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Kurzfassung

Obwohl Ionen-Implantation eine gut etablierte Dotierungstechnik ist, werden dabei

unweigerlich Schäden generiert, die das Dopanden-Profil während der Ionenimplan-

tation und in nachfolgenden Ausheilen verändern. Während des Ausheilens trägt

der Schaden zum Clustern der Dopanden bei und führt zu vorübergehend beschleu-

nigter Diffusion, was nur mit Hilfe eines genauen Modells der Gitterschäden voraus-

gesagt werden kann. Es gibt mehrere Standard-Simulationsmodelle für die Simulation

des Ionen-Implantations-Prozesses, von quantum-mechanischem ab-initio, Molekular-

Dynamik (MD), Binary-Collision (BC), kinetischem Monte-Carlo, bis zu Kontinuums-

modellen. Jedoch kann kein einzelner Simulationsansatz den gesamten Prozess alleine

simulieren. Um dieses Problem zu lösen, ist es wichtig, die bestehenden Methoden

zu verbessern und in einem hierarchischen Schema für die verschiedenen Stadien des

Prozesses zu kombinieren. Das Ziel dieser Dissertation ist es, den Umfang der quan-

titativ modellierbaren Probleme zu erweitern, bestehende Methoden zu kombinieren

und neue Ansätze vorzustellen.

Um den Amorphisierungs-Prozess bei der Implantation schwerer Ionen zu erklären,

wird ein Modell für amorphe Einschlüsse präsentiert. Das Modell benutzt Binary-

Collision-Simulation, um die räumliche Verteilung der abgegebenen Energie zu er-

zeugen, sowie die numerische Lösung der Wärmeleitungsgleichung zur Beschreibung des

Abkühlungsprozesses. Die Wärmeleitungsgleichung wird modifiziert, um die Schmelz-

wärme zu berücksichtigen, falls die Schmelztemperatur an eine beliebigen Ort im Raum

über-schritten wird. Der Raum wird durch Verwendung der Finite-Volumen-Methode

diskretisiert, wobei die Gitterpunkte mit den kristallographischen Gitterplätzen über-

einstimmen, was eine Lösung der Anfangsbedingungen und der resultierenden amor-

phen Zonen auf atomarer Ebene ermöglicht. Atome werden als geschmolzen betrachtet,

falls sowohl das Atom als auch die vier nächsten Nachbarn die Schmelztemperatur

überschreiten. Darüber hinaus wird der lokale Zusammenbruch des Gitters berück-

sichtigt, sobald die Schädigung einen Schwellwert überschreitet. Aus den erhalteten
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Ergebnissen kann geschlossen werden, dass das Berücksichtigen des Gitterzusammen-

bruchs bei Überschreiten eines kritischen Wertes der Schädigung eine entscheidende

Rolle für den Amorphisierungsprozess spielt. Die Ergebnisse, die mit Hilfe dieses Mod-

ells erzielt wurden, stimmen sehr gut mit veröffentlichten, experimentellen Daten von

P, As, Te und Tl-Implantation in Si und mit Daten zum poly-atomaren Effekt bei

kryogenen Temperaturen überein.

Im Rahmen dieser Dissertation wurde ein Code zur Simulation von Rutherford-

Rückstreuung-Spektrometrie mit Channeling (RBS/C) geschrieben. Der Code nützt

das Prinzip der close-encounter-probability (Wahrscheinlichkeit, dass sich das Atom

nahe der ungestreuten Ionentrajektorie befindet) und die Rutherford-Streuquerschnitte.

Um das Schadens-Model für die Interpretation der simulierten RBS/C Spektren zu

verbessern, wird ein neues, atomistisches Schadens-Modell vorgeschlagen. Mittels

klassischer Molekular-Dynamik-Simulation und ab-initio Rechnungen bestimmen wir

sowohl die Koordinaten des split–〈110〉 Interstitials, der zwei-, drei, und vier-Interstitial-

Cluster, des tetrahedrischen Interstitials, als auch die Verzerrung der Nachbaratome,

die durch die Anwesenheit dieser Defekte hervorgerufen wird. Durch Verwendung dieser

Koordinaten in Binary-Collision-Simulationen von RBS/C Spektren wird der Einfluss

der Berechnungsmethode, der Kanalrichtung und des Defekttyps auf die RBS/C Aus-

beute untersucht. Die Variation der rückgestreuten Ausbeute mit dem angenommenen

Defekt-Typ ist größer mit den Defekt-Koordinaten, die mittels empirischem Poten-

tial erhalten wurden, als mit den durch ab-initio Rechnung ermittelten. Die Simu-

lationsergebnisse veranschaulichen sowohl den Einfluss der verzerrten Regionen rund

um die Defekte, als auch die Wichtigkeit des korrekten Defekt-Modells in der multi-

axialen Analyse von Si. Darüber hinaus wurde der Effekt der wechselseitigen Defekt-

Beeinflussung als Funktion der Defekt Konzentration für alle verfügbaren Defekt-Typen

untersucht. Die Schlussfolgerung daraus ist, dass das Model basierend auf Punkt-

defekten und den umgebenden, verzerrten Regionen bis zu einer Konzentration von

6-7% der atomaren Dichte von Si verwendet werden kann. Das vorgeschlagene Modell

verbessert die physikalische Beschreibung von Schäden in Si mit einem geringen Niveau

an Unordnung und könnte für die Modellierung von leichten Implantationschäden be-

nuzt werden.



Abstract

Although ion implantation is a well-established doping technique, it inevitably leads

to damage generation, which affects dopant profiles during the ion implantation pro-

cess as well as during the post-implant annealing step. Upon annealing, the damage

contributes to dopant clustering and results in transient enhanced diffusion, which can

only be predicted with an accurate damage accumulation model. Beside undoubted

success achieved in the field of damage modeling, many processes are not quantitatively

modeled up to date. A variety of standard simulation models is widely used for the

simulation of the ion implantation process, from quantum mechanical ab-initio, molec-

ular dynamics (MD), binary collision (BC), kinetic Monte Carlo (kMC) to continuum

models. But, no single simulation approach can simulate the whole process alone. In

order to solve this problem it is important to improve and combine existing methods

in a hierarchical scheme at different stages of process evolution. The aim of this thesis

is to extend the range of problems which can be modeled quantitatively, combining the

available and proposing new simulation methods.

In order to explain the amorphization process upon heavy ion implants an amor-

phous pocket model is proposed. The model uses binary collision simulations to gener-

ate the spatial distribution of deposited energy and the numerical solution of the heat

transport equation to describe the quenching process. The heat equation is modified

to consider the heat of melting when the melting temperature is crossed at any point in

space. Space is discretized with the finite volume method on grid points that coincide

with the crystallographic lattice sites, what allows us to resolve the initial conditions

and the resulting amorphous zones at the atomic level. Atoms are assumed to be

molten if the atom as well as its four nearest neighbors cross the melting temperature.

In addition the local collapse of the crystal lattice once the damage level exceeds a

threshold is taken into account. From the obtained results it can be concluded that

considering the local lattice collapse when a damage level exceeds a threshold plays a

crucial role for the amorphization process. The results obtained with this model are in
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very good agreement with published experimental data on P, As, Te and Tl implanta-

tions in Si and with data on the polyatomic effect at cryogenic temperature. Compared

to the molecular dynamics approach the proposed model has the advantage of being ca-

pable to cover a much wider implant energy range with much lower computational cost.

Within the framework of the thesis a Rutherford backscattering spectrometry chan-

neling (RBS/C) simulation code has been written. The code uses the principle of the

close encounter probability and the Rutherford scattering cross section. In order to im-

prove the damage models used for the interpretation of simulated RBS/C spectra a new

atomistic model of damage is proposed. Using classical molecular dynamics simulations

and ab-initio calculations we determine the coordinates of the split-〈110〉 interstitial,

of the di-, tri-, and four-interstitial cluster, and of the tetrahedral interstitial as well as

the strain on neighboring atoms induced by the presence of these defects. Introducing

these coordinates in binary collision simulations of RBS/C spectra we investigate the

influence of the calculation method, of the channeling direction, and of the defect type

on RBS/C yield. We show that the RBS/C yield calculated from empirical potentials

may significantly deviate from that obtained using atomic coordinates from ab-initio

calculations. The variation of the backscattering yield with the assumed defect type

is larger with the defect coordinates obtained by the empirical potential than by the

ab-initio calculations. The simulation results illustrate the influence of the strained

regions around the defects, as well as the importance of the correct defect model in

multiaxial analysis of Si. In addition the effects of mutual defect interaction versus

damage concentration for all available defect types are investigated. The conclusion is

that the model based on isolated point defects and their strained fields can be used

up to a concentration of 6-7% of the Si atomic density. The proposed model improves

the physical description of damage of Si containing low levels of disorder and could be

used for modeling of light ion implant damage.
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Chapter 1

Introduction

1.1 Motivation

Ion implantation has been the dominant tool adopted in microelectronics indus-

try for introducing dopants into silicon for several decades. It is unique technique for

controlling the distribution of dopants and damage formation in materials by varying

the ion energies, species, doses and dose rates. For example, a typical modern CMOS

process employs a dozen of ion implant steps to form isolation wells, source/drains,

channel-stops, threshold voltage adjusts, buried layers and other doped areas of p-

and n-channel MOS transistors [1]. Short process times, good homogeneity and re-

producibility of the profile and precise dose control are some of the advantages of ion

implantation which promise to keep it as a mainstay in the semiconductor industry for

the future.

During ion implantation the impurity ions are accelerated to energies ranging from

fraction of keV up to several MeV and are directed onto the surface of the semiconduc-

tor. As the ions enter the crystal, they gave up their energy to the lattice atoms before

they come to rest at some depth in the crystal. The energy loss of ions passing through

matter can be divided into two components: electronic stopping (inelastic scattering

with electron shells of target atoms) and nuclear stopping (elastic scattering with tar-

get atom’s nuclei). However, one of the major disadvantages of implantation is lattice

damage, which results from the collisions between the energetic ions and the lattice

atoms. This damage can take the form of a non-equilibrium excess of vacant lattice

sites (vacancies) and interstitial atoms (interstitials), vacancy or interstitial clusters,

1
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dopant-interstitial and dopant-vacancy clusters, and locally amorphized regions of the

crystalline silicon target. For sufficiently high doses continuous amorphous layers are

formed. The spatial distribution and form of damage, as well as amorphous to crys-

talline transformation is critically dependent on the implantation parameters and is

controlled by a competition between damage annealing and damage accumulation [2].

The Si substrate needs to be subsequently annealed in order to electrically activate

the dopants and to repair the lattice damage. Annealing is done at temperatures high

enough to allow the dopant atoms to diffuse to substitutional sites, and for the lattice

defect to recombine. During annealing defects interact with the dopant atoms and

induce transient-enhanced diffusion (TED) of the dopant over long distances. If they

survive into the final device they can form relatively stable dislocation arrays which

degrades electrical performances of devices, if they are present in active zones. In addi-

tion defects disrupt the periodicity of the crystal, introduce local strain, and result in

new energy levels which are often somewhere in the bandgap, modifying the electronic

structure of the material [3].

Implantation damage affects the final doping profiles in two ways, as as-implanted

damage due to the dechanneling effect, and as the source for transient enhanced dif-

fusion during the subsequent thermal annealing [1]. Thus, the modeling of the ion

implantation damage process is motivated by two objectives. One is to simulate the

defect dechanneling effect so that the impurity profiles as a function of dose can be

predicted. The other objective is to predict the damage profiles so they can be used

to quantitatively model the thermal annealing step. This has caused the 2005 edition

of the International Technology Roadmap for Semiconductors [4] to identify accurate

modeling of implantation damage, thermal annealing, reaction of dopant atoms and

defects as one of key challenges in the field of modeling and simulation. As the size

of the active area of devices shrinks a need for the understanding and modeling of the

damage creation arises.

Although much research has been devoted over the years to these subjects, many

questions are still under debate and quantitative modeling is in many cases not possi-

ble. For this purpose, simulation tools can be very helpful in optimizing the fabrication

process of Si devices. This field is experiencing a rapid growth supported by significant

increase in computing power from one side and decreasing in computer costs from the

other side, which is not case for the experimental facilities.
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1.2 Scope and Outline of the Thesis

The scope of this thesis is to develop simulation tools which can qualitatively and

quantitatively explain physical processes closely related to ion implantation induced

damage. We propose a new amorphization model based on the numerical solution of

the heat transport equation and use it to investigate the ion-mass and poly-atomic

effect. For the purpose of ion beam analysis and defect quantification a Rutherford

backscattering spectroscopy module as a part of the binary collision Monte Carlo code

IMSIL is written and tested. For quantitative interpretation of RBS/C spectra a new

atomistic model of damage is developed.

The thesis is organized in the following chapters.

� Chapter1: Gives an overview of the status of research and introduces the stan-

dard models used in existing simulation tools. The limitation and need for the

improvement of these models are briefly discussed. In addition simulation models

beyond the standard models are also discussed.

� Chapter2: Introduces and explains simulation techniques widely used in mod-

eling of the ion implantation process. In this Chapter the advantages and the

limitations of the particular method are discussed. Since no particular approach

can model the whole implantation process alone, the emphasis is on the multiscale

modeling where different simulation techniques are coupled in order to overcome

limitations of the particular model itself.

� Chapter3: Gives an overview of existing amorphization models and discuss their

predictive capabilities and limitations. A new amorphization model based on the

numerical solution of the heat equation to treat the heat quenching upon ion im-

plantation is proposed. The physical background and the implemented numerical

solution of the model are explained. The model is tested on the experimental

data on the ion mass and polyatomic effect.

� Chapter4: Within the framework of the thesis a Rutherford backscattering

spectrometry channeling (RBS/C) simulation code is written. The implemented

RBS/C code is explained in detail. The configurations and coordinates of small

interstitial clusters are calculated by molecular dynamics (MD) simulations and
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ab-initio calculations. Using the results from these simulations a new atomistic

model of damage is proposed. Within this approach the impact on the simulated

RBS/C spectra of the particular defect type, of the calculation method, and

of the beam-target alignment is investigated. The influence of mutual defect

interactions at high damage concentrations is also investigated.

� Chapter5: The conclusion section summarizes the performed work and gives

recommendations for the future work.

1.3 Status of Research

In this section we review the state of the art in modeling of as-implanted silicon

damage. We start with the limitations of the standard model in Section 1.3.1. We

continue with an overview of experimental findings on the dependence of the amount

of damage on implant parameters (Section 1.3.2). In Section 1.3.3 recent efforts in

atomistic modeling are presented.

1.3.1 Limitations of the displacement energy model

The standard model of damage formation is based on the concept of a “displacement

energy”, which means that a target atom is recoiled and thus permanently displaced

from its lattice site if the energy transferred to it in a collision exceeds a fixed value,

the displacement energy [5] . After the recoil has lost its energy due to electronic

and nuclear stopping it comes to rest in the host lattice, creating an interstitial. The

distribution of displaced atoms can be calculated by simulating the collision cascades

in the binary collision approach (BCA), following each recoil with energy above the

displacement energy. In this approach the movement of an atom is treated as a se-

ries of successive binary collisions between the ion and the host lattice atoms. If the

spatial distribution is not of interest, the number of displaced atoms can be estimated

from the energy deposited into nuclear collisions using the modified Kinchin Pease

formula [6]. The standard model has been applied to silicon target with limited suc-

cess [7]. Investigating the dose dependence of the channeled dopant profiles various

extensions to the standard model have been developed [1, 8]. In the model proposed by



CHAPTER 1. INTRODUCTION 5

Figure 1.1: Damage concentration as a function of depth. Critical point defect
density (CPDD) determines the position of the a/c interface.

Hobler [8] the amount of damage generated in the standard model is corrected by an

empirical factor frec, which depends only on the ion species and not on other implant

parameters. The factor is interpreted as describing defect recombination within a recoil

cascade (frec < 1) or as describing the more efficient damage generation (frec > 1) in

dense cascades due to spike effects. In the extended standard model it is assumed that

the lattice turn amorphous if a critical point defect density (CPDD) was exceeded [9].

Fig. 1.1 shows a typical damage profile and the influence of the value of CPDD for

the determination of the a/c interface what in turn influences the damage that re-

main upon thermal annealing. It is assumed that upon moderate thermal annealing

the amorphous layer recrystallizes, while in non-amorphized part of the target the

EOR defects remain. Due to the shape of the damage profile a small change in the

CPDD value leads to a large variation in the remaining damage profile. Therefore,

the CPDD determines not only the position of the a/c interface but also, the amount

of the damage remaining beyond the a/c interface. The CPDD can be obtained from

measured depths of amorphous layers. Beside being successful in predicting dopant

profiles [8, 10, 11] the extended standard model still has limitations. First, the range
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of the reported critical point defect density is uncertain within a factor of 10 [7] what

influences the defect concentration as discussed above. Second, the model describes

the damage in the form of Frenkel pairs (interstitials + vacancies) and is therefore not

able to predict the more complex types of the damage generated, which is important

for the quantitative prediction of subsequent thermal annealing [7, 12].

1.3.2 Experimental findings

1.3.2.1 Ion mass effect
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Figure 1.2: The number of displaced atoms per ion for different ion masses as
function of the energy deposited in nuclear collisions [13]. Experimental results
- solid lines [6]. The dashed line denotes the prediction of the modified Kinchin-
Pease model [5].

At cryogenic temperatures, where dynamic annealing is assumed to be absent, it

has been found that heavy ion implantation creates more damage than light ions for

the same amount of the energy deposited into nuclear processes [6, 13–15]. Fig. 1.2
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shows the number of displaced atoms measured by RBS/C as a function of the energy

deposited in nuclear collisions, which is a monotonic function of implant energy [6].

The dotted line represents the prediction of the classical displacement energy concept

calculated according to the modified Kinchin-Pease formula [5]. The discrepancy be-

tween the results predicted by the Kinchin Pease model and the experimental finding

increases with ion mass, as it is shown in Fig. 1.2. The change in damage morphology is

also observed by transmission electron microscopy (TEM) proving the fact that heavy

ions and medium mass ions at low temperatures create amorphous pockets, while light

ions and medium-mass ions at room temperature do not [16–18].

1.3.2.2 Polyatomic effect

Figure 1.3: Number of displaced atoms as measured with RBS/C after implan-
tation of B, F , BFn (0 ≤ n ≤ 3) and PFn (0 ≤ n ≤ 5) at 77K. The number
of displaced atoms increases more than linearly (dashed line). The predictions of
the standard model using the modified Kinchin Pease formula are shown by the
dotted line [19].

It has been shown experimentally that poly-atomic ions cause more damage than
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the same atoms implanted separately [13, 19, 20]. Fig. 1.3 shows the number of dis-

placed atoms after BFn (0 ≤ n ≤ 3) and PFn (0 ≤ n ≤ 5) molecular implantations as

a function of the energy deposited in nuclear collisions per molecular ion [19]. Without

the polyatomic effect the number of displaced atoms per ion should increase linearly

with the energy (dashed line). From Fig. 1.3 the increase in the efficiency of damage

generation with increasing molecule size can be clearly seen.

1.3.2.3 Dose-rate effect

Figure 1.4: Relative amount of damage caused by the N implantation at room
temperature with respect to the LNT implant as a function of dose-rate, for a
constant dose [21].

Except at low temperatures the amount of damage increases with dose rate, gener-

ally with a power of less than 1/2. It becomes weaker with increasing ion mass [21–27].

The amount of damage created by a room temperature N implant with respect to the

damage at LNT implant is presented in Fig. 1.4, illustrating the dose-rate effect. It is

assumed that, for constant implantation dose, the amount of damage is independent

of dose-rate at liquid nitrogen temperature (LNT).
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1.3.2.4 Ion-beam induced interfacial amorphization -IBIIA

Figure 1.5: Illustration of IBIIA (ion beam induced interfacial amorphization) and
IBIEC (ion beam induced epitaxial crystallization) effect [12] .

Ion beam induced interfacial amorphization (IBIIA) denotes the growth of a pre-

existing amorphous layer upon ion bombardment under conditions where the ions can-

not amorphize themselves an initially homogenous crystalline target [28–30]. Fig. 1.5

shows the principles of the IBIIA and its reverse effect, the ion beam induced epitaxial

crystallization (IBIEC) effect. Depending on substrate temperature the amorphous

layer can grow (IBIIA) or shrink (IBIEC) due to the influence of the ion beam. The

conditions for ion-beam induced interfacial amorphization (IBIIA) have been exten-

sively evaluated against its reverse effect, ion-beam induced epitaxial crystallization

(IBIEC), but less attention has been paid to when IBIIA dominates over bulk amor-

phization [28, 31, 32].
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1.3.2.5 Temperature dependence

Figure 1.6: Scaled number of displaced atoms as a function of implant temperature
as measured by RBS/C: 200 keV B [33] and 40 keV Sb [34].

At temperatures above ∼150 K the amount of damage formation decreases with

temperature, for light ions more rapidly than for heavy ions [33]. Fig. 1.6 shows scaled

numbers of displaced atoms as a function of implant temperature measured by RBS/C

for 200 keV B [33] and 40 keV Sb [34] implantations. The temperature dependence of

disorder produced in Si by 200 keV B implantations is very strong from about −85◦

to room temperature in contrast to only slightly temperature dependent disorder pro-

duced in Si by 40 keV Sb implants. This suggests that the ion mass effect increases

with temperature. A related effect is the increase of the critical temperature beyond

which the target cannot be amorphized at any dose, with ion mass [35].
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1.3.3 Atomistic modeling

A variety of atomistic simulation have been performed recently in order to overcome

the limitations of the standard model [1, 2, 21, 36–54].

1.3.3.1 Damage morphology and distributions

MD study performed by Nordlund et al. [36] has shown that the amorphous pockets

has on average a little less atoms than perfect Si. Studying the implantation damage by

MD simulations M.-J. Caturla et al. have found that light ions mainly produce point

defects and small clusters, while heavy ions create amorphous pockets [2]. They have

also investigated the influence of the size of the amorphous zone on recrystallization

and have indicated that the activation energy increase with the size of the pockets, i.e.

larger pockets tend to be more stable [2]. T. Motooka has proposed a homogeneous

amorphization model based on divacancy and di-interstitial (D-D) pairs to study the

ion induced damage. It has been shown that the lattice becomes unstable when the

concentration of D-D pairs exceeds 30% [37–39]. An atomistic approach based on a

Monte Carlo diffusion code coupled to a binary collision program is used to simulate the

ion implantation and annealing process [40–44]. The model proposed by L. Pelaz et al.

uses the damage structures known as interstitial-vacancy (I-V) pairs or bond defects.

The amorphization of material is assumed to occur when the local concentration of I-V

pairs exceeds 25% [41]. Recrystallization of the I-V pairs is simulated by kMC under

the assumption that the recombination energy of the I-V pair decreases as the number

of neighboring I-V pairs increases. Within this model the superlinear dependence of

damage accumulation with dose [41], the dependence of the recrystallization behavior

on amorphous-crystal interface morphology [43] are simulated. M. Jaraiz et al. have

proposed a model [40] based on the interstitial and vacancy clusters which includes

the treatment of the formation and ripening of these clusters. The obtained results

explain the success of the “+1” model, used to simulate diffusion of dopants after ion

implantation [40]. Further model based on the damage structures known as amorphous

pockets (AP), which are three dimensional agglomerates of interstitials and vacancies

(I-V pairs) is proposed [55–57]. AP recrystallization rate is characterized by their effec-

tive size where larger pockets have larger activation energy what is in agreement with

the MD results [2]. This model has been able to reproduce experimental observations
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of the extent of the amorphous layer upon ion implantation, and the difference between

the dynamic and post-cryogenic implant annealing [55, 56]. Further studies based on

the coupled BC/kMC approach have been performed to study as-implanted damage [1].

On the other hand, neither of these models intended to compare its results with the

experimental dependencies discussed in Section 1.3.2. Furthermore, these studies have

only transferred point defects from BC to kMC simulation not taking into account

the atomic structure and the correct coordinates of eventual more complicated defect

types, beside I-V pairs. It is also questionable whether the whole damage accumula-

tion and recrystallization process can be based on a single defect type like it is done in

these approaches. The model proposed by G.Otto et al. uses also coupled BC/kLMC

technique but considers the atom positions of each defect as well as the lattice strain

around the defects in the BC simulations [12, 21, 45, 47]. This model was able to ex-

plain the temperature dependence of implantation damage around room temperature

and below, the difference between dynamic annealing during the implant and post-

implant annealing [45] and the dose rate effect of light ion implantation [21]. It has

been also shown that the dynamic annealing during ion implantation and post-implant

annealing may be modeled within this model [47]. I. Santos at el. [58] have recently

proposed an improved BCA simulator based on the damage studies at the subthresh-

old energies performed by MD simulations. Simulating many collision cascades by MD

authors have been able to assign the efficiency of the damage production for each group

of atoms as a function of energy density. These results have been applied to incorpo-

rate the effect of low-energy (subthreshold) interactions in BCA models. The obtained

results are rather similar with the MD results, but obtained with significantly lower

computational time. On the other hand, the proposed model assumes the spherical

melting what is questionable for silicon.

1.3.3.2 Atom positions of defects

One distinctive features of RBS/C is the possibility to identify atomic location of

defects and host impurities by performing measurements under varying beam-target

alignment conditions. The interpretation of data requires the support of Monte Carlo

binary collision simulation of ion-channeling spectra. More qualitative analysis, such

as the evaluation of the number of defects introduced by irradiation, requires a micro-

scopic model of damage and its effect on the backscattering yield of the analyzing ions.
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Figure 1.7: Results of the multi-axial fit of the experimental RBS/C spectra per-
formed with different damage models, using the distribution of split-〈110〉 inter-
stitial (IS) plus vacancies or of the randomly displaced atoms, which reproduces
〈100〉 spectrum. Symbols refer to the experimental spectra, lines refer to simula-
tions [52].
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Figure 1.8: B profiles after 30keV channeling implantations in undamaged (110)-
Si and in (110)-Si predamaged with a N implant at 77K. Continuous lines: as
measured by SIMS. Histograms: simulations assuming no strain around defects
and considering strain. [47].

Widely used simulation programs based on picture that damage consists of displaced

atoms surrounded by the ideal lattice, suffer from a simplified, rather unphysical, de-

scription of defects [59]. A deeper physical insight into the actual location, structure

and binding properties of defects to the surrounding lattice sites is indeed necessary

to improve our current understanding of ion channeling experiments. Investigations

in this field can take advantage of the recent great deal of atomic scale modeling of

the structure of small defects [60–72]. Classical molecular dynamics (MD) simulation,

based on numerical solutions of the Newton’s equations, or more computationally in-

tensive quantum-mechanical methods (ab-initio) have been applied to determine the

structure and the coordinates of the small atomic scale defects. Such calculations

yield the atomic positions at strictly defined positions, corresponding to energy min-

ima, rather than at random positions. Götz has indicated the existence of split-〈110〉
interstitial upon B implantations in Si at cryogenic temperatures [73]. Using MD sim-

ulations Weber et al. [74] have shown that the lattice distortion due to a divacancy and

split-〈110〉 interstitial is necessary to be taken into account when fitting the multiaxial
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damage experiments.

In a recently developed approach for the interpretation of RBS/C measurements [48–

54] spectra were simulated by the MC-BCA method and disorder was described by

atomic scale models of defects, structurally relaxed by empirical potentials. Fig. 1.7

shows the results of the multi-axial fitting of experimental RBS/C spectra performed

with different damage models, the split-〈110〉 and the random interstitial model [52].

A model system is built by inserting a distribution of one defect type at a time in a

supercell. The results labeled by “relaxed TS” are obtained by relaxing the simula-

tion cell with the Tersoff empirical potentials, while the results labeled by “unrelaxed”

represent the case when the cell is populated with only defective atoms, neglecting the

strain, without further relaxation. The experimental RBS/C spectra is fitted in 〈100〉
direction and then using the fitted distribution analyzed in 〈110〉 and 〈112〉 direction.

A good multi-axial fitting is obtained using the relaxed split-〈110〉 interstitial, while the

unrelaxed split-〈110〉 or random interstitial failed to reproduce the experimental spec-

tra under the other alignment directions. Despite the success, the presented results are

influenced by the empirical nature of the Tersoff potential, as we will investigate and

discuss in Section 4.4. Within the model proposed by Hobler et al. the non-negligible

influence of the strain induced by the presence of the small interstitial clusters is in-

dicated by BC simulations of 30keV B channeling profile measurements (CPM) in N

predamaged silicon sample [47] (See Fig. 1.8).

However, none of the above discussed models can describe all experimental find-

ings. In order to develop more general models of damage accumulation, based not only

on a single defect type, more accurate and physically correct descriptions of the as-

implanted damage are required. Therefore, the goal of this thesis is to improve existing

and propose new simulation methods with the help of experimental data.



Chapter 2

Simulation Methods

2.1 Introduction

Figure 2.1: Time scales and atomistic simulation methods [7].

The understanding and modeling of ion implantation induced defects in silicon

is complicated by the many parameters influencing their generation, and by the ex-

istence of many different types such as isolated point defects, point defect clusters,

{311} defects, amorphous pockets, and dislocation loops. For the purpose of better

understanding and optimizing the fabrication process of Si devices simulation tools can

be very helpful, especially because the realization of experimental tests is often very

16
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expensive. While the overall picture of the time evolution of ion implantation induced

damage is becoming clear, many important details are not very well understood. Until

these details are clarified, the goal of predicting the evolution of damage in the device

fabrication will remain only partially realized.

Fig. 2.1 explains the time scales and adequate simulation techniques for the pro-

cesses relevant to damage formation. In an implantation process binary collision takes

on the order of 1 fs, while a full cascade develops in the picosecond time scale. The

time necessary for kinetic energy given to the lattice atoms to dissipate into the crys-

tal (quenching) is on the order of picoseconds. After all atoms have dissipated their

kinetic energy, they have settled in local potential minima and further changes of the

system requires additional thermal activation. The BC approach is adequate to de-

scribe spatial properties of the collision cascade, but it is not capable of simulating the

quenching of the collision cascade. For that purpose the molecular dynamics method

is appropriate, because it takes the many body interaction between the colliding ion

and the target atoms into account. Because of the requirement to resolve lattice vibra-

tions (which is in order of 0.1 ps ) MD simulations are rather limited to treatment of

processes with a duration of up to about 1 ns. For the thermally activated processes,

which take place on larger time scales kinetic Monte Carlo methods are used.

In order to give a satisfying description of all physically relevant processes involved

in the fabrication of Si devices it is necessary to use a variety of simulation methods

from ab-initio calculations up to continuum models. Although continuum models are

widely used in process simulation in the semiconductor industry, atomistic models are

very useful to extract relevant process parameters like diffusivity, binding energies, etc.

With decrease in the size of the semiconductor devices the role of atomistic models

increases. A more detailed description of the above mentioned simulation methods is

given in the following sections.

2.2 Ab-initio methods

The name Ab-initio is given to computations which are derived directly from the-

oretical principles, with no inclusion of experimental data or any fitting or artificial

parameters. In ab-initio methods the Schrödinger equation is solved for the set of
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nuclei and electrons of the system under study. The calculation is done using several

mathematical approximations [75].

Ab-initio simulations based on the density functional approach (DFT) are the most

accurate feasible method to consider small cells. The density functional theory is

based on the Hohenberg-Kohn theorems, which demonstrate the existence of a one-

to-one mapping between the ground state electron density and the ground state wave

function of a many-particle system [76]. In this type of calculation, there is an approx-

imate Hamiltonian and an approximate expression for the total electron density [75].

However, due to very expensive calculation manageable cell sizes have an upper limit of

a few hundred or at most about thousand atoms. In addition due to the approximation

made in the local density approach some results are not correct, e.g. the bandgap in

semiconductors. Nevertheless, these methods give excellent insight into the physics of

the system and can calculate some physical quantities which can be later used as input

in other simulation methods, like the energies and coordinates of atomic-scale defects

in silicon [77, 78] and the energy barriers between different defect configurations. These

informations can be further used to define event rates in Kinetic Monte Carlo meth-

ods [45], defect types in BC-MC codes [47] or for interpretation of RBS/C results [77].

We have performed our density functional calculation with the VASP code, written

by Kresse and Furthmüller. It uses the projector augmented-wave method, which al-

lows reduction of required basis set. A more detailed description of the physical model

implemented in VASP can be found in [79, 80].

2.3 Binary Collision Approach

The Monte Carlo binary collision approximation (MC-BCA) has been convention-

ally used to describe the slowing down and scattering of energetic ions in materials.

The BC approach has a number of advantages over analytical formulations based on

transport theory. It allows a more rigorous treatment of elastic scattering, explicit con-

siderations of surfaces and interfaces, and easy determination of energy and angular

distributions.

In the binary collision approximation the collision is treated as a classical two-body
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Figure 2.2: Schematic view of an ion trajectory in the binary collision approach.

problem with an interatomic potential which includes classical and quantum mechan-

ical terms. The basic assumption of the BCA is that the ion interacts with only one

target atom at a time what allows the use of the scattering theory from classical me-

chanics. Fig. 2.2 shows the ion trajectory and possible interaction of the ion with the

crystal atoms. Ions scatter from the target atoms (nuclear energy loss) and are further

slowed down by the interactions with the target electrons (electronic energy loss). A

target atom is displaced from its lattice position through a ballistic process if the energy

transferred to it exceeds the displacement energy (15 eV for silicon), starting a new re-

coil and leaving behind a vacancy. If the energy transfer is less than the threshold value
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the atom remains at its lattice site. The trajectory of ion or recoiled atom is terminated

when either the energy drops below a pre-specified value or when the particle leaves

the target. The BC method provides the atomic coordinates of the implanted ion and

the generated Si interstitials and vacancies during the collision cascade. Thousands of

cascades can be simulated to provide satisfactory statistical resolution and to generate

reliable dopant and damage profiles. This method has been successful in predicting

ion and damage profiles, and has been used much since the 1960’s. [8, 81–84]. Owing

to the basic approximation that collisions are binary, problems arise when the collision

cannot be fully described as two-body collision and multiple interactions between the

ion and the target atoms have to be taken into account [84–86]. Furthermore, more

complex defect types cannot be obtained by BC simulations.

For the purpose of this thesis we use the IMSIL (IMplant SImuLator) program,

which is a Monte Carlo code based on the binary collision approximation (MC-BCA).

Details about the physical model implemented in IMSIL can be found in [8]. For the

purpose of this thesis IMSIL-BC has been recently extended by a RBS/C module which

allows the calculation of Rutherford backscattering/channeling spectra [77].

2.4 Molecular Dynamics

Molecular dynamics (MD) methods describe the interactions involved in ion im-

plantation more realistically than BC methods, but require much larger amounts of

computer capacity than BC methods [84, 87]. In principle they can use interatomic

potentials derived from ab-initio or tight binding MD codes, but simulation of large

simulation cells with energies commonly used in ion implantation is presently only pos-

sible with semi-empirical interatomic potentials [36]. In classical molecular dynamics

models the time evolution of a system is determined by the semi-empirical potential

and the classical Newton’s mechanics. In the Newtonian approach the force ~Fi acting

on an atom i is calculated as [87]

~Fi(~ri) =
∑

j 6=i

~Fij(~rij) = −
∑

j 6=i

∇Vij(rij) (2.1)
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where ~Fij is the force acting between atoms i and j and Vij is the interatomic po-

tential chosen by fitting experimental data or ab-initio calculations. In order to save

calculation time and to reduce the complexity of the algorithm the sum in Eq. 2.1 is

usually not calculated over all atoms in the cell but taken over the atoms within the

cut-off radius which is determined by the cut-off value of the chosen potential. Since

MD simulations solve equation 2.1 for all atoms in the simulation cell they are limited

to the cell sizes of the order of ten million of atoms. Due to the requirement to resolve

lattice vibrations (≈ 0.1 ps) their maximum feasible simulation times are up to the

nanosecond range. Therefore, they are not suited for thermally activated processes at

time scales that occur in industrial processing steps. Despite these limitations they

can be used to extract a variety of information about formation mechanisms of differ-

ent defect types and also for the description of amorphous pocket formation [2, 36, 88],

although at lower implant energies due to high computational cost.

On the other hand, the accuracy of MD calculations strongly depends on the used

interatomic potentials. Simulations have shown that the same system studied with dif-

ferent interatomic potential leads to significantly different results [36, 52, 89]. Another

problem of the semi-empirical MD calculations is the transferability. Since the param-

eters are usually fitted to experimental data, they are excellent at predicting quantities

they were parameterized to calculate, but their predictive power in other situations is

not guaranteed.

We performed our MD simulations with a code that was written by Gärtner [84]. It

uses either the Stillinger-Weber interatomic potential [90] splined with a more accurate

interatomic potential for small separations [91] or the Tersoff potential [92]. The time

integration is performed with the Verlet algorithm [93] with an adaptive time step.

The detailed description of the used MD scheme can be found in [84, 89].

2.5 Kinetic Monte Carlo

The Monte Carlo methods are numerical techniques capable to handle complex

mathematical problems through random sampling. In the last decades fast evolution

of the computer industry has allowed fast development of Monte Carlo methods as uni-

versal numerical simulation technique [94]. In the kMC method reactions are described
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Figure 2.3: Schematic representation of the energy barrier in kinetic Monte Carlo.

through their reaction probability instead of rates in complex set of partial differential

equations, as it is done in continuum simulators. The kMC method is an event driven

technique, i.e. simulates events at random with probabilities according to the corre-

sponding event rates. Fig. 2.3 illustrates the concept behind the kMC approach. A

jump between the two states occurs when the internal energy exceeds the activation

barrier, which is usually overcome by thermal activation. The probability of exceeding

the energy barrier is given by Boltzmann’s distribution, leading to an average event

rate Pi [12]:

Pi = D × exp(−Ei,act/kT ) (2.2)

D is the prefactor, Ei,act is the activation energy, k is the Boltzmann’s constant, and

T temperature. The times of the events events are selected according to the calculated

event rates using generated random numbers. For each event the corresponding event

time is calculated according to:

ti = −1/Pi × lnRn (2.3)

where Rn is random number between 0 and 1. The event with minimal event

time is executed. If the system consists of a set of very high rate events, which after

some time have reacted and disappeared from the system leaving behind the slow-rate
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ones, the time step will automatically rise. Therefore the kMC method can simulate

the timescales involved in typical technological processing steps, including thermally

activated processes. kMC simulations have been extensively used in silicon damage

studies since 1996 [40, 42, 43, 45, 58, 95–97]. In order to get accurate results kMC mod-

els require correct list of defect types and possible events together with their activation

energies. These informations are usually obtained from external sources, experiments

or ab initio calculations. The complexity of the problem increases with the number

of different interacting defects and with the size of defect clusters. Unfortunately, the

transition energies are often unknown for defect clusters and approximations have to

be made. Furthermore, kMC cannot simulate ballistic processes because they cannot

be classified into a finite number of events.

In lattice kMC codes all defects and their corresponding lattice sites [12] are con-

sidered in the simulation cell. While in non lattice kMC code only the intrinsic (in-

terstitials and vacancies) and extrinsic (dopant) defects are included in the simulation

cell [41].

2.6 Continuum models

In continuum simulation the system is formulated as a set of partial differential

equations for each particle type considered in the process [98, 99]. The particle gain

or loss if formulated in terms of its generation and recombination rates and the diffu-

sion flux. The numerical solution of the set of equations requires spatial and temporal

discretization to reduce the derivatives into algebraic differences. The discretization

converts the problem to a large set of linear equations which are solved using standard

numerical methods. Since continuum models can more easily include other standard

wafer processing steps like oxidation, metal deposition etc, they are still widely used in

industrial applications. Because their space discretization is not limited by the atoms,

the continuum models are capable to simulate large sizes what is their main advantage

over the atomistic models.

However, this advantage is reduced as the device size shrinks. Reducing the sizes the

complexity of physical reactions on atomistic level shows up, what cannot be taken into

account by simple refining the grid used in the numerical solution. Also, the inclusion
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of new interactions imply the adding of new coupled differential equations which leads

to the growing of the complexity of the system. In addition, the standard continuum

approach does not take into account the spatial correlation between defects produced

in the same collision cascade [100], in contrast to Monte Carlo simulations [12].

2.7 Multi-scale approach

From the discussion in the previous sections we can conclude that no single sim-

ulation technique can simulate the whole process of damage creation and subsequent

annealing including all physically relevant phenomena. Either the simulation methods

are limited by computer capacity or they are not capable to give satisfying insight

into all physical processes. Therefore it is necessary to develop a hierarchical modeling

scheme which goes from quantum mechanical ab-initio calculations up to continuum

methods in order to create simulators capable to describe the whole ion implantation

process. In this thesis we combine the existing and develop new models to achieve the

better understanding of the damage physics.

Fig. 2.4 summarizes the models proposed in this thesis. The figure shows the

relation between the standard simulation methods (BC, MD, ab-initio) and newly de-

veloped simulators (heat flow, RBS/C and atomistic damage model) in this thesis. It

emphasizes the importance of the multiscale approach where the calculation on the

different time and size scales are used to extract the parameters and initial conditions

for the higher level simulators.

An amorphous pocket model based on a single simulation method does not seem to

be realistic. BC methods cannot simulate either the heat quenching process or more

complex damage types generated during the amorphous pocket creation. kMC methods

are not able to simulate the quenching of the cascade since it cannot be classified into

the finite number of events. MD and especially ab-initio methods are computationally

too expensive for this purpose. In order to overcome these limitations in Chapter 3 we

propose an amorphous pocket model that combines the binary collision approach with

continuum modeling . Using the existing BC code “IMSIL” we obtain the geometrical

distribution and remaining energies of the recoils and use it as input to a heat diffusion

simulator which is based on the numerical solution of the heat transport equation. Af-
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Figure 2.4: Summary of the two multiscale models proposed in this thesis and its
interconnection.

ter a critical density of molten atoms is reached the lattice collapse occurs. In addition

to molten atoms we consider the recoils which are also obtained by BC simulations.

Taking advantage of both approaches, atomistic and continuum, we extend the under-

standing of the amorphous pockets creation process.

In other approach, explained in Chapter 4, a new atomistic model of damage is

introduced (see Fig. 2.4). The model uses ab-initio calculations and molecular dynam-

ics simulations to obtain the structure and defect coordinates of the small interstitial

clusters. This atomic-scale modeling of defect structures was used to propose an atom-

istic model of damage for the purpose of BC-RBS/C simulations. The full quantum-

mechanical treatment of the system cannot be achieved due to the limited computa-

tional resources. Nevertheless, the quantum-mechanical description of the atomic-scale

defects can, in a large amount, be preserved and incorporated into a hierarchical scheme

proposed in Chapter 4. Although limited on the analysis of Si containing low levels of
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disorder, this model uses the advantages of the small scale modeling of defect structures

to extend the damage models in RBS/C simulations. Furthermore, we emphasize the

role of the interconnection of the two proposed models where the quantities extracted

from RBS/C simulations are used to define parameters (recoil efficiency) for the pro-

posed amorphization model.

2.8 Conclusion

We can conclude that there is no single simulation technique which can take into

account the whole ion implantation damage process. The decision for appropriate sim-

ulation tool is always the compromise between the desired accuracy and the available

computing resources. Since each technique usually gives informations at different size

and time scale, they can be combined in a multiscale scheme to achieve better modeling

of the desired process. Hierarchical modeling from ab-initio calculations to continuum

models needs still to be developed and incorporated into mainstream simulators [4].

Within this thesis we propose two multiscale methods to improve the state of the art

of damage modeling.



Chapter 3

Amorphous Pockets

3.1 Introduction

Amorphous pockets are generated by high-density energy deposition, which leads

to local melting of the target. They have been observed in silicon by transmission

electron microscopy after low-dose heavy [18] and medium-mass [101] ion implantation

at cryogenic temperatures. RBS/C measurements [6, 13–15] and molecular dynamics

simulations [2, 36, 102] have confirmed the existence of amorphous pockets, especially

upon heavy ion implantation.

The process of amorphous pockets creation has been interpreted by the energy spike

model [15] which says that a sufficiently high density of energy deposition leads to local

melting of the target and thus to more efficient damage production. It is also discovered

that the amorphous pockets can be formed through melting and quenching[46, 103, 104].

If the energy transferred to a single atom is lower than the displacement energy for the

particular material (15 eV for Si) it is not extracted from its lattice position, but when

many neighboring atoms simultaneously receive a small amount of energy the region

may melt.

The process of creation and subsequent recrystallization of amorphous pockets are

interesting, not only fundamentally, but also because of their influence on the wafer

fabrication process. Preamorphization of a wafer prior to dopant implantation can be

useful for creation of ultra-shallow junctions, suppressing channeling and leading to

a high activation of the dopants at much lower temperature than that required for

27
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annealing of damaged crystalline regions [105]. The disadvantage of this technique is

that, after regrowth, end of range defects may remain beyond the initial amorphous

to crystalline (a/c) interface. During subsequent annealing these defects contribute to

dopant clustering, cause transient enhanced diffusion, and may increase the junction

leakage if they are not completely removed [43]. Since a controversy about the mecha-

nisms of amorphization is still present [41, 43, 46, 106], a need for good understanding

of amorphization mechanisms and for the development of predictive models exists.

Despite many published amorphization models [41, 46, 58, 106, 107], several effects,

i.e. the ion mass and polyatomic effect have not been quantitatively modeled up to date.

Within this thesis we suggest an amorphization model which will be able to quantita-

tively explain the experimental findings on the ion mass and polyatomic effect. Using

standard binary collision simulation the spatial distribution of energy deposition is ob-

tained. It is assumed that all deposited energy is instantaneously converted to heat,

and the subsequent heat quenching process is modeled with the heat transport equa-

tion. The heat transport equation is modified to consider the heat of melting, when

the melting temperature is crossed at any point in space, and the energy is stored into

the crystal after an ion melts. It is discretized with the finite volume method on grid

points that coincide with the crystallographic lattice sites, which allows easy determi-

nation of the initial conditions and molten atoms. In order to avoid the unphysical

concept of a single molten atom we require that before an atom is considered as molten

that its neighbors also meet the melting criterion. After the heat flow simulation and

detection of molten atoms the following procedure is applied: For each atom in the

cell the local concentration of the molten atoms contained in the sphere defined within

the radius, with center in the investigated atom, is examined. If the concentration of

molten atoms exceeds the critical defect density the atom is labeled as amorphous, if

not it is crystalline. The loop is done over all atoms in the cell, and the new configu-

ration of amorphous atoms is obtained. We find that using a melting radius of 8Å and

the critical defect density of 10% we obtain very good agreement with the experimental

results. We will show that the simulations without taking into account the local lat-

tice collapse are not able to qualitatively and quantitatively explain the experimental

data. Therefore we can conclude that the local collapse of the crystal lattice once the

damage exceeds a threshold is an important mechanism for amorphous pocket creation.

In the Section 3.2 we explain in detail the ion mass and polyatomic effect which

particularly will be treated with our model. In the next Section 3.3 we discuss the
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state of the art of the published amorphization models. In Section 3.4 we present the

numerical and computational details of our model, followed with the results and dis-

cussion in Section 3.5. Final conclusion is given in Section 3.6.

3.2 Energy spikes in Si due to heavy ion bombard-

ment

In this section we introduce the experimental data on the ion mass and polyatomic

effect and their physical interpretation. These two effects are clear evidence of the

amorphous pockets existence. The experimental data presented here have been ob-

tained by in-situ RBS/C measurements at cryogenic temperatures where annealing

effects are absent, what is important since our model accounts only for the amorphiza-

tion and not the recrystallization process at the same time.

3.2.1 Ion mass effect

Figure 3.1 shows the number of displaced atoms per incident ion versus energy

deposited in nuclear collisions for different ion species, obtained at cryogenic temper-

atures [6]. The energy deposited in nuclear collisions is a monotonic function of the

implant energy. The dotted line represents the prediction of the classical displacement

energy criterion calculated according to the modified Kinchin-Pease formula [5] and is

presented for comparison purposes.

From Fig. 3.1 the deviations of the measured numbers and those predicted by the

classical displacement theory can clearly be seen. The discrepancies are greater by up

to a factor of ≈ 8 for the heavier elements. Furthermore, a systematic dependence of

the number of displaced atoms on both ion mass and energy is evident in Fig. 3.1 for the

experimentally obtained values. For constant nuclear deposited energy the number of

displaced atoms consistently increases as the mass of the implanted ions increases. The

other systematic dependence is that for constant ion mass, the gradient of the number

of displaced atoms decreases with energy finally approaching the value predicted by
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Figure 3.1: Number of displaced atoms per incident ion as a function of energy
deposited in nuclear collisions for various implant species (at 35 K). Experimental
results - solid lines [6]. The dashed line denotes the prediction of the modified
Kinchin-Pease model [5].

the modified Kinchin Pease formula. Both of these dependences can be explained by

the energy spike model [6, 13, 15].

As the incident ion mass increases, the cross section for the nuclear (elastic) col-

lision increases what results in a higher density of recoil atom being produced and

subsequently higher density of energy deposition. The heavier the ion is the larger the

nuclear losses are and the smaller the range of the ions is. Due to the smaller range

heavier ions deposit their energy in a smaller volume, what increases the probability

of energy overlapping leading to a more efficient damage production. Therefore the

damage production increases with ion mass. Reducing the ion mass leads to the devel-

opment of more discrete and isolated structures within the cascade. This reduces the

probability of overlap of the heat zones and leads to a less efficient damage production.

Fig. 3.2 illustrates the distribution of the energetic atoms, obtained by binary col-

lision simulation, for a light (B) and a heavy ion (Tl) implant for the same ion implant
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Figure 3.2: B30 keV implantation cascade (left) and Tl30keV implantation cascade
(right) obtained with BC simulations, showing the differences in created damage den-
sity upon light ion (B) and heavy ion (Tl) implantation for the same ion implant
energy. The arrows indicates the ion’s entrance point, while the maximum range of
obtained energetic atoms (or the size of simulation cell) is 190 A and 75 A, respectively.
As it can be seen the density of recoils of Tl cascade is large, which in turns lead to
amorphization of local regions, what is not the case for B implants.

energy (30 keV). The term “energetic atoms” refers to the atoms that have received a

minimum energy in the collision event, but not enough to leave their lattice sites, as

well as to the slowed-down recoiled atoms which were originally displaced from their

lattice sites and finally settle in the crystal lattice. The presented distributions confirm

that heavy ions (Tl) have smaller range (75 Å) compared to light (B) ions (190 Å),

and thus deposit their energy in a smaller volume. Heavy ion creates large clusters of

disordered atoms, while the size and the number of disordered atoms in clusters pro-
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Figure 3.3: Tl 20 keV (left) and Tl 120 keV (right) implantation cascade obtained
with BC simulations. Low energy range ions (Tl 20 keV) create very dense cascade
through all part of its trajectory, while the high energy implant (Tl 120 keV) creates
the subcascades (Si recoils) which carry the energy out of the high energy deposition
region thus decreasing the probability of energy overlapping. The arrows indicates the
ion’s entrance point, while the maximum range of obtained energetic atoms is 80 A
and 550 A, respectively .

duced by light ions (B) are much smaller. In addition a more isolated cascade structure

is observed upon light (B) than heavy ion (Tl) implant, what is consistent with the

discussion given in the energy spike model.

The systematic energy dependence of damage for constant ion mass is explained

as follows [6]: Also in Fig. 3.1 two energy ranges with different slopes for constant ion

mass can be distinguished. This difference in the slope has been taken as evidence
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that the damage created through heavy ion impact can be assigned to at least two

different types as a function of energy. The relative contribution of each component is

determined by the incident ion energy and can be divided in two ranges. For low and

medium energies (Enuc < 60 keV ) ions create an amorphous zone over a major part

of their trajectory leading to the superlinear damage enhancement. At higher energies

(Enuc > 60 keV ) the asymptotic approach of the measured energy dependence to those

predicted with the classical displacement model indicate that during the initial part

of the ion trajectory, the displacement collisions were enough spatially separated so

that the energy deposition is dilute enough, what reduces the influence of energy spike

in this energy range. Due to enough separated energy deposition during the initial

part of the ion trajectory, high energy ions create mainly isolated defects. Therefore,

the conclusion is that in this regime the linear cascade model plays a more important

role. In the high energy range the gradient of the number of displaced atoms versus

energy approaches, but does not reach, the value calculated according to the modified

Kinchin-Pease model. The actual value of the slope extracted from the experimental

data presented in Fig. 3.1 for Tl implant in the Enuc > 60keV regime is ≈ 2 times the

Kinchin-Pease slope.

In Fig. 3.3 we illustrate the results of the BC simulation for 20 keV and 120 keV

Tl implants. Presented distributions of the energetic atoms confirms the qualitative

difference in the cascade topology for two different energy regimes. Tl 120keV ions

create spatially separated subcascades because high energy Si recoils carry energy out

of the high energy deposition region. This in turn dilutes the energy distribution,

reducing the probability of energy overlapping. For low energy implant (Tl 20 keV)

the density of displaced atoms is high throughout the whole part of the ion trajectory,

what increase the probability of energy overlapping and thus the efficiency of damage

generation.

3.2.2 Polyatomic effect

According to the standard displacement model the number of displaced atoms per

incident ion as a function of energy per atom, for the molecular implantations should

be the same as when the atomic ions are implanted separately. But it is discovered that

each molecular ion produces more damage per implanted ion than the corresponding
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Figure 3.4: Ratio of the number of displaced atoms after P2, As2 and Te2 molec-
ular implantation and the corresponding number after atomic ion implantations
with the same atom dose and atom energy, as a function of atom energy. Lines:
Proposed amorphous pocket model. Symbols: in-situ RBS data obtained at cryo-
genic temperature [6].

monoatomic bombardment [6, 15] for the same values of energy per atom and for the

same atomic dose. Fig. 3.4 shows the ratio of the number of displaced atoms after P2,

As2 and T l2 molecular implantations and the corresponding number after atomic ion

implantations with the same atom dose and atom energy [6]. From Fig. 3.4 a system-

atic variation of the ratio of the number of displaced atoms with both ion mass and

energy can clearly be seen. As the ion energy increases the energy spike becomes of less

importance, since it occurs at the end of the ion trajectory. Therefore less overlap of the

spikes created by the individual atoms of the molecule occurs leading to less increase

in the local energy density. This in turn decreases the gradient of the displaced atom

ratio as the energy increases. The decreasing magnitude of the displaced ratio with ion

mass is explained by the expected differences in the cascade structures. The heavy ion

cascade would directly form an amorphous zone over a major part of its trajectory as

discussed in the previous section. As the ion mass is reduced, a discrete and isolated

structure develops within the collision cascade. This reduces the probability of overlap
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of the branches of the cascades of the individual atoms of the molecular ion. Therefore,

the local energy density is smaller and less damage is produced for lighter ions. We

can conclude that the polyatomic effect is less pronounced for light than for the heavy

ions.

3.3 Existing amorphization models

In this section we give an overview of some of the existing amorphization models

summarizing their field of application and pointing out at their limitations.

The number of displaced atoms predicted by the modified Kinchin-Pease model is

given by: ND = 0.42Enuc/Ed, where Enuc is the energy deposited in nuclear collisions

and Ed is the threshold displacement energy, i.e. the energy necessary to produce a

displaced atom in the target [5]. For silicon, the displacement energy is conventionally

taken as 15 eV. In Fig. 3.1 the experimental results [6] and the predictions of the mod-

ified Kinchin-Pease model are compared. From the figure we can see that the damage

induced by heavy ion mass bombardment far overwhelms the damage predicted by the

modified Kinchin-Pease model. In addition since the number of displaced atoms in

the modified Kinchin-Pease model depends only on the energy deposited in nuclear

collisions and not on the ion mass, this model is able to qualitatively describe neither

the ion mass effect nor the polyatomic effect.

One of the often used amorphization models is based on a critical point defect

concentration, i.e. a region becomes amorphous if a critical defect density is ex-

ceeded [7, 107] (see Fig. 1.1). A variation in the critical defect density leads to a

different depths of the a/c interface, which strongly affects the amount of damage after

recrystallization. The range of the reported critical point defect density is presented

in Fig. 3.5 [7]. It can be seen that the CPDD is uncertain within a factor of 10.

Vineyard has proposed a simple heat flow model to estimate the size of amorphous

pockets [108]. After the recoils have slowed down below the cutoff energy he has as-

sumed that their remaining energy can be converted to temperature and the subsequent

evolution of heat can be treated with Fourier law. In Fig. 3.6 we have compared the
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Figure 3.5: Critical point defect density extracted from measured depths of amor-
phous layers and BC simulations [7].

results of Vineyard’s model with the published experimental results. The results of

Vineyard’s model are obtained using coupled BC/pure heat transport model. The re-

maining energy of the energetic ions, calculated by BC, is converted to temperature

and the quenching is simulated by the Fourier law. An atom is considered as molten

when its temperature crosses the melting temperature. We can conclude that using

the simple heat equation based on Fourier law with the criterion that the target melts

wherever the melting temperature is exceeded, highly overestimates the number of dis-

placed atoms per incident ion. It also does not give any ion mass effect. One of the

reasons could be that this model does not take into account the heat of melting.

L. Pelaz et al. have proposed kMC treatment of amorphization and recrystalliza-

tion based on interstitial-vacancy (I-V) pairs (bond defects) as elementary units [41–44].

The BCA simulations are used to generate the distribution of the interstitials and va-

cancies. As the vacancy approaches an interstitial they do not recombine immediately

but form a metastable defect, known as bond defect. The bond defect, presented in

Fig. 3.7, consists of a local rearrangement of bonds in the crystal with no excess or

deficit of atoms. The amorphization of material is supposed to occur when the local
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Figure 3.6: Number of displaced atoms per incident ion as a function of energy
deposited in nuclear collisions for various implant species P, As, Te, Tl. Experimen-
tal results: solid lines [6]. Dashed lines represents Vineyard’s model simulations
obtained with our simulator.

concentration of bond defects exceeds 25%. Amorphous pockets are treated as con-

glomerates of bond defects, using Monte Carlo methods and assigning activation energy

to each bond defect. The activation energy of the particular I-V pair increases with

the number of surrounding I-V pairs, going from 0.43 eV for isolated I-V pair up to

5 eV for I-V pair embedded into an amorphous matrix. This model was able to ex-

plain the following experimental observations: the superlinear dependence of damage

accumulation with dose (see Fig. 3.9), the critical regime for the crystal-amorphous

transition determined by the dose-rate and implantation temperature (see Fig. 3.8),

and the recrystallization dependence on amorphous-crystal interface morphology. On

the other side, since defect annealing is absent at cryogenic temperatures this model is

not able to properly treat the ion mass and polyatomic effect described in Section 3.2.

Therefore, a model based only on the kMC approach is not capable of explaining these

two effects. In addition, it is questionable whether the whole amorphization and crys-

tallization process can be based on a single defect type, namely bond defect, whose

existance has not yet been confirmed experimentally but only by molecular dynamics
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Figure 3.7: Atomic structure of the bond defect. Dashed lines represent atoms and
bonds in the perfect lattice. Atoms A and A

′

move along the direction indicated
by the arrows and switch their bonds with atoms B and B

′

, giving rise to the bond
defect [44].

Figure 3.8: Amorphous fraction vs. substrate temperature for 1MeV Si implants
to a dose of 1015cm−2 with several dose rates in cm−2s−1. Solid symbols correspond
to the experimental data, obtained with RBS. Solid lines: simulation results with
proposed model [41, 44].
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Figure 3.9: Dose dependence of the damage produced by 100 keV Si ions at room
temperature. Solid and dashed lines correspond to the single (SA) and double
alignment (DA) RBS experiments. Symbols represent I-V pair model [41].

simulations [44].

Another model, recently proposed by Hobler et al. [46], takes into account the heat

of melting for each atom. The model is based on melting studies performed by MD

simulations. All atoms within a small sphere in the center of the simulation cell are

given the same energy and the evolution of the system has been observed. Displaced

atoms have been identified with the Lindeman criterion [109]. It was found that a

well defined minimium density of deposited nuclear energy must be exceeded in or-

der that an amorpous pocket may be generated, which is shown in Fig. 3.10. Above

this threshold the size of the amorphous pocket depends only on the total amount of

deposited energy rather than the energy deposition density. For deposited energy den-

sities higher than about 2.5 eV/atom the size of the amorphous pocket is larger than

the size of the sphere of initially energetic atoms, which is consistent with the melting

process predicted by the spike effect. Based on these MD results the authors have

presented another amorphization model: Each energy deposition event calculated with

BCA simulations is assigned a sphere the volume of which would be molten according

to the heat of melting (0.52 eV/atom in Si). The connected volume of overlapping
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Figure 3.10: Number of displaced atoms 4.5 ps after giving atoms in the center of
the simulations cell a total energy of 500 eV, 1 and 3 keV. The energy deposition
density is varied. The number of displaced atoms for 500 eV and 3 keV are scaled
by factors of 3.16 and 0.279, respectively [46].

Figure 3.11: Ratio of the number of displaced atoms after P2, As2 and Te2 molec-
ular implantation and the corresponding number after atomic ion implantations
with the same atom dose and atom energy, as a function of atom energy. Lines:
Proposed amorphous pocket model [46]. Symbols: in-situ RBS data obtained at
cryogenic temperature[6].
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spheres defines an amorphous pocket candidate. The number of displaced atoms con-

tained in the volume is the ratio of the sum of energies deposited in it and the heat

of melting. Surface effects are taken into account by shrinking the amorphous pocket

with constant shrink radius and if the remaining pocket size meets the minimum 10

atoms, an amorphous pocket is generated, otherwise the interstitial is used to calcu-

late the number of displaced atoms. The model yields the correct energy and the ion

mass dependence of the poly-atomic effect at cryogenic temperatures as it is presented

in Fig. 3.11. But on the other hand it has failed to explain the ion mass effect for

mono-atomic implantations. In addition the model assumes spherical geometry of the

pocket which, in general, is not the case in silicon.

The recently proposed amorphization model by I. Santos et al. [58, 104, 110] uses

classical MD calculation to investigate the damage generation for energy transfers be-

low the displacement energy threshold. Like in Hobler’s model [46] atoms located in a

sphere in the center of the simulation cell are given a certain energy with velocities in

random direction, and the subsequent motion of atoms is simulated with the Tersoff

III potential. The energy per atom is varied between 0 and 20 eV. Total deposited

energies have been chosen between 50 and 500 eV. Displaced atoms have been ex-

tracted using a method based on the time average of atom coordinates. Considering

the obtained MD results the authors have defined the efficiency of damage generation

as the number of final displaced atoms per initial excited atom. Fig. 3.12 shows the

efficiency of damage production as a function of the initial energy of excited atoms

for different total deposited energies. From the figure we can see that, according to

MD results, there is no stable damage production for initial energy densities below

1eV/atom independent of the total energy deposited into the cell, while the standard

BC approach requires minimum 15 eV/atom to generate a defect. These results are

used to incorporate the effect of subtreshold energy interactions in BCA models. First,

all energy transfers that take place during the BCA cascades are taken into account.

Next, for every atom that receives more than 1 eV (MD treshold) in a collision a local

environment is defined by considering all surrounding atoms within a second neighbor

distance which also have energies above 1 eV. The atom and its local environment

define a group whose efficiency can be extracted from Fig. 3.12. The atom is consid-

ered as molten, or displaced, only if the corresponding efficiency is equal or above one.

Finally, the atom energy is shared with its neighbors. This procedure is repeated until

all deposited energy is dissipated. The results presented in Fig. 3.13 compare the per-

centage of cascades generating a given number of the displaced atoms obtained by MD
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Figure 3.12: Efficiency of damage production as a function of the initial energy
of moving atoms for different total deposited energies. Dashed lines represents the
efficiency of BCA simulations [58].

Figure 3.13: Percentage of cascades generating a given number of displaced atoms
obtained from simulations of 1 keV implants of B, Si and Ge ions into Si using MD
(left bottom) and improved BCA model (right bottom). Avarage numbers of displaced
atoms are also shown [58, 104].
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simulations and using the proposed BCA model. We see that the proposed modified

BCA model obtains very similar results to those produced by MD simulations, but at a

much lower computational cost. However, the comparison of experimental data within

the results of this model is not attempted. On the other hand, the proposed model,

like Hobler’s model [46], assumes spherical melting geometry which is not always the

case in silicon. In addition, the energy sharing between the neighboring atoms should

be done correctly. Although the energy transfers below 1 eV cannot melt an atom,

they can contribute to the overlapping of heat zones of neighboring hot atoms what

can additionally increase the amount of damage.

We can conclude that no single up-to-date published model appears to be able to

properly account for and predict all experimental observations related to amorphous

pockets creation, but usually captures only certain part of the physics and therefore

its application is rather limited.

3.4 Amorphous pocket model based on the numer-

ical solution of the heat conduction equation

and lattice collapse

Although MD simulations can simulate the damage accumulation upon heavy ion

implantation and the amorphous pockets creation process, they are often not well

suited for practical application due to their high computational cost. When designing

a simulation concept for a heavy ion implantation one faces a much more complicated

physics and variety of interactions and transition states between ion and material than

for light ions, because heavy ions create amorphous pockets and not only point defects.

This sets the requirement of making a compromise between the desired accuracy of

the model, from one side, and the available computer resources from the other side.

Trying to keep the physical background of the process and to avoid the computational

limits imposed by MD simulations, we present a model of amorphous pocket creation

based on binary collision simulations to generate the distribution of deposited energy,

and on the numerical solution of the heat transport equation to describe the quench-

ing process. The model uses Vineyard’s assumption that the remaining recoil energy
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can be converted into heat and subsequently treated with the simple heat diffusion

equation [108]. Space is discretized with the finite volume method on grid points that

correspond to the crystallographic lattice sites. The heat equation is modified to con-

sider the heat of melting when the melting temperature is crossed at any point in space

and to consider the energy stored into the crystal after an atom melts. Local collapse

of the crystal lattice once the damage exceeds a threshold is also taken into account.

The results obtained with this model are in very good agreement with published

experimental data on P, As, Te and Tl implantations in Si and with P, As, Te data on

the polyatomic effect at cryogenic temperature.

Nevertheless, it should be pointed out that the heat conduction model is not strictly

correct at such small space scales, but it is taken as a basis for practical modeling in

many fields of science. Furthermore, the aim of our work is not to describe quantita-

tively every detail of the temperature evolution of the sample, but only to obtain the

overall number of molten atoms upon heavy ion bombardement. Therefore, we assume

that the heat conduction law gives a satisfying physical description of our problem.

3.4.1 Numerical model of the heat transport equation

Here we present the physical background of the heat transport equation and its

numerical solution implemented in our simulations. Eventual limitations of the model

are discussed.

When temperature is transfered through a system, the transport can be described,

to a first order, by a phenomenological relation of the form [111–113]

~q = −λ(T )∇T (~r, t) (3.1)

where T [K] denotes temperature, ~q [W/m2] the heat flux and λ [ W
m·K

] the thermal

conductivity of material. Eq. 3.1 is known as Fourier‘s law, which reads: the heat flux

is proportional to the negative of the local temperature gradient, heat flows from a hot

reservoir to a cold reservoir. The heat flux measures the heat transfer per unit area

in unit time, the temperature gradient provides the driving force for the flux and the
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inverse of the thermal conductivity characterizes the resistance of the system to heat

flow. Equation 3.1 is supplemented with the law of heat conservation [113–115]

ρcp(T )
∂T (~r, t)

∂t
= −∇~q (3.2)

where ρ [ kg
m3 ] is the mass density and cp [ J

kg·K
] is the specific heat of the material,

which is in general a function of temperature.

Since the initial conditions for the heat transport are obtained by BCA simulations

which give the energy of recoils as output the left side of Equation 3.1 will be expressed

as a function of energy. Using the energy equation applied to a solid undergoing con-

duction heat transfer we have [114]

E(~r, t) = ρ · V
T

∫

0

cp(ξ)dξ (3.3)

where V [m3] denotes the volume of the system. Taking the derivative of Eq. 3.3

with respect to T we have

∂E(~r, t)

∂T
= ρ · V · cp(T ) (3.4)

Using the chain rule we can write

(

∂E(~r, t)

∂t

)

/

(

∂T (~r, t)

∂t

)

= ρ · V cp(T ) (3.5)

combining Eq. 3.5 with Eq. 3.2 we obtain

∂E(~r, t)

∂t
= −V∇~q (3.6)

Introducing Eq. 3.1 in Eq. 3.6 we write the energy balance equation that describes

conductive heat flow [116]
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∂E(~r, t)

∂t
= V∇(λ(T )∇T (~r, t)) (3.7)

Figure 3.14: Temperature dependence of specific heat for silicon [117].

Due to the importance and wide range of potential applications, many analytical

and numerical methods for the solution of the diffusion equation have been proposed

[113, 115, 118–120]. But the analytical solutions are possible only for a few special

cases of the initial and boundary conditions. In most cases Eq. 3.7 does not have

an analytical solution, or the analytical solution is even more difficult to implement

than a suitable numerical solution. Keeping in mind that one of the main ideas in the

proposed amorphization model is the introduction of the heat of melting for each par-

ticular atom and atomistic resolution of the system for easy detection of molten zones,

analytical solution would be rather time consuming and inappropriate to our problem.

Therefore we solve Eq. 3.7 using numerical solution based on the finite volume method

with atomistic space discretization.
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Figure 3.15: Temperature dependence of thermal conductivity [117].

Applying Eq. 3.7 to such small (atomistic) length scale may appear questionable,

but many authors assume that the standard heat conduction theory can be applied

to describe the energy dissipation of the thermal spike [15, 108, 121–123]. As a conse-

quence of Eq. 3.1 any temperature disturbance will propagate at an infinite velocity

through the media [124, 125]. Indeed, the simulated heat transport is too fast at short

times. Assuming a finite heat velocity in the heat transport equation Cattaneo and

Vernotte have obtained the hyperbolic heat conduction equation [111, 114, 124–127],

which assumes the finite heat flow determined by the phonon relaxation time. This

equation is not only numerically complicated to solve, but can also lead to the un-

physical results, like negative temperatures [126] or singularities associated with the

interaction of a wave front and a boundary [128]. In order to avoid these inconsistencies

the numerical solution of the hyperbolic heat equation would be rather time consum-

ing [128], where the main advantage over MD simulations could be lost. In addition

the main deviation of the Fourier compared to the non-Fourier law are reported to be

at a very short time scales [126]. Since we are only interested in the overall number of

molten atoms and not in every detail of the time evolution of the temperature field we
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assume that this model is applicable to our problems. We also assume that taking into

account the geometrical distribution of initial energy deposition and to obey energy

conservation, as is done in our approach, are the most important features of amorphous

pocket simulations.

The temperature dependence of various physical parameters, such as the specific

heat and the thermal conductivity can be included in the simulations, if necessary. The

experimentally measured thermal dependence of the specific heat and the thermal con-

ductivity of crystalline silicon are presented in Figs. 3.14 and 3.15, respectively [117].

For the thermal conductivity in the temperature range above the melting temperature

the dependence described by the Wiedmann-Franz law [129–132] can be used. The

variation of the specific heat in the temperature range above the melting temperature

is not significant, therefore the value at the melting temperature can be used.
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Figure 3.16: Applied geometrical discretization. Finite volume that encloses silicon
atom (in the center) and the four nearest neighboring atoms, presented with dark
ball and stick models. The volume is defined by 4 symmetry planes of the distance
between the atom and its 4 nearest neighbors (i.e: regular hexagon EFGHIJ),
and by 12 triangles in the planes perpendicular to the direction of atom’s second
nearest neighbors (Shadowed triangle IKH represents one of the 12 triangles).
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Figure 3.17: Illustration of the geometrical relation of two neighboring volumes
and the surface through which heat flux flows. Only one surface area is indicated,
while the relation with the other three neighbors is completely symmetric. The
shadowed hexagon represents the area through which the heat flows occurs. Note
that the hexagon is placed in the midplane perpendicular to the distance between
two atoms and intersects the bond exactly at its center.
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The space is discretized with finite volumes on grid points that coincide with the

crystallographic lattice sites. The applied geometrical discretization with the corre-

sponding body defining the volume of the grid point, and the relevant areas used for

the heat flow are presented in Fig. 3.16. The silicon atom is presented by the black

sphere in the center together with its 4 nearest neighbors (4 other black spheres) and

the corresponding atomic bonds (sticks between the atom and its neighbors). The

volume is defined by the symmetry planes at the distance between the atom and its 4

nearest and 12 second nearest neighbors. From Fig. 3.17 we can clearly see that the

intersection area between two neighboring volumes is the regular hexagon EFGHIJ

(for each neighbor one), placed in the midplane perpendicular to the distance between

two atoms. The hexagon intersects the bond between two atoms exactly in its cen-

ter and in the middle of the bond. 12 further triangles define the surface area in the

planes between the atom and its second nearest neighbors. One of the triangles IKH

is shadowed in Fig. 3.16.

From Fig. 3.17 we see that the spacing between the neighboring grid points coin-

cides with the nearest neighbor distance between the silicon atoms and is given by

4x = alatt

√
3

4
(3.8)

where alatt = 5.43 Å is the lattice constant of silicon.

The volume of the grid element, defined by the body enclosing the silicon atom

(See Fig. 3.16) is the silicon atom volume:

V = Vatom =
a3
latt

8
≈ 2.0 × 10−29 m3 (3.9)

Using the geometry illustrated in Figs. 3.16 and 3.17 we can write down the equa-

tion for the heat flux conservation (Eq. 3.6) in integral form:

∫

V

∂E(~r, t)

∂t
dV = −

∫

V

V∇~qdV (3.10)

Applying the Gauss-Ostrogradsky theorem [133], which says that the surface inte-

gral of a vector over a closed surface equals the volume integral of the divergence of
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that vector integrated over the volume enclosed by the surface, we write

∫

V

∂E(~r, t)

∂t
dV = −V

∫

S

~qd~S (3.11)

where S is the surface enclosing the body in Fig. 3.16. The surface vector is oriented

so that it points out of the node volume. Since the node volume V is a constant it is

placed in front of the integral. To simplify our calculations we assume that the heat

flow between the atom and its second nearest neighbors can be neglected. From this

assumption it follows that the heat flows only between the atom and its first neigh-

bors through the regular hexagons, as it is shadowed in Fig. 3.17. The surface of the

hexagon is

Shex = 6 · a2

√
3

4
= a2

latt

3
√

3

16
(3.12)

Where the relation between the edge of the regular hexagon a and the silicon lattice

constant has been used

a =

√
2alatt
4

(3.13)

Using the geometrical relation and introduced assumption the surface integral in

Eq. 3.11 becomes

∫

S

~qd~S =

j=4
∑

j=1

~qi,j ~Shex =

j=4
∑

j=1

qi,jShex = Shex

j=4
∑

j=1

qi,j (3.14)

S consists of 4 equal hexagons (for each neighbor one), thus Shex can be placed in

front of the sum. Also, considering geometrical relation in Fig. 3.17 the scalar product

in Eq. 3.14 is replaced by the plain product, since the surface is placed perpendicular to

the heat flux (the surface vector is parallel to the heat flux vector). Index i represents

the particular atom and index i, j denotes its jth neighbor. Introducing Eqs. 3.9, 3.12

and 3.14 into Eq. 3.11 we obtain

∫

V

∂E(~r, t)

∂t
dV = −V 3

√
3

16
a2
latt

j=4
∑

j=1

qi,j (3.15)
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Assuming that the energy is constant over the atom volume, the integral in 3.15

can be replaced by product

V
∂E(~r, t)

∂t
= −V 3

√
3a2

latt

16

j=4
∑

j=1

qi,j (3.16)

Thus

∂E(~r, t)

∂t
= −3

√
3a2

latt

16

j=4
∑

j=1

qi,j (3.17)

For the space derivatives in Eq. 3.1 we have the following difference equation:

∇T (~r, t) =
T ni,j − T ni

4x (3.18)

Where T ni , T
n
i,j denote the temperature of the atom and its jth neighbor, respec-

tively. Therefore the difference equation describing the heat flow between the atom i

and its jth neighbor reads

qi,j = −λ(T )
T ni,j − T ni

4x (3.19)

Using the Euler forward finite difference scheme, the time derivative in Eq. 3.17

can be replaced by the following difference equation:

∂E(~r, t)

∂t
=
En+1
i − En

i

4tn
(3.20)

En+1
i represents the node energy for the next time step while En

i is the node energy

in the current time step. The spacing of the timestep tn is

4tn = tn+1 − tn (3.21)

The index n of the timespacing indicates that the spacing in time need not to be

constant.

Introducing Eqs. 3.19 and 3.20 into Eq. 3.17 we obtain:
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En+1
i − En

i

4tn
=

3
√

3a2
latt

16

j=4
∑

j=1

λ(T )
T ni,j − T ni

4x (3.22)

From Eq. 3.8

En+1
i − En

i

4tn
=

3alatt
4

j=4
∑

j=1

λ(T )(T ni,j − T ni ) (3.23)

The temperature dependence of the thermal conductivity can be approximated as

the average of the atom’s thermal conductivity and the thermal conductivity of its

neighbor

En+1
i − En

i

4tn
=

3alatt
4

j=4
∑

j=1

(T ni,j − T ni )
(λni,j + λni )

2
(3.24)

Solving the previous equation for the grid energy at the new timestep En+1
i we

finally obtain the numerical form of the energy balance equation (Eq. 3.7):

En+1
i = En

i + 4tn ·
3alatt

8
·
j=4
∑

j=1

(λni,j + λni )(T
n
i,j − T ni ) (3.25)

The applied forward Euler algorithm, called explicit timestepping, uses the grid

values of only the previous timestep (index n, t = tn) to calculate those of the next

(tn+1). In this case, the spatial derivatives will be evaluated at timestep n and the

time derivatives at n + 1 timestep. In other words each new energy at timestep n+ 1

is calculated independently, so it does not require simultaneous solution of system of

equations, which can be memory and time consuming. But on the other hand the

disadvantage of explicit timestepping algorithms is conditional stability, which means

they are limited to smaller timesteps than the implicit ones. Applying von Neumann

stability analysis [134] we obtain maximum time step for the stable numerical solution:

4tn ≤ a2
latt

24 ·D (3.26)

where D denotes the thermal diffusivity of silicon and can be calculated from the
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corresponding values of the specific heat and thermal conductivity

D(T ) =
λ(T )

ρ · cp(T )
(3.27)

Taking into account the temperature dependence of the thermal diffusion D(T ) in

Eq. 3.26 the requirement for the maximum timestep becomes

4tn ≤ min
j

[ 4x
4 ·Di,j

]

(3.28)

where the minimum is over the four nearest neighbors. In Eq. 3.28 Di,j reads

Di,j =
D(T ni,j) +D(T ni )

2
(3.29)

Applying Eq. 3.28 for each atom and before each time step we secure that our sys-

tem is stable. As a consequence the calculated timestep varies through successive time

steps being adapted to the maximal possible value. This technique is called adaptive

time stepping.

3.4.2 Program details

The principles of the program are outlined in the following sections and summarized

in Fig. 3.18.

The first step consists of calculating the collision cascade by binary collision simula-

tion code “IMSIL”. The geometrical distribution and remaining energy of the energetic

atoms and stopped recoils is obtained. Next, the initial conditions for the heat trans-

port simulations are calculated, where the remaining energy of the energetic atoms is

assigned to their nearest lattice sites, as it is explained in Section 3.4.2.2. Since in

Eq. 3.25 we need both energy and temperature, the energy of atoms is converted to

the temperature according to the procedure explained in Section 3.4.2.3. In the next

step the size of the simulation cell and the boundary conditions for the heat flow are

determined. Afterwards, heat transport is simulated according to the numerical solu-

tion described in Section 3.4.1. During the heat quenching the distribution of atoms
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Figure 3.18: Flowchart of amorphous pocket simulation program.
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labeled as “molten” is built up cumulatively, i.e. an atom is considered molten if it

ever has met the melting criterion, explained in Section 3.4.2.5. The simulation is

performed until the energy deposited through the ion implantation is dissipated in the

surrounding crystal. In the next step a second (labeled as “geometrical” in Fig. 3.18)

criterion is applied to the molten zones, obtained by the heat transport simulation.

Applied criterion is explained and described in Section 3.4.2.6. Finally, the distribu-

tion of recoiled atoms is added to the final number of displaced atoms according to

the procedure outlined in Section 3.4.2.7. The detailed description of each step of the

program is given in the following sections.

3.4.2.1 Binary Collision simulation of collision cascade

Using the binary collision code “IMSIL” [8] the geometrical distribution of energy

deposited in nuclear collisions is obtained. The coordinates and energies of the ener-

getic atoms are calculated simulating full collision cascades of the ion and all subsequent

secondary and higher order recoils down to the cut-off energy where they are not able

to produce further displacements. Value of 5 eV is used as the displacement and cut-off

energy. Since the used value is smaller than the standard silicon displacement energy

of 15 eV it yields a larger number of the recoils produced in the collision cascade. It

is important to remark that this distribution of recoils is used only to determine the

initial energy deposition profile, and not to gain the final number of recoiled atoms.

In order to obtain a correct number of recoiled atoms, an additional simulation of the

collision cascade, with the standard value for the displacement energy (15 eV), will be

performed as it is explained in Section 3.4.2.7.

The decision for using 5 eV for the cut off and displacement energy is motivated by

the following: The energy profile obtained using 15 eV for the displacement and cut-off

energy gives the initial energy sources up to the displacement energy value. This en-

ergy, when converted into temperature (see Section 3.4.2.3), would give extremely large

temperature sources of about tens thousands of Kelvin. Since the surrounding crystal

atoms have substrate temperature up to few hundreds of Kelvin, it would introduce

strong local temperature disturbances in the material. On the other side, Eq. 3.1, has

limited validity in systems with a strong temperature disturbances, and its applicabil-

ity is mainly localized to the thermodynamic limit, i.e. at time scales typically greater

than several phonon relaxation times and to the space scales of weak local temperature
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Figure 3.19: Illustration of resolving of the initial conditions. Recoiled atoms at
rest share its energy to the neighboring lattice sites. Hit lattice atoms denotes the
atoms which experienced collision with moving ion, but the received energy was
below displacement threshold and the atom remains at its lattice site with received
amount of energy.

disturbances [126]. Therefore, in order to overcome this limitations and avoid large

temperature discontinuities we have used 5 eV for the cut-off and displacement energy

for the collision cascade simulations. Decrease of these values from 15 to 5 eV effec-

tively means that the certain level of the heat dissipation is already performed in the

binary collision part of the simulation, which smooths the initial temperature profile

for the following heat flow process. Another reason for choosing Ed = 5eV is given in

Section 3.4.2.5

3.4.2.2 Resolving initial conditions

The process of determining the initial conditions is illustrated in Fig. 3.19. As a

result of the BC simulation the distribution of the energetic atoms is obtained. From

the modeling point of view two types of initial energy sources are distinguished. First
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type are the atoms which have experienced a subthreshold collision during collisional

phase of the ion impact, i.e. they were not able to start movement. These hit atoms

remain at their lattice sites in an excited vibration state, releasing the received energy

through phonons. Their deposited energy is assumed to be converted into the heat of

the corresponding lattice site. Second type of the energy sources represent the recoiled

lattice atoms which have been displaced from their lattice sites and set into motion.

After they have lost their energy due to electronic and nuclear stopping they come

to the point where they are no more able to produce further displacements, i.e. they

come to rest in the host lattice. These atoms represent interstitial atoms embedded in

the Si lattice, and their remaining energy is shared equally between the neighboring

lattice atoms. The neighboring lattice sites are defined within the radius of 2.35Å,

what corresponds to the nearest neighbor distance in silicon. Additional treatment of

recoils is explained in Section 3.4.2.7.

3.4.2.3 Material parameters and Energy-Temperature dependence

Considering that all energy deposited in initial sources is instantaneously converted

into heat, a temperature can be assigned to each atom giving rise to temperature

gradients for the heat diffusion. The energy-temperature dependence is illustrated in

Fig. 3.20 for the case of constant value of the specific heat.

Eq. 3.3 is modified to consider the heat of melting when the melting temperature

is crossed at any point in space. With this consideration we take into account the

potential energy and phase change when an atom melts. Furthermore, we assume that

the energy once spent for melting an atom, will be stored into the lattice crystal. This

prevents that this energy, once spent for melting an atom, eventually again contributes

to melting of neighboring atoms. The energy stored into crystal is taken to be equal

to the heat of melting. In other words, once an atom crosses the melting temperature

his cooling branch has different behavior from the atoms whose temperature has never

reached the melting temperature. Using these two assumptions we obtain the follow-

ing equations for the conversion of the deposited energy per atom to the equivalent

temperature.
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Figure 3.20: Dependence of energy per atom on temperature, presented, for sim-
plicity, for the constant value of the specific heat. It shows energy temperature
dependence according to Equations 3.30, 3.31 and 3.32. It includes the heat of
fusion when an atom crosses the melting temperature and the energy stored into
the crystal after an atom melts. Tm denotes the silicon melting temperature and
has value of 1683K.

Not molten atoms:

E(T ) = ρ · V
T

∫

0

cp(u)du for T ≤ Tm (3.30)

T = Tm for E(T−
m) < E < E(T−

m) + Em (3.31)

Molten atoms:

E(T ) = ρ · V
T

∫

0

cp(u)du+ Em (3.32)
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V represents the atom volume given by Eq. 3.9 and Em = 0.52 eV is the heat of

melting per atom for silicon. The integral in equations 3.30 and 3.32 is calculated by

numerical integration and trapezoidal rule:

E(T ) =

n
∑

i=1

ρ · cp(i4T )V4T (3.33)

where the temperature resolution step of 4T = 1K is found to be small enough

to provide negligible numerical error. In order to keep simulation times reasonable the

energy temperature dependence given with Equations 3.30, 3.31 and 3.32 is calculated

once at the initialization part of the program, and during the heat simulation the re-

quired values of energy (temperature) are obtained by linear interpolation performed

by the binary search procedure.

We have run several simulations taking into account the temperature dependence

of the specific heat and the thermal conductivity in Eqs. 3.30 and 3.32. The results

were rather similar to those obtained when neglecting these dependencies, but compu-

tational times were up to two orders of magnitude longer. In order to avoid too large

computational times, to obtain the results which will be presented in the following, we

will use the constant parameter values. In this case the integrals in Eqs. 3.30 and 3.32

are replaced by simple products. Since the focus of our investigation is the melting

process of atoms, the appropriate values for the specific heat and the thermal con-

ductivity would be those at the melting temperature. The following values are used:

cp(Tm) = 1017 J/kgK for the specific heat, λ(Tm) = 21[W/(mK)] for the thermal con-

ductivity [135]. Silicon melting temperature is Tm = 1683K and the Si mass density

(ρ = 2330 kg/m3) [135].

However, the aim of the presented heat flow model is not to describe quantitatively

every detail of the temperature evolution in the sample, than to obtain a physically

based reasonable estimation of the number of molten atoms upon ion implantation,

with the available computational cost. Therefore the limitation imposed by neglect-

ing the full temperature dependencies of the material parameters should not be critical.
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3.4.2.4 Boundary conditions

After introducing the initial conditions into the system, the size of the simulation

cell is determined so that it covers the distribution of the energetic atoms. In order

to allow uninterrupted heat flow outside the cell from the bordering atoms, the cell is

extended in all three direction for several unit cells. It has been found that extending

the simulation cell for more then 3 unit cell does not change the number of molten

atoms. Therefore, the value of 3 is chosen. The boundary layers of the simulation

cell are connected to a thermal reservoir of constant temperature, namely substrate

temperature, to simulate the heat transport outside the cell.

3.4.2.5 Melting criterion during heat quenching

During the heat quenching phase the melting criterion has to take into account the

basic assumption confirmed by molecular dynamics simulation [2], which says that a

single energetic atom in an otherwise perfect crystal does not produce damage if its

energy is less than the displacement energy for silicon (Ed = 15eV ). Therefore, we have

to include in our model that the creation of amorphous zones should be the result of

overlapping of nearby energetic atoms and not the result of isolated recoiled atoms. In

other words, the isolated initial sources with energy up to the threshold displacement

energy must not produce damage. In order to choose appropriate melting criterion,

which is able to take into account mentioned assumption, the following simulations are

performed. One atom in the center of the large simulation cell is given energy going

from 1eV to 15 eV, and the heat transport is simulated. The number of molten atom is

detected. Intuitively, an atom may be labeled “molten” when its temperature exceeds

the melting temperature Tm, as we have used it in Section 3.4.2.3. From Fig. 3.21 we

see than one single isolated energy source can lead to melting up to 5 atoms according

to this simple criterion, what is in contrary to the starting assumption. Therefore, the

melting criterion that labels an atom as “molten” whenever its energy crosses the melt-

ing temperature is not appropriate for describing the melting process. Furthermore,

the concept of a single molten atom is problematic, and melting makes sense only for

larger volumes.

In order to avoid problematic concept of a single molten atom, before labeling an

atom as molten we require that not only this atom but in addition at least some of its
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Figure 3.21: Number of molten atoms as a function of energy stored into atom us-
ing criterion that an atom is molten whenever its temperature crosses the melting
temperature.

Figure 3.22: Number of molten atoms as a function of energy stored into atom using
melting criterion which requires that not only atom but also its neighboring atoms
cross the melting temperature.
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neighbors cross the melting temperature. In Fig. 3.22 we present the number of molten

atoms versus energy when the melting criterion is met by the nearest neighbors. From

the figure we see that requiring that the criterion is met by the first neighbors does

not melt any additional atom in the energy range up to 5 eV and induce melting of

one additional atom in the energy range between 5 and 15 eV. Since the cut-off energy

in our simulations is 5 eV, we assure that the atom energy will not exceed this value.

Keeping in mind that the test problem has radial symmetry the results presented in the

Fig. 3.21 are the same when the number of molten neighbors is required to be either 1

up to maximum 4 nearest atoms. The particular value will be fitted when compared

to experimental values.

3.4.2.6 Geometrical criterion based on critical point defect density

Figure 3.23: Illustration of geometrical criterion. Within the given radius a min-
imum density of molten atoms has to be exceeded in order to label an atom as
molten (with arrow). Dark atoms represent “molten”atoms according to previous
heat transport simulations and light colored crystalline atoms.
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As we will show in Section 3.5, the heat conduction law alone is not capable to

either quantitatively or qualitatively predict the experimental data on the ion mass

and polyatomic effect, even if the melting criterion described in Section 3.4.2.5 is taken

into account. Therefore, an additional criterion is applied to the distribution of molten

atoms obtained with the heat conduction simulation and the melting criterion from

the previous section.

As it is known from experimental results [7] and ab-initio and molecular dynamics

simulations [136] when the local defect density in the lattice exceeds the critical value

the lattice collapses in these regions occurs. Considering the configuration of molten

atoms obtained by the heat transport simulator and the melting criterion during the

heat quenching the procedure illustrated in Fig. 3.23 is applied. For each atom in the

cell the local concentration of the molten atoms contained in the sphere defined within

the given radius, with center in the investigated atom, is examined. If the concentra-

tion of molten atoms exceeds a threshold the atom is labeled as “amorphous”, if not

it is crystalline. The loop is done for all atoms in the cell, and new final configuration

of amorphous atoms is obtained. The term “amorphous” is used in order to avoid

eventual confusion with the term “molten” used for the atoms which are considered

as molten during the heat quenching phase. Applying this criterion the amorphization

of small clusters, eventually single isolated atoms, is further penalized while the con-

tinuous larger pockets are favored what is in agreement with the MD results [2]. Also

compactness of the amorphous zones is obtained, i.e. if the molten zone contains some

crystalline atoms the local collapse of the lattice occurs leading to the amorphization

of these atoms. This criterion allows better taking into account the spatial correlation

between the different molten atoms than it is possible in the heat flow simulations even

when the melting criterion that meets first neighbors is used. Applying the criterion

of the minimum density of molten atoms after the heat transport simulation we have

assumed that the melting process occurs on the smaller time scale than the lattice

collapse. It is shown that for high energy deposition the zones can melt on the subpi-

cosecond time scales [58, 123] while the lattice collapse occurs later.

3.4.2.7 Counting recoils in the final number of displaced atoms

The second type of the energy sources discussed in Section 3.4.2.2 represents the

recoiled atoms that are already slowed down and came to rest in the host lattice. As we
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have explained in Section 3.4.2.2 the energy of these recoils is already shared with the

neighboring atoms and subsequently used for the heat flow simulations. In addition

these atoms represent the interstitials placed into the host lattice and their presence

has to be taken into account in the final number of displaced atoms. After the heat is

dissipated and the final number of amorphous atoms according to criterion explained

in Section 3.4.2.6 is obtained, the distribution of recoiled atoms is obtained by BC sim-

ulation and added to the final number of displaced atoms according to the following

procedure.

The contribution of each interstitial to the final distribution of displaced atoms

depends on the experimental method used for the damage measurement. The experi-

mental data used for the comparison, presented in Figs. 3.1 and 3.4, are obtained by

RBS/C in situ measurements. The reported number of displaced atoms per incident

ion is extracted from experimental RBS/C spectra assuming that the damage is in the

form of randomly displaced atoms surrounded with the perfect lattice. The simple pro-

cedure of damage quantification from the experimental RBS/C spectra is introduced

in Section 4.1.

The model of random interstitial surrounded by the perfect lattice neglects the

strain in neighboring lattice sites and leads to overestimation of the damage in the

sample [48, 52, 77] as we will show in Section 4.4. Instead, each interstitial is assumed

to be equivalent to two displaced atoms, since the majority of interstitials are in the

split-〈110〉 interstitial configurations according to the MD simulations [95]. The ef-

ficiency of the split-〈110〉 interstitial on the RBS/C spectra is investigated with the

procedure described in detail in Section 4.4. According to the results from Section 4.4

each split-〈110〉 interstitial has about 2 times larger efficiency, compared to the random

interstitial. Therefore, each recoil, obtained by BC simulations, will be multiplied by

2 and added to the previously obtained number of amorphous atoms. This yields the

final number of displaced atoms.

In Section 3.4.2.2 for the purpose of determination of the initial temperature profile

we have used 5 eV as the displacement energy, which gives a larger number of recoiled

atoms than obtained with the standard value of 15 eV. In order to obtain the correct

number and distribution of recoils parallel simulation of the collision cascade, with the

value of 15 eV as the displacement energy, is performed and the equivalent number of

recoils is obtained. The distribution of recoils is compared with the distribution of the
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obtained amorphous zones. Only the recoils which are not contained in the already

amorphous zones are added to the final number of displaced atoms, according to the

above described procedure.

3.5 Results and discussion

For the purpose of testing our model we have compared our simulation results with

the experimental data published on the ion mass and polyatomic effect [6].

3.5.1 Ion Mass Effect

We have simulated collision cascades of P, As, Te, Tl in Si for different ion implant

energies, and compared our results with the experimental results [6] obtained at cryo-

genic temperatures (35 K).

In Fig. 3.24 we present the number of displaced atoms per incident ion as a func-

tion of energy deposited in nuclear collisions, what is a monotonic function of implant

energy. Solid lines represent the experimental results, while dashed lines represent

the results of the proposed amorphization model. About 100 simulations is performed

in order to obtain statistical quality of the data. The reported values of the energy

deposited in nuclear collisions are calculated as the statistical average of the values

obtained by simulating many cascades with one particular ion implant energy. Sim-

ilarly, the corresponding number of displaced atoms per incident ion is obtained as

the average of the values obtained by simulating the heat flow/lattice collapse using

many BC cascades with the same ion implant energy, previously used to calculate the

corresponding value of energy deposited in nuclear collisions. The final number of

amorphous atoms is calculated by applying both criteria described in the previous sec-

tions. During the heat quenching it was required that all four nearest neighbors meet

the melting criterion before labeling one particular atom as molten. The amorphiza-

tion threshold values fitted to the experimental results are 8Å for the melting radius

and 10% for the minimum concentration of molten atoms. The number of recoils is

multiplied with 2 and included in the final number of displaced atoms.
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Figure 3.24: Number of displaced atoms per incident ion versus energy deposited
in nuclear collisions. Experimental results - solid lines [6]. Simulation results:
dashed lines - criterion requires that at least 4 neighbors meets the melting criterion
before one atom is considered molten and in addition requires that minimum 10%
of molten atoms exists within the volume of the sphere with radius of 8Å.

From the results presented in Fig. 3.24 we can see that the model correctly de-

scribes the ion mass effect for all implanted ion species. It also produces correct energy

dependence of the number of displaced atoms per incident ion. We can conclude that

the presented model gives qualitative and in a large amount quantitative description

of both the ion mass and the energy dependence of the ion mass effect at cryogenic

temperatures.

However, the presented results show that the model slightly overestimates the num-

ber of displaced atoms for all ion species in the high energy range. In this range the

influence of the amorphous pockets should be weaker compared to point defects, as

discussed in Section 3.2.1. The discrepancy between the experimental and simulated

values is most pronounced for phosphorus, which is the lightest ion used, where the
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influence of the amorphous pockets is also expected to be of a minor role. Therefore,

one of the reasons for the deviation of the model can be assigned to the uncertainty

of the actual defect types present in the sample and their contributions to the RBS/C

signal. The value of 2 used for counting the recoiled atoms favors split-〈110〉 intersti-

tials. Although MD simulations have shown that most of the damage is the form of

split-〈110〉 interstitial, in reality the damage usually consists of a mixture of different

defect types, with unknown abundance, what contributes to the discrepancies. Fur-

thermore, amorphous atoms obtained by the heat transport simulation/lattice collapse

are according to the experiments in the random interstitial form and their contribution

to the RBS yield is taken into account as +1 defect. Since the efficiency of the atoms

contained in the amorphous pockets to the RBS/C yield is not precisely know this can

be also the source of the deviation of the simulated results.

In order to demonstrate the importance of each part of the proposed model, we

now show results at intermediate steps of model development. First we show that the

heat conduction law modified to include the heat of melting is not capable to describe

the process of amorphous pockets creation.

In Fig. 3.25 simulations with different applied criteria are compared with the ex-

perimental results (solids). The line labeled by “without Em” represent the results

of Vineyard’s model which does not takes into account the heat of melting. These

results are obtained with the proposed heat flow model without considering the heat

of melting or the lattice collapse. An atom is labeled as molten if its temperature

crosses the melting temperature. Obviously the heat flow model based on Vineyard’s

assumption highly overestimates the experimental results. Although taking into ac-

count the heat of melting (dashed lines labeled with “with Em” in Fig. 3.25) in the

heat transport simulations has quantitatively improved the overall description of the

experimental results the deviations are still significant. The model still does not give

any ion mass dependence and highly overestimates the number of defects at higher

energies. Requiring, in addition, that the average energy of the atom and its neighbors

meets the melting criterion [36] further decreases the number of displaced atoms and

yields slight ion mass dependence. The results of averaging over atoms up to second

nearest neighbors are shown in Fig. 3.25 by dotted lines. However, despite small ion

mass effect, this assumption still does not qualitatively improve the result and intro-

duces also coupling within the second neighbors, during the heat quenching, what is

physically questionable.



CHAPTER 3. AMORPHOUS POCKETS 70

 0

 5000

 10000

 15000

 20000

 0  25  50  75

N
um

be
r o

f d
is

pl
ac

ed
 a

to
m

s 
pe

r i
on

Energy deposited in nuclear collisions [keV]

Silicon
T = 35K

P

As 

Te 

Tl 

P

As 

Te 
Tl 

P

As 

Te 

Tl 

without Em

exp. 
second

with Em

Figure 3.25: Number of displaced atoms per incident ion as a function of energy
deposited in nuclear collisions for various implanted species, and various criterion
applied in the simulations. Experimental results - solid lines [6]. Dotted lines-
criterion with heat of melting and second nearest neighbors. Dashed lines -criterion
with only heat of melting. The line labeled with “without Em” represents the
results with no heat of melting included [106].

Taking into account the “heat of crystal” and using the number of molten neigh-

bors that cross the melting temperature from the melting criterion described in Sec-

tion 3.4.2.5 as a fitting parameter leads to the results presented in Fig 3.26. The results

presented in Fig 3.26 represent the best fitting obtained requiring that minimum three

neighbors meet the melting temperature. From the figure we can conclude that the

model does not also gain the satisfying ion mass and energy dependence.

From the results presented above we can conclude that the amorphous pocket cre-

ation process cannot be qualitatively modeled by the heat transport equation and

melting criterion that includes local melting of atoms. It requires the inclusion of some
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Figure 3.26: Number of displaced atoms per incident ion versus energy. Experi-
mental results - solid lines [6]. Simulation results: dashed lines - criterion requires
that at least 3 neighbors meets the melting criterion before one atom is considered
molten.

larger zones when considering the melting process, and that was modeled by the geo-

metrical criterion described in Section 3.4.2.6.

In Figs. 3.27 and 3.28 the qualitative influence of the heat transport simulation

and the applied geometrical criterion is illustrated. In Figs. 3.27 the initial distribution

of energetic ions for P and Tl 90keV implantations is presented. This distribution is

used as input for the following heat transport simulations. After the heat quenching

simulations using melting criterion which includes all 4 neighbors the distribution of

molten atoms presented in upper part of Fig. 3.28 is obtained. Although the initial con-

centration of energetic atoms is relatively high for the whole implantation trajectory,

especially for Tl implant (See Fig. 3.27 ), heat simulations with the applied melting

criterion allow creation of molten zones mainly at the end part of the ion trajectory.

But noncompact and rather isolated small regions of molten atoms can still be seen.

Applying the criterion of minimum 10% of molten atoms we obtain the distribution
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Figure 3.27: Energy distribution of P and Tl 90 keV implants obtained from BC
simulations and used as input for heat transport simulations. The arrows indicates the
ion’s entrance point, while the maximum range of obtained energetic atoms is 400 A
and 1000 A, respectively.

of the amorphous atoms presented at the bottom of Fig. 3.28. Vanishing of smaller

and noncompact zones is evident, while the larger zones become more compact and

connected.

3.5.2 Polyatomic effect

In order to test whether the amorphous pockets are really responsible for the addi-

tional damage we have compared the results of our model with the experimental data
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Figure 3.28: Influence of the applied criterion which requires 10% of molten atoms
within the sphere of 8Åradius for P and Tl 90 keV implants. Upper figures: The
results of the heat transport simulations. Bottom: After applied geometrical criterion
the vanishing of the smaller noncompact defects and on the other side growing and
compactness of larger zones can be seen. The arrow points to the place of the ion
impact.
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Figure 3.29: Ratio of the number of displaced atoms after P2, As2 and Te2 molec-
ular implantation and the corresponding number after atomic ion implantations
with the same atom dose and atom energy, as a function of atom energy. Lines:
Proposed amorphous pocket model. Symbols: in-situ RBS data obtained at cryo-
genic temperature [6]. The error bars represent standard deviation of the data
obtained by large number of simulations.

published on the polyatomic effect [6] and presented in Fig. 3.4 for three different ion

species. Fig. 3.29 shows the ratio of the number of displaced atoms after P2, As2 and

Te2 implantations and the corresponding number after implantation of atomic ions

with the same atom energy and atom dose. The same applied criteria are used as in

the previous section.

It can be seen that both the ion mass and the energy dependence of the polyatomic

effect are qualitatively described by the model. However the magnitude of the ratio

is within the experimental results for P and As implants, but the overestimation of

the ratio is obvious for the Te implants. The reason for this can be uncertainty of

the actual contribution to the RBS/C spectra of the recoils and amorphous pockets as
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Figure 3.30: Energy distribution upon P and Tl 80 keV diatomic implants obtained
by BC simulations and used as input for the heat transport simulations. The arrows
indicates the ion’s entrance point, while the maximum range of obtained energetic
atoms is 500 A and 1000 A, respectively.

discussed in the previous section.

Qualitative influence of the particular melting criteria in different evolution stages

of molten atom simulations is presented in Figs. 3.30 and 3.31. In Figs. 3.30 the

initial distribution of energetic ions after P2 and T l2 80keV implantations is presented.

It confirms the assumption of overlapping of the collision cascade of atomic ions for

heavy ions (Tl implant) which leads to the creation of amorphous zones in the initial

as well as in the end part of the collision cascade. P atomic implants create dilute

subcascades where little overlap occurs leading to the creation of very small isolated

pockets. Introduction of geometrical criterion, as in the case of atomic implants, re-

moves small isolated molten zones, favoring larger compact pockets.
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Figure 3.31: Influence of the applied criterion which requires 10% of molten atoms
within the sphere of 8Å radius for P2 and Te2 80 keV diatomic implants. Upper
figures: The results of the heat flow simulations. Bottom: After applied geometrical
criterion the vanishing of the smaller noncompact defects and on the other side growing
and compactness of larger zones can clearly be seen. The arrow points to the place of
ion impact.
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3.6 Conclusions

The presented model takes into account the following physical concepts of the amor-

phous pockets creation process:

� Heat transport simulation of deposited energy.

� Heat of melting when an atom melts

� Energy stored in the lattice after an atom melts

� Melting criterion that takes into account that the melting should be the result of

the overlap of neighboring heat sources and not due to a single energy event

� Local lattice collapse once the defect density exceeds a threshold

Although the inclusion of the heat of melting and the heat stored into crystal quan-

titatively improved the ability of the heat flow model to predict the number of displaced

atoms upon heavy ion implants it is clear that this was not sufficient to explain the ion

mass effect. Introducing a critical defect density above which a local region collapse

to the amorphous state significantly improved the results. Thus, taking into account

neighboring environment of an atom allows better accounting of the damage morphol-

ogy, qualitatively gaining the correct ion mass and energy dependence. We can conclude

that considering the lattice collapse when the density of molten atoms exceeds a crit-

ical value is essential for the qualitative modeling of the amorphous pockets process.

The used value of 10% is in the range of the reported values for the CPDD in silicon [7].

With the proposed model very good agreement for the number of displaced atoms

after implantation of various ion species (P, As, Te, Tl) including molecular ions (P2,

As2, Te2) and for a wide range of energies is obtained. The presented data are obtained

using the same set of the fitting parameters for both the ion mass and polyatomic ef-

fect which extends the transferability of the model. Nevertheless, the deviation of the

simulation from the experimental data still exists, especially in the high energy range

for the monoatomic implantations, and for Tl in the case of molecular implants. The
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eventual uncertainty of the type of the defects present in the sample and uncertainty

of the influence of particular defects to the final number of displaced atoms could be

reasons for the discrepancies between the experimental and simulated data. Further

modeling of the influence of the amorphous pockets and eventual strain around them

should be performed in order to justify or disconfirm the factor of “+1” used to model

the amorphous atoms contained in the pockets. Although the influence of recrystal-

lization process at cryogenic temperatures is negligible some recrystallization due to

local heating from neighboring cascades may occur [2] what can influence the obtained

data.



Chapter 4

Rutherford Backscattering

Spectroscopy

4.1 Introduction

The Rutherford Backscattering Spectroscopy technique with channeled ions (RBS/C)

has been used extensively over the last few decades for the purpose of quantitative

analysis and accurate determination of stoichiometry, thickness and depth profiles of

impurity and damage distributions in thin surface layers [33, 137–142]. The basic prin-

ciple of the RBS/C technique is illustrated in Fig. 4.1. Aligning the ion beam along a

major crystallographic axis allows to obtain information about the crystalline quality

of the sample. Due to inelastic collisions channeled ions lose their energy. Atoms dis-

placed from crystallographic positions, like impurities or defect atoms, further affect

channeling by direct backscattering of channeled atoms resulting in a higher backscat-

tering yield. Measuring the number and energy spectra of backscattered ions in the

near-surface region allows identification of the atomic masses and quantification of tar-

get elements as a function of depth [137, 139, 143, 144].

Application of the RBS/C method to damage quantification is illustrated in Fig. 4.2.

Comparing the RBS spectra of samples implanted with different fluence (samples A and

B in Fig. 4.2), with spectra obtained from the perfect crystal (’virgin’) and amorphous

material a qualitative estimation about the amount of damage can be obtained. The

simple inspection of the measured energy spectra in Fig. 4.2 gives us the information

about the amount of disorder in different samples and the answer whether the irradi-

79
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Figure 4.1: Schematic view of the channeling of ions directed at an angle ψ to
a close-packed row of atoms in a crystal. Channeled ions are backscattered from
solute atoms.

Figure 4.2: Example of the damage measurement with RBS technique:
2MeV He 〈100〉 RBS/C experimental energy spectra for the samples implanted
with 180 keV Si+ ions at a fluence of 1014 cm−2 (sample A) and 1015 cm−2 (sample
B). The spectra of a virgin and an amorphous Si sample are shown for compari-
son[54].
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ated sample has been amorphized or a thermal process has restored the perfection of

virgin Si.

A better insight into the amount of damage in the implanted sample can be ob-

tained in the defect analysis based on the so-called two-beam approximation (TBA)

introduced by Bogh [59]. It is important to remark that experimental RBS spectra are

usually obtained as a function of energy and before the quantification procedure they

must be converted to the corresponding depth spectra, which is given as a function of

the collision depth. The data are usually analyzed according to the so called Aarhus

convention, in which it is assumed that the random stopping power applies to both

the ingoing and outgoing trajectories. With this assumption, the depth of scattering

is uniquely determined and the conversion of the energy to the depth RBS/C spectra

can be obtained [137]. In the framework of the two-beam approximation, for the case

of low damage samples we can estimate the defect concentration in a sample from the

measured spectrum as [139, 145]

nd(z) = N · χD(z) − χV (z)

1 − χV (z)

1

f
(4.1)

where nd(z) is the concentration of the displaced atoms at depth z, N is the atomic

density of the crystal, f is the defect scattering factor (f goes from f = 1 for randomly

displaced atoms down to f ≈ 0 for dislocations [141]). The normalized RBS/C yield

χD(z) at the depth z represents the measured value of the RBS signal at this depth

divided with the corresponding value of RBS/C signal of the amorphous sample. χV

is the normalized virgin yield defined similarly. The two beam approximation with a

sufficient accuracy can only be applied in the cases when only one well-defined defect

type is present in the analyzed crystal, so that the scattering factor is known [141]. In

most cases real crystals contain unknown mixtures of a variety of different defect types

for which the scattering factor f is unknown.

For a more detailed analysis, such as the evaluation of the number of defects intro-

duced by ion irradiation, RBS/C is most accurately used in combination with Monte

Carlo binary collision simulations. Since the RBS/C signal is sensitive to the exact

positions of the impurity atoms in the crystal lattice [48, 50, 52, 77], it is important to

make reasonable assumptions about the kind of defects and also to know the atomic

positions of each defect type. Standard models based on the picture that damage
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consists of displaced atoms surrounded by the ideal lattice neglect the relaxation of

the lattice around the defects and lead to the overestimation of the damage produced

by ion implantation [48, 121]. In addition, because of the assumption that the atoms

are randomly displaced within the lattice these models often failed to describe mul-

tiaxial RBS/C measurements of implanted Si [48, 49]. A deeper physical insight on

the actual location, structure and binding properties of defects to the host lattice is

indeed necessary to improve our current understanding of ion channeling experiments.

Atomic-scale models [60–72] have significantly improved the understanding of struc-

ture and properties of small native defects in silicon. Such calculations yield the atomic

positions at strictly defined positions, corresponding to energy minima, rather than at

random positions. In addition, these defects cause lattice relaxation, which interacts

with the analyzing beam, increasing dechanneling and the RBS/C signal. Recent inter-

pretation [48, 50–54] of RBS/C measurements with atomic defect models, structurally

relaxed with empirical potentials, gave an improved interpretation of multiaxial RBS/C

analysis of Si containing low levels of disorder. The influence of the correct atom po-

sitions on the interpretation of channeling implantations is also shown by Hobler et

al. [47].

Using the Tersoff potential as the empirical potential and the VASP code for ab-

initio calculations we have determined the coordinates of the split-〈110〉 interstitial, of

the di-, tri-, and four-interstitial cluster, and of the tetrahedral interstitial as well as

the strain on neighboring atoms induced by the presence of these defects. We have

proposed an atomistic model of damage where the location of the defect atoms in the

host lattice are determined by these atomic-scale models calculated previously. Us-

ing these coordinates in binary collision RBS/C simulations we find differences in the

RBS/C yields of up to 30%. The dependence of the backscattering yield on the assumed

defect type is larger with the defect coordinates obtained by the empirical potential

than by the ab-initio calculations. The influence of the strain is investigated as well

as the anisotropic behavior of the small defects in multi-axial beam alignments. In

order to investigate the mutual interaction of the defects and limitation of this model,

the cell populated with various damage concentrations is relaxed with the Tersoff III

empirical potential. After the relaxation the cell is inspected with RBS/C simulations

and the differences between the relaxed and nonrelaxed system are investigated. The

conclusion is that the nonrelaxed model can be used up to concentration of 6-7% of

the atomic density depending on the assumed defect type. By increasing the damage

concentration mutual defect interactions lead to the amorphization of the sample.
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Within the framework of this thesis a Rutherford Backscattering Spectroscopy

quantification code has been written as a module of the Monte Carlo binary colli-

sion simulation code “IMSIL’ [77]. The code uses the principles of the close encounter

probability [146] and the Rutherford scattering cross section. Computational details of

binary collision simulation of RBS are outlined in Section 4.2. In the next section we

propose an atomistic model of damage used in RBS/C simulations. Within the pro-

posed model the influence on interpretation of RBS/C spectra of a various atomic-scale

models as well as the calculation method are investigated and the results are presented

in Section 4.4. In Section 4.5 we show the RBS/C simulation results performed on the

relaxed supercell populated with different damage concentration. Finally in the last

section we give conclusions of our work.

4.2 Binary collision simulation of RBS

In this section we outline the principles of the implemented RBS/C simulation code.

The code is written as a module of the Monte Carlo binary collision code IMSIL [8, 77].

The code uses the principle of the close encounter probability defined by Barret [146]

and the Rutherford backscattering cross section [139]. The program gives as the output

the RBS signal as a function of backscattering energy.

Fig. 4.3 presents a schematic view of a backscattering event that leads to the scat-

tering of the incoming particle to the detector. The analyzing ions are directed into

the surface of the wafer. The z-axis defines the wafer surface normal vector. Let us

assume that a particle with mass m1 and initial energy E experiences a collision at

depth z∗ with a target particle of mass m2 which is initially at rest. After the colli-

sion the backscattered ion (particle 1) leaves the target towards the detector placed

at angle θOUT with respect to the negative z-axis. The scattering angle that leads to

the detection of the scattered particle into the detector is ψ. The angle between the

incoming ion and the z-axis is α.

The sequence of a Rutherford backscattering event of the type modeled in this work

can be divided into the following steps:
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Figure 4.3: Illustration of a Rutherford backscattering event defining the important
quantities. z∗ is the depth where the scattering event takes place. m1, m2 denote
the ion and the target mass, respectively. θOUT is the angle between the z-axis
and the detector. ψ is the backscattering angle that leads to scattering into the
detector and α is the angle between the ion direction and the z-axis.

1. The trajectory and energy loss of the incoming ion before the scattering event.

2. The probability of a large angle backscattering event that leads to the scattering

of the particle towards the detector (Rutherford scattering event).

3. Energy loss due to the Rutherford scattering event.

4. The trajectory of the scattered ion in the outgoing path towards the detector

is approximated by a straight line in a random medium, and the energy loss is

taken into account.
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5. A count, representing a quantitative measurement of the RBS event, is added to

the appropriate energy bin.

The detailed description of the modeling of these events is given in the following

sections.

It is important to emphasize the difference between the “probabilistic” treatment

of a Rutherford scattering event, based on the concept that will be described here,

from the treatment done in the BC approach. When an ion enters into the crystal it

undergoes a collision. The actual scattering angle and the energy loss as well as the

direction of the ion after the mentioned scattering will be calculated in the BC part of

the program. However, this scattering event does not in general lead to the scattering

of the particle into the detector (Rutherford scattering), and, actually, the probability

that an ion is scattered into the detector by any scattering event, is rather low. There-

fore, in a pure BC simulation a huge number of ions would have to be simulated to

obtain reasonable statistics for the RBS signal. To resolve this problem, we calculate

in parallel at each collision the probability that the ion would be scattered, with ap-

propriate (usually large) angle, to the detector. After this scattering event the ion can

eventually continue its movement experiencing many further collisions as calculated

in the BC treatment. In other words in the BC approach single ion trajectory is fol-

lowed and calculated while in the RBS approach for each collision we have a possible

trajectory that can lead to the detection of the ion in the detector. Summing up over

all these probabilities for many ions throughout their whole trajectories we obtain the

quantitative estimation of the number of ions “virtually” scattered into the detector.

4.2.1 Trajectory of incoming particle

The ion entering into the crystal loses its energy due to a series of successive col-

lisions with the target atoms. The corresponding trajectory and the energy of the

particle before the scattering event E will be calculated in the binary collision program

“IMSIL” [8] and will not be described here. When a collision occurs the position and

the energy of the incoming particle as well as the position of the target atom will be

transfered to the RBS module.
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4.2.2 Rutherford scattering event

The incoming ion (particle 1) experiences collision at depth z∗ with the target atom

(particle 2) and leaves the target towards the detector placed at angle θOUT defined

with respect to the negative z-axis (see Fig. 4.3).

The probability that the ion will undergo the collision with the target atom and

be detected in the detector is given by the RBS reaction probability PRBS which is

given as a product of the Rutherford backscattering differential cross section, the close

nuclear encounter probability and the detector solid angle [147–149]:

PRBS = Pvib ·
∂σ

∂Ω
· dΩ (4.2)

∂σ/∂Ω is the Rutherford scattering cross section given with equation 4.3 and Pvib

is close nuclear encounter probability defined as the probability density that the target

atom is at the point of passage when the thermal vibrations are taken into account.

dΩ [sr] is the detector solid angle.

First we outline and explain briefly the Rutherford backscattering cross section fol-

lowed with the definition of the calculation of the probability density due to thermal

vibrations.

4.2.2.1 Rutherford backscattering cross section

Fig. 4.4 [138, 144] illustrates the concept of a cross section. We prepare an incident

flux of beam particles of known energy, and measure the number of particles scattered

out of the beam at particular scattering angle ψ. At an angle ψ from the direction

of incidence, let an ideal detector count each particle scattered in the differential solid

angle dΩ. We assume that the flux will always be uniform over the thickness of the

target material. The azimuthal symmetry is also assumed, and the detector will cap-

ture only the portion of the scattered particles defined by the detector solid angle. The

differential scattering cross section is defined as the number of interactions per target

particle that lead to scattering into an element of the solid angle (dΩ) at a given angle
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Figure 4.4: Illustration of the quantities related to the definition of the scattering
cross section. Incident particles within the area dA0 are emitted into the area dΩ.
p is the impact parameter and ψ is the scattering angle. O is the scattering center.

(ψ) divided by the number of incident particles per unit area [144, 150]. Applying the

definition of the cross section to a particular event, instead to a beam of particles, we

assume that the probability of a collision between the incoming ion and the target atom

is proportional to the differential cross section [138, 144, 150] which reads[138, 139]:

∂σ

∂Ω
=

[

z1 · z2 · q2

8πε0 · E

]2

· 1

sin4ψ
·

[√

1 − (m1·sinψ
m2

)2 + cosψ
]2

√

1 − (m1·sinψ
m2

)2
(4.3)

Where m1, z1 are the mass and the atomic number of the incoming ion, respec-

tively. m2, z2 are the mass and atomic number of the target particle, respectively.

q = 1.609× 10−19C is the elementary charge and ε0 = 8.85434× 10−12F/m is the vac-

uum permittivity. ψ is the scattering angle through which the incident ion is scattered
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and E is the energy of the incident particle immediately before the scattering event.

Eq. 4.3 is valid as long as the distance of the closest approach between the incoming

ion and the target atom is large compared with nuclear dimensions, but small com-

pared with the Bohr radius a0 = 4πε0~
2/(meq

2) = 0.53Å, where q is the elementary

charge, me = 9.109 × 10−31kg is the mass of the electron, and ~ = 1.054 × 10−34Js is

the reduced Planck’s constant [138]. In this case the interaction between the incoming

and target atom is very well described by the Coulomb repulsion of two nuclei. For

ψ ⇒ 0 Eq. 4.3 says that the cross section tends to infinity, which violates the initial

assumption that the cross section of the target nuclei should be small. Small scattering

angles correspond to large impact parameters between the projectile and the target nu-

clei, which are greater than the radius of the innermost electron shell of the target atom.

The backscattering angle is calculated as (See Fig. 4.3):

ψ = arccos(~eion · ~edet) (4.4)

where ~eion is the unit vector in the direction of the ion before the collision, and ~edet

is the unit vector in the direction of the detector.

Experimental measurements have shown that actual cross sections deviate from

Rutherford at both high and low energies for all projectile-target pairs [139, 152–154].

The low energy departures are caused by partial screening of the nuclear charges by

the electron shells surrounding both nuclei. The low energy correction to Rutherford

cross section given by L’Ecuyer [152] is:

σcorr/σ = 1 − 0.049z1z
4/3
2

ECM
(4.5)

Where ECM is the CM energy of the system related to the ion energy (measured

in lab frame) as

ECM =
E

(1 + m1

m2

)
(4.6)

This correction by L’Ecuyer 4.5 is a first order correction and does not take into

account the influence of the scattering angle. Its applicability is mainly limited for
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Figure 4.5: Angular dependence of the correction factors for the Rutherford cross-
section by L’Ecuyer (dashed lines) and Andersen (solid lines) for He backscattered
from gold at different energies [151].

backscattering angles ψ > 90◦. A more accurate correction is given by the angular and

energy dependent factor by Andersen [153]

σcorr/σ =
(1 + V1

2ECM
)2

{

1 + V1

2ECM
+

[

V1

2ECM sin(θCM/2)

]2
}2 (4.7)

where θCM is the CM scattering angle and V1 is given by:

V1[keV ] = 0.04873z1z2

(

z
2/3
1 + z

2/3
2

)1/2

(4.8)

The dependence of the correction factors as a function of scattering angle is pre-

sented in Fig. 4.5 [151] for He scattered from gold. For large scattering angles both
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correction factors are near to one and similar, while for small scattering angles only

the Anderson’s factor gives adequate correction to the Rutherford cross section.

For sufficiently high energies the distance of the closest approach between the pro-

jectile and the target nuclei reduces to the dimension of the nuclear sizes. The short

range nuclear forces then begin to influence the scattering process, and the deviations

of the cross section from Rutherford appear [139, 144]. When the scattering process

is inelastic, the energy of the scattered particle cannot be expressed by the kinematic

factor [144]. A formula for the energy ENR above which the deviations of cross section

are larger than > 4% is given by Bozoian [155]

ENR[MeV ] =
m1 +m2

m2

z2
10

for z1 = 1 (4.9)

ENR[MeV ] =
m1 +m2

m2

z1z2
8

for z1 > 1 (4.10)

From Eq. 4.10, it can be concluded that special care must be taken when using

protons because nuclear reactions become significant for proton interactions with light

elements at energies greater than 1 MeV. For the case of He in Si the cross section

can be considered purely Rutherford with negligible deviations for ion energies up to 4

MeV. Low energy corrections become of practical importance only for low and middle

energy scattering analysis E < 100 keV . For many channeling studies, the accurate

knowledge of the scattering cross sections is not necessary, since only normalized yields

rather than absolute yields are used.

4.2.2.2 Thermal vibrations

The close nuclear encounter probability is defined as the probability of finding a

particle at the point of ion passage due to thermal vibrations. Atoms are assumed to

vibrate independently where the probability density of a displacement has the Gaus-

sian distribution [137]:

Pvib(r) =
1

2 · π · x2
rms

· exp(− r2

2 · x2
rms

) (4.11)
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r is the distance between the collision point and the target atom. xrms denotes the

root-mean-square vibration amplitude of the target atom in one direction and can be

calculated using the Debye theory of thermal vibrations [137]:

xrms = 12.1

([

f(x)

x
+

1

4

]

/(m2TD)

)1/2

(4.12)

Where TD is the Debye temperature, m2 is the atomic weight of the vibrating atoms

and f(x) is the Debye function

f(x) =
1

x

x
∫

0

[

εdε

exp(ε) − 1

]

(4.13)

x is given by

x = TD/T (4.14)

T [K] is the crystal temperature. At room temperature with the Debye temperature

of 490 K for silicon Eq. 4.12 gives a vibration amplitude of 0.0083 Å [137, 156].

4.2.3 Energy loss due to Rutherford scattering

As a result of the backscattering event the particle will lose energy. The ratio of

the projectile energy immediately after the collision to the incident energy immediately

before the collision is defined as the kinematic factor K [137, 139, 144]

K =

[

m1

m2

cosψ +
√

1 − (m1

m2

)2 sin2 ψ
]2

(1 + m1

m2

)2
(4.15)

Thus, the energy of the particle before and after the collision are therefore calcu-

lated as
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Eafter = E ·K (4.16)

Figure 4.6: Kinematic factor at ψ = 170◦ as a function of a target mass for a
number of projectile types [139].

Fig. 4.6 shows the kinematic factor at ψ = 170◦ as a function of the target atom

mass for a number of projectile types [139].

4.2.4 Outgoing particle path

After the collision we assume that on its path to the detector the particle travels

in a straight line through a random medium.
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The energy of the particle detected at the detector can be calculated by the following

equations:

Eout = Eafter +

0
∫

z∗

(
∂E

∂z′
)dz′ (4.17)

∂E

∂z′
= (

∂r

∂z
)(
∂E

∂r
) = − 1

cos(θout)
(
∂E

∂r
) (4.18)

(∂E/∂r) is the rate of the energy loss of the outgoing particle with respect to the

distance r traveled through the substrate. ∂r
∂z

= − 1
cos(θout)

according to Fig. 4.3. Energy

loss divided with material density is defined as a stopping power what is a function of

particle energy.
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Figure 4.7: The energy loss per particle path for He implantations in Si as a
function of energy.

As an example, the energy loss per particle path of He ions traveling through the

Si target is illustrated in Fig. 4.7.
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Figure 4.8: Slowing down of 3 MeV He ions in Si calculated integrating random
stopping power values presented in Fig. 4.7. Energy which backscattered particle
has to have in order to get out of target after scattering event as a function of a
scattering depth. It is assumed that the backscattered particle moves through ran-
dom medium with straight lines. He 3MeV is used for this example, and scattering
angle of 170◦.

After the collision the path of the backscattered particle is approximated by a

straight trajectory in a random medium. Random stopping as a function of energy is

calculated at the start of the program, using energy equally spaced on a logarithmic

scale between the cut off and the ion energy. It is then numerically integrated (Eq. 4.17)

using the trapezoidal rule. The result of the integration of the stopping power is shown

in Fig. 4.8, for the case of He in Si, with 170◦ scattering angle. The energy reported at

the y-axis is interpreted as the minimal energy that an particle should possess in order

to reach given depth in random medium. The remaining energy of the particle leaving

the target material is obtained according to Eq. 4.17.
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It is important to remark that the approximation of straight random backscatter-

ing paths prevents the correct description of plural scattering effects which may occur

during this outgoing part of the particle trajectory, and which are expected to be non-

negligible at lower ion energies [157, 158]. Plural scattering mainly contributes to the

“high” and “low” energy background of the RBS/C signal, measured relative to the

surface peak and low energy shoulder [157].

4.2.5 A count in energy spectrum

After leaving the sample the ion travels through the vacuum maintaining its energy

and the direction. The backscattering count PRBS is scored in energy spectrum at the

outgoing energy Eout. If according to Eq. 4.17 particle looses its energy before leaving

the target PRBS = 0. In addition if the backscattering count PRBS is scored in depth

spectrum at the collision depth z∗ we can obtain the corresponding RBS/C spectrum

as a function of collision depth.

4.3 Atomistic model of damage in RBS/C simula-

tions

The traditional ’random’ defect model is widely used in RBS/C simulations of the

implanted samples. The model is based on the defect positions which are created sta-

tistically according to the local damage concentration and the atom positions which are

supposed to be randomly distributed interstitials in the perfect lattice. The random

model has failed to obtain multiaxial fitting of the RBS/C measurements in implanted

silicon [48–52] which raises the requirement for a new improved model of damage in

RBS/C simulations. Taking results from the recent investigations in the field of atomic

scale modeling of the structure of defects a new improved atomistic model of damage

is proposed. In the proposed model the defect positions are also generated statistically

according to local damage concentration but the actual atom positions correspond to

the already precalculated coordinates of atomic-scale defect models and their strained

fields.
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Figure 4.9: Chart diagram of procedure used to implement atomistic model of
damage in Monte Carlo RBS/C RBS/C simulation.

In order to implement atomistic model of damage in Monte Carlo simulations of

RBS/C spectra we have used the procedure presented in Fig. 4.9. In the first step

coordinates of various defect types and associated strained fields are calculated using

either classical molecular dynamics simulations or ab-initio calculations. These coor-

dinates are used to subsequently populate a large supercell, with one defect type at

a time, according to the local damage concentration given by 1D damage histograms.

Afterwards RBS/C simulation is performed on the prepared supercell. The details of

the particular steps are outlined in the following sections.

4.3.1 Atomic-scale defect models

Using a Si cell with a size of 10x10x10 unit cells relaxed by the Tersoff III [159]

empirical potential we have calculated the coordinates of minimum energy configura-

tion of small interstitial clusters In, where n denotes the number of excessive atoms
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Figure 4.10: Simulation cell 10x10x10 unit cell used to calculate minimum energy con-
figuration of the defects by Tersoff III empirical potentials. Ball and stick illustration
of atomic-scale defect (dark grey) surrounded with cluster of strained atoms.

in the range n = 1, ..4. The relaxation is done by a molecular dynamics simulation

of quenching from 300K to 0 K in 5 ps. In order to save the CPU time these de-

fect configurations obtained by MD calculations are used as the initial configurations

in ab-initio calculation. A schematic illustration of the MD cell used for the defect

calculation and the obtained structure together with the strained region is shown in

Fig. 4.10. The coordinates of the defects are introduced into a 216 atoms Si cell and

relaxed with the ab-initio code VASP [79]. The calculations were performed using the

generalized gradient approximation (GGA) and projector augmented wave potentials.

The complete description of the computational details used in ab-initio calculations

can be found in Reference [78].

In both cases we have identified the positions of the defect atoms as well as the

strain associated with the defects. The following five different configurations of atomic

scale models have been considered (see Fig. 4.11): I1 is the well known split-〈110〉 in-

terstitial, composed of two defective atoms in the 〈110〉 plane [61, 63, 68–70]. I2 is the

di-interstitial composed of three defective atoms which is obtained adding one single

interstitial to an existing I1 defect [60, 68, 70]. I3 is the tri-interstitial composed of

four defective atoms obtained by adding of one single interstitial to the I2 structure,

which represents tetrahedral case symmetrically embedded into the crystalline envi-
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split-int di-int

tri-int tetrahedral-int

four-int

Figure 4.11: Ball and stick representation of self-interstitial defects calculated with
ab-initio methods. Si defective atoms are dark grey, where other atoms are light gray.
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ronment [60, 68, 70, 71]. All these configurations are obtained with the 〈110〉 dumbbell

defect being fundamental unit. I4 represents the four-interstitial which is composed

of eight fourfold coordinated defective atoms, being formed by the agglomeration of

four split-〈100〉 interstitials on the {110} plane [62, 64, 71]. The Si atoms in the I4

configuration preserve their four-fold coordination. In addition we have considered the

tetrahedral interstitial (IT ) [61, 66, 69], which is composed of one fourfold coordinated

defective atom while the neighboring crystalline atoms are fivefold coordinated.

4.3.2 Building a large supercell

In the next step a big silicon cell containing 1.6 million atoms (10x10x2000 unit

cells) is populated with clusters which contain not only the defects but also the strained

regions around the defects. The concentration of the defects inserted at particular

depth is determined by the damage concentration usually defined in the histogram file.

The defects have been inserted as to guarantee a minimum distance between them but

otherwise at random positions, taking into account all possible symmetry-equivalent

orientations. An equivalent number of vacancies with their strained fields is also in-

serted into the cell in order to balance the interstitial profile and to keep the number

of atoms constant. The strain of nearby defects is superposed linearly.

The term “symmetry-equivalent orientation” is explained in the following. Silicon

has a diamond lattice which like other crystals has an ordered internal arrangement

of atoms showing symmetry. A crystal’s symmetries can be described in terms of the

geometric operations (rotation, reflection, rotoinversion) which applied on the crystal

produce identical configurations. The silicon lattice has a set of 24 symmetry oper-

ations, which is also reflected on the corresponding defect configurations. Therefore

we can apply these symmetry operations on the relative positions (measured from the

lattice site) of the defect configuration. The new obtained configurations define a set

of symmetry equivalences. Since some defects already possess additional symmetry the

effective number of symmetry equivalent orientations will be smaller. In case of the

split-〈110〉 interstitial we have six different symmetry-equivalent orientations, which

are presented in Fig. 4.13.
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Figure 4.12: Large supercell size 10x10x2000 unit cells populated with defects
and subsequently analyzed with RBS/C He beam to investigate the influence of
defect models.

4.4 Investigation of the impact of defect model on

Monte Carlo simulation of RBS/C spectra

In order to compare the influence of the particular defect model in silicon on the

interpretation of RBS/C spectra we have prepared supercells using the procedure ex-

plained in Section 4.3. We also compare the impact on the RBS/C spectra of the

particular technique to calculate the defect configurations in silicon, the Tersoff empir-

ical potential and VASP for ab-initio calculations.

In addition to the above mentioned deterministic defect models, simulations were
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split-〈 110 〉 interstitial

Figure 4.13: Ball and stick representation of 6 symmetry equivalent orientations for
split-〈110〉 interstitial. Light colored atoms represent the ideal lattice positions, while
dark colored represent the actual atom position, including defective atoms [78].
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also performed in the framework of the random model, where defects consist of atoms

randomly displaced from original sites with no deformation induced in the surrounding

lattice. Despite that this picture of randomly displaced damage in perfect lattice is

not quite physical, it is still widely used as the standard method for the extraction of

disordered profiles from RBS/C spectra [59].

4.4.1 Computational details

Figure 4.14: Ratio of experimentally measured and Rutherford cross section for
He in Si target for the scattering angle of 170◦ [139].

Using procedure presented in Section 4.3 the simulation cell with a size of 10x10x2000

unit cells is populated with 2% defect concentration. In order to investigate the im-
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pact of the different methods for calculation of the coordinates of the atomic defects

(ab-initio or empirical potential) on the RBS/C simulation, the original configuration

of defects is preserved and the supercell is not relaxed before the RBS analysis is per-

formed. Due to possible overlap of strained regions stemming from neighboring defects,

we have limited our analysis to a uniform, rather small concentration of defects, where

their mutual interactions are not expected to play important role. The analyzing ions

were 3 MeV He+ beam, with backscattering angle of 170◦. In this energy range and

for this combination of target and projectile there are no significant deviations of the

scattering cross-section from the Rutherford one. Correction to the Rutherford cross

section for the case of 3 MeV He+ ions in Si can be neglected. L’Ecuyer’s formula

(Eq. 4.5) gives a value of 0.999875, and Bozoian formula (Eq. 4.10) gives ENR of

4 MeV . The experimentally measured cross section for He in Si for the 170◦ scattering

angle is shown in Fig. 4.14 confirming that the ratio between the measured and the

Rutherford cross section is rather flat and close to unity up to the energy of about 4

MeV. Therefore, for this ion-target combination in this energy range we can assume

that, with negligible error, the scattering is purely Rutherford and can be described

with Eq. 4.3.

In order to keep simulation times reasonable, defects are restricted to a columnar

domain with lateral dimensions which corresponds to the column width. In BC the

starting points of the ion trajectories are randomly generated in the intersection of the

surface and the column, but the collision cascade is allowed to develop in the whole

target. Defects around the ion trajectories are generated by assuming periodicity in

the lateral directions. The size of the column in lateral directions therefore determines

the statistical quality of the results and the computation time. Illustration of laterally

periodic conditions is shown at Fig. 4.15. The size of the cell can be arbitrary, the here

chosen cell size of 1.6 million atoms (10x10x2000 unit cells) is the compromise between

the statistical quality of the calculation and the available resources.

4.4.2 Results and discussion

Fig. 4.16 shows the 〈001〉, 〈011〉 and 〈111〉 aligned RBS/C spectra of unrelaxed sys-

tem cells containing a uniform damage concentration for different defect models. The

cell was populated by the defects and their strain fields, the coordinates of which were
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Figure 4.15: Illustration of lateral periodic conditions used in simulations [47].

calculated either from ab-initio or classical potential simulations. For each defect type

the number of clusters is calculated to give a uniform concentration of 2% of excess

atoms in the sample, and an appropriate concentration of vacancies is introduced to

balance these excess atoms. For comparison we have also plotted the RBS/C spectra

of the model using the random model of damage and of the virgin sample.

From the figures it can be seen that the random model of damage underestimates the

RBS/C yield of the split-〈110〉 and four-interstitial cluster in all investigated channel-

ing directions. This implicitly means that more damage would be necessary to obtain

certain RBS/C yield when the damage is in the form of the random interstitial than

the split-〈110〉 or four-interstitial cluster. Since the displacement of atoms randomly

placed into the lattice is on average smaller than that characteristic of the split-〈110〉
and four-interstitial, they give smaller contributions to the increase of the RBS/C sig-

nal. In case of the di- and tri-interstitial cluster the efficiency strongly depends on the

calculation method. Ab-initio coordinates of di- and tri- interstitials give larger 〈001〉
and 〈111〉 RBS/C efficiency than the random interstitial model, while the results are
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Figure 4.16: RBS/C spectra obtained by 3 MeV He+ ions in 〈001〉 alignment for
different models of self-interstitial clusters: split-〈110〉 interstitial (spl), di-interstitial
(di), tri-interstitial (tri), four-interstitial (four), and tetrahedral interstitial (tet), us-
ing atom positions and strain from ab-initio simulations (left) and empirical potential
(right). Spectra labeled with ’rand’ and ’vir’ represent results for the random model
of damage and virgin material, respectively.
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reverse when the coordinates are calculated with classical potentials. In addition from

Fig. 4.16 we conclude that the random interstitial model gives the smallest efficiency

among all defect models except for the tetrahedral interstitial, when their coordinates

are taken from ab-initio calculations.

It is important to note that the random interstitial model shows its isotropic be-

havior giving about the same RBS/C signal in all three alignment directions. Since

the RBS/C signal is dependent on the actual atom position and its projection in the

particular channel a nonisotropic behavior in case of the deterministic defect models

can clearly be seen. In particular, each defect gives rise to a different RBS/C signal

dependent of the actual alignment. The anisotropy in the RBS/C yield may prevent a

multiaxial fitting of RBS/C experiments with a single distribution of one defect type,

what should be taken into account when fitting the experimental results. Furthermore,

the influence of strained regions is evident in the case of the tetrahedral interstitial,

which is shadowed by rows of atoms in 〈001〉 and 〈111〉 direction and would thus give

without strain an RBS/C yield close to the virgin sample (See also Fig. 4.22). This

leads to the clear conclusion that the influence of the strained atoms around the defects

must not be neglected as it is done in the standard approach.

A qualitative difference in the obtained RBS/C yield for the same assumed defect

type but calculated with different calculation method is obvious. In order to qualita-

tively investigate this influence in Fig. 4.17 we compare the normalized RBS/C yield

calculated in 〈001〉, 〈110〉 and 〈111〉 alignment of the same system as in Fig. 4.16,

when the coordinates of defects and strained regions are calculated either by ab-initio

or the Tersoff III potential. The normalized yield is calculated as the integral of the

RBS/C spectrum in the energy interval of 1.45 − 1.6 MeV , divided by the integral of

the amorphous spectrum.

The results for the case of 〈001〉 and 〈111〉 alignment clearly show that the differ-

ence in yield is significant and can be as high as 30%. I1 gives higher 〈001〉 and 〈111〉
efficiency when their coordinates are calculated with the Tersoff potential, while I2 and

I3 are more efficient when their configurations are taken from ab-initio calculations. In

the case of 〈110〉 alignment the difference is not so pronounced.

Also, for all presented alignments, the RBS/C yield of split-〈110〉 and four-interstitial

is larger than the corresponding yield of di-, tri- and tetrahedral interstitial. This dif-
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Figure 4.17: Normalized 〈001〉, 〈011〉 and 〈111〉 RBS/C yield of different defect types
using two methods to calculate atom positions and strain: classical potentials (Ter-
soff) and ab-initio. Defect types: split-〈110〉 interstitial (I1), di-interstitial (I2), tri-
interstitial (I3), four-interstitial (I4), and tetrahedral interstitial (IT ).
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ference can be explained by the different number of defective atoms at one lattice site.

In case of split-〈110〉 and four- interstitial we have twice as many defective atoms as

excessive atoms, while the di-, and tri-interstitial have 3 or 4 defective atoms with 2 and

3 excess atoms, respectively (see also Fig. 4.11). Therefore, keeping the concentration

of excessive atoms constant (in this case 2%) more defective atoms are introduced in

the case of split-〈110〉 and four interstitial than in the case of di- and tri- interstitial.

The difference in the RBS/C efficiency of the assumed defect type when the coor-

dinates are calculated with different method can be illustrated by the slightly different

bond lengths. Despite the fact that both methods yield qualitatively the same config-

urations, the quantitative difference in the bond lengths leads to different projections

of the defective atoms into the investigating channels, leading to significantly different

RBS/C yields. In the ab-initio calculations the bond lengths between defective atoms

for all defect types are in the range of 2.21 - 2.47 Å, which is in the range of the ideal

bond lengths in silicon of 2.35 Å. The empirical potential calculations gave us bond

lengths up to 3.20 Å.

In order to qualitatively investigate this differences and their influences on RBS/C

yields we present and compare in Figs. 4.18, 4.19, 4.20, 4.21, 4.22 the projections of

the used defect configurations in the 〈100〉, 〈110〉 and 〈111〉 channel, when the defect

coordinates are calculated with both mentioned methods.

As it can be seen the differences in the projection of the defects in the 〈100〉 and

〈111〉 channels are generally larger than in case of the 〈110〉 channel.

From Fig. 4.18 we can see that the defective atoms of the split-〈110〉 interstitial

are more projected into the 〈100〉 and 〈111〉 channel for the case of the Tersoff III

potential what leads to the higher corresponding RBS yield in Fig. 4.17. Di-interstitial

and tri-interstitial have larger projection of defective atoms into the 〈100〉 and 〈111〉
channel, gained from ab-initio calculations.

In case of the tetrahedral and four-interstitial defect both calculation methods

gained almost the same bond lengths which is illustrated in Figs. 4.21 and 4.22. Neg-

ligible differences in the corresponding RBS/C yield from Fig. 4.17 can be assigned to

the strained atoms.
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Also, interesting to point out is that in case of the 〈110〉 channel, which is the most

open channel in silicon the difference in atomic configuration does not play such an im-

portant role since the differences in RBS/C yield are weak for all defect types. One of

the reason can be that the defects are already significantly displaced into 〈110〉 channel,

so the further difference in the projection does not significantly enhance the RBS signal.

The presented results confirm the assumption that a direct relationship between

the defect projection into the channel and the corresponding RBS/C yield can be es-

tablished. The bond length influences the projection of the particular defect type in

the channel, which in turn affects the corresponding RBS/C yield.

Beside the influence of the bond lengths to the RBS/C yield additional impact of

the defective atoms can be found. Although defective atoms of some defect types are

placed in the walls of the particular channel, for example split-〈110〉 interstitial from

ab-initio calculations in the 〈100〉 and 〈111〉 direction, they can increase the backscat-

tering yield by means of increasing the dechanneling probability of the ion which change

the channel.

From the presented result it can be concluded that the Tersoff potential gives a large

variation of the backscattering yield depending on the assumed defect type while ab-

initio calculations lead to much less variation in the system studied with the exception

of the tetrahedral interstitial and the four-interstitial cluster. Since the split-〈110〉, di-

and tri-interstitial have the same building unit, similar behavior is expected, what is

not the case for the tetrahedral and the four interstitial cluster whose building units

are different.
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I1 VASP Tersoff

〈100〉

〈110〉

〈111〉

Figure 4.18: Split-〈110〉 interstitial showing the differences in projection into 〈100〉,
〈110〉 and 〈111〉 channel when the defect coordinate are calculated with ab-initio (left)
and classical potential (right) calculations.
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I2 VASP Tersoff

〈100〉

〈110〉

〈111〉

Figure 4.19: Di-interstitial showing the differences in projection into 〈100〉, 〈110〉 and
〈111〉 channel when the defect coordinate are calculated with ab-initio (left) and clas-
sical potential (right) calculations.
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I3 VASP Tersoff

〈100〉

〈110〉

〈111〉

Figure 4.20: Tri-interstitial showing the differences in projection into 〈100〉, 〈110〉
and 〈111〉 channel when the defect coordinate are calculated with ab-initio (left) and
classical potential (right) calculations.
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I4 VASP Tersoff

〈100〉

〈110〉

〈111〉

Figure 4.21: Four-interstitial showing the differences in projection into 〈100〉, 〈110〉
and 〈111〉 channel when the defect coordinate are calculated with ab-initio (left) and
classical potential (right) calculations.
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〈110〉

〈111〉

Figure 4.22: Tetrahedral-interstitial showing the differences in projection into 〈100〉,
〈110〉 and 〈111〉 channel when the defect coordinate are calculated with ab-initio (left)
and classical potential (right) calculations.
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4.5 Influence of defect relaxation and mutual inter-

action

4.5.1 Introduction

In rather low damaged samples, considered in Section 4.4, the mutual defect in-

teractions are weak and disorder can be presented as a distribution of simple defects,

each one surrounded by strained region which does not significantly overlap with the

ones generated from neighboring defects. By increasing the damage concentration in

the sample the overlapping of the strained regions of nearby defects occurs, which in

turn increases the disorder in the originally perfect lattice sites surrounding the defects.

By increasing the defect concentration the strain becomes so large that the additional

lattice atoms are now being pushed from their lattice positions and therefore displaced,

finally giving rise to the sample amorphization.

In order to study the influence of the lattice relaxation and mutual defect interaction

on RBS/C spectra for different types of small interstitial clusters we have performed

structural relaxation of the supercell populated with varying defect concentrations.

The cell is populated with one defect type at the time, adding an appropriate vacancy

concentration to balance the excess atoms introduced with particular defect types. The

procedure is explained in Section 4.4.1. Although the relaxation of the cell with the

ab-initio code VASP would be more accurate, unfortunately such calculation is not

computationally feasible. Therefore the simulation supercell is relaxed with the Tersoff

III potential by quenching from 300K down to 0K for 5 ps in order to obtain the final

configuration.

4.5.2 Results

In Figs. 4.23, 4.24, 4.25, 4.26, 4.27 we compare the normalized 〈100〉 RBS/C spec-

tra of the relaxed and unrelaxed supercell as a function of damage concentration for

the different defect types. In addition, for comparison purposes, the results obtained

with the random interstitial model are plotted. The normalized yield is calculated as

the integral of the RBS/C spectrum in the energy interval of 1.45− 1.6 MeV , divided
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Figure 4.23: Normalized 〈100〉 RBS/C yield of split-〈110〉 interstitial (I1) com-
pared for relaxed cell (relaxed) and unrelaxed cell (unrelaxed) showing the impor-
tance of mutual interaction. The line labeled with “random” represents the yield
obtained with random interstitial model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20

 N
or

m
al

iz
ed

 y
ie

ld
 

Damage conc. [%]

I2

relaxed
random

unrelaxed

Figure 4.24: Normalized 〈100〉 RBS/C yield of di-interstitial (I2) compared for
relaxed cell (relaxed) and unrelaxed cell (unrelaxed) showing the importance of
mutual interaction. The line labeled with “random” represents the yield obtained
with random interstitial model.
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Figure 4.25: Normalized 〈100〉 RBS/C yield of tri-interstitial (I3) compared for
relaxed cell (relaxed) and unrelaxed cell (unrelaxed) showing the importance of
mutual interaction. The line labeled with “random” represents the yield obtained
with random interstitial model.
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Figure 4.26: Normalized 〈100〉 RBS/C yield of four-interstitial (I4) compared for
relaxed cell (relaxed) and unrelaxed cell (unrelaxed) showing the importance of
mutual interaction. The line labeled with “random” represents the yield obtained
with random interstitial model.
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Figure 4.27: Normalized 〈100〉 RBS/C yield of tetrahedral interstitial (IT ) com-
pared for relaxed cell (relaxed) and unrelaxed cell (unrelaxed) showing the impor-
tance of mutual interaction. The line labeled with “random” represents the yield
obtained with random interstitial model.

by the integral of the amorphous spectrum. As it is expected random interstitial and

nonrelaxed deterministic model shows mainly linear dependence of RBS/C yield as a

function of defect concentration for almost all defect types. Only in the case of split-

〈110〉 and four-interstitial we have slightly sub-linear behavior. The relaxed supercell

shows in general a super-linear trend even at low to middle damage concentration for

almost all used defect types. By increasing the defect concentration the superposi-

tion of strained fields of nearby defects occurs inducing strong forces displacing more

atoms from their lattice positions. In case of the random interstitial and unrelaxed

cell the strain is superposed linearly and nonlinear effects cannot occur. For a defect

concentration larger than 4-5 % the defects starts to push lattice atoms from their

crystallographic positions inducing further displacements and material amorphization,

thus contributing to the super-linear dependence of the RBS/C yield. Also strong

deviation of the non-relaxed from the relaxed system is significant for the case of di-

and tri- and tetrahedral interstitial even at relative defect concentration of about 2-3%,

which limits the usability of non-relaxed model in case of these defect types. For the

split- 〈110〉 and the four-interstitial cluster the deviation becomes significant at relative
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defect concentration of 6-7%.

As a result of the increase of the strain generated by the lattice relaxation we get

the super-linear trend of RBS/C disorder versus defect concentration in the range of

intermediate damage density. This fact disconfirms the result obtained by usual de-

scription of randomly displaced defects surrounded by perfect lattice.

4.6 Conclusions

We can conclude that the model based on the atomic-scale defects improves the

physical description of the damage used for the interpretation of RBS/C spectra of ion

implanted Si.

The enhancement in RBS/C yield has been shown to be dependent on the calcula-

tion method used to calculate the defect structure, and the type of defect, and on the

channeling direction.

The damage model based on atomic-scale defects takes into account the strain in-

duced by the presence of these defects, which is not the case in the random interstitial

model. The influence of the strained fields is not negligible and is clearly illustrated

for the tetrahedral interstitial cluster. The important consequence is if the strain is

neglected the amount of damage extracted from RBS/C analysis may be significantly

overestimated. Also, the contribution of the deterministic defects like the split-〈110〉
and four-interstitial to the disorder and RBS/C yield is larger than the contribution

obtained from randomly displaced atoms surrounded by the perfect lattice. This is

explained with the fact that the defective atoms in these configurations are on average

more displaced than in the case of random interstitial, therefore giving higher a contri-

bution to the RBS/C yield. Because of the different projections of the particular defect

type into the investigating channel, the atomic-scale models show clear anisotropic be-

havior dependent on the channeling direction.

Furthermore, the influence of the defect models and their correct coordinates is

critical. For the same damage level the difference in RBS yield on the assumed defect

type can be up to a factor of two. Also, the RBS/C yield calculated from empiri-
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cal interatomic potentials may significantly deviate from that obtained using atomic

coordinates from ab-initio calculations. These differences are due to the inherently

approximative nature of empirical interatomic potentials. In addition, the variation of

the backscattering yield with the assumed defect type is larger with the defect coor-

dinates obtained by the empirical potential than by the ab-initio calculations. Since

the structural model plays an essential role in RBS/C simulations, attention should be

paid to these models when fitting the experimental results.

Also, using isolated deterministic defects, even together with the strain, has cer-

tain limitations when going to larger damage concentrations. We have to note that

although VASP is more accurate than the Tersoff empirical potential, the relaxation

of such large cell with the VASP is not feasible, and the presented results obtained

with relaxed supercell may be influenced by the used empirical potential. For the

damage levels of more than about 5% the mutual defect interaction plays an essential

role determining the RBS yield, where the isolated defect model begins to cancel off.

In this region a super-linear dependence of the RBS/C yield on damage concentration

can be seen. The strain induced by lattice relaxation increases its contribution to dis-

order with increasing the defect concentration leading to the super-linear increase of

the RBS/C damage in the low-middle damage concentration regime. Amorphization

of the sample occurs at the concentration of about 15% for all used defect types.



Chapter 5

Conclusion and Outlook

Within this thesis we have proposed new simulation methods able to simulate ef-

fects that cannot be explained with the classical approach based on the displacement

energy. Using existing and developing new models we have improved the physical un-

derstanding of ion implantation induced damage.

We have developed a model based on a coupled BC/heat flow approach which de-

scribes well the energy and the ion mass dependence of the ion mass as well as the

polyatomic effect at cryogenic temperatures. The initial energy distribution is ob-

tained by the existing BC code and the subsequent heat quenching step is simulated

by the heat flow simulator that is developed for the purpose of this thesis. From our

simulations it can be concluded that considering the lattice collapse once the damage

level exceeds a critical value is essential for the prediction of the size of the amorphous

pockets. Introduction of the heat of melting and the neighboring atoms in the melting

criterion was important but not sufficient to obtain good agreement with experimental

results. We have demonstrated that the heat diffusion law, even with both the heat of

melting and the requirement that the nearest neighbors meet the melting criterion, is

capable to neither quantitatively nor qualitatively account the amorphization process.

A significant improvement can be obtained by assuming that the lattice collapses to

the amorphous state once the damage density exceeds 10%. With this model we have

got the qualitative as well as quantitative agreement for the number of displaced atoms

after implantation of various ion species (P, As, Te, Tl) including molecular ions (P2,

AS2, T l2) and for a wide range of energies.

For the purpose of this thesis a RBS/C simulation code is developed and tested.
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The code uses the concepts of the Rutherford backscattering cross section and the close

nuclear encounter probability. Atomic-scale modeling of defect structures was used to

determine the location of interstitial atoms in the host lattice. A new atomistic model

of damage which introduces atomic-scale defects, coordinates of which are calculated

with ab-initio or classical MD calculations was proposed. The enhancement in the

RBS/C yield has been shown to be dependent on the calculation method used to cal-

culate the defect structure, and the type of defect, and on the channeling direction. We

find differences in the RBS/C yields up to of 30% for the same assumed defect type,

when the defect coordinates are calculated by two different methods. The RBS/C

yield calculated from empirical interatomic potentials significantly deviates from that

obtained using atomic coordinates from ab-initio calculation. Also, the dependence of

the backscattering yield on the assumed defect type is larger with the defect coordi-

nates obtained by the empirical potential than by the ab-initio calculations. These

differences are due to the inherently approximative nature of the empirical potentials.

Since the structural model plays a very important role more attention should be paid

to these models when fitting the experimental results. The non-negligible role of the

strain around the defects is indicated as well as the defect anisotropy when multiax-

ial measurement of RBS/C spectra is performed. Finally, the approach based on the

isolated defect structures and their strained fields is found to be limited to concentra-

tions less then about of 6-7% of the atomic density. The proposed model improves the

physical picture of the damage used in RBS/C models and establishes a quantitative

correlation between the microscopic defect models and the macroscopic RBS/C yield

under the condition of a low concentration of weakly interacting point defects.

The importance of the multiscale modeling is illustrated by the conclusion that the

proposed amorphous pocket model may benefit from the investigations of the influences

of the atomic-scale defects on the RBS/C signal.

In order to further improve the understanding of the damage physics the following

questions should be treated:

� More investigations on the influence on the RBS/C yield of the atoms contained

in amorphous pockets should be done. These results could yield a correction to

the factor of “+1” used to count the atoms within the amorphous pockets.

� The proposed amorphous pocket model could be incorporated into a complete
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multi-scale modeling scheme, as an interim step, gaining its full advantage upon

heavy ion implantations at low temperatures. The proposed scheme could be:

BCA for the damage generations → proposed amorphous pocket model for the

heat quenching and detection of displaced atoms → kLMC for the subsequent

damage annealing at higher temperatures.

� The proposed atomistic model of damage in RBS/C simulations is awaiting the

testing and comparison with experimental data. Fitting the experimental data

could give more information about the abundance of different defect types in the

damaged sample and be used to validate and improve the configurations of the

used atomic-scale defects.



Appendix A

Acronyms and Symbols

A.1 List of Acronyms

BC binary collision

BCA binary collision approximation

CM center of mass

CPDD Critical point defect density

EOR End of range

IBIEC ion beam induced epitaxial crystallization

IBIIA ion beam induced interfacial amorphization

kLMC kinetic lattice Monte Carlo

kMC kinetic Monte Carlo

LAB laboratory

LNT liquid nitrogen temperature

MC Monte Carlo

MD molecular dynamics

RBS Rutherford backscattering

RBS/C Rutherford backscattering/channeling

RT room temperature

SIMS secondary ion mass spectrometry

TEM transmission electron microscope

VASP Vienna ab-initio simulation program
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A.2 List of Frequently Used Symbols

Symbol Description

alatt lattice constant

cp specific heat

D thermal diffusivity

dσ/dΩ differential backscattering cross section

E energy

Emelt heat of melting

I1 split-〈110〉 interstitial

I2 di-interstitial

I3 tri-interstitial

I4 four-interstitial

IT tetrahedral-interstitial

m1 ion mass

m2 target mass

p impact parameter

PRBS RBS reaction probability

~q heat flux

T temperature

Ti,j temperature of jth neighbor of atom i

Tm melting temperature

z1 ion atomic number

z2 target atomic number

λ thermal conductivity

ρ Si mass density

χ normalized RBS yield

ψ laboratory backscattering angle

Ω detector solid angle



Bibliography

[1] S. Tian, M. F. Morris, S. J. Morris, B. Obradovic, G. Wand, A. F. Tasch, and
C. M. Snell, A detailed physical model for ion implant induced damage in silicon,
IEEE Trans. on Elec. Dev. 45, 1226 (1998).

[2] M. Caturla, T. Diaz de la Rubia, L. Marques, and G. Gilmer, Ion-beam processing
of silicon at keV energies: A molecular dynamics study, Phys Rev. B 54, 16683
(1996).

[3] S. K. Estreicher, Structure and dynamics of point defects in crystalline silicon,
Phys. Stat. Sol. B 217, 513 (2000).

[4] International technology roadmap for semiconductors, http://public.itrs.net,
2005.

[5] G. Kinchin and R. Pease, The displacement of atoms in solids by radiation, Rep.
Prog. Phys. 18, 1 (1955).

[6] D. Thompson and R. Walker, Energy spikes in Si and Ge due to heavy ion
bombardment, Radiat Eff. 36, 91 (1978).

[7] G. Hobler and G. Otto, Status and open problems in modeling as-implanted
damage in silicon, Mat. Sci. Semicond. Proc. 6, 1 (2003).

[8] G. Hobler, Monte Carlo simulation of two-dimensional implanted dopant distri-
butions at mask edges, Nucl. Instr. Meth. B 96, 155 (1995).

[9] H. Cerva and G. Hobler, Comparison of transmission electron microscope cross
sections of amorphous regions in ion implanted silicon with point-defect density
calculations, J. Electrochem. Soc. 139, 3631 (1992).

[10] G. Hobler, A. Simionescu, L. Palmetshofer, C. Tian, and G. Stingeder, Boron
channeling implantations in silicon: Modeling of electronic stopping and damage
accumulation, J. Appl. Phys. 77, 3697 (1995).

[11] A. Simionescu, S. Herzog, G. Hobler, R. Schork, J. Lorenz, C. Tian, and
G. Stingeder, Modeling of electronic stopping and damage accumulation dur-
ing arsenic implantation in silicon, Nucl. Instr. Meth. B 100, 483 (1995).

126



BIBLIOGRAPHY 127

[12] G. Otto, Multi-method simulations and transmission electron microscope inves-
tigations of ion implantation damage in silicon, PhD Thesis, TU Vienna (2005).

[13] D. A. Thompson, R. S. Walker, and J. A. Davies, Evidence for spike-effects in
low-energy heavy-ion bombardment of Si and Ge, Radiat Eff. 32, 135 (1977).

[14] D. Thompson, A. Golanski, K. Haugen, and D. Stevanovic, Disorder production
and amorphization in ion implanted silicon., Radiat Eff. 52, 69 (1980).

[15] D. Thompson, High density cascade effects, Radiat Eff. 56, 105 (1981).

[16] L. Howe, M. Rainville, H. Haugen, and D. Thompson, Collision cascades in
silicon, Nucl. Instr. Meth. 170, 419 (1980).

[17] J. Narayan, O. Oen, D. Fathy, and O. Holland, Atomic structure of collision
cascades in ion-implanted silicon and channeling effects, Mater. Lett. 67, 143
(1985).

[18] L. Howe and M. Rainville, Features of collision cascades in silicon as determined
by transmission electron microscopy, Nucl. Instr. Meth. 182/183, 143 (1981).

[19] A. Grob, J. Grob, and A. Golanski, Damage created by BF+
n (1 ≤ n ≤ 3) and

PF+
n (1 ≤ n ≤ 5) implantations, Nucl. Instr. Meth. B 19/20, 55 (1987).

[20] A. Titov, S. Kucheyev, V. Belyakov, and A. Azarov, Damage buildup in Si under
bombardment with MeV heavy atomic and molecular ions, J. Appl. Phys. 90,
3867 (2001).

[21] G. Otto, G. Hobler, L. Palmetshofer, K. Mayerhofer, K. Piplits, and H. Hutter,
Dose-rate dependence of damage formation in Si by N implantation as determined
from channeling profile measurements, Nucl. Instr. Meth. B 242, 667 (2006).

[22] S. Prussin and P. F. Zhang, A physical model for the role of dose and dose
rate on amorphous depth generation, in Ion Implantation Technology–96, pages
555–558, IEEE, Piscataway, 1997.

[23] O. W. Holland and C. W. White, Ion-induced damage and amorphization in Si,
Nucl. Instr. Meth. B 59/60, 353 (1991).

[24] F. H. Eisen, B. Welch, J. E. Westmoreland, and J. W. Mayer, Lattice disorder
produced in silicon by boron ion implantation, in Atomic Collision Phenomena

in Solids, edited by D. W. Palmer, M. W. Thompson, and P. D. Townsend, pages
111–127, North-Holland, 1970.

[25] O. W. Holland, D. Fathy, J. Narayan, and O. S. Oen, Dose rate dependence of
damage clustering during heavy ion irradiation in Si, Radiat. Eff. 90, 127 (1985).



BIBLIOGRAPHY 128

[26] M. Posselt, L. Bischoff, and J. Teichert, Influence of dose rate and temperature on
ion-beam-induced defect evolution in Si investigated by channeling implantation
at different doses, Appl. Phys. Lett. 79, 1444 (2001).

[27] L. Bischoff, J. Teichert, and S. Hausmann, Dwell-time dependence of irradiation
damage in silicon, Nucl. Instr. Meth. B 178, 165 (2001).

[28] F. Priolo and E. Rimini, Ion-beam-induced epitaxial crystallization and amor-
phization in silicon, Mater. Sci. Rep. 5, 319 (1990).

[29] T. Henkel, V. Heera, R. Koegler, W. Skorupa, and M. Seibt, Kinetics of ion-
induced interfacial amorphization in silicon, Nucl. Instr. Meth. B 127/128, 239
(1987).

[30] G. Otto, G. Hobler, P. Pongratz, and L. Palmetshofer, Is there an influence of
ion-beam-induced interfacial amorphization on the a/c-interface depth in silicon
at common implantation energies, Nucl. Instr. Meth. B 253, 227 (2006).

[31] A. Leiberich, D. M. Maher, R. V. Knoell, and W. L. Brown, Ion-beam induced
crystallization and amorphization at a crystalline/amorphous interface in 〈100〉
silicon, Nucl. Instr. Meth. B 19/20, 457 (1987).

[32] A. Battaglia, G. Romano, and S. Campisano, Layer by layer amorphization in Si:
Temperature, ion mass and flux effects, Mat. Res. Symp. Proc. 316, 253 (1994).

[33] J. Westmoreland, J. Mayer, F. Eisen, and B. Welch, Production and annealing
of lattice disorder in silicon by 200-keV boron ions, Appl. Phys. Lett. 15, 308
(1969).

[34] S. T. Picraux, J. E. Westmoreland, J. W. Mayer, R. R. Hart, and O. J. Marsh,
Temperature dependence of lattice disorder created in Si by 40 keV Sb ions,
Appl. Phys. Lett. 14, 7 (1969).

[35] F. Morehead. and B. Crowder, A model for the formation of amorphous Si by
ion bombardment, Radiat. Eff. 6, 27 (1970).

[36] K. Nordlund, M. Ghaly, R. Averback, M. Caturla, T. D. de la Rubia, and
J. Tarus, Defect production in collision cascades in elemental semiconductors
and fcc metals, Phys Rev. B 57, 7556 (1998).

[37] T. Motooka, Model for amorphization processes in ion-implanted Si, Phys. Rev.
B 49, 16367 (1994).

[38] T. Motooka, Y. Hiroyama, R. Suzuki, T. Ohdaira, Y. Hirano, and F. Sato, Role
of defects during amorphization and relaxation processes in Si, Nucl. Instr. Meth.
B 106, 198 (1995).



BIBLIOGRAPHY 129

[39] T. Motooka, The role of defects during amorphization and crystallization pro-
cesses in ion implanted Si, Mat. Sci. Eng. A253, 42 (1998).

[40] M. Jaraiz, G. H. Gilmer, J. M. Poate, and T. D. de la Rubia, Atomistic calcu-
lations of ion implantation in Si: point defect and transient enhanced diffusion
phenomena, Appl. Phys. Lett. 68, 409 (1996).

[41] L. Pelaz, L. A. Marques, G. H. Gilmer, M. Jaraiz, and J. Barbolla, Atomistic
modeling of the effects of dose and implant temperature on dopant diffusion and
amorphization in Si, Nucl. Instr. Meth. B 180, 12 (2001).

[42] L. Pelaz, L. A. Marques, M. Aboy, J. Barbolla, and G. H. Gilmer, Atomistic
modeling of amorphization and recrystallization in silicon, Appl. Phys. Lett. 82,
2038 (2003).

[43] P. Lopez, L. Pelaz, L. A. Marqués, I. Santos, M. Aboy, and J. Barbolla, Atomistic
modeling of defect evolution in Si for amorphizing and subamorphizing implants,
Mat. Sci. Eng. B 114-115, 82 (2004).

[44] L. A. Marques, L. Pelaz, P. Lopez, M. Aboy, I. Santos, and J. Barbolla, Atomistic
simulations in Si processing: Bridging the gap between atoms and experiments,
Mat. Sci. and Eng. B 124-125, 72 (2005).
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and S. Öberg, Self-interstitial clusters in silicon, Nucl. Instr. Meth. B 186, 10
(2002).

[72] M. Posselt, F. Gao, and D. Zwicker, Migration of di- and tri-interstitials in
silicon, Nucl. Instr. Meth. B 228, 212 (2005).
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[89] G. Otto, G. Hobler, and K. Gärtner, Defect characterization of low-energy recoil
events in silicon using classical molecular dynamics simulation, Nucl. Instr. Meth.
B 202, 114 (2003).

[90] F. Stillinger and T. Weber, Computer simulation of local order in condensed
phases of silicon, Phys Rev. B 31, 31 (1985).
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