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Kurzfassung

Heterogene dynamische Systeme konnen eine Vielzahl interessanter und komplexer Phé-
nomene hervorbringen. Topologische Strukturen, die im Zusammenhang mit lokaler und
nicht-lokaler Interaktion auftreten, konnen als Ansatzpunkt fiir die Analyse und Cha-
rakterisierung dienen. Hier wird ein mathematischer Ansatz présentiert, um gewisse
topologische Konfigurationen in heterogenen Systemen fiir anomalen Transport und
Diffusion verantwortlich zu zeichnen. Die untersuchten Strukturen sind hierarchische
und fraktale Anordnungen von rdumlichen Clustern aggregierter Dichte mit ausgezeich-
neter lokaler Interaktion. Eine stochastische Interpretation dieser Modelle liefert eine
mathematische Verbindung zu Continuous Time Random Walks und einer fraktionalen
Diffusionsgleichung.

Die fraktionale Diffusionsgleichung im Caputo und Riesz-Feller Sinn sowie Con-
tinuous Time Random Walks sind zwei géngige Formalisierungen anomaler Diffusion.
In beiden Betrachtungsweisen werden exponentielle Formen und Differentialoperator-
en, die fiir die Beschreibung gewthnlicher Diffusion verwendet werden, durch nicht-
geschlossene Ausdriicke ersetzt. Der erste Teil dieser Arbeit fasst die zugrundeliegende
mathematische Theorie fiir den zweidimensionalen Fall zusammen und prasentiert die
Verbindung zwischen beiden Formulierungen. Die notwendigen numerischen Algorith-
men und Funktionsauswertungen um letzterer Aussage in stochastischen Simulationen
zu reproduzieren sind nicht in den géngigen Programmierumgebungen enthalten. Da-
her wurde eine entsprechende Programmbibliothek fiir die Simulation der fraktionalen
Diffusionsgleichung in zwei Dimensionen durch Continuous Time Random Walks er-
stellt. Die Bibliothek beinhaltet Wahrscheinlichkeitsverteilungen wie die Mittag-Leffler
und die Lévy-stabile Verteilung, Routinen zur Laplace und Fourier Transformation,
Umrechnungen fiir die Parametrisierung der Inkrement-Verteilungen und Implementie-
rungen von statistischen Mafen wie lokale Zeit, Zeit-gemittelte fraktionale Abweichung
und Geschwindigkeits- Autokorrelation.

Der zweite Teil dieser Arbeit behandelt heterogene Block-Strukturen, die in den

zweidimensionalen Euklidischen Raum eingebettet werden konnen. Raumlich begrenz-
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te Blocke reprisentieren dabei stark interagierende Cluster und werden als Gaufische
Dichten modelliert. In einer hierarchischen und einer weiteren fraktalen Entwicklung
dieses Modells werden aus den hervorgehenden persistenten und stochastischen Struk-
turen Interaktions-Wahrscheinlichkeiten abgeleitet. Diese topologischen Interaktions-
Wahrscheinlichkeiten werden mit stabilen rdumlichen Inkrementen identifiziert, welche
auch in Continuous Time Random Walks auftreten. Die resultierende mathematische
Verbindung zwischen Block-Modellen und der fraktionalen Diffusionsgleichung wird em-
pirisch untermauert indem erzeugte topologische Random Walk Trajektorien anhand
der implementierten Mafe quantifiziert und analysiert werden.

Hier wird, in Ubereinstimmung mit dhnlichen Ansitzen aus der Literatur, eine
stochastische topologische Struktur als intermedidres Modell verwendet, um Systeme
mit persistenten strukturellen Anordnungen und fraktionale Diffusion in Beziehung zu
bringen. Die topologische Perspektive dieses Ansatzes reflektiert das Auftreten lokaler
Cluster aufeinanderfolgender Partikel-Positionen in Continuous Time Random Walks.
Weiters wird das Zusammenspiel von Verweildauern und der Konfiguration lokaler
Cluster mit erhohter Interaktion im Hinblick auf dynamische Transport- und Inter-
aktionsprozesse beleuchtet. Diese Untersuchungen wurden durch frithere Arbeiten zu
Transportprozessen in dynamischen Modellen strukturierter und interagierender Popu-
lationen motiviert. Die resultierende mathematische Verbindung zwischen strukturellen
Eigenschaften und anomaler Diffusion konnte neue Einblicke und technische Zugénge

fiir die Forschung in diesem Bereich liefern.
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Abstract

Heterogeneous dynamical systems can expose a variety of complex and interesting phe-
nomena. Topological structures on the heterogeneity space that emerge in conjunction
with local and non-local interaction can be a leverage point for characterization and
analysis. Here, a mathematical framework is presented for identifying certain topo-
logical configurations of heterogeneous systems as drivers for anomalous transport and
diffusion. The structures investigated are hierarchical and fractal arrangements of spa-
tial clusters of aggregated density with distinguished local interaction. A stochastic
interpretation of these models yields a mathematical connection to continuous time
random walks and a fractional diffusion equation.

The fractional diffusion equation in the Caputo and Riesz-Feller sense and con-
tinuous time random walks are two related formalizations of anomalous diffusion. In
either case, non-closed form expressions replace the exponential shapes and differen-
tial operators encountered in usual diffusion. The first part of this thesis compiles
the mathematical theory for the two-dimensional setting and reviews the connection
between both formulations. The numerical algorithms and function implementations
required for reproducing the latter statement in stochastic simulations are not included
in standard programming environments. Therefore, a proof-of-concept programming
library for simulating the fractional diffusion equation in two dimensions by continu-
ous time random walks was created. The library contains a collection of probability
distributions, including Mittag-Leffler and bivariate Lévy-stable distributions, Laplace
and Fourier transform routines, formulas for the exact parameterization of the incre-
ment distributions and implementations of statistical measures such as local time, time
average fractional displacement and velocity autocorrelation.

The second part of this work introduces heterogeneous block structures that can be
embedded in the two-dimensional Euclidean space. Spatially confined blocks represent
strongly interconnected clusters and are modeled as overlapping Gaussian densities.
In a hierarchical and a further fractal progression of this model, stochastic interaction

likelihoods are constructed from the implied persistent and latent structures. These


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

topological interaction likelihoods are then identified with the stable spatial increments
occurring in continuous time random walks. The obtained mathematical connection
between topological block models and fractional diffusion is reinforced by quantifying
and analyzing generated topological random walk trajectories using the implemented
empirical methods.

In alignment with similar geometric approaches in literature, here, a stochastic
topological structure is used as an intermediate model to relate systems with persistent
structural layout to fractional diffusion. The topological perspective of this approach
reflects the emergence of local clusters of consecutive particle positions in continuous
time random walks. Furthermore, the interplay of dwelling times and the configuration
of local clusters with elevated interaction is discussed in the context of dynamic trans-
port and interaction processes. This investigation was largely motivated by previous
research on transport precesses in models of structured and interacting populations.
The resulting mathematical connection between structural features and anomalous dif-
fusion could provide new insight and technical approaches for the research in this

domain and in more general settings.
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1 INTRODUCTION 1

1 Introduction

The notion of anomalous diffusion subsumes the breakage of hypotheses and conditions
that characterize usual diffusion such as locality, Markovianity and ergodicity. The
intention of the present work is to investigate whether a certain topological feature of
spatial heterogeneous dynamical systems is responsible for anomalous characteristics
in transport and diffusion processes. For instance, in populations where interaction
is driven by a community structure and infrequent non-local outliers, effects typical
for anomalous diffusion can be observed. Here, a link is established between systems
with certain block structures and continuous time random walks simulating a fractional
diffusion equation. The term topology is used to refer to the encounter of local clusters

or aggregations of density, that are characterized by elevated interaction.

1.1 Background

The results and methods presented in this work originate from past research on dynam-
ical systems with heterogeneous topological structures in terms of networks, stochastic
processes and differential equations. The author of this thesis is also the main author
of the according publications cited within this section; he developed the research topics
and is responsible for the scientific results in these publications and in this thesis. The
perspectives and techniques are influenced by a record in modeling and simulation, in
scientific computing, in applied medical and health systems research and by university
lectures and the research of a greater ambient scientific community.

A prototypical model that can expose heterogeneous structuring and non-local in-
teraction is a population of interacting individuals that transmit information or infec-
tious diseases. Qualities that render this particular model a good practical example
include the unambiguous underlying conception, a strong presence in literature and
education and the possibility of systematic derivations based on abstracted interaction-
transmission models. It is known that by distributing populations on spatial domains
[91] and introducing topological structures [94], increasingly complex dynamic phe-

nomena can be simulated. The research presented in this thesis delivers tools and
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2 1.1 BACKGROUND

approaches that are useful for increasing the tractability of certain observations and hy-
potheses in connection with heterogeneous structuring and non-local interaction based
on the mathematical theory on anomalous diffusion.

A key aspect of heterogeneous dynamical systems is the synergy of (spatial) align-
ment and interaction. In the context of epidemic spread in spatially distributed pop-
ulations, system formulations by partial differential equations and stochastic lattice
models were compared in earlier research [91]|. It was shown that the characteristics of
reaction-diffusion systems (based on lattice gas cellular automata) can be reproduced
in stochastic systems with non-diffusing populations and Gaussian interaction kernels
(stochastic cellular automata) by using an intermediate mean-field description (partial
differential equations). In further investigations, more general systems with stochas-
tic states were regarded and a distinction between persistent spatial alignment and
topological features induced by local and non-local interaction was formalized [89, 90].

An important effect of spatial alignment and local interaction is the delayed trans-
port of information into different spatial regions. In [93] the stochastic and distributed
representation of infection states in heterogeneous spatial systems led to formalizations
by stochastic and partial differential equations. From the stochastic and distributed
interpretation of states, a connection to systems with delayed reaction terms was estab-
lished, and formalizations of the epidemiologic reproduction number for the distributed
and the stochastic case were developed.

A data-driven model for simulating the transmission of infectious diseases in struc-
tured heterogeneous populations was developed in [94]. Large populations were sam-
pled from demographic and sociol-economic data and individuals were grouped into
social communities like households and workplaces according to geographic residence,
commuting distances, income and further social attributes. In combination with addi-
tional survey data, networks of persistent social relations and temporal close proximity
interaction patterns were inferred. The resulting networks were used to simulate the
temporal instantiation of close proximity contacts and the derived transport dynamics

served as a basis for simulating disease transmission. A prototypical infectious disease
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1 INTRODUCTION 3

with the basic characteristics of measles was used to investigate dynamical effects of
the topological structuring on the incidence and prevalence in sampled statistical pop-
ulations. The interplay of strong intra-community links and weak ties corresponding
to non-local interaction was found to result in dynamical patterns also encountered
in epidemic outbreaks. It was further shown that heterogeneous immunization taking
into account the topological layout can severely impact the velocity and percolation
properties of epidemics (quantified by the epidemiologic reproduction number and the
number of secondary infections).

The transport mechanics produced by this model display some typical characteris-
tics of anomalous diffusion, which indicates that anomalous behavior in heterogeneous
dynamical systems might be attributable to topological structuring. As a consequence,
this thesis aims at identifying stochastic transport or interaction processes in topolog-
ically structured models with continuous time random walks and the associated frac-
tional diffusion equation. This investigation contributes to existing research on topo-
logical structures and anomalous patterns in heterogeneous dynamical systems and
could also help to approximate the dynamics of large individual-based models with
heterogeneous structuring by macroscopic descriptions (fractional transport-reaction
differential equations).

Anomalous diffusion is also encountered in microbiology, for instance in molecular
transport and cell migration. In the latter context, an agent-based model for simulat-
ing melanocytic skin lesions was developed in an interdisciplinary effort [95]. In this
model, the physiological habitat of simulated cells is characterized by a periodically
distorted geometric surface which was formalized as a differentiable manifold. The ge-
ometric shape implies a certain topology on the simulation domain and is responsible
for trapping effects and inhomogeneous movement and distribution of cells. Hence, in
combination with cellular proliferation and migration, the topology of the spatial sim-
ulation domain is a key driver for emerging macroscopic patterns relevant for clinical
diagnosis. It might be possible to approximate the macroscopic dynamical patterns of

this agent-based simulation model by fractional and stochastic diffusion-reaction equa-
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4 1.2 DISCOURSE

tions in future research. Furthermore, malignant transformation and spread seem to

be predestined for a description in terms of anomalous dynamics.

1.2 Discourse

The preliminaries of this thesis (Section 2) prepare the relevant mathematical founda-
tions of fractional calculus and anomalous diffusion. This includes the Fourier, Laplace
and Mellin transform as well as certain special functions and heavy-tailed probability
distributions such as Mittag-Leffler and Lévy-stable distributions. Then the basics of
the mathematical theory are collected without aiming for a complete discourse of the
topic (Section 3). This chapter introduces the time-space fractional diffusion equation
in the Caputo and Riesz-Feller sense and presents a formalization of corresponding
continuous time random walks in two dimensions. In literature, the mathematical con-
nection between both models (for space-time fractional diffusion) is most often treated
in the one-dimensional setting, but it is known that certain effects only emerge in higher
dimensions. A coherent derivation of the connection between the fractional diffusion
equation in two dimensions and equivalent random walks was composed. This concerns
in particular the parameterization of the spatial and temporal increment distributions
in the random walk model and the transition to the fractional diffusion equation in the
continuum limit.

In parallel to the mathematical formalization, a library for the Python program-
ming language was created with the capabilities to simulate and quantify continuous
time random walk trajectories [92]. Algorithmic implementations of the aforemen-
tioned integral transforms and probability distributions are a necessary prerequisite.
The majority of the required components is available in existing software libraries or
repositories. The presented framework collects those implementations, complements
missing parts — for the two-dimensional scenario — and demonstrates a coherent im-
plementation for simulating continuous time random walks with a special focus on the
combined scaling of the increment distributions. Consecutive development of the formal

theory and implementation permitted to validate both tracks against each other. The
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1 INTRODUCTION )

identification of simulated continuous time random walks with the fractional diffusion
equation is based on the evaluation and comparison of the fundamental solution and
measures such as the mean fractional displacement, time average fractional displace-
ment, local time and velocity autocorrelation. Corresponding numerical algorithms
were implemented and occasionally the mathematical formalizations were extended in
order to work in the space and time fractional setting (Section 3.3).

The preceding discussion of the mathematical theory on anomalous diffusion and
continuous time random walks provides the tools and perspectives required in the fol-
lowing construction and analysis of topologically structured heterogeneous systems.
In a first step towards the initially proposed problem, a topological block model for
generating populations with heterogeneous densities on two-dimensional domains was
developed (Section 4.1). In this model, blocks are formalized as surroundings with
finite spatial extent that additively contribute to the total population density. The
mathematical formalization is by bivariate Gaussian probability densities with their
centers distributed evenly on a bounded domain. In addition to the resulting heteroge-
neous population density, a spatial interaction kernel can be used to describe non-local
transport and interaction processes.

The model was then extended to hierarchical layouts by positioning blocks according
to the distribution of larger blocks (Section 4.2). A new interaction mechanism, entirely
based on the topological layout, was constructed. This topological interaction concept
is driven by a stochastic selection of a layer in the hierarchy that in turn determines
a particular pool of neighboring sub-blocks qualifying for interaction. A stochastic
formalization of the topological layout allowed to condense the interaction concept
into stochastic spatial increments. The resulting probabilistic formulation of spatial
jumps can be separated into a bivariate normal displacement and a multiplicative scale
determined by the random level.

In a generalization of the hierarchical model, fractional levels were introduced on
unbounded domains. The resulting topological layout consists of an infinite number

of blocks arranged in a fractal configuration and only exists in a latent sense. The
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6 1.3 DISCUSSION AND OUTLOOK

corresponding stochastic formalization of jumps was easier to treat analytically and was
identified with the stable spatial increments encountered in Lévy flights and continuous
time random walks (Section 4.3). In a certain sense, the fractal block model serves as an
intermediate mathematical model to relate interaction dynamics on hierarchical block
structures with continuous time random walks and fractional diffusion. The theoretical
results were validated empirically by using the implemented quantification methods and
demonstrating that trajectories generated from the hierarchical and fractal block model
share the characteristics of continuous time random walks and simulate the fractional

diffusion equation (Section 4.4).

1.3 Discussion and outlook

The mathematical connection between topological block models on two-dimensional
domains and continuous time random walks is the central result of this thesis. As a
consequence, anomalous transport and diffusion can be regarded as the result of topo-
logical structuring and interaction — at least under certain conditions. This topological
interpretation aligns with the observation of anomalous diffusion on fractal geometries
in existing research and provides new perspectives on the topic. In Section 5.1.4 the
techniques developed in this work are put into context with existing geometric formal-
izations of anomalous diffusion. In Section 5.1.3 the spatial distribution of ensembles
of random walk particles generated from the topological block models as well as clas-
sical continuous time random walks are compared to the fundamental solution of the
fractional diffusion equation.

An important aspect of the presented connection concerns the persistence of spatial
alignment and topological layout. Heterogeneous systems, characterized by an inherent
and persistent hierarchical block structure, are linked to fractional diffusion processes by
an intermediate description in terms of fractal block models with volatile and stochastic
topologies. A similar observation was already made in heterogeneous systems with local
interaction and also applies to stochastic fractal geometries as drivers for anomalous

diffusion. A further but related theoretical result concerns the observation of volatile
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1 INTRODUCTION 7

or latent clusters emerging in the trajectories of continuous time random walks. In this
context, clusters are understood as local areas that confine a number of consecutive
particle positions and that are separated by larger jumps in the trajectory. In simulated
trajectories, clusters exist in all orders of magnitude and the presented block models
turn out to reproduce these latent structures in a more explicit fashion. A discussion
of the presented work with respect to the aforementioned and further geometric and
topological observations can be found in Section 5.2.

In Section 5.3 the thesis is concluded with an outlook and review on the appli-
cation of fractional differential equations for simulating complex interaction processes
in structured populations. The topological perspective on fractional diffusion provides

additional insight in the construction of macroscopic models in this domain.
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2 PRELIMINARIES 9

2 Preliminaries

The aim of this section is to prepare the necessary mathematical tools. Some ter-
minologies and conventions on special functions, integral transforms and probability
distributions are declared. Occasionally, numerical approximation techniques are dis-
cussed. The most relevant topics in this section concern the Mittag-Lefler function
(Section 2.1.3), the associated Mittag-Leffler distribution (Section 2.4.2), univariate
skew Lévy-stable distributions (Section 2.5.3) and bivariate isotropic Lévy-stable dis-

tributions (Section 2.5.4).

2.1 Special functions

The functions presented here are encountered in many occasions during the discourse
of fractional diffusion and continuous time random walks. For the sake of conciseness

the mathematical statements are reduced to their bare minimum.

2.1.1 Gamma function

The Gamma function is defined as

I'(z) = /000 t*~1 exp(—t) dt (2.1)

for complex z with positive real part. Analytic continuation allows all complex argu-

ments except for the poles at negative integers. The identities

2T(z)=T(z+1) z ¢ —N, (2.2)
I'(1—2)T(2) sin(rz) == 2 ¢ 7 (2.3)

will be encountered occasionally.
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10 2.1 SPECIAL FUNCTIONS

2.1.2 Bessel functions

The Bessel function of first kind is defined as

Jo(z) = S /7r exp(izsint) dt (2.4)

2 J_,

and the modified Bessel function of second kind is defined as

1 [ exp(izt)
Ko(z) == — 2.5
0(2) =5  _JEa (2.5)
with a pole at z = 0.
2.1.3 Mittag-Leffler function
The one- and two-parameter Mittag-LefHer functions are defined as
Es(2) = _ Ess(z) = _ 2.6

for B > 0 and § € R. A generalization to complex parameters is possible. Clearly

Es1(2) = Eg(z), and a simple calculation shows that
*fEB( — Z/B) = Zﬂ_lEg”g( — Zﬁ). (2.7)

An important property of the (one-parameter) Mittag-Leffler function is that it inter-
polates between a stretched exponential function for small arguments and a power-law
for large arguments [42, 60|. For different parameterizations various exponential and
trigonometric functions can be expressed with the Mittag-Leffler function. For instance
Er(2) = exp(2).

The Mittag-Lefller function is usually not implemented in standard programming
libraries. Numerical evaluation [30, 31, 34] is commonly based on integral representa-

tions and the separation of oscillatory and monotonic integrands. In this work, existing
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2 PRELIMINARIES 11

Python implementations, which additionally rely on precalculated look-up tables are

used [29, 46].

2.1.4 Fox-H function

Fox-H functions are defined by a Mellin-Barnes integral |26, 51, 59, 85|

A ,A - A
g ) () o) 2.9
(bl, Bl) (b2, BQ) T (bq’ Bq)
[T 1r b+ Bis) [l PO~ = Aks) g p g

27” sz n+1 ak + Aks) Hk:m+1 (1 — b, — Bks)

where the integration path L separates the poles of the integrand. The specialties of the
Fox-H function are vast and out of the scope of this introduction. The Mittag-Leffler
functions are special cases of Fox-H functions. Due to the arbitrarily large number of

parameters, general numerical routines are not available.

2.2 Integral transforms

In connection with calculus and fractional calculus in particular, integral transforms
are a powerful tool for transforming differential into algebraic equations. Here, a short
introduction is given on some transforms and certain specialties. A more thorough
examination in the context of fractional calculus can be found in the cited literature.
The short notations f and f are used for the Laplace and Fourier or Hankel transform

of a function f.

2.2.1 Laplace transform

The Laplace transform of a function f(t) is defined as

LLFO))(s) = /Ooo exp(—st) f(t)dt s €C, (2.10)
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12 2.2 INTEGRAL TRANSFORMS

where the integral can be understood in different senses. For power laws with a singu-
larity at the origin, the Laplace transform is a convergent integral only for Re(s) > oy,

where o, is called abscissa of convergence. The inverse Laplace transform is defined as

o+ioco
£;qg(s)}t) = % /UJ:OO exp(st) g(s)ds Re(s) =0 >0, t>0, (2.11)
where the constant o ensures that g is analytic on the integration path.

Numerical approximation of the improper integral in (2.10) can be accomplished
with standard numerical quadrature routines available in standard programming li-
braries [96]. The numerical inverse Laplace transform requires more elaborate routines,
often implemented in high-precision arithmetic [69].

The following scaling property holds

LAfet)}(s) =e 'L f(t) (e s). (2.12)

2.2.2 Fourier and Hankel transform

The Fourier transform (of integrable functions with convergent integral) can be de-

fined in correspondence with the definition of the characteristic function of probability

distributions
px (k) = Elexp(ikX)] = Fu{ fx(2)} (k). (2.13)
Hence,
Fol Fa)} (k) = /_ Z exp(ikz) f(z) da (2.14)
Fo (k) () = % /_ O; exp(—ikz) (k) dk (2.15)
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2 PRELIMINARIES 13

and in two dimensions

Folf@)} (k) = /R explik @) f(2) do (2.16)
]:,c_l{g(k)}(w) = (2717)2 /RQ exp(—ik - x) g(k) dk. (2.17)

Radial symmetry f(x) = f(r,0) = f(r) is preserved in two-dimensional Fourier
transform. For functions with this property the two-dimensional Fourier transform

corresponds to the Hankel transform of the radial function representation,

Fa{f(z)} (k) = /R2 exp(ik - x) f(x) dx (2.18)
oo 27
= //exp(ilk\r cos®) f(r,0)dodr (2.19)
00
=2 /0 Jo(kr)r f(r)dr (2.20)
) (221)

where 6 reduces to the angle between ® and k and Jy is the 0-order Bessel function

and k = |k|. The inverse Hankel transform is defined as

H o)} () = [ Julhr) ko) (2.22)

=2r F, (k) } (z) (2.23)

and corresponds to the two-dimensional inverse Fourier transform if g(k) is the radial
representation of a symmetric function g(k).

As an alternative to numerical integration |70|, efficient discrete Fourier transform
methods (FFT) can be used if a regularly spaced grid of sample points is available or

can be calculated.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

14 2.2 INTEGRAL TRANSFORMS

The formulas in the following example must be interpreted in a distributional sense

[84]. For simple power laws,
Fo{ Il =@ b (k) = c(a) (2.24)

where 0 < o < 2. The factor

%) (2.25)
2

can also be found in the formulation of Riesz potentials, which are related to the
inversion of certain Laplace operators (compare Section 3.1.1).

For two-dimensional Fourier transform,

Fe{flex) } (k) = || 2 Fu{f(x)} (" k). (2.26)

2.2.3 Mellin transform

Another transform often encountered in fractional calculus is the Mellin integral trans-

form
M {F(2)}(s) = /O T () de (2.27)

or its inverse
M ()} o) = 5 /, i:o v g(s) ds (2.28)

which is related to the inverse Laplace transform. A more detailed discussion is not

relevant to the presented work.
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2 PRELIMINARIES 15

2.3 Univariate distributions with finite first moment

Some exponential-type distributions with finite expectations are introduced.

2.3.1 Exponential distribution

The exponential distribution Exp(d) on [0, 00) is parameterized with the scale param-

eter 0. The expected value is equal to § and the probability density function is

f5(t) = % exp<—§>. (2.29)

2.3.2 Laplace distributions

The centered (expectation value 0) Laplace distribution Laplace(d) with scale § and

domain R is defined by the probability density and characteristic functions

1
fott) = g5 (=5 ). st = (2:30)
The Laplace distribution is sometimes referred to as bilateral exponential distribution.

A skew version of the Laplace distribution [53] can be obtained by modifying the

characteristic function with an additional parameter xq

1
= ) 2.31
Ps,k1 (S) 1+ 5252 — ilﬁls ( )
Introducing a second parameterization
) 0 (ke —1)
L Kl =——" 2.32
2 PO aap 1 s ( )
the density of the skew Laplace distribution can be written as
1 |t]
1 o exXp —;2? t<0
2
fsra(t) = 5 (2.33)

1 + k2 t ’
+ R exp(—@’é’) t>0
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16 2.3 UNIVARIATE DISTRIBUTIONS WITH FINITE FIRST MOMENT
Skew Laplacian random variables X ~ Laplace(d, k2) can be sampled using the formula
X L6 (ky By — roB) (2.34)

where Ej 9 ~ Exp(1) independently [53]. We note that

0 2
P(X < 0) = /_ () dt = - fﬁg (2.35)
P(X > 0) = /0 Foms(£) dt = 1+1K% (2.36)

For k1 = 0 and k9 = 1 the symmetric Laplace distribution is recovered.

2.3.3 Discrete distributions

Geometrically distributed random variables X ~ Geom(p), have the probability mass

function

H) =p(1—p) (2.37)

with domain N. The geometric distribution is related to the exponential distribution
by X = |Y] if Y ~ E(§) with scale § = —In(1 — p)~!. Hence, for t € N,
t+1

P(X =t) = f,(t) = fs(r)dr = P(Y € [t,t+1)). (2.38)

A truncated geometric distribution Geom(p,n) can be defined on {0,1,...,n} by

1 t

fon(t) = Wp(l —p)". (2.39)

A similar distribution is the truncated discrete exponential distribution, sometimes

referred to as Boltzmann distribution,

_ 1 —exp(—1/0)
1 —exp(—(n+1)/d)

fpn(t) exp(—t/J). (2.40)
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2 PRELIMINARIES 17

2.4 Univariate distributions with infinite first moment

The distributions presented in this section are asymptotic Pareto or power laws with

undefined and infinite moments.

2.4.1 Lomax distribution

The Lomax distribution Lomax(/3,7) with shape ( and scale 7 has the probability
density function
B t

—(148)
far(t) =" (1 + T) = B8 (7 + 1)~ (2.41)

on [0,00). The expected value is undefined (infinite) for 8 < 1. For § > 1, the mean is

/(B —1).

2.4.2 Mittag-Leffler distribution

The Mittag-Leffler distribution MiLeff(/3,7) on [0, c0) with shape parameter 0 < § <1
and scale 7 > 0 is defined by the probability density and cumulative distribution

functions

02 (), m- B () e

Usually neither the Mittag-Leffler function (2.6) nor the associated probability dis-
tribution is implemented in standard programming libraries. Elaborate numerical tech-
niques are required for evaluating the probability density function. They are based on

the approximation of the inverse Laplace transform of the characteristic function

1

Lo{for(t)}(s) = 5 (rs)? (2.43)
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18 2.4 UNIVARIATE DISTRIBUTIONS WITH INFINITE FIRST MOMENT

or other improper integral representations (compare Section 2.1.3). The asymptotic

behavior of the probability density function for ¢ — oo is given by [60]

for(t) ~ TP T(B+1) Smf”) ¢~ (2.44)
~ =P T(=p) e (A, (2.45)

The Mittag-Leffler distribution belongs to the class of geometric stable distributions
and allows to represent random variables as mixtures of uniform, exponential and
skew Lévy-stable distributions (introduced in Section 2.5). For sampling, the following
identities are useful [27]

sin(p)

1/p
tan(Brv) COS(&O)

—7lnu (
~ MiLeff (8, 1), (2.46)

’lUl/BS

where u,v ~ U(0,1) are standard uniform random variables, w ~ Exp(7) and s ~
Stable(3,1,1/8).

To assert the numerical accuracy of implementations for evaluating the probability
density function (and Mittag-Leffler function), results were compared with the (more
expensive) direct numerical inverse Laplace transform of (2.43) and sample histograms.

In accordance to the properties of the Mittag-Leffler function, the Mittag-Leffler
distribution scales between the exponential distribution (f = 1) and a clear power
law (8 — 0). For § — 1 a Mittag-Leffler distributed random variable converges in
distribution to the exponential distribution. The expectation of the Mittag-Leffler
distribution is finite only for g = 1. In Figure 1 a comparison with the exponential and

Lomax distribution is shown.
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2 PRELIMINARIES 19

= Exp(6=2.50)
Lomax(8 =1.00, 7=2.50)
—— MiLeff(8 =1.00, T=2.50)
Lomax(8=0.95,1=2.37)
—— MilLeff(8 =0.95, T=2.50)
Lomax(8=0.10, T=0.25)
—— MilLeff(=0.10, T =2.50)

100 4

1072 4

10—4 4

ft)

1076 4

10—8 4

1010 T T T T T
107! 10! 10 10° 107
t

Figure 1: Probability density functions of the Mittag-Leffler distribution with different shape
parameters. The Mittag-Leffler distribution scales between a power law and the exponential
distribution. The Lomax distribution is a power law distribution with partially similar features
as the Mittag-Leffler distribution and a closed-form density. The following parameterizations
were used MiLeff (8 = 8,7 = 79), Exp(d = 79), Lomax(8 = 8,7 = 103).

2.5 Stable distributions

An important class of probability distributions with power-law tails is the family of
Lévy- or a-stable distributions. The parameter o € (0,2] is called stability. The
Normal and Cauchy distributions are special cases of Lévy-stable distributions with
a =2 and a = 1 respectively.

In general literature and in the field of fractional calculus commonly univariate
Lévy-stable distributions are encountered. The extension to two or more dimensions
does not come without some challenges, which is also true for the isotropic case, on
which this introduction is limited. However, for isotropic bivariate stable distributions,
the shape (or covariance matrix) can be reduced to a scalar parameter . The following

scaling property holds for the probability density functions

e fy (e x) = for (). (2.47)
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20 2.5 STABLE DISTRIBUTIONS

2.5.1 Normal distribution

The density and characteristic function of the normal distribution with scale o are

given by

1

2o

fo(x) =

(25) pelb —exp(—2e?). a9
exp(—5 3 ) ¢o(k) = exp(—50 . .
Throughout this thesis normal distributions are parameterized with their scale and

hence the notation Normal(o) is used. The density and characteristic functions of the

isotropic bivariate normal distribution Normals (o) are given by

ful@) = yexp(—2 EE) o) —exp(—LotRE). (249)
x) = exp(—z—5- =exp(—z . .
o Sy p 9 52 ) Po p 20

The distance from the origin (or location) of a isotropic bivariate normally distributed

random variable is distributed with the Rayleigh distribution Rayleigh(c) with density

2
o= Fon(-5) =
and a non-closed-form characteristic function. Let X ~ Normals (o), then R := | X| ~
Rayleigh(o).

The normal distribution (in any dimensions) provides the following important prop-
erties. Let X1, X9, X3 be independent identically distributed normal random variables.
For given real a and b there exist real ¢ and d such that aX; +bX5 4 cX3+d (equal in
distribution). In particular, if X7, Xo ~ Normals(c), then X; + Xo ~ Normalg(ﬂa).
Secondly, the central limit theorem states that with growing n the distribution of the
sum of n independent identically distributed (not necessarily normal) random variables
with centered expectation and finite variance ¢ approximates a normal distribution

with variance no? and scale /no.
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2 PRELIMINARIES 21

2.5.2 Cauchy distribution
The Cauchy distribution Cauchy(vy) with scale v is defined by the density and charac-
teristic functions

@) =2 (k) = exp(—lk) (251)

with infinite moments. The bivariate Cauchy distribution Cauchys(7y) has the density

and characteristic functions

L gl
= k) = —vlk|). 2.52
he) = g (= el (2.52)
If X ~ Cauchy2(7), then the distance from the origin R := | X| follows a distribution
with density

yr
) = —2 (2.53)
(r2 + ’72)3/2
and without a closed-form characteristic function. By transformation of variables we
find that R < \/227—72 for a Pareto distributed random variable Z with scale v and
shape 1.

2.5.3 Univariate Lévy-stable distributions

The family of Lévy- or a-stable distributions has special properties similar to the Nor-
mal distribution and beyond. Stable random variables with common stability « are
closed under linear combinations. In other words, the sum of n independent identically
distributed stable random variables with stability parameter o and scale v has a stable
law with the same stability @ and scale n'/~.

Moreover, a generalized central limit theorem [72] states that, with growing num-
ber, the distribution of the sum of independent (not necessarily Lévy-stable) random

a+1)

variables with power-law tailed densities ~ |z| converges in distribution to a

Lévy-stable law with stability a.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

22 2.5 STABLE DISTRIBUTIONS

Lévy-stable distributions do not have a closed-form probability density function
in general. Strictly stable distributions (i.e. with their location at the origin) in one

dimension Stable(q, /3,7) are defined by their characteristic function

tan(%) a#1
a5 (k) = exp(—7[k[*(1 —iBsgn(k) @),  e=4{ , (2.54)
——log|k|] a=1
T

where « is called stability parameter, 8 is the skewness parameter and -y is the scale.
Normal and Cauchy distributions are special cases of symmetric (8 = 0) stable distribu-
tions with o = 2,0 = v/2y and a = 1 respectively. Sampling usually relies on the fact
that a stable random variable is equivalent in distribution to a certain (trigonometric)
combination of an uniform and an exponential random variable [18].

Numerical approximation of the probability density is usually based on the inverse
Fourier transform of the characteristic function and similar improper integral represen-
tations and implemented as elaborate algorithms using a combination or selection of
FFT, specialized numerical quadrature methods and look-up tables [5, 68, 74, 82, 96].
For a0 < 2, the asymptotic behavior of the probability density, however, is known to be
Paretian of the form [72]

e F(l + Oé) |x‘7(1+a).

fapr(@) ~ 7" (14 sgn(z)B) sin<7> (2.55)

T
2.5.4 Bivariate Lévy-stable distributions

Important resources for multivariate stable distributions are [73, 101]. Here only
isotropic (8 = 0) centered bivariate stable distributions are discussed. The bivariate
isotropic and centered stable distribution Stables(a, ) is defined by the characteristic

function

Pan (k) = exp(—7|k[*). (2.56)
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2 PRELIMINARIES 23

If X ~ Stables(ar,y) and a < 2 then X can be represented as the product of a
bivariate normal random variable and the square root of a univariate stable random

variable 73], X 2 Nv/A where

N ~ Normaly(1), (2.57)

_ 2/«
ANStable<a: %,6: 1,7:272cos<@) ) (2.58)
The distribution of A is fully skewed (8 = 1) with the stability and scale parameter
as functions of the parameters of X. The probability density f 7 can be written as a

transformation of fg4,

fyalo) =20 fa(c?). (2.59)

While v/A can be interpreted as the distributed scaling of N (compare prior or mix-
ing distribution), A corresponds to a distributed variance. Ultimately, multivariate
isotropic stable random variables can be sampled using implementations of univariate
stable distributions and their distribution functions can be represented as transforma-

tions of distribution functions of univariate skew stable random variables.

for (@) = /0 " inl@o o f (o) do (2.60)

_ /0 " in@o )20 f4(0%) do (2.61)

The distance or absolute value of a bivariate isotropic stable random variable with
a < 2 can be written as R := |X] L VAN? L VAT where T reduces to a special case of
the chi-squared distribution, the exponential distribution with scale 6 = 2, T' ~ Exp(2).
In [73] the distance R is called amplitude. The bivariate variable X can be recovered
from R by X 4 pul VATU where U is uniformly distributed on the unit circle.
The density of R can be obtained from a transformation of (2.61) and the Rayleigh


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

24 2.5 STABLE DISTRIBUTIONS

distribution or from the product distribution of AT and a square-root transform

fr(r) =2r /OOO fr@)t™ fa(r?t~t)dt. (2.62)

This form of the density of the amplitude allows additional tweaks for increased perfor-
mance when evaluated numerically [73|. Since the probability density function is the
inverse Fourier transform of the characteristic function, the amplitude distribution can

also be written using the Hankel transform as [110]

1
o

fr(r) /000 Jo(kr) krexp(—y*k*) dk. (2.63)

The integrands in both representations (2.62) and (2.63) are improper integrals in
the first place. Although sophisticated numerical algorithms exist for calculating both
integrands, we can expect a certain amplification of errors and computation time in the
evaluation of the density function of bivariate Lévy-stable distributions especially when
using direct numerical integration. Figure 2 shows densities calculated from a tweaked
version of (2.62) using direct numerical integration. Without a proper numerical anal-
ysis we find that (2.63) is faster but has issues with small o. The formulation (2.62)
on the other hand is slower but less prone to numerical errors (see also Section 2.5.5).
A sophisticated algorithm or implementation for directly approximating multivariate
stable densities is not available.

For validating or comparing sample histograms or empirical distributions with the
distribution of isotropic bivariate Lévy-stable random variables different avenues are
possible. Statistical fitting and inference methods for multivariate stable (anisotropic)
distributions are not very common in standard programming libraries (compare [14,
15]). In the isotropic case the problem can be reduced to the amplitude distribution or
the distribution of A. For univariate stable distributions implementations of statistical
and fitting methods are readily available [82, 96]. In literature often the Fourier trans-

form (FFT) of (radial) sample histograms is compared with the characteristic function


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 PRELIMINARIES 25
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Figure 2: Numerical approximation of the density of the amplitude of isotropic bivariate Lévy-
stable distributions Stables(a,y). For @ = 1 and a = 2 the density functions of the amplitudes
of Cauchyy(y) and Normaly(v/27y) are shown. The amplitude distribution scales between a
clear power law and the Rayleigh distribution with the stability parameter .. Numerical and

convergence issues are visible at a = 1.99.

as shown in Figure 3. Sometimes it is sufficient to assert the asymptotic behavior of

empirical distributions.
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26 2.5 STABLE DISTRIBUTIONS

2.5.5 Asymptotic behavior and transitions

The asymptotic behavior for r — oo of the amplitude density for o < 2 is given by [73|

i) ~ (@) 0 T T2 04, (264

And the following representation of the bivariate density is known [73]

I/ L
faq(x) = iﬂay . (2.65)
el allel) @0

Together, the following asymptotic behavior for |&| — oo of isotropic bivariate stable

densities with o < 2 can be calculated,

1 I'l+a/2)

fa,'Y(m) ~ %(2’7)(1 a m |Qj|_(2+a) (266)
NWQ_JQNwF@“” (2.67)

The factor ¢(a) was introduced in (2.25) and occurs in the Fourier transform |z|~ ()

+— c(a) |k|* (2.24). Note that the characteristic function has the asymptotic expan-
sion exp(—y“|k|¥) ~ 1 —~*|k|* for small |k|.

For @ — 2 an a-stable random variable converges in distribution to a normal
random variable. This follows from the pointwise convergence of the characteristic
function and Lévy’s continuity theorem. However, this does not imply or require the
respective (pointwise) transition of the probability density functions. Analogously, we
can expect that the amplitude of an isotropic bivariate stable random variable converges
in distribution to a Rayleigh random variable. Again, this does not necessarily mean
that the density of the amplitude converges pointwise to the density function of the
Rayleigh distribution (compare Figure 2 and the approximation errors for large «).

Regard the decomposition X = INv/A of a bivariate isotropic stable random vari-

able X ~ Stables(c, 1), where IN is a standard bivariate normal random variable and
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2 PRELIMINARIES 27

characteristic function FFT of sample histogram radial section
(k) = exp(—y*|K|%) Fx{p(x)} (k) (k2 =0)
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Figure 3: Comparison of the Fourier transform of two-dimensional sample histograms p(z) (10°
samples) with the characteristic function (k) of isotropic bivariate Lévy-stable distributions
Stables(c,y). The pointwise maximum absolute error is printed on the left. On the right, a
section along the first axis (k = (k1, k2)) is shown in a mixed linear-logarithmic scale.
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28 2.5 STABLE DISTRIBUTIONS

A ~ Stable(a/2, 1,2cos(7ra/4)2/”‘). For o — 2 we have X = NvA -% /2N Hence
we expect that v/A approaches a degenerate distribution with the constant value v/2 as
a — 2. A degenerate random variable, however, cannot be modeled with Lévy-stable
distributions. This aligns with the exclusive validity of the decomposition for a < 2.
Also note that with a = 2 the stability parameter of A is 1 and accordingly the support
is the whole real line, which is not the case for a < 2.

For a < 2 the characteristic function of A is (2.54)

va(z) =exp (—2a/2 COS(%) |2|/2 <1 —isgn(z) tan(T))) (2.68)
= exp (—|22|a/2 cos(%) +122]%/2 i sgn(2) sin(”f)> (2.69)

with the pointwise limit exp(2zi) for & — 2, which is the characteristic function of a de-
generate distribution with location 2. The inverse Fourier transform F, *{exp(2zi)}(z) =
do(x — 2) must be understood in a distributional sense.

As a consequence, the predicted result A %, 9is true. Fora = 2, the decomposition

X = NVA requires a degenerate random variable A.
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3 FRACTIONAL DIFFUSION 29

3 Fractional diffusion

Anomalous diffusion comprehends certain phenomena not covered by the usual for-
malization of diffusion processes. This concerns in particular sub- and super-diffusive
systems, in which the ratio between spatial dispersion and time is no longer linear.
The former case occurs for instance when a liquid is subject to local trapping as it is
in porous media. The latter describes systems where spatial displacement can occur in
all orders of magnitude.

Formalizations of anomalous diffusion are for instance via fractional calculus and the
fractional diffusion equation (Section 3.1) or by the observation of ensembles of certain
random walks (Section 3.2). For analyzing and quantifying the emerging memory,
clustering and long-range interaction effects, special statistical measures and techniques
are required (Section 3.3). The results of this chapter were implemented in a Python
programming library (Section 3.4) for simulating and analyzing continuous time random
walks that reproduce the fractional diffusion equation in the Caputo and Riesz-Feller

sense.

3.1 Short introduction to fractional calculus

An introduction to fractional calculus can be found, for instance, in [26, 67, 108|. Here,
a selection of topics, some special cases and occasional reductions or extensions to two
dimensions are presented. If not explicitly separated or otherwise mentioned, equations
with vector notation x refer to the two-dimensional (d = 2) and the one-dimensional
(d = 1) case. A straight-forward generalization to dimensions d > 2 is however not

necessarily valid in the following presentation.
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30 3.1 SHORT INTRODUCTION TO FRACTIONAL CALCULUS

3.1.1 Fractional differential operators

Fractional differential operators are often defined in the Fourier-Laplace domain. Let

rD2 and DY be defined by [27, 35, 37, 66, 88]

L{eD] F()}(s) = 5" f(s) = 71 £(0) (3.1)
FuofwD§ f(2)} (k) = |k|*f(k)  z€R (3.2)
Fo{rDg f(@)} (k) = [K[*f(k) @ cR? (3.3)

for 0 < 8 < 1and 0 < a < 2 and functions f that suffice the requirements of the
respective transforms. In the two-dimensional case, it is required that f is a Schwartz
function [16, 25].

There, however, also exist integral representations of the fractional differential op-
erators introduced above. The generalized Caputo fractional derivative (3.1) can be

defined as (88, 100]

DL = [t =) g1 ar (3.4

and with a memory kernel n(t) = t=%/T'(1 — ) reduces for 0 < 3 < 1 to the usual
Caputo fractional derivative |35, 58, 85, 88|

b —71 t —TﬁfBi T)dT
DI 1) = = [, =7 g0 (35)

which is linked to (3.1) by the Laplace transform and a convolution. Note that also
the Riemann-Liouville fractional derivative delivers the same results in connection with
the fractional diffusion equation as long as the initial conditions are taken into consid-
eration [27, 88]. We skip the details and rely on the above definition throughout this
presentation.

Following the definition in (3.2), the fractional space derivative is the inverse of the

Riesz potential operator and known as the Riesz derivative (or symmetric Riesz-Feller
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3 FRACTIONAL DIFFUSION 31

derivative) 58]

kDS Fx) = T g (4T /0“ Mo 210+ /@ +E) 4 (3

€1+a

for 0 < a < 2. In two dimensions the (hyper singular) integral expressions [25, 83, 84|

. I flx) - flxz—§)
N —— d .
Do F(@) = o /RQ\BE(O) e & (3.7
o 1 Agf(x)
Dz f(@) = di.(a) il—% /]R?\BE(O) |€|2 e d (38)

are valid for 0 < a < 2 and 0 < « respectively. However, the second form requires
that (1 + |&|)~ T f(x) is integrable [25]. The factor ¢(a) was defined in (2.25).
The remaining constants and the finite difference (finite Laplace operator) in above

equations are defined as

The well known result for o = 2,
Fal—Daf(x)} (k) = [k[*f(K) (3.11)

implies that the Riesz fractional derivative can be interpreted as a fractional Laplacian

and motivates the notation (—Ag)*/? = g DS.
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32 3.1 SHORT INTRODUCTION TO FRACTIONAL CALCULUS

3.1.2 Fractional diffusion equation
With above construction of fractional differential operators, the fractional diffusion
equation can be written as

ch u(t,z) = Cop gDy u(t, ) t>0,xeR? (3.12)

where 0 < < 1,0 < a <2andd=1,2. The generalized diffusion coefficient

Ca/d
Cop=—2—. 3.13
B8 Cg ( )

can be interpreted as a a scaling between time and space where Cp corresponds to a
contraction of space and Cr to a stretching of time.

In the Fourier-Laplace domain the fractional diffusion equation reads as
s (s, k) — P71 = —Cu 5 K| (s, k). (3.14)
The algebraic solution of this equation with initial condition u(0,x) = d(x) is the

Fourier-Laplace transform of the fundamental solution or Green’s function |58, 66]

2 56_1

Ga,ﬁ(s,k) = W (315)

3.1.3 Fundamental solutions

From the Fourier and Laplace transform the following scaling property (see (2.12) and

(2.26)) can be concluded

Goplet,x) = 5_d6/aGa,5(t,s_ﬂ/°‘m), (3.16)
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3 FRACTIONAL DIFFUSION 33

which allows to treat the fundamental solution as a single argument function by writing

[27, 58]
Gop(t,x) =t~/ K, o(at™P/). (3.17)

From the Laplace transform of the Mittag-Leffler function (2.43) and (3.15) we find
that

Cloplt,k) = Bs(~Ca,g k[ t7) (3.18)
and by factorizing the generalized diffusion constant,
A 1/d « _ B
Caslt, k) = B (—(C kD) (7' 0)). (3.19)

The detailed requirements for the inverse Fourier transform and the normalization
of G, g as well as a discussion of special cases of the fundamental solution for particular
a and f in one dimension can be found in [58, 59]. A reference for fundamental solutions
in higher dimensions and their asymptotic behavior is [51]. For & = 2 and 5 =1 (the
Mittag-Leffler function corresponds to the exponential function) the usual Gaussian

shape is recovered

Goi(t, @) =t~ Y2 f(xt~Y/?) fx) ~ Normald<\f2 C’gd C'r;l/2> (3.20)
=g(x) g(x) ~ Normaly <\f2 ng 051/2 tl/Q). (3.21)

For a < 2 and 8 = 1 the fundamental solution is the density of a Lévy-stable distribu-
tion with stability «,

Gar(t, ) =t~ f(xt~1/*)  f(x) ~ Stableg (a, ol 0;1/“) (3.22)
= g() g(z) ~ Stableg (a, ol c;l/atl/a). (3.23)
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34 3.1 SHORT INTRODUCTION TO FRACTIONAL CALCULUS

The diffusion process is called strictly space fractional. For strictly time fractional
diffusion (o = 2 and § < 1), Fourier and Hankel transformation rules deliver for d = 1

and d = 2 respectively

Gapltsa) = 5 cgl{wTs)ﬁ/z-l exp (|| €5 (Crs)?'?) }<t>, (3:24)
Galts@) = 5 ﬁgl{wmﬁ-l Ko (el Cp'/* (Crs)"?) }<t>, (3.25)

where Ky(s) denotes the modified Bessel function of second kind (2.5). Note that Ko(s)
decays exponentially like exp(—s) but has a logarithmic singularity at 0. Accordingly,
for x| < 1 and in particular for |x| = 0, the numerical inverse Laplace transform
L1 ( Kol || 8 2)) fails. The analytical result can however be interpreted as a
limit |z| — 0.

In the general space and time fractional case (a < 2 and 8 < 1), the fundamental
solution can be expressed in terms of Fox-H functions (Section 2.1.4). A discussion of
this representation in one dimension can be found in [9, 26, 48, 59, 66, 85|, the higher

dimensional case — not very common in literature — can be found in [51],

. _ L on |z| (1,1/a) (1,8/a) (1,1/2)

Gt = S e e ) g <1,1/2]’ 20
x) = 1 2,1 ¢ (1,1/a) (1,8/a)

Codlo) = fafimars 23 2001/ |(d/2,1/2) (1,1/a) <1,1/2>]' 327

Note that also in the general form, the fundamental solution is singular at the origin.
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3 FRACTIONAL DIFFUSION 35

3.2 Continuous time random walks

Here, the term continuous time random walk (CTRW) is mainly used to refer to random
walks that simulate fractional diffusion (the fractional diffusion equation) and not to
stochastic processes that just operate on continuous time scales. However, to simplify
the nomenclature, also random walks with discrete time increments and heavy-tailed
spatial increments (Lévy flights) are occasionally referred to as continuous time random
walks. Furthermore, fractional Brownian motion (power-law time-correlated Gaussian
spatial increments) is not discussed in this thesis.

A recent overview on continuous time random walks can be found in [54], the math-
ematical details are laid out extensively in [9, 35, 66, 88|. This section contains an ex-
tension to two dimensions, which in particular concerns parameterization, identification

with the fractional diffusion equation and quantification of random walk trajectories.

3.2.1 Definition

We trace particles in R? performing jumps dz with waiting, resting or travel times
dt. Occasionally continuous time random walks in R will be discussed, the notation
is analogous. The increments are assumed to be independently distributed random

variables. The trajectory of a particle is given by interpolation points (t;, ;) where

i—1 i—1
ti = Zdtk r; = Zdwk (3.28)
k=0 k=0

fori e {1,2,...} and o = 0 and &y = 0. A cadlag (not continuous) formulation of the

trajectory is

a(t) =Y doilgg(tipa) = Y dei Ty, 00)(t) = 21 (3.29)
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36 3.2 CONTINUOUS TIME RANDOM WALKS

and an analogous averaged formulation of the increments is

da(t,A) == Zdazi Liorn(tic1) = z(E+A)—=xlt) = xia)— i (3.30)

di(t,A) := dei Lt eva)(tivn) = trgsa) —trpy  (3.31)
where

It):=i:t; <t<tiyr and  I(te,tp) :={i:ty <t; <tp}. (3.32)

Figure 4 is a visualization of this formulation.

n = I(t) n+3 = I(t+A)

t t+A
Figure 4: Schematic construction of continuous time random walks.
The velocity of a particle can be defined as the stochastic process v; = da;/dt; with

the cadlag interpolation

da:l
o(t) = vy = dtl((:)) (3.33)
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3 FRACTIONAL DIFFUSION 37

A further (moving average) form of velocity is

t+A
w(t, A) ::i/t w(r) dr. (3.34)

Note that this definition does not correspond to the definition of dx(t, A) and dt(t, A),

rather
1 I(t+A)
v(t,A) = A <(t1(t) 1 — 1) vr Z dtjvj — (tresay —t — Q) UI(H—A))-
j=I(t)+1

(3.35)

3.2.2 Link to fractional diffusion

A simple master equation approach [35, 60, 66| delivers the probability for a particle
to be at position x at time ¢t. Let A(x) and ¥ (t) be the densities of the jump vectors

and waiting times, then
t
pte) = i@+ [ [ vt-wie-gpmeoan (30

where ¥(t) = 1— fo 1) dn is the survival probability associated with the waiting time
distribution. The expression above separates into a resting and into a jumping part and
the initial condition of the process is given by p(0,x) = d(x). In the Fourier-Laplace
domain the master equation reads

s, k) = U(s) +(s) A(k) (s, k) = 1-9() b(s) A(k) p(s, k) (3.37)

S

with algebraic solution (Montroll-Weiss equation)

s, k) = n Vo) _1zvls)_ 1 : (3.38)

—¥(s) Ak) s 1—9(s) (k)
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38 3.2 CONTINUOUS TIME RANDOM WALKS

In [60, 100] a memory kernel ®(t) was introduced such that

vo) = [ o= n)uer)an. (339)

This allows to distinguish Markovian and long-memory processes by ®(t) = §(t) and
®(t) = t=P/T(1 — B) respectively with a transition as 8 — 1. It follows that ®(s) =
1/s'8 W(s) = s°~1 /(14 %) and 1(s) = (1+s7)~!, which means that by (2.43) (t) is
the density of the Mittag-Leffler distribution MiLeff (3, 7). The same transition can be
recognized by the fact that the Mittag-Leffler distribution converges to the exponential
distribution as § — 1.

The following statement is a generalization of two Lemmata in [35]. Let A(z), A(x)

and v(t) be (symmetric) probability density functions on R, R? and R, then

s

) ~ x|~ (A+e) \ ~1— @ )

M) ~ Ag |z~ = Ak ~1-4, T+ o) sin(ra/2) || (3.40)
Az) ~ Ag |27 = (k) ~ 1 — Ay (—c(a)) |kl (3.41)
P(t) ~ Agt=(1HP) —  ah(s) ~1— Ag P(lﬁ—ﬁ) s” (3.42)

for |z|, |x|,t — oo and |k|, |k|,s — 0. A thorough proof requires some theorems from
functional analysis. Here, numerical computations were used to validate the statement.
The inverted logical implication is not true.

One way to obtain the fractional diffusion equation (3.14) from the Montroll-Weiss
equation (3.38) is by explicitly defining the jump and waiting time probability distri-
butions (d = 1,2) as
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3 FRACTIONAL DIFFUSION 39

W(t) ~ 7P B ¢~ (B+1D)

dt ~ MiLeff(8,7) —s ] r1(1 - h) (3.43)
ls) = 1+78sP
M) ~ 7% s fa] )

dx ~ Stables(a,y) = c(a) (3.44)

Ak) = exp(—"[k|")

o I'(1+ ) sin(ma/2 “(a
dx ~ Stable;(a,y) = ™ . (3.45)
A(k) = exp(—*|k[)

The asymptotic relations from above are not violated. The factors A, correspond to
the respective constant factor in the asymptotic expansion of the density (not including
the scale factors 72 or v%) and are reciprocal to the constant factors in the transformed
asymptotic densities from above.

An alternative route to the fractional diffusion equation is by more general proba-

bility densities with only the asymptotic behavior prescribed by

W(t) ~ CO At Agt=(1+0) U(s) ~1—ChALs” (3.46)
M) ~ C% AL A o]~ (@) AE) ~1—CYT AL |k (3.47)

for t,|x| — oo and s, |[k| — 0, or — for the usual case — with finite mean and variance
presumed. The common scale factor At is a practical means for investigating the con-
tinuum limit (At — 0) of both increment distributions. Analogous to Mittag-Leffler
and stable densities, the factors A, shall eliminate the coefficients in the asymptotic ex-
pansions of the transformed densities (characteristic functions). We can anticipate that
this weaker approach is owed to the properties of Lévy-stable and normal distributions
and the generalized and usual central limit theorem in particular.

However, not every continuous time random walk with uncoupled power-law incre-

ments simulates a solution of the fractional diffusion equation. It is necessary to impose
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40 3.2 CONTINUOUS TIME RANDOM WALKS

the scaling relation (35, 45, 54|
clat=c At (3.48)

such that in the continuum limit of the Fourier-Laplace domain, the master equation
(3.38) actually converges to the fundamental solution of the fractional diffusion equation
(3.15). For Mittag-Leffler and stable increments, this implies that 7 = Crp AtY/B and
v =CY Atve,

By identifying the continuum limit of the master equation with the fundamental
solution of the fractional diffusion equation, the generalized diffusion constant can be

directly linked to the time and space scaling of the increment distributions by

cpt o
Cop= -2 ="5. 3.49
B Céz B ( )

A basic example with the scaling relation violated and a vanishing diffusion constant
is discussed in [45]. Hence, “a power-law tail in the waiting time [and jump vector|
density is not sufficient to guarantee the emergence of the propagator of fractional

diffusion in the continuum limit” [45].

3.2.3 Parameterization

For the configuration of a continuous time random walk with Mittag-Leffler type waiting
times and Lévy-stable jumps, the parameters o and § as well as the scaling parameters
Cp and Cp are required. An additional variable At for scaling both scaling parame-
ters simultaneously while leaving their ratio constant was introduced (compare scaling
relation). As a consequence At allows to control the resolution of sampled trajectories
of a continuous time random walk while retaining the analytical properties. It is a
logical consequence that in any code that calculates analytical or theoretical results of
the continuous time random walk model, the parameter At is not required. The scale

At can be compared with the step size in iterative numerical schemes.
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3 FRACTIONAL DIFFUSION 41

This setup results in the following parameterization of probability distributions in

the one and two dimensional case.

MiLeff(8,Cr AtY8) 0 << 1

»(t) ~ § Exp(Cr At) B=1 (3.50)
Cr At (%)
(Normal(v2Cp VAL) a =2

A(z) ~ { Cauchy(Cp At) a=1 (3.51)

Stable(a, Cp AtY®)  else

Normaly (V2 /Cp VAt) a =2

A(x) ~ 4 Cauchya(1/Cp At) a=1 (3.52)
| Stablez(a, VCp At/ else

A constant waiting time (x) corresponds to the classical discrete time random walk
model. This scenario is compatible (in the sample average) with the exponential case
(8 = 1) because the first moment of the exponential waiting time distribution is fi-
nite (Poisson process) and corresponds to a constant value waiting time. In Figure 5
simulated trajectories with different configurations of the stable and Mittag-Leffler dis-
tribution are shown. A comparison of different waiting time configurations (in terms

of the lag between operational and physical time) can be found in Figure 6.
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Figure 6: Cumulative sum of sampled waiting times dt (physical time) relative to operational

time t,, which corresponds to the index of a jump in continuous time random walks. The scale

of the vertical axis is linear for small values and logarithmic for large values. For each case 100

samples were drawn of which 50 are displayed as transparent lines, the mean is displayed as a

thicker solid line. For usual diffusion with constant time steps, physical time and operational

time coincide. For small 5 the Mittag-Leffler distribution has power-law behavior and is thus

(asymptotically) similar to the Lomax distribution. For large 8 the Mittag-Leffler distribution

approximates the exponential distribution. The obtained (average) time lag is independent of

the step size At. In all cases Cr = 1.
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44 3.2 CONTINUOUS TIME RANDOM WALKS

3.2.4 Subordination and stochastic resetting

If the time and space processes are regarded as separate random walks, the index 4 im-
plies an additional linear time scale, often referred to as operational time t,. By setting
tyi = tdty, where usually dt, = 1, the two uncoupled random walks in operational

time can be written as

t(ts) = Ut t(t*’i) =1 (3.53)

y(t) = Lt y(t*,i) = . (3.54)

In general, from a (space fractional) Markovian random walk y(¢,), a continuous
time random walk with memory can be constructed by subordination [37, 64, 8§].
Subordinating the random walk to a non-decreasing process t,(t) yields a new stochastic

process

x(t) = y(t(t)), (3.55)

which is no longer Markovian if the processes ¢(.) and t.(¢) have increments in vary-
ing orders of magnitude. The inverse time transformation ¢(¢.) to physical time, cor-
responds to the process ¢; in the construction of continuous time random walks in
Section 3.2.1. Operational time t, is thus a continuous form of the index 3.

The inverse approach to subordination can be understood as the simulation of a
continuous time random walk with a discrete time random walk. The number of con-
stant time steps Cp At required for simulating one time increment dt in the continuous
time process follows a discrete version of the waiting time distribution. During this ran-
dom integer number of discrete time increments only one spatial jump is performed. In
theory, this approximation requires that At — 0. An equivalent technical implementa-
tion is by stochastic resetting [36], which means that instead of omitting spatial jumps,
every step a simulated particle is randomly reset to a certain position from its past
trajectory. The number of backward jumps is again determined by a discretization of

the waiting time distribution.
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3 FRACTIONAL DIFFUSION 45

3.3 Special properties and quantification

One can say that there are two essential interrelated problems of the CTRW:
(i) the initial preparation of the system, important for all random walk
models, and (ii) the weak ergodicity breaking, which is of great interest

both from theoretical and empirical points of view. [54]

In contrast to usual diffusion, fractional diffusion allows a much wider range of con-
figurations and exhibits additional phenomena as mentioned above. As a consequence,
in addition to the well known mean-square deviation, new measures are required to
unambiguously identify or characterize continuous time random walks. In this section
a couple of measures for particle trajectories are presented and some special properties

of continuous time random walks are discussed.

3.3.1 Memory and initial conditions

The initial condition in the master equation ¥(¢)d(x) is a spike with mass U(t) =
P(t1 > t) at the origin. In contrast to usual discrete time random walks and especially
for power-law waiting times, a particle can remain at the origin for a relatively long
period of time depending on the parameter 5 and the scale 7. This effect can be seen
in spatially resolved sample histograms for small times and is demonstrated in [27].
Figure 7 is a reproduction of this demonstration. Figure 8 extends the demonstration
to two dimensions. By decreasing the step size At, or equivalently by rescaling both
distributions, the mass of the spike can be reduced. If the particles of an observed
ensemble are not synchronized at tyg = 0 but we start our observation of particles
already in flight at an arbitrary point in time (and reset their locations to g = 0), we
also can assume a reduced spike mass. This scenario of non-synchronized or equilibrated
initial conditions is discussed and formalized in [23]. In general, due to long-memory
and infinite-distance effects, the initial conditions in fractional diffusion are more crucial

when compared to usual diffusion.
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46 3.3 SPECIAL PROPERTIES AND QUANTIFICATION

0.3
~ 0.2
>
=
Il
=
3 01 a=2.00,=1.00
’ — At=1.40
—— At=1.00
—— At=0.80
—— At=0.01
0.0
0.4
a=1.70,=0.80
—— At=1.00
—— At=0.60
0.3
—— At=0.30
® —— At=0.01
=
]
< 0.2+
k=S
)
=

0.0
0.5
a=1.00,5=0.90
—— At=1.30
0.4 1 —— At=0.80
—— At=0.60
R —— At=0.01
=

-3 2 0 1 2 3
XITHa
Figure 7: Reproduced results from [27]. Comparison of the one-dimensional scaled fundamental
solution K, s(xT~5/%) (dotted line, approximated using FFT) with sample histograms p(t =
T,z) of 10% particle trajectories at T = 2.0. For decreasing time step At the central spikes
become less pronounced and the histogram approaches the fundamental solution.
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3 FRACTIONAL DIFFUSION 47

5.0 y 5.0
5.0 T 5.0 T
K kK
a=2.0,=1.0,At=1.000 a=2.0,8=1.0,At=0.010
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Figure 8: Comparison of the (unscaled) fundamental solution at time 7" = 2.0 (right column,
black, calculated as the inverse Fourier transform of the Mittag-Leffler function using FFT)
with sample histograms of 107 simulated continuous time random walk trajectories at T = 2.0
with different step sizes At (left and center columns). With smaller step size, the sample
histogram approximates the fundamental solution, that is, the spike at the origin diminishes.
Note that for a small sample range and large spacing in the FFT, the height of the fundamental
solution at the origin can be distorted. Also for the two-dimensional histograms, the bin sizes

can influence the height of the center spike.
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48 3.3 SPECIAL PROPERTIES AND QUANTIFICATION

3.3.2 Ensemble average fractional displacement

From the identification with fractional diffusion we conclude that the fundamental
solution represents the sample mean spatial configuration of continuous time random
walk particles for a given point in time. A derived feature of continuous time random

walk trajectories is the sample average fractional displacement measure

1 1 Y
(le@)™) = I > ()™ = N D ™ (3.56)
n=1 n=1

where IV is the number of observed particles and for m = 2 the usual mean square
displacement is restored. For large N the m-th fractional central moment of the fun-
damental solution is approximated, with existence ensured for m < a/f.

The asymptotic behavior of the fractional moments of the fundamental solution is

66, 85|
E[lz(t)|"] = /R? |z|™ G(t, ) dz ~ B(a, B,m, d) (Cq gt)™/%. (3.57)

Exact calculation of the factor B(«, 3, m,d) is possible at least in some special cases
(usually the one-dimensional case d = 1 is discussed in literature). Figure 9 compares
the fractional displacement of simulated particles with different configurations and the

above theoretical scaling property.
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Figure 9: Sample average displacement in different continuous time random walk configura-
tions. Despite the analytical result in (3.57) is valid for m < «/f, the numerical results usually
also hold for m = a/B. With m = «/f the fractional displacement yields a linear slope in

logarithmic plots.
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20 3.3 SPECIAL PROPERTIES AND QUANTIFICATION

3.3.3 Time average fractional displacement

For particles performing usual diffusion, the ergodic hypothesis states that the ensemble
and time average configuration are identical given a large enough ensemble and a long
enough observation period. The latter is problematic for heavy-tailed waiting times
because the observation period is always smaller than the characteristic time scale
of the particle dynamics. As a consequence, the time and ensemble average can not
coincide and we speak of weak ergodicity breaking. For strictly space fractional diffusion
this problem does not occur because for finite time scales, the time-average can be
calculated on arbitrary spatial scales. To quantify the differences in the strictly time
fractional setting, usually the ensemble average mean square displacement is compared
with the time average mean square displacement [12, 44, 65|. We extend the definition
to fractional moments m other than m = 2, in order to treat the case of space and time

fractional diffusion, and use the term time average fractional displacement

o 1 T-A
oM (A, T) = T—A/O |da(t, A)|™ dt (3.58)

T—A
_ T_lA/O (e + A) — ax(t)|™ dt (3.59)

where A should not be confused with the step size parameter At.

The time average fractional displacement is some kind of moving average measure
and its integrand captures the average spatial displacement during a certain time inter-
val. The occurrence of events in non-synchronized intervals (the left limit of the time
intervals does not coincide with event times) is related to the situation of equilibrated
or aged initial conditions [23, 44, 65| as discussed above.

For m = « (actually m should be smaller than « but the numerical results usu-
ally hold) time-average fractional displacement is expected to behave linearly with the

interval length A

TUHB — AME (T — AP A

(55(A, T)) — ~

(3.60)
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3 FRACTIONAL DIFFUSION 51

where the asymptotic behavior is valid for A < T or T" — oo [44, 65]. This result
describes what is known as ageing effect: “the longer the process goes on the more
likely we are to find long trapping times of the order of the measurement time ...
T” [44] and with longer trapping times the instantaneous (fractional) diffusivity of the
process decreases. The diffusivity must hence be treated as a random variable [12, 44,
65].

When comparing the time and sample average displacement, we let T' constant and

have

(5%(t,T)) ~t TP! (3.61)
(Jz()|*) ~ ¢ (3.62)

for $ < 1At < T. In Figure 10 simulation results from [44, 65] are reproduced in
two dimensions. From the vertical offset of the time average fractional displacement
of individual trajectories, we can see that 6%(A,T) is a random variable. Calculation
of the coefficient in the predicted sample-mean time average fractional displacement
is omitted (compare the situation with sample average fractional displacement), but
the linear behavior is reproduced correctly anyways. For comparison, the power-law

behavior A? of the sample average fractional displacement is shown in Figure 10.
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Figure 10: Time average fractional displacement for different continuous time random walk
configurations. Similar plots can be found in [44, 65]. For each of the six configurations, where
d is the dimension, 10 trajectories were sampled with final time 7" = 10°. The pointwise mean
time average fractional displacement is indicated by cross markers and fitted with a power law
as a dotted line. For comparison, the sample average fractional displacement is shown as a
dashed line.
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3 FRACTIONAL DIFFUSION 93

3.3.4 Velocity autocorrelation

Another way to characterize continuous time random walks is by velocity autocorrelation
[106], which quantifies the variation or persistence of the velocity vector in a trajectory
over time. The following integral defines normalized velocity autocorrelation in a similar

manner as time average fractional displacement,

1 T=2 y(t+ A)-v(t)
VAC, (A, T) = TA/O A (3.63)

For numerical approximation of the velocity autocorrelation of simulated particles, let

7 be the integration step such that T//N = 7 for a reasonably large integer N, then

v/ v(nt + A) - v(nT)

T-A < |v(nT + A)]|v(nT)]

VAC,(A,T) ~

(3.64)

IN-A/7]
R AT 1(nr4n)  AZ1nr) (3.65)
T—A 2 [d@iren| [d o)

A similar approximation was also used for calculating the time average displacement
of simulated particles. From the moving average form of velocity, a second version of

velocity autocorrelation can be constructed,

v(t+ A, A)-v(t,A)
v(t+ A, A)[Ju(t,A)|

1 T—A
VACy(A,T) = / | dt. (3.66)
0

T-A

Some important features of normalized velocity autocorrelation of continuous time

random walks can be recognized in Figure 11:
(i) The autocorrelation in Markovian random walks has a spike at A = 0.

(ii) The memory effect of heavy-tailed waiting time distributions leads to more per-
sistent (correlated) velocities. Because waiting times are likely to occur in the
same order of magnitude as the observation time 7', the velocity autocorrelation

decays not before A approaches T, also for extremely large simulation times 7.
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3.3 SPECIAL PROPERTIES AND QUANTIFICATION

Continuous time random walks with coupled time and space increments may be

fully velocity autocorrelated.

Non-locality in the spatial jump process has no effect on normalized velocity auto-
correlation. Hence, velocity autocorrelation qualifies as a means to determine the

memory effect in simulated trajectories irrespective of the spatial jump process.

Velocity autocorrelation is affected by rescaling of the jump and waiting time
distributions. Let VACZ2! be the velocity autocorrelation of a continuous time

random walk with scaling parameter At, then
VACLH(A - AL, T - At) = VACR=Y(A, T). (3.67)

The multiplication of the maximum observation time T is required if 8 < 1. An
increase of At means that fewer jumps with larger distances occur and hence the

velocity autocorrelation has a slower decay.

Whereas the first version VAC; is problematic if long rests are simulated with

0-length jumps, the second version VACs can average out 0-jump resting states by

increasing A in v(t, A). As a drawback, the latter requires a larger sample size at large

A to deliver a smooth curve. For small A the first version is sufficient.
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Figure 11: Velocity autocorrelation measured in different continuous time random walk con-
figurations with 10 samples each. The maximum value for A is always set to 0.17. When the
measurement distance A exceeds the characteristic scale of the memory effect (only possible if
B =1) or when A approaches T, the correlation of (normalized) velocities of a particle decays.
The scaling effect can be recognized by comparing the third and fourth row.
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o6 3.3 SPECIAL PROPERTIES AND QUANTIFICATION

3.3.5 Local time

Local time is a concept to capture the sojourn time of a random walk particle in a

given location of the domain. The usual formulation of local time is

L{t,) = /O 5(z — x(r)) dr. (3.68)

Because the spatial profile of local time is not smooth, for visualization spatial his-
tograms of the local time are useful for visualization. A related approach for display-
ing the local time profile is by replacing the delta distribution with Gaussian kernels

p(x) ~ Normals(r),
t
L,(t,x) = /0 p(x —x(r)) dr = Z wlx — x;) dt;. (3.69)

The scale or dispersion r of the kernel does not depend on the particle dynamics and
the residence time dt; linearly scales the weight of the stencil. For r = 0 and u = d, the
usual local time is restored. For large t, if the characteristic spatial scale of the particle
dynamics outranks the kernel scale r, the distributed measure approximates the usual
definition.

The sample average local time (L, (¢, x)) is an approximation of the ensemble-time

average spatial particle distribution in continuous time random walks,

E[L,(t x)] = /0 /RQ wle —y)G(r,y)dydr (3.70)
= [ wa—v) [ Gy 3)
R2 0

E[Ls(t, )] = /0 G(r,z)dr. (3.72)

Hence, the kernel p can be interpreted as an initial condition of the diffusion equation

or as a spatial filter for the usual ensemble average local time.
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3 FRACTIONAL DIFFUSION o7

Moments of the local time profile of a particle can be defined as

L (t) = /R? lz|™ Lu(t,x)de (3.73)
= / lz|™ p(x — x(7)) dedr (3.74)
o JRr2

= /RQ ™ (e — a;) dav dt;, (3.75)

:t; <t
and in the ensemble average correspond to

E[L7(t)] = /R2 - lz|™ p(x —y) d:c/o G(r,y)drdy. (3.76)

(*)

In the standard case (u = ) the integral (x) reduces to |y|™ such that

t
0

B @) = [ [ W Gwdyar = [ B[] ar (3.77)
t

x / FmBla 4 — gmB/atl (3.78)
0

If yu is the density of Normaly(r), then (x) = E[|Z|™] for a random variable Z ~
Normaly(7) centered around the location y, which leads to a formulation containing
confluent hypergeometric functions.

In Figure 12 spatial profiles of the sample average local time <L5(t, m)> in different
continuous time random walk configurations, a diametral section of the spatial profile,
the radial profile and spatial moments <lg”(t)> are presented. To obtain the distributed
local time profile (not shown in the figures), a Gaussian filter can be applied on the
usual local time profile according to (3.71). The fractional moments of distributed local

time can be obtained from a stochastic integration approach based on (3.75).
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o8 3.3 SPECIAL PROPERTIES AND QUANTIFICATION

a=1.8,=0.6,Cp=10.00, a=1.5,8=0.5Cp=10.00, a=1.0,=0.9,Cp=0.01,
At=1.0,T=1000.0 At=1.0,T=1000.0 At=1.0,T=1000.0
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Figure 12: Top row: Spatial local time profiles <L5 (t =103, a:)> of trajectory ensembles (10°
samples) of different continuous time random walk configurations (color coded). Second and
third row: Corresponding diametral sections of the spatial time profile (Ls(t = T, ))|z,—0
and radial local time profile for 7' = 10,100,1000. Last row: Spatial moments (I3"(¢)). The
exponents in the spatial moments were set to m = «/f such that the result from (3.78) can

be recognized. The dotted lines indicate the expected quadratic law ¢2.
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3 FRACTIONAL DIFFUSION 99

3.4 A proof-of-concept programming library

The construction and parameterization of continuous time random walks, the according
probability distributions and function evaluations and the statistical methods presented
in this chapter were implemented in an open-source Python programming library [92].
The library is structured into submodules that implement probability distributions,

integral transforms and stochastic processes.

3.4.1 Probability distributions and integral transforms

The two central probability distributions are the Mittag-Leffler distributions (Sec-
tion 2.4.2) for sampling power-law waiting times and bivariate isotropic Lévy-stable
distributions (Section 2.5.4) for generating spatial increments with algebraic tails. Ex-
isting algorithms and implementations for the evaluation of the Mittag-Leffler function
[29, 30, 31, 34, 46] and univariate Lévy-stable densities [5, 68, 74, 82, 96] were incorpo-
rated into the software. The definitions in [73, 101] were used to implement bivariate
Lévy-stable probability distributions as transformations of the univariate case.
Different approaches for the Fourier transform of functions with two-dimensional
domain were implemented. If equally spaced sample points of a function are available,
highly optimized FFT algorithms can be used to calculate transformed function values
on a discrete lattice. For pointwise or functional evaluation of the two-dimensional
Fourier transform, direct calculation of the Hankel transform formula by specialized
numerical quadrature routines [70] is provided. Included inverse Laplace transform

routines rely on algorithms in high precision arithmetic [69].

3.4.2 Stochastic processes

Continuous time random walks are implemented according to the definition in Sec-
tion 3.2.1. Program routines for the correct parameterization (Section 3.2.3) of the
Mittag-Lefller and the Lévy-stable distribution are provided in the stochastic processes
submodule. The input arguments are the stability parameter «, the memory parame-

ter 3, the time and diffusion constants C'r and Cp as well as a scaling parameter At
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60 3.4 A PROOF-OF-CONCEPT PROGRAMMING LIBRARY

that can be used to determine the resolution of simulated trajectories by rescaling both
constants simultaneously.

The module implements the statistical measures and approaches from Section 3.3
for analyzing and quantifying ensembles of generated particle trajectories. This in-
cludes velocity autocorrelation, sample average fractional displacement, time average
fractional displacement, and the calculation of radial moments of the empirical distri-
bution and the local time profile. If available, analytical results such as the coefficients
of certain power laws are also included in the library. This allows to compare and
validate ensembles of sampled trajectories with expected theoretical behavior.

For validating spatial sample histograms at given points in time against the fun-
damental solution in two dimensions, the following technical approaches were imple-

mented for calculating function values of the fundamental solution (Section 3.1.3):

(i) From the solution of the fractional diffusion equation in the frequency domain
(3.19), we can approximate the fundamental solution using two-dimensional in-
verse Fourier transform. A generous choice for the number of sample points and
their range in the frequency domain ensures the accuracy of the result. Because of
the symmetries in the Fourier transform, evaluation of the Mittag-LefHler function
can be reduced to one half of a quadrant. This approach requires some parameter
transformations and careful alignment of the sample points, but is very efficient

if evaluations on a regular lattice are required.

(ii) For pointwise evaluation, the symmetry of the fundamental solution (in the fre-
quency domain) allows to calculate the inverse two-dimensional Fourier transform

using the numerical Hankel transform.

(iii) In case of strictly time fractional diffusion (o = 2), the fundamental solution can

be evaluated by numerical inverse Laplace transform according to (3.25).

(iv) In the strictly space fractional case (f = 1) the fundamental solution can be

modeled with Lévy-stable densities.
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3 FRACTIONAL DIFFUSION 61

(v) Direct numerical quadrature of the Mellin-Barnes integrals in Fox-H functions
(Section 2.1.4) according to (3.27) was not implemented, but could be a future

addition.

Visual demonstrations of the presented validation approaches are provided in testing
routines, which also serve as code examples for the application of the library. The code,
however, is not optimized and should be regarded as an accessible proof-of-concept
implementation. Some of the figures in this thesis can be reproduced with the provided
testing routines. The library allows to use user-provided temporal and spatial increment
distributions aside from the Mittag-Leffler and Lévy-stable distributions for generating
random walk trajectories. This functionality and the quantification methods were used
in Section 4.4 for the construction of random walks on topological structures and for

the numerical evaluation of the presented theory.
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 63

4 Fractional diffusion in topological models

This chapter starts with the formalization of heterogeneous structures on two-dimen-
sional domains in terms of block models (Section 4.1). Blocks represent local clusters
of entities or aggregations of density, such that their locations on the domain and
their shape imply a heterogeneous density profile. In according heterogeneous dynam-
ical systems, spatial interaction is assumed to be stronger within blocks (intra-block)
than between different blocks (inter-block). Hence, the concept of blocks refers to two
essentially distinct concepts; spatial proximity and elevated interaction.

In hierarchical and fractal progressions of the block model (Section 4.2) more com-
plex forms of persistent and volatile topological structures are possible. Stochastic
formulations of interaction processes, that are determined by the block structure, lead
to topological random walks. The random walks induced by the block models are then
linked to continuous time random walks and fractional diffusion by identifying the
asymptotic spatial increment distributions in both models (Section 4.3). An empirical
evaluation shows that simulated topological trajectories have the same characteristics
as sampled continuous time random walks and approximate the corresponding frac-

tional diffusion equation (Section 4.4).

4.1 A basic block model

Let Q© = [0,w) x [0,w) be a bounded spatial domain with periodic boundary conditions.
The area or size of the domain is Q2] = w?. The classical distance metric translates to

the distance measure

dper () = (d—m w)2+<d2—m w>23d<w,y> (4.1)

where di = |y1 — x1|, d2 = |y2 — z2| and [-] denotes the nearest integer operation.

For convenience we replace the standard notation and set |y — x| = dper(, y) without

further notice. If Q = R?, the usual definitions apply.
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64 4.1 A BASIC BLOCK MODEL

4.1.1 Block structure

On a periodic domain €2, define a finite set of blocks B where each block b € B has
a center location xy, distributed uniformly in €2, a weight wj; and a spatial (bivariate
and usually isotropic) membership distribution. We introduce the term membership
likelihood for the density function my(x) of the membership distribution. The weighted
membership likelihood wy mp(x) associates a certain part of the (population) density
on §) with a block b € B.

From the periodicity of € it follows that [, my(x)dx =1 and as a consequence the
total population is quantified by >, pws. If the membership likelihood is isotropic,
mp(x) = mp(|e — xp|), and if all blocks have the same membership distribution (i.e.
geometric shape), my(x) = m(|x — xp|). Since clusters or blocks are assumed to be
finite locally confined aggregations of the population, it is necessary that the member-
ship likelihoods have finite moments. Henceforth, let the membership distributions be
bivariate normal distributions, or equivalently, let the membership likelihoods my(x)
be Gaussian densities. We refer to this topological configuration as the (single-layered)
block model.

In a discrete instantiation of the block model, each block shall be associated with
a finite number of members or entities. The number of members is determined by the
block weight and their locations are distributed around the block center according to
the membership distribution. As a consequence, the locations @ of the members of

block b can be formalized as random variables
d
xr = xp + Xy, (4.2)

where X}, ~ Normals(op) with o being the block dispersion.
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 65

4.1.2 Population density

Define the population density on €2 as

plx) = Z wp mp(x). (4.3)
beB

From the random positioning of the blocks, it follows that the population density
is inhomogeneous. However, if the block dispersion is significantly greater than the
domain size, or especially if o, — o0, the resulting population is distributed uniformly
on €. Accordingly, the dispersion of blocks (scale of the membership likelihood) is
always assumed to be smaller than the domain size o, < w. Also if the number of
blocks |B| is very large, a homogeneous population density is approached.

The following calculations establish a relation between the number of blocks, block
weight and average population density. Assume that the number of blocks |B]| is a
random variable controlled by the block density 3 in units of blocks per area such that
E[|B|] = B1€|. The block weights wj, are also random variables and they represent
the amount of population associated with each block. If p is the average population

density, then

E[wy] E[|B|] = Elwp] 8|0 = 7|0 = Elw] = (4.4)

@I

Even though the generative block model associates a fixed local fraction of the
population (proportional to the block weight and distributed with the membership
likelihood) with each block, the superposition of membership likelihoods can be used
to retrospectively and stochastically associate a given location with a block. For a

given location x the association to block b can be expressed as

wymp(x) _ wymy(T)

Zb’eB wy My () B p(x)

P(b|lz) = (4.5)
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66 4.1 A BASIC BLOCK MODEL

This association corresponds to the idea of Gaussian mixture models (GMM) which
are used in Figure 13 to infer the (latent) block structure from a sampled discrete

population.

Figure 13: Inference of the topological structure of a previously sampled discrete population
(70 blocks, 10.000 entities) with a Gaussian mixture model. The circles represent blocks with
their area corresponding to the 95% confidence ellipse of the block membership distribution or
the inferred components respectively. In the block model all blocks are weighted equally, the
transparency of the red circles in the visualization of the GMM encodes the estimated relative
component weight. The inferred block (center) locations and block weights can be reproduced
rather accurately. Periodic boundary conditions are however not taken into account by the
GMM.

4.1.3 Connectivity and interaction concepts

Independently of the topological block structure, a spatial interaction likelihood \(x,y)
can be introduced. These interaction kernels are assumed to be isotropic such that
Mx,y) = Mxz—y) = M(|x—y|). Again, bivariate isotropic probability density functions
can be used to model the likelihood function. The characteristic length (scale) of

interaction should however be significantly greater than the dispersion (scale) of blocks.
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 67

From the isotropic interaction likelihood we derive the interaction potential as

k(z,y) = Mz, y) p(y) (4.6)
=\Nz,y) Z wp mp(Y). (4.7)
beB

The aggregated or global interaction potential in @ is given by

w(@) = | MN@,y)p(y)dy (4.8)
_ bz;? w, /Q @, y) my(y) dy. (4.9)

Because in both expressions, a potential left-hand factor p(x) is absent, the interaction
potential is independent of the population density in .

Above formulation of the interaction potential can be approximated by replacing
the positions & and y with the centers of the nearest blocks or with a mixture of nearby

block centers based on (4.5). The following variants of this approach are possible:

kr(®,y) = Kz, y), (4.10)
_ wymy () v
KBL(T, Y) = 25wy (@) Ao, y)p(Y), (4.11)
rkep(®,y) = Y M, ) wymy(y), (4.12)
beB
wymy(z)

kpLB(@,Y) = Y

behen 2bren Wy (T

] M@, 2o )wy mpy (Y). (4.13)

These approximations are valid because my () is significantly greater than zero only if «
is close to the block center xp. In this case A\(x,y) =~ A(xp, y) because the characteristic
scale of the interaction likelihood A is significantly greater than the characteristic scale
of the membership likelihood m. In (LB) and (BLB) the factor p(y) is eliminated by

the normalization of the block membership in y.
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68 4.1 A BASIC BLOCK MODEL

4.1.4 Random walks

For simulating random jumps on the domain regard the normalized jump distributions

of the form P(x — y) = k(x,y)/k(x),

ANz, y)p(y)
Pul@=y)= : 4.14
L) = T ey ) (4.14)
wymy () A(wb, y)p(y)
Ppr(z =y : 415
( ) oy Zb’EB wb/mb/ fQ xyp, y y/) d’y: ( )
P(bla) P(b—y)
Az, zp)wp my(y)
Prg(x —y) = ’ (4.16)
beB Yyep MNE, Ty )wy 1
P(z—b) P(y|b)
wymp(x) My, zy )wy  my (y)
Porp(@ = y) . (417)
l% VeB D yren Wor iy (®) 3 ynep M@, Ty Jwpr 1
P(blx) P(b—b") P(y|p)

For sampling jumps, the approximations (LB) and (BLB) are useful because they are
composed of discrete distributions and only contain the membership likelihood as a
continuous distribution. The membership likelihood is however modeled as a normal
distribution and random values can be generated easily. In particular the approximation
(BLB) is an implementation of the block model. Note that a left-side factor p(x) would

be eliminated when normalizing the jump distributions.
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 69

4.2 Hierarchical and fractal block models

The flat block model from Section 4.1 can be extended by grouping blocks into higher
level blocks such that a hierarchical block structure emerges and a single highest level
block contains all other blocks. Also higher level blocks may be equipped with weights
and membership likelihoods. We make the convention that the weight of a parent block
is partitioned among child blocks. Consequently, the sum of all weights in each level is
equal to the weight of the highest level block. In order to spatially integrate lower level
blocks into higher level blocks, assume that child blocks are located according to the
spatial membership likelihood of their parent and that their size or dispersion is smaller
by a certain factor. This means that the dispersion of the membership likelihood scales
with the block level. A similar scaling property applies to the block weights only if the
number of children is a fixed constant and the weights are distributed equally among

the child blocks of a parent block.

4.2.1 Indexing

Let By be the set of all 0-level blocks. We make the assumption that only 0-level blocks
may directly contain population entities. The blocks in the I-th level B; only contain
(I — 1)-level blocks directly. If the number of block layers is L + 1, the single upper
most L-level block is the parent of all other blocks. To indicate the L-level proto block,
we write by. If the proto block contains n + 1 sub-blocks, we can indicate all level
L — 1 blocks by b(0,0),b(0,1), - - - » b(0,n). The child blocks of b ;), where 0 < i < n, are
named b ; 0y, b(0,i,1)s 0(0,4,2), - - - and belong to level L — 2. For O-level blocks this yields
This

the notation b(o;, i, _,...i0)- A l-level block can be written as b, ;. ..i,.,.i)-

notational convention implies the following semi-order on multiindices with varying
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70 4.2 HIERARCHICAL AND FRACTAL BLOCK MODELS

dimensions.
(0,80 —1y vy tgye-vsiy) < (0,90-1,...,10F) k>1 (4.18)
(O,iL_l,...,ik,...,il)ﬁ(o,iL_l,...,jk) k‘>l,jk7éik (4.19)

(0yip—1,yir) = (0yip—1,...,51) Ji # i (4.20)

We also use the short notation b; = b, ... and bj = b The same

O,ijl,...,jO)’
indexing can also be used for block weights w; = w;, ,,. i, and center locations

Ti = T(0,;,_,,..,i)- Because block weights satisfy the partition property,

W(0,ip—1,mmit) = Z W(0,ip,_1,eeyitskia1) (4.21)

ki1
4.2.2 Topological connectivity

The hierarchical layout permits to implement a connectivity measure without resorting
to spatial interaction likelihoods. Let P(I = 0) be the probability for intra-block
interaction, that is the probability that a member of a certain 0-level block interacts
with another member of the same 0-level block. Accordingly, P(b; — b;) = P(l = 0).
In general, let P(l) be the probability that interaction happens between entities with

their lowest level common parent being of level [. We can write

L
P(bi — b;) =Y P(b; — bj[1) P(I) (4.22)
=0

where P(b; — bj|l) is always 0 if the lowest level common parent of b; and b; is not a

level [ block. In other words, P(b; — b;|l) > 0 if and only if

i = (ip, 901,041, 00, 61—1,11—2, . - ., i0) (4.23)

J= 0L, i1, 041,00 i1, J1-2, - - -5 Jo)  Jio1 F 1 (4.24)
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 71

This also means that each pair of 0-level blocks (b;, b;) is connected in exactly one
specific lowest level [ = parent(b;, b;). The common parent block level is also a distance
measure in the widest sense.

In order to sample inter-block interactions, for a given block b; and a given con-
nection level [, a O-level block b; must be picked from the I-level parent of b; excluding

all sub-blocks of the [ — 1-level parent of b;. The exclusion of b i) 1S necessary

iy
because the parameter [ was defined to determine the lowest common level. Using the
same indices as above and taking into account the hierarchical setup of weights, we

find for [ > 0

P(b; — bj|l) _ Wip,...i1,51-1) ) Wip,...i1,51-1,01—2) o (4.25)
Zkl,l;ﬁil,l Wip,...iki—1) Zkl,Q Wip,..irjim1,ki—2)
) WL, i, fi—15e2§1,J0) (4.26)
Zko Wip,eit,fiet1se-31,k0)
W(sL,..di,51-1) = WL, frt1,0k)
= : . e (4.27)

Wi yesgt) — Wiin,iviio1) =y WLsedit1)

w . .
— (]Lv---JO) ) (428)
W(igyeedt) — Win,esityii—1)

A possible choice for P(l) is the geometric distribution Geom(p) with probability
mass function p (1 — p)! such that p is the probability for intra-block connections and
1 — p is the probability to step up one level in the connection process. Values above L
must be clipped, such that effectively a truncated geometric distribution Geom(p, L)
is obtained. The resulting formula for P(b; — b;) in (4.22) can be used to replace the
spatial block connectivity (based on the interaction likelihood) in the jump distribution
Pprp in (4.17) to obtain a new jump distribution Pgpp(x — y). We call this model
the hierarchical block model (HBM).
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72 4.2 HIERARCHICAL AND FRACTAL BLOCK MODELS

4.2.3 Structureless connectivity

For simplicity assume that all blocks have the same number of children N, that blocks
of the same level have the same dispersion and that the dispersion of child blocks is a

fraction of the dispersion of their parents. This yields
leal,lczaocl lZl,...,L (4.29)

where og > 0 is the scale of 0-level blocks and ¢ > 1 is a real scaling parameter that
controls the fractional size ratio between parent and child blocks. Also assume that
the weight of the parent is distributed equally among the children such that a similar
scaling relation as above emerges and we can completely neglect block weights.

The center locations of child blocks of a parent block are distributed around the

center location of the parent according to the parents dispersion,

Lip,,yisiz—1) = Llig,it) T X (4.30)

where X; ~ Normals(o;). Compare the construction of blocks in the flat block model

in Section 4.1. The location x of a member of a 0-level block b; satisfies
d
x=x; + Xy (4.31)

and we make the convention that aj is either in the origin or in the center of the
domain. Figure 14 shows different configurations of the described block model.
The difference between the center of a block and the center of one of its parent

blocks can be formalized by

!
d
= X(ip,iy) = Z X ~ Normal,
A=k+1

T(ip,..ityein) (4.32)



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu
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50 L=3,N=3,00=0.94,c=3.00 L=3,N=4,00=2.12,¢=2.00
25- - @
0

L=4,N=3,00=0.31,¢=3.00 L=4,N=4,00=0.80,c=2.20

50

25 A

Figure 14: Comparison of different hierarchical block model configurations. The circles depict
the 95% confidence ellipse of the membership likelihoods of all blocks with their level encoded
in color. The number of children per block N is constant across all levels. The dispersion of
0-level blocks oy was configured such that the L-level block fits the domain size.
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74 4.2 HIERARCHICAL AND FRACTAL BLOCK MODELS

which results from the normality — or from the finite moments — of the membership
likelihoods. Since @(;, . 4,..i,) 1S the center of a k-level block, the summation does not
include Xj.

For two arbitrary k-level blocks b; and b; with common parent level | = parent(b;, b;),

the location difference allows the following stochastic formulation

T (g i 115 k) (4.33)

! !
d i .

A=k+1 A=k+1

L(ig,yityit—15eeik)

l l
25 xP0+ Y xP (4.35)

A=k+1 A=k41

2y a3 ]. (4.36)

A=k+1

~ Normalsy

Note that X £ X9 put X 2 XV for A=k +1,...,1.
As a consequence, structureless jumps for a given interaction level [ can be formal-

ized using the bivariate normal distribution

Normals (4.37)

with the (isotropic) density denoted by P(x — y|l) = P(x — y|l). With a level
distribution P(l) (compare Section 4.2.2), the isotropic jump distribution

L
Ps(x —y) =Y _ Pz — yll) P(I) (4.38)

1=0
can be defined in analogy to (4.22) and (4.17). The term structureless intends to
indicate that the topological structure of the population is only present in a latent or

stochastic sense.
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 75

4.2.4 Fractal connectivity

Recall that the scaling of block dispersion is based on the 0-level scale oy and a scaling

parameter ¢ > 1,
g] = 0y Cl. (4.39)

By introducing the notation 02() := ¢(I)? and using a standard geometric series rep-
resentation, the conditional squared jump scales or jump variances derived in (4.37)

can be written as

cc—1

! !
od(l) := 220?\ = 2208 A = 22L8(C2(l+1) -1) leN. (4.40)
A=0 A=0

In Section 4.2.2 a geometric level distribution P(I) with a truncation at level L
was proposed. Neglecting a proper interpretation in the context of the block model,
any discrete distribution on N can be used. Let A denote the corresponding random
variable.

In infinite domains an infinite number of block levels is possible, such that for
every block there exists a parent block. From the perspective of the child with level
I, the center location of the parent block is normally distributed with scale o;41. The
considerations and formalizations from Section 4.2.3 can be extended to L = oco. This
concerns in particular the jump scales (4.37) such that (4.40) and (4.38) are also valid
for an infinite number of block levels. The according level distribution can for instance
be a geometric distribution (without truncation) A ~ Geom(p) on N. An interpretation
was already presented in Section 4.2.2. The parameter p is the probability for intra-
block interaction in a jump process. The complementary value 1 — p is the probability
for increasing the interconnecting level by one.

The scaling of block dispersion (4.39) motivates the introduction of intermediate
fractional block levels (e.g. by changing the scaling constant ¢ and the level indexes

[). In the limit, it is equivalent to observe real block levels [ € R. The continuous
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76 4.2 HIERARCHICAL AND FRACTAL BLOCK MODELS

equivalent to the geometric distribution with parameter p is the exponential distribution
A ~ Exp(d) with scale § = —In(1 — p)~!'. The dispersion of fractional-level blocks

requires integral representations for the conditional jump scales such as

l 2
2
020, (1) =2 /0 o2 P d) = 1n0c02 (@ —1) le R, (4.41)
2 () =2 2 ”dx—@ 2041 _q leR 4.42
o1 (1) == ; gy € _IHCQ(C ) € Ry (4.42)

Because Inc? ~ ¢2 — 1 for small ¢ > 1, the latter formulation (R14) with level offset
is similar to (4.40). The former (RO+) without level offset allows to simulate blocks
with infinitely small dispersion whereas blocks in the second formulation have a lower

bound for their spatial extent,

ooyt L 5:[0,00) — [0,00) (4.43)
2 208
0R1+:lb—>s:[0,oo)—>[lnco2(c —1),oo>. (4.44)

Analogous to infinitely high levels, also negative block levels can be introduced.
In this case the level distribution must be extended to the whole real line R (or all
integer numbers Z). A possible model is for instance the Laplace (bilateral exponential)

distribution A ~ Laplace(d). The corresponding conditional squared jump scales are

l l
2 2
o2(l) :=2 Z 03 =2 Z o2 P = %cw*l) leZ (4.45)

A=—00 A=—00

2 : 22X 2‘7% 21
URO(Z) =2 0g C dA = @C l S R (446)
2 r 22X 20 2(141)
oy (l) :=2 oy dA = e leR. (4.47)


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 7

The inverted mappings (02)~!(s) and their derivatives D(c?)7(s), where Df(z) =

f'(x) is the usual differential operator, can be calculated as

_ 1 slnc? + 202 _ 1
(UI%MH) () = In 2 ln< 202 0) D(GHQQOJF) 5= slnc? 4 202 (1.48)
1 slnc? 4 203 1
2 -1 0 2 -1
= 1 D = 4.49
(UR1+) (s) In 2 n< 20302 > (UR1+) (s) slnc2 + 2‘78 ( )
_ 1 sln c? _ 1
ok () = iz o (g D(ok) () = 1 (4:50)
1 slnc? 1
2 \—1 2 \—1
(or1)™ (8) In 2 n<20(2)62) (ogr1)™ (8) slnc2 (4.51)

The introduction of real valued levels and the scaling of block sizes motivates the
term fractal block model (FBM). The derived conditional jump scales o2(1) = o(1)? can
be used to transform random levels A into random jump scales o(A) and 0?(A). The

corresponding densities satisfy

Fon)(8) = 25 foro(n) (%), (4.52)
For(ay () = fa((6®) 7 (s)) D(a®) ! (s). (4.53)

As an alternative to conditional jump scales, the jump scales could be formalized
as random variables that are parameterized with a level parameter [ such that we
can write X2|A. The densities of random jump scales are then integrals of the form

[ fs2(s|l) fa(l) di. An interpretation in the context of the block model is less intuitive.
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78 4.3 FRACTIONAL DIFFUSION

4.3 Fractional diffusion

Following Section 3.2.2, to simulate strictly space fractional diffusion, it is sufficient
that the jump distribution has a certain algebraic asymptotic decay (3.45) and satisfies
a scaling property (3.48). These requirements are now imposed onto the fractal block

model.

4.3.1 Asymptotic characterization of stable jumps

From Section 4.2.3 and Section 4.2.4 if follows that random jump scales o(A) can be
used for simulating jumps in the fractal block model by N o(A) where N ~ Normaly(1),
o (1) is one of the presented conditional jump scale functions and A is a corresponding
random level.

Let P(I) = fa(l) be the density or probability mass function of the random level
distribution. The density of the resulting isotropic jump distribution P(x — y) =
P(y — ) can be written as (compare (4.38))

Z I (z]o(l) ZfN zo(l) ) o)~ fa(l) (4.54)

:/fN(ac\a(l))fA(l) dl:/fN(aca(l)_l)a(l)_2 Fa()dl (4.55)
/ In(@s ) 572 fa (o2 (5)) D(o 1) (s) ds (4.56)
/ I (@s™) 572 £ (s) ds (4.57)

for discrete and real valued levels. The reciprocal value o(I)~! should not be confused
with the inverted mapping o~ !(s). For readability the summation and integration
limits (i.e. the domain of the level distribution) have been left out.

In Section 2.5.4 a similar formalization of bivariate isotropic stable random variables
Stables(cr,y) with o < 2 was presented. A bivariate isotropic stable random variable
can be decomposed as the product Nv/A where A is an univariate skew stable random

variable and IV is again a standard bivariate normal random variable. The probability
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 79

density can be written as

fan(@) = [~ s )57 f (o) ds (4.58)

As a consequence, in order for the density P(x) of fractal block model jumps to
display the same asymptotic behavior as the bivariate stable density f,~(x) — and
ultimately to yield the desired fractional diffusion behavior — it is necessary that the
jump scale distribution fo(z)(s) has the same asymptotic behavior as f z(s). This
problem, in turn, can be reduced to identifying the asymptotic law of the squared
jump scale distributions f,2(x) (s) with the asymptotic law of the skew univariate stable
density fa(s).

The parameterization of A was already presented in (2.58)

7_g7_ _ 9 B 2/«
A Stable(a— 2,ﬁ—1,7—27 COS(4) > (4.59)

In combination with (2.55) the asymptotic behavior of f4(s) expands to

fa(s) ~ @ 281D<?) F(aﬂ—i—l) s~(1+3) (4.60)
2/a\ /2 T(a/2+1

= (272 cos(%) ) QSin(%) (a/7r+) s~ (+a/2) (4.61)

= (272)04/2 2COS<%> sin(%) F(oz/72r+l) s~(+a/2) (4.62)

= (272)04/2 sin(%) D(o/2+1) g~ (+a/2) (4.63)

™
1

_ (9,2)0/2 @ ~(L4a/2) 4.64
(27) 2 T(1—a/2)° (4.64)

where the last two steps are a known trigonometric identity and a property of the
Gamma function.
For a = 2, we know that the bivariate stable distribution Stablea(«, ) is equal to

Normaly(v/27). From the discussion in Section 2.5.5 it follows that A converges to a
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80 4.3 FRACTIONAL DIFFUSION

degenerate distribution A 4, 2+2 for a — 2, but the decomposition N v/ A where A

is a univariate skew stable random variable is not valid for a = 2.

4.3.2 Exponential level distributions

With an exponential level distribution on R4 and the conditional jump scale with-
out offset (R0+), as constructed in Section 4.2.4, the squared jump scale distribution

(mixing distribution) can be calculated as

Jozo )(8) = Frxp(s) (0f04) ™' (5)) D(0foy) ™ (5) (4.65)

1 1 slnc? + 202 1

=5 exp| - ! : 4.
5eXp( 5lnc? n( 202 )) SInc® + 202 (4.66)

2 2\ —1/(3Inc?)

_ 1 (sl 20 S S (467)

0 202 slnc? + 203
1 202\ 1/@1n<) 202 —(14+1/(5ne?))
" Slnc <lnc2) (8 + lr162> : (4.68)

The conditions § > 0 and ¢ > 1 ensure the validity of the probability density func-

tion, which is a Lomax-type density with shape 1/(§Inc?) and scale 203/Inc?. The

asymptotic behavior for s — oo is

1 203 1/(@Ine?) —(141/(51Inc?
Fozy, 0 (8) ~ 573 (mcz) s (1H1/Emen), (4.69)

Introducing an offset in the jump scales (R1+), a similar calculation yields

1 2022 1/(51nc?) 202 —(141/(nc?))
Jot ) =5z (e e (470)
2 9\ 1/(8Inc?)
~ 611 5 (210062 ) S*(1+1/(51n02))7 (471)
nc nc

208 2
where s > Tye (c — 1).
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 81

For a Laplacian level distribution (with domain R) A ~ Laplace(d) and a conditional

jump scale without offset (R0), the squared jump scale probability density is

Fo2,8)(8) = fraplace(s) ((00) ™' (5)) D(0fz0) e
1
=2 exp( 5‘ ok0)” ‘) sln¢? 7)
51 slnc?
_ s 1 4.74
%m&ex< Mmﬂn< >> .
Q/(51Inc?)
_ 1 In ¢? s~ 1+Q/(0Inc?) (4.75)
20 In ¢? 200
where
1 s< 12032
0- n02 . (4.76)
-1 s> 205
= Inc?

Again, the conditions § > 0 and ¢ > 1 yield the required restrictions and the distribu-

L . e . 202
tion is composed of two power laws with a sharp transition in ancOQ' For s — oo the

asymptotic behavior is

1 20(2) 1/(51n62) —(141/(6Inc?
faﬁo(/‘)(s) ~ 252 <1n02> ’ e )>' @)

With a level offset (R1), the asymptotic behavior is

1 2032 /@ne?) 14+1/(51n 2
fO’]]QM(A)(S) ~ 25 In 2 ( In 2 ) S ( / ))' (4'78)
The formulation
1 203V 1/(511162) —(141/(1Inc?
For)(8) ~ Sy 2 ( a2 > o~ (L1/Eme) (4.79)


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

82 4.3 FRACTIONAL DIFFUSION

with

1 A~ Exp(9) 1 without offset
U:= V= (4.80)

0 A ~ Laplace(d) c?  with offset

combines the cases discussed above. The generalized conditional jump scales can be

written as

2
_ 209

o (1) (v —U). (4.81)

" Inc?

However, different jump scale densities can have different domains.

4.3.3 Identification of the asymptotic behavior

An identification of the asymptotic behaviors of the squared jump scale distributions
fo2(p) based on exponential-type level distributions (4.79) and the asymptotic behavior
of A (4.64) yields the equations

« 1
- = 4.82
2 dlnc?’ (4.82)
(22)0/2 & I | 2021\ /O 5)
7 2 I'(1—-a/2) 2Uflne? \ Inc? ’ '
which are solved by the following parameterization of the fractal block model,
1

o0 =114/ % [(1 —a/2)"VeoU-U/ay=1/2 (4.85)
By the definition of U and V in (4.80),

1 A ~ Exp(d 1 without offset
p(0) vz = . (4.86)

2l/@ A ~ Laplace(d) ¢! with offset

o(1-U) /o _
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 83

Figure 15 compares the density of the random scale A with accordingly parameterized
squared jump scale distribution o(A) for different choices of «,~, A and level offset.
Without loss of generality the scale 6 of the level distribution can be set to 1. A
different scale of the level distribution is compensated by a different scaling of the

block dispersion.
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10t
100 4 : S
1 =2
1
3 1071 4 H
= 1
& 1072 4 a=1.80,Cp=1.30,=1.00,Cr=1.00
----- A ~ Stable(a=0.90,8=1.00, y=0.33)
103 {|—— FBM(0p =10.20,c=1.20, A~ Exp(6 = 3.00), dt ~ Exp(6 = 1.00))
—— FBM(0p =0.29,c=1.20, A ~ Laplace(6 = 3.00), dt ~ Exp(6 = 1.00))
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1072 107t 100 10t 102
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z
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S
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—— FBM(0p =0.83,¢=2.18, A~ Exp(6 = 1.60), dt ~ Exp(6 = 1.00))
—— FBM(0p=1.98,c=2.18, A~ Laplace(6 = 1.60), dt ~ Exp(6 = 1.00))
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Figure 15: Comparison of different jump scale distributions parameterized according to a
given continuous time random walk configuration. In all cases the dashed line shows the
corresponding configuration with offset. Exponential level distributions with a level offset
yield a minimum jump scale greater than 0. A level offset has no effect in the Laplacian model.
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 85

4.3.4 Scaling and limits

For a given stability @ < 2 and spatial scaling Cp, the presented identification allows
to configure the fractal block model to generate random walks with the same charac-
teristics as random walks driven by bivariate stable spatial increments with stability
o and scale v = /Cp At*/®. Because only the asymptotic behavior of the density
of stable distributions is approximated, the fractal block model approaches standard
continuous time random walks in the continuum limit At — 0 (compare Section 3.2.2).
This can be recognized in Figure 15 by the fact that the behavior of the univariate
stable distribution of A is matched by the behavior of the distribution of o?(A) only
for larger values. For small «, however, we can assume that the approximation in the
continuum limit is faster.

The required scaling relation (3.48) of the increment distribution is satisfied because
the coefficients in the asymptotic laws were fitted exactly by solving the parameter
equations. In combination with (3.41) this leads to the same coefficients in the asymp-
totic expansion of the characteristic functions, which in turn ensures convergence to the
same generalized diffusion constant (continuum limit of the Montroll-Weiss equation
(3.38)).

The presented identification is valid for @ < 2 and exponential-type level distribu-
tions. For the fractal block model to conform with the parameterization of continuous
time random walks and the fractional diffusion equation, the transition No(A) SN
N2~ for @ — 2 must be stipulated. Analogous to the decomposition of bivariate
isotropic random variables in Section 2.5.5, also here the original distribution model
must be changed for a = 2.

One way to obtain a constant jump scale value, is by modeling A as a degenerate
distribution with the constant value 0. This can be interpreted as a discrete-level
scenario and the according conditional jump scale function (4.40) evaluates to on(0) =
V20¢. The block scaling parameter ¢ has no effect because only 0-level jumps will be
sampled. As a consequence, for o« = 2 the parameterization (p = 1,6 = 0),¢c = 00,00 =

«v of the fractal block model with discrete levels is obtained (compare Section 4.4.1).
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86 4.3 FRACTIONAL DIFFUSION

A way to tame the scaling properties of the fractal block model with real positive
levels is by setting ¢ = 1. This modification yields equally sized blocks, which actually
makes no sense from a modeling perspective. Nevertheless, in this case the conditional

jump scales take the forms

on(l) = \/203(1 + 1) (4.87)

oro+(1) = y/205(1) (4.88)

or1+ (1) = /203(1+ 1). (4.89)

In the scenario with offset (R1+) we have to ensure that
NvV2y L NV2ogVA + 1. (4.90)

For A ~ Exp(d) or A ~ Laplace(d) the convergence in distribution to the degenerate
case with constant value 0 is obtained from § — 0. This follows from an investigation of
the respective distribution or characteristic functions. The resulting parameterization

is 0 =0,¢= 1,00 = . In the case without offset (R0+), the required condition is
NvV2y £ NV2ogV/A. (4.91)

The random variable A must take a constant value greater than 0, which cannot be
obtained from a limit (6 — 0) of the exponential distribution (or of the centered Laplace
distribution). Hence, the jump scale distributions with level offset seem more suitable
in this regard.

Despite the conceptional transition of the fractal block model to a single layered
model with the characteristics of usual diffusion is intuitive, a formal reconstruction
is complicated by the limited range for which the presented parameterizations are
valid (« < 0,0 > 0,¢ > 1). For instance, in the found parameterizations of the
fractal block models for @ < 2 the relation 2/a = §Inc? is required. This leads to

contradictions in the analysis of the formal limits of the jump scale distributions (e.g.
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 87

¢ =1,0 = 0) and indicates that alternative parameterizations, stochastic models and
scaling formulas should be be investigated. A further approach might be to replace
the normal spatial increments in the usual scenario by more general increments with
finite moments. In this case it is more likely that the limits of the presented jump
scale distributions and parameterizations for & — 2 can be identified with the usual
scenario. A thorough discussion of the formal transition to usual diffusion is out of the

scope of this presentation.
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88 4.4 SIMULATION RESULTS AND MODEL VARIANTS

4.4 Simulation results and model variants

With the previous calculations it follows that in the fractal block model stable spatial
increments are constructed as normal random variables with stochastic scales, N o(A).
To obtain strictly space fractional random walks (compare Lévy flights), the time incre-
ments can either be constant or exponentially distributed. As usual, the combination
of uncorrelated temporal and spatial increments yields the desired random walk tra-
jectories x(t). Strictly space fractional random walks and trajectories generated from
the parameterized fractal block model are compared in Figure 16 and Figure 17. Irre-
spective of the level offset and the choice for an exponential-type level distribution, the
same quantitative congruence is obtained. However, larger scaling C'p and stability «
must be compensated by smaller step sizes At in order to maintain correspondence.

Alternative models for the level distribution can for instance be the geometric, bino-
mial or exponential power distribution. Whereas geometrically distributed levels yield
a fractal block model with discrete levels and the same characteristics (Section 4.4.1),
binomially distributed levels severely change the diffusion dynamics of simulated par-
ticles. The same is true if random levels are distributed with the exponential power
distribution. In these cases the characteristics of the fractional diffusion equation, as
defined in Section 3.1.2, are not met. The obtained dynamics are interesting as well,
but beyond the scope of this thesis.

From the perspective of fractal block models with geometrically distributed levels,
hierarchical block models can be interpreted as instantiation with persistent blocks
and a limited number of levels. A statistical connection of hierarchical block model
trajectories to fractional diffusion is discussed and reproduced in Section 4.4.2. Fractal
block model random walks with power-law distributed temporal increments are linked

to space-time fractional diffusion in Section 4.4.4.
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—— FBM(0¢=0.08,c=2.16, A ~ Laplace(6 = 1.00), dt ~ Exp(6 = 0.10))  ----- (|x(t)|130/1:00) = 10.4526 - t1:0152
—— CTRW(a=1.30,=1.00,Cp=1.00,Cr=1.00,At=0.10,d =2) ... (|x(D)[1-30/1.0) < 95216 - £1.0755

Figure 16: Comparison of space fractional continuous time random walks with random walks
generated by the parameterized fractal block model with Laplacian level distribution (with
level offset). The top left figure shows 10 random trajectories from each of the two samples,
totaling 10° particles each. The difference of the spatial local time profiles of the two samples
is displayed in the upper right. The bottom row displays the sample average displacement and

the distribution of absolute spatial increments.
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Figure 17: Comparison of space fractional continuous time random walks with random walks
generated by the parameterized fractal block model with Laplacian level distribution (with
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level offset) and small o.. The number of simulated trajectories is 10° in both models.
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 91

4.4.1 Discrete levels

In a scenario with quantized block levels, exponential level distributions A ~ Exp(9)
transform into geometric distributions A ~ Geom(p). We call the scenario of geometri-
cally distributed levels the discrete-level fractal block model. The aggregation of expo-
nential probability densities into discrete points of mass was discussed in Section 2.3.3.
The following equation identifies the asymptotic behavior for I — oo of skew stable and

jump scale distributions driven by geometric levels using the same principle,

9 o‘é(l—i—l)
f"%{(A) (UN(Z)) ~ /z(l) fA(S) ds (492)
oN
a2 (1+1)
)t~ [ vz 1 e A
p(l—p) /U%!(l) (27%) 2 T —af2)* ds (4.93)
2y/2 1 203 —o/2 oy —a —al
B F=am (227) “Ta-emenert @

In the second line the stable density was replaced by their asymptotic approximation
(4.64). The conditional jump scale 03 (1) was introduced in (4.40).
Above identification is solved by the following parameterization of the discrete-level

fractal block model,

c=(1—-p) Ve (4.95)
1 1—c \Ye
o0 =7V -1 <pI‘(1—oz/2)> . (4.96)

Note that the relation § = — In(1—p)~! holds for the parameter of the exponential level
distribution in the fractal block model and the parameter of the geometric distribution
in the discrete-level fractal block model. There, however, exist alternative identifica-
tion approaches which deliver the same parameterization of the discrete-level model.
Figure 18 compares the resulting jump scale probability mass function fff§ ( A)(s) with
continuous-level jump scale densities and the density of the stable distribution of A.

Figure 19 shows a comparison of simulated topological trajectories from the discrete-


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

92 4.4 SIMULATION RESULTS AND MODEL VARIANTS

level fractal block model using above parameterization with classical continuous time
random walks. As with the continuous-level fractal block model, a similar quantita-
tive correspondence between topological transport and fractional diffusion is obtained.

Without loss of generality we can set p = 0.5.

100 4
10—1 4
1072 5 ®
— L J
< .
1073 4 °
2 : .
: (]
10-4 4 a=1.60,Cp=2.30,=1.00,Cr=1.00 L
----- A ~ Stable(a=0.80,8=1.00, y=1.06)
10-5 —— FBM(0( =0.65,c=1.87, A~Exp(6 =1.00), dt ~ Exp(6 = 1.00))
—— FBM(0p=1.01,c=1.87, A~ Laplace(6 = 1.00), dt ~ Exp(6 = 1.00))
® FBM(0(=0.45,c=1.54, A~ Geom(p = 0.50), dt ~ Exp(6 = 1.00))
1076 . -

10! 10° 10! 102 10 10*
s

Figure 18: Comparison of discrete and continuous jump scale distributions.
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Figure 19: Comparison of space fractional continuous time random walks and fractal block
model trajectories with discrete levels, A ~ Geom(p). The data was collected from samples
with 3 - 103 trajectories each.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

94 4.4 SIMULATION RESULTS AND MODEL VARIANTS

4.4.2 The persistent topology hierarchical block model

Whereas the fractal block model describes a volatile topology by stochastic means,
the hierarchical block model (Section 4.2.2) is characterized by persistent blocks. Fur-
thermore, since the hierarchical block model is defined with a finite number of levels,
a connection to the discrete-level fractal block model seems more intuitive. But the
level distribution in the hierarchical model must be truncated at the maximum level L.
Instead of using the re-weighted geometric distribution Geom(p, L) presented in (2.39),
here all randomly generated levels exceeding L are clipped such that the total cropped
mass is concentrated in the highest level L. Theoretically, to approximate the fractal
block model with geometrically distributed levels, it should be sufficient to choose a
large enough number of levels L and children per block N while leaving the remaining
parameters oo, ¢ and p identical.

In Figure 20 standard continuous time random walk trajectories are compared with
trajectories generated from the hierarchical block model (N = 3, L = 17), param-
eterized according to the fractal block model with geometric level distribution (Sec-
tion 4.4.1). The persistent topology consists of N¥ = 37 ~ 130-10° 0-level blocks and
SN = (1 — NEFLY /(1 — N) ~ 190 - 10% blocks in total. However, for simulating
topological trajectories, higher level blocks can be discarded from computer memory.
The spatial increments are sampled correctly and reproduce the amplitude of the bi-
variate stable distribution. The sample average dispersion and the spatial profile, on
the other hand, are strongly influenced by the particular (i.e. persistent) instantiation
of the topological structure. The results in Figure 20 represent a case where the persis-
tent topology model reproduced the characteristic displacement of fractional diffusion
rather correctly. Nevertheless, from the inhomogeneous and persistent positioning of
blocks (gray circles) it follows that the hierarchical block model cannot produce the

symmetric spatial profiles of the fundamental solution and of local time.
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Figure 20: Comparison of hierarchical block model trajectories (persistent topology) and stan-
dard continuous time random walk trajectories. After random generation, the whole block
structure was shifted such that the most central 0-level block is located in the center of the
domain (also used as the initial position of simulated trajectories). This improves the visual
display and allows to compare the spatial profiles of both simulation approaches. The blocks
in the 8th and 9th level are visualized as gray circles with their radius corresponding to the
95% confidence interval of their spatial membership distributions. The data was collected from

samples with 2 - 10% trajectories each.
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96 4.4 SIMULATION RESULTS AND MODEL VARIANTS

To overcome the resulting artifacts, and to cover all possible instantiations of
stochastic blocks in the fractal model, a larger number of sub-blocks N is required.
This, however, explodes the amount of computer memory and computation time re-
quired. As an alternative approach, the fractal block model can be regarded as a mean
field model for the hierarchical block model. This connection can be reproduced by
rebuilding the hierarchical structure for every jump or for every simulated particle. The
latter technique was used to generate the results in Figure 21 where L = 17 and N = 2.
Also for the resampled hierarchical model, the correct reproduction of fractional diffu-
sion depends on the parameterization and the discretization parameters L and N. In
the following section, the parameterization of hierarchical block models and associated
implications on numerical simulation and qualitative characteristics of trajectories are

discussed.
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Figure 21: Comparison of hierarchical block model trajectories with individually sampled per-
sistent block structures and standard continuous time random walks. Two times 10 trajectories
were sampled.
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98 4.4 SIMULATION RESULTS AND MODEL VARIANTS

4.4.3 Implications of the configuration of the hierarchical block model

Because all randomly generated levels exceeding L are clipped, the jumps in the hier-
archical block model are limited to a maximum characteristic length, which is not the
case for standard continuous time random walks and the fractal block model approach,
which feature stable jumps with infinite moments. Hence, for small (finite) parameters
L, an exponential cutoff in the distribution of spatial increments can be observed. This
is owed to the fact that spatial jumps are a finite sum of normal increments (with vary-
ing but finite scales). In particular but not exclusively for the re-weighted geometric
level distribution, also the over-representation of small spatial increments leads to a
different linear slope in the sample average displacements and to smaller diffusion con-
stants. These effects are amplified by longer observation periods and smaller a-values,
because stable jumps are more likely to occur with larger magnitude and their block
model analogues become more susceptible to the truncation.

In continuous time random walks with small o, we can observe greater distances
between spatial clusters of consecutive particle locations. To reproduce these charac-
teristics with trajectories in the hierarchical block model, a small number of sub-blocks
N is sufficient. For large «, clustering effects vanish and a homogeneous distribution
of resting locations can be observed. To obtain a homogeneous distribution of particle
positions in the hierarchical block model, a larger number of sub-blocks NV is required.
This indicates that in a scenario with a homogeneous topological structure, the removal
of blocks (i.e. smaller N) increases the anomalous characteristics of random walks and
diffusion processes.

As noted before in connection with the fractal block model, the limit At — 0 is
required for approximating the fractional diffusion equation. With At also the scale
of the stable increment distribution of continuous time random walks changes and,
according to the parameter identification in Section 4.4.1, a different scaling of block
dispersion in the (discrete level) block models is obtained. Smaller values increase the
resolution of simulated trajectories but also increase the number of block levels required

to avoid an early truncation in the empirical spatial increment distribution of the hi-


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 99

erarchical block model. In the hierarchical block model an additional discretization
parameter is the intra-block interaction likelihood p (parameter of the geometric level
distribution). Smaller values of p mean that larger levels are sampled more often, and
hence an overall larger number of levels is necessary for approximating the same dis-
placement characteristics. As a consequence, the parameter p controls the topological
resolution of the hierarchical block model. Smaller values yield a better approximation
of the increment distribution, but a larger number of levels also greatly increases the
computational effort for sampling trajectories.

Despite the presented results on persistent topology models show that multiple
quantitative characteristics (e.g. sample average displacement, the increment distribu-
tion) from fractional diffusion can be reproduced, qualitative differences can be rec-
ognized in the visual representation of sampled trajectories (compare Figure 20 and
Figure 21). This concerns in particular the emergence of clusters in individual sim-
ulated trajectories. In this context the scale or dispersion of 0O-level blocks plays an
important role. If lower levels are removed (truncated) from the topological structure,
or when the level distribution is modified accordingly, the distribution of small spatial
increments becomes re-weighted whereas the distribution of large spatial increments
remains identical. However, for small values the spatial increment distribution of the
hierarchical block model differs anyways from the stable spatial increment distribution
of continuous time random walks (both models coincide in the continuum limit). Hence,
this modification can be used to improve the performance of simulations, because the
discarded low-level layers contain a relatively large portion of the blocks. In simulated
trajectories we can observe that a careful truncation of the geometric level distribution
from below, yields larger volatile clusters whereas the displacement behavior is largely

maintained (similar sample average displacement and spatial profiles).
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100 4.4 SIMULATION RESULTS AND MODEL VARIANTS

4.4.4 Time fractional diffusion

Since a random level A must be sampled for every increment in block model trajec-
tories, the notation A(¢) makes sense. For the strictly space fractional case, the time
evolution of the interaction levels in the fractal block model corresponds to uncorrelated
exponential or Laplacian noise. By demanding memory effects (for instance autocorre-
lated velocity) in the particle dynamics of the fractal block model, we can expect that
the characteristics of A(t) must change. It is however not sufficient that level changes
and hence changes in the absolute value of velocity occur sporadic, also directional
changes must only occur between waiting phases. In other words, it is not sufficient
that the level process A(t) is autocorrelated or stationary in order to introduce the
desired memory effects. Revealing a more explicit form of the process A(t) is beyond
the scope of this thesis, the following is a qualitative characterization.

The intuitive method for introducing memory effects in the fractal block model
is — analogous to continuous time random walks — by using Mittag-Leffler distributed
waiting times. In Figure 22 different combinations of (uncoupled) waiting time and level
distributions are shown. The resulting process A(t) can be regarded as exponential
or Laplacian noise subordinated to the operational time process ¢, generated from
Mittag-Leffler increments dt. A comparison of fractal block model trajectories with
this configuration and standard continuous time random walk trajectories is displayed

in Figure 23.
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A ~ Laplace(6 = 1.00), dt ~ Exp(6 = 1.00)
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Figure 22: Random interaction levels displayed as a stochastic process with different configu-

rations of the level distribution A and time increments dt.
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Figure 23: Comparison of standard space and time fractional random walks with random walks
generated by the parameterized fractal block model with the level noise A subordinated to dt.
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4 FRACTIONAL DIFFUSION IN TOPOLOGICAL MODELS 103

Technical approaches for simulating time fractional random walks with fixed step
stochastic processes were presented in Section 3.2.4. One way is to separate spatial
jumps by a random number — sampled from a discretization of the waiting time distri-
bution — of consecutive time steps without jumps. If the velocity v(t) is replaced with
time-averaged velocity v(t, A), then the perceived velocity of a particle remains more
or less constant even when additional O-length jumps are inserted in between sampled
event times. Carried over to the level process A(t) this means that instances of high
levels can be separated by instances of very low levels without changing the velocity
profile of a trajectory. In terms of Figure 22 the gaps between intervals with high fre-
quency high positive amplitude noise must be replaced with low or negative amplitude
noise. Hence, in a fixed frequency version we can anticipate a low (negative) amplitude
baseline signal interrupted by quasi-periodic bursts of high (positive) amplitude.

Besides by amplitude modulation, it might be possible to construct stochastic pro-
cesses with skew increments and drift [53] that yield a dwelling time in the negative
domain similar to subordinated Laplacian noise. It is however important to note that
certain configurations of the level process can lead to coupled space and time increments

in simulated trajectories.
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5 Discussion

In this concluding chapter the developed technical approach is put in context with
existing research (Section 5.1), an overview on open research questions and geomet-
ric observations is presented (Section 5.2) and the simulation of topological features
of interacting populations in fractional differential equation models is discussed (Sec-

tion 5.3).

5.1 Context

The presented result allows to reproduce fractional diffusion by random walks generated

from topological block models.

5.1.1 Motivation and background

In networks often a clear distinction between intra- and inter-community links can be
recognized. Particularly, in large interacting populations (compare Section 1.1 and
Section 5.3) clustering properties and community structure are an important factor for
the emergence of complex patterns in transport and interaction processes. Network
models of structured populations and of systems with similar topological features have
been researched in a vast range of scientific publications. Anomalous and complex
patterns such as trapping, bursts, nonlinear diffusivity and spatial outliers have been
found in many existing networks in all kinds of disciplines [21, 49, 55]. According
models for the generation of networks and dynamic (spreading) processes with specific
characteristics have been developed [39, 47, 79, 103|. In both, observed and artificially
constructed systems, it is always the underlying topological structure, or the interplay
of dynamic processes with the same, that is responsible for complex behavior. In
particular, the hierarchical configuration of community structures has been linked to
features like scaling invariance, power-law degree distributions and nonlinear dynamics
[8, 20, 80, 98, 99].

In network theory the term block model refers to the segmentation of nodes into

groups based on internal and external connectivity patterns [4, 71, 77]. Algorithms for
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106 5.1 CONTEXT

the detection of strongly interconnected clusters often work by stochastically assigning
nodes to different blocks and by observing the effect on a certain quality measure (com-
pare Gaussian mixture models). Stochastic block models are used to infer hierarchical
and overlapping community structures by the means of Markov chain Monte Carlo
methods [75, 76]. Other approaches exhaust the local diffusivity and percolation prop-
erties of networks when visited by random walkers to detect the separation of tightly
connected clusters [97, 98|.

Also in more general dynamical systems heterogeneous properties and dynamics can
be responsible for complex behavior. Alike in networks, it is possible to identify and
group together strongly interconnected components or parts of a system with similar
features. For instance in spatial systems, different areas may be distinguishable based
on proximity measures and local (parameter) configurations. In this work, block models
are formalized on continuous domains by heterogeneous densities which are assembled
from Gaussian membership likelihoods. In contrast to the representation of networks
in terms of nodes and corresponding edges that are placed on a two-dimensional do-
main for visualization (graph layout), here, spatial proximity and interconnection are

interrelated by construction.

5.1.2 Main result

A prerequisite for investigating fractional diffusion and continuous time random walks,
is the discourse of the underlying theory (Section 3). To that end, the construction and
definition of the fractional diffusion equation in the Caputo and Riesz-Feller sense in
two dimensions was reviewed. Furthermore, the according formal connection between
the fractional diffusion equation and continuous time random walks was presented. A
programming library for simulating continuous time random walk trajectories in one
and two dimensions was created [92]. Statistical measures for the quantification of
simulated trajectories and approaches for the comparison of ensemble average spatial
distributions with the fundamental solution of the fractional diffusion equation were

prepared and implemented.
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5 DISCUSSION 107

Block structures on two-dimensional domains in flat, hierarchical and fractal vari-
ants were introduced (Section 4). Thereby, blocks are formalized as Gaussian densi-
ties and model tightly interconnected spatial clusters. Topological interaction mecha-
nisms based on the hierarchical and fractal arrangement of blocks were constructed. A
stochastic formulation of topological interaction was finally identified with the Lévy-
stable displacements in continuous time random walks. As a consequence, it is possible
to parameterize the topological block models in order to display the characteristics of
fractional diffusion in randomly generated topological trajectories. To verify the found
mathematical connection and the corresponding parameterizations, sampled trajecto-
ries were compared with continuous time random walks by empirical means using the
developed programming library. Hence, the theoretical and mathematical result of this

work was reinforced by empirical and computational methods.

5.1.3 Model accuracy and convergence

The block models approximate continuous time random walks driven by Lévy-stable
and Mittag-Lefler increments and the corresponding fractional diffusion equation in
the Caputo and Riesz-Feller sense. A proper numerical analysis of the convergence
and transition behavior of topological trajectories (At — 0) — also with respect to
parameterization — was not conducted. In Section 4.4 the effects and interrelations
of the parameters At,«,p as well as L, N in connection with the approximation of
continuous time random walks were discussed briefly from a qualitative perspective.

For a complete analysis the following steps must be investigated:

HBM — FBM — CTRW — fractional diffusion equation

Also the last step, which is the convergence behavior of continuous time random walks
to the fractional diffusion equation is not completely solved [10, 52, 63|. The conver-
gence behavior in the anomalous setting depends heavily on the applied quantification

metrics and special effects have to be taken into account (Section 3.3).
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At=1.00

A ~ Geometric(p=0.50)
L=12,N=3
00=0.29,c=1.54
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FBM 0
a=1.60,=0.70
Cp=1.00,Cr=1.00
At=1.00

A~ Laplace(6 =1.00)
09=0.67,c=1.87
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Figure 24: Comparison of empirical distributions calculated from 10* simulated trajectories
with different models and parameterizations as well as the fundamental solution. The density
profiles were calculated on a spatial lattice of 20 x 20 nodes on the bounded domain [—100, 100]?
and the local density is encoded in a logarithmic color scale. The persistent topological struc-
tures in the hierarchical block model are clearly recognizable. Artifacts that result from the

FFT-based evaluation of the fundamental solution are visible for small times (Section 3.4).
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Figure 24 is a juxtaposition of empirical densities p(¢, x) calculated from ensembles
of simulated trajectories in different models and the fundamental solution of the frac-
tional diffusion equation G(t,x). A basic error measure for quantifying the difference to
the fundamental solution was applied on the same ensembles in Figure 25. Effects such
as the power-law survival probability at the initial location (compare Section 3.3.1)
and the heavy tails of the densities were not explicitly taken into account. Neverthe-
less, both figures indicate that the fractal block model is capable of approximating
the fractional diffusion equation in the same order as the standard continuous time
random walk model. The hierarchical block model is limited in this capability by the
persistence of the underlying topological structure and accompanying computational

challenges (Section 4.4.3).
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Figure 25: Crude quantitative comparison of the empirical distributions in Figure 24 with the
fundamental solution of the fractional diffusion equation. The vertical axis displays the spatial
mean and standard deviation of the pointwise relative error |p(t,z) — G(t,z)|/G(t,z). Note
that the empirical particle distributions and the fundamental solution were calculated on a
spatial lattice of 20 x 20 nodes on the bounded domain [—100,100]?. The presented values
serve to support Figure 24 and do not qualify for a numerical convergence analysis. Because of
the heavy tails of the observed densities, a complete numerical analysis requires more elaborate
measures. The difference of the hierarchical block model to the fractional diffusion equation
stems from the persistence and sparsity of the sampled topological structure. The improved
accuracy in the fractal block model and in continuous time random walks for larger times
results — at least partially — form the equilibration of the initial conditions (Section 3.3.1). For
all models the difference to the fundamental solution can be further reduced by adapting the

respective parameterization (At, L, N,...) and increasing the number of sampled trajectories.
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5.1.4 Related geometric approaches to anomalous diffusion

It is known that random walks on fractal geometries can lead to anomalous diffusion.
Stochastic forms of geometric fractals such as Sierpinski gaskets, Menger sponges, Can-
tor sets, fractal combs etc. were investigated as the spatial domain of random walk
particles [6, 13, 50, 61, 81, 86, 87]. Measures such as mean squared displacement, time
averaged mean squared displacement and percolation properties were used to quantify
the resulting diffusion processes. In [86, 87| a space-time fractional diffusion equation
in the Caputo and Riesz sense was constructed from basic lattice equations. Corre-
sponding analytical representations of the probability density were formulated in terms
of Fox-H functions. The super-diffusive scenario could be obtained by using memory
kernels to compensate trapping effects in particle trajectories.

Stochastic forms of the fractal geometries facilitate the derivation of the macro-
scopic equations. Analogously, fractal block models were used as an intermediary to
identify persistent topology hierarchical block models with continuous time random
walks and the Caputo and Riesz-Feller fractional diffusion equation in this work. The
geometric fractals discussed in literature are rectangular structures and usually repro-
duce the sub-diffusive scenario. The topological interpretation of fractional dynamics
on continuous domains provides a new perspective. To the knowledge of the author,
the investigation of continuous time random walks and fractional diffusion on fractal
topological or geometric structures on continuous domains is new. However, the repro-
duction of spatial increments as a (fractal) mixing of normal distributions aligns with
the standard mathematical construction of bivariate Lévy-stable distributions |73, 101].

Mathematical connections between the fractal geometry of media and resulting
scaling exponents (compare o and () and diffusion constants in associated random
walks were established [24, 33, 62, 107]. A proper discussion of the fractal dimension
in hierarchical and fractal block models is left to future research. Furthermore, also
a direct reconstruction of the fractional diffusion or Fokker-Planck equation from the

stochastic description of fractal block models is not included here.
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112 5.2 OUTLOOK

5.2 Outlook

The presented topological perspective on anomalous diffusion could provide new in-
sight in the topic. Here, some unanswered questions and a discussion of geometric

observations in this approach are presented.

5.2.1 Open questions

A great number of questions, that were raised during the development and the dis-
cussion of the main result, cannot be fully pursued here. Foremost, this concerns the
numerical convergence of the topological approximation of continuous time random
walks and the fractional diffusion equation (compare Section 5.1.3). This problem,
in turn, is not independent from the applied exponential-type level distributions and
topological scaling formulas. The uniqueness or optimality of the used stochastic mod-
els and of the found identification was not investigated. Furthermore, the numerical
quantification of the convergence of continuous time random walks (to the fractional
diffusion equation) poses an additional problem.

A formal statement about the convergence of the topological jump distributions to
the usual normal distribution for @ — 2 could not be derived (Section 4.3.4), despite
the simulation of usual diffusion in terms of single layered block models is intuitive.

Alternative models for the level distribution such as exponential power distributions
or other distributions with finite moments were not investigated further. The choice
for a level distribution and topological scaling, however, depends on the natural system
under investigation and in different application scenarios different configurations and
different fractional diffusion equations can make sense.

The analytical reconstruction of the macroscopic diffusion equation from the topo-
logical configuration of block models was not considered in this work. Also, the fractal
dimension of the topological structures and resulting random walks and possible con-
nections to the scaling parameters were not discussed.

In order to simulate space-time fractional diffusion in topological models, in Sec-

tion 4.4.4 topological increments were subordinated to power-law waiting times. Quali-
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5 DISCUSSION 113

tative characteristics of the resulting level process A(t) were discussed, but more explicit
methods for the construction of such processes that in turn yield the desired uncoupled
configuration were not investigated.

In the following sections geometric patterns and observations in simulated topolog-
ical trajectories are discussed in more detail. Also in this case a proper mathematical

investigation is out of the scope of this thesis.

5.2.2 Persistence of topological structure

The fractal block model is designed to reproduce the characteristics of continuous time
random walks and of fractional diffusion by stochastic topological structures and de-
rived interaction mechanisms. The hierarchical block model instantiates stochastic
blocks and features discretized persistent neighborhoods, which again induce interac-
tion and transport likelihoods. Hence, in certain anomalous transport and interaction
processes, the existence or emergence of a latent topological structure can be antici-
pated. Table 1 compares the persistence and volatility of topological structures and

the relation to spatial interaction in the presented models.

model topology non-local transport
continuous time latent — bivariate isotropic
random walk stable distribution
fractal volatile N normal increments
block model stochastic with distributed scales
hierarchical . .
persistent = topological jumps

block model

Table 1: Relation between topological structure and spatial transport in different models.
In the setting of continuous time random walks a latent and volatile topological structure is
the result of microscopic particle dynamics. In the block models explicit formalizations of

topological structures are the drivers of microscopic (and resulting macroscopic) dynamics.

In visualizations of trajectories of continuous time random walks, the predicted

latent topological structure can be recognized as confined areas of consecutive particle
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114 5.2 OUTLOOK

locations. Trapping and long-range interaction phenomena of fractional diffusion are
the cause of such volatile spatial clusters. An empirical characterization can for instance
be in terms of distributed local time (Section 3.3.5) or based on the fractal dimension
of simulated trajectories. The blocks in the fractal and hierarchical models, which are
based on Gaussian densities, can be understood to explicitly reproduce these clustering
patterns. Especially in the fractal block model, blocks stochastically exist in all orders

of magnitude and in all spatial locations.

5.2.3 Trapping and infinitesimal increments

As discussed in connection with the persistent topology hierarchical block model (Sec-
tion 4.4.3), the truncation of lower layers of the hierarchy has a limited effect on the
anomalous characteristics of simulated trajectories. However, different clustering prop-
erties can be observed, which can be attributed to the altered shape of the jump scale
and spatial increment distributions for small values. A modification of lower level
blocks, that is related to truncation, consists is changing their spatial dispersion or
concentrating the weight in the center location. In simulated trajectories, this has
the effect that jumps sampled with a low random level do generate infinitesimal or no
spatial displacements and represent absolute resting.

In Section 4.4.4, O-length jumps were already used to discretize power-law dis-
tributed waiting periods in continuous time random walks simulating time fractional
diffusion. This indicates that a geometric interpretation of particle resting could pro-
vide a mathematical approach for better interrelating heavy-tailed waiting times with
stable spatial increments in coupled and uncoupled scenarios. In particular the stochas-
tic level process A(t) and the scaling function o(l) could play an important role in such
investigations.

In the context of spatially interacting populations, dwelling time in local communi-
ties can be a crucial factor for transport and interaction. During the trapping period of
a particle, information can be transmitted only to the local surrounding. But the longer

a particle remains in a certain community, the greater is the accumulated intra-block
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5 DISCUSSION 115

interaction. In persistent-structure block models, we can clearly distinguish between
local intra- and non-local inter-block transport. This is reflected by the parameter of
the geometric level distribution (intra-block interaction likelihood). As a consequence,
the concept of waiting times can be understood to additionally modulate the local

interaction strength.

5.2.4 Discrete block layers in application

The presented result provides a geometric and more accessible perspective on the topo-
logical characteristics of fractional diffusion. This can be useful in many application
scenarios because hierarchical and fractal structures can be encountered in many nat-
ural systems. However, with the persistent topology hierarchical block model it is
difficult to exactly reproduce the dynamics of the fractional diffusion equation, because
the required number of layers and blocks can render simulations unfeasible. There
might exist different parameterizations or constructions of discrete-level hierarchical
block models that perform better, but it was shown that the basic and typical charac-
teristics of fractional diffusion can be reproduced by this model. Furthermore, natural
systems need not have the exact standard fractional diffusion dynamics. This can be
recognized in many occasions in applied research, where different fractional dynamics
and variants are introduced or discussed.

In the hierarchical block model the existence of a smallest level and a smallest
block scale is implied. The characteristic size of 0-level blocks can be prescribed by
the underlying natural system, or in other words, the truncation of lower levels can
make sense from an application perspective. When a limited number of levels is used,
exponential cutoff in spatial increments can be compensated by sampling long-range
spatial jumps according to some heavy-tailed distribution, which is independent from
the block structure. For instance, if the maximum level is exceeded in the random
level process, topological interaction can be replaced by interaction kernels. This can
be understood as the introduction of an interaction likelihood for sampling infrequent

long-range interactions in addition to frequent topological interaction.
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5.3 Scenario

Because this work is focused on the mathematical connection between topological block
models and continuous time random walks simulating a fractional diffusion equation,
investigation of particular dynamical systems and the simulation of dynamic diffusion-
reaction processes are not included. A short outline on the numerical solution of frac-
tional diffusion equations and on the application of fractional diffusion equations for
modeling and simulating large structured populations with complex interaction pat-

terns are presented.

5.3.1 Numerical solution of fractional differential equations

There exist a broad range of fractional differential operators and in literature an even
greater number of notations, terminologies and fractional differential equations are ap-
plied. Coherent discussions of the space-time fractional diffusion equation in connection
with continuous time random walks in higher dimensions are less frequent.

Fractional diffusion or Fokker-Planck equations have been applied in many occa-
sions, but usually certain restrictions are made in these models. For instance, space-
time fractional differential equations are often discussed in the one dimensional setting;
in higher dimensions, usually the strictly time fractional case is discussed; in space
fractional scenarios, boundary conditions are implied (to evade problems resulting from
non-locality).

For the numerical solution of fractional differential equations, a large number of
different schemes and methods have been developed [2, 7, 16, 17, 28, 38, 104, 109].
Most of the references above also present and make available implementations of nu-
merical algorithms. Numerical methods for solving fractional differential equations are
distinguished not only by their underlying technical approach, but also by the frac-
tional differential operators they encompass as well as the dimensionality of space and

the boundary conditions.
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5 DISCUSSION 117

Stochastic approximation of the solution of certain fractional diffusion equations
based on continuous time random walks (and random walks generated from topological

block models) could be an alternative approach (compare Section 5.1.3).

5.3.2 Structured interacting populations

In models of a heterogeneous population, densities on a multidimensional domain can
represent the statistical distribution of individual attributes. For instance, age, gen-
der, wealth, location of residence, etc. If pairwise interaction patterns align with the
locations of sampled individuals on this domain, a system with local interaction is ob-
tained. Otherwise, interaction is only local along certain dimensions and non-local in
other dimensions. In models that investigate the transmission of information or infec-
tious diseases, spatial proximity is often a fundamental prerequisite for interaction and
should therefore be represented in the multidimensional alignment. Furthermore, it is
known that the occurrence of (face-to-face) contacts is reflected in the membership of
persons in social communities (like households and workplaces). These types of commu-
nities partially reproduce the spatial alignment of individuals and result in hierarchal
structuring (in combination with spatial embedding). This conceptual model leads to
a heterogeneous population that can be structured in multiple layers of overlapping
spatially confined blocks. Close proximity interaction happens predominantly within
these blocks, but infrequent and non-periodic contacts can occur independently from
the community structure and with arbitrary spatial distance.

Variants of this model have been investigated in a broad range of scientific publica-
tions. In the following, an overview is presented on network models and macroscopic
approaches that focus on anomalous and complex patterns in such systems.

Data-driven approaches for the reconstruction of contact networks and for the sim-
ulation of epidemic spread based on individual contact patterns were discussed in [22,
32, 94]. In [21, 49 air travel data was used to infer long-range effects in global epidemic
outbreaks. The hidden geographical hierarchy in online social networks was discussed

in [55]. A hierarchical population model with spatial alignment and topological interac-
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tion simulating disease transmission was proposed in [103|. General scaling properties
of hierarchically structured networks were discussed in [8, 20, 80, 99|. Periodic pat-
terns in close proximity networks were investigated in [19]. Dynamic effects of delayed
interaction processes in connection with structural alignment were analyzed in [47,
79]. Both papers discuss bursts and fluctuations in the spread of infectious diseases
which result from a social structuring and should be related to sub-diffusive behavior.
Diffusion processes on hierarchically structured networks were investigated in [98]. Dif-
ferent diffusion time scales were found to result from the hierarchical configuration of
networks.

Recently fractional calculus has been increasingly applied in the formulation and
simulation of epidemic spread. A space fractional differential equation for the spread
of an infectious disease in one dimension was discussed in [41] and a space fractional
diffusion equation in two dimensions was formulated in [40]. Time fractional differential
equations in aggregated models for infectious spread were presented in |1, 3, 11, 43, 57,

78, 105]. Topological structuring in macroscopic models was investigated in |56, 102].

5.3.3 Topological structuring in macroscopic models

The results presented in this work could be useful for simulating topological features
of structured interacting populations in macroscopic models formalized by fractional
diffusion and transport equations. Foremost, these topological features include hier-
archical structuring, long-range interaction and trapping. To a certain extent this is
accomplished by the fractional differential equation models for the spread of infectious
diseases referenced in the previous section.

Obviously, the hierarchical configuration and scaling of the community structure
as well as the occurrence of long-range interaction is related to the space fractional
derivative in corresponding macroscopic models. The sojourn times of individuals in
tightly connected communities (compare trapping) are linked to the time fractional

derivative.
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5 DISCUSSION 119

Further topological phenomena and observations in structured interacting popula-
tions that were discussed in the referenced literature on networks were also encountered
in the topological models presented in this work. Hence, an extended discussion of mi-
croscopic structures and dynamics in the context of topological block models could
provide additional insight in the construction of macroscopic models in this domain.

In particular, adapted fractional differential operators, analogous to specially crafted
waiting time and jump distributions, provide further potential to translate topological
observations to the macroscopic setting. Exponential cutoff in the interaction distances
can be obtained from tempered fractional derivatives. Specific temporal multiscale dy-
namics can be obtained from mixed order fractional derivatives. Time-space coupled
configurations could be useful for reproducing a correlation between dwelling times in
communities and the spatial extent thereof.

In the end, individual-based or network models with certain topological configura-
tions should produce the same macroscopic dynamics as accordingly constructed frac-
tional diffusion interaction equations. Simulation results of topologically structured
network models should match with the numerical solution of macroscopic fractional

differential equations.
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