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Abstract

This thesis tackles the design of freeform surface-like and load-bearing struc-

tures realized with cladding panels and supported by a framework substruc-

ture, often called gridshells. The actual fabrication of freeform gridshells is

a challenging task, and easily leads to unsustainable costs. A well known

strategy to realize a gridshell is to use as layout a so-called principal mesh.

This is a quadrilateral mesh whose edges follow the principal curvature di-

rections of a continuous surface. We achieve in this way flat cladding panels

and a substructure with simplified connections.

This thesis shows that quadrilateral meshes, besides allowing manufac-

turing simplification, are also optimal solutions both for static performance

and smooth visual appearance. In particular, we show that the best static

performance is achieved for quad meshes discretizing membranes along prin-

cipal stress lines, and we get an absolute minimum on such membranes where

the integral of absolute principal stresses is minimal. We also show that the

best smooth visual appearance is achieved for principal meshes; the absolute

minimum is now reached for principal meshes discretizing surfaces where the

integral of absolute principal curvatures is minimal. Therefore, from mem-

branes where stress and curvature directions are aligned, and where the total

absolute stress is minimal, we can extract principal meshes with the best

static performance and with optimal visual appearance. We present then

computational tools for the design of such highly efficient gridshells.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Contents

1 Introduction 8

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Overview and contribution . . . . . . . . . . . . . . . . . . . . 11

2 The geometry of meshes 13

2.1 Meshes in architecture . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 What is a mesh . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Triangular, quadrilateral and hexagonal meshes . . . . 15

2.1.3 Offset meshes . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Meshes at the limit of refinement . . . . . . . . . . . . . . . . 19

2.2.1 Parametric surfaces . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Curvature of surfaces . . . . . . . . . . . . . . . . . . . 21

2.2.3 Height field parametrization . . . . . . . . . . . . . . . 22

2.2.4 Conjugate and principal meshes . . . . . . . . . . . . . 23

3 The geometry of equilibrium 26

3.1 Equilibrium of gridshells . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 The mechanical model . . . . . . . . . . . . . . . . . . 27

3.1.2 Nodal equilibrium . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 The force polyhedron . . . . . . . . . . . . . . . . . . . 28

3.2 Equilibrium at the limit of refinement . . . . . . . . . . . . . . 29

3.2.1 The stress tensor . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Membrane stress . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Equilibrium under vertical load . . . . . . . . . . . . . 31

3.2.4 The Airy stress surface . . . . . . . . . . . . . . . . . . 32

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CONTENTS 4

4 Principal meshes in equilibrium 34

4.1 Overview and contribution . . . . . . . . . . . . . . . . . . . . 34

4.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Aligning principal stress and curvature directions . . . . . . . 36

4.3.1 Principal meshes at the limit of refinement . . . . . . . 37

4.3.2 Estimating stress and curvature . . . . . . . . . . . . . 38

4.3.3 Design workflow . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Main variables and constraints . . . . . . . . . . . . . . 41

4.4.2 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 44

5 Material-minimizing gridshells 47

5.1 Overview and contribution . . . . . . . . . . . . . . . . . . . . 48

5.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Michell trusses . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . 50

5.3.2 Equilibrium and displacement . . . . . . . . . . . . . . 51

5.3.3 Volume and stress limit . . . . . . . . . . . . . . . . . 51

5.3.4 Maxwell lemma . . . . . . . . . . . . . . . . . . . . . . 52

5.3.5 Dual formulation . . . . . . . . . . . . . . . . . . . . . 53

5.3.6 Continuum formulation . . . . . . . . . . . . . . . . . . 55

5.3.7 Back to the primal problem . . . . . . . . . . . . . . . 57

5.4 Volume-optimal trusses in 2D . . . . . . . . . . . . . . . . . . 59

5.4.1 Connection between kinks and volumes . . . . . . . . . 60

5.4.2 Total isotropic curvature . . . . . . . . . . . . . . . . . 61

5.4.3 Computing optimal trusses in 2D . . . . . . . . . . . . 63

5.5 Volume-optimal gridshells . . . . . . . . . . . . . . . . . . . . 65

5.5.1 Properties of optimal gridshells . . . . . . . . . . . . . 65

5.5.2 Properties of optimal truss-like continua . . . . . . . . 66

5.5.3 Computing optimal structures – the workflow . . . . . 67

5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6.1 Variables and constraints for optimal gridshells . . . . 69

5.6.2 Counting degrees of freedom . . . . . . . . . . . . . . . 72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CONTENTS 5

5.6.3 Target functional for optimization . . . . . . . . . . . . 73

5.6.4 Further constraints . . . . . . . . . . . . . . . . . . . . 74

5.6.5 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.6 Variables and constraints for optimal 2D trusses . . . . 75

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7.1 Verification of results . . . . . . . . . . . . . . . . . . . 76

5.7.2 Implementation details . . . . . . . . . . . . . . . . . . 77

5.7.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Visual smoothness of meshes 81

6.1 Overview and contribution . . . . . . . . . . . . . . . . . . . . 82

6.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Representation of saddles in meshes . . . . . . . . . . . . . . . 85

6.3.1 Saddle-shaped meshing of saddle-shaped surfaces . . . 86

6.3.2 The normal pyramid . . . . . . . . . . . . . . . . . . . 87

6.4 Energies of polyhedral surfaces . . . . . . . . . . . . . . . . . . 89

6.4.1 E-minimal meshes . . . . . . . . . . . . . . . . . . . . . 90

6.4.2 Differential-geometric interpretation of the energy E . . 94

6.4.3 Total absolute curvature of surfaces . . . . . . . . . . . 96

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusion 102

7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Acknowledgements

I would like first to thank my supervisor Helmut Pottmann for guiding me

in this fascinating field, and my former supervisors Carlo Biagini and Gianni

Bartoli for letting me the freedom to follow my passions. A special thanks

goes to Johannes Wallner and Martin Kilian for their invaluable work and

advice. Many thanks also go to Heinz Schmiedhofer for his contribution to

some of the images and to Felix Dellinger for his master thesis work.

I would also like to give warm thanks to Doris Hotz, for her precious

help to organize my defense, and to all my colleagues here at TU Wien

that made me feeling at home — Sara Andreussi, Martin Bauer, Andy Fuk-

sas, Konstantinos Gavriil, Ronald Haidvogl, Michael Jimenez, Kurt Leimer,

Maria Lara Mirò, Christian Müller, Klara Mundilova, Przemyslaw Musialski,

Mason Pember, Martin Peternell, Stefan Pillwein, Arvin Rasoulzadeh, Dino

Rossinger, Luca Francesco San Mauro, Birgit Slama, Gudrun Szewieczek,

and Hui Wang. Moreover, a big thanks to my colleagues and friends at

University of Florence — Antonio Annis, Giulia Buffi, Vincenzo Donato,

Laura Ierimonti, Silvia Monchetti, Laura Nardi, Tommaso Pacetti, Lorenzo

Piscitelli, Giovanna Ramaccini, Luca Taglialegne, and Sara Venturi. Finally,

I heartily thank Feray Bayar for the wonderful time we spent here in Vienna

together.

This research was supported by SFB-Transregio programme Discretiza-

tion in Geometry and Dynamics (Austrian Science Fund grant no. I 2978)

and by the project “Geometry and Computational Design for Architecture

and Fabrication” at TU Wien.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 1

Introduction

The development of computational tools and manufacturing techniques is

continuously pushing forward the limit of feasible shapes in architecture.

Along with new creative freedoms, new challenging issues arise on structural

design, economic sustainability and, more generally, on architectural style.

Using the words of the engineer Pier Luigi Nervi — structural architecture

does not admit arbitrary or formal solutions even if, from a technical point of

view, the ever increasing mechanical qualities of materials and the precision

of computational methods make possible, even if with a guilty economic

sacrifice, artificial or over-intellectual solutions. Creative action must remain

today, as in the past centuries, a pure intuitive act guided by static sense

[37].

This thesis is inspired by the idea, shared by Nervi and always chased by

many architects, of an architectural design where form is driven by statics,

manufacturing, material economy, and other aspects which have implications

on construction and cost. Pursuing this idea, this work tackles the design

of freeform structures that optimally perform the load-bearing function by

virtue of their own shape, and aware of their buildability.

A long-term goal of computational design are tools which embed these

aspects while modeling geometric shapes, assisting architects since the earlier

creative process. Even small steps towards this goal can shorten the design

loop and increase the creative control of designers on the final result.

8
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CHAPTER 1. INTRODUCTION 9

1.1 Motivation

This thesis revolves around a prominent class of structures in freeform ar-

chitecture, namely surface-like load-bearing shells, subdivided into cladding

panels and supported by a framework substructure. We refer to this struc-

tures as gridshells. Due to the high geometric complexity and low form repet-

itiveness of their building components, together with high static demand, the

manufacturing of such structures can lead to unsustainable costs.

A cost reduction strategy is the subdivision of the surface with planar

cladding panels together with the use of a framework made up of prismatic

beams. Building components can then be easily cut out from flat sheets and

straight elements. The manufacturing can be further simplified if the beams

of the substructure meet in the nodes along a common axis. We have in

this case a torsion-free substructure. It is well known [31, 45] that all these

goals can be achieved through the subdivision of a surface with a principal

mesh, that is a quadrilateral mesh whose edges follow the principal curvature

directions of a continuous surface. Several tools for the extraction of principal

meshes from a given surface are currently available, e.g. [13].

On the statics side, a common strategy for saving structural material is to

ensure equilibrium in the framework through strictly axial forces. This allows

the material to be stressed in the most efficient manner, while increasing the

stiffness of the structure. At this purpose, several design methods have been

developed, e.g. [1, 55, 56].

Problems arise when we ask for principal meshes that are also in ax-

ial force equilibrium. Proper design tools are here currently missing: the

available methods work only on meshes with a given connectivity; due to an

intrinsic conflict, the optimization often fails. Furthermore, among all frame-

works in axial force equilibrium over a given boundary, the achievement of the

most efficient form and framework layout could significantly reduce the cost

of the load-bearing structure. A mesh-tailored tool for such a task is also cur-

rently missing. Moreover, the aforementioned manufacturing simplifications

come at the price of sacrificing the smooth appearance of the surface. Indeed,

when dealing with reflective materials such as metal or glass, widely used in

architecture, the kinks between cladding panels are strongly enhanced. A
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CHAPTER 1. INTRODUCTION 10

strategy for improving the visual appearance of a polyhedral surface could

be beneficial for architectural design.

This thesis aims at filling these gaps in the computational design process

of load-bearing freeform structures.

1.2 Previous work

The properties of quadrilateral meshes relevant for architecture have been

extensively studied in the context of a wider research field called architectural

geometry. The main results on this topic can be found in the works of

Bobenko et al. [11], Liu et al. [31], and Pottmann et al. [45]. These theoretical

results have also been applied in actual building constructions. A torsion-

free layout has been used for the skin of the Yas hotel in Abu Dhabi, by

Asymptote Architecture. Examples of principal quad meshes in architecture

are the Roppongi Canopy in Tokyo, realized in 2005 by Buro Happold, and

the more recent roof of the Chadstone shopping centre in Melbourne. A

comprehensive survey on the achievements of architectural geometry can be

found in [43].

On the side of equilibrium of meshes, this thesis relies on the seminal work

on thrust network analysis of Block and Ochsendorf [10] and the geometric

approach to equilibrium of Vouga et al. [56]. One of the main achievements

on self-supporting freeform structures is the Armadillo Vault exhibit in 2016

Biennale.

Regarding structural material economy, this thesis is based on the ground-

breaking paper The Limits of Economy of Material in Frame-structures of

1904 by Michell [34], and was strongly motivated by some of the outcomes

of the recent work A Limit of Economy of Material in Shell Structures by

Mitchell [36]. A survey on the available methods for structural design and

optimization of architectural shapes can be found in [1].

On the computational side, this work is strongly based on the guided

projection of Tang et al. [55]. Besides giving a constraint solver framework,

this method represents also the state of the art for the optimization of meshes

with given connectivity for architecture. Among many constraints relevant

for building construction, it includes planarity of faces, static equilibrium,

https://www.tuwien.at/bibliothek
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CHAPTER 1. INTRODUCTION 11

and mesh polylines fairness for aesthetic quality control.

More detailed states of the art of the specific topics covered in this thesis

are given in chapters 4 to 6.

1.3 Overview and contribution

The thesis starts with an overview on known material. Chapter 2 intro-

duces meshes and continuous surfaces. In particular, it shows how a quad

mesh with planar faces and a torsion-free substructure, at the limit of refine-

ment, approaches the principal curvature network of a continuous surface.

Chapter 3 introduces the equilibrium of meshes under vertical loads and the

equilibrium of their limit surface, that mechanically is a membrane.

The main contributions start in chapter 4, where the design of princi-

pal meshes in equilibrium is addressed. It is shown that these meshes are

discretizations of special surfaces in membrane equilibrium where principal

stress and curvature directions coincide. A tool for the design of such surfaces

is then presented.

Chapter 5 seeks for the layout and the form of gridshells that minimize

the demand of structural material. It turns out that quad meshes follow-

ing principal stress lines of surfaces in membrane equilibrium are the min-

imizing layouts, and the global minimizer for given boundary conditions is

reached for such layouts discretizing membranes where the sum of the abso-

lute principal stresses is minimal. We introduce then a tool for the design of

material-minimizing gridshells, together with other constraints relevant for

manufacturing and cost reduction such as principality. We achieve in this

way a highly efficient design solution, namely a gridshell with flat cladding

panels, a torsion-free substructure, and which requires the minimal amount

of structural material to span over a given boundary.

Finally, chapter 6 tackles the reflective appearance of polyhedral surfaces,

looking this time for the layout and form with the best visual behavior. It

turns out here that principal meshes are the “smoothest” layouts discretizing

a given surface, while the polyhedral surfaces with the smoothest possible

visual appearance are those principal meshes discretizing surfaces where, for

a given boundary, the sum of absolute principal curvatures is minimal. A
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CHAPTER 1. INTRODUCTION 12

method for the design of such surfaces is then outlined. This result further

strengthens the already proven optimality of principal meshes in architecture.

Methodologically, this work moves on a common thread, namely an iter-

ative refinement process where, at the limit, a mesh approaches a continuous

surface. Here, we use tools belonging to differential geometry and continuum

mechanics, such as curvature and stress, we get theoretical insights at the

limit of refinement, and then we go back to meshes with relevant proper-

ties through a discretization of optimal continuous solutions — the geometry

and the connectivity of the mesh arise from the continuous formulation. We

overcome in this way the main limitation of current methods, i.e. working

on predetermined mesh connectivities.

When coming at computation, all problems are set up in the follow-

ing way. A continuous surface is modeled through a triangular mesh. The

solution of the continuous problem relies on discrete differential operators.

From the resulting mesh, we extract optimized vector fields that will guide a

quadrilateral remeshing. The development of theoretical insights and the im-

plementation of this procedure for the aforementioned problems is the main

contribution of this work. Quad mesh extraction from the resulting trian-

gular meshes can be performed with existing methods such as mixed integer

quadrangulation [13]. A final round of post-optimization of the resulting quad

mesh, based for instance on guided projection [55], gives then the final result.

The results presented throughout this thesis have been first published in

[28, 40, 41].
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Chapter 2

The geometry of meshes

This thesis tackles freeform surface-like architectural skins, subdivided into

panels supported by a frame substructure. We refer to these structures as

gridshells. The geometry of a gridshell can be represented by a mesh, that

is, broadly speaking, a discrete representation of a continuous surface.

This chapter introduces meshes in architecture. In section 2.1, it is

shown how some relevant properties for building construction, such as planar

cladding panels and a torsion-free substructure, can be achieved thanks to

meshes owning special properties. In section 2.2, it is then shown how these

properties are intrinsically connected to the continuous surface that the mesh

discretizes. This connection is found at the limit of a refinement process that

increases the density of the mesh, until it converges to the continuous surface

itself.

2.1 Meshes in architecture

The geometric properties of meshes relevant for architecture have been ex-

tensively studied by architectural geometry, a research field born around 2005

to solve the problems arising from the design and manufacturing of freeform

architectures. This area of research combines results belonging to different

fields such as discrete differential geometry, computer graphics, and numeri-

cal optimization. An extended introduction to architectural geometry can be

found in the book of Pottmann et al. [42], while a comprehensive survey is

13
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CHAPTER 2. THE GEOMETRY OF MESHES 14

given in [43]. After a short introduction to meshes, this section summarizes

the main results of architectural geometry concerning meshes relevant for

gridshell design.

2.1.1 What is a mesh

From a geometric point of view, a gridshell is a framework of beams connected

together to form a surface-like structure. If the axes of the beams are straight

lines, a gridshell can be properly represented by a polygonal mesh. Roughly

speaking, a polygonal mesh is a collection of points, called vertices, arranged

together into faces. Faces are bounded by polygons, with sides given by

straight lines connecting the vertices. The sides are called edges.

More formally, a polygonal mesh is a tuple M = (V,E, F ), where V , E

and F are, respectively, the sets of vertices, edges and faces. Vertices are

points vi ∈ R
3 (or R

2), i ∈ (1, 2, . . . , |V |). Edges are sets of two connected

vertices ek = {vi,vj}, k ∈ (1, 2, . . . , |E|). Faces are ordered sets of vertices

fl = (vi,vj, . . . ,vn), l ∈ (1, 2, . . . , |F |), where each vertex is connected by an

edge with the next one, and the last with the first one.

The way in which the vertices are connected in edges and faces concerns

the connectivity of the mesh, while the position of the vertices deals with

its geometry. Regarding its geometry, a mesh can be seen as a discrete

approximation of a two dimensional surface, referred to as reference surface.

For a wide introduction to meshes, see [14].

From an architectural point of view, the elements of a mesh can properly

represent the main structural components of a gridshell: the faces can cor-

respond to cladding panels, the edges to the axes of the substructure, and

the vertices to the substructure joints. The axes, extruded along a direction

approximately normal to the reference surface, can represent the symmetry

planes of the beams. The geometry of a mesh can then embed the geometry

of the building components of a gridshell. Meshes with planar faces play here

a significant role: indeed, it is convenient to realize the cladding panels out

of planar elements, since the production cost of double curved elements is

often prohibitive for architectural applications. Moreover, if dealing with a

substructure made of prismatic beams, it is desirable that their symmetry

https://www.tuwien.at/bibliothek
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CHAPTER 2. THE GEOMETRY OF MESHES 15

Figure 2.1 – The three types of gridshells. Triangular (left), British museum
courtyard by Foster and Partners. Quadrilateral (center), Yas Hotel Abu Dhabi by
Asymptote Architecture. Hexagonal (right), Eden project by Nicholas Grimshaw.

planes meet in the vertices along a common axis. This simplify the man-

ufacturing of the nodes, besides improving their aesthetic. We talk in this

case of a torsion-free substructure. In the following of this section, we will

see how these useful properties are connected with the connectivity and the

geometry of a mesh.

2.1.2 Triangular, quadrilateral and hexagonal meshes

Regarding its connectivity, a mesh is said to be regular if all its face poly-

gons have the same number of sides. There are only three ways to tile the

plane with equal regular polygons: with equilateral triangles, with squares,

and with regular hexagons1. According to this fact, we can classify regular

meshes into three main groups, depending on whether their faces are all tri-

angles, quadrilaterals, or hexagons. We talk, respectively, about triangular,

quadrilateral, and hexagonal meshes. For architectural applications, each of

these meshes has its strengths and weaknesses.

• Triangular meshes have been extensively used in architecture, in par-

ticular because their faces are planar. Indeed, the vertices of a non

degenerate triangle always define a plane. The main drawback of tri-

angular gridshells is in the substructure. In a triangular mesh, gener-

ally, six edges meet together at a vertex: the manufacturing of such

1This can be easily seen considering that the angles of polygons meeting at each vertex
must sum up to 360◦. With three polygons, we get 120◦ angles, corresponding to the
hexagon. Four polygons give 90◦ (a square), while five give 72◦, impossible to fill by a
regular polygon. Six polygons gives 60◦, an equilateral triangle. No other polygons exist
with less than three sides.
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CHAPTER 2. THE GEOMETRY OF MESHES 16

a node is awkward. Moreover, let us imagine we want a torsion-free

substructure, and consider a single face and its bounding edges. The

three symmetry planes, corresponding to the three edges, will intersect

in a single point (possibly at infinity), and so do the three node axes,

given by the pairwise intersections of the three planes. For each other

face sharing an edge with this face, two node axes are already given.

The third one must pass through their intersection point, and then it

is already determined. Therefore, in a triangle mesh, all node axes of

a torsion-free substructure must intersect in a single point. This gives

a high restriction to feasible shapes; if we want all node axes exactly

orthogonal to the reference shape, this is only possible for spheres and

planes. This makes triangular gridshells not so relevant in architectural

geometry.

• Quadrilateral meshes are an interesting solution for gridshells. In a

quadrilateral mesh, faces are not necessarily planar; nevertheless, on

every shape, it is possible to design quadrilateral meshes with planar

faces, called PQ meshes. Regarding the substructure, in general, only

four beams are joined together at a vertex. This simplifies the manu-

facturing of connections. Moreover, it is also possible to approximate

every reference surface with PQ meshes whose substructure is torsion-

free, as will be shown in section 2.1.3. However, the design of such

meshes requires a deeper geometric understanding, as will be shown in

section 2.2. For this reason, these meshes have been the most studied

by architectural geometry.

• Hexagonal meshes are interesting especially because of their nodes

where only three beams are connected together. Also in this case,

it is possible to design meshes with planar faces and a torsion-free

substructure, but for anticlastic shapes, planar faces cannot be convex.

In the following of this thesis, the focus will be restricted to quadrilateral

meshes. This choice will be justified later, in chapters 5 and 6, where we

will see that a quadrilateral connectivity arises spontaneously both from me-

chanical and smoothness optimization of gridhells.
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CHAPTER 2. THE GEOMETRY OF MESHES 17

M

M ′

(a) (b)

Figure 2.2 – Two parallel PQ meshes M and M ′ (a), and the corresponding
torsion-free substructure (b).

2.1.3 Offset meshes

Planar faces and a torsion-free substructure are desirable properties for grid-

shells. While on triangular meshes this is possible only for special geometries,

these goals are achievable for quad meshes approximating arbitrary shapes.

This section introduces PQ meshes which have a torsion-free substructure,

in particular it shows how this property is closely connected to the concepts

of parallel and offset meshes.

Let M be a PQ mesh, with vertices vi and edges ek = {vi,vj}. Let us

consider now a mesh M ′, with vertices v′
i and edges e′k = {v′

j,v
′
i}, that has

the same combinatorics of M (one to one correspondence among vertices,

edges, and faces), and which is positioned such that corresponding edges ek

and e′k are parallel. M ′ is then called a parallel mesh of M . A parallel mesh

can be used to represent the geometry of the substructure of M letting the

planar quad given by vi, vj, v
′
j and v′

i be the symmetry plane for the beam

at the edge ek. At each vertex vi, each symmetry plane meet along the axis

passing through vi and v′
i. This gives a torsion-free node. There are infinitely

many parallel meshes, but to realize a substructure one wants to have node

axes that are approximately orthogonal to M . This is the case when M and

M ′ are parallel and lie approximately at constant distance d.

The distance d between two parallel meshes is not uniquely defined: it

can be measured between corresponding vertices, faces or edges. We talk

then respectively about vertex, face, and edge offsets. Let M and M ′ be two

offset meshes at a distance d. Let us imagine to shrink the mesh M with a

https://www.tuwien.at/bibliothek
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CHAPTER 2. THE GEOMETRY OF MESHES 18

uniform scaling until it collapses into a point, while accordingly keeping the

mesh M ′ parallel at distance d. We have now three possible situations.

• In case of vertex offset, the vertices of M ′ will lie on a sphere of ra-

dius d, and therefore all faces of M ′ are now inscribed in a circle. A

quadrilateral has a circumcircle if its opposite angles sum up to π/2.

Since angles are preserved during the aforementioned transformation,

and since for parallel meshes corresponding face angles are equal, a

mesh M has a vertex offset if all its faces have a circumcircle. These

special meshes, first studied by Martin et al. [32], are called circular

meshes.

• In case of face offset, the faces of M ′ will be tangent to a sphere of

radius d. This condition can be alternatively expressed at each vertex

asking to its incident faces to be tangent to the same cone of revolution.

Such a vertex is called conical. A regular vertex (with four incident

faces) is conical if the sum of opposite face angles is equal. Again,

this property is preserved for all parallel meshes, and then a mesh has

a face offset if all its vertices are conical. These meshes, introduced

by Liu et al. [31], are called conical meshes. Because of their face

offset, conical meshes are particularly interesting for piecewise surfaces

assembled from planar elements of constant thickness.

• In case of edge offset, the edges of M ′ will be tangent to a sphere of

radius d. Each face has then an incircle. Such a mesh is known as a

Koebe mesh. Because of edge offset property, Koebe meshes would be

the most suitable for gridshell design, since the beams could perfectly

align on top and bottom of each node. However, while circular and

conical meshes are capable of approximating arbitrary shapes, this is

no longer the case with Koebe meshes. Further details can be found in

[45].

For the actual design of gridshells, an exact offset mesh is in general not

necessary. Instead, a reasonable offset approximation is sufficient, so that

one can construct a torsion-free substructure with axes almost normal to a
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CHAPTER 2. THE GEOMETRY OF MESHES 19

reference surface. In the next section, we will see how to approximate a given

surface with such a mesh.

2.2 Meshes at the limit of refinement

Let us imagine now to refine a mesh again and again, and let us think this

refinement in a way that the connectivity type of the mesh is preserved, as

well as other properties such as planar or circular faces and conical vertices.

At the limit of this process, the mesh will approach a continuous surface,

called limit surface. The limit surface can be seen as the reference surface

that a mesh is approximating.

Let us now imagine to refine a quadrilateral mesh. On regular quadri-

lateral meshes (or at least on parts of it), we can collect the edges into two

groups of non intersecting polylines. At the limit of refinement, these two

groups of polylines will converge to two families of curves on the limit surface.

Conversely, we can think to extract a regular quadrilateral mesh by letting

the edges of the mesh follow two families of curves on a reference surface. It

turns out that quad meshes relevant for architecture can be extracted from

families of curves owning special properties on the limit surface. In partic-

ular, Liu et al. [31] show that PQ meshes are a discretization of conjugate

networks, while Bobenko et al. [11] and Liu et al. [31] show, respectively,

that circular and conical meshes are discretizations of the so called principal

curvature network.

In this section, after a short introduction to parametric surfaces, the prop-

erties of conjugate and principal curvature networks are described. Finally,

their connection with PQ, circular, and conical meshes at the limit of refine-

ment will be shown. For a complete treatment of differential geometry of

curves and surfaces, one can refer to [18].

2.2.1 Parametric surfaces

Some properties of continuous surfaces, relevant for gridshell design, can be

derived by their parametric representation. The parametric representation

https://www.tuwien.at/bibliothek
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CHAPTER 2. THE GEOMETRY OF MESHES 20

of a surface M is a mapping x : Ω ⊆ R
2 → M ⊂ R

3, given by

x(u, v) =



x(u, v)

y(u, v)

z(u, v)


 , (u, v) ∈ Ω.

At each point p ∈ Ω, the component-wise partial derivatives

x,u(p) :=
∂x

∂u
(p) and x,v(p) :=

∂x

∂v
(p),

are, respectively, the tangent vectors of the two iso-parameter curves u =

const. and v = const. on the surface at the point x(p).

The vectors x,u(p) and x,v(p) define the tangent plane of M at the point

x(p), denoted as TM(p), and can be used as a basis. A vector a ∈ R
3, tangent

to M at x(p), can be expressed as linear combination of the tangent basis

vectors as

a = aux,u(p) + avx,v(p). (2.1)

The vector ā = (au, av)
T is the corresponding vector in tangent coordinates.

In matrix form, we can write eq. (2.1) as a = J ā, where J(p) = (xu(p) xv(p))

is the Jacobian matrix. From now on, the dependency on p will be omitted.

Let ā1, ā2 be two vectors at a point p ∈ Ω. The scalar product between

the corresponding vectors a1, a2 ∈ R
3 is

〈a1, a2〉 = (J ā1)
T (J ā2) = āT

1 J
TJ ā2 = āT

1 I ā2,

where the 2× 2 matrix

I =

(
xT
,ux,u xT

,ux,v

xT
,ux,v xT

,vx,v

)

is called first fundamental form of M. If two vectors a1 and a2 are orthogonal,

we have then

āT
1 I ā2 = 0, (2.2)
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CHAPTER 2. THE GEOMETRY OF MESHES 21

while the length of a tangent vector a is computed as

‖a‖2 = āT
I ā.

With the first fundamental form we can also measure the infinitesimal

area element dA on M at a point p, considering that the area of the par-

allelogram spanned by the vectors x,u and x,v is given by ‖x,u × x,v‖. For

Lagrange identity we have:

‖x,u × x,v‖2 = ‖x,u‖2‖x,v‖2 − (xT
,ux,v)

2 = det(I),

and then

dA =
√
∆, ∆ = det(I).

2.2.2 Curvature of surfaces

The curvature of a surface, in a similar way to curves, can be derived by the

variation of its normal vector. At each point x(p) of M, the normal vector

n is defined as:

n =
x,u × x,v

‖ x,u × x,v ‖
.

Let n,ā be the directional derivative of the vector n along the vector ā,

given in matrix notation by N ā, with N = (n,u n,v) and where

n,u :=
∂n

∂u
and n,v :=

∂n

∂v
.

Given two tangent vectors ā1, ā2 at a point p ∈ Ω, the bilinear form

〈−n,ā1 , a2〉 = (−N ā1)
T (J ā2) = −āT

1N
TJ ā2 = āT

1 II ā2, (2.3)

where

II =

(
−nT

,ux,u −nT
,ux,v

−nT
,vx,u −nT

,vx,v

)
,

is called second fundamental form of M at the point p. Observe that nTx,u =

nTx,v = 0, by definition of the normal vector. We have then (nTx,i),j = 0,

with i, j ∈ (u, v). This implies nTx,ij = −nT
,ix,j. The second fundamental

https://www.tuwien.at/bibliothek
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CHAPTER 2. THE GEOMETRY OF MESHES 22

form can be then written as

II =

(
nTx,uu nTx,uv

nTx,uv nTx,vv

)
.

Definition 1 (conjugate directions). Two directions ā1 and ā2 are called

conjugate if

āT
1 II ā2 = 0. (2.4)

Two families of curves on M are called a conjugate network if their tangent

vectors at each point p are conjugate.

We can define now the shape operator S, such that

J(S ā) = −n,ā. (2.5)

Substituting eq. (2.5) in eq. (2.3), we get

S = I
−1
II. (2.6)

Definition 2 (principal curvatures). The eigenvalues of S at a point p are

called principal curvatures κ1 and κ2 of M at p. The corresponding eigen-

vectors ē1 and ē2 are called principal curvature directions. Two families of

curves on M are called principal curvature network if their tangent vectors

at each point p are pointing along the principal curvature directions.

Note that the corresponding tangent vectors e1 = J ē1 and e2 = J ē2 are

orthogonal.

2.2.3 Height field parametrization

Computations can be often simplified with the special parametrization

x(x, y) =




x

y

z(x, y)


 , (x, y) ∈ Ω ⊆ R

2, (2.7)
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referred to as height field parametrization, since the surface corresponds to

the graph of the height function z(x, y). It can be shown that every surface

can be represented, at least locally, by such a parametrization (see [18]).

The first fundamental form is here given by

I =

(
1 + z2,x z,xz,y

z,xz,y 1 + z2,y

)
, (2.8)

where with comma are denoted partial derivatives, and then

∆ = det(I) = 1 + z2,x + z2,y. (2.9)

The second fundamental form is simply given by

II = ∆− 1
2

(
z,xx z,xy

z,xy z,yy

)
= ∆− 1

2∇2z, (2.10)

and conjugacy of directions ā1 and ā2 can be expressed by

āT
1∇2z ā2 = 0. (2.11)

2.2.4 Conjugate and principal meshes

We see now how to extract a PQ mesh M from two families of curves on a

limit surface M. To simplify the next computations, let us consider a local

height field parametrization of M at a point p, with the xy plane coinciding

with TM, and origin in x(p). Let a1 = J ā1 and a2 = J ā2 be the tangent

vectors to the two curves passing through the point x(p). Let us extract a

face of M from the quadrilateral defined by the surface points x(p), x(p+ā1),

x(p + ā2) and x(p + ā1 + ā2). In the aforementioned parametrization, the

quadrilateral is planar if z(p+ ā1+ ā2) = z(p+ ā1)+z(p+ ā2). With a Taylor

expansion, we get

z(p+ ā1 + ā2)− z(p+ ā1)− z(p+ ā2) = 2 āT
1∇2z ā2 + . . . ,
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where with dots are denoted higher order terms. Planarity, at first order

approximation, requires āT
1∇2z ā2 = 0. According to eq. (2.10), this implies

〈n,ā1 , a2〉 = 0, therefore ā1 and ā2 are conjugate directions. If we ask the

directions a1 and a2 to be orthogonal as well, according to eq. (2.2), we have

ā1I ā2 = 0. Together with conjugacy, this implies that ā1 and ā2 are pointing

along the eigenvectors of I−1
II. Equation (2.6) tells us that ā1 and ā2 are

principal curvature directions, and that principal curvature directions are

conjugate. We can then state the following

Proposition 1. At the limit of refinement, a quad mesh with infinitesimal

planar faces converges to a network of conjugate curves on its limit surface.

The only orthogonal and conjugate network is the principal curvature net-

work.

Principal curvature directions, besides spanning infinitesimal planar quads,

possess another interesting property relevant for architecture. Along prin-

cipal curvature directions ei, the change of the normal vector is given by

n,ēi = −kiei. Therefore, when moving infinitesimally along the direction ei

on the surface, the normal vector span an infinitesimal planar quad. This

property is exactly what we want for the symmetry planes of the substruc-

ture. We can then state

Proposition 2. At the limit of refinement, a principal mesh has a torsion-

free substructure orthogonal to the limit surface.

From proposition 2, we can see that circular and conical meshes are both

discretizations of a network of principal curvature, depending on whether we

refer to face or vertex normals. For circular meshes, we can consider the

normals at each face given by the axes of the face circumcircles. Across each

edge, the neighboring face normals intersect in a common point; therefore,

these lie on a common plane [53]. For conical meshes, we can consider the

normals at each vertex, given by the axes of the tangent cones. The axes of

the cones at the two vertices of each edge intersect again in a point, as shown

in [31].

We can then say that principal meshes are a convenient geometry layout

for gridshells, since we can achieve planarity of cladding panels and a torsion-

free substructure. Moreover, from principal networks one can easily extract
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conical and circular meshes, in case one needs a face or vertex offset for

further construction requirements.
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Chapter 3

The geometry of equilibrium

As seen in chapter 2, the geometry of a gridshell can be represented by a

mesh. From a mechanical point of view, the edges of this mesh are charged

to bear the loads within the structure. It is well known that the most efficient

manner of bearing loads in a framework is through strictly axial forces. Our

focus will be then restricted to frameworks in axial force equilibrium.

In this thesis, the static behavior of gridshells plays the role of a form

finding criterion. If gravitational loads are dominant, it is then reasonable

to neglect wind, seismic acceleration, and other lateral loads, leaving these

effects to a subsequent structural verification. The restriction to vertical loads

allows us to split the equilibrium in a vertical and a horizontal component.

It will be shown that the horizontal equilibrium of a gridshell implies the

existence of a mesh with planar faces, corresponding in vertical projection

to the gridshell, called force polyhedron. At the limit of refinement, through

the process described in section 2.2, the gridshell converges to a membrane,

that is a surface-like continuum with no bending stiffness. Accordingly, the

force polyhedron converges to a continuous surface, called Airy stress surface,

representing the horizontal equilibrium of the membrane.

This chapter introduces the computational setting of discrete and continu-

ous equilibrium, namely gridshells (section 3.1) and membranes (section 3.2).

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 3. THE GEOMETRY OF EQUILIBRIUM 27

3.1 Equilibrium of gridshells

This section introduces the equilibrium of gridshells under vertical loads.

The horizontal equilibrium of these structures can be described through the

existence of a force polyhedron, introduced by Maxwell [33].

3.1.1 The mechanical model

This thesis tackles gridshells in axial force equilibrium under vertical loads

only. Self-weight, dead, and static live loads are lumped in forces and applied

in the vertices. The resulting framework structure is a gridshell truss: a

system of straight beams, with axes corresponding to the edges of a mesh,

connected together and to the supports with frictionless pin-joints. This kind

of structure, depending on its geometry, connectivity, and support conditions,

might be a mechanism in equilibrium. However, even if in an actual gridshell

the nodes are manufactured as rigid joints for stability and safety reasons, the

use of a truss model in the design stage is strongly beneficial for minimizing

bending effects.

3.1.2 Nodal equilibrium

Let M be a three dimensional gridshell truss, with members corresponding

to the edges of a mesh. Loads are applied in the vertices vi = (xi, yi, zi), and

support conditions are given along the boundary. The force fij exerted by the

oriented bar eij = vi − vj on the vertex vi can be expressed as wij(vi − vj),

where wij is the axial force per unit bar length or force density, and where

positive values of wij indicate compression. If the system is in equilibrium,

at each unsupported vertex vi we have

∑

j∼i

wij(vi − vj) + pi = 0, (3.1)

where with j ∼ i we denote all the vertices j connected with the vertex i,

and where pi = (pix, p
i
y, p

i
z) is the load applied at the node vi. Since we con-

sider only vertical loads, we can split the horizontal and vertical equilibrium
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(c)

Figure 3.1 – Gridshell equilibrium. (a) A portion of a gridshell M under vertical
load and its projection into the xy plane M̄ . (b) The horizontal equilibrium yields
a force dual mesh M̄∗ with edges given by the forces acting in the correspondent
primal edges of M̄ rotated by 90 degrees, as shown by Maxwell [33]. We can
construct an Airy polyhedron Φ with face gradients given by the coordinates of
the corresponding dual vertex of M̄∗. (c) By construction, the magnitudes of the
forces in the bars v̄i − v̄j are given by the isotropic angles between the adjacent
faces on Φ. The isotropic angle can be seen as the change in slope between two
faces of Φ when traversed orthogonally to v̄i − v̄j .

respectively as

∑

j∼i

wij(v̄i − v̄j) = 0,
∑

j∼i

wij(zi − zj) = piz, (3.2)

where v̄i, v̄j are the xy projections of the points vi,vj.

3.1.3 The force polyhedron

Let us now consider the projection of the structure in the xy plane, denoted

as M̄ . Let f̄ij be the xy projections of the forces fij. Since M̄ is a 2D system

in horizontal equilibrium under boundary loads (given by the xy projections

of the support reactions), the forces f̄ij acting on each vertex v̄i can be

arranged in a planar closed cycle. We can build thus a reciprocal diagram

M̄∗, combinatorially dual to M̄ , whose edges are given by the forces acting

in the corresponding primal edge. For convenience, we represent this dual

diagram rotated by 90◦ clockwise in the xy plane, as shown in fig. 3.1b.
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We can now construct a force polyhedron Φ = (x, y, φ(x, y)), whose edges

and vertices coincide in the xy projection to the primal truss M̄ , in the

following way. Let us denote as fk the faces of Φ, and let v̄∗
k = (x∗k, y

∗
k) be

the corresponding dual vertices of M̄ . Hence, each face fk of Φ lies on a plane

with gradient ∇φ|fk = (x∗k, y
∗
k). The closure of each face of M̄∗ ensures the

closure of the polyhedron Φ when turning around the corresponding primal

vertex. This construction is uniquely defined up to vertical translations and

shearing. For further details see [20] and [56].

Let fk, fl be the faces of Φ meeting at the oriented edge with projection

ēij, as shown in fig. 3.1c. The force f̄ij, by construction, is given by R̄(∇φ|fl−
∇φ|fk), where R̄ = ( 0 −1

1 0 ) is the 90◦ counterclockwise rotation matrix in the

xy plane. Denoting the xy unit edge vector as ˆ̄eij = (v̄i− v̄j)/‖v̄i − v̄j‖, the

quantity

βis(ēij) = R̄(∇φ|fl −∇φ|fk) · ˆ̄eij (3.3)

is the signed isotropic angle between the faces fl and fk. Positive values of

βis(ēij) indicate compression in the bar ēij. Note that βis(ēij) = βis(ēji).

3.2 Equilibrium at the limit of refinement

Let us consider now a refinement process that increases the density of a

gridshell truss. From a mechanical point of view, at the limit of refinement

the gridshell will tend to a membrane: a surface-like continuum that cannot

support out of plane bending, and with mechanical properties derived at

each point from the thickness in the normal direction. At the same time,

the force polyhedron representing the horizontal equilibrium of the structure

will tend to a continuous surface representing the stresses of a 2D body,

called Airy stress surface. After an introduction to the stress tensor of a

continuous body, this section describes the equilibrium of membranes and

their Airy stress surface. For a detailed description of gridshells approaching

membranes, see [36].
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3.2.1 The stress tensor

When dealing with continuous bodies D, the stress state at a point can be

described by the Cauchy stress tensor σ. For 3D bodies, this is a symmetric

3 × 3 tensor with the following meaning. Given an infinitesimal surface at

a point of D, with normal vector a, the stress vector f (force per unit area)

acting across the surface is given by

f =
σ a

‖a‖ . (3.4)

The component of the stress vector f along the direction a gives the normal

stress acting on the infinitesimal surface, and it is computed as

σn(a) =
〈f , a〉
‖a‖ =

aTσ a

aTa
. (3.5)

Definition 3 (principal stresses). At a point of a body D, the extrema of

σn(a) are given by the eigenvalues of σ. These are called principal stresses

σ1, σ2, and σ3. The corresponding eigenvectors, mutually orthogonal, gives

the principal stress directions.

Let p be the volume loads acting on D (force per unit volume). The body

equilibrium asks at each interior point

div(σ) + p = 0. (3.6)

On the boundary ∂D, the stress vector must balance the applied boundary

tractions b (force per unit surface area), we have then

σn+ b = 0, (3.7)

where n is the outer normal of the surface ∂D.

3.2.2 Membrane stress

A membrane is a surface-like body, described by a surface M. A membrane

is characterized by supporting stresses only in its tangent plane, and these
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are described by the 2 × 2 membrane stress tensor S ∈ TM. The tensor S

represents the stresses integrated over the membrane normal thickness, and

is symmetric for balance of angular momentum. The membrane stress vector

f (force per unit length) acting across an infinitesimal line orthogonal to a

tangent direction a is computed, in tangent coordinates, as

f̄ =
S I ā

‖a‖ ,

where I is the first fundamental form of the surface defined in section 2.2.1.

The normal stress is now given by

σn(a) =
〈f , a〉
‖a‖ =

(S I ā)T I ā

āT I ā
=

āT
IS I ā

āT I ā
. (3.8)

Note that the matrices S and I are symmetric. The extrema of σn(a) are the

membrane principal stresses and are given by the eigenvalues of S I. If s̄1

and s̄2 are the corresponding eigenvectors, eq. (3.8) implies also s̄T1 I s̄2 = 0,

therefore the corresponding principal stress directions are orthogonal on the

surface.

3.2.3 Equilibrium under vertical load

Away from points with a vertical tangent plane, we can parametrize the

surface M locally as a height function M(x, y) = (x, y, z(x, y)). Let S̄ be

the tensor representing the xy projection of the membrane stresses given by

S̄ =
√
∆S, (3.9)

where ∆ = det(I). If we consider only vertical loads, it is convenient to

express equilibrium in the global coordinate system (x, y, z), with a vertical z

axis. The horizontal and vertical equilibrium, respectively, are then expressed

by

div(S̄) = 0, div(S̄∇z) = ¯̺. (3.10)

Here divergence of a matrix is applied to its columns, and ¯̺(x, y) is the

vertical load per unit xy area. Further details can be found in [4, 56].
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On boundaries, a membrane can support only tractions lying in its tan-

gent plane. Along supported boundaries, we can assume no conditions.

Along unsupported boundaries, equilibrium asks

S I b̄ = 0, (3.11)

where b̄ is the surface boundary normal in tangent coordinates.

3.2.4 The Airy stress surface

The horizontal equilibrium of membranes under vertical loads implies the

existence of a divergence-free tensor S̄. Every divergence-free tensor can be

given by the adjoint Hessian of a continuous function φ(x, y), because of

commutativity of third order derivatives with respect to x and y. The stress

tensor S̄ is then

S̄ = ∇̃2φ =

(
φ,yy −φ,xy

−φ,xy φ,xx

)
, (3.12)

where with comma are denoted partial derivatives, and where with over-tilde

is denoted the adjoint matrix operation. The function φ(x, y) is called Airy

stress function. The vertical equilibrium component of eq. (3.10) expands

now to

z,xxφ,yy − 2 z,xyφ,xy + z,yyφ,xx = ¯̺. (3.13)

For more details, see [48].

Considering eqs. (3.9) and (3.12), and recalling that the adjoint matrix

operation, by definition, asks S̃ I = Ĩ S̃ and Ĩ = ∆ I
−1, we find

S̃ I =
√
∆ I

−1∇2φ. (3.14)

Since the eigenvalues of S I are pointing along the principal stress direc-

tions of the membrane, and since adjoint matrices have swapped principal

directions, the principal stresses are the eigenvalues of
√
∆ I

−1∇2φ, and the

corresponding eigenvectors are the swapped principal stress directions.

We can consider the Airy stress potential as a surface in isotropic space.

Isotropic geometry is a linearization of Euclidean geometry with a distin-
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guished vertical z axis and a horizontal xy plane. Surfaces are described as

graphs z = φ(x, y), and the role of the second fundamental form is played by

the Hessian of φ. Its eigenvalues are i-principal curvatures κi1 and κi2, and its

eigenvectors define the i-principal directions and the network of i-principal

curves. This network of curves, corresponding to the principal stress lines, is

i-orthogonal, meaning that its projection onto the xy plane is an orthogonal

network of curves. Like the classical Euclidean principal curves, the i-curves

form a conjugate network. For an introduction to isotropic geometry, see

[44].
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Chapter 4

Principal meshes in equilibrium

Designing freeform gridshells with due regard to economic and feasibility fac-

tors is a challenging task. As seen in chapter 2, rationalizing such surfaces

by means of principal meshes is beneficial for manufacturing reasons, such

as planar cladding panels and torsion-free substructure connections. On the

other hand, as seen in chapter 3, it is convenient to ensure static equilibrium

in the load bearing structure through axial forces only. It turns out that

both of these goals can be achieved only for meshes that discretize surfaces

in membrane equilibrium where principal stress and curvature directions co-

incide. In this chapter, a method for the optimization of a given shape

towards stress and curvature alignment is presented, within a workflow for

the design of principal meshes in equilibrium.

4.1 Overview and contribution

To generate a principal mesh in equilibrium, one can start generating a prin-

cipal mesh that approximates a given shape; then, optimize this mesh for

equilibrium, planarity of faces and, eventually, for circularity or conical ver-

tices. For that purpose, existing tools such as [49, 52, 55] can be used. How-

ever, due to an intrinsic conflict, this optimization often fails. It turns out,

indeed, that principal meshes in axial equilibrium can approximate only spe-

cial surfaces in membrane equilibrium, where stress and curvature directions

coincide.

34
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Figure 4.1 – Architectural surfaces discretized with principal meshes in equilib-
rium, achieved thanks to stress and curvature alignment. Cladding can be realized
with flat panels, and the substructure with prismatic beams and torsion-free nodes.
At the same time, structural bending effects are minimized. The mesh on the left
discretizes a non-height field shape.

In this chapter, the design of principal meshes in equilibrium is addressed.

Thanks to the alignment of principal curvature and stress directions on tri-

angulated surfaces and a subsequent principal remeshing, the shape and the

connectivity of the mesh are both part of the solution. We overcome in this

way the main limitation of existing methods, namely working with given

connectivities.

In section 4.3, it is first shown that principal meshes in equilibrium are

discretizations of membrane surfaces with coincident stress and curvature

directions. A method for the estimation of stress directions on a triangulated

surface is then described. This method is based on the normal cycle approach

of Cohen-Steiner and Morvan [15], applied in this case to the i-principal

curvatures of the Airy stress surface. A design workflow is then outlined. In

section 4.4, a computational method for the optimization of a given shape

towards stress and curvature alignment is presented. Results are discussed

in section 4.5. This work has been published in [41].

4.2 Previous work

A significant step in the optimization of meshes for equilibrium comes from

thrust network analysis, introduced by Block and Ochsendorf [10]. Vouga

et al. [56] provide a differential geometric understanding of this approach
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Figure 4.2 – Architectural applications. Interior views of the meshes shown in
Figures 4.5a (on the left) and 4.3 (on the right). Exterior views are shown in
fig. 4.1.

and use it for the design of planar quad meshes in equilibrium. An efficient

optimization of quad meshes for equilibrium and face planarity is provided

by Tang et al. [55], but the success of this method is strongly dependent on

the initial mesh connectivity. Schiftner and Balzer [49] propose a method for

planar quad-remeshing of given surfaces, initialized by principal stress lines.

However, the effectiveness of this method is limited, since for a general sur-

face, planarity of quads and the alignment with principal stress directions are

often conflicting goals. A first attempt to directly design principal meshes in

equilibrium was made by Sun [52], fixing the mesh combinatorics in advance.

Unfortunately, this approach rarely yields good convergence of optimization.

4.3 Aligning principal stress and curvature

directions

This section introduces principal meshes in force equilibrium. In section 4.3.1,

using the results of chapters 2 and 3, we show that at the limit of refinement

a principal mesh in axial force equilibrium must be aligned with the principal

stress directions of a surface in membrane equilibrium. In section 4.3.2, it

is shown how it is possible to model a membrane with a triangular mesh,

enforcing the axial force equilibrium on its edges. It is then shown how to

estimate on this mesh equivalent stress and curvature directions. Finally, in

section 4.3.3, a workflow for the design of principal meshes in equilibrium is
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outlined.

4.3.1 Principal meshes at the limit of refinement

Principal meshes are a discretization of the principal curvature network of

a continuous surface. A principal mesh in equilibrium, from a mechanical

point of view, is a gridshell truss with a quad combinatorics. At the limit

of refinement, this gridshell will tend to a principal network of curves on a

continuous surface in membrane equilibrium.

Let M(x, y) be this membrane under vertical load, parametrized as a

height field surface over the xy plane, as described in section 3.2. Let us then

consider the principal network of curves of M(x, y), defined at each point

by two tangent vectors a1 and a2, and let ā1 and ā2 be their xy projections.

We are now looking for simple conditions which express that the principal

network is in equilibrium.

First, for principal curve networks, the vectors a1, a2 follow principal

curvature directions. These directions are orthogonal on the surface. With I

as first fundamental form of M(x, y), according to eq. (2.2), we can express

the orthogonality condition of a1, a2 as

āT
1 I ā2 = 0. (4.1)

Secondly, as seen in section 3.1, if a gridshell is in equilibrium under ver-

tical loads, its xy projection must admit a force polyhedron Φ with planar

faces. At the limit of refinement, the polyhedron Φ will tend to a continuous

Airy surface z = φ(x, y). For a quadrilateral gridshell, the corresponding

force polyhedron is a quad mesh with planar faces. As stated in proposi-

tion 1, a planar quad mesh at the limit of refinement will converge to a

network of conjugate curves on a surface. We can then state the following

condition: a quad network on a surface is in horizontal equilibrium under

vertical load if it is vertically projected onto a conjugate curve network on

the corresponding Airy stress surface. According to eq. (2.11), the condition

for the directions a1, a2 to be vertically projected onto conjugate directions

of φ(x, y) is expressed by

āT
1∇2φ ā2 = 0. (4.2)
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Equations (4.1) and (4.2) imply that the vectors ā1, ā2 are eigenvectors

of I−1∇2φ. Since the principal stress directions on M(x, y) are given by the

eigenvectors of
√
∆ I

−1∇2φ, as shown in eq. (3.14), we can see that the only

directions in horizontal equilibrium and orthogonal on the membrane are the

principal stress directions. We can then state the following important fact:

Proposition 3. Principal meshes in equilibrium under vertical loads are dis-

crete representations of membrane surfaces where principal stress and princi-

pal curvature directions agree. There, they follow these principal directions.

4.3.2 Estimating stress and curvature

As seen in section 3.2, at each point of a membrane we find three unknown

stress components and three equilibrium equations. Membranes are then

statically determinate in the sense that, given the loads and the boundary

tractions, the stress tensor is uniquely determined; the existence of a solution

depends only on the membrane geometry. Let us now consider a triangular

gridshell forming a closed polyhedron Γ of genus zero, and with loads applied

in its nodes. Denoting by |V | its number of vertices and |E| its number of

edges, Euler’s formula shows that 3|V | = E+6. Since we have one unknown

axial force per edge and three equilibrium equations per vertex, the solution

is uniquely determined up to rigid body motion; the existence of the solution

depends on the geometry of the polyhedron. The same is true for a portion

of Γ, given the force reactions of the remaining part. Triangular gridshells

can therefore reproduce the statical determinacy of membranes, see [39]. In

the following, the membrane behavior of a surface is expressed through the

equilibrium of a gridshell triangulation.

In a continuous membrane, the projected stress tensor S̄ and the isotropic

shape operator ∇2φ are related by S̄ = ∇̃2φ. We are now searching for a

discrete analog of the isotropic shape operator defined for triangle meshes,

and at first look at the Euclidean counterpart. For that, we use the normal

cycle approach by [15]. One computes an extended shape operator W (3× 3

matrix with two eigenvectors in principal curvature direction and the third

eigenvector, with eigenvalue close to zero, orthogonal to the surface) as fol-

lows. Selecting a vertex vi and a surrounding region Ri of area Ai, W is
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found by

W (vi) =
1

Ai

∑

j∼i

β(eij)‖eij ∩Ri‖êij êTij. (4.3)

Here β(eij) is the signed Euclidean angle between the two normals of the faces

adjacent to the edge eij, eij ∩Ri is the portion of the edge eij intersecting

the region Ri, and êij is the unit edge vector, given by (vi − vj)/‖vi − vj‖.

The eigenvalues of W (vi), associated with the two eigenvectors lying in the

tangent plane at vi, will give an estimation of principal curvatures along the

swapped tangent eigenvectors. To obtain a discrete isotropic shape operator,

we have to replace Euclidean quantities by isotropic ones. This means that

lengths and areas are measured in the xy plane and the Euclidean angle

β(eij) is replaced by the signed isotropic angle βis(ēij), given by eq. (3.3).

Setting ēij ∩ R̄i = v̄i − v̄j, we can estimate the 2× 2 adjoint Hessian of Φ at

v̄i as

∇̃2φ(v̄i) = S̄(v̄i) =
1

Āi

∑

j∼i

J(∇φ|fl −∇φ|fk)(v̄i − v̄j)
T .

Observing that J(∇φ|fl − ∇φ|fk) = f̄ij = wij(v̄i − v̄j), we can estimate the

stress tensor directly through force densities as

S̄(v̄i) =
1

Āi

∑

j∼i

wij(v̄i − v̄j)(v̄i − v̄j)
T . (4.4)

To estimate the principal curvature directions on the triangulated surface,

it is possible to use again Cohen-Steiner eq. (4.3). For sufficiently smooth

meshes, we can make the approximation β ≈ sin β. With nfk and nfl as the

unit normals of the left and right faces of the edge eij, we can then estimate

the 3× 3 extended shape operator as

W (vi) =
1

Ai

∑

j∼i

(nfl × nfk)(vi − vj)
T . (4.5)

Let κ1 and κ2 be the eigenvalues of W corresponding to the two eigenvectors

in the tangent plane of M . It is possible to ensure the alignment of two

vectors a1, a2 with principal directions at each vertex vi by requiring

Wa1 = κ1a1, Wa2 = κ2a2.
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(a) (b) (c)

(b) (c)(d) (e)

− axial force +

0 planarity 2%

curvature
directions

stress
directions

Figure 4.3 – Design workflow. (a) An initial shape is given as triangular mesh
and the equilibrium is enforced on the edges. (b) The estimated curvature and
stress directions, in general, are not aligned. (c) After our optimization, we reach
the alignment with a change in the shape. (d) We remesh the resulting shape
with mixed integer quadrangulation along the computed directions. After a post-
optimization, the structure is in equilibrium under axial forces, (e) and panels are
close to planar. According to a finite element analysis, the ratio of internal elastic
work wa due to axial forces in the final structure is 0.95. The stress and curvature
directions are scaled according to their anisotropy, given by the difference between
the two eigenvalues. A possible application of this design is depicted in figs. 4.1
and 4.2 (on the right).

4.3.3 Design workflow

We have now the elements to design principal meshes in equilibrium. In

particular, we solve the following problem: given an initial surface subject

to gravitational load and its support conditions, find a quadrilateral mesh in

force equilibrium with edges aligned along principal curvature directions that

is close to the initial design surface. The procedure can be summarized in

the following steps:

• Step 1. Given an input surface as a triangular mesh and the support

conditions, the mesh geometry is optimized in order to align the equiv-

alent stress and curvature directions as described in section 4.3.2, while

keeping the vertices as close as possible to the input shape.

• Step 2. The resulting directions are used as guide for a quadrilateral
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remeshing of the optimized mesh. For this purpose, we use mixed

integer quadrangulation proposed by Bommes et al. [13]. In this step,

the density of the mesh can be chosen according to fabrication and

design considerations.

• Step 3. The obtained quadrilateral mesh is subject to post-optimization

for equilibrium and planarity of faces, while applying some fairness to

the network curves to guarantee aesthetic quality. For this purpose, we

use the method of [55]. Thanks to step 1, we can expect convergence

with minimized conflict between planarity and equilibrium.

4.4 Implementation

In this section we briefly describe the implementation of step 1, described in

the workflow section 4.3.3. Starting from a given triangular mesh M0 with

specified support conditions, we find a mesh M where principal stresses and

principal curvature directions are aligned, as close as possible to M0.

4.4.1 Main variables and constraints

For a mesh M0 = (V,E, F ), being s and c respectively the number of vertices

that are mechanically supported, and fixed during the optimization, the main

variables of the problem are:

• the position of the vertices vi of M (3(|V | − c) variables)

• the force densities wij = wji (|E| variables)

• the components of the stress tensor S̄11, S̄22 and S̄12 (3|V | variables)

• the components of the extended shape operatorW11,W22,W33,W12,W23

and W13 (6|V | variables)

• the tangent eigenvalues λ1 and λ2 of the extended shape operator (2|V |
variables)

• the directions a1 and a2 at vi (6|V | variables).

The main constraints are:
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• the equilibrium at unsupported vertices vi through eq. (3.2) (3(|V |−s)
equations)

• the connection of the stress tensor components with force densities

through eq. (4.4) (3V equations). Since we are interested only in prin-

cipal directions, we can omit Āi from the equations.

• the connection of the curvature components with face normals through

eq. (4.5) (6|V | equations). As for the previous point, we omit Ai.

• the normalization of directions: aT
1 a1 = 1 and aT

2 a2 = 1 (2|V | equa-

tions)

• the tangency of directions (tangency is guaranteed together with prin-

cipal direction alignment, see below): (a1+ a2)
Tni = 0 (|V | equations)

where ni is the vertex normal at vi. The target functions are given by the

alignment equations of the vectors a1, a2 with stress and curvature directions,

as seen in sections 4.3.1 and 4.3.2. We have then:

• conjugacy on the Airy surface: āT
1
˜̄S ā2 = 0 (|V | equations)

• principal direction alignment: Wa1 = λ1a1 and Wa2 = λ2a2 (6|V |
equations).

For proximity to the starting surface, we minimize the distance between the

points vi and the tangent plane of their closest vertex v0
j of M0. We point

out here that the projected stress tensor S̄ is not properly defined for surface

points with a vertical tangent plane. To avoid noise in the solution, we

remove the target functions of Airy conjugacy on vertices vi where the z

coordinate of the normal ni is in the range ±10−2.

Subtracting the number of constraints from the number of variables, and

keeping fixed during the optimization the supported vertices (then s = c), we

find 5|V | + |E| degrees of freedom. The target functions of alignment yield

7V equations. Considering that on a triangle mesh we have |E| ≈ 3|V |, we

are left with approximately |V | degrees of freedom. This allows us to ask for

closeness to the reference shape as a soft constraint.
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0 planarity 2%

− axial force +

Figure 4.4 – Results. A high-genus principal mesh in equilibrium. Finite element
analysis showed an axial work ratio wa of 0.89. On the left, the starting mesh M0

is shown.

4.4.2 Solver

For the optimization, we use the guided projection method of Tang et al. [55].

This method works best for systems of quadratic constraints. To reduce the

degree of the main constraints when higher than two, we introduce secondary

variables that are quadratic functions of the main ones; then, these functions

are added as constraints. Let us rearrange all the variables, in number of m,

in the vector x ∈ R
m. Let then ϕl(x) = 0, l = {1, . . . , n}, be the equations

given by the constraints and the target functions. It is possible to add more

or less importance to a specific constraint or target function by multiplying

the corresponding equations by a weight ωl. The system is solved iteratively.

At each iteration k, given the current variable vector xk, each equation is

linearized with a 1st order Taylor expansion:

ϕl(x) ≈ ϕl(x
k) +∇ϕl(x

k)T (x− xk) = 0.

The linearized system of weighted equations can be rearranged in matrix

form as Hx = r, with H ∈ R
n×m and r ∈ R

n. To guarantee mesh quality

and smoothness during the optimization, we add a fairness energy; we define

it at each vertex vi as the squared norm of the distance between vi and the

barycenter of its connected vertices vj∼i. The total fairness energy can be

written in matrix form as ‖Kx− s‖2. Additionally, the distance from xk is
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(a) (b) (c)

wa = 0.90 wa = 0.89 wa = 0.92

0 planarity 2%− axial force +

Figure 4.5 – Results. Principal meshes in equilibrium achieved with our method.
Meshes (a) and (c) discretize non-height field shapes. All boundaries are sup-
ported. The gridshell structures are in axial equilibrium under a homogeneous
vertical load per unit surface area. Axial forces, planarity error and axial work
ratios wa are shown.

used as a regularizer. The successive variable vector xk+1 is found by solving

‖Hx− r‖2 + δ2‖Kx− s‖2 + ǫ2
∥∥x− xk

∥∥2 → min, (4.6)

with δ, ǫ ∈ (0, 1) as weights. The iteration stops when a desired accuracy

is achieved, or when no more improvement is gained. For further details on

guided projection, see [55].

4.5 Results and discussion

The proposed workflow has been tested on some sample architectural sur-

faces. Results are shown in figs. 4.3 to 4.5. The presented examples were

subject to a uniform load per unit surface area and supported along the

boundary. Optimization times of step 1 are given in table 4.1. To evaluate

the quality of the result, we used the following two criteria.

• Convergence of post-optimization. As seen in section 4.3.3, the quad

mesh is post-optimized for equilibrium and face planarity with the
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Fig. |V | |E| iter. time (s)

4.3 681 1960 12 13.8
4.4 1941 5784 15 78.4
4.5a 606 1760 15 16.7
4.5b 1140 3302 14 31.9
4.5c 1089 3136 13 28.3

Table 4.1 – Optimization times and corresponding number of iterations for stress
and curvature alignment, relative to the presented results. Values refer to trian-
gular meshes with v vertices and e edges. The algorithm has been implemented in
Python and tested with an Intel Core i7-6700HQ CPU with 2.60 GHz and a 15.9
GB RAM memory.

Figure 4.6 – Architectural applications. Steel-glass gridshells achievable with the
meshes shown in Figures 4.5b (on the left) and 4.5c (on the right). Face planarity
errors below 2% are compatible with cladding through flat glass panels.

method of [55]. In this step, the supported vertices are let to glide

along the corresponding boundary. The planarity error of quadrilat-

eral faces is estimated as the distance between the two face diagonals

divided by their mean length. Regarding equilibrium, the error per

vertex is estimated as the norm of equilibrium eq. (3.2) divided by the

mean vertex load magnitude. Convergence of post-optimization was

considered successful when it reached a maximum planarity error be-

low 2% and a mean equilibrium error below 1%. In the test samples,

convergence was achieved in less than ten iterations, noticing small

changes in the mesh.

• Finite element analysis. In actual gridshells the structure is dimen-
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sioned according to finite element analysis. It is of interest to evalu-

ate the effectiveness of the optimization in this way as well. For this

purpose, the final mesh was modeled as a frame with steel S235 Timo-

shenko beam elements, connected together with rigid joints. Area loads

were lumped in the nodes. The size of the cross section was chosen con-

stant, according to resistance verification. To evaluate the equilibrium

hypothesis, we computed the ratio of internal elastic work due to axial

forces in the beams over the total elastic work made by external loads.

Axial work ratios wa, found for the results, are shown beside figs. 4.3

to 4.5.
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Chapter 5

Material-minimizing gridshells

Principal meshes in equilibrium, shown in chapter 4, are an appealing layout

for freeform gridshells. In this way we achieve flat panels, a torsion-free sub-

structure, and axial force equilibrium. We now want to go further and look

for the gridshells with the best statics performance. According to a ground-

breaking result of the Australian engineer A. G. M. Michell, the most efficient

trusses, at the limit of refinement, possess an orthogonal quad combinatorics,

therefore compatible with principal meshes.

This chapter combines the classical work of Maxwell, Michell, and Airy

with differential-geometric considerations and obtain a geometric understand-

ing of statics optimality of gridshell structures. It turns out that the grid-

shells that use the smallest amount of structural material are orthogonal

quad meshes discretizing the principal stress lines of membranes. The ab-

solute minimum, for some given boundary conditions, is achieved on such

membranes where the sum of absolute principal stresses is minimal.

We enable then the modeling of structures of minimal weight through

the minimization of absolute stresses on triangulated surfaces. Even if stat-

ics optimality does not require principality, this can be added on top of our

optimization, together with other properties relevant for building construc-

tion like alignment with prescribed boundaries. It is then possible to design

principal meshes in equilibrium where, for given boundary conditions, the

volume of the structure is minimized.
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Figure 5.1 – This chapter provides a tool for freeform architectural design that
performs a combined form and stress optimization with the goal to create struc-
tures of minimal weight. It incorporates features relevant to statics and to ar-
chitectural design like alignment of stress and curvature directions, similarly to
chapter 4, and the alignment of principal curves with the boundary. The workflow
generating this example is shown by fig. 5.6.

5.1 Overview and contribution

After a recap of know material in section 5.3 about Maxwell lemma and

Michell theorem, in section 5.4 a new result on 2D optimal trusses is pre-

sented, starting with relations between discrete curvatures of an Airy poten-

tial on the one hand, and the total volume of a truss on the other hand.

This topic is interesting because of its connection to differential geometry

and because it is relevant to applications, despite the restriction to 2D. An

interesting point here is that the combinatorics of optimal structures is part

of the solution. The chapter continues with optimal gridshells in section 5.5.

This topic is a bit more involved than the 2D case, but we are able to exploit

analogies. We derive a procedure for optimization, described in section 5.6.

Results are shown and discussed in section 5.7. This chapter presents results

published in [28].
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5.2 Previous work

In 1904 A. G. M. Michell, in his seminal paper The Limits of Economy of

Material in Frame-structures [34], solves a problem far ahead of his time:

finding the optimal truss layout that can safely carry some given loads to

prescribed support positions. One of the main intuitions of Michell is to

turn the problem of optimal frames into a continuum problem, where beams

become a fibrous microstructure; a finite truss can be then seen as an ap-

proximation, at an appropriate scale, of an optimal continuum solution.

The pioneering work of Michell has been discussed and further investi-

gated by several authors. The exact solutions to specific problems have been

developed around the seventies and can be found in the books of Cox [17] and

Hemp [23]. Rozvany [47] revises the original formulation for different stress

limits in tension and compression. Prager [46] derives a discrete “Hencky-

Prandtl” property for turning angles between beams in optimal 2D trusses.

Baker et al. [6] studies optimality in connection with Maxwells reciprocal

force diagrams and discuss primal/dual pairs of optimal trusses. Recently,

the analytical formulation has been embedded into the systematic theory

of optimization by Whittle [58] and Lewiński and Sokół [29]. An extended

treatment of Michell structures can be found in the recent book of Lewiński

et al. [30].

Recently Michells work has been extended to shell-like structures by

Mitchell [36]. This chapter is also concerned with this topic. It should be em-

phasized that in this search for optimal structures, the combinatorics of the

structure is part of the solution. This aspect seems to have been neglected

in the geometry processing community so far. E.g. Jiang et al. [27] optimize

space frames (not gridshells), keeping the combinatorics unchanged.

Imposing optimality properties on structures may not only influence the

layout and combinatorics of the structure, but also the shape of the surface

which the structure follows. This leads to computational optimization as

form-finding. This principle is not new, cf. [9]. Here it is applied to gridshells,

which was first done by Mitchell [36].
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F

A BBBBBBBBBBBBBBBBB C D

Figure 5.2 – Minimal volume trusses shown in the paper of Michell [34]. On
the left, the solution for a single load F applied in A, acting orthogonal to AB,
balanced by opposite force and torque in B. The minimum frame is formed by two
families of similar equiangular spirals with origin in B, intersecting orthogonally.
On the right, the solution to equal and opposite couples applied at points C and
D on the straight line CD. Up to now, this is the only known analytical solution
in three dimensional space.

5.3 Michell trusses

This section shows the main results on Michell trusses, based on the method

of Lagrange duality as in the formulation of Lewiński and Sokół [29]. It turns

out that the primal and dual versions of the problem statement correspond to

minimizing volume under equilibrium constraints, and maximizing work un-

der deformation constraints, respectively. The primal version of the problem

will be further developed in the following sections towards the optimization

of gridshells.

5.3.1 Problem statement

Michell trusses are solutions to the following problem: given a set of loads

with their application points, support positions, and a domain D ⊆ R
3, find

the framework structure M ⊆ D of minimal total volume that can support

the given loads. The problem is solved under the following assumptions:

• assumption (i). The optimal solution is a truss, with axial stresses

homogeneously distributed over the cross section.
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• assumption (ii). The self-weight of the structure is neglected.

• assumption (iii). The truss experiences small displacements (geometric

linearity).

5.3.2 Equilibrium and displacement

Let us consider a truss M ⊆ D with nodes vi, and let pi be the corresponding

nodal loads, collected respectively in the vectors v,p ∈ R
3|V |. As a conse-

quence of the applied loads, each e-th beam is stressed by an axial force of

magnitude fe. All bar force magnitudes are collected in the vector f ∈ R
|E|.

Let us now imagine the truss undergoing to a consistent displacement, and

let λi be the displacements of nodes vi, collected as v in the vector λ ∈ R
3|V |.

Accordingly, each beam e experiences an elongation ∆e(λ). According to as-

sumption (iii), the relation ∆e(λ) is linear in λ. The beam axial strain is

defined as

εe(λ) =
∆e(λ)

ℓe
, (5.1)

where ℓe is the length of the undeformed bar.

If the truss is in static equilibrium under the given loads p, the principle

of virtual work asks that, under every displacement λ compatible with the

constraints, the corresponding virtual work made by external forces p equals

the internal virtual work made by axial forces f in the beams:

pTλ−
∑

e

fe∆e(λ) = 0, ∀λ. (5.2)

5.3.3 Volume and stress limit

Let Ae be the cross section area of the e-th beam. The total volume V of the

structure can be computed as

V =
∑

e

Aeℓe.

To be safe, a structure must respect the stress limits allowed by its mate-

rial. On a truss, if we assume a homogeneous distribution of stresses among
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the cross section area, the stress σe acting at each cross section of the e-th

beam is

σe =
fe
Ae

.

Given a material, let σ
C

and σ
T

be its limit allowable stresses in compression

and in tension respectively. Let us label the beams in compression and

tension with the indices c and t respectively. The beam cross sections are

then bounded by the following limits:

At ≥
ft
σ

C

; Ac ≥
ft
σ

T

,

and consequently

V ≥
∑

t

1

σ
T

ftℓt +
∑

c

1

σ
C

fcℓc = V∗. (5.3)

Here V∗ is a lower bound for the volume V , and we have V = V∗ when the

truss is fully stressed, i.e. all beams are stressed up to the limit in tension or in

compression. Since the elastic equilibrium depends on the structure stiffness,

depending in turn on beam cross sections, for a given set of equilibrated beam

forces f , the volume V∗ could be unreachable. A special case are statically

determinate trusses, where f does not depend on the cross section areas. In

these cases, the fully stressed volume V∗ can always be attained. It will

turn out that when V∗ is a minimum, the truss is statically determinate.

Therefore, this is also a minimum for the actual volume V .

Let us define now the normalized fully stressed volume V̂∗ as

V̂∗ = σ0V∗, with σ0 =
σ

T
+ σ

C

2
.

In the following, we will seek the minimum of V̂∗, that dimensionally is

equivalent to work.

5.3.4 Maxwell lemma

Michell bases his formulation on a previous result shown by Maxwell in 1872

[33]. Maxwell considers a truss under given nodal forces p, corresponding

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 5. MATERIAL-MINIMIZING GRIDSHELLS 53

to applied loads or support reactions. He imagines such a truss undergoing

to a uniform contraction until it collapses into a single point. Consequently

to this virtual displacement, each bar undergoes to an elongation ∆e = −ℓe,
while the external virtual work made by the forces p is a constant C for all

trusses supporting the loads p. The equilibrium yields

∑

c

fcℓc +
∑

t

ftℓt = C.

In case the truss has no members in tension or no members in compres-

sion, the internal virtual work is constant, and so is the fully stressed volume.

It follows this first important result on truss optimization.

Proposition 4 (Maxwell lemma). If in a truss all members are only in

tension or only in compression while supporting some given loads, the fully

stressed volume V∗ is a minimum.

5.3.5 Dual formulation

Let us now consider all possible trusses supporting the given loads p, defined

by the node vector v ⊆ D and the beams force vector f . We now want to

solve, for v and f ,

V̂∗(v, f) → min,

subject to

pTλ−
∑

t

ftℓtεt(λ)−
∑

c

fcℓcεc(λ) = 0,

with

ft ≥ 0, fc ≤ 0,

where we split the internal virtual work of eq. (5.2) in its compression and

tension components, and we write out the elongations ∆e through strains εe

with eq. (5.1).

According to the linearity of elongations ∆e with respect to the displace-

ments λ, the virtual work eq. (5.2) is linear in λ as well. This implies that

the derivatives of the virtual work equation with respect to λ are again equi-

librium equations (these gives indeed the nodal equilibrium eq. (3.1)). We

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 5. MATERIAL-MINIMIZING GRIDSHELLS 54

can then introduce the nodal displacement vector λ as Lagrange multiplier,

and write the Lagrangian equation

L(v, f ,λ) = V̂∗ −
∑

t

ftℓtεt(λ)−
∑

c

fcℓcεc(λ) + pTλ.

We take now the dual function

g(λ) = min
v

min
f

ft≥0,fc≤0

L(v, f ,λ).

Since the external work pTλ does not depend on f , exchanging the max

operations on v and λ, we can solve the dual problem

max
λ

g(λ) = min
v

max
λ

(
pTλ+K(λ)

)

with

K(λ) = min
f

ft≥0,fc≤0

[
∑

t

(
σ0
σ

T

− εt(λ)

)
ftℓt +

∑

c

(
σ0
σ

C

− εc(λ)

)
fcℓc

]
,

where the fully stressed volume V∗ has been written with eq. (5.3). Let us

rename the normalized limit strains as

σ0
σ

T

= ε+;
σ0
σ

C

= ε−.

The minimum over f is attained when

K(λ) =





0, if εt = ε+ and εc = ε− with ft ≥ 0, fc ≤ 0

0, if εt < ε+ and εc > ε− with ft = 0, fc = 0

0, if εt = ε+ and εc > ε− with ft ≥ 0, fc = 0

0, if εt < ε+ and εc = ε− with ft = 0, fc ≤ 0

−∞, if εt > ε+ with ft = +∞
−∞, if εc < ε− with fc = −∞

(5.4)
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The last two cases are excluded by the max operation. We have then

min
v

min
f

s.t. eq. (5.2)

V̂∗ = min
v

max
λ

εe∈[ε−,ε+]

pTλ. (5.5)

5.3.6 Continuum formulation

If we increase the number of nodes vi, since we add more degrees of freedom,

it is reasonable to expect solutions with decreasing minimal volumes V∗. We

can keep adding nodes vi until we reach a limit formulation where v ≡ D,

obtaining in this way a continuous fibrous material, referred to as truss-like

continuum. Passing through a phase of continuous formulation is a common

practice in discrete optimization, see for instance [58]. The main advantage

of this approach is that, at the continuous limit, the dependency of eq. (5.5)

on v becomes redundant.

Let us now restrict our attention to a subclass of solutions where the

nodal displacements λ can be derived from a continuous displacement field

λD of the domain D. As a consequence of a displacement λD, the domain D
undergoes to a strain field ε. For small displacements, the first order strain

is given by

ε(λD) =
1

2
(∇λD +∇λT

D).

Consider now a direction a emanating from a point of D. The axial strain

along the direction a is given by

εa =
aTε a

aTa
.

According to the limits of εe from eq. (5.4), an infinitesimal beam in direction

a will be active if εa = ε+ or εa = ε−. Since we have the condition ε− ≤
εa ≤ ε+, the values ε+ and ε− must be eigenvalues of ε, and then a is aligned

with one of the eigenvectors e1, e2 or e3 of ε.

Let us then consider a displacement field ε of D with eigenvalues εi ∈
[ε−, ε+]. Let us denote all the eigenvalues that do not attain the bounds

as ε∼. According to the associated triplet of eigenvalues spec(ε), we can

therefore distinguish the following cases for an infinitesimal volume at each

https://www.tuwien.at/bibliothek
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point of D:

1. spec(ε) = {ε+, ε+, ε+} or spec(ε) = {ε−, ε−, ε−}: Maxwell volume, the

infinitesimal volume is isotropically strained, any layout of fibers is

optimal.

2. spec(ε) = {ε+, ε+, ε−} or spec(ε) = {ε+, ε−, ε−}: Michell volume, the

infinitesimal volume is isotropically strained on a plane, with opposite

strain along the orthogonal direction. The fiber layout consists of a

surface, with no preferred layout, and a fan of fibers orthogonal to it.

3. spec(ε) = {ε+, ε+, ε∼} or spec(ε) = {ε−, ε−, ε∼}: Maxwell surface,

where only fibers on a plane are active, with no preferred layout.

4. spec(ε) = {ε+, ε−, ε∼}: Michell surface, where only fibers on a plane

are active and disposed along the two extremal eigenvectors, no other

fibers are active.

5. spec(ε) = {ε+, ε∼, ε∼} or spec(ε) = {ε−, ε∼, ε∼}: Fan, the fibers are

straight lines disposed as a fan.

6. spec(ε) = {ε∼, ε∼, ε∼}: Void, no fibers are active.

Michell volumes can be seen as a family of Maxwell surfaces, stressed as

an isotropic membrane under normal load and connected with one family of

orthogonal lines, or as two families of Michell surfaces. According to these

considerations, we have the following result.

Proposition 5. In a truss-like continuum of minimum volume V∗, if a ten-

sion member meets a compression member, they must do so at right angles.

In the truss-like continuum, instead of forces fe, we can define a stress

tensor σ (see section 3.2.1) such that the axial stress along a fiber in direction

a is given by

σa =
aTσ a

aTa
. (5.6)

This quantity is a force per unit area. Divided by the limit stresses σ
C

or

σ
T
, it gives us the density of the fully stressed fibers in direction a.
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Let us now consider the Michell problem into a design domain D, with

interior applied loads p, boundary applied loads b, and constraints λi = 0,

undergoing to a virtual strain ε. The virtual work is then given by a linear

function W(ε). Let S = Sym2(D) be the space of second order symmetric

tensors on D, and S[ε−,ε+] the tensors of S whose eigenvalues are in the

interval [ε−, ε+]. Let Sdivp the symmetric tensor space whose divergence

equals −p. Recalling the equilibrium eq. (3.6), we can write the continuum

version of eq. (5.5) as:

min
σ∈Sdivp

σn+b=0

V̂∗ = max
ε∈S[ε

−
,ε+]

λi=0

W , (5.7)

where n is the outer normal of the boundary ∂D. Here, on the left side, we

have the primal problem: the minimization of volume subject to stress equi-

librium. On the right side, we have the dual formulation: the maximization

of work under strain constraints. This latter was the version given by Michell

in 1904.

5.3.7 Back to the primal problem

Let us now go back to the primal problem. According to proposition 4 and

5, we can suppose that, in an optimal truss-like continuum, the fibers are

aligned with the principal strain directions e1, e2 and e3 of a certain strain

field ε ∈ S[ε−,ε+]. Let σe1 , σe2 and σe3 be the corresponding stresses, as from

eq. (5.6), and let us define the function µ(σei), with i = 1, 2, 3, as

µ(σei) =




1/σT , if σei ≥ 0

1/σC , if σei < 0
.

Consider now an infinitesimal element dξ1, dξ2, dξ3, aligned respectively

with the directions e1, e2 and e3. The cross section area of the beam along

ei is then given by

dAei = µ(σei)|σei | dξj dξk.
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Its length equals dξi. Its infinitesimal fully stressed volume is then:

dV∗
ei
= µ(σei)|σei | dξi dξj dξk.

Therefore, in an optimal truss-like continuum, the total normalized fully

stressed volume can be computed as

V̂∗ = σ0

∫

D

µ(σe1)|σe1 |+ µ(σe2)|σe2 |+ µ(σe3)|σe3 |.

The principle of virtual work asks that W(ε) equals the internal virtual

work made by the stress tensor:

W(ε) =

∫

D

〈σ, ε〉.

Here the inner product between tensors is intended as sum of element-wise

multiplications. We can write now the Lagrangian equation

L(σ, ε) = V̂∗(σ, ε) +W(ε)−
∫

D

〈σ, ε〉

with ε(λD) as Lagrange multiplier, and then solve the dual problem

max
ε
g(ε) = max

ε
(W(ε) +H(ε)) ,

where min and max operation has been exchanged, and where

H(ε) = min
σ

(
V̂∗(σ, ε)−

∫

D

〈σ, ε〉
)
.

For every σe1 , σe2 , σe3 , it asks for

max
σ

∫

D

〈σ, ε〉.

Due to the CauchySchwarz inequality, we have

〈σ, ε〉2 ≤ 〈σ,σ〉〈ε, ε〉
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and the equality holds if the eigenvectors of σ are pointing in the same

direction of the eigenvectors of ε. Therefore, we can see that in a truss-like

continuum with minimal fully stressed volume V∗, the fibers are aligned along

principal stress directions.

Let suppose now that a certain optimal truss is a solution of eq. (5.7).

At each point of D we have then a given orientation for the stress tensor

eigenvectors; there are only three remaining degrees of freedom. For given

boundary conditions, the three differential equations 3.6 of equilibrium are

uniquely determined. We can then state the following:

Proposition 6. A truss-like continuum of minimal volume V∗ under given

loads is statically determinate.

In case some loads are undetermined, being the reactions of constraints,

the solution is not unique. In these cases, different values of stress limits

σ
C

and σ
T

will yield different solutions. The missing loads will undergo to

minimization; once found, the stress state in the structure is determined.

We have now all the elements to set up the primal formulation of the

volume minimization problem. Being σ1 , σ2 and σ3 the eigenvalues of σ, the

optimal truss-like continuum is found as

minV = min
σ∈Sdivp

σn=b

∫

D

µ(σ1)|σ1 |+ µ(σ2)|σ2 |+ µ(σ3)|σ3 |, (5.8)

where some undetermined components of p and b can possibly take part to

the minimization.

5.4 Volume-optimal trusses in 2D

Before dealing with gridshells, we will focus on 2D planar structures. In case

of materials with symmetric tensile and compressive stress limit, it turns out

a relation between discrete curvatures of an Airy potential on the one hand,

and the total volume of a truss on the other hand.
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5.4.1 Connection between kinks and volumes

Let us consider structures made out of materials with σ
T
= −σ

C
= σ, as is

the case for steel. The fully stressed volume of a truss with elements e is

then

V∗ =
1

σ

∑

e

|fe|ℓe. (5.9)

The discrete Airy potential can be used here to establish a first new relation

between volumes and discrete curvatures. Having in mind the properties

of continuous optimal structures, we consider circular quad meshes. The

geometric setting appropriate to our situation is 3D isotropic geometry, where

the slope of a line w.r.t. the horizontal xy plane plays the role of an angle,

and change in slope (such as a 2nd derivative, or a kink divided by horizontal

length) plays the role of curvature, as seen in section 3.2.4. Let eij = vi−vj

be the edge vector, and let e∗ij = v∗
l − v∗

k be the corresponding dual edge

as in the construction of section 3.1.3, where l and k are the indices of the

left and right faces incident at the edge such that e = fk ∩ fl. We need the

following ingredients:

• For a member e connecting vertices vi,vj, the product |fe|ℓe (force

φ(x, y)

Figure 5.3 – The mesh yielding a 2D volume-optimal truss (shown in yellow) for
the three force problem on the left, together with the Airy polyhedron projecting
onto it (blue). The angle of transverse mesh polylines enjoys a discrete Hencky-
Prandtl property.
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times length) is expressed as ‖eij‖‖e∗ij‖, by construction of the dual

truss.

• We can define a region of influence of this member, namely the quadri-

lateral vickvjcl, where ck, cl are circumcenters of faces adjacent to the

member. Its area is area e.

• The isotropic angle in the Airy potential along a line which crosses this

member at right angles equals ±‖∇φ|fk −∇φ|fl‖ by definition of ∇. It

equals ±
∥∥e∗ij

∥∥ by construction of the potential.

• The isotropic curvature of the Airy potential surface across the edge e

is the isotropic angle divided by the distance of centers ck, cl. Let us

temporarily call this value curvature e.

Putting everything together, we get

∑

e

|fe| ℓe =
∑

e

‖e∗ij‖ ‖eij‖

=
∑

e

‖eij‖ ‖ck − cl‖
‖e∗ij‖

‖ck − cl‖

=
∑

e

2 |curvature e| · area e. (5.10)

Except for the boundary, the areas of influence cover the mesh, so we have

converted the volume optimization problem “
∑

e |fe|ℓe → min” into a total

curvature minimization problem. It remains to interpret the formula above

and give it a meaning in terms of classical differential geometry.

5.4.2 Total isotropic curvature

As seen in section 2.2.4, discretizations of conjugate networks are planar

quad meshes [31]. A principal curve network, characterized by conjugacy+

orthogonality, requires that a discrete version of orthogonality is imposed

on top of conjugacy; such a net thus is discretized as a circular quad mesh

in the classical case, and as an i-circular mesh in the isotropic case (see

section 3.2.4): an i-circular mesh is a quad mesh with planar faces whose

projection onto the xy plane is a 2D circular net [44]. The Airy polyhedra
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(a)

eijeijeijeijeijeijeijeijeijeijeijeijeijeijeijeijeij

e∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ije∗ij

vivivivivivivivivivivivivivivivivi

vjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvj

∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl∇φ|fl

∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk∇φ|fk
φ(fl)

z = φ(x, y)

(b)

D vj

fj

z = φ(x, y)

Figure 5.4 – Airy polyhedra of trusses. (a) An Airy polyhedron z = φ(x, y) which
projects onto the primal truss. The gradients of the piecewise-linear function φ
are the vertices of a dual-reciprocal truss – compare with fig. 3.1. (b) Given forces
along the polygonal boundary of a planar domain, we incrementally construct the
boundary strip of an Airy polyhedron by relating its face gradients with the given
forces. Equilibrium ensures the construction closes up. (c) The Airy potential
φ(x(t)) experiences a kink a point x(t) moves across the edge vivj at right angles.
The kink is of magnitude ‖fij‖ = ‖e∗ij‖. This figure also illustrates the quadrilateral
viclvjck which serves as region of influence of the member vivj .

erected over 2D circular nets are therefore discretizations of i-principal curve

networks.

Let us now think of a sequence of finer and finer Airy polyhedra which

converge to a principal parametrization of a continuous Airy potential φ(x, y),

as seen in section 3.2, and let us investigate the limit of eq. (5.10): in isotropic

geometry, curvature measures the change in slope w.r.t. progress in the xy

plane (i.e., i-curvature is a second derivative of the z coordinate w.r.t. arc

length in the xy plane). Thus, a discrete version of i-curvature is the value

curvature e used above (it is a kink divided by a horizontal length). Cur-

vatures along the i-principal directions are the i-principal curvatures κi1, κ
i
2.

Since our limit of circular meshes is principal parametrization, we see that

eq. (5.10) discretizes the integral 2
∫
D
|κi1|+|κi2|. Let us summarize this result:

Proposition 7. The infinitesimal members of a volume-minimizing optimal

truss-like continuum are aligned with the isotropic-principal directions of the

Airy potential surface z = φ(x, y), which minimizes isotropic total absolute

curvature, i.e, ∫

D

|κi1|+ |κi2| → min, (5.11)
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under the given boundary and load conditions. A volume-minimizing discrete

truss — if orthogonality is enforced by means of the circular property —

are found as projections of a polyhedral Airy potential minimizing a discrete

version of isotropic total absolute curvature (again, under the given boundary

and load conditions):

∑

e

|curvature e| · area e → min .

It is not difficult to see that κi1, κ
i
2 equal the principal stresses, which

has already been noticed by Strubecker [51]. It is also easy to see that the

minimization of isotropic total absolute curvature of eq. (5.11) is equivalent

to the Michell’s primal formulation of eq. (5.8) in 2D, for materials with equal

tensile and compressive stress limit. We will see that in the 3D (gridshell)

case, an analogous result holds, see eq. (5.17).

5.4.3 Computing optimal trusses in 2D

We are now able to solve the following problem: given is a polygonal domain

D in R
2 with vertices v1, . . . ,vn. Further we are given forces fj acting on vj

which are in equilibrium (i.e., there is zero net force and zero net torque).

Connect the given vertices by a truss in the interior of D which balances the

given forces in a volume-optimizing manner. A four-step procedure deter-

mines the combinatorics and geometry of the solution:

• Step 1. The given loads define an Airy potential φ(x, y) outside D.

• Step 2. Extend φ(x, y) to the interior of D, minimizing
∫
|κi1| + |κi2|,

see fig. 5.5.

• Step 3. Find an i-circular net approximating the surface z = φ(x, y).

• Step 4. In theory, this net projects onto an optimal truss. In order

to account for discretization errors, apply a final round of direct opti-

mization to this truss.

Step 1 is illustrated by fig. 5.4b. A piecewise-linear Airy potential φ(x, y)

in a neighbourhood of D just outside the boundary ∂D is composed of linear

functions φj(x) = 〈∇φj,x〉 + γj, whose domain is bounded by the edge
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φ(x, y) φ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discreteφ(x, y)discrete

Figure 5.5 – Computing an optimal truss in 2D. Left: Given external forces,
we compute an Airy potential φ(x, y) which minimizes total absolute “isotropic”
curvature. Equivalently, we compute a stress state where the integral

∫
|σ1|+ |σ2|

of absolute principal stresses is minimal. Right: an optimal circular truss is derived
from the principal stress directions; it has a corresponding discrete Airy potential.
The misalignment with the boundary shows that constraining the vertices of this
circular mesh onto the given boundary will impose additional constraints. Later
images in this chapter show the 3D situation, where these constraints have tacitly
been taken into account. Color coding indicates tensile (blue) and compressive
(red) axial forces.

vjvj+1, and the lines of action of the forces fj and fj+1 (indices modulo n).

The Airy potential is unique only up to adding a linear function, so we let

∇φ1 = 0, γ1 = 0. Since φj−1, φj have the same value for the vertex vj,

and equilibrium implies that ∇φj = ∇φj−1 + R̄fj (where R is the 2D 90◦

rotation), we can recursively define φ2, φ3, . . . Our equilibrium assumption

ensures that φn+1 = φ1, i.e., the construction closes up and φ is indeed well

defined [5].

Step 2. The Airy potential of a volume-optimal truss minimizes a discrete

version of
∫
|κi1|+ |κi2|. We can therefore switch from discrete to continuous

and extend φ to the interior of D by minimizing this integral. This optimiza-

tion problem is solved numerically, using a suitable triangulation of D which

is unrelated to the optimal truss, see section 5.6.6.

Step 3. The eigenvectors of the Hessian of φ yields the cross field of

i-principal directions on the Airy potential surface. We find a quad mesh

aligned with it, using the method of Bommes et al. [13].
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Step 4. The mesh extracted in step 3 is approximately circular, and at

the same time approximately a volume-optimizing truss. Depending on the

property we wish to establish in an exact manner, a final round of optimiza-

tion is applied, using the method of Tang et al. [55]. An example is shown

by fig. 5.5.

5.5 Volume-optimal gridshells

We want now to extend the results on Michell trusses to our 3D gridshell

structures. Note that Maxwell’s lemma and Michell’s theorem no longer

apply here, even if some of their conclusions are still true. This is because on

gridshells the self-load amounts to non-constant forces acting in all interior

vertices of the structure.

The main aim of this chapter is to design volume-optimal gridshells. It

will be argued why such structures should be based on quadrilateral meshes.

Like in the 2D case, the combinatorics of the structure is part of the solution.

An essential ingredient of this approach is the separation of horizontal

forces from vertical ones (see section 3.2), so that it is possible to treat a

projection of our structure as an ordinary 2D truss loaded at the boundary,

using the methods shown in section 3.1.

5.5.1 Properties of optimal gridshells

When applied to architectural gridshells, the assumptions of section 5.3.1

must be further discussed.

Regarding assumption (i), the restriction to axial only forces here implies

that the truss-like continuum is a surface in membrane equilibrium. We call it

truss-like membrane. The membrane equilibrium of section 3.2 then applies.

Concerning assumption (ii), in actual gridshell architectures the self-

weight of the load bearing structure could be not negligible in some cases.

However, we can identify two scenarios where nevertheless the structure is

fully stressed.

• Scenario 1 is quad mesh combinatorics. In a quad mesh, we have

roughly 3/2 times as many linear equilibrium equations as there are

https://www.tuwien.at/bibliothek
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forces. Thus the gridshell is statically determinate. Each member can

be made volume-optimal independent of the others, and is therefore

fully stressed.

• Scenario 2 occurs if the load which is proportional to surface area

dominates the unknown weight of the structure, which is subject to

optimization. This is the case of steel-glass structures. Indeed we

might think of panel weights of, say, 30 kg/m2 and maintenance loads

of 50 kg/m2. Snow load might increase the total up to 300 kg/m2.

Generally a steel structure has only 10–30 kg/m2, and the variation of

this weight experienced during optimization is even less. By neglecting

this variation we assume the total load is constant during optimization.

Then optimal structures are fully stressed, and the structure is fully

stressed without assuming quad mesh combinatorics.

With these assumptions, and in one of the two scenarios, the volume

minimization amounts then to

V∗ =
∑

t

1

σ
T

ftℓt +
∑

c

1

σ
C

fcℓc → min . (5.12)

5.5.2 Properties of optimal truss-like continua

With the previous assumptions, we can use eq. (5.8). In a truss-like mem-

brane M, the stress tensor S is defined in the tangent plane and represents

the stresses integrated over the normal direction, as seen in section 3.2.3. For

simplicity, let us assume again a symmetric material with σ
T
= −σ

C
. Then

eq. (5.8) became ∫

M

|σ1|+ |σ2| → min, (5.13)

where σ1 and σ2 are the principal stresses of S. If we parametrize the mem-

brane as a height field (see section 2.2.3), the principal stresses are given by

the eigenvalues of
√
∆ I

−1∇2φ, as shown in eq. (3.14). The surface element

in xy coordinates is
√
∆dx dy. We therefore have the following version of
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(a) (b) (c) (d) (e)

0 planarity 2% − axial force +

Figure 5.6 – Workflow for optimizing structures. Given a boundary curve, we
compute the optimal stress potential φ(x, y) and design surface M(x, y) shown
in (a). Optimization in particular makes the principal stress directions coincide
with the principal curvature directions (b), so a quad mesh which follows these
directions has approximately planar faces and is optimally placed to carry the flow
of forces (c). The measure of planarity of individual quads given here is the ratio
of distance of diagonals, over average edge length. Optimization towards planarity
and equilibrium does not change the mesh much (d), verifying that the“continuum”
version of the optimization has been accurate. Finally we construct a structure
following the mesh, connecting members with rigid joints. Finite element analysis
shows both tension and compression in its members (e).

eq. (5.13) in height field parametrization:

∫∫
(|λ1|+ |λ2|)∆dx dy → min, (5.14)

where λ1, λ2 are the eigenvalues of I−1∇2φ.

Remark. If eq. (5.14) had
√
∆ instead of ∆, then it would express mini-

mization of a certain total absolute curvature, similar to the 2D case. This

is because λ1, λ2 are the i-curvatures of the Airy surface z = φ(x, y) w.r.t.

the first fundamental form of the design surface.

5.5.3 Computing optimal structures – the workflow

The preparations above enable us to compute optimal discrete structures

which have the shape of shells, see fig. 5.6. This procedure is similar to the

one presented in section 5.4.3 for the 2D case. Note that the combinatorics

of the structure is part of the solution.

We solve the following problem: given boundary conditions, find a shell-
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like truss which (i) balances self-loads and exterior boundary forces; (ii) ob-

serves geometric boundary conditions; and (iii) is volume-optimal. The pro-

cedure consists of the following steps:

• Step 1: Form and force optimization. We set up an optimization

problem for an Airy potential function φ(x, y) and a design surface

z = s(x, y). The optimization target is eq. (5.14). Constraints include

the user-defined ones, and the ones arising from the relations between

φ and s. In addition we require that the principal stress directions are

conjugate w.r.t. the design surface — otherwise the faces of the final

truss cannot be planar. Numerical optimization is performed over a

suitable triangulation which is unrelated to the optimal truss. It re-

quires an elaborate setup of variables and constraints, see section 5.6.1.

• Step 2: Meshing. Using the mixed integer quadrangulation method of

Bommes et al. [13], we extract a quad mesh which follows the cross

field of principal directions in the design surface.

• Step 3: Post-Processing. A round of optimization makes faces planar

and puts forces into equilibrium, which is exactly the problem solved

by Tang et al. [55]. Postprocessing may of course vary from example

to example. Finally, an engineering task is performed: an actual struc-

ture is planned on basis of that mesh. The cross-sections of members

are chosen on basis of the forces we computed, such that the mem-

ber has minimal weight (taking a safety margin into account). Joints

and foundations are modeled, and the structure can undergo to FEM

testing for standard load cases (not treated in this thesis). Note that

the members’ weight influences the load, so these members must be

implicitly present already during Step 1.

5.6 Implementation

This section describes in detail the first stage in the workflow for computing

optimal structures, namely finding an optimal design surface M = z(x, y)
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− axial force + 0 planarity 2%
(a) (b)

Figure 5.7 – Boundary conditions. Parts of the boundary of this steel-glass
structure are physically supported, others are free. During optimization, however,
all boundaries have prescribed x, y coordinates in order to preserve the design
intent. (a) shows tension and compression in the final structure, and (b) planarity
of faces.

together with its stress potential φ(x, y). The 2D case is treated briefly

afterwards.

5.6.1 Variables and constraints for optimal gridshells

The design surface M is parametrized as a height field z(x, y) (see sec-

tion 2.2.3) over a planar domain which is given as a triangle mesh. Each
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vertex is associated with a coordinate vector v̄ = (v1, v2) ∈ R
2 (fixed), the

design surface’s z coordinate v3 = z(v̄) which is subject to optimization, and

the following additional variables.

• gradient ∇z and Hessian ∇2z (5 variables)

• 2nd derivatives φ,xx, φ,xy, φ,yy of the Airy potential, and their deriva-

tives φ,xxx, φ,xxy, . . . (9 variables)

• matrix I, values ∆ = det(I), δ =
√
∆, ω =

√
δ (6 variables)

• eigenvalues λ1, λ2 of I
−1∇2φ, their product λ, and principal stresses

σ1, σ2 (5 variables)

• eigenvectors āj and vectors b̄j, c̄j described below (12 variables).

We also have the following constants:

• panel weight ρ in kg/m3 and panel thickness h.

• The future members of the truss are fully stressed, so their weight can

already be computed while we are still optimizing the surface, using

eq. (5.14): The weight per xy area element is µ(|λ1|+ |λ2|)∆, where µ

is a constant of dimension m−1.

The variables introduced above obey constraints, starting with relations

between derivatives and function values. For any of the functions ψ ∈
{φ,xx, φ,xy, φ,yy} the first derivatives are variables in the optimization, and

for z we even involve second derivatives. For each pair v̄w̄ of adjacent ver-

tices, we require

z(w̄)−z(v̄) = ∇z(v̄)T · (w̄−v̄) + 1
2
(w̄−v̄)T · ∇2z(v̄) · (w̄−v̄),

ψ(w̄)−ψ(v̄)=∇ψ(v̄)T · (w̄−v̄) , for ψ ∈ {φ,xx, φ,xy, φ,yy}.

As w̄ runs through the 1-ring or 2-ring neighbourhood of v (depending on

whether we want to compute 1st or 1st + 2nd derivatives) the above equations

constitute an over-determined linear system of the form Hx = r for the

vector x of derivatives at v̄. In guided projection, it is solved by minimizing

‖Hx− r‖2, see eq. (4.6). The derivatives of this expression w.r.t. both x and

r must vanish, since both x, r are variables in our optimization. This leads
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to

HTHx = HT r, Hx = r. (5.15)

The size of H depends on the size of the neighbourhood, but for the purpose

of counting the number of constraints vs. the number of variables, we consider

the balance even. The constraint sets C1 and C2 obtained in this way refer to

derivatives of design surface and stress surface, resp. Further, for each vertex

we have the following sets C3, . . . , C8 of linear or quadratic constraints:

C3 Derivatives obey φ,xxy = φ,xyx and φ,xyy = φ,yyx.

C4 Equations (2.8), (2.9) define I, ∆. We require δ2 = ∆, ω2 = δ in order

to ensure a positive square root of ∆ (6 constraints).

C5 The defining relations λ1 + λ2 = tr(I−1∇2φ), λ1λ2 = det∇2φ/∆ are

made quadratic by multiplication of both l.h.s. and r.h.s. with ∆, and

the substitution λ = λ1λ2. Stresses are defined by δσi = λi, i = 1, 2 (5

constraints).

C6 The defining relations ∇2φ · āi = λiI āi of the principal stress directions

are made quadratic by the substitution I āi = b̄i. We further require

āT
i āi = 1 and āT

1 b̄2 = āT
2 b̄1 = 0 to be sure to pick an orthonormal basis

of eigenvectors.

C7 Equation (2.11), substituting c̄i = ∇2z āi, makes 5 constraints.

Note that |C6| = 5: Computing eigenvectors is 2 equations, normalization

amounts to another 2, and orthogonality constraints for eigenvectors can be

omitted in a d.o.f. count. Constraint set C8 consists of the vertical equilib-

rium equation given by eq. (3.13). The load per unit xy area ¯̺ is the struc-

ture’s weight plus the panel weight, leading to ¯̺ = µ(|λ1|+ |λ2|)∆ +
√
∆ρh.

This equation involves absolute values and is approached by the method of

iteratively reweighted least squares: at iteration level k, |λi| is replaced by

|λi| = wi,kλ
2
i , where wi,k = 1

/√
(λi,k−1)2 + ǫ. (5.16)

Here ǫ > 0 is a small regularizer, and λ1,k−1, λ2,k−1 are constants equal to

the value of λ1, λ2 in the previous iteration. With this substitution, the
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vtotal = 397∑
|f |ℓ = 493

vtotal = 223∑
|f |ℓ = 369

vtotal = 242∑
|f |ℓ = 442

Figure 5.8 – User interaction. We show optimal quad meshes derived without
additional constraints (center), and under the constraint that a handle point lies
lower (left), resp. higher (right). The effect is demonstrated by means of the value
vtotal of the target functional, and the value

∑
|f |ℓ of the final structure. In all

three cases, FEM analysis confirms that more than 90% of the elastic energy (i.e.,
the potential energy stored in the structure as the deadload is applied, in the stan-
dard load case, with the same boundary conditions as used during optimization)
is due to axial forces.

equilibrium equation becomes quadratic. This concludes the enumeration of

constraints per vertex.

The x, y coordinates of all vertices are fixed. The coordinates z(v̄) of

vertices are typically free. At the boundary, we can opt for fixed or for free

z coordinates. A different property of a boundary vertex is if it is physically

supported or free, see e.g.fig. 5.7. An unsupported part of the membrane’s

boundary experiences no external forces except the deadload. The corre-

sponding boundary part of the Airy potential lies in a plane [35], but in our

optimization we compute with eq. (3.11). Figure 5.9 gives an overview of the

different boundary conditions we use.

5.6.2 Counting degrees of freedom

Let us first discuss the continuous case in a naive way. If the design surface

z(x, y) is given, the stress potential φ(x, y) is found by the equilibrium con-

dition (3.10), which is a 2nd order PDE. It is elliptic in case stresses are all

compressive [56], so φ is uniquely determined by boundary values. Even if

we have a mixture of tensile and compressive stresses we expect the same

behaviour. The requirement that principal stress directions agree with prin-

https://www.tuwien.at/bibliothek
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Fig. 4.1,5.6 5.8 5.10 5.11 5.12a

5.75.12e5.12d5.12c5.12b

Figure 5.9 – Boundary conditions imposed on the examples contained in this
chapter. The manner of condition along the boundary is indicated by colors: red
is physically supported with fixed z coordinate, yellow is supported with free z
coordinate, blue is unsupported with free z coordinate.

cipal curvature directions is again a 2nd order PDE, so we can expect that

both z and φ are determined by boundary values. Any further constraint,

like requiring that a boundary is a principal curve, leads to loss of freedom

for the boundary of the design surface. For volume optimization not much

freedom is left now – we basically only have the boundary values of φ at our

disposal.

In the discrete setting we have one constraint per vertex less than there

are variables, if we disregard eq. (2.11) which enforces alignment of principal

stress directions with principal curvature directions. This is in accordance

with the fact that for a given design surface, the stress potential is deter-

mined. Enforcing eq. (2.11) leads to as many equations as there are variables,

implying that no degrees of freedom are left. This is in accordance with the

shape restriction we already saw in the continuous case, and it means that

enforcing this condition makes our optimization procedure a tool for form-

finding.

5.6.3 Target functional for optimization

It is not difficult to express the target functional of eq. (5.14) in terms of

our variables. Recall that we work with a triangulation of a planar domain.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 5. MATERIAL-MINIMIZING GRIDSHELLS 74

(a) (b) (c) (e)

(d)

Figure 5.10 – Comparing optimization with and without alignment constraints.
Optimization and quad meshing guided by principal stress directions (inset figures)
yields different meshes, if optimization is performed subject to different constraints:
(a) without alignment of principal stresses and principal curvatures, (b) with this
alignment, using eq. (2.11) (c) in addition, alignment of principal curves with the
boundary. Subfigure (d) shows the discrepancy between principal stress directions
and principal curvature directions in the first case, and subfigure (e) shows the 3
design surfaces superimposed (a = white, b = red, c = yellow), from which we
conclude that the difference in these three meshes is mainly the combinatorics, not
the geometric shape.

Each vertex v̄ has an area of influence A(v̄), which is computed as one third

of the area of its vertex star. In the k-th round of our iterative optimization

procedure, volume minimization is then expressed by

∫∫
(|λ1|+ |λ2|)∆dx dy ≈

∑

vertices

(wk
1λ

2
1 + wk

2λ
2
2)∆A

=
∑

vertices

(wk
1σ

2
1 + wk

2σ
2
2)A→ min . (5.17)

All expressions are values associated with vertices; recall the weights wk
i

from eq. (5.16). This is a quadratic objective function.

5.6.4 Further constraints

Several of the results shown in this paper add more constraints to the op-

timization, like handles operated by the designer (fig. 5.8), or proximity to

a reference surface, which can be treated as quadratic constraints [55]. A

particular constraint highly relevant to architectural design is alignment of

the mesh with the given boundary (see examples in figs. 5.6 to 5.8 and the

comparison in fig. 5.10). With t̄ as a (projected) tangent vector at the bound-

ary, and ā1, ā2 as the principal stress vectors, constraint set C7 is augmented
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by (t̄T I ā1) · (t̄T I ā2) = 0. Unfortunately this constraint can almost never

be fulfilled exactly — a closed curve (like the boundary) can be a principal

curvature line only if the integral of torsion is an integer multiple of 2π. This

can be achieved if the z coordinates of boundary vertices are free variables in

our optimization, but otherwise this obstruction has the effect that near the

boundary, the angles in our mesh deviate from 90◦, see figs. 5.7 and 5.12b,

and 5.12e.

5.6.5 Solver

The target functional eq. (5.14) resp. eq. (5.17) is optimized by the constraint

solver by Tang et al. [55], as for section 4.4.2. The method tries to move the

vector of variables towards the constraint manifold, such that the path is

guided by a quadratic energy. In this case, the energy is provided by the

quadratic objective function of eq. (5.17). Statistics are shown by table 5.1.

5.6.6 Variables and constraints for optimal 2D trusses

The procedure for optimizing shell-like trusses described in section 5.6.1 spe-

cializes to the 2D case if we let s and its derivatives equal zero, and let the

self-weight be zero. Then I becomes the unit matrix, and ∆ = δ = ω = 1.

The eigenvalues λi become the curvatures κi needed for the target functional.

In this way, many variables and constraints disappear. Further we can drop

the conjugacy condition of eq. (2.11). The rest is unchanged, and we do not

elaborate further.

5.7 Discussion

We start the discussion with several different instances of the optimization

procedure proposed in this chapter. Figure 5.10 compares optimization with

and without enforcing eq. (2.11), i.e., disregarding alignment of principal

stress directions with principal curvature directions. It is encouraging to see

that the design surface is almost unchanged, see superimposed surfaces in

fig. 5.10e. We see that eq. (2.11) does not prevent optimization for minimal
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A B

A B

max |f | 202 74 [kN]
moment 6.7 1.9 [kNm]
weight 12900 8100 [kg]∑ |f |ℓ 53·103 40·103 [kNm]

− axial force +

Figure 5.11 – Effectiveness. We compare meshes with the same boundary: Mesh
A is optimized according to section 5.6.1, while mesh B is computed by minimizing
a fairness energy and subsequent quad meshing. They undergo postprocessing by
optimization for equilibrium and planar faces according to [55], and subsequent
modeling of a structure with rigid joints. The members’ cross-sections are selected
according to maximum allowable stresses and maximum allowable displacement.
Then structure B is 60% heavier than structure A, and the effect is even bigger
if we skip the maximum displacement requirement. The underlying surfaces are
very similar, confirming the big influence of the structure’s combinatorics (and the
positioning of members) on the weight.

weight.

5.7.1 Verification of results

The success of our optimization procedures is measured in different ways.

Firstly, measuring planarity of faces is straightforward (see individual im-

ages). Secondly, our working assumption to treat shells as membranes is

verified a posteriori by FEM analysis of structures with rigid joints based on

the meshes we generate: in our examples, more than 90% of the elastic energy

in the basic load case is due to axial forces. Thirdly, we compare structures

derived from optimized meshes with structures derived from meshes obtained

in another way, see fig. 5.11. Numerical experiments confirm that in non-

optimized meshes, axial forces typically are 2–3 times larger, and the weight

of the structure is about 50% bigger. These experiments measure the ef-

fect of our optimization. Another comparison is shown by Figure 5.8, where

we demonstrate how a user’s interference with free optimization causes the
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(a)

(b)

(e)

(c) (d)

− axial force + 0 planarity 2%

Figure 5.12 – Examples of optimal structures, (a)–(e). We show tensile and com-
pressive forces in structures derived from optimized meshes. For example (a) also
the optimal shape with principal stress lines is shown (left). For examples (a) and
(e) the planarity of the quad mesh derived from is depicted (right). All structures
except (e) have been optimized with the additional constraint of alignment with
the fixed boundary. We hit the “integral of torsion” obstruction mentioned in
section 5.6.1, so the angle between edges visibly deviates from 90 degrees.

weight of the final structure to increase.

5.7.2 Implementation details

Table 5.1 gives details on computation times for the optimization process

described bysection 5.6.1. For meshing and post-meshing optimization, which
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are no contributions of this thesis, we refer to [13] and [55], respectively. The

times given are for an Intel Core i5-6500 CPU with 3.20GHz and 15.6 GB

memory.

A word about the nature of our optimization procedure is in order. The

guided projection method of Tang et al. [55] does not exactly minimize the

target functional, but use this functional to guide a mesh towards the solu-

tion manifold defined by the constraints (one could achieve minimization by

adjusting weights as the iteration progresses). Table 5.2 shows comparisons

with a constrained solver. Numerical experiments show that apart from some

outliers, already after 10 iterations our method minimizes the target within

a margin of 10–12%, but computation is faster by orders of magnitude. We

stayed with our method because we expect that in an architectural design

situation, exact minimization does not have priority. The reason for this is

not only the desire for design freedom, but also the additional constraints

and safety requirements an actual structure is required to conform to, and

which cause some discrepancy between the optimized mesh and the structure

based on it (see e.g. maximum displacement constraint in fig. 5.11).

5.7.3 Robustness

When computing with curvatures (and generally, higher derivatives), robust-

ness is always an issue. We should should add that we did not experience

problems here, since the principal directions of our shapes are variables in our

optimization procedure and are thus automatically subject to its regularizing

effect.
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Fig.

|V |
|F |
# of variables
# of constraints
time [sec]

weights given to individual constraints, ordered by constraint set

target functional
C1,C2,C3

C4,C5,C8

C6,C7

RMS residuals of constraints, ordered by constraint set

C1 (derivatives s)
C2 (derivatives φ)
C3 (∂xy = ∂yx)
C4 (I,∆, . . .)
C5 (eigenvalues)
C6 (eigenvectors)
C7 (alignment)
C8 (equilibrium)

5.6

1082
2026
41 k
73 k
325

10-5

400,102,40
102,103,200

200,1

.017

.019

.021

.006

.012

.002

.039

.016

5.7

1865
3403
89 k
228 k
265

10-8

1,1,1
1,1,2.4
1.4,.01

.081

.015

.005

.006

.001

.730

.012

.005

5.11

882
1662
33 k
68 k
16

10-4

2,1,1
2,1,1
1,1

.005

.009

.001

.001

.000

.002

.004

.003

5.12a

678
1254
25 k
51 k
35

10-4

2,1,1
2,1,1
1,1

.006

.010

.003

.001

.010

.004

.009

.008

5.12b

673
1252
25k
51k
19

10-4

1,1,1
1,1,1
1,1

.014

.013

.002

.004

.011

.003

.003

.005

5.12c

973
1772
36 k
73 k
60

10-2

2,2,2
2,2,2
2,1

.004

.002

.000

.001

.000

.001

.003

.000

5.12d

1133
2149
16k
32k
42

10-3

1,1,1
1,1,1
1,1

.007

.005

.001

.001

.000

.001

.001

.001

5.12e

2003
3712
96 k
238 k
338

10-6

1,1,1.4
1,1,1.4
1.4,.01

.081

.017

.005

.001

.012

.005

.416

.019

Table 5.1 – Details concerning form+stress optimization on a triangle mesh
(V,E, F ). The large number of constraints appears to contradict section 5.6.1,
but is due to the many equations of type eq. (5.15). The weights given to con-
straints and the target functional refer to the method of Tang et al. [55]

.

Random experiment GP1 I1 GP2 I2 GP3 I3 GP4 I4
time [sec] 0.18 145 0.14 101 0.15 160 0.14 139

target functional 10.8 9.75 12.7 11.4 13.3 11.8 6.62 5.90

distance 0.03 0.03 0.04 0.02

Table 5.2 – We compare our “guided projection” method with the constrained
solver of [57]. Columns “GP” and “I” refer to 10 rounds of either method. We
perform optimization according to section 5.6.6 on four meshes with 1600 vertices
and randomly generated boundary (9444 variables, 8000 constraints). We show
runtime, the value of the target functional, and the distance between the resulting
surfaces. The final designs achieved with the two methods are very different.
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Figure 5.13 – Architectural applications of the examples of fig. 5.12d,a (bottom)
and e (bottom). Planarity of panels allows the use of flat glass panels.
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Chapter 6

Visual smoothness of meshes

The discretization of architectural freeforms with flat panels is particularly

convenient for manufacturing. However, a polyhedral surface is not the best

solution when coming to visual appearance, especially when dealing with

reflective materials such as glass or metal. In this chapter, it is shown how

the reflective quality of a mesh can to some extent be expressed by the

requirement that its dihedral angles are small: small angles yield “softer”

reflections, enhancing the effect of continuity. It turns out that, among all

possible meshes discretizing a smooth surface, principal meshes are the ones

with the smallest angles and then with the best visual appearance. This

result is fortunate since principal meshes, besides having flat panels and

torsion-free joints, can also reduce the use of structural material, as shown

in chapter 5.

Aside from discretization of a given surface, the minimization of dihedral

angles can be used to find meshes with the best visual appearance inside

a given boundary, turning into a form-finding tool. It turns out that such

meshes are discretizations of principal curvature networks of surfaces where

the sum of absolute principal curvatures is minimal. Curvature plays here

the role that stress had for volume-optimal gridshells in chapter 5.

81
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6.1 Overview and contribution

After an overview on previous work, this chapter starts in section 6.3 with a

discussion of the inevitable deficiencies of discrete surfaces which are meant

to approximate smooth surfaces. We identify the shape of the normal pyra-

mid as a key difference between the discrete case and the smooth case. We

propose that a mesh faithfully models a smooth surface if, in negatively

curved areas, it exhibits so-called good saddles. We go on to show that then

normal pyramids are free of self-intersections. This is a criterion for visual

smoothness of the mesh (in particular it implies small dihedral angles).

To quantify the visual smoothness of a mesh, in section 6.4 we turn

to a mesh energy measuring the total variation of the normal vectors. It

essentially is the sum of edge lengths times dihedral angles. A small energy

implies that normal pyramids cannot be too badly behaved. A thorough

discussion of properties of this energy reveals that for a given geometric

shape, the mesh with smallest energy is no triangle mesh, but a quad mesh

aligned with principal curvature lines. We prove this fact in a similar way as

we did in section 5.3. This result is fortunate, because principal meshes are

relevant for freeform architecture for several reasons, as seen in chapters 2

and 5. It is interesting to know that they have good properties also from the

viewpoint of visual appearance.

It turns out that among all meshes approximating a given smooth refer-

ence surface, the lowest achievable energy equals a certain curvature measure

which we call total absolute curvature. It has an interpretation as total varia-

tion of the surface’s normal vector field. If that quantity is small, the surfaces

have especially good visual smoothness when represented by a mesh.

Finally, in section 6.5 we show the computational framework for finding

surfaces of minimal total absolute curvature for given boundary. Thanks to

a principal quad remeshing, on such surfaces we can achieve the shape and

connectivity of the “smoothest” mesh over a given boundary. This chapter

presents results published in [40].
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Figure 6.1 – A reflective surface reveals the deficiencies in mesh fairness which we
quantify by means of a discrete fairness energy based on edge lengths and dihedral
angles. This energy its minimal for principal quad meshes (right). In this special
case both meshes approximate a reference surface of small total variation of the
normal vector field, so all visible deficiencies are not caused by the reference shape,
but by the way this shape is meshed.

6.2 Previous work

There has been systematic work on meshes which approximate smooth sur-

faces, and criteria which ensure that discrete-differential quantities derived

from meshes approximate their smooth counterparts, see [7, 24]. This ques-

tion is also going to be relevant in this work.

Smoothness of polyhedral surfaces in our narrower sense revolves around

the behaviour of the Gauss image of the mesh, i.e., the face normals. Günther

et al. [22] investigate in detail properties of vertex stars and Gauss images,

establishing relations between the local shape of the mesh and the ques-

tion of self-intersections of the Gauss image. On that basis, Jiang et al. [26]

discuss optimization of meshes towards star-shaped Gauss images (which im-

plies absence of self-intersections). Good representation of saddles is already

implicitly present in their work, but is only expressed in terms of relative

position of edges to a smooth reference surface.

It is worth noting that the relation between mesh and Gauss image em-

ployed in this chapter has a 2-dimensional analogy, namely the relation be-

tween a 2D triangulation and a reciprocal-dual mesh. Here Orden et al. [38]
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(a) (b)

Figure 6.2 – Two-step architectural designs. Firstly we find surfaces which min-
imize total absolute curvature, secondly we mesh these surfaces along principal
curves, making the energy minimal.

characterize pseudo-triangulations whose reciprocals have no self intersec-

tions.

Imposing conditions on the normal pyramid has been successfully done

before: the “hinge condition” of Stein et al. [50] corresponds to developability

of surfaces.

To achieve fairness (in our special sense) of meshes, we work with a mesh

fairness energy. It falls into a broader class of energies of the form
∑
f(ℓe, αe),

where the sum is taken over all edges of a mesh and f is a function of edge

length ℓe and dihedral angle αe, see [54] for an overview. We employ the

energy E = 2
∑
ℓe| sin αe

2
| which approximates the energy E ′ =

∑
ℓe|αe|.

Both are a kind of bending energy. E ′ has been used for the purpose of

optimizing triangulations of surfaces (see [2] and follow-up papers), and also

of volumes [19]. Its usage for formfinding was poposed in [21].

This work also involves fairness functionals operating on surfaces. These

are frequently defined in terms of curvatures. We employ the total absolute

curvature defined as the surface integral
∫
|κ1| + |κ2|, where κ1, κ2 refers to

principal curvatures. Several deep theorems concern the gradient flow of

such functionals. Well-studied examples include the surface area functional,
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and also the total mean curvature
∫

κ1+κ2

2
. Moving the surface with speed

proportional to mean curvature κ1+κ2

2
resp. Gauss curvature κ1κ2 corresponds

to L2-steepest descent of surface area resp. total mean curvature. It is known

that in both cases, convex surfaces flow to round points [3, 25]. Flows used for

geometry processing purposes include the gradient flow of Willmore energy∫
(κ1 − κ2)

2, see [12] for a mesh version. A sign-corrected Gauss curvature

flow has been used by [59].

In the following, we do not use the gradient flow for minimizing total

absolute curvature, but a method very similar to the one of [28], presented

in chapter 5.

A mesh energy may or may not be a discretization of a surface fairness

functional. It is well known that discrete mean curvature 1
2

∑
ℓeαe is a dis-

cretization of total mean curvature
∫

κ1+κ2

2
, see [16]. It must be emphasized

that our energies E , E ′ do not enjoy such a property for general meshes, de-

spite being called total “absolute mean curvature” in the literature.

Returning to curvature-based functionals, both our total absolute curva-

ture
∫
|κ1| + |κ2| and the functional

∫
(κ21 + κ22)

1/2 have an interpretation as

total variation of the normal vector field. The latter functional is studied in

detail in a recent preprint by Bergmann et al. [8]. They also discuss the en-

ergies E , E ′ and touch upon several of the presented topics. Energy-minimal

meshes (considered in this chapter) are mentioned as an unsolved problem.

6.3 Representation of saddles in meshes

Experience shows that visible deficiencies in fairness of polyhedral meshes

occur mainly in negatively curved regions, i.e., parts of the mesh where the

underlying smooth reference surface is locally saddle-shaped. The visual ap-

pearance of the mesh depends heavily on the normal vectors of faces – fig. 6.1

shows how a reflective surface reveals the normal vectors high variation. For

this reason we have a closer look at the immediate neighbourhood of a vertex

and visualize the normal vectors. fig. 6.3 illustrates a fact which we feel has

not been sufficiently appreciated so far: there is a big difference between the

local shape of a smooth surface and the local shape of a mesh. In particu-

lar the normal vectors of faces in the immediate neighbourhood of a vertex

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 6. VISUAL SMOOTHNESS OF MESHES 86

vvvvvvvvvvvvvvvvv
wwwwwwwwwwwwwwwww

n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)n(w)

(a)
w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1

w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2

w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4

w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5

w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6

vvvvvvvvvvvvvvvvv

n34
n23

(b)

vvvvvvvvvvvvvvvvv

(c)

Figure 6.3 – Discrepancy between smooth surfaces and discrete surfaces. (a)
When circling a point v of a smooth surface Φ, the normal vector describes a
convex cone. (b) In a polyhedral surface, the normal vectors of a vertex star form
a pyramid. Deviating from the smooth situation, this pyramid is typically non-
convex in case of negative curvature. (c) Normal pyramids can even self-intersect.
Here we show the worst possible representation of a saddle-shaped surface by a
vertex star which itself is not even saddle-shaped.

behave in a much more irregular way than they do in the smooth surface

case.

6.3.1 Saddle-shaped meshing of saddle-shaped surfaces

Even if a mesh is a regular sampling of a smooth saddle-shaped surface,

vertex stars are not guaranteed to have proper saddle form.

Here saddle-shapedness means that there is a test plane (which can be

considered a tangent plane) through the central vertex, intersecting the ver-

tex star in precisely 4 line segments. We require that these four segments

are not contained in a common half-plane, and that the vertex star projects

onto the tangent plane in a 1-1 manner.

Examples of proper saddles are shown by Figures 6.3b and 6.5, while the

vertex star of fig. 6.3c is neither convex nor a saddle.

Figure 6.4 demonstrates how evaluation of discrete differential quantities

can go wrong even for a mesh precisely inscribed in a smooth surface, if the

local geometry of the mesh does not reflect the local geometry of the surface.

This experiment supports the claim that visually smooth meshes are better

behaved with respect to the numerical differential geometry, even if the mesh

and normals of faces approximate a smooth reference geometry to a similar

extent.
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(a) (b)

Figure 6.4 – Saddles and numerical differential geometry. We display the “cotan”
mean curvature field ~H for a mesh inscribed in the surface z = x2−y2/2. The x, y
coordinates of vertices are taken from a regular lattice, slightly perturbed. Vertices
and face normals approximate the smooth reference geometry to roughly the same
extent in both (a) and (b), but ~H is much better behaved in (a), where vertex stars
are saddle-shaped. In (b), vertex stars are no saddles, like in fig. 6.3c. Compared
to (a), a much smaller deviation from a precisely regular sampling makes ~H break
down.

6.3.2 The normal pyramid

Consider a vertex v and neighbours w1, w2 etc., in that order – see fig. 6.5.

The normal vectors of faces {v,wi,wi+1} form the normal pyramid. Such

normal pyramids have been studied by [22, 26] who were in particular in-

terested in cases where it has no self-intersections. This is a criterion for

smoothness of the mesh. We attach a local xyz coordinate system with

origin in v, such that the tangent plane is the xy plane.

The edges {v,wj} are partitioned into four sets of edges lying below resp.

above the tangent plane. The number of elements of these sets can be 1, 2, 1, 2

(fig. 6.5a) or 2, 2, 1, 1 (fig. 6.5b) or 3, 1, 1, 1 (fig. 6.5c). We want to give a

criterion which is easily checked and which ensures that the normal pyramid

is free of self-intersections. We say a face (v,wi,wi+1) is an inflection face,

see [22], if neighbours (v,wi−1,wi) and (v,wi+1,wi+2) lie on different sides

of the plane which carries the face f . In the simplest case of valence 4, every

face of a saddle is an inflection face. We now say that a valence 6 saddle is

a good saddle if the numbers of edges above and below the tangent plane is

1, 2, 1, 2 (fig. 6.5a) and the two faces not intersecting the tangent plane are

no inflection faces.
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w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1

w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2

w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4

w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5

w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6

vvvvvvvvvvvvvvvvv

n34

n23

w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1

w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2

w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4

w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6

vvvvvvvvvvvvvvvvv

n34
n23

w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1

w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2

w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4w4

w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6w6

vvvvvvvvvvvvvvvvv

n34

n23

Figure 6.5 – (a) Good saddle, where {v,w1,w2} and {v,w4,w5} are no inflection
faces. (b), (c): Bad saddles where the number of edges above and below the tangent
plane is 2, 2, 1, 1 resp. 3, 1, 1, 1. Besides, there are inflection faces not intersecting
the tangent plane.

Proposition 8. In a “good” saddle point, the pyramid of vertex normals is

free of self-intersections.

Proof.

n61

n12

n56

n45

n34

n23

L′(t56)

L′(t23)

o

L(t∗5)

L(t∗4)

L(t∗3)We cut off the normal pyramid

by the plane η which has equation z = 1.

Vertices w1, . . . ,w6 are neighbours of v (in-

dices modulo 6). In the plane η we mark the

points ni,i+1, which are defined as intersection

with η of the normal of the plane [vwiwi+1].

Consider a ray L(t) rotating around v but al-

ways contained inside the surface of the mesh. Here t is a time parame-

ter. Consider the plane L(t)⊥ orthogonal to L(t) and trace the intersection

L′(t) = L(t)⊥ ∩ η.

There are six time instances t∗1, . . . , t
∗
6 where L(t∗j) coincides with an edge

{v,wj}. Then L′(t∗j) equals the line nj−1,j∨nj,j+1 (yellow in the inset figure).

In the time interval where L(t) is contained in the face (v,wj,wj+1), L
′(t)

rotates about nj,j+1. The rotation is consistenly in one direction. Four

times the line L(t) lies in the tangent plane. We assume the vertices are

numbered so that these four lines lie in faces (v,wj,wj+1) for (j, j + 1) =

(2, 3), (3, 4), (5, 6), (6, 1) (which are inflection faces). This happens at time

instances t = tj,j+1. The corresponding line L′(tj,j+1) passes through the

point o where the z axis intersects η (shown in red).

Observe the ray L(t) rotating from edge {v,w4} to edge {v,w5}. The

edge {v,w5} is reached at time t = t∗5, before the plane [vw5w6] is crossed
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(this is the non-inflection property of (v,w4,w5)). The line L′(t) during

this rotation has not crossed n56. Similarly, during the rotation in the time

interval [t∗5, t
∗
6], the line L′(t) does not cross n34. Therefore n45 lies in the

interior of the triangle o,n34,n56. Likewise, n12 lies in the interior of the

triangle o, nw61, nw23.

Remark. If a triangle mesh of regular combinatorics is generated by sam-

pling a smooth surface in a geometrically regular way, it is hard to create

saddle points with more than 4 inflection faces, and typically also the asym-

metric situations of fig. 6.5b,c will not occur. There is however a nonzero

probability that the mesh will have vertices which are neither convex nor

proper saddles like in fig. 6.3.

6.4 Energies of polyhedral surfaces

The local shape properties of meshes discussed in section 6.3 are in direct

relation to the variation of normal vectors of meshes. E.g. the total variation

of normal vectors around a vertex, which equals the sum of unsigned dihedral

angles of the vertex star, can be seen as a kind of spherical perimeter of the

normal pyramid. A smaller total variation corresponds to a smaller perimeter

which is obviously achieved in cases where the normal pyramid is free of self-

intersections. We therefore propose to construct a discrete mesh energy E as

explained below, which penalizes big dihedral angles and in turn, a higher

total variation of normals.

Consider a polyhedral surface M = (V,E, F ) with vertex set V , edge

set E and face set F . Each face f ∈ F has a normal vector nf . Any edge

e ∈ E has a length ℓe, a dihedral angle αe, and a dual edge length ℓ∗e, which

is defined by the relations

e = fk ∩ fl =⇒ |αe| = ∠(nf ,n
′
f ), ℓ

∗
e = ‖nfl − nfk‖ = 2 sin

αe

2
.

The energy

E ′(M) =
∑

e

ℓe|αe|

https://www.tuwien.at/bibliothek
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is built similar to discrete mean curvature and penalizes big dihedral angles

(i.e., a big contribution to the total variation of normal vectors). A slight

modification leads to the energy

E(M) =
∑

e

ℓeℓ
∗
e = 2

∑

e

ℓe

∣∣∣sin αe

2

∣∣∣ ,

which is easier to handle from the computational viewpoint.

With sin x ≈ x for small values of x, the energies E , E ′ assume similar

values; they act identically for all practical purposes.

6.4.1 E-minimal meshes

We observe a strong analogy between the energy E and the volume V∗ of a

Michell truss, where instead of absolute values of axial forces we have now

the absolute value of a dihedral angle measure — the length ℓ∗e. Arguing in

a similar way as we did in section 5.3, we come to the following conclusion.

Proposition 9. At the limit of refinement, among all meshes discretizing

a given surface of negative Gaussian curvature, principal meshes minimize

the energy E . On surfaces of positive Gaussian curvature, at the limit of

refinement, all discretizations yield a constant energy E .

Proof. Let M = (V,E, F ) be a mesh discretizing a surface M, we look

then for

E(M) =
∑

e

ℓ∗eℓe → min.

At a vertex vi, with ring vertices vj, let us consider the oriented edges eij =

vj − vi, and let fk and fl be, respectively, the left and right faces of the

edge eij according to a consistent surface orientation. Consider now, at each

vertex vi, the base of the normal pyramid given by vectors nfl −nfk , and let

b̂ij be the corresponding unitized vectors oriented consistently when turning

counterclockwise around the base. We define the signed dihedral difference

γij, corresponding to the edge eij, as

γij = b̂T
ij(nfl − nfk).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 6. VISUAL SMOOTHNESS OF MESHES 91

The closure condition of the base of the normal pyramid asks

∑

j∼i

γijb̂ij = 0. (6.1)

Note that γij = γji, we can then assign this value to non oriented edges as

γe. We have then |γe| = ℓ∗e. Let us collect the signed dihedral differences γe

in the vector γ ∈ R
|E|. The closure conditions can be written in matrix form

as

Bγ = 0,

where in the matrix B ∈ R
3|V |×|E| are properly rearranged the vectors b̂ij.

Let us now define the Lagrange multipliers λi ∈ R
3 for each vertex vi,

and the functions

εij =
b̂T
ij(λj − λi)

ℓij
, (6.2)

where ℓij = ℓji = ℓe. Observing that εij = εji, we can again consider the

functions εe defined per edge. Collecting the multipliers λi in the vector

λ ∈ R
3|V | and the values εe, ℓe respectively in the vectors ε, ℓ ∈ R

|E|, we can

write

ε ∗ ℓ = BTλ, (6.3)

where with ∗ is denoted the element-wise vector multiplication.

We can now write the Lagrangian equation

L(v,γ,λ) = E(v,γ)− λTBγ,

Where the vertices vi are collected in the vector v ∈ R
3|V |. Substituting

eq. (6.3), we get λTBγ = (ε ∗ ℓ)Tγ. Let then p and n be the indices for the

edges where γe is, respectively, positive and negative. Recalling that ℓ∗p = γp

and ℓ∗n = −γn, the Lagrangian equation can be rewritten in sum notation as

L(v,γ,λ) =
∑

p

ℓpγp −
∑

n

ℓnγn −
∑

p

εpℓpγp −
∑

n

εnℓnγn.
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It’s dual is

g(λ) = min
v

min
γ

γp≥0,γn≤0

L(v,γ,λ),

and then, interchanging the min and max operations on v and λ, we can

solve

max
λ

g(λ) = min
v

max
λ

K(λ),

with

K(λ) = min
γ

γp≥0,γn≤0

[
∑

t

(1− εp) γpℓt +
∑

n

(−1− εn) γnℓn

]
.

The minimum over γ is attained when

K(λ) =





0, if εp = 1 and εn = −1 with γp ≥ 0, γn ≤ 0

0, if εp < 1 and εn > −1 with γp = 0, γn = 0

−∞, if εp > 1 with λp = +∞
−∞, if εn < −1 with λn = −∞

. (6.4)

The last two cases are excluded by the max operation over λ.

We now consider the problem at the limit of refinement, as in section 5.3.6.

We have then v ≡ M, making the dependency on v redundant. All quantities

are now defined in the tangent plane TM(vi). At each point vi of M, we

consider the Lagrange multipliers as a tangent vector field λM(vi) over the

surface M. Let us consider a unit orthogonal local basis for TM(vi), and

let a ∈ TM(vi) be a direction in the tangent plane corresponding to the

infinitesimal edge pointing to the vertex vj(a). We now need a continuous

version of eq. (6.2) for the edges eij(a). We first can see that

lim
vj→vi

λM(vj)− λM(vi)

‖vj − vi‖
=

∇λM(vi) a

‖a‖ + o (‖vj − vi‖),

while the vector b̂(a) is now given by R a/‖a‖, where R is the 90◦ counter-

clockwise rotation in the tangent plane. We can then write the continuous

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 6. VISUAL SMOOTHNESS OF MESHES 93

version of eq. (6.2) as

εM(a) =
(R a)T [∇λM(vi) a]

aTa
.

This can be written as a function

εM(a) =
aTE a

aTa
, (6.5)

where E is a symmetric matrix representing the quadratic form on the nu-

merator, given by

E =
1

2
(RT∇λM +∇λT

MR),

where we omitted the dependency on vi. The extrema of εM(a) occur then

along the two eigenvectors of E, corresponding to two directions orthogonal

in the tangent plane. Equation (6.4) asks that the corresponding eigenvalues

are in the interval [−1, 1], and requires that for −1 < εM < 1 the dihedral

angle vanishes. Therefore, in a E-minimal mesh, infinitesimal edges have

non vanishing dihedral angle only when oriented along the eigenvectors of E

whose eigenvalues attain one of the limits ±1. We have then the following

possibilities:

• spec(E) = {−1, 1}, negatively curved regions of M. The E-minimal

mesh can have non vanishing dihedral angles only along two orthogonal

directions. This implies orthogonality of edges and planarity of faces.

Therefore, according to proposition 1, at the limit of refinement it is a

principal mesh of M.

• spec(E) = {1, 1} or {−1,−1}, positively curved regions of M. All

directions of edges are allowed. At the limit of refinement all meshes

are E-minimal.
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(c) (d)

(a) (b)E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7E = 89.7 E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7E = 82.7

E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8E = 71.8 MMMMMMMMMMMMMMMMM

Figure 6.6 – Meshes with similar number of faces approximating the same smooth
surface M (d). From top left, a generic triangular mesh (a), a mesh with good
saddles and highly symmetric (b), and a principal mesh (c). We observe decreasing
values of the energy E and corresponding increase of the quality of reflection,
especially in negatively curved regions.

6.4.2 Differential-geometric interpretation of the en-

ergy E
Recall the definition of the shape operator S of a surface M, given in eq. (2.5).

When sitting in a point x ∈ M and moving by the small amount δx, the unit

normal vector n is incremented by δn. In tangent coordinates we have δn̄ ≈
−S δx̄. The shape operator S is linear. Its eigenvectors are orthogonal and

indicate the principal directions: if the increment δx̄ is in the j-th principal

direction (j = 1, 2), then the normal vector increment can be computed as

δn̄ = −κj δx̄, where κj is the j-th principal curvature. Therefore

δn = −κj δx.
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Figure 6.7 – Here a surface is endowed with a principal quad mesh. In addition
to the meshing, the reference surface itself has minimal total absolute curvature,
for prescribed boundaries. The rendering is that of a freeform glass facade.

In an orthonormal coordinate system aligned with the principal direc-

tions, S is described by the diagonal matrix (κ1
κ2). For a principal quad

mesh M = (V,E, F ), the edge polylines approximate the principal curvature

lines of a smooth surface M. In such cases the faces of the mesh (away

from umbilics) are near-flat, and can in fact be assumed flat, as shown in

section 2.2.4.

For any face f of the mesh, the normal vector nf is also a normal vector

of the underlying smooth reference surface M in an appropriate point. This

location, when projected back onto the face f , yields a point cf , see fig. 6.8.

For any edge e = fk ∩ fl, we now have the following correspondences

nfk

nfl

cfk

cfl

e

M

Figure 6.8 – To interpret the energy E , we look at
faces f, f ′ intersecting in an edge e. Stepping from
f to f ′ (actually, from point cf to point cf ′), we
increment position by δx = cf ′ −cf and the normal
vector by δn = nf ′ − nf .
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(a) (b) (c) (d)

E = 757 E = 767 E = 772 E = 935, C(M) = 776

Figure 6.9 – Convergence of mesh energy to total absolute curvature C(M).
(a)–(c) show finer and finer principal meshes, each approximating the same ref-
erence shape M. The energies approach C(M). Every edge e is color-coded
according to increasing values of ℓe|αe|, from white to red. The reference surface
M is represented by the triangle mesh (d).

between the discrete mesh situation and the smooth surface situation:

cfl − cfk ≈ δx, nfl − nfk ≈ δn, ℓ∗e ≈ ‖δn‖ ≈ |κe|‖δx‖
=⇒ E(M) =

∑

e

ℓeℓ
∗
e ≈

∑

e

|κe|ℓe‖cfl − cfk‖.

Here κe is the principal curvature in the direction orthogonal to e. The

quadrangle spanned by cfk , cfl and e has area approximately 1
2
ℓe‖cfl − cfk‖.

One half of the edges corresponds to the first principal direction, the other

half to the 2nd principal direction, so the term ℓe‖cfl − cfk‖ occurring in the

formula above is the area of influence of the edge e. Summing up,

E(P ) ≈
∫

M

|κ1|+ |κ2| = C(Φ). (6.6)

Numerical experiments confirm this, see fig. 6.9. We will return to the func-

tional C(M) in section 6.4.3. We call this quantity total absolute curvature.

Note the analogy of eq. (6.6) with eq. (5.11) of total isotropic absolute cur-

vature, arising from volume minimization of 2D trussed shown in section 5.4.

6.4.3 Total absolute curvature of surfaces

We already saw that the total absolute curvature

C(M) =

∫

M

|κ1|+ |κ2|
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https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 6. VISUAL SMOOTHNESS OF MESHES 97

(a)

(b) (c) (d)

Figure 6.10 – A given surface (a) undergoes to minimization of
∫
|κ1|+ |κ2|. (b)

for fixed boundaries shown in orange. The resulting surface is sh In (c) a principal
mesh approximating (a), while in (d) a principal mesh approximating (b). The
mesh (d) is then approximately the smoothest mesh over the fixed boundaries
Observe that minimizers have features not seen in minimizers of e.g. Willmore
energy.

of a smooth surface M coincides with the smallest achievable value of the dis-

crete energy E for polyhedral meshes approximating M. It therefore makes

sense to ask the question which surface M, under given boundary conditions,

achieves the lowest value of C(M).

The shape operator S in a principal coordinate frame is described by the

diagonal matrix (κ1
κ2), so total absolute curvature equals

C(M) =

∫
‖S‖1, where ‖S‖1 = |κ1|+ |κ2|

is the 1-norm (trace norm) of the shape operator. It can be used to bound

the infinitesimal normal vector increment δn̄ ≈ −S δx̄ caused by the position

increment δx̄ (cf. the discussion in the beginning of section 6.4). Like any

https://www.tuwien.at/bibliothek
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(a) (b) (c)

(d) (e) (f)

Figure 6.11 – Surfaces minimizing total absolute curvature. Here we show surfaces
with prescribed boundary curves (in orange) which minimize

∫
|κ1|+ |κ2|. Among

rotational surfaces, minimizers are cylinders and cones. Observe that minimizers
have features not seen in minimizers of e.g. Willmore energy.

proper matrix norm, ‖S‖1 obeys

‖δn̄‖ ≈ ‖S δx̄‖ ≤ ‖S‖1 · ‖δx̄‖. (6.7)

Because of this formula, the total absolute curvature C(M) can be inter-

preted as the total variation TV(n) of the normal vector field, if the size of

derivatives is measured using ‖ · ‖1.
Only in special situations we are able to describe the minimizers of C(M).

Consider e.g. a surface with rotational symmetry about the z axis described

by a radius function r(z) > 0 and boundary values r(z0) = r0, r(z1) = r1.

It is not difficult to compute the area element dA = 2πr
√
1 + r′2 dz and

curvatures κ1 = 1/(r
√
1 + r′2), κ2 = r′′(1 + r′2)−3/2. Thus,

∫
|κ1| dA =∫

2π dz = 2π(z1 − z0) depends only on the boundary conditions, whereas∫
|κ2| dA =

∫
r′′(. . .) dz vanishes if and only if r(z) is linear. Thus, among

rotational surfaces, minimizers are cones and cylinders (see fig. 6.11).

The computation of surfaces which minimize energy under different bound-

https://www.tuwien.at/bibliothek
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(a) (b) (c)

Figure 6.12 – Minimizers of total absolute curvature where boundaries plus tan-
gent planes along boundaries are prescribed (in orange).

ary conditions is treated below. Examples are shown throughout this chapter

figs. 6.1, 6.2, 6.7 and 6.11 to 6.14.

6.5 Implementation

We are solving the following problem: Find surfaces of small total absolute

curvature under given boundary conditions.

We show how to compute a surface M which minimizes total absolute

curvature under boundary conditions. The surface is represented by a mesh

M = (V,E, F ) of sufficiently high resolution, which have to be optimized

w.r.t. a nonlinear target functional. For that purpose, we employ again

guided projection as proposed by [55] described in section 4.4.2.

Variables and constraints are built on top of the implementation of cur-

vature directions shown in section 4.4.1. For target functional C(M) we use

a weighted iteration approach. In the k-th round of iteration we do not wish

to minimize
∑

|λ1,v|+ |λ2,v| directly, but rather the quadratic function

Etarget =
∑

v

λ21,v∣∣λ(k−1)
1,v

∣∣+ ǫ
+

λ22,v∣∣λ(k−1)
2,v

∣∣+ ǫ
.

Here λ
(k−1)
j,v is the value of the variable λj,v assumed in the previous round of

iteration. ǫ is a small regularizer for the division. Etarget is added to guided
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(a) (b)

Figure 6.13 – Surfaces minimizing total absolute curvature. Here we show other
surfaces including prescribed curves (in orange) which minimize

∫
|κ1|+ |κ2|. On

the right, a principal mesh approximating shape (b), with edges color-coded ac-
cording to increasing values of ℓe|αe|, from white to red.

projection eq. (4.6), as regularizer. Its weight wtarget has to be chosen such

that the overall regularizer is still positive definite.

6.6 Results and Discussion

We have at our disposal the procedure to find a surface minimizing total

absolute curvature for given boundary conditions. In addition to that, a

mesh approximating that surface has minimal energy, if its faces are planar

quads following the principal curvature lines. Meshing and postprocessing,

however, are not contributions of this thesis. We refer to [13] for meshing

with edges aligned with principal curvatures, and to [55] for postprocessing

for planarity of faces. Examples are given by figures 6.1, 6.7, 6.11, 6.12, 6.2,

6.14.
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Figure 6.14 – Surface of minimal total absolute curvature. We also show the
value of absolute curvature (center; white = zero) and a principal remeshing with
edges color coded according to dihedral angle (right).

Fig. |V | var. ǫ δ wtarget C(M) iter. time (s)

6.1 2784 87k 10−3 .30 .05 94.3 18 58.3
6.7 2606 82k 10−3 .20 .03 179.3 11 32.8

6.11a,6.2b 1056 33k 10−3 .30 .05 124.4 14 16.1
6.11b 4224 133k 10−3 .20 .10 180.2 11 57.4
6.11c 555 17k 10−3 .20 .05 45.5 7 3.8
6.12a 6084 193k 10−3 .05 .01 36.9 8 69.4
6.12c 2166 68k 10−3 .10 .05 171.6 17 45.3
6.14 2118 66k 10−3 .20 .05 143.8 17 39.2

Table 6.1 – Statistics for minimizing C(M). We give the number of vertices of the
meshes we ran the optimization on (not necessarily the meshes shown in figures),
the number of variables as well as the weights used for regularizing functionals in
the guided projection method. Here ǫ is the weight of previous iteration closeness
and δ the weight of fairness, see eq. (4.6). Experience shows that after about
half the number of iterations shown, the minimizer shape is more or less defined.
The algorithm has been implemented in Python and tested with an Intel Core
i7-6700HQ CPU with 2.60 GHz and a 15.9 GB RAM memory. We show total
computation time in seconds.
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Chapter 7

Conclusion

Throughout this thesis, we have seen how to realize conveniently a freeform

load-bearing structure spanning over a given boundary. Not only for well

known manufacturing reasons, but also for mechanical and visual perfor-

mance, among all meshes, quadrilateral ones turn out to be optimal solu-

tions.

In chapter 2 we have seen that principal meshes are a convenient solution

for manufacturing reasons, namely planar panels and a torsion-free substruc-

ture. In chapter 4, we have seen how a principal mesh can be in axial force

equilibrium as well. This is not possible for all shapes, but only for those in

membrane equilibrium where principal stress and curvature directions coin-

cide. In chapter 5, we have shown that, from a mechanical viewpoint, the

most efficient gridshells are those following the principal stress directions of

a membrane — these are then quad meshes. Fixing some boundary condi-

tions, the absolute minimum is then achieved on membranes that minimize

the total absolute stress. Finally, in chapter 6, we have shown that principal

meshes are also the “smoothest” discretizations of surfaces. The smoothest

meshes for a given boundary are then principal meshes discretizing surfaces

with minimal total absolute curvature.

From the presented results, we can see that mechanical optimality does

not requires principal meshes, but just orthogonal quad meshes in equilib-

rium. Orthogonality is strictly required only for tension-compression regions,

but for practical reasons can be assumed for the whole structure. The choice
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of a mechanically sub-optimal solution, where it is minimized the total abso-

lute stress under the additional additional constraint of stress and curvature

alignment, appears to be a very efficient solution. With a principal remeshing

of the resulting surface, we get then the principal mesh that uses the minimal

structural volume, and at the same time the discretization of that shape with

the smoothest visual appearance. The minimization of total absolute curva-

ture could be considered for structures where the mechanical performance is

less demanding, or just used as a slight fairness energy over total absolute

stress to slightly improve visual smoothness.

7.1 Limitations

The main limitation of this approach is due to the lack of design control over

the mesh layout. Not all shapes own a stress-curvature network suitable for

the extraction of architectural meshes. Indeed, the network layout may yield

a mesh with a large variation of cell size, numerous or bad positioned sin-

gularities, or more generally, the resulting mesh may not possess the desired

aesthetic qualities. Nevertheless, the principal curvature network layout is

highly sensible to shape changes; small modifications in the shape can then

solve the issue. For that, an interactive procedure can help. However, com-

putational times of our implementations are surely borderline for interactive

modeling, but still acceptable for many kind of users.

Moreover, some of the constraints and optimization targets can be con-

flicting. Not all designer’s wishes can be fulfilled, for instance when a fixed

boundary curve is expected to be aligned with a principal direction. Another

limitation of the methods presented in this thesis therefore lies in understand-

ing the effect of side conditions. They must be balanced by weighting, which

is a designer’s choice. So far we have an academic implementation of our

procedures which requires some experience in correctly setting the weights.

On the statics side, the presented methods do not consider buckling effects

in the form finding criteria. Nevertheless, the buckling of a gridshell can be

considered as a phenomenon connected with out-of-plane stiffness. While

with our method we minimize the cross sectional area of beams, the out-of-

plane stiffness can be controlled, up to a certain extent, with an appropriate

https://www.tuwien.at/bibliothek
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distribution of this area among the cross section to maximize the moment of

inertia.

7.2 Further research

It is easy to see a strong connection between total absolute curvature and

total absolute stress in, respectively, material and kinks minimization on

discrete structures. More generally, the systematic study of optimization

problems which exhibit both a discrete and a continuous version can be a

research direction. Likewise, the total absolute curvature of surfaces deserves

a thorough investigation, also from the mathematical point of view.

Regarding static optimization, the presented methods look for structures

in axial force equilibrium only. An interesting problem is to find the optimal

layout on given surfaces that, under the given loads, cannot be in membrane

equilibrium, considering then the effect of out-of-plane bending. It is also of

interest to develop tools for the design of fully 3D optimal frameworks.
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