. One of the most important feature of cryptocurrencies is that consensus
is maintained in a decentralized manner, therefore freeing everyone from the need of
a centralized trustworthy arbitrator or third party[13]. RQ4 will analyze consensus
algorithms, that can work with smart contracts in a DAG ledger.

1.5 Related literature

Trüeb [80] provides approaches to classifying smart contracts from a legal perspective.
He notes that this can be seen from different angels, ranging from being not a contract
at all, but just an automated closing equipment, to being a novation of human consent

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.6. Aim of the Work

in binary data and therefore a contract in its own right. A rough high-level overview of
features of smart contracts is provided as well, giving examples of application fields.

Bartoletti et al.[6] empirically documents how smart contracts are interpreted and pro-
grammed on various blockchain platforms.

Jiménez[63] analyzed in his masters thesis the state of the Ethereum blockchain. It
contains a survey about the inner working of the platforms, going into the details of the
database, application ecosystem and libraries. Furthermore a useful tool 2, written in
Python, is provided to query the state and generate statistics of the Ethereum blockchain.

1.6 Aim of the Work

First, we analyze platforms for smart contracts in regard to underlying concepts, status,
and issues. We compare different platforms to support developers in choosing a suitable
platform for their DApp.

Next, we want to combine the two promising research topics — smart contracts and
DAGs. Based on our platform comparison, we investigate how a smart contract engine
could use a DAG data structure - and how this does compare to existing concepts like
sidechains.

At the moment, there is no known implementation of smart contracts in a DAG. This
thesis should act as a guide to the various kinds of smart contracts possible in a DAG
and to the impossible ones — due to the graph structure of the ledger.

The classification of smart contracts that can or cannot be implemented on a DAG is
currently of particular interest to the IOTA foundation and this thesis should advance
the research in that area.[48]

Another goal is to develop a simple prototype, which applies the previously researched
concepts.

1.7 Methodological Approach

1.7.1 Survey of platforms

Out of the top 50 cryptocurrency projects with the highest market capitalization (as
found on coinmarketcap.com), we analyze whether their platforms offer any support
for persistent scripts, or any other form of smart contracts. We check how powerful
those are, and only consider Turing complete platforms for a more in depth review. We
then examine their execution environments to find out how they can be programmed,
and try to find similarities between them.

Another crucial criteria for developers is the number of users they can reach with their
DApp, so we try find sources for the activity in their underlying blockchains as well.

2https://github.com/carlesperezj/ethereum-analysis-tool

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1.7.2 Prototype

A goal of this thesis is to develop a basic prototype application, that showcases the
implementation of smart contracts, or more precisely of a smart contract virtual machine,
in a DAG ledger. We show how this virtual machine can be adjusted and extended, to
better deal with the peculiarities of such DAG ledger structures.

1.7.3 Scope & Limitations

We limit ourselves to a literature study to get an overview of the smart contract and
DAG space, and do not perform a deep technical analysis into every platform. We only
pick a representative technology from each of these fields — Ethereum and IOTA —
where a more in-depth review into certain technical aspects is conducted, as they are
the basis for the subsequent prototype application.

The prototype is a minimum viable product that embeds a subset of smart contract
features into a DAG. It lacks certain key aspects like dealing with value transfers of
a native currency by updating the balance of an account. The final structure will be
a block lattice, similar to sidechains, but we will not implement interactions between
different chains in the DAG.

As the focus is on the block structure, the prototype has only a very simplified model
consensus, where a central node is the only authority and responsible for achieving
consensus by periodically issuing blocks, which are the only source of truth in this chain.
Classical methods for consensus like Proof of Work or Proof of Stake could be applied
to this chain, but are out of scope for this work.

1.8 Structure of the Work

The rest of this thesis is organized as follows:

At the beginning in chapter 2 the survey of existing smart contract platforms will be
performed. We are mostly interested in their inner workings, how their smart contract
engine operate, and how contracts can be programmed on them. We try to describe what
sets the platforms apart from each other. This should lead to a general understanding on
the space of smart contract platforms, and what is required to implement such engines.
We also want to know which platforms in this field are the top dogs, that DApp developers
need to understand.

After the basics of Ethereum are explained in chapter 3, we will dip into the inner
workings of its virtual machine by looking at how exactly transactions are broadcasted
and executed.

In chapter 4 the DAG ledger IOTA with all its quirks is analyzed, again with focus
on the publishing of transactions, and on a method for achieving consensus in such a
network.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.8. Structure of the Work

Chapter 5 delivers the theoretical groundwork on how smart contracts calls can be
embedded into DAG ledgers, combining the lessons we learned in all previous chapters.

In chapter 6 we will then bring the previous theoretical work to fruition, by introducing
a simplified Proof of Concept, that is able to embed smart contract calls into IOTA’s
DAG ledger. But first, a smart contract engine has to be chosen and extended, and ways
to generate message streams in IOTA have to be found.

Finally chapter 7 will summarize the findings, and highlight potential future work, that
was out of scope for this thesis.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Platforms

For this chapter, a literature study about smart contract concepts and existing platforms
was performed. The main focus was on currently existing platforms that are in a useable
state and how they differentiate themselves. Of particular interest were novel approaches
and how they try to overcome scalability issues.

Overtorment[61] had already compiled a curated list of platforms to run smart contracts,
which was used as starting point for our research.

Bartoletti et al.[6] already did a similar survey in 2017, where they highlighted the key
differences between the most popular platforms at that time. They used the amount of
articles on the coindesk.com portal as metric for the popularity.

2.1 Most popular smart contract platforms

Because smart contracts are seen as the next evolutionary step of Blockchain technologies,
there are a variety of different platforms with diverse objectives that support some form
of a smart contract engine. This chapter establishes a common foundation for such
platforms. The result is a listing of properties those platforms have, although the details
of the implementation of course diverge between the examined platforms.

To research platform properties, a list of currently existing platforms is required. As
the cryptocurrency space is evolving daily, new platforms are developed rapidly, and no
relevant scientific literature could be found that is still up to date. Papers older than six
months are generally already too old to provide satisfactory information. While we try
to provide accurate, up-to-date information, we acknowledge that our work will share
the same fate.

Based on the definition of smart contracts in chapter 1, we assemble a list of the currently
most popular platforms. We use the existence of an Turing-complete language as basic

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Platforms

requirement. The ledger structure needs to follow the definition of cryptocurrencies,
which includes a decentralized consensus (consensus that is generated and maintained
in a decentralized manner, where agents can check and verify transactions).

Furthermore, we restrict the acceptable platforms to the following minimal constraints
that Bartoletti et al.[6] specified as well: the platform needs to (i) be already launched,
(ii) be running and supported from a community of developers, and (iii) be publicly
accessible.

We limited our research to the Top 50 cryptocurrencies by market capitalization from
the list provided by coinmarketcap.com. The research results can be found in Ap-
pendix A.

2.2 Ethereum VM

EVM, the virtual machine used by Ethereum and several other projects, is a “quasi
turing-complete” (the available gas for a transaction limits the instructions that can be
executed[30]) 256-bit stack-based execution environment for smart contract bytecode.

Haifeng[30]noted several flaws in the design of the EVM, that can lead to security con-
cerns. The lack of a standard library makes otherwise easy functionality like string splic-
ing, cutting and searching difficult to implement, and forces developers to borrow such
code snippets from other projects, which probably lack the proper auditing. DApps are
difficult to debug and test, often throwing OutOfGas exceptions without reporting useful
error informations. Floating point numbers are not supported, and Contracts cannot be
upgraded, hindering the ability to implement security patches for existing deployments.
We are also aware of these issues and share this assessment, but want to add that projects
like OpenZeppelin Contracts1 want to become the de-facto standard library, recent ver-
sions of Solidity added the support for returning human-readable error messages2, and
pattern for upgradable contracts do exist3, which at least shows that the community is
effectively working on decreasing these teething problems.

Another shortcoming is the word length of 256 bits, which differs from the usual 64
bit word length of modern CPUs, adding unnecessary overhead, wasting storage and
decreasing the computational efficiency[32]. This word size was chosen to easily place
Keccak256 hashes into a single word.[60]

Nevertheless Ethereum still seems to be the most popular and widely used platform
today, and despite the fact that several newer ones emerged, none of them could dethrone
Ethereum from this spot.

The “DappRadar 2019 dapp Industry Review”[42] also shares this assessment, stating
that “Ethereum remains the most significant smart contract blockchain. It grew the

1https://openzeppelin.com/contracts/
2https://github.com/ethereum/solidity/releases/tag/v0.4.22
3https://kauri.io/how-to-write-upgradeable-smart-contracts-with-truffle-

5.0-and-zeppelinos-2.0/315cbd6c71574e2686e15f0a20003089/a

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Ethereum VM

daily user base of its dapp ecosystem 118% in 2019, with daily value up 166%. None
other emerging smart contract blockchain demonstrated a sustained audience of dapp
usage in 2019.”

Because the EVM is such a popular and well-established smart contract engine, it is also
utilized in several other cryptocurrency platforms. A small subset of those include:

Ethereum Classic is a direct fork of the Ethereum chain in response to the DAO hack4

of June 2016, in which hackers could drain the funds of the DAO, a smart contract on the
chain. This caused frictions in the Ethereum community, as the Ethereum developers
decided per a vote to recover the stolen funds by putting them into a new smart contract
and allowing the original owners to restore their funds. Community members advocating
for blockchain immutability, and the concept of “code is law”5 rejected that reversal and
kept the unforked version of Ethereum under the name Ethereum Classic.

This project is still active, but no big development seems to have happened for it. It
has not implemented other feature forks of Ethereum6, and therefore is still mostly on
the feature level of the Homestead fork. It had a few forks on its own, but these have
mostly focused on delaying the difficulty bomb explosion (see sec.3.2)7, or adjusting the
monetary policy8. The only feature update, Atlantis, adding more opcodes, precompiled
contracts and zk-SNARKs activated in September 20199.

Another goal of the Ethereum Classic team is to develop an independent virtual machine
implementation in Rust under the name SputnikVM, which unites all Ethereum’esque
blockchains (Ethereum Classic, Ethereum, Ellaism, Ubiq, etc.)10.

Tron developed a VM with full compatibility to the EVM, which will be described in
greater detail in section 2.4.

Qtum, a Proof-of-Stake blockchain combining the UTXO (Unspent Transaction Out-
puts) model of Bitcoin with the EVM of Ethereum as smart contract machine11.

VeChain is a public blockchain trying to “allow efficient and transparent transitions
(upgrades) of the protocol to adapt to new challenges”, and supporting a “native fee
delegation”12, while still being closely linked to the EVM. It still has the same account

4https://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/
5https://www.vice.com/en_us/article/z43qb4/the-ethereum-hard-fork-spawned-

a-shaky-rebellion-ethereum-classic-etc-eth
6https://github.com/etclabscore/go-ethereum/blob/development/core/config/

mainnet.json
7https://github.com/etclabscore/ECIPs/blob/master/ECIPs/ecip-1010.md
8https://github.com/etclabscore/ECIPs/blob/master/ECIPs/ecip-1017.md
9https://www.coindesk.com/ethereum-classic-successfully-forks-improving-

interoperability-with-ethereum
10https://github.com/ETCDEVTeam/sputnikvm
11https://en.bitcoin.it/wiki/QTUM
12https://doc.vechainworld.io/docs/overview

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Platforms

model, EVM, modified Patricia tree, and the RLP encoding method of Ethereum. For
consensus, a modified variant of the DPoS method is used.13.

2.3 EOS

EOS is one of the strong contenders to Ethereum, providing its own virtual machine and
smart contract platform. The main thing that sets the two apart is the DPoS14 consensus
algorithm, reducing the requirements for miners and computation power, and therefore
allowing transactions without fees. Instead users have to stake a certain amount of EOS
tokens to utilize computing power, storage capacity or bandwidth.[73][21]

The EOS VM 15 is a WebAssembly engine based on the LLVM compiler project, and
designed for fast (to achieve the high transaction throughput of EOS) and deterministic
execution (non-deterministic rounding modes of floats in hardware are replaced by a
deterministic software-based float arithmetic implementation).

Developers write the smart contracts in languages supported by LLVM, which currently
are C, C++ and Rust. This can be seen as a barrier for developers, as those languages
are perceived to be harder to learn, when compared to Solidity or JavaScript.

Although many sources still claim that its virtual machine will eventually be compatible
with the EVM and its successor, the eWASM VM, and be able to execute EVM contracts
with little adaptations in a sandboxed environment, as the original whitepaper stated,
this feature got removed at a later revision of the whitepaper. No compatibility to EVM
or eWASM is currently on the roadmap.[77]

2.4 TRON

The virtual machine of Tron, the TVM, was designed to be largely compatible with
Ethereum’s EVM. Smart contracts for Tron are also written in Solidity, and the only
adaptation for existing source codes is replacing the hardcoded ether term with sun16

(named after its founder).

This even goes so far that their technical standard for tokens, named TRC-20, is ac-
tually the same as the ERC-20 tokens (see 3.5.2 for more details of this standard) in
Ethereum.17

13https://medium.com/@totientlabs/why-and-how-to-port-from-ethereum-to-

vechain-e18e3f474848
14Delegated means that users can vote with their tokens to elect 21 (in the case of EOS) delegates,

who will then produce the blocks
15https://github.com/EOSIO/eos-vm
16https://developers.tron.network/docs/converting-ethereum-contracts-to-

tron
17At this point, it has to be mentioned that TRON also natively supports Token transfers via the

TRC-10 standard

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.5. Cardano

A reference of opcodes can be found in the documentation18, which shows that they
match those of the EVM, although lacking the ones introduced in later EVM upgrades
like Constantinople.

For the consensus algorithm, this project has borrowed the pseudo-decentralized consen-
sus of EOS.

2.5 Cardano

Cardano is the platform behind the Ada cryptocurrency with a strong academic back-
ground.

In the Goguen work scope, they have defined several projects with the goal to integrate
smart contracts into their platform. This includes Plutus, a smart contract development
platform and functional programming language based on Haskell. Another focus is on a
simplified smart contract environment, focusing solely on financial application. But this
milestone also encompasses another project, KEVM, which will be a formally-verified
smart contract virtual machine compatible with the EVM. For a more secure implemen-
tation, it uses formal semantics for elements such as the configuration and transition
rules of the EVM.

2.6 NeoVM

The NeoVM is the virtual machine for the cryptocurrency Neo. While not directly
mentioned in the NEO whitepaper [58], a look into the source code19 reveals that the
NeoVM also acts as a state-machine, conceptually similar to the EVM.

Figure 2.1 shows the current architecture overview of the NeoVM. It consists of a Exe-
cution engine, which loads the bytecode, and pushes it alongside its related parameters
into the InvocationStack, which stores execution contexts of different smart contracts,
and the ResultStack, which stores the results after all scripts have been executed. The ex-
ecution engine takes an instruction from current context, and then executes correspond-
ing operations according to the instruction. The OpCodes contain similar arithmetical
and logical instructions to the EVM, but also more instructions specifically for crypto-
graphic operations, namely hashing via SHA-1, SHA-256, Hash160 (SHA-256 followed
by RIPEMD-160), Hash256 (twice with SHA-256), and signature verification.

Neo currently supports smart contract development in the .NET languages C#, VB.Net
and F#. For Java only a compiler with “basic features” is provided, and Python, Go,
and JavaScript are planned to be supported sometime in the future.[5]

Another novel approach by Neo is the used consensus mechanism Delegated Byzantine
Fault Tolerant (dBFT), which provides high throughput and single block finality.

18https://developers.tron.network/docs/energy-costs-table
19https://github.com/neo-project/neo-vm

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Platforms

Figure 2.1: NeoVM architecture [57]

Marco Bareis wrote his diploma thesis about a “Comparison of Ethereum and NEO
as smart contract platforms”[5]. This comprehensive work goes into all details that
differentiate these two platforms. He argues that both platforms look similar on a
superficial level, and because of their Turing-complete smart contract languages would
theoretically also support all kind of smart contract applications, but that does not
mean they share the same focus and goals. While Ethereum favors decentralization,
but has no particular application domain, Neo wants to create a smart economy and
therefore focuses on certain aspects like tokens or digital identity. Neo also does not
seem to be as mature as Ethereum, as it even lacks key documentation papers, like a
proper specification of its virtual machine. While Neo is currently theoretically superior
in metrics like the throughput of transactions (although this should be taken with a
grain of salt and the actual figures investigated, as there currently is no application on
the Neo mainnet which requires a high throughput), Ethereum will eventually catch
up as well with their new major release. Bareis further claims that, “if NEO cannot
verify its claims regarding scalability, its role as globally used smart contract platform
is dubious and developers need to ask themselves if the reduction of decentralization in
NEOs consensus protocol is actually justified”.

The “DappRadar 2019 dapp Industry Review”[42] also only found moderate activity on
this platform, with currently 250 unique daily active wallets on average from 13 DApps
that are being tracked, most of them in the Games category.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.7. IOTA (Qubic)

2.7 IOTA (Qubic)

Although this platform does not fulfill the previously established requirement of having
an actual smart contract-capable product that is already launched, we briefly discuss it,
as later chapters of this thesis need to reference here.

The DAG ledger IOTA is also currently developing their own solution, which is similar
to smart contracts. It allows the execution of quorum-based computational tasks. They
follow an event-driven architecure style, continuously listening for new matching input
transactions on the Tangle, and starting the execution whenever their input changes.
Their results get then again published into the Tangle, which in turn could cause the
execution of other Qubics, which are listening to this output.[37]

For the development of these Qubic programs a new functional programming language
(or more strictly, a dataflow programming language) called Abra was developed.

At the time of writing this thesis, only the whitepapers of Qubic and Abra are available,
and not much else is known about these projects. Particularly no source code is yet
published, so this conceptual platform can not yet be analyzed in detail.

The articles published so far suggest, that the programming language will not be Turing-
complete (due to not supporting unbounded loops etc.), and that the platform in general
will not be similar to e.g. Ethereum’s smart contracts.

The developers explained their motivations and the limitations of Qubic in the following
post:

We’ve always said that Qubic won’t be able to move funds directly and that
the possibility to do that would be a layer on top through our Gateway
concept. Most people, when they think of Smart Contracts, think of the
ETH version of SCs. We’re not building ETH-type SCs. We’re building
something completely different that in the end will most probably be able to
do similar things. I think we first need to get clear on what Smart Contracts
really are, because everyone seems to have a different view on those. [66]

2.8 Lisk

Lisk supports the execution of Turing-complete smart contracts, written in JavaScript
(optionally as Node.js app). The determinism of executions is not ensured by the lan-
guage itself like it is in Ethereum, but rather the developers need to make sure the
applications are deterministic, e.g. by not using functions like Math.random.

Further information to Lisk can be found in the paper by Bartoletti et al.[6].

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Platforms

Figure 2.2: Sidechain [68]

2.9 Solving Scalability With Sidechains

The concept of pegged sidechains was already established in 2014 (shortly after the
proposal for Ethereum in 2013) by Back et al.[4] They claimed that no big technical or
economical innovations are possible in well-established blockchains like Bitcoin, because
changes to the consensus mechanism have to be handled very conservatively. In this
paper a method for transferring assets between different blockchains is described, that
enables new blockchains with novel ideas that spur technical and economical innovation
by allowing changes to critical parts, while still utilizing the assets they already own.
They also note that such exchanges are possible via a method called atomic swaps.

Concepts recently proposed for solving scalability problems of Ethereum are often second
layer solutions implemented via state channels. Those behave in the same way as pay-
ment channels (like the Lightning Network in Bitcoin), where all transactions are moved
off-chain, and only uses the blockchain for settling the transactions when the channel
gets closed. Participants interact directly with each other by exchanging state updates,
which could be submitted at any time to the blockchain, but do not have to before the
channel is closed. Only the participants themselves know of these intermediate state
updates, because they are off-chain and do not get published to the whole network. This
is in stark contrast to sidechains, which are complete permanent blockchains in their own
right, and enable the interchangeability of assets via a two-way peg (see figure 2.2).[68]

There are many variants of this concept, ranging from tightly integrated implementations
like child chain in the platform Ardor, where the child chains are also secured by the
main chain validators (enabling ledger pruning and reducing the blockchain bloat, but
not actually helping to improve throughput), to the bridge chains in Ark, that can
operate completely independent and even employ different consensus mechanisms like
Proof of Stake or Proof of Work.

Recent articles like “Solving scalability of Ethereum through Loom Sidechains” by Sar-

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.10. Conclusion

necký[71] argue, that increasing block sizes to process more transactions in the same
time leads to increased centralization of the network as a whole, because fewer miners
can participate in the progress due to increased energy requirements. They also argue
that different smart contract applications have different security requirements, e.g. while
smart contracts that transfer millions of dollars between wallets need the level of security
Ethereum offers, not all transactions do. Use cases like simple data manipulations might
get by with lesser security, as hackers have fewer incentive in exploiting such DApps.
They introduce a concept, where the Ethereum blockchain acts as a core sidechain, but
every dapp lives in its own sidechain. The communication between the chains happens
through another second layer technology of Ethereum called Plasma.

This concept can also be seen with Lisk, which is “not a smart contract system”, but
rather a “custom blockchain system”. Every single application lives in a completely
separate, isolated sidechain, and is only responsible for itself. When a sidechain fails,
the developer of that sidechain is to blame for it.[53]

Another example for a sidechain pegged to Bitcoin is RSK, a smart contract develop-
ment platform. Although pegged to Bitcoin, their platform inherits key concepts from
Ethereum, such as its account format, VM and web3 interface, and therefore RSK’S
VM is backwards compatible to the EVM, meaning that compilers, tools, and DApps
are compatible as well. The security of the platform is guaranteed via a merged mining
process with Bitcoin, where miners can mine two cryptocurrencies that use the same al-
gorithm together by embedding the block id from the secondary blockchain in the block
of the primary blockchain.[47]

Also several suggestions for Proof-of-Work Sidechains[44] and Proof-of-Stake Sidechains[27]
in the cryptocurrency Cardano have been published.

2.10 Conclusion

The following conclusion can be drawn from this investigation:

Many coins are simple forks. When changes to the validity of the rules for blockchain
platforms are introduced, the blockchain splits into different chains. Using Bitcoin as
an example, the following spinoffs were originally based on the same codebase: Bitcoin
Cash, Litecoin, Bitcoin SV and Bitcoin Gold. Because of their shared origin, their
features only diverge in certain details. For example, currently none of them support
any Turing-complete smart contracts, they just have a simple scripting system. The
exception here is Bitcoin Cash, which seems to have the programming language Spedn
in development — but not many details about that can be found, and no code is yet
publicly available.

Many smart contract platforms are still in development. The cryptocurrencies
XRP and IOTA are currently in the progress of developing a smart contract platform,
Cardano released their implementation in a testnet in August.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Platforms

The Ethereum VM is the most popular platform and not only used by
Ethereum, but also by other cryptocurrencies. It was Ethereum that introduced
smart contracts, and due to their first mover advantage it is still the most popular plat-
form. But surprisingly, not only Ethereum and the direct fork Ethereum classic use the
EVM, but also other cryptocurrencies make use of it. Qtum, which is a fork of Bitcoin,
is fully EVM-compatible. RSK develops a platform, that extends the EVM, but is still
fully backwards-compatible to it. And even platforms that have their own smart con-
tract engine provide at least a compatibility layer for the EVM (e.g. Cardano). The
reason for this choices are that the EVM is already well-known and well-used.

There is not much variety in the smart contract space. Following the EVM, the
only other relevant platform that could be found was Neo with the NeoVM as smart
contract engine.

Programming languages. Currently platforms mostly need to be developed in lan-
guages specifically tailored to them (Solidity, Vyper, e.t.c.), but the trend in the future
will be to switch to general purpose virtual machines (e.g. the stack-based Wasm), which
support a variety of general purpose programming languages (C, C++, Rust, .NET lan-
guages, Java, Ruby, Go, e.t.c.).

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Ethereum

This chapter dives into details of the smart contract platform Ethereum. Aspects that
are important in later chapters, like the structure of messages and the serialization format
RLP, are depicted in greater detail. Areas less relevant for this thesis, as the interaction
between nodes or the JSON-RPC API, have been omitted. For those parts we redirect
the reader to the comprehensive Ethereum Wiki[84], that deals with every aspect in
detail.

The backbone of this platform is the Ethereum Virtual Machine (or EVM in short),
which is a decentralized, turing-complete smart contract virtual machine that executes
the bytecode of contracts using an international network of public nodes. The bytecode
is generated by a compiler (e.g. solc) from human-readable program code written in a
variety of supported programming languages, like the commonly used Solidity, and the
now deprecated lower level language Serpent, or its successor Yvper. While thy syntax
of Solidity is influenced by JavaScript, the syntax of Vyper looks similar to Python.

Any valid transaction in the network gets published to all nodes in the network, and
the code of each transaction is executed by all nodes to either mine a new block, and
therefore generate a new “world state”, or by validating nodes to verify the new blocks.
Therefore Ethereum is often described as a “world computer”[67].

We provide real-world examples for the structures shown here, that are implemented
using Py-EVM (which gets introduced in detail in chapter 5). The source code for the
examples can be found in Appendix B.

3.1 Definitions

EIP The Ethereum standard, including core protocol specifications, client APIs, and
contract standards, is defined by the Ethereum Improvement Proposals. They are pub-

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Ethereum

licly available in Ethereum’s EIPs repository1.

Keccak-256 Hashing function used in Ethereum; similar to SHA3-256, only with dif-
ferent padding.

externally owned accounts Ethereum accounts, which are controlled by users pri-
vate keys

contract accounts Ethereum accounts, which are controlled by contract code

state The state consists of accounts with a 20-byte address.

3.2 Forks

Ethereum is still actively developed. This make changes to the protocol necessary from
time to time, which can be implemented via Soft Forks or Hard Forks. Soft Forks are
backwards compatible to the previous protocol, and don’t necessarily require updates of
the nodes because blocks on the forked chain still follow the consensus rules of the old
chain as well as new ones. Hard Forks are backwards-incompatible and therefore require
all network participants to upgrade to a new version of the software.

When talking about the execution of smart contracts, it is therefore necessary to mention
under which set of rules (under which forks) this execution happens. Clients that want to
verify the whole mainnet of Ethereum need to implement all forks, as they get activated
at specific blocks in the chain.

Figure 3.1: Hierarchy of Ethereum Forks, as implemented by the Py-EVM client (light
blue shows still unimplemented, future forks)

Figure 3.1 shows the currently active forks of the mainnet, as well as two proposed future
upgrades2.

Frontier was the first version of the Ethereum protocol (released after the Olympic
testnet), starting at block 1.

1https://github.com/ethereum/EIPs
2This graphic had to be updated multiple times during the progress of this thesis, as development

of Ethereum is progressing fast. As after the publication it probably has changed again, we recommend
checking the sources for more up-to-date information.

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Forks

Homestead, the first major stable upgrade to Frontier, triggered at block number 1,150,000
with EIP-23, included updates to the transaction processing, gas pricing, security, etc.
This fork also contains the logic for the infamous rollback of the blockchain, that was
necessary after the hack of the Distributed Autonomous Organization (DAO) in July
2016 and resulted in a theft of 3.6 million Ether.

Tangerine Whistle implemented EIP-1504, which changed the gas costs for certain oper-
ations as a result of ongoing denial-of-service attacks.

Spurious Dragon was another security update, implementing EIP-1615, that again changed
the gas cost to combat DOS attacks, enabled state clearing to clean up empty ac-
counts, and included a security feature that prevented the replay of transactions from
the Ethereum Classic blockchain on the mainnet of Ethereum.

Byzantium6 was the first step of next next major platform upgrade (Metropolis). It
contains several updates, including a reduction of the block reward7, the REVERT
instruction, which allows error handling without consuming all gas8, zk-SNARKS and
other cryptographic primitives9, as well as several new opcodes. It also delayed the “Ice
Age difficulty bomb”, which was meant to encourage a fast upgrade to the proof-of-stake-
based Ethereum 2.0, as no such solution was expected to be available short-term.

Constantinople10, the hard fork to activate the second part of (Metropolis), included
changes to fee structure, as well as highly anticipated improvements to the scaling of the
platform. With this upgrade, also the difficulty bomb got defused again by postponing
it.

St. Petersburg activated on the same block as Constantinople (on the mainnet) and was
necessary to reverse a change of the Byzantium upgrade, as it contained a vulnerability
which could have been used for reentrancy attacks[11].

Istanbul11 was the final part of the three-part Metropolis upgrade that got released in
December 2019. As most other upgrades, it contains changes for the gas metering (e.g.
multiple calls to the same SSTORE region become cheaper), and added an opcode to
get the current chain ID (for more performant layer 2 solutions)

Muir Glacier12 was an emergency fork to further delay the “Ice Age difficulty bomb” for
a third time.

3https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md
4https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
5https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md
6https://github.com/ethereum/EIPs/blob/master/EIPS/eip-609.md
7https://github.com/ethereum/EIPs/blob/master/EIPS/eip-100.md
8https://github.com/ethereum/EIPs/blob/master/EIPS/eip-658.md
9https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md,

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
10https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1013.md
11https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1679.md
12https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2387.md

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Ethereum

In a more distant future will be the Casper and Serenity upgrades, which should com-
pletely revamp Ethereum, and include a new virtual machine using web assembly (eWASM),
sharding chains, and a switch from Proof-of-Work consensus to Proof-of-Stake.

3.3 Addresses

Addresses in Ethereum are derived from ECDSA private keys. They use the same elliptic
curve for the public-key cryptography as Bitcoin, namely the standardized secp256k1
curve. This elliptic curve is defined by the equation y2 = x3 + ax + b. In the case of
secp256k1 the constant a is 0, and b is 7.

To begin with the address derivation algorithm, we need to (1) create a valid private
key. In Ethereum this can be any 32 byte long value, although in reality one should
also take sufficient randomness into account. For exemplary purposes, our private key
is: 0xc50de8a23afb2dd1fd05b5a79cf19d67c4949bc7857e965c2b9ef32794e14388.

From this private key we can (2) derive the 64-byte long public key. This derivation is
done by applying the ECDSA to our private key. The results of this operation are the two
32-byte long integer coordinates X and Y of a point on the elliptic curve. Concatenated
together, they result in the 64-byte long private key. In our example this would be 0x1
42569909dc3e8d74655e629213cf4010b7a5ed2b20aa723c7671f3e5a9fac793e15bbc7e0da87
02d493ddfc9490f3f6379c2a5038ce8ea05bae69485a5dae7b.

Finally we only need to (3) derive the address from the public key via the Keccak-
256 hash function and drop the first 12 bytes of the output. The address is usually
represented via 40 hexadecimal characters, starting with ‘0x‘, in our example it is 0xbe
cca0dad3f3a8095e450d1de9cdd7f18cf077af.

EIP 55 defines a method to include a checksum with the address. This is done in a
rather clever way, based on the fact that the address representation is just made up of
bytes, and therefore their casing does not matter. So by encoding the address in such
a way that if the ith digit is a letter (ie. it is one of abcdef) it is printed in uppercase,
if the 4 ∗ ith bit of the hash of the lowercase hexadecimal address is 1 otherwise it is
printed in lowercase. This method keeps the address length at 40 characters and is
backwards-compatible to non-checksummed addresses. For our address, this results in 0
xBecca0DaD3F3a8095e450d1DE9cDD7f18cF077Af.

Figure 3.2 shows an example of the address derivation process. It assumes that a person,
called Becca, starts with a random private key, and ends up with the vanity address13 0x
Becca0DaD3F3a8095e450d1DE9cDD7f18cF077Af. This address, shortened to 0xBecca,
is used for exemplary purposes throughout this thesis.

13a vanity address is an address that starts with certain letters that spell out names or brands

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Accounts

Figure 3.2: Address derivation

3.4 Accounts

At each address resides an Ethereum account. This data structure is made up of the
following fields:

• a nonce, which is a counter that is increased for every transaction that is sent
from this account,

• a balance, the amount of ether that resides at this address,

• a storage root, which is the merkle hash of the accounts storage, by default the
blank root hash and

• a code hash, for the hash of the code on contract accounts, or the empty hash on
externally owned accounts

3.5 Contracts

Contracts are accounts, which have a non-empty contract code stored. They are therefore
not controlled by users, but rather by code.

An important distinction to make here is between transactions and messages. Transac-
tions are signed data packages, which are explicitly recorded in the blockchain. Internally
in the EVM execution environment those transactions generate Messages, which repre-
sent the byte data and Ether value that gets passed on between two accounts. As those
messages only exist internally in the EVM, they are not recorded on the blockchain.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Ethereum

0 1 2 3 4 5 6 7
0x

8 9 a b c d e f

STOP ADD MUL SUB DIV SDIV MOD SMOD
0

ADDMOD MULMOD EXP SIGNEXTEND

LT GT SLT SGT EQ ISZERO AND OR
1

XOR NOT BYTE SHL SHR SAR

SHA3
2

ADDRESS BALANCE ORIGIN CALLER CALLVALUE CALLDATALOAD CALLDATASIZE CALLDATACOPY
3

CODESIZE CODECOPY GASPRICE EXTCODESIZE EXTCODECOPY RETURNDATASIZE RETURNDATACOPY EXTCODEHASH

BLOCKHASH COINBASE TIMESTAMP NUMBER DIFFICULTY GASLIMIT
4

POP MLOAD MSTORE MSTORE8 SLOAD SSTORE JUMP JUMPI
5

PC MSIZE GAS JUMPDEST

PUSH1 PUSH2 PUSH3 PUSH4 PUSH5 PUSH6 PUSH7 PUSH8
6

PUSH9 PUSH10 PUSH11 PUSH12 PUSH13 PUSH14 PUSH15 PUSH16

PUSH17 PUSH18 PUSH19 PUSH20 PUSH21 PUSH22 PUSH23 PUSH24
7

PUSH25 PUSH26 PUSH27 PUSH28 PUSH29 PUSH30 PUSH31 PUSH32

DUP1 DUP2 DUP3 DUP4 DUP5 DUP6 DUP7 DUP8
8

DUP9 DUP10 DUP11 DUP12 DUP13 DUP14 DUP15 DUP16

SWAP1 SWAP2 SWAP3 SWAP4 SWAP5 SWAP6 SWAP7 SWAP8
9

SWAP9 SWAP10 SWAP11 SWAP12 SWAP13 SWAP14 SWAP15 SWAP16

LOG0 LOG1 LOG2 LOG3 LOG4
a

b

c

d

e

CREATE CALL CALLCODE RETURN DELEGATECALL CREATE2
f

STATICCALL REVERT INVALID SELFDESTRUCT

Table 3.1: Complete list of opcodes at the time of Constantinople hard fork, data
from [20]

The EVM is a stack-based machine, which means that the operands of the instructions
are held in a virtual stack, instead of registers. As they are in a known location on the
top of the stack, the instructions require no memory addresses or register numbers for
their operands.

Besides the stack memory, the EVM also has the ability to load data from and store
data in volatile memory. The account storage is the persistent memory in a key-value
store.[81]

The bytecode of contracts is executed by the EVM. It supports over 100 instructions
(opcodes), including the typical arithmetical and logical operators nearly every VM pro-
vides (ADD, MUL, AND, OR, EQ, etc.), memory and storage manipulation (MSTORE,
SSTORE, MLOAD, JUMP, etc.), but also natively supports cryptographical primitives
(SHA3) and Ethereum-specific instructions (BALANCE, GASPRICE, BLOCKHASH,
COINBASE, etc.). Because of the stack-based nature of the EVM, stack-manipulation
opcodes (POP, PUSH, DUP, SWAP) are available as well. The opcode SELFDE-
STRUCT allows a contract to self-destruct, and send the remaining ether value to
another account.

Table 3.1 shows the complete list of currently implemented and still undefined opcodes.

Table 3.2 describes several selected opcodes and their semantics in detail. We can see

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Contracts

Opcode Mnemonic Stack Input Stack Output Expression Notes

01 ADD a b a+b a + b
(u)int256 addition

modulo 2**256

80 DUP1 value value value PUSH (value)
clones the last

value on the stack

20 SHA3 offset length hash
hash = keccak256 (

memory[offset : offset + length])
keccak256

Table 3.2: Description of selected opcodes from ethervm.io[20]

that, for example, the opcode for ADD takes the two values on top of the stack, adds
them, and then pushes the result back to the top of the stack.

The opcode for DUP clones the last value on the stack. To save some space, several
different variants (DUP2, DUP3, . . .) of this opcode exist, they only diverge in the value
that gets cloned (2nd last, 3rd last,..) and is pushed to the stack.

Finally there is a more complex instruction with the mnemonic SHA3, which takes an
offset and a length parameter from the stack, and calculates the Keccak-256 hash value
of that memory region.

Vaibhav[81] provides a detailed overview on how the EVM works in the background, the
machine space it provides, and how the execution model works.

As EVM smart contracts are turing complete, there are no limitations to the possible
usages of such contract code. But a recent study has confirmed that the main areas
of applications are still tokens (and their ICOs), games and gambling, exchanges and
wallets - at least of those 0.2% of contracts, that have ever been called.[19]

3.5.1 Gas

In contrast to IOTA, users of Ethereum need to pay fees for their transactions. This fee
is measured in Gas, and every operation requires a certain amount of gas. The intent of
this fee system is to limit denial of service attacks on the network, as attackers would
have to pay proportionately for the computation, bandwidth and storage they consume.
This fee is then given to the miner of the block, whose block includes this transaction.

The price per computational step is not static, instead a value for the gasprice has to
be specified by the sender, that represents the fee the sender pays per computational
step. This allows for complex gas economics, where miners can decide the minimum
gasprice they are willing to accept. It means that the gas price is subject to supply and
demand - in periods where there is much network activity and therefore a large number
of transactions competing to be included in the blockchain, the gas price will therefore
be higher than in periods with low network activity.

Users that execute a contract send the maximal amount of gas they are willing to pay
alongside the transaction, any unused gas will be refunded. If the supplied amount of
gas was too low, the transaction will be reverted.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Ethereum

3.5.2 Tokens

Because tokens are so heavily used on Ethereum, our example code follows that design
pattern as well. Tokens can be seen as digital representations of assets (like vouchers,
IOUs, or real-world, tangible objects). In Ethereum, they are smart contracts, that keep
track of the balances of accounts in the contracts storage.

At present, more than 200.000 contracts14 are already deployed, following the most
commonly used ERC-2015 technical standard for tokens. This specification defines the
methods name, symbol, and decimals, which return constants describing the token, bal-
anceOf to get the balance of a specified address, transfer, transferFrom, and approve to
allow the transferring of tokens between people or contracts, and allowance and totalSup-
ply as view-functions. Because most of the tokens follow this or a compatible standard,
wallets and exchanges only need to implement this interface to be able to support the
majority of tokens.

The full interface specification ERC-20-compatible smart contracts need to implement
can be found in listing 8.

3.5.3 Transaction

Transactions in Ethereum contain the following fields:

• nonce: the value of the increasing transaction counter

• gas price: representing the fee the sender pays per computational step

• gas: the maximal fee the sender is willing to pay

• to address: the recipient of the message

• value: the amount of ether to transfer from the sender to the recipient (which can
be zero)

• binary data: the data that is sent with the transaction (which can be empty)

Signed transactions also contain a cryptographic signature (in the fields v, r and s)
identifying the sender.

3.5.4 Contract creation

New contracts are written to the blockchain via deployment code. The creation happens
via a transaction to the create contract address, which is the address that contains only
zeros (0x0).

14https://etherscan.io/tokens
15https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Contracts

The data of this transaction is the deployment code. This contains the opcode CREATE
(0xF0) - or since the Constantinople Upgrade, the opcode CREATE2 (0xF5). These
methods basically execute the constructor of the to be deployed contract, and then
return the rest of the bytecode without the constructor, which then is written to the
blockchain.

The only change between the CREATE and CREATE2 [9] opcodes is the address, on
which the contracts gets deployed.

For the standard CREATE call, the address is simply a hash of

• the sending account address, and

• the sending account’s current nonce

This ensures that different accounts will generate different contract addresses, and dif-
ferent transactions of the same account also generate different addresses, even if the
contract bytecode is the same.

The parameters, that the CREATE2 call uses, are

• the sending account address, and

• the contract’s initcode (which gets executed to generate the runtime bytecode that
will be placed into the state), and

• a salt, chosen by the developer

The motivation for adding this opcode was to be able to deterministically know a con-
tracts address, even before the contract code is deployed. The code, that a particular
address will eventually contain, can only come from a particular initcode.

As the deployment code can contain arbitrary instructions, its behavior can be com-
pletely different than what is expected from a “plain contract creation”. It is even pos-
sible that this deployment code creates other contracts, or even already self-destructs
in the deployment. This strange behavior is actually very common in the mainnet of
Ethereum.[19]

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Ethereum

Figure 3.3: Create Contract Transaction

Figure 3.3 shows an example for a contract creation. Becca deployes a new token contract
(let’s call the token SuperToken) on the blockchain - its source code can be found in
listing 7. This is done by sending the deployment code for the contract to address 0x0.
Based on the Becca’s address and the nonce of the transaction, the contract’s code gets
stored on a new account (0x5643f...).

Figure 3.4: Contracts

3.5.5 Contract interaction

Users interact with contracts using their Application Binary Interface (ABI). Method
calls to contracts also happen via EVM transaction, but now the recipient is directly the
contracts address. Usually the interface functions are static and known at compile time,
therefore the data of the transaction only needs to contain the function selector and the
parameters.

Getting back to our example, let’s suppose Becca wants to send all of the 4919 tokens,
which were initially minted to her address, to her friend Ada (see figure 3.4 for a high-
level overview of that transaction).

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Contracts

Figure 3.5: Contracts

We already know that the token balances are not properties of the Ethereum account
itself, but rather something the deployed smart contract keeps track of on its own in
its storage. Therefore, when Becca wants to send tokens to Ada, she doesn’t have to
interact with Ada directly, but only with the SuperToken smart contract (see figure 3.5).
She has to call the transfer method with the desired amount of tokens she wants to
send to Ada (when sending tokens to another smart contract, the interaction would be
slightly different), the contract will then update its register in the storage to deduct the
tokens from Beccas address, and credit them to Ada in an atomic operation.

Function selectors

Unlike to static programming languages like C, where the symbol table in a shared library
contains the name and types, calls in Solidity are made via a function selector. Each
method in Solidity is a four byte long jump destination, which is generated from the
first four bytes of the Keccak-256 hash of the signature of the function. The signature is
defined as the canonical expression of the basic prototype without data location specifiers,
i.e. the function name with the parenthesised list of parameter types. Parameter types
are split by a single comma - no spaces are used.[14]

As an example we take a look at the transfer method of token contracts. The signature of
this function is transfer(addressto, uint256amount), and therefore the function selector
is a9059cbb.

keccak256(transfer(address,uint256)) =

a9059cbb
︸ ︷︷ ︸

first 8 chars

2ab09eb219583f4a59a5d0623ade346d962bcd4e46b11da047c9049b

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Ethereum

Because the function selector is merely a hash, it is not possible to reconstruct the
original names of methods from the compiled contracts on the chain. Therefore the
compiler not only generates the binary code of the contract, but also a JSON-encoded
ABI file, which contains metadata (including the name and parameters of methods and
events). This file is then given to the users of the DApp (either directly to load the
ABI and the contract address into a local geth client or a web wallet; or by providing a
web interface for their DApp that makes use of the ABI), to allow them to conveniently
interact with the app16.

There are also repositories available, that contain the function selectors of well-known
functions17, where e.g. the transfer function can be found. It is also possible that
different methods result in the same selector18.

Function arguments

After the function selector, the encoded arguments follow. For details about the encoding,
we redirect the reader to the Contract ABI Specification[14] - for now, it is only important
to know that certain elementary types exist (like uint256, a 256 bit long unsigned integer;
or address - which is equivalent to uint160). Parameters are padded in such a way, that
their length is a multiple of 32 bytes (for uint zero-bytes are added on the higher-order
(left) side).

For our token transfer example, the first parameter is the to address. As second param-
eter follows the amount of tokens in hex, which is 491910 = 0x1337.

Combining the function selector with the parameters results in the following transaction
data (the line breaks are just for ease of reading):

a9059cbb
}

transfer

000000000000000000000000ada5547578a08c7d991811c83616b7f3ed33b795
}

to

001337
}

amount

3.6 Recursive Length Prefix

It is intuitive to say that Ethereum stores transactions in a blockchain, but this only
serves as a high level description. When looking into how transactions are actually
transmitted or stored, a deeper understanding of the used data serialization is necessary.

In Ethereum the Recursive Length Prefix (RLP) encoding is used throughout the project.
For example, when a client wants to make a transaction, it encodes the transaction

16users still need a verified source code of the contract, so they can independently verify that the
implemented functions really match the specification

17e.g. https://github.com/ethereum-lists/4bytes
18in the CTF challenge Acoraida Monica of the Real World CTF 2018 a contract was deliberately

crafted to exploit this behavior[51]

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.6. Recursive Length Prefix

object as RLP byte array, then signs this data, and submits the RLP-encoded signed
transaction to its peers. But it is not only used in the network layer, all common
Ethereum implementation also use it for serializing entries in the database (more of this
use case will be shown in section 6.5.4).

While serialization formats like JSON or XML could have been used as well, the Ethereum
developers designed a format that is highly minimalistic and space-efficient, and which
can be deserialized again quickly (unlike JSON or XML, which tend to be on the verbose
side).

RLP natively supports arbitrarily nested arrays of binary data. The representation of
data in more useful data types (like strings) has to be handled by higher-order protocols.
It only encodes the structure of the data, but doesn’t know anything about the kind of
object it was before. While this reduces the overall size of the encoding, it requires the
decoder to know what kind of object it is looking, to be able to make any sense out of
it.

The RLP encoding is actually quite simple. It can only encode items, and differentiates
between two possible data inputs.

An item is defined as

• a string, or

• a list of items

All other data types can be converted to strings (or more precisely arbitrary byte arrays).

The encoding algorithm outputs the length of the string or list (but in a clever space-
efficient way, which favors short strings) first, followed by the data itself.

The rules for the encoding algorithm are defined as:

• [0x00, 0x7f] for a single byte in the [0x00, 0x7f] range

• [0x80, 0xb7] for strings with a length between 0 and 55 bytes. The first byte is
the length of the string, added to 0x80. Then the string itself follows.

– [0x80] is the zero-length string, identical to non-values like uint(0), string(””)
and empty pointers

• [0xb8, 0xbf] for strings with more than 55 bytes. The first byte is 0xb7, added
to the length in bytes of the length of the string in binary form, then the length
of the string follows, and then the string itself.

• [0xc0, 0xf7] for lists with a complete length (the combined length of all its items
being RLP encoded) between 0 and 55 bytes. The first byte is the complete length,
added to 0xc0. Then the RLP-encoded items are concatenated.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Ethereum

– [0xc0] is the empty array []

• [0xf8, 0xff] for lists with a complete length of more than 55 bytes. The first
byte is 0xf7, added to the length in bytes of the length of the payload in binary
form, then the length of the payload follows, and then the concatenation of the
RLP-encodings of the items.

As an example, let us try to encode the token transfer transaction:

• nonce: 4

• gas price: 13

• gas: 5000000 wei

• to: 0x5643f85c81eEcECd195D4cC29C9b9877337A1550

• value: 0 ETH

• binary data: a9059cbb000000000000000000000000ada5547578a08c7d991811c8361
6b7f3ed33b79500
001337

The nonce is just a uint between [0x00, 0x7f] therefore the encoding is simply the
value:

04
}

uint(4)

The gas price is also a single uint, 1310 = 0x0d.

0d
}

uint(13)

The gas is the uint 500000010 = 0x4c4b40, which is a long string as it has 3 bytes.

83
}

length 3 -> 0x80+0x03

4c4b40
}

uint(5000000)

The to address is an address, which is equivalent to a string with 32 bytes.

94
}

length 32 -> 0x80+0x20

5643f85c81eececd195d4cc29c9b9877337a1550
}

to address

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.6. Recursive Length Prefix

The value is 0

80
}

uint(0)

The binary data is a string of the length 68 (that is more than 55 bytes), and therefore
first needs to encode the length of the length of the string (1 byte), then the length of
the string (68 bytes), and finally the string itself.

b8
}

length of length 1 -> 0xb7+0x01

44
}

length 68 -> 0x44

a9059cbb000000000000000000000000ada5547578a08c






data7d991811c83616b7f3ed33b79500000000000000000000

001337

To complete the RLP encoding for the transaction, we need to add the total length of the
list to the beginning, which is 98 bytes. As this is more than 55 bytes, the first position
needs to be the length of the length (1 byte), then the total length of the payload (98
bytes). Afterwards follow the concatenated RLP-encoded items.

f8
}

length of length (1) -> 0xf7+0x01

62
}

length of payload (98 bytes)

04
}

nonce

0d
}

gas price

83
}

gas
4c4b40

94
}

to
5643f85c81eececd195d4cc29c9b9877337a1550

80
}

value

b8






data
44

a9059cbb000000000000000000000000ada5547578a08c

7d991811c83616b7f3ed33b79500000000000000000000

001337

For a signed transaction the signature with the parameters v, r and s would follow after
the data parameter.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
IOTA

While IOTA is not an abbreviation for the Internet of Things (IoT), but instead comes
from the 9th letter of greek alphabet - iota - and is a play on the meaning of small
quantity, the IoT is certainly one of the strongest use cases for this cryptocurrency.
Accordingly, feeless microtransactions (e.g. in a machine-to-machine ecosystem, where
a car can automatically and seamlessly pay a smart parking meter for every second it
uses the parking space[62]) are a core feature.

As already seen in figure 1.6 contrary to Blockchain-based approaches, IOTA does not
group multiple transactions into blocks. Every vertex in this graph represents just a
single transaction. The features of this cryptocurrency are its scalability (there is no
inherent limit of the transaction rate in the network in the protocol1, leading to claims
of an infinite scalability), its decentralization (everyone who publishes a transaction is
also validating the preceding transactions, and therefore participates in the consensus),
the lack of transaction fees (making it usable for micropayments), and its resistency to
being cracked by quantum computing.[65]

At present the native support for smart contracts via the Qubic project (see section 2.7)
is still under development and no working prototype is yet released, but the possibility for
zero-value transfers (containing only data, and no monetary value) alone enables several
applications in the IoT space (e.g. a small application we developed with IOTA[34]).

As previously done with Ethereum, the examples in this chapter are also as close to
typical real-world scenarios as possible.

4.1 Definitions

Curl Hashing function used in IOTA; uses purely trinary logic; was replaced for most
usages by Kerl due to found vulnerabilities[33][75]

1https://coordicide.iota.org/post-coordinator

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. IOTA

Kerl Hashing function used in IOTA; wrapper that converts between trinary and bi-
nary representations and utilizes the well-known Keccak-384 hash function[35]

4.2 Trits and Trytes

The first striking derivation of IOTA, when compared to other cryptocurrencies, is the
usage of a different numeral system. Instead of using the binary numeral system like
in almost all modern computers, IOTA’s developers decided to use balanced ternary
instead, a numeral system with 3 digits, -1, 0 and 1 (which are often abbreviated as -, 0
and +). Such a digit is called a trit. The analogy to a byte in this system is a tryte, but
there is no general consensus of how many trits make up a tryte. One commonly used
interpretation is the tryte3, which consists of three trits and therefore 27 possible states.
Those numbers are then represented with the 26 letters of the English alphabet A-Z,
and one additional character (9). For the remaining document this will be the default
type for a tryte, when no size is specified.

Another commonly used type is the tryte6, which can hold six trits (converted this would
be 9.5 bits, and therefore more than a byte).

The reason the IOTA developers went with this system is, that ternary processors are
theoretically more efficient than binary processors; and certain mathematical constructs
are more cleanly represented in balanced ternary. While heavily criticized for it (e.g. in
[56] or [41]), because all computer hardware today uses binary, therefore requiring the
conversion to be done in software which is inefficient and complex, the developers still
stand by this decision.

4.3 Addresses

Addresses in IOTA have a length of 81 trytes, and can optionally include a checksum of
9 trytes.

The address derivation scheme is shown in figure 4.1. As usual for cryptocurrencies, the
private keys are derived from a secret seed. This seed is a 81 trytes long random string.
To generate different key pairs, an index number that is incremented for each new key
is appended to the seed. For the key generation, alongside the seed and the index, a
security level is also needed, which specifies the key length and therefore the security
of signatures. Levels 1 to 3 are possible, and Level 2 (with a signature length of 4,374
trytes) is the default. The Kerl-based hash function now takes this seed, index number
and security level, and generates the 81-tryte subseed.

From this subseed the private key is derived by absorbing and squeezing it into a sponge
function 27 times per security level. The sponge function is a cryptography primitive
used in the Keccak (SHA-3) family of hashing functions. The sponge construction is
an iterated construction for building a function with variable-length input and arbitrary
output length based on a fixed-length transformation or permutation f , operating on a

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Addresses

Figure 4.1: Address generation in IOTA

fixed number of bits. During the absorbing phase any amount of data can be inputted,
the blocks are XORed into the state, interleaved with applications of the function f .
During squeezing, bits of the state are returned as output blocks, again interleaved by
f . The number of output blocks can be chosen by the user.[29]

This private key is used to derive the 81-tryte address, by splitting it into 81-tryte
segments, hashing each segment 26 times, combing 27 segments again to a key fragment,
hashing the fragment once to get a key digest, and finally combining the digests and
hashing it one last time.

When, for example, this process is started with the random, but no longer secret and
safe, seed VGTRQMLEREAWMOWVFZEODTZ9VFFLOYLBZCHBGVDPZNVUIWRRNHQPNNQTPZOZSGBU

BUCVLUBHUQCHUIIWI, the address generated for the first index 0 is BMGGDBRHRNTPRGNTJ

VWXESRBUPF9SEHUPYF9HFPHDNSDK9KGLMPAIWHKKOMOINTJHFORULJOUAVPJBHUD, followed
by its checksum WEETMEWOW.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. IOTA

4.4 Signatures

IOTA uses the quantum computing-resistent W-OTS. The main reason why this scheme
was chosen is its resilience against attacks by quantum computers, which the developers
see as a real threat.

But this feature brings two main drawbacks with it: First, any signature generated via
this method reveals parts of the private key, that was used to make this signature. If the
same key has already been used twice, large parts of it have been leaked, and attackers
can possibly already guess (brute-force) the whole private key, and therefore correctly
sign a third message. Second, the signatures are quite long (at a minimum 2187 trytes,
which is far longer than the 65 bytes with the Elliptic Curve Digital Signature Algorithm
in Ethereum).

There was also a weakness found that did not require a key reuse, which has been
mitigated by IOTA.[46]

Technical details how the signature algorithm is implemented can be found in a blog
post by Wolfgang Welz.[83]

4.5 Transactions and Bundles

Figure 4.2: Transactions and Bundles

Because IOTA does not have blocks, single transactions are sent to nodes of the network.
These transactions are then directly attached to the DAG. IOTA transactions are exactly

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Transactions and Bundles

2673 trytes long, 2187 trytes of that can be used for either the signature of the transaction
or a message. If the size of the signature or message is bigger than this maximum amount
for a single transaction, it is fragmented over multiple transactions.

The grouping of those contiguous transactions is called a bundle. Bundles are mainly
just a logical concept, all transactions of a bundle are still distinct transactions in the
ledger. The only physical manifestation of a bundle is in the bundleHash field, which
uniquely identifies the bundle. Transactions in the bundle are also atomic, either all of
them are valid and confirmed, or none of them are.[72]

Figure 4.2 shows three transactions, that are grouped into a bundle. The bundle de-
picted here is an ordinary transfer of value, consisting of an input transaction withdraw-
ing IOTA tokens from one address. The size of the signature, and following this the
number of transactions necessary to fit the signature, in the signatureMessageFragment
field depends on the security level. With the standard level of 1, the signature can
fit into a single transaction, otherwise it needs to be fragmented across further output
transactions (where the other fragments are zero-value). The output transaction is sent
to the address where the tokens should be withdrawn to. This transaction does not
contain a signature (as the sender does not know the private key of the receiver which
could make a signature), but could instead optionally contain an arbitrary message in
the signatureMessageFragment field. And like before, if the message is larger than the
maximum field size of 2187 trytes, it can be fragmented over multiple transactions.

Each transaction in IOTA also has an implicit transaction hash. This is not an attribute
in the transaction object, but simply a CURLP-81 hash of all trytes of the transaction
concatenated.

As addresses can not be reused in IOTA due to the used signature scheme, all tokens
need to be withdrawn from the origin address in a transaction. This is similar to how
Unspent transaction outputs in Bitcoin work, but in IOTA this is actually not enforced
on a protocol level, but left to the responsibility of clients. They generate another output
transaction to a self-controlled address, often called a change transaction.

Figure 4.3: Structure of a bundle[76]

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. IOTA

Figure 4.3 shows the structure of a bundle. The first transaction in a bundle is called
the tail at index 0, the last transaction is called the head, and the remaining ones are
the body. A single transaction is head and tail simultaneously.

In IOTA a transaction is linked to two others (the parent transactions), that are verified
through this link. One of them is called trunk, the other branch. Starting from the tail of
the bundle, all bundle transactions are linked through the trunk hashes, the last (head)
transaction links to another transaction in the Tangle. The bundle hash is always a
transaction of another bundle, for the tail and body it is the same as the trunk reference
from the head, for the head it is a different transaction in the Tangle, selected through
the tip selection process.

4.6 Tip selection process and random walks

Every transaction that gets published in the ledger has to approve two previous trans-
actions. The new transaction then adds two edges to those selected transactions. If a
transaction has no outgoing edges, and is therefore still not approved or confirmed by
any other transaction, the vertex is called a tip. Selecting the two tips for approval is
done via the tip selection process by full nodes.

This process runs the tip selection algorithm, which, in its simplest form, puts a walker
on the genesis transaction, and walks it towards the tips. As there are no loops in a
DAG, it is guaranteed to always end up at a transaction with no outgoing edges, a
so-called tip. This process is called unweighted random walk. By introducing a Markov
Chain Monte Carlo technique, that is introducing some bias to avoid older transactions
(lazy tips) by taking the cumulative weight into account, the algorithm gets refined to a
weighted random walk.[22][23]

4.7 Consensus

This section gives a detailed overview of how consensus is formed in the Tangle. This is
of particular interest for this thesis, because later on a similar method will be used to
achieve consensus in our prototype for an EVM implementation for the Tangle.

For every cryptocurrency the usage of a suitable consensus method is an important
choice, because consensus is what allows the nodes within the network to agree on which
transaction is valid within the ledger. In a distributed ledger contradictory statements,
like double-spend transactions, or spending from non-exist funds, can exist, and therefore
the network as a whole needs to converge to some consistent, contradictory-free state.

An important distinction to make is between the method, which is used currently to
achieve consensus in the network, and the plan by the IOTA Foundation on how this
will be handled in the future.

The currently used method is a fairly simple, although centralized one: A service run by
the IOTA Foundation, called the Coordinator periodically issues a special signed bundle,

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Consensus

called a milestone. Per definition, any transaction directly or indirectly referenced by
the milestone is immediately confirmed. The coordinator will only reference transaction
paths without contradictory statements, otherwise all other nodes in the network would
not accept the milestone.

The bundle consists of multiple transactions, which contain the fragmented signature.
Due to the increased security level of the signatures, they do not fit into a single trans-
action. They also work a bit differently to value transaction signatures: A merkle tree
of the coordinators public/private keys is generated in advance, and the address of the
coordinator is the hash of all leaves of this tree.[1]

Figure 4.4: Example for a coordinators merkle tree[1]

Figure 4.4 shows an example for such a merkle tree. The repository iota-community/one-
command-tangle2 contains an exemplary precomputed tree with a depth of 20, which can
issue 1073741824 milestones (at a rate of one milestone per 30 seconds, this lasts over a
year).

To verify the milestone, nodes rebuild the merkle tree, and check if the rebuilt merkle
root matches the coordinator address. If this is the case, and the milestone otherwise
does not contain any conflicting information (like double spends), it becomes a valid
milestone, and any transaction directly or indirectly referenced by it is confirmed.

The source code of the active coordinator instance running on IOTAs Tangle is available
under an open-source license3.

While often compared to a similar implementation in Bitcoin, namely snapshots, which
were used in the early days to hinder attacks, it is often criticized for the control the
IOTA Foundation has on the network: it can select which transactions are prioritized,

2https://github.com/iota-community/one-command-tangle/tree/master/layers
3https://github.com/iotaledger/compass

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. IOTA

or completely block certain addresses. It is also a single point of failure, because the
network would come to a halt if the coordinator stopped issuing new milestones4.[24][25]

4.8 IXI modules

As the IOTA protocol will not be able to change in the future, IOTA eXtensible Interface
(IXI) modules will enhance the API of IOTA to provide specialized functions. Those are
best-practice solutions to solve common problems, like utilizing the optional transaction
data field to provide message streams (MAM.ixi; Masked Authenticated Messaging),
providing a proxy for other programming languages (Bridge.ixi), or finding confidence
intervals when certain transactions were published in the DAG (Timestamping.ixi).

4bugs in the IRI caused exactly such a failure already[52]

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Smart contracts in a DAG ledger

In this section, we try to combine the advantages of smart contracts and DAG ledgers.

As already stated in chapter 3, smart contracts are contracts written in code, that enforce
the negotiation or performance of a contract without third parties. Those are features of
many second-generation blockchains, most notably Ethereum, that offer a nearly Turing-
complete language in their platform. We also already saw that such platforms often suffer
from scalability problems, with bottlenecks on transaction throughput when apps like
CryptoKitties gain popularity.

DAG ledgers tackle the causes for the scalability problem by getting rid of the linear
block chain structure, and arranging the transactions in a graph.

We already have discussed that smart contracts (usually) need total ordering, and are
therefore (generally) incompatible with such data structures.

Nevertheless, we propose a compromise in this chapter.

5.1 Relaxations

We already know, that transactions in a DAG are only a partially ordered set. They
lack the Totality axiom from a total ordered set – for any two given transactions A and
B, we therefore can not say with absolute certainty, which of them happened first.

But, we can argue that we dont even need a (global) total ordering of all transactions.
Lets have a look at the following contract interactions:

We can see that different contracts rarely interact with each other (the same is true for
a real network, like the Ethereum Mainnet). So, every DApp can build its own chain –
completely independent from one another. We dont need to care whether the breedWith
method call of the CryptoPenguin contract happened before – or after – the transfer
call in the SuperToken contract.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Smart contracts in a DAG ledger

Figure 5.1: Three different contracts on a Blockchain; with their respective method
invocation sequence

This idea is not novel – such approaches are called sidechains, bridgechains (e.g. in Ark),
or smart child chains (e.g. in Ardor), as we have already established in chapter 2.9.
Our design closely follows the findings of that chapter, where e.g. the article “Solving
scalability of Ethereum through Loom Sidechains”[71] describes a similar approach.

Summarized, this allows us to model the invocations of smart contracts in a Directed
Acyclic Graph (compare this to the transaction in NANO’s block lattice[54] – they look
very similar).

5.2 Platforms

In the last section we have discussed how smart contracts could be embedded into a
DAG ledger structure. Now we want to see how this could work in practice. For that
we need two ingredients: a Smart Contract Virtual Machine, and a DAG platform that
we can use to piggyback the smart contract VM.

Following the arguments of section 2.6, we can also rule out the use of Neo, arguably
the strongest contender for Ethereum, as our smart contract platform of choice. The
NeoVM does not provide any clear advantage over the EVM (we did focus only on
the computation engine, as theoretical transaction throughput does not matter when
deploying the contracts in a DAG), but also the lack of good documentation is a big
detriment.

The research in chapter 2 has shown that the Ethereum VM is the most widely used smart
contract platform by far - even many other cryptocurrencies use their VM to implement
smart contracts. Since we have chosen this EVM engine for our implementation, all
existing smart contracts can be reused with little or even no adaptation at all in our
DAG chain.

Our goal is to build a second-layer solution for an already established DAG cryptocur-
rency. Fortunately the choice here is easy, as only two (popular) platforms exist: IOTA
and NANO. While the block lattice structure of NANO would look like the ideal choice,
the platform needs to support zero-value data transactions. This rules out NANO, and
therefore our data storage is on IOTAs Tangle.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Platforms

Figure 5.2: Example of contract invocations in the Tangle e.g. there is no direct path
between mint() and approveSiring(), so we dont know which TX happened first but we
dont need to.

We know that IOTA will implement its own type of smart contract support under the
name Qubic (as discussed in section 2.7). While this is certainly a welcomed addition,
and great for certain tasks, it currently seems likely it will not be as powerful and
universally usable as the EVM. It also follows different paradigms, like a functional
programming style, which further differentiates it from current smart contract platforms.
This obviously does not mean that Qubic is a bad idea, just that there is enough space
for both solutions to coexist, giving smart contract developers more choices.

A Proof Of Concept shows how EVM transactions can be integrated in the tangle. Users
can publish EVM messages (contract creations, or executions) on the Tangle. To ensure
some global order of execution, we introduce an EVM coordinator. The job of this
service is to determine the execution order of the contracts, and ensure that there is a
global consensus about their state. Its implementation is fairly straightforward, as the
milestones for this service are basically the same as blocks in Ethereum.

The difference to traditional smart contract blockchain platforms is that due to the graph
structure in the ledger, an arbitrary amount of parallel chains can be built by different
coordinators. That means, whenever a DApp gets too big and generates a big portion
of the traffic of the chain, it can be detached from that chain, and live in its own. This
approach is similar to the concept of sidechains, bridgechains1 or smart child chains2,
and follows in the footsteps of RSK, which have all already been briefly discussed in
section 2.9.

The advantage of this approach is that different coordinators can follow arbitrary proto-
cols, or even different consensus mechanisms. There could be a chain with EVM smart
contracts, right next to a completely independent one containing NeoVM bytecode. Out
of scope for this thesis is how such chains could interact with one another, but cross-
chain interoperability is currently a much researched topic, and various solutions have

1as in the Ark platform whitepaper, https://ark.io/Whitepaper.pdf
2as in the Ardor platform whitepaper

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Smart contracts in a DAG ledger

been proposed that could be adopted here as well. As a last resort, custom extensions
can define new opcodes, that are used for cross-chain message calls.

The only other project we could find, that follows a similar approach is VITE. This
project builds a complete, independent ledger, with a structure similar to the block lattice
of NANO3. We argue that our approach to leverage an already existing and well-tested
ledger and build a second-layer technology on top of that is a better solution.

3Due to the usage of a snapshot chain, a globally unique order of transactions is introduced again.
Although this snapshot chain references the other transactions in the DAG, but left by itself it behaves
like a traditional blockchain.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
tanglEVM - an EVM in the

Tangle

We have chosen IOTAs Tangle as ledger to piggyback our smart contract platform for
multiple reasons: The first requirement for the ledger is the support of zero-value data
messages. While IOTA directly supports this, e.g. the block lattice in NANO does
not. Secondly, the transactions in IOTA are feeless (and only require Proof of Work
to transmit), therefore no additional fees for the data storage occur. And, last but not
least, this platform is already widely used and popular.

But we also need to discuss the drawbacks of this approach.

As the contracts live independently in their own chains, no direct interactions between
them are possible. Instead of enforcing this strictly, we can define “namespaces” as
grouping of dependable contracts (similar to Sharding). This means that CryptoPen-
guins, and every other App that depends on them, can be in the same namespace.
Several approaches to get interoperability between different blockchains are currently
researched, and those solution could be applied here as well. Also, asynchronous calls
between different namespaces could be a worthwhile topic for future research.

This is a second-layer solution on top of the Tangle, and therefore unfortunately can
not directly use IOTA as currency (because IOTA nodes do not understand the EVM
protocol, and e.g. can not transfer any money out of smart contracts). Therefore an
additional currency, limited to one particular chain, for fees and payment would be
required. Methods for converting between IOTA and that token can exist, but the exact
implementation for this token is out of scope for the Proof of Concept. Therefore our
EVM-compatible prototype is feeless, and no payable methods are allowed. But, it should
be noted, that this is only to simplify the Proof of Concept, this missing functionality
could be added later.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

6.1 Architecture

Figure 6.1: tanglEVM architecture overview

Figure 6.1 shows the architecture of our project.

There is an IRI daemon running, that is the equivalent of a full node in IOTA. Usually
this node directly connects to the mainnet of IOTA. For testing purposes, the IRI can
also provide a complete private testnet. This testnet also can run an instance of the
IOTA Coordinator (compass), which issues IOTA milestones. This private testnet can
be started easily in a container via Docker[38]. When the IRI is started with the ‘zmq-
enable-tcp‘ flag, it also acts as a publisher for a Zero message queue.[39] There are a
variety of events published in this message queue, but the most important ones for our
use case are the transactions that have been recently appended to the ledger, which are
streamed in real-time.[40]

Our tangleEVM subscribes to these events, and check whether they are also a valid
tangleEVM message. If they are, they are given to a customized Ethereum virtual
machine, which then executes the transactions. This part is also responsible for issuing
EVM milestones, which behave similar to Ethereum’s blocks, for achieving consensus.
How this happens exactly will be shown in the subsequent section.

6.2 Consensus

Another important aspect is how consensus is achieved.

We can draw parallels to the infamous IOTA Coordinator here. For our first Proof
of Concept this is a centralized service, appropriately called EVM coordinator, which
periodically issues milestones (like blocks in Ethereum that would be mined). These
milestone blocks link to the transactions included in that particular block (which users
previously attached arbitrary in the Tangle), and therefore determine the execution order
of the transactions. The big advantage of our DAG is that there can be indefinitely many
of those coordinators – so a huge traffic of transactions in one DApp doesnt influence
any other, unrelated ones.

The transactions issued by the coordinator are illustrated in figure 6.2. Subsequent
snapshots (blocks) are linked, and each block includes zero or more transactions.

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Trytes

Figure 6.2: The tanglEVM Coordinator

While for now centralized, think of a Proof-of-Authority-type of network, solutions exist
to achieve a more decentralized consensus, and can be implemented after further research
(notice again the similarities to the Coordicide[28]).

6.3 Trytes

Table 6.1 highlights some of the most fundamental differences in the structures of the
datatypes and algorithms used for hashing, and for representing addresses.

Property Ethereum IOTA

Address length 20 bytes 81 trytes1

Address representation 40 hex characters2 81 [A-Z9] characters

Address generation Keccak-256 hash Kerl hash3

Transaction Hash 32 byte Keccak-256
hash

81 trytes Curl-P-81
hash

1 https://domschiener.gitbooks.io/iota-guide/content/

chapter1/transactions-and-bundles.html
2 excluding the ‘0x‘ prefix
3 https://github.com/iotaledger/kerl

Table 6.1: Properties of Ethereum and IOTA

Section 4.2 establishes the concept of trytes, the fundamental representation of numbers
in IOTA.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

As the RLP-coded messages of the EVM are in bytes, we need to find some method to en-
code and decode between binary and trinary. Theoretically, there are log(256)/log(3) =
5.0474... trits needed for each byte. The simplest method to encode a byte (with values
in the range from 0 to 255) is to use a tryte which encompasses this range as well. This
is possible by converting to a tryte made of 6 trits (a tryte6), which has a value range
from 0 to 728 (36 − 1). The difference in the value range shows that there is quite a lot
of wasted space, and consequently not every combination of tryte6 s can be converted
back to bytes. Figure 6.3 shows the conversions graphically.

Figure 6.3: Tryte3 string, Encoding a tryte5 string as byte, Encoding a byte string as
tryte6[82]

Based on the JavaScript library by vbakke[82], we use the Python code in listing 1 to
encode a byte in a tryte6 string.

TRYTE_CHARS = '9ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def encodeBytesAsTryteString(bytes):

trytes = TryteString(b'')

for value in bytes:

value = int(value)

firstValue = value % 27

secondValue = int((value - firstValue) / 27)

trytes += TRYTE_CHARS[firstValue] + TRYTE_CHARS[secondValue]

return trytes

Listing 1: Encoding bytes as a tryte string

Conversely we can use the code in listing 2 to decode again a previously encoded string.
Please note that this code will not work for arbitrary tryte strings, only for ones with
values between 99 (0) and LI (255).

These methods allow the conversion from EVM bytecode, and any other RLP-encoded
byte strings, to trytes.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. TX Parser

def grouped(iterable, n):

return zip(*[iter(iterable)]*n)

def decodeBytesFromTryteString(inputTrytes):

if len(inputTrytes) % 2:

return

ba = bytearray(len(inputTrytes) % 2)

for trytes in grouped(inputTrytes, 2):

firstValue = TRYTE_CHARS.index(trytes[0])

secondValue = TRYTE_CHARS.index(trytes[1])

value = firstValue + secondValue * 27

ba.append(value)

return bytes(ba)

Listing 2: Decoding bytes from a tryte string

We acknowledge that converting the bytecode to a trytecode by changing all number
representations, including the opcodes, would be a more efficient solution. This was not
pursued, because a full compatibility of EVM bytecode and existing tools is desired.

While the proposed implementation is the most efficient solution that operates on single
byte or tryte values, it might be feasible to operate on a grouping of byte or tryte values,
and therefore losing less space. This would require added padding to the input strings
though.1.

6.4 TX Parser

As established in section 4.4 the used Winternitz one-time signature scheme reveals parts
of the private key in the signature. This means that a private key, and consequently
an address, can only be used once. This poses a problem for us, as we want to link all
interactions of a user to a common identity. It would render the idea of smart contracts
useless if a user could deposit money to a wallet contract, but would no longer be able
to withdraw it because their address has changed.

Ethereum generates signatures via the Elliptic Curve Digital Signature Algorithm, which
does not suffer from this problem. Although users can generate a multitude of accounts,

1see e.g. https://iota.stackexchange.com/questions/639/what-are-the-maths-to-

convert-bytes-trytes for inspiration

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

interactions with smart contracts are always tied to a specific address, and following
actions usually need to origin from the same account.

Therefore we need to find a way to tie multiple IOTA addresses to a single account. Value
transactions solve this conundrum by ensuring that the whole balance of an address is
spent with each bundle. The wallet creates a new, unused address (the change address)
by incrementing the address index, and sends the remainder of the balance there. The
spent address is no longer of any value, and should never be used again for a transaction.

Several methods already exist, which provide similar solutions for zero-value transactions.
We will briefly present the most prominent ones, and discuss their usability for our PoC.

For our PoC we want to emulate an EVM-like message stream, therefore our main focus
will be on the following criteria:

• Message streams. We want to send a multitude of EVM transactions from a
single account.

• Stream ID. We want to uniquely identify the sender of a transaction.

• Signatures. Transactions need to be signed from the owner of the account, e.g.
using the Winternitz one-time signature scheme.

• Public access. The messages should be publicly readable, and not encrypted in
any form.

• Index-based access. Similar to the nonce in Ethereum transaction, direct lookup
of a message just by stream ID and index would be desirable.

• Python. As our PoC is written in Python, an implementation of the mechanism
in Python - or, some well-documented code in another language, which can fairly
easily be ported - is desired.

6.4.1 Masked Authenticated Messaging

Masked Authenticated Messaging, or MAM of short, is an official IXI module (see 4.8)
of the IOTA Foundation. This means it is a second-layer solution, which uses the Tangle
for data access and storage. It acts as a data communication protocol, which allows
clients to access communication channels, as well as methods to publish messages in
such channels.[31]

Figure 6.4 shows the data streams of MAM in a high-level perspective. Every message
in this stream holds a reference to the subsequent message. Readers of the stream,
which are able to decrypt the messages, can find this connecting pointer in the attribute
nextRoot. There is no method to trace back to the previous messages. If a reader is
given the root of a message in the middle, only the subsequent messages can be read,
therefore providing perfect forward secrecy. Obviously in the Public mode, the whole
DAG could be scanned for a matching root, but this is impractical.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. TX Parser

Figure 6.4: IOTA MAM architecture overview

Due to the usage of the Tangle, integrity of the data is ensured. It also fulfills privacy
standards, by optionally encrypting the message stream. Three privacy modes exist,
and they diverge in the way the channel ID is generated. In the Public mode everybody
is able to read every message, the channel ID is simply the merkle root, and therefore
everybody has the needed merkle root for decrypting the datastream by definition; in
the Private mode the channel ID is the hash of the merkle root, and only users who know
the merkle root can decrypt the message stream; in the Restricted mode the channel ID
is also derived from the hash of the merkle root, but both the merkle root and another
encryption key (sidekey) are required to be able to access the data stream.[2] For our
further analysis, we only focus on the Public mode, because this is the desired access
mode for our project.

Another feature of MAM is that channels can be forked into multiple streams (see
figure 6.5). When using such a fork or splitting of channels, future messages use a
new Merkle tree, whose root has never been revealed before. This can be used for fine
grained access to specific subsets of the messages, with optionally stricter permissions.
We will not provide further details of this feature, as it is not used in our application.

Figure 6.6 shows the Merkle tree based signature scheme. Trees can vary in size to
accommodate for channel splitting, and this size can be different in every iteration. The
size, that is the number of leaves and therefore channels splits for a given root, gets
specified in the count parameter. A MAM transaction also holds a reference to the
merkle root of the following MAM transaction in the next_root, which means that the
next tree also needs to be generated in advance. The size of the next tree is specified in

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

Figure 6.5: Channel Splitting in IOTA MAM

Figure 6.6: Merkle Trees in MAM used for signatures; source: mobilefish.com[49],
IOTA tutorial 19 - Masked Authenticated Messaging

the next_count parameter. The start parameter refers to the first leaf key index number
of the message chain. For the tree generation, also the mode, and the optional side key
are needed, as these parameters influence the next root. The security level parameter
specifies the size of the signature.

Not all of these fields are actually embedded in the MAM transaction, as can be seen in
the structure of a transaction in figure 6.7. Besides the index, length, payload, next root,
nonce, and signature, also parts of the merkle tree (the siblings) have to be included in
a MAM transaction. This means that the overhead when utilizing MAM is quite large.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. TX Parser

Figure 6.7: Fields of a MAM transaction; source: mobilefish.com[49], IOTA tutorial 20
- Masked Authenticated Messaging Payload

Even when the payload is completely empty, the Merkle tree has the minimal size of a
single leaf, and security level 1 is used, the total size is already 2301 trytes, which does
not fit into a single IOTA transaction (because the signature alone is 2187 trytes). With
security level 2, the total minimal size is 4488 trytes, again bigger than 2 transactions.

Contract method bytecode
length

transaction
cost

trytecode
length

MAM
message
length

trans-
actions

SuperToken deploy 5386
bytes

1361546
gas

10772
trytes

15290
trytes

7

SuperToken transfer

(0xAda..,

4914)

68 bytes 51368 gas 136 trytes 4689
trytes

3

Table 6.2: Sizes for Transactions using MAM

In table 6.2 we summarized what this overhead means for a real life scenario. We used the
SuperToken contract from section 3.5, and deployed it in our tangleEVM testnet chain.
Using security level 2 for MAM, the deployment code of the 5386 bytes long contract is
fragmented over 7 IOTA transactions, which can be deployed in slightly under 2 minutes
in the Tangle (the Proof of Work for a single IOTA transaction takes around 16 seconds).
Typical contract invocations take 3 IOTA transactions, which is the same as an IOTA
token transfer (input, output, change transaction) takes. The conclusion here is that
the overhead is not too bad, and such contract deployments and invocations are actually
feasible.

MAM is implemented in Rust2, and at the time only has client bindings in JavaScript3,
which are implemented via a JavaScript wrapper.

The project is still under development, and unfortunately detailed information or docu-
mentation does not exist yet.

2https://github.com/iotaledger/MAM
3https://github.com/iotaledger/mam.client.js

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

The following list summarizes the results of our research into MAM, whether the desired
features are available and their viability for our project according to the needs we laid
out previously:

• Message streams. Yes, this is the main feature of the project. MAM has the
concept of MAM Channels, where owners of the channel can publish data, and
other users can subscribe to this channel. This channel is secured by the Seed, so
only the owner has the possibility to publish messages for a particular stream.

• Stream ID. Partly viable. The merkle root acts as a channel ID. But every
message of this protocol links to the root of the next merkle tree, which provides
forward secrecy. In our case this is bad, because we cannot get back to a previous
message (and use the merkle root of the first message as ID). We also do not know
whether a given message is the first one of the stream.

• Signatures. Yes, messages are signed using the Winternitz one-time signature
scheme.

• Public access. Yes, a stream can be public, private or restricted.

• Index-based access. No, only linear access of subsequent messages.

• Python. No, the only currently existing implementation is the reference imple-
mentation in JavaScript, which accesses a library written in Rust. Adding support
for Python is not planned for the near future4.

6.4.2 MAM Lite

MAM Lite is basically the same as MAM, but utilizes the RSA signature scheme to sign
and verify messages, instead of the W-OTS as MAM uses.5

As it generally offers the same features as MAM (private, restricted and signatures
modes, channel splitting, forward secrecy) no in-depth research into this project was
done by us.

No development has happened since November 2018, which leads us to conclude that it
is currently no longer maintained.

6.4.3 MAM Ultra Lite

MAM Ultra Lite is another project inspired by both MAM and MAM Lite, that again
changes the signature scheme.6

4https://github.com/iotaledger/iota.lib.py/issues/47
5https://medium.com/@samuel.rufinatscha/mam-lite-a-more-flexible-

messaging-protocol-for-iota-562fdd318e1d
6https://medium.com/coinmonks/iota-mam-ultra-lite-493d8d1fb71a

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. TX Parser

They claim that RSA signatures need too much space, and therefore use Ed25519 signa-
tures, the same scheme as the cryptocurrency NANO (section 1.3) uses. Compared to
the 1128 trytes for the public key and 1024 trytes for the signature used in RSA, this is
certainly the case with only 86 trytes for the public key and 172 trytes for the signature
in Ed25519. As Ed25519 cannot be used for encryption, private access still needs some
additional RSA encryption added, but as this is not needed for our project, it can be
ignored.

The big advantage of using this method would be that the implementation is directly
written in Python, and therefore would integrate easily into our project. Besides that,
there are no clear additional benefits, and therefore also no in-depth research was per-
formed.

6.4.4 Random Access Authenticated Messaging

Random Access Authenticated Messaging, or RAAM for short, is another module for
message streams in IOTA’s Tangle developed by Robin Lamberti[45] and published as
open-source library[17].

While RAAM is also inspired by the MAM module, it finally deviates from the design
of MAM in more substantial ways than just in the algorithm used for signatures.

The big advantage here is the indexed access of messages in a channel, in a time of O(1).
No chain, beginning from the very first message of a channel, needs to be followed to
be able to access any arbitrary index. Figure 6.8 shows that a message address can be
calculated, just from knowing its channel ID and index.[45][17]

Figure 6.8: The computation of a message’s address[45]

RAAM also uses Merkle trees to cryptographically proof that someone who holds the
private signing key for a message also holds all other keys used in the channel. While in
MAM every message contains its own (small) merkle tree, in RAAM the complete tree

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

of all possible signing keys is generated upfront. This approach is similar to how the
IOTA coordinator (section 4.7) generates its signing tree.

Depth # transactions Time for security 1 Time for security 2

8 256 5.2s1 8.2s1

9 512 8.3s1 14.8s1

10 1024 15.9s1 29.9s1

11 2048 28.5s1 53.2s1

12 4096 1m 0.5s 1m 48s

13 8192 2m 0.4s 3m 54s

14 16384 3m 42s 7m 46s

15 32768 7m 36s 14m 43s

16 65536 15m 9s 28m 5s

1 Average value of three runs

Table 6.3: Merkle Tree generation time, depending on the layer size and security level

8 9 10 11 12 13 14 15 16
0

250

500

750

1,000

1,250

1,500

1,750

Depth

T
im

e
[s

]

Security level 1
Security level 2

Figure 6.9: Merkle Tree generation time, depending on the layer size and security level

To calculate the feasibility of such a pre-computation of a Merkle Tree we ran some
tests to find out how long the generation takes 7. The results on our hardware (Intel
Core i7-3770 CPU @ 3.40GHz, 16GB RAM) are shown in table 6.3 and figure 6.9. The
command used to generate this data was:

7for comparison, the IOTA coordinator has a depth of 23, which can generate 8,388,608 public/private
key pairs

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. TX Parser

time docker run -t –rm -v $(pwd)/data:/data iota/compass/docker:layers_calculator

layers_calculator_deploy.jar -sigMode CURLP27 -seed $seed -depth $depth -security

$security -layers /data/layers

Initially RAAM only had a private mode, where readers needed to know the channel
ID (the merkle root of the merkle tree) to be able to access the stream. This channel
ID was not encoded into the message, so no public access was possible.8 After a con-
versation with Robin he was kind enough to think about adding support for a public,
non-encrypted mode. After some time the project really did gain this feature by adding
the concept of public messages, which can be decoded solely with their respective address.
This is done by directly encoding the channel ID and the index into the message.9

Contract method bytecode
length

transaction
cost

trytecode
length

MAM
message
length

trans-
actions

SuperToken deploy 5386
bytes

1361546
gas

10772
trytes

17496
trytes

8

SuperToken transfer

(0xAda..,

4914)

68 bytes 51368 gas 136 trytes 6561
trytes

3

Table 6.4: Sizes for Transactions using RAAM

We also performed tests encoding the EVM deployment message for the SuperToken
contract and an EVM message calling the transfer function with RAAM. The results
can be found in table 6.4. To make it comparable with our results for MAM, we again
used security level 2 - with level 1 the messages could be smaller, and the contract call
would fit into 2 IOTA transactions.

The results of our research into this library are:

• Message streams. Yes, this is the main feature of the project.

• Stream ID. Yes, there exists a global channel ID.

• Signatures. Yes, messages are signed using the Winternitz one-time signature
scheme.

• Public access. Yes, this feature was recently added and now it is possible to get
the channel ID just from knowing an address.

• Index-based access. Yes.

8also the message at index 0 does not match the channel ID, but is just the address of first leaf in
the tree

9https://github.com/cr0ssing/raam.client.js/commit/75bfeaa46ad9e2a6be2c9e87bcdb4a2a4c132e4c

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

• Python. No, not at the moment, but planned. The project is also fairly simple,
a port to Python would therefore not take much time.

6.4.5 Discussion

We have chosen to use MAM for our PoC, because it was and still is the most commonly
used message stream implementation for the Tangle, and RAAM was still lacking the
public mode support during its development. But this decision can be re-evaluated in
future, as the static channel ID and the index-based access of RAAM better suit our
needs for the tanglEVM.

It has to be noted that all non-value transactions in the Tangle can get removed by nodes
after a snapshot of the network is performed10. Such snapshots are regularly performed,
wiping the complete non-value transfer history of the Tangle. Therefore users need to
connect to permanodes to be able to get the complete history.

Another confirmation that this idea is on the right track can be seen by a blogpost by the
IOTA foundation on November 26th 2019. When it was published, this thesis was still
in work. In the article “Integrate Hyperledger Fabric with the IOTA Tangle”[74] IOTA
developers describe how smart contracts written in the chaincode of Hyperledger Fabric
can be integrated into the Tangle by storing the results of smart contract executions.
The connection to IOTA is formed here as well via MAM message streams, further
showing the potential of our proposal. They are satisfied with the results they achieved
so far, and are exploring further options to expand these capabilities. This shows that
the Tangle is a capable storage medium for the interactions of different smart contract
platforms.

6.5 Py-EVM

For our state and computation machine we make use of the reference implementation
of the EVM in Python, an open-source project called Py-EVM11. Due to its modular
architecture it is highly flexible, and is intended to be used both as a base layer for
full and light Ethereum clients, as well as a research platform for future features and
alternative use cases like private chains. This modular architecture is of great benefit
for our project, as it is relatively easy to change certain aspects of the EVM.

6.5.1 Architecture

Figure 6.10 shows a high-level overview of the Py-EVM architecture. It is split into five
major components: the VM, that handles the protocol aspects of the EVM; the Chain,
that initializes the parameter for common use cases like the mainnet or testnets; a Storage

10Recent versions of the IRI added the possibility to perform local snapshots by the nodes themselves,
so the actual history can differ from node to node[10].

11https://github.com/ethereum/py-evm

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Py-EVM

Figure 6.10: Py-EVM Architecture Overview

layer that implements how objects are cached and stored in various database backends;
the Consensus module which deals with calculating (although not recommended for
mining on the mainnet, as it is implemented purely in Python) and verifying the Proof-
of-Work algorithm, and finally the RLP helper, which acts as helper to specify how the
objects get serialized and deserialized in RLP encoding.

6.5.2 Chain

The Chain is basically an orchestration layer. It defines at which block (e.g. starting
from the genesis block) which implementation of the Virtual Machine (e.g. the Fron-
tierVM) should be active. It further defines which storage implementation should be
used for the chain. All other calls are then passed through to the currently active VM,
or to the database backend.

Listing 3 shows a blockchain, which uses the Frontier VM for the first 1150000 blocks,
and then switches to the Homestead VM, like it does in the Ethereum mainnet.

In our case, we do not need to implement the legacy VMs, so we can configure that it
should directly activate our custom VM implementation right from the beginning (the
genesis block).

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

from eth import constants, Chain

from eth.vm.forks.frontier import FrontierVM

from eth.vm.forks.homestead import HomesteadVM

from eth.chains.mainnet import HOMESTEAD_MAINNET_BLOCK

chain_class = Chain.configure(

__name__='Test Chain',

vm_configuration=(

(constants.GENESIS_BLOCK_NUMBER, FrontierVM),

(HOMESTEAD_MAINNET_BLOCK, HomesteadVM),

),

)

Listing 3: Chain configuration for Ethereum mainnet with Frontier and Homestead VM
implementation

6.5.3 VM

To ensure compatibility with EVM bytecode our implementation is based on the Pe-
tersburg Fork (figure 6.11), so all existing smart contracts are also able to run in our
tanglEVM 12.

Figure 6.11: tanglEVM in relation to Ethereum forks

Since we are using a customized VM implementation, we are also free to change the
behavior of the VM. This can be used to better integrate the blockchain-based EVM
with our DAG ledger. The aim is to loosen the strict segregation of our introduced
namespaces, so function calls between different namespaces are possible again. To answer
the important question of what exactly needs to be adjusted to achieve this, another
literature study was performed first.

In this literature study, we stumbled upon the Vite project, which offered a few promising
ideas.

12It is important that every class inherits the traits from the desired fork. If, for example, the
computation engine would be based on the older Byzantium fork, execution of contracts compiled with
recent compiler releases might fail. A SuperToken contract might then fail with the error message
“eth.exceptions.InvalidInstruction: Invalid opcode 0x1b”, because the opcode for Shift Left was only
implemented in the succeeding fork of the EVM. This might cause some confusion.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Py-EVM

Vite

We have analyzed a cryptocurrency project that tries to achieve something similar to our
project. Their goal is to create a DAG-based ledger, with support for EVM-like smart
contracts, which basically aligns with the topic of this thesis as well.[50]

This project also has a smart contract platform, that tries to stay as compatible with the
EVM as possible, while still changing certain properties. The whitepaper only mentions
that the smart contract language Solidity++ is similar to Ethereum’s Solidity. Also the
opcodes themselves resemble the ones in the EVM - e.g. while the hashing function
Keccak was changed to Blake3, the transfer and balance function take an additional pa-
rameter to natively support tokens. Several opcodes (TOKENID, RANDOM, etc.) have
been added, and the contract call logic is different to be able to implement asynchronous
calls. For the rest of them no big difference to the implementation in the EVM could be
found.

We used this approach as guide for our project. It is of particular interest to us how they
changed the semantics of message calls to an event-driven architecture. Their scalability
concerns lead to a change of the ACID (Atomicity, Consistency, Isolation, Durability)
scheme of the EVM to a final consistency scheme BASE (Basically Available, Soft state,
Eventual consistency). This leads to a design, where function calls are no longer syn-
chronous across contracts, but rather an asynchronous message communication. The
EVM instructions CALL and STATICCALL no longer immediately execute the called
contract, and therefore also no longer return the result of the call13.

The consensus mechanism also works in an asynchronous way by splitting the transaction
into request and response pairs, allowing the writing of transactions into the DAG ledger
without being blocked by the confirmation process.

While the basic principles of this project inspired the design of our prototype, we argue
that developing yet another independent ledger might not be the best approach, and
piggybacking the smart contract support on an already existing, well-established DAG
ledger is a worthwhile solution.

We also do like the asynchronous message communication of Vite, but their implementa-
tion in the smart contract programming language Solidity++ does not look quite elegant
enough. We would prefer Python-like async/await syntax for these asynchronous calls.

The semantics of most Vite instructions are equivalent to the EVM. But while being
similar, it is a complete reimplementation of the EVM, and no actual source code is
shared between the two systems. Our design directly inherits an official implementation
from the EVM, and it is therefore easier to keep up with changes in the EVM, as they
do not need to be rewritten for our implementation.

13the result of these instructions is hardcoded to 0

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

Opcode Mnemonic Stack Input Stack Output Expression Notes

e0 CURL offset length hash[:18]hash[18:]
hash = curl(

memory[offset : offset + length])
hash split into two

parts to fit size

Table 6.5: Opcode Curl

Extending the EVM

The previous section made clear that changes to the semantics of several EVM instruc-
tions are desired. We just do not agree that these changes should replace the mechanisms
of the EVM, they rather should exist as their own opcodes. Before implementing them
in detail, an understanding of how difficult changes to the implementation EVM opcodes
generally are was required.

For testing our assumption, we decided to implement another opcode. A simple candi-
date for this was the hashing function Curl, which is supported natively by IOTA, but
does not exist in the EVM. The semantics of it are shown in table 6.5.

The source code of the implementation for this opcode can be found in listing 6. Here we
can see that the EVM only operates on bytes, therefore the tryte input has to be decoded
first. Then the operation can be performed, and finally the result has to be encoded
again as EVM-compatible bytes. Such tedious conversions would not be practical for
real-world scenarios.

The input on the stack is the same as for the similar Keccak256 operation, it takes an
offset in the memory region, where the to-be hashed data is lying, and the length of the
data. But for Keccak256 the output - the hash result - fits nicely onto the top of the
stack as an individual item because this matches the 256 bits word size of the EVM. But
the result of a standard Curl-P-81 is 81 trytes (or 243 trits) long. Even worse, it has to
be encoded again as bytes, making it substantially bigger than the word size. Therefore
the result needs to be split into two values (which does waste some space at the end).

Arguably even more difficult than implementing a new opcode is constructing a smart
contract that uses it. Until now we only instructed the computation engine of the EVM
what it should do when it encounters the curl opcode, but not the solc compiler how
it can generate bytecode that calls this instruction. Patching the compiler turned out
to be a work too enormous for this thesis, so we looked for other ways to test whether
our implementation is working correctly. Solidity has some support for inline assembly
in the language14, but this syntax also only supports already known mnemonics, not a
brand-new one like implemented here.

The only viable possibility therefore was to write bytecode ourselves. We started out
with a similar contract in Solidity (see listing 4), which has a function that simply hashes
its arguments (via keccak256, which will be changed later by hand), and returns the hash
result (already as two bytes32 values, as the extra space will be needed afterwards).

14https://solidity.readthedocs.io/en/latest/assembly.html

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Py-EVM

pragma solidity ^0.5.0;

contract Hash {

function myhash(bytes memory data) public pure

returns (bytes32, bytes32) {

bytes32 a = keccak256(data);

bytes32 b = "";

return (a, b);

}

}

Listing 4: Source code of Hash contract

We used the solc compiler to compile this contract, with extra options to generate a
listing of opcodes, and an EVM assembly as well: solc –opcodes –asm –bin –abi -o

Hash Hash.sol

Let’s walk through the process step by step:

The runtime segment of the assembly is presented graphically in the call graph of list-
ing 6.12.

We now need to understand what exactly happens on a bytecode level. The blog series
Deconstructing a Solidity Contract by OpenZeppelin[70] provides a good introduction at
demystifying the EVM bytecode produced by the Solidity compiler, and we will follow
a similar approach. Following their how-to is still encouraged, as it provides a further
in-depth analysis.

We can safely ignore the creation code (the whole Part II of the OpenZeppelin manual),
as this is the same for every contract creation, and focus solely on the runtime code. And
also the beginning of the runtime is mostly just boilerplate code - the free memory pointer
gets defined and a calldata length check is performed. The calldata is an encoded chunk
of hexadecimal numbers that contains information about what function of the contract
we want to call, and its arguments or data. Then the function dispatching happens:
function signatures (introduced in section 3.5.5) are checked whether they match, and
if they do redirect the program flow to a function wrapper.

The inner workings of the function wrapper are also not important for us. It is sufficient
to know, that it encloses the function body and provides the environment for the function
body by unpacking the calldata, routes execution to the function body and then repacks
whatever comes back for the user (in the memory returned structure of the graph).

The function body, in the orange block of the call graph, is where the actual hashing
function is called. For convenience, the actual opcodes are visible for the assembly as
well. Upon entering this part, our stack looks like this:

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

80

memory
pointer

e9

return
address

7dc4a9ec

calldata

At the beginning, space for the later returned values is reserved:

00

bytes32
00

bytes32
80

memory

pointer

e9

return

address

7dc4a9ec

calldata

The next few lines prepare the arguments for calling the keccak256 opcode on the stack
- it needs the memory offset of the to-be hashed data (which is at offset 0x20 of the
memory pointer, and the length of the data (see table 3.2 for a description). Right
before the instruction, the stack contains the following elements:

a0

offset

01

length

00

bytes32 a

00

bytes32

00

bytes32

80

memory
pointer

e9

return
address

7dc4a9ec

calldata

After the execution, the parameters are removed, and the result is the top-most element
on the stack:

ec97e60...

keccak256(
data)

00

bytes32 a

00

bytes32

00

bytes32

80

memory
pointer

e9

return
address

7dc4a9ec

calldata

Then some swapping is performed to store this value in the bytes32 a slot. We can see
that the generated bytecode contains superfluous instructions in that part - running the
compiler with optimization enabled would have cleaned up the code a bit (but would
also have gotten rid of our reservation for the second bytes32 value).

Finally, at the end of our function body, the stack contains the address of where to jump
next (the memory returner structure, which ends with the RETURN instruction), and
the result of our computation:

e9

return
address

00

bytes32 b
ec97e60...

bytes32 a
7dc4a9ec

calldata

We can now modify the function body by hand to use our implemented curl opcode. As
this opcode produces two values on top of the stack, we also get rid of the hardcoded
0x00 value on top of the stack we had to use as placeholder before. The changes to the
body - highlighted in bold - can be seen in figure 6.13.

This now finally allows us to execute a contract call that uses our instructions to verify
that it indeed works as specified:

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Py-EVM

myhash(encodeTryteStringAsBytes(′THIS9IS9A9TEST′) =
0x000...0206187e79e0f...|decodeTryteStringFromBytes =
EJEAOOZYSAWFPZQESYDHZCG...

We acknowledge that this opcode might not be the best candidate to implement in a
fork of the EVM. This should only be seen for exemplary purposes, to get a feeling of
how much work is required to extend the EVM. And similar methods can be used to
actually do something useful, like implementing asynchronous calls across namespaces,
or providing mappings between IOTA addresses (or channel IDs) and EVM addresses.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

Figure 6.12: Call graph for Hash contract, implementing a keccak hash
72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Py-EVM

Figure 6.13: Manually modified myhash function body, to use curl hashing function

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

6.5.4 Database

Figure 6.14: Database architecture of Py-EVM

Figure 6.14 shows the complex database layers of the Py-EVM. As physical storage
backend two options are provided: either the data is only stored temporary in memory
(that is a simple Python directory) and lost whenever the Py-EVM is terminated, or
it gets permanently written to disk in a LevelDB database. LevelDB is a key-value
storage library, which provides an ordered mapping from string keys to string values,
and is developed for efficiency. Its API behaves similar to a Python dictionary object.
Changes to the data can be made in atomic batches, this is a useful feature needed
by the Py-EVM. The written data is automatically compressed, resulting in disk space
savings when the huge Ethereum blockchain is synced.

The LevelDB keys are mostly Keccak256 -hashes of the objects they represent (like the
hash of the account address), and the value is the RLP-encoded bytestream of that
object (like the RLP encoding of account fields). This means that, when just looking at
the database, it is difficult to tell what exactly the content of a row represents, because
neither key nor value contain any concrete type information.

The storage is split into two categories: the chain data, with Headers, Blocks, Transac-

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Py-EVM

Key Value

v1:canonical_head_hash \xa0\x80\xb7\x82\xcc...

block-number-to-hash:0 \xa0]\xe3S\x92...

block-number-to-hash:1 \xa0\x80\xb7\x82\xcc...

block-hash-to-score:]\xe3S\x92... \x01

U\$U\xb0l\x10\x85... \xf9\x01\xf7\xa0]\xe3S\x92...

\xfe\x88\x9f\x10\xe5... \xf8q\xa03\x80...

\xfd.Y;\x89\xfb\xf9... \xf8q\x80\xa0/...

\x87\x8a\xc5S\xb5... \xf8Q\xa0(\xe7...

Table 6.6: Excerpt of a LevelDB database for a private Ethereum network

tions and Receipts; and the state data with balance, nonce, code and storage.

In table 6.6 we can see that the database also contains some organizational fields for the
block header database, that make index-based lookups easier. The block hash of any
arbitrary block index can be found at key block-number-to-hash:N, where N is the block
number. Reverse queries are possible as well, prefixed with the key block-hash-to-score.

Following the block hashes, the RLP-encoded blocks can be found, which then can be
followed to transactions and accounts by their respective hashes.

Figure 6.15: Py-EVM

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

We had to extend this database scheme, because our MAM abstraction layer also needed
to store some metadata. Because MAM only allows easy access to subsequent messages
of the stream, we need to store the next root field for every message of the stream in the
database, alongside the current root and the first root, which acts as channel ID. When
we encounter a new published message, we can then look up in O(1) to which channel
that message belongs. See figure 6.15 for a schematic of our changes.

Initially we wanted to extend the Account attributes with these fields, but that would
have required substantial changes to the caching logic, and to other unrelated classes
that make use of Accounts. For simplicity, we therefore moved the logic for assembling
the message stream and parsing the channel ID to the TX Parser, and only give EVM-
compatible messages to our Py-EVM implementation.

6.6 Future Work

We have deliberately omitted consensus methods, as this would go beyond the scope of
this thesis. But with our proposal, each chain in the DAG could theoretically use their
own appropriate method for achieving consensus. Selecting the right mechanism would
be in the responsibility of the DApp developer, as the security requirements for each Dapp
differ. For authoritative apps (like centralized exchanges), a proof-of-authority system
(similar to the one proposed in this chapter) could be perfectly fine, while decentralized
games (think of Cryptokitties) might want to use a Delegated proof-of-stake consensus
method. This would even be fairly easily achievable, as each token can be seen as native
currency in that specific chain. This not only allows trading of that currency, but also
staking it to vote for a delegate.

Inspiration for the selection of a suitable method can be found in the paper by Burg[7],
which lists a variety of algorithms.

6.7 Summary

At the end, we want to show the total picture that covers the topics of the whole thesis.

Figure 6.16 shows the contract invocations of our fictional user Becca. At the innermost
layer is the RLP-encoded (sec. 3.6) EVM transaction in which she invokes the transfer
method of the SuperToken contract to send 4914 tokens to the user Ada (see 3.5.5).

Due to the quirks of IOTA, this bytecode has to be encoded to a trytestring (sec. 6.3).
In order to build a message stream of Becca’s transactions, this is passed as payload to
a public MAM message (see 6.4.1). The MAM message also holds a reference to the
address, that her seed generates as next root of the next Merkle Tree. As usual, this
next tree will also only contain a single leaf, meaning that no MAM channel split can
occur.

Now this message of the MAM stream should be published in the Tangle. As its length
exceeds the maximum permitted length for a single IOTA transaction, it has to be

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.7. Summary

Figure 6.16: Total picture of a tanglEVM transaction

fragmented over multiple transactions, logically grouped via a bundle (sec. 4.5). Each
transaction in this bundle has the same bundle hash, which is calculated via the “essence
parts” (specific fields) of the bundle.

Each IOTA transaction is a zero-value transaction, because the signature message frag-
ment contains (parts of) our MAM transaction, instead of a Winternitz signature (sec.
4.4) to prove the ownership of an address. As no signature validation happens at all, we
can use arbitrary addresses (sec. 4.3). The specification for MAM is to use the channel
ID, that is the Merkle Root, as address. To fetch future messages of this channel, it is
sufficient to listen to this channel (and then validating the fetched message, as everybody
can publish a message to that address).

For a bundle, IOTA also clearly specifies how the links to the two parent transactions,
the trunk and branch, that a transaction validates, have to be set.

And finally, we show our centralized Coordinator, similar to the coordinator of IOTA
itself (sec. 4.7), that periodically issues snapshot blocks, and is the basis for forming

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. tanglEVM - an EVM in the Tangle

consensus (sec. 6.2) in our DApp chain.

This simple method for achieving consensus puts itself forward to be decentralized in a
future work (sec. 6.6).

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Conclusion

At first we have performed a survey of the existing smart contract distributed ledger
platforms. While currently much development is happening in that space, Ethereum
with its Ethereum Virtual Machine is still the most-used platform. Neo seems to be a
viable contender, that focuses on aspects like smart economy and digital identity, but
its smart contract engine NeoVM has no noticeable improvements compared to the
EVM. We also noticed that most smart contract platforms currently developed tend to
seek compatibility with the EVM, making the EVM the de-facto standard in this space.
The EVM itself is still in development (and platforms trying to be compatible with it
are having a hard time catching up), with a planned shift from smart contract-specific
languages like Solidity to general purpose programming languages developed on top of
the open WebAssembly (Wasm) standard.

We also found that it is not the smart contract virtual machine that differentiates the
projects. Even in the rare cases when the VM is not directly based on the EVM, its
functionality is identical in large parts: some stack-based execution engine implementing
a state machine, that adds to the usual logical and arithmetic opcodes a handful more
for cryptographic operations and querying the state of the blockchain.

It is rather the consensus algorithm, which is the major differentiator between the cryp-
tocurrency projects. While Ethereum utilizes a Proof-of-Work, Neo the voting-based
delegated Byzantine Fault Tolerance (dBFT), and EOS and TRON use a Delegated
Proof-of-Stake (DPoS) algorithm.

Many of the platforms strive to solve scalability problems of popular platforms (Ethereum
achieves only 15 transaction per second as maximum) by switching to these newer con-
sensus methods. This also includes the Ethereum developers themselves, who published
a wide range of proposals, beginning from a switch of the consensus mechanism to
Proof-of-Stake, to sharding (where each node only holds a subset of the state). But later

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion

released platforms often have it easier, as they do not have to care about backwards
compatibility, and therefore already test some of those novel ideas.

DApps in Ethereum are quite diverse, and therefore a consensus or security concept for
one such DApp might not be the right choice for another. To resolve this, we discussed
a proposal with the goal of splitting off every DApp from Ethereum’s main chain, and
letting them live in their own chain – so called sidechains.

The resulting data structure then no longer resembles a chain of transactions, but rather
a graph – precisely, a directed acyclic graph (DAG). Several cryptocurrencies already
exist that use a DAG for their ledger structure (like IOTA and NANO), but they do not
support smart contracts yet. What makes their support hard is that elements lack the
Totality axiom in such a construct, making it generally impossible to decide which one
of two transactions happened first.

We took a shot at such an implementation, and came up with the tangleEVM project,
a proof-of-concept smart contract platform based on the EVM engine (as that is still
the de-facto standard for smart contracts), that builds a separate sidechain for each
DApp and uses the DAG ledger of IOTA – the Tangle – as storage layer. The difficulties
here were the necessary conversions between those platforms, as they are quite different
from each other - e.g. Ethereum smart contracts and contract calls are in bytecode,
making it necessary to encode them as tryte strings, as IOTA is based on ternary com-
puting (and is our only option for an already existing DAG ledger). Because IOTA also
does not support the reuse of addresses, we looked at different methods of how a chain
(or stream) of continuous transactions can be built. For our implementation we chose
Masked Authenticated Messaging, a module officially supported by IOTA.

We then looked deeper into the Py-EVM, our chosen implementation of the EVM, and
the defacto standard Python implementation of the Ethereum protocol. We extended
this virtual machine with another opcode. Our example simply implemented the curl
hashing method (used in IOTA), but the gained knowledge can later be used to imple-
ment more advanced constructs (e.g. for interoperability with other sidechains). How-
ever the most difficult part here was to modify existing smart contract bytecode, so that
the newly implemented opcode could be tested. We also needed to extend the key-value
LevelDB account and chain database with custom attributes, and tried to parse the
database as well – not so easy, when the keys simply are 256-bit Keccak hashes, and the
values non-human-readable RLP-encoded strings.

For our prototype we only used a simple proof-of-authority consensus, which unfortu-
nately makes it completely centralized. We have briefly discussed other options, like
employing a Delegated proof-of-stake consensus algorithms, but a deeper look into this
possibility was out of scope for this thesis, and could be part of future research.

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX A
Smart contract platforms

Name SC Engine SC Language Remarks Selected

1 Bitcoin Script Ivy-lang, Balzac live, engine not
turing-complete
(whitelisting)1

N

2 Ethereum EVM Solidity live (ch. 3) Y

3 XRP Codius / not live, halted in
20152

N

4 Litecoin Script see Bitcoin see Bitcoin N

5 Bitcoin Cash Script / Spedn3 Ivy-lang, Balzac /
Spedn

see Bitcoin / not live N

6 EOS EOS VM C, C++ WebAssembly based4,
not decentralized5

Y

7 Binance
Coin

is a token N

8 Tether is a token N

9 Bitcoin SV see Bitcoin see Bitcoin N

10 TRON TVM Solidity EVM-compatible Y

11 Cardano IELE VM Plutus, Solidity Y

1https://en.bitcoin.it/wiki/Script
2https://bitcoinmagazine.com/articles/ripple-discontinues-smart-contract-

platform-codius-citing-small-market-1435182153
3https://news.bitcoin.com/meet-spedn-a-smart-contract-programming-

language-for-bitcoin-cash/
4https://github.com/EOSIO/eos-vm
5https://cointelegraph.com/news/eos-proves-yet-again-that-

decentralization-is-not-its-priority

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Smart contract platforms

12 Stellar limited SC support
via SSC, not turing-
complete

N

13 UNUS SED
LEO

is a token N

14 Monero no smart-contracts N

15 Dash no smart-contracts N

16 Chainlink is a token N

17 NEO NeoVM many (incl. .NET,
Java, C++, Python)

live Y

18 IOTA Qubic Abra DAG, not turing-
complete, not live

Y

19 Cosmos Ethermint (Solidity)
etc.

Not live N

20 Ethereum
Classic

EVM Solidity Live Y

21 NEM smart-contracts are
off-chain[53]

N

22 Zcash no smart-contracts N

23 Ontology Native, NeoVM see NeoVM N

24 Maker is a token N

25 Tezos Tezos VM Michelson functional language,
supports formal
verification6

N

26 Qtum EVM Solidity Live Y

27 Bitcoin Gold Script see Bitcoin see Bitcoin N

28 VeChain EVM + built-ins
extension

Solidity Live Y

29 Crypto.com
Chain

no smart-contracts N

30 Basic Atten-
tion Token

is a token N

31 Dogecoin no smart-contracts N

32 USD Coin is a token N

33 OmiseGO is a token N

34 BitTorrent is a token N

35 Decred Decred transaction
scripts

not turing-complete,
similar to Bitcoin7

N

6https://www.apriorit.com/dev-blog/602-tezos-blockchain-smart-contract-

overview
7https://godoc.org/github.com/decred/dcrd/txscript

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

36 V Systems not turing-complete
(in the beginning, not
live)8

37 Holo is a token N

38 TrueUSD is a token N

39 Ravencoin no smart-contracts9 N

40 Bitcoin Dia-
mond

Script see Bitcoin see Bitcoin N

41 Lisk n/a JavaScript see 2.8 Y

42 Pundi X is a token N

43 Egretia is a token N

44 Huobi Token is a token N

45 HedgeTrade is a token N

46 Aurora is a token N

47 HyperCash Hcd / not live, research com-
patibility with EVM
and EOS10

N

48 Waves Waves RIDE not live N

59 0x is a token N

50 NANO DAG, no smart-
contracts

N

Table A.1: Top50 Cryptocurrencies platforms, data from coinmarketcap.com, snap-
shot from 30 June 2019[12]

8https://medium.com/vsystems/v-systems-smart-contract-and-token-system-

206bef9d67b2
9https://www.reddit.com/r/Ravencoin/comments/9npsic/doeswill_raven_have_

smart_contracts_like_eth_what/
10https://medium.com/@media_30378/weekly-development-update-82adfe0e8ab7

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX B
85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Ethereum snippets

Ethereum snippets

import rlp

from eth_keys.datatypes import PrivateKey

from eth_typing import Address

from eth_utils import decode_hex

from eth.vm.forks.istanbul.transactions import IstanbulUnsignedTransaction

private_key = PrivateKey(decode_hex(

'0x45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8'

))

public_key = private_key.public_key

canoncial_address = public_key.to_canonical_address()

address = public_key.to_address()

checksum_address = public_key.to_checksum_address()

unsigned_tx = IstanbulUnsignedTransaction(

nonce=0,

gas_price=0,

gas=5000000,

to=Address(b''),

value=0,

data=decode_hex('18160ddd'),

)

signed_tx = unsigned_tx.as_signed_transaction(private_key, chain_id=1908)

print("private key: %s" % private_key)

print("public key: %s" % public_key)

print("canoncial address: %s" % canoncial_address)

print("address: %s" % address)

print("checksum address: %s" % checksum_address)

print("unsigned tx: %s" % rlp.encode(unsigned_tx))

print("signed tx: %s" % rlp.encode(signed_tx))

Listing 5: Deriving an Ethereum address and RLP transaction

vm/mnemonics.py

CURL = 'CURL'

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

vm/opcode_values.py

CURL = 0xe0

vm/opcodes.py

import copy

from eth.vm.logic import sha3

from eth.vm.opcode import as_opcode

from eth_utils.toolz import merge

from eth import constants

from eth.vm.forks.petersburg.opcodes import PETERSBURG_OPCODES

from tanglevm.vm import opcode_values, mnemonics

from tanglevm.vm.logic import curl

UPDATED_OPCODES = {

opcode_values.CURL: as_opcode(

logic_fn=curl.curl,

mnemonic=mnemonics.CURL,

gas_cost=constants.GAS_SHA3,

),

}

TANGLEVM_OPCODES = merge(

copy.deepcopy(PETERSBURG_OPCODES),

UPDATED_OPCODES,

)

vm/logic/curl.py

from eth_hash.auto import keccak

from eth_utils import encode_hex, decode_hex

from iota import TryteString

from iota.crypto.kerl import conv, Kerl

from iota.crypto import Curl

from eth import constants

from eth._utils.numeric import ceil32

from eth.vm.computation import BaseComputation

from tanglevm.helper import encodeBytesAsTryteString,

decodeTryteStringFromBytes, encodeTryteStringAsBytes

def curl(computation: BaseComputation) -> None:

start_position, size = computation.stack_pop_ints(2)

computation.extend_memory(start_position, size)

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Ethereum snippets

curl_bytes = computation.memory_read_bytes(start_position, size)

word_count = ceil32(len(curl_bytes)) // 32

gas_cost = constants.GAS_SHA3WORD * word_count

computation.consume_gas(gas_cost, reason="CURL: word gas cost")

trytes = decodeTryteStringFromBytes(curl_bytes)

trits = conv.trytes_to_trits(trytes)

kerl = Kerl()

kerl.absorb(trits)

trits_out = []

kerl.squeeze(trits_out)

trytes_out = conv.trits_to_trytes(trits_out)

bytes_result = encodeTryteStringAsBytes(trytes_out)

computation.stack_push_bytes(bytes_result[18:])

computation.stack_push_bytes(b'\x00' * 14 + bytes_result[:18])

vm/computation.py

from eth.vm.forks.petersburg.computation import PETERSBURG_PRECOMPILES,

PetersburgComputation

from .opcodes import TANGLEVM_OPCODES

TANGLEVM_PRECOMPILES = PETERSBURG_PRECOMPILES

class TanglevmComputation(PetersburgComputation):

Override

opcodes = TANGLEVM_OPCODES

_precompiles = TANGLEVM_PRECOMPILES

vm/state.py

from eth.vm.forks.petersburg import PetersburgState

from tanglevm.vm.computation import TanglevmComputation

class TanglevmState(PetersburgState):

computation_class = TanglevmComputation

Listing 6: Implementation of the CURL opcode in the tangleVM

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX C
Solidity snippets

pragma solidity ^0.5.0;

import "./openzeppelin-solidity/contracts/token/ERC20/ERC20.sol";

import "./openzeppelin-solidity/contracts/token/ERC20/ERC20Detailed.sol";

contract SuperToken is ERC20, ERC20Detailed {

constructor () ERC20Detailed("SuperToken", "SUP", 18) public {

_mint(msg.sender, 4919 * (10 ** uint256(decimals())));

}

}

Listing 7: Source code of SuperToken

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

C. Solidity snippets

pragma solidity ^0.5.0;

interface IERC20 {

function totalSupply() external view returns (uint256);

function balanceOf(address account) external view returns (uint256);

function transfer(address recipient, uint256 amount)

external returns (bool);

function allowance(address owner, address spender)

external view returns (uint256);

function approve(address spender, uint256 amount) external returns (bool);

function transferFrom(address sender, address recipient, uint256 amount)

external returns (bool);

event Transfer(address indexed from, address indexed to, uint256 value);

event Approval(address indexed owner, address indexed spender,

uint256 value);

}

Listing 8: Interface ERC-20 compatible smart contracts need to implement1

1https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/

contracts/token/ERC20/IERC20.sol

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

1.1 Blockchain 1.0 structure overview . 2

1.2 Blockchain 2.0 (Smart Contracts) structure overview 4

1.3 Pending transactions in the Ethereum network after the release of CryptoKit-
ties[85] . 4

1.4 Popularity of search terms blockchain and smart contracts, source: Google
Trends . 5

1.5 Blockchain 3.0 (DAG) structure overview 6

1.6 Structure of the DAG in IOTA (Tangle) 7

1.7 Structure of the DAG in NANO (Block lattice) 7

2.1 NeoVM architecture [57] . 18

2.2 Sidechain [68] . 20

3.1 Hierarchy of Ethereum Forks, as implemented by the Py-EVM client (light
blue shows still unimplemented, future forks) 24

3.2 Address derivation . 27

3.3 Create Contract Transaction . 32

3.4 Contracts . 32

3.5 Contracts . 33

4.1 Address generation in IOTA . 41

4.2 Transactions and Bundles . 42

4.3 Structure of a bundle[76] . 43

4.4 Example for a coordinators merkle tree[1] 45

5.1 Three different contracts on a Blockchain; with their respective method invo-
cation sequence . 48

5.2 Example of contract invocations in the Tangle e.g. there is no direct path
between mint() and approveSiring(), so we dont know which TX happened
first but we dont need to. 49

6.1 tanglEVM architecture overview . 52

6.2 The tanglEVM Coordinator . 53

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3 Tryte3 string, Encoding a tryte5 string as byte, Encoding a byte string as
tryte6[82] . 54

6.4 IOTA MAM architecture overview . 57
6.5 Channel Splitting in IOTA MAM . 58
6.6 Merkle Trees in MAM used for signatures; source: mobilefish.com[49],

IOTA tutorial 19 - Masked Authenticated Messaging 58
6.7 Fields of a MAM transaction; source: mobilefish.com[49], IOTA tutorial 20 -

Masked Authenticated Messaging Payload 59
6.8 The computation of a message’s address[45] 61
6.9 Merkle Tree generation time, depending on the layer size and security level 62
6.10 Py-EVM Architecture Overview . 65
6.11 tanglEVM in relation to Ethereum forks 66
6.12 Call graph for Hash contract, implementing a keccak hash 72
6.13 Manually modified myhash function body, to use curl hashing function . . 73
6.14 Database architecture of Py-EVM . 74
6.15 Py-EVM . 75
6.16 Total picture of a tanglEVM transaction 77

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

3.1 Complete list of opcodes at the time of Constantinople hard fork, data
from [20] . 28

3.2 Description of selected opcodes from ethervm.io[20] 29

6.1 Properties of Ethereum and IOTA . 53
6.2 Sizes for Transactions using MAM . 59
6.3 Merkle Tree generation time, depending on the layer size and security level 62
6.4 Sizes for Transactions using RAAM . 63
6.5 Opcode Curl . 68
6.6 Excerpt of a LevelDB database for a private Ethereum network 75

A.1 Top50 Cryptocurrencies platforms, data from coinmarketcap.com, snap-
shot from 30 June 2019[12] . 83

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acronyms

DAG Directed acyclic graph. 5–11, 19, 42, 44, 46–48, 52, 56, 66, 67, 76, 80, 91

DPoS Delegated Proof-of-Stake. 16

ECDSA Elliptic Curve Digital Signature Algorithm. 26

EVM Ethereum Virtual Machine. 8, 14–17, 22, 27–29, 32, 44, 48, 49, 51, 54–56, 63, 64,
66–69, 71, 76, 79, 80

eWASM Ethereum WebAssembly. 16, 26

IRI IOTA Reference Implementation. 46, 52, 64

MAM Masked Authentication Messaging. 56–61, 76, 77, 92

PoC Proof of Concept. 56, 64

PoS Proof-of-Stake. 1, 15, 26, 79

PoW Proof-of-Work. 1, 26, 65, 79

W-OTS Winternitz one-time signature scheme. 42, 60

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[1] url: https://docs.iota.org/docs/the-tangle/0.1/concepts/the-
coordinator.

[2] ABmushi. IOTA: MAM Eloquently Explained. Feb. 2018. url: https://medium.
com/coinmonks/iota-mam-eloquently-explained-d7505863b413.

[3] Jakob Ackermann and Maximilian Meier. “Blockchain 3.0 - The next generation
of blockchain systems”. In: (Sept. 2018).

[4] Adam Back et al. “Enabling Blockchain Innovations with Pegged Sidechains”. In:
2014.

[5] Marco Bareis. “Comparison of Ethereum and NEO as smart contract platforms”.
In: (Oct. 2019).

[6] Massimo Bartoletti and Livio Pompianu. “An empirical analysis of smart contracts:
platforms, applications, and design patterns”. In: 10323 LNCS, Financial Cryp-
tography and Data Security. Springer. 2017, pp. 494–509. url: http://arxiv.
org/abs/1703.06322.

[7] Steven Burg. Consensus algorithms for socially responsible blockchains. July 2019.
url: http://www.flabizlaw.org/files/Consensus%20Algorithms%
20Steve%20Burg.pdf.

[8] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized
Application Platform. https://github.com/ethereum/wiki/wiki/White-
Paper. 2013.

[9] Vitalik Buterin. Skinny CREATE2. url: http://eips.ethereum.org/EIPS/
eip-1014.

[10] Jakub Cech. IRI 1.6.0 with local snapshots out now! Jan. 2019. url: https:
//blog.iota.org/iri-1-6-0-with-local-snapshots-out-now-

fc4d991faba8.

[11] ChainSecurity. Constantinople enables new Reentrancy Attack. Jan. 2019. url:
https://medium.com/chainsecurity/constantinople- enables-

new-reentrancy-attack-ace4088297d9.

[12] coinmarketcap.com Historical Snapshot - 30 June 2019. June 2019. url: https:
//coinmarketcap.com/historical/20190701/.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[13] Lin William Cong and Zhiguo He. Blockchain disruption and smart contracts. Tech.
rep. National Bureau of Economic Research, 2018.

[14] Contract ABI Specification. url: https://solidity.readthedocs.io/en/
develop/abi-spec.html.

[15] Tim Copeland. Decrypt Guide: The future of Ethereum. Apr. 2019. url: https:
//decryptmedia.com/6219/decrypt-guide-future-of-ethereum.

[16] Chris Coverdale. Solidity: Transaction-Ordering Attacks Coinmonks Medium.
Mar. 2018. url: https://medium.com/coinmonks/solidity-transaction-
ordering-attacks-1193a014884e.

[17] cr0ssing. cr0ssing/raam.client.js. July 2019. url: https://github.com/cr0ssing/
raam.client.js.

[18] Kyle Croman et al. “On Scaling Decentralized Blockchains”. In: vol. 9604. Feb.
2016, pp. 106–125. isbn: 978-3-662-53356-7. doi: 10.1007/978-3-662-53357-
4_8.

[19] Monika Di Angelo and Gernot Salzer. “Mayflies, Breeders, and Busy Bees in
Ethereum: Smart Contracts Over Time”. In: Third ACM Workshop on Blockchains,
Cryptocurrencies and Contracts (BCC’19). ACM Press. 2019.

[20] Ethereum Virtual Machine Opcodes. url: https://ethervm.io/.

[21] Ethereum vs EOS vs Cardano vs Rootstock - Smart Contract Platform Comparison
and Review " The Merkle Hash. Oct. 2019. url: https://themerkle.com/
eth-eos-ada-rsk-comparison/.

[22] Alon Gal. The Tangle: an illustrated introduction - Part 2: transaction rates, la-
tency, and random walks. Feb. 2018. url: https://blog.iota.org/the-
tangle-an-illustrated-introduction-c0a86f994445.

[23] Alon Gal. The Tangle: an illustrated introduction - Part 3: Cumulative weights
and weighted random walks. Feb. 2018. url: https://blog.iota.org/the-
tangle-an-illustrated-introduction-f359b8b2ec80.

[24] Alon Gal. The Tangle: an illustrated introduction - Part 4: Approvers, balances,
and double-spends. Feb. 2018. url: https://blog.iota.org/the-tangle-
an-illustrated-introduction-1618d3e140ad.

[25] Alon Gal. The Tangle: an illustrated introduction - Part 5: Consensus, confirma-
tion confidence, and the coordinator. Feb. 2018. url: https://blog.iota.
org/the-tangle-an-illustrated-introduction-79f537b0a455.

[26] Gartner Identifies the Top 10 Strategic Technology Trends for 2019. url: https:
//www.gartner.com/en/newsroom/press-releases/2018-10-15-

gartner-identifies-the-top-10-strategic-technology-trends-

for-2019.

[27] Peter Gai, Aggelos Kiayias, and Dionysis Zindros. “Proof-of-stake sidechains”. In:
2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019, pp. 139–156.

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[28] Andrew Greve. IOTA Announces Coordicide Solution. June 2019. url: https:
//blog.iota.org/coordicide-e039fd43a871.

[29] Bertoni Guido et al. Cryptographic sponge functions. 2011.

[30] Li Haifeng. How We’re Designing a Better Virtual Machine than Ethereum and
EOS. Sept. 2018. url: https://hackernoon.com/how-were-designing-
a-better-virtual-machine-than-ethereum-and-eos-7b60ba62fc5a.

[31] Paul Handy. Introducing Masked Authenticated Messaging. Nov. 2017. url: https:
//blog.iota.org/introducing-masked-authenticated-messaging-

e55c1822d50e.

[32] Hashgard. Deep Analysis of VM: What virtual machines are used by Ethereum and
EOS? July 2019. url: https://medium.com/@hashgard/deep-analysis-
of-vm-what-virtual-machines-are-used-by-ethereum-and-eos-

af925b9408a3.

[33] Ethan Heilman et al. “Cryptanalysis of Curl-P and Other Attacks on the IOTA
Cryptocurrency.” In: IACR Cryptology ePrint Archive 2019 (2019), p. 344.

[34] Lukas Hetzenecker. Integrating my Smart Home into the Tangle. Oct. 2018. url:
https://medium.com/@lukashetzenecker/integrating-my-smart-

home-into-the-tangle-d88ae03eb9bb.

[35] Eric Hop. Exploring the IOTA signing process. Apr. 2018. url: https://medium.
com/iota- demystified/exploring- the- iota- signing- process-

eb142c839d7f.

[36] Matt Hussey. CryptoKitties. Mar. 2019. url: https://decryptmedia.com/
resources/cryptokitties.

[37] IOTA foundation. The Qubic Protocol. url: https://qubic.iota.org/
protocol.

[38] Iota-Community. iota-community/one-command-tangle. July 2019. url: https:
//github.com/iota-community/one-command-tangle.

[39] IRI Documentation: IRI configuration options. url: https://docs.iota.org/
docs/node-software/0.1/iri/references/iri-configuration-

options.

[40] IRI Documentation: ZMQ events. url: https://docs.iota.org/docs/
node-software/0.1/iri/references/zmq-events.

[41] Nick Johnson. Why I find Iota deeply alarming. Sept. 2017. url: https://
hackernoon.com/why-i-find-iota-deeply-alarming-934f1908194b.

[42] Jon Jordan, Ian Kane, and Modesta Jurgeleviien. DappRadar 2019 dapp Industry
Review. Dec. 2019. url: https://dappradar.com/blog/dappradar-2019-
dapp-industry-review.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[43] Grenoble Ecole de Management. Kariappa Bheemaiah. Block Chain 2.0: The Re-
naissance of Money. Aug. 2015. url: https://www.wired.com/insights/
2015/01/block-chain-2-0/.

[44] Aggelos Kiayias and Dionysis Zindros. “Proof-of-Work Sidechains”. In: IACR Cryp-
tology ePrint Archive 2018 (2018), p. 1048.

[45] Robin Lamberti. Random Access Authenticated Messaging. Feb. 2019. url: https:
//blog.usejournal.com/random-access-authenticated-messaging-

45a5f40f2532.

[46] Lekkertech. IOTA Signatures, Private Keys and Address Reuse? url: http://
blog.lekkertech.net/blog/2018/03/07/iota-signatures/.

[47] Sergio Demian Lerner. RSK White Paper. Jan. 2019. url: https://www.rsk.
co/Whitepapers/RSK-White-Paper-Updated.pdf.

[48] John D. Licciardello. The First Cohort of Ecosystem Development Fund Grantees.
Aug. 2018. url: https://blog.iota.org/the- first- cohort- of-
ecosystem-development-fund-grantees-e9da89ecfb56.

[49] Robert Lie. IOTA Quickguide Tutorial. url: https://www.mobilefish.com/
developer/iota/iota_quickguide_tutorial.html.

[50] Chunming Liu, Daniel Wang, and Ming Wu. Vite Whitepaper. url: https://
github.com/vitelabs/whitepaper.

[51] LiveOverflow. Ethereum Smart Contract Code Review #1 - Real World CTF 2018.
Dec. 2018. url: https://www.youtube.com/watch?v=ozqOlUVKL1s.

[52] Mitchell Moos. IOTA Halts for 15 Hours from Coordinator Bug. Dec. 2019. url:
https://cryptobriefing.com/iota-halts-15-hours-from-coordinator-

bug/.

[53] Michiel Mulders. Comparison of Smart Contract Platforms. Mar. 2018. url: https:
//hackernoon.com/comparison- of- smart- contract- platforms-

2796e34673b7.

[54] Nanocurrency. nanocurrency/raiblocks. url: https://github.com/nanocurrency/
raiblocks/wiki/Block-lattice.

[55] Arvind Narayanan et al. Bitcoin and Cryptocurrency Technologies: A Comprehen-
sive Introduction. Princeton, NJ, USA: Princeton University Press, 2016. isbn:
0691171696, 9780691171692.

[56] Neha Narula. Cryptographic vulnerabilities in IOTA. Sept. 2017. url: https:
//medium.com/@neha/cryptographic-vulnerabilities-in-iota-

9a6a9ddc4367.

[57] Neo. Upgrade of NeoVM NEO Smart Economy Medium. Dec. 2018. url: https:
//medium.com/neo-smart-economy/upgrade-of-neovm-36ee232835d9.

[58] NEO White Paper. url: https://docs.neo.org/en-us/whitepaper.
html.

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[59] Open Trading Network. How Crypto-Kitties Disrupted the Ethereum Network Hacker
Noon. Dec. 2017. url: https://hackernoon.com/how-crypto-kitties-
disrupted-the-ethereum-network-845c22aa1e6e.

[60] OpenZeppelin. Ethereum in Depth, Part 2. Dec. 2019. url: https://blog.
openzeppelin.com/ethereum-in-depth-part-2-6339cf6bddb9/.

[61] Overtorment. Overtorment/awesome-smart-contracts. url: https://github.
com/Overtorment/awesome-smart-contracts.

[62] Jan Pauseback. EDAG and d-fine develop a Smart Parking Ecosystem, powered
by IOTA. Sept. 2019. url: https : / / blog . iota . org / edag - and - d -
fine- develop- a- smart- parking- ecosystem- powered- by- iota-

afdae5641089.

[63] Carlos Pérez Jiménez. “Analysis of the Ethereum state”. PhD thesis. Universitat
Oberta de Catalunya, 2018. url: http://openaccess.uoc.edu/webapps/
o2/bitstream/10609/74445/6/cperezjimenezTFM0118memoria.pdf.

[64] Serguei Popov. On the timestamps in the tangle. https://assets.ctfassets.
net/r1dr6vzfxhev/4XgiKaTkUgEyW8O8qGg6wm/32f3a7c28022e35e4d5d0e858c0973a9/

On_the_timestamps_in_the_tangle_-_20182502.pdf. 2018.

[65] Serguei Popov. The Tangle. https://assets.ctfassets.net/r1dr6vzfxhev/
2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_

4_3.pdf. 2018.

[66] r/Iota - Have Smart Contracts been abandoned with Qubic? url: https://www.
reddit.com/r/Iota/comments/by8p4w/have_smart_contracts_

been_abandoned_with_qubic/.

[67] Alejandro Reyes. Ethereum - The World Computer. Feb. 2018. url: https://
medium.com/@reyesale/ethereum-the-world-computer-fb7b58948280.

[68] Vaibhav Saini. url: https://hackernoon.com/difference-between-
sidechains-and-state-channels-2f5dfbd10707.

[69] William Sanders. Posets and Consensus. Jan. 2019. url: https://blog.iota.
org/posets-and-consensus-fe4c034595ab.

[70] Ale Santander. Deconstructing a Solidity Contract -Part I: Introduction. July 2019.
url: https://blog.openzeppelin.com/deconstructing-a-solidity-
contract-part-i-introduction-832efd2d7737/.

[71] Ondrej Sarnecký. Solving scalability of Ethereum through Loom Sidechains (Tu-
torial). url: https://hackernoon.com/solving- scalability- of-
ethereum-through-loom-sidechains-tutorial-2837307d454.

[72] Dominik Schiener. Bundles. url: https://domschiener.gitbooks.io/
iota-guide/content/chapter1/bundles.html.

[73] Simple Facts About EOS. Oct. 2018. url: https://medium.com/@dappdotcom/
simple-facts-about-eos-a090e9a591ed.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[74] Alexey Sobolev. Integrate Hyperledger Fabric with the IOTA Tangle. Nov. 2019.
url: https://blog.iota.org/integrate- hyperledger- fabric-
with-the-iota-tangle-9bc3ac873e82.

[75] David Sønstebø. Curl disclosure, beyond the headline. Apr. 2018. url: https://
blog.iota.org/curl-disclosure-beyond-the-headline-1814048d08ef.

[76] Structure of a bundle - IOTA Documentation. url: https://docs.iota.org/
docs/dev-essentials/0.1/references/structure-of-a-bundle.

[77] syedjafri. Detailed list of changes made to EOS Technical Whitepaper. Mar. 2018.
url: https://busy.org/@syedjafri/detailed-list-of-changes-
made-to-eos-technical-whitepaper.

[78] Nick Szabo. 1996. url: http://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.

best.vwh.net/smart_contracts_2.html.

[79] Nick Szabo. “Smart Contracts : Building Blocks for Digital Markets”. In: 2018.

[80] Hans Rudolf Trüeb. “Smart Contracts”. In: (2018), pp. 701–712. url: https:
//archive.is/X3lR2.

[81] Saini Vaibhav. Getting Deep Into EVM: How Ethereum Works Backstage. url:
https://hackernoon.com/getting-deep-into-evm-how-ethereum-

works-backstage-ac7efa1f0015.

[82] Vbakke. vbakke/trytes. Jan. 2018. url: https : / / github . com / vbakke /
trytes.

[83] Wolfgang Welz. Assuring authenticity in the Tangle with signatures. Feb. 2019. url:
https://blog.iota.org/assuring-authenticity-in-the-tangle-

with-signatures-791897d7b998.

[84] Ethereum wiki. Ethereum: A Next-Generation Smart Contract and Decentralized
Application Platform. Tech. rep. 2017, pp. 1–23. url: https://github.com/
ethereum/wiki/wiki/White-Paper.

[85] Joon Ian Wong. CryptoKitties is jamming up the ethereum network. Dec. 2017. url:
https://qz.com/1145833/cryptokitties-is-causing-ethereum-

network-congestion/.

[86] Jesse Yli-Huumo et al. “Where Is Current Research on Blockchain Technology?A
Systematic Review”. In: PloS one 11.10 (Oct. 2016), pp. 1–27. doi: 10.1371/
journal.pone.0163477. url: https://doi.org/10.1371/journal.
pone.0163477.

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Blockchain
	Blockchain 2.0 - Smart Contracts
	Blockchain 3.0 - Directed acyclic graphs
	Research Questions and Methodological Approach
	Related literature
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Platforms
	Most popular smart contract platforms
	Ethereum VM
	EOS
	TRON
	Cardano
	NeoVM
	IOTA (Qubic)
	Lisk
	Solving Scalability With Sidechains
	Conclusion

	Ethereum
	Definitions
	Forks
	Addresses
	Accounts
	Contracts
	Recursive Length Prefix

	IOTA
	Definitions
	Trits and Trytes
	Addresses
	Signatures
	Transactions and Bundles
	Tip selection process and random walks
	Consensus
	IXI modules

	Smart contracts in a DAG ledger
	Relaxations
	Platforms

	tanglEVM - an EVM in the Tangle
	Architecture
	Consensus
	Trytes
	TX Parser
	Py-EVM
	Future Work
	Summary

	Conclusion
	Smart contract platforms
	Ethereum snippets
	Solidity snippets
	List of Figures
	List of Tables
	Acronyms
	Bibliography

