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Zusammenfassung

Tandem-Massenspektrometrie (MS/MS) ist die Standardmethode für die Pro-

teinidentifikation in biologischen Präparaten. In Proteomics-Studien behin-

dert aber die große Zahl der zu bearbeitenden MS/MS-Spektren und deren

Kontaminierung mit Hintergrund-Peaks die schnelle und zuverlässige com-

putergestützte Interpretation. Typischerweise tragen weniger als 1% der

Spektren pro Präparat und nur etwa 10% der Peaks pro Spektrum zum En-

dresultat bei. Die Hintergrund-Peaks in den Spektren stammen nicht nur

von den Isotopenvarianten und mehrfach geladenen Replikaten der Peptid-

Fragmentationsprodukte, sondern auch von unbekannten Fragmentationswe-

gen, präparatspezifischen oder systematischen chemischen Kontaminationen

oder vom Rauschen der empfindlichen elektronischen Nachweissysteme. Ne-

ben der dramatischen Verlängerung der Rechenzeit der Interpretationssoft-

ware kann der Hintergrund auch zur falschen Proteinidentifikation führen,

insbesondere bei de novo- Sequenzierungsalgorithmen.

In dieser Arbeit wurden unter anderem zwei schnelle Verfahren entwickelt,

die den “Heuhaufen” der MS/MS-Daten wesentlich reduzieren: (1) Sequen-

zleiterregeln sortieren Spektren aus, von denen sich keine Peptidsequenzen

ableiten lassen. (2) Techniken auf Basis Modifizierter Fourier-Transformation

löschen einen Teil des Hintergrunds in den verbleibenden Spektren. Im

Durchschnitt müssen nur ca. 35% der ursprünglichen MS/MS-Spektren, die

wiederum um ca. ein Viertel in ihrer Größe reduziert wurden, an die In-

terpretationssoftware übergeben werden. Dies wird faktisch ohne Verlust an

Information und mit einer erhöhten Sequenzabdeckung erreicht, obwohl die

benötigte Rechenzeit um etwa zwei Drittel reduziert wurde. Der Algorithmus

wurde in Form der Anwendung MS Cleaner implementiert.
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Abstract

Tandem mass spectrometry (MS/MS) has become a standard method for pro-

tein identification in biological samples, but in large-scale proteomics studies,

the huge number and the noise contamination of MS/MS spectra obstruct

swift and reliable computer-aided interpretation. Typically, less than 1% of

the spectra per sample and about 10% of the peaks per spectrum contribute

to the final result. The background peaks in the spectra result not only from

isotope variants and multiply charged replicates of the peptide fragmentation

products but also from unknown fragmentation pathways, sample-specific

or systematic chemical contaminations or from noise generated by the elec-

tronic detection system. Besides dramatically prolonged computation time,

the noise can lead to incorrect protein identification, especially in the case of

de novo sequencing algorithms.

Two fast screens can essentially reduce the haystack of MS/MS data:

(1) Sequence ladder rules remove spectra non-interpretable in peptide se-

quences. (2) Modified Fourier-transform-based criteria clear background in

the remaining data. On average, only a rest of 35% of the MS/MS spectra

(each reduced in size by about one quarter) have to be handed over to the

interpretation software with proportional decrease of computer resource con-

sumption, essentially without loss of information and a trend to improved

sequence coverage.

In this work, an algorithm for detection and transformation of multi-

ply charged peaks into singly charged monoisotopic peaks, removal of heavy

isotope replicates and random noise is described. The approach is based on

numerical spectral analysis and signal detection methods. The algorithm has

been implemented in a stand-alone computer program called MS Cleaner.
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Chapter 1

Introduction

Developments in modern mass spectrometry (MS) made possible the large-

scale analysis of cellular proteomes [1, 2, 3]. Liquid chromatography coupled

to tandem mass spectrometry (LC-MS/MS) is the standard technique used

for analysis of complex protein mixtures [4, 5]. Since modern mass spec-

trometers can generate large data sets with high throughput, computational

analysis of thousands of spectra has become the major bottleneck. The accu-

racy of the computer-generated interpretations (the identity of the proteins

and their post-translational modifications) as well as the time and the stor-

age requirements for their computation are highly dependent on the quality

of MS/MS spectra. As a measurement for the quality of spectra, the ex-

istence of peaks that support the fragmentation model of real processes in

mass spectrometer, as well as a desirably small number of non-interpretable

peaks are the main criteria.

In many cases, but not always, b- and y-ions and their derivatives result-

ing from cleavage at peptide bonds are the most dominant signals in MS/MS

spectra of peptides after their fragmentation by low-energy collision-induced

dissociation (CID) [5, 6, 7, 8, 9, 10, 11, 12]. However, MS/MS spectra typi-

1
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cally contain many more peaks than can be expected from this fragmentation

scheme. Typically, less than 1% of the spectra per sample and about 10% of

the peaks per spectrum contribute to the final result if the noise does not even

prevent protein identification. Some of the peaks are repeated shifted signals

due to the natural isotope distribution [13]. The heavy isotope variants and

the monoisotopic peak form isotope peak clusters that can be detected with

high-resolution instruments. Electrospray ionization (ESI) allows measuring

the masses of large molecules by producing multiply charged ions, thereby de-

creasing the mass-over-charge ratio into detectable ranges [14, 15, 16, 17, 18].

If a fragment ion comprises several functional groups capable of acting as a

charge carrier, the same isotope peak cluster can be repeated with a differ-

ent charge state at different mass-over-charge values in the spectrum. Other

signals originate from unknown fragmentation pathways, sample-specific or

systematic chemical contaminations and random noise produced by the elec-

tronic detection system.

It is hardly possible to derive any benefit from the above mentioned ad-

ditional background peaks that can compose the majority of the spectrum

as long as the theoretical understanding of the mechanism of their genesis

is scarce. The presence of these peaks does not only complicate computer-

based spectrum interpretation by increasing the computation time. More

critically, false interpretation of high-intensity signals as potential b- or y-

related ions can lead, in some cases, to incorrect sequence interpretations

of proteins or false identification of their post-translational modifications.

Particularly, the de novo sequencing approach [19, 20, 21, 22, 23, 24, 25] is

affected by this problem, where each peak is part of a sequence puzzle to

be solved and, therefore, has initially to be considered as a potential b- or

y-ion. In the case of algorithms based on protein sequence database searches
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[26, 27, 28, 29, 30, 31, 32], the danger of misinterpretation is not so dramatic,

especially for protein targets without post-translational modifications, since

the space of naturally occurring protein sequences is much smaller than the

set of sequences that can be theoretically generated. Usually, few dominating

peaks originating from the fragmentation along peptide bond are sufficient to

unambiguously determine the register of a peptide fragment within the orig-

inal protein sequence. But when the nature of possible post-translational

modifications is a priori unknown (and, therefore, the mass changes to be

anticipated vary widely) or when the database contains many proteins with

similar peptides, the background can lead database search methods down a

wrong path and result in incorrect protein identification.

In this work, I propose solutions for these questions and emphasize the

benefits of pre-processing and cleaning of MS/MS spectra. For this purpose,

new algorithms and methods were developed for deisotoping, deconvolution

(recognition of multiply charged peak clusters), random noise removal and

detection of non-interpretable spectra. These deisotoping and deconvolu-

tion algorithms are capable of finding singly and multiply charged isotope

cluster even if MS/MS spectra do not show clear isotope distribution. For

this purpose, MS/MS spectra have been investigated both in the mass-to-

charge coordinate and in the Fourier-transformed frequency domain. The

deisotoping procedure was performed by applying signal processing filters in

the frequency domain. Correlation analysis of experimental MS/MS signals

with theoretical calculated isotope patterns has been shown as a suitable

method for detection and removal of multiply charged peak clusters (decon-

volution). Also, processing of MS/MS spectra with limited quality produced

by low resolution MS instruments was facilitated by peak merging and spec-

tra smoothing with a special median filter. As result of the background
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removal procedures, the number of peaks in the spectra is reduced by one

quarter in average. In this way, the quality of interpretable spectra increases

which leads to more reliable interpretation results. On the other hand, non-

interpretable spectra are recognized by a new, ingeniously simple algorithm

searching for sets of peaks with substantial intensity having mass distances

that correspond to amino acid residues (sequence ladders). In average, two

thirds of the spectra are removed from further consideration. In total, the

background removal (of non-interpretable spectra and of background peaks)

results in saving of three quarters of the computation time that is necessary

for MS/MS spectrum interpretation.

These algorithms and methods were implemented in a computer program

called “MS Cleaner” which has become a standard step in proteomics studies

on the Research Institute of Molecular Pathology Vienna, and is used before

submitting MS/MS spectra to interpretation software. The program MS

Cleaner outperforms any preexisting technique by an order of magnitude.

The methods and algorithms have been submitted to the US Patent Office

and partially published in an article of the journal “Proteomics” [33]. A

second publication for the description of the sequence ladder criterion and

the multiprocessor version of “MS Cleaner” is currently being finalized and

will be submitted to the journal “Nature Methods”.

This thesis includes the following chapters: After a description of the mass

spectrometric workflow for the identification of proteins and a consideration

of the scarce literature on MS/MS spectrum preprocessing, the experimental

procedures used for generating the sample MS/MS data are reported. This

data was essential for parameterizing the background removal procedures and

for testing the performance of algorithms. These chapters are followed by

the description of technical ideas that underlie the new background removal
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procedures developed in this work. The respective algorithms are presented

in pseudocode and with flow charts in chapter 5 and their implementation

details are given in chapter 6. The performance of the new methods is eval-

uated in chapter 7.



Chapter 2

Previous Work on Treating

Background in MS/MS Spectra

Background processing of raw MS/MS spectra from protein samples has not

been in the center of interest among the community for a long time, partly due

to limitations of measurement accuracy. For example, resolution of isotope

clusters requires very precise instruments, which have become available on a

broad scale only recently (for example, the Thermo Finnigan LCQ with close

to ≈0.5 Da resolution or the newer LTQ with ≈0.3 Da resolution). There-

fore, some spectrum interpretation algorithms foresee simplified exclusion

rules for heavy ion peaks in their scoring or spectra pre-processing schemes

[26]. Similarly, deconvolution of multiply charged peaks and deisotoping with

procedures described in the literature [34, 35, 36, 37, 38, 39, 40, 41, 42] are

possible only with very accurate data and resolved isotope clusters. The re-

sults are reliable only in cases of sufficiently large peptide fragments where

an isotope peak cluster of the higher charge state is confirmed by respective

clusters at the lowest charge state or when the distances between peaks in a

cluster accurately match the expected mass differences.

6



CHAPTER 2. PREVIOUS WORK 7

Sometimes, it might be rather advisable to refrain from automatically

interpreting very noisy MS/MS spectra instead of generating interpretations

that are not justified by the data. The task of unselecting non-interpretable

spectra is related to but different from the question of cleaning spectra from

noise. Xu et al.[43] and Bern et al.[44] propose empirical criteria for unse-

lecting bad spectra; i.e., spectra with only few significant peaks over a dense

background. For these methods, the relatively high number of false-positively

unselected (i.e., nevertheless interpretable) spectra remains a problem.

Previous work on raw protein MS/MS spectrum processing has not led

to satisfying solutions and, therefore, many currently available MS/MS spec-

trum analysis packages largely ignore the presence of additional background

signals. Most commercial spectrum interpretation software suites contain

some noise reduction but the algorithms implemented are not publicly docu-

mented. At present, there is only one available program dedicated to spectral

cleaning, the Mascot Distiller (see www.matrixscience.com), a commercial

software package that optimizes peak location and intensities given the ideal

isotopic distribution of elements contained in peptides. However, the algo-

rithms used in this software are not published and the correctness of peak

removal/inclusion has not been evaluated in transparent large-scale tests. In

addition, low computation speed and run-time stability issues may create

problems in practical lab work.

It should be emphasized that, given the incomplete understanding of the

chemical process of fragmentation, no automated procedure will match the

performance of the experienced eye and the intuition of a mass spectrometry

specialist in the foreseeable future. Nevertheless, the number of mass spectra

to be processed in proteomics laboratories is so large that there is no alterna-

tive to automated interpretation, maybe, augmented by manual inspection
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of a few selected cases.

The considerations detailed above naturally lead to the following ques-

tions: Is it possible to detect repeated signals in MS/MS spectra like singly

and multiply charged peaks which would disturb interpretation of MS/MS

spectra if they were left in an MS/MS spectrum unmodified? Could we

solve the general problem of mass spectrometry and algorithmically trans-

form these signals into interpretable signals? Is it possible to reduce the

amount of peaks in the spectrum by extracting only interpretable peaks?

What is the smallest amount of all produced spectra to successfully identify

a protein? What are the possibilities of finding non-informative spectra and

how would the processing time and the result of protein identification benefit

from detection of bad spectra?



Chapter 3

General Overview About Mass

Spectrometry

Mass spectrometers can be divided into three fundamental parts, namely the

ionization source, the analyzer, and the detector (Figure 3.1).

The sample under investigation has to be brought into the ionization

source of the instrument. Once inside the ionization source, the sample

molecules are ionized and the resulting ions are extracted into the analyzer

region of the mass spectrometer. In the analyzer, they are separated accord-

ing to their mass-to-charge ratios (m/z). The separated ions are detected

and this signal is sent to a data system where the m/z ratios are stored to-

gether with their relative abundance for presentation in the format of an m/z

spectrum.

The analyzer and detector of the mass spectrometer and, often, the ion-

ization source, too, are maintained under high vacuum to give the ions a

reasonable chance of traveling from one end of the instrument to the other

without any hindrance from air molecules.

9
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Figure 3.1: Simplified scheme of a mass spectrometer

3.1 Sample Introduction

The method of sample introduction to the ionization source often depends

on the ionization method being used, as well as the type and complexity of

the sample.

The sample can be inserted directly into the ionization source, or can un-

dergo some type of chromatography prior to ionization. This latter method

of sample introduction usually involves the mass spectrometer being coupled

directly to a high pressure liquid chromatography (HPLC), gas chromatog-

raphy (GC) or capillary electrophoresis (CE) separation column and, hence,

the sample is separated into a series of components which enter the mass

spectrometer sequentially for individual analysis[45].
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3.2 Ionization Methods

The ionization method to be used should depend on the type of sample under

investigation and the mass spectrometer available. The ionization methods

used for the majority of biochemical analyses are Electrospray Ionization

(ESI) and Matrix Assisted Laser Desorption Ionisation (MALDI)[45].

Electrospray Ionisation (ESI)[45] is one of the Atmospheric Pressure Ion-

isation (API) techniques and is well-suited to the analysis of polar molecules

ranging from less than 100 Da to more than 1,000,000 Da in molecular weight.

During standard electrospray ionization [46], the sample is dissolved in a

polar, volatile solvent and pumped through a narrow, stainless steel capillary

(75 - 150 m i.d.) at a flow rate of between 1 L/min and 1 mL/min.

A high voltage of 3 or 4 kV is applied to the tip of the capillary (Fig-

ure 3.2), which is situated within the ionization source of the mass spectrom-

eter, and as a consequence of this strong electric field, the sample emerging

from the tip is dispersed into an aerosol of highly charged droplets, a process

that is aided by a co-axially introduced nebulising gas flowing around the

outside of the capillary. This gas, usually nitrogen, helps to direct the spray

emerging from the capillary tip towards the mass spectrometer.

The charged droplets (Figure 3.3) diminish in size by solvent evaporation,

assisted by a warm flow of nitrogen known as the drying gas which passes

across the front of the ionization source. Eventually, charged sample ions, free

from solvent, are released from the droplets, some of which pass through a

sampling cone or orifice into an intermediate vacuum region and, from there,

through a small aperture into the analyzer of the mass spectrometer, which

is held under high vacuum. The lens voltages are optimized individually for

each sample.

Nanospray ionization[47] is a low flow rate version of electrospray ioniza-
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Figure 3.2: Standard electrospray ionization source

tion. A small volume (1-4 L) of the sample dissolved in a suitable volatile

solvent, at a concentration of ca. 1 - 10 pmol/L, is transferred into a minia-

ture sample vial. A reasonably high voltage (ca. 700 - 2000 V) is applied

to the specially manufactured gold-plated vial resulting in sample ionization

and spraying (Figure 3.4).

Desolvation is followed by ion extraction through the sampling cone,

which is situated at 90 ◦ to the original flow of solute and solvent and, then,

through the extraction cone (another 90 ◦ turn) into the analyzer for separa-

tion and analysis of the ions according to their m/z ratios, as with standard

ESI-MS. The two right-angled bends in the ionization source have led to its

name of Z-spray.

The flow rate of solute and solvent using this procedure is very low, 30

- 1000 nL/min. Thus, not only is far less sample consumed than with the

standard electrospray ionization technique, but also a small volume of sample

lasts for several minutes, enabling multiple experiments to be performed.
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Figure 3.3: The electrospray ionization process

A common application of this technique is for a protein digest mixture

to be analyzed to generate a list of molecular weights for the components

present and, then, each component to be analyzed further by tandem mass

spectrometric (MS-MS) amino acid sequencing techniques.

Matrix Assisted Laser Desorption Ionization (MALDI)[48] deals well with

thermo-labile, non-volatile organic compounds especially those of high molec-

ular weight and is used successfully in biochemical areas for the analysis of

proteins, peptides, glycoproteins, oligosaccharides, and oligonucleotides. It is

relatively straightforward to use and reasonably tolerant to buffers and other

additives.

The mass accuracy depends on the type and performance of the analyzer

of the mass spectrometer, but most modern instruments should be capable

of measuring masses to within 0.01% of the molecular weight of the sample,

at least up to ca. 40,000 Da.

MALDI is based on the bombardment of sample molecules with a laser
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Figure 3.4: Nanospray ionisation process using a Z-Spray ionisation source (Q-
TOF)

light to bring about sample ionization (Figure 3.5). The sample is pre-mixed

with a highly absorbing matrix compound for the most consistent and reliable

results, and a low concentration of sample to matrix works best. The matrix

transforms the laser energy into excitation energy for the sample, which leads

to desorption of analyte and matrix ions from the surface of the mixture. In

this way, energy transfer is efficient and also the analyte molecules are spared

excessive direct energy that may otherwise cause decomposition. Most com-

mercially available MALDI mass spectrometers now have a pulsed nitrogen

laser of wavelength 337 nm.

The sample to be analyzed is dissolved in an appropriate volatile solvent,
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Figure 3.5: Matrix Assisted Laser Desorption Ionization (MALDI)

usually with a trace of trifluoroacetic acid if positive ionization is being used,

at a concentration of ca. 10 pmol/L and an aliquot (1-2 µ L) of this removed

and mixed with an equal volume of a solution containing a vast excess of a

matrix.

A range of compounds is suitable for use as matrices: sinapinic acid is a

common one for protein analysis while α -cyano-4-hydroxycinnamic acid is

often used for peptide analysis. An aliquot (1-2 µ L) of the final solution is

applied to the sample target which is allowed to dry prior to insertion into

the high vacuum of the mass spectrometer. The laser is fired, the energy

arriving at the sample/matrix surface is optimized, and data is accumulated

until a m/z spectrum of reasonable intensity has been amassed.

The time-of-flight analyzer separates ions according to their mass(m)-

to-charge(z) (m/z) ratios by measuring the time it takes for ions to travel

through a field free region known as the flight, or drift, tube. The heavier

ions are slower than the lighter ones 3.6.

The m/z scale of the mass spectrometer is calibrated with a known sample

that can either be analyzed independently (external calibration) or pre-mixed



CHAPTER 3. MASS SPECTROMETRY 16

Figure 3.6: Simplified scheme of MALDI-TOF mass spectrometry

with the sample and matrix (internal calibration).

MALDI is a “soft” ionization method. So, it results predominantly in the

generation of singly charged molecular-related ions regardless of the molecu-

lar weight. Hence, the spectra are relatively easy to interpret. Fragmentation

of the sample ions does not usually occur.

In the positive ionization mode, the protonated molecular ions (M+H+)

are usually the dominant species, although they can be accompanied by salt

adducts, a trace of the doubly charged molecular ion at approximately half

the m/z value, and/or a trace of a dimeric species at approximately twice

the m/z value. Positive ionization is used in general for protein and peptide

analyses.

In the negative ionization mode, the deprotonated molecular ions (M-H-)

are usually the most abundant species, accompanied by some salt adducts

and possibly traces of dimeric or doubly charged materials. Negative ioniza-

tion can be used for the analysis of oligonucleotides and oligosaccharides.
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3.3 Analysis and Separation of Sample Ions

The main function of the mass analyzer is to separate, or resolve, the ions

formed in the ionization source of the mass spectrometer according to their

mass-to-charge (m/z) ratios. There are a number of mass analyzers cur-

rently available, the better known of which include quadrupoles, time-of-

flight (TOF) analyzers, magnetic sectors, and both Fourier transform and

quadrupole ion traps.

These mass analyzers have different features, including the m/z range

that can be covered, the mass accuracy, and the achievable resolution. The

compatibility of different analyzers with different ionization methods varies.

For example, all of the analyzers listed above can be used in conjunction

with electrospray ionization, whereas MALDI is not usually coupled to a

quadrupole analyzer.

The single sector magnetic mass analyzer uses only a magnetic field to

separate ions with different mass-to-charge ratios. The ions entering the

mass analyzer are initially accelerated using an electric field and only ions

with a certain charge are passed through. Then, these ions enter a magnetic

field. Charged ions tend to move in a circular trajectory in a magnetic

field depending on their mass and, thus, reach the ion detector at different

locations. The double sector mass analyzer uses an additional electric field

to filter ions such that only ions with a certain kinetic energy are passed

through to the magentic sector. The ions are then separated according to

their mass in the magetic sector as before.

The quadrupoles in the quadrupole mass analyzer (Figure 3.7) are 4 par-

allel rods that are controlled by DC voltage and also an RF potential. Ions

with specific mass-to-charge ratios can be separated by controlling the RF

potential. Quadrupole analyzers are characterized by their insensitivity to
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poor vacuum, low cost and ability to measure high mass-to-charge ratios.

Figure 3.7: Scheme of quadrupole analyzer

The quadrupole ion trap mass analyzer (Figure 3.8) is similar to the

quadrupole analyzer. Here, the ions of interest with a specific mass-to-charge

ratio are trapped inside a radio frequency quadrupole field. Ions can be

ejected from the ion trap by changing the RF potential. So by changing the

RF potential, one can eject ions with different mass-to-charge ratios from ion

trap sequentially and each species can be further analyzed separately without

performing different experiments.

Figure 3.8: Scheme of quadrupole ion trap mass analyzer

In a time-of-flight mass analyzer (Figure 3.9) the different ions are accel-

erated down a cylinder towards the ion detector with the same energy. Since

different ions might have different masses, the ions will reach the detector
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at different times with smaller ions reaching the detector before the larger

ions. The mass of the ions is determined from the time of arrival, which is a

function of mass, charge and time of travel of the ion.

Source

Analyzer
Field-free region

Positive Ions

+20 kV

Detector
-20 kV

Figure 3.9: Scheme of Time-Of-Flight mass analyzer

3.4 Detection and Recording of Sample Ions

The detector monitors the ion current, amplifies it and the signal is transmit-

ted to the data system where it is recorded in the form of mass spectra. The

m/z values of the ions are plotted against their intensities to show the num-

ber of components in the sample, the molecular weight of each component,

and the relative abundance of the various components in the sample.

The type of detector is supplied to suit the type of analyzer; the more

common ones are the photomultiplier, the electron multiplier and the micro-

channel plate detectors.

3.5 Tandem Mass Spectrometry

Tandem mass spectrometry (MS-MS) is used to produce primary structural

information about a compound by fragmenting specific sample ions inside the
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mass spectrometer and identifying the resulting fragment ions. This informa-

tion can then be pieced together to generate structural information regarding

the intact molecule. Tandem mass spectrometry also enables specific com-

pounds to be detected in complex mixtures on account of their specific and

characteristic fragmentation patterns.

A tandem mass spectrometer is a mass spectrometer that has more than

one analyzer, in practice usually two. The two analyzers are separated by

a collision cell into which an inert gas (e.g. argon, xenon) is admitted to

collide with the selected sample ions and bring about their fragmentation.

The analyzers can be of the same or of different types, the most common

combinations being:

• quadrupole - quadrupole

• magnetic sector - quadrupole

• magnetic sector - magnetic sector

• quadrupole - time-of-flight.

The Q-Tof mass spectrometer is a quadrupole-time-of-flight tandem mass

spectrometer. Fragmentation experiments can also be performed on certain

single analyzer mass spectrometers such as ion trap and time-of-flight in-

struments, the latter type using a post-source decay experiment to effect the

fragmentation of sample ions.

The basic modes of data acquisition for tandem mass spectrometry ex-

periments are as follows:

• Product or daughter ion scanning : The first analyzer is used to select

user-specified sample ions arising from a particular component, usually
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the molecular-related (i.e. (M+H)+ or (M-H)-) ions. These chosen

ions pass into the collision cell, are bombarded by the gas molecules

which cause fragment ions to be formed, and these fragment ions (i.e.,

separated according to their mass to charge ratios) are analyzed by

the second analyzer. All fragment ions arise directly from the precur-

sor ions specified in the experiment and, thus, produce a fingerprint

pattern specific to the compound under investigation. This type of

experiment is particularly useful for providing structural information

concerning small organic molecules and for generating peptide sequence

information.

• Precursor or parent ion scanning : The first analyzer allows the trans-

mission of all sample ions, whilst the second analyzer is set to monitor

specific fragment ions, which are generated by bombardment of the

sample ions with the collision gas in the collision cell. This type of ex-

periment is particularly useful for monitoring groups of compounds con-

tained within a mixture which fragment to produce common fragment

ions, e.g. glycosylated peptides in a tryptic digest mixture, aliphatic

hydrocarbons in an oil sample, or glucuronide conjugates in urine.

• Constant neutral loss scanning : This involves both analyzers scanning,

or collecting data, across the whole m/z range, but the two are off-set

so that the second analyzer allows only those ions which differ by a cer-

tain number of mass units (equivalent to a neutral fragment) from the

ions transmitted through the first analyzer. E.g., this type of experi-

ment could be used to monitor all of the carboxylic acids in a mixture.

Carboxylic acids tend to fragment by losing a (neutral) molecule of

carbon dioxide, CO2, which is equivalent to a loss of 44 Da or atomic
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mass units. All ions pass through the first analyzer into the collision

cell. The ions detected from the collision cell are those from which 44

Da have been lost.

• Selected/multiple reaction monitoring : Both of the analyzers are static

in this case as user-selected specific ions are transmitted through the

first analyzer and user-selected specific fragments arising from these

ions are measured by the second analyzer. The compound under scrutiny

must be known and have been well-characterized before this type of

experiment is undertaken. This methodology is used to confirm unam-

biguously the presence of a compound in a matrix, e.g. drug testing

with blood or urine samples. It is not only a highly specific method

but also has very high sensitivity.

3.6 Peptide Analysis Using

Mass Spectrometry

Figure 3.10 shows the process of obtaining a mass spectrum for a sample

containing the peptide of interest whose identity is to be determined. The

peptide to be analyzed is first separated from the mixture of peptides and

purified (using GC, HPLC, etc.) before it is introduced into the mass spec-

trometer. The peptide is then subject to mass spectrometry and its mass

spectrum is obtained. The mass-to-charge ratio and intensity of the ions in

the mass spectrum can be used to identify the unknown peptide[45].
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Figure 3.10: Peptide analysis using mass spectrometry

3.7 Peptide Sequencing

by Tandem Mass Spectrometry

The most common usage of MS-MS in biochemical areas is the product or

daughter ion scanning experiment which is particularly successful for peptide

and nucleotide sequencing.

Peptides decay in a reasonably well-documented manner [49, 50]. The

protonated molecules fragment along the peptide backbone (Figure 3.11)

and also show some side-chain fragmentation [51].

There are three different types of bonds that can fragment along the

amino acid backbone: the NH-CR, CR-CO, and CO-NH bonds. Each bond

breakage gives rise to two species, one neutral and the other one charged,

and only the charged species is monitored by the mass spectrometer. The

charge can stay on either of the two fragments depending on the chemistry

and relative proton affinity of the two species. Hence there are six possible
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Figure 3.11: Peptide sequencing by tandem mass spectrometry - backbone
cleavages

fragment ions for each amino acid residue and these are labeled as in the

diagram, with the a, b, and c̈ıons having the charge retained on the N-

terminal fragment, and the x, ÿ, and z ions having the charge retained on

the C-terminal fragment. The most common cleavage sites are at the CO-NH

bonds which give rise to the b and (or) the ÿıons.

The extent of side-chain fragmentation detected depends on the type of

analyzers used in the mass spectrometer. A magnetic sector - magnetic sector

instrument will give rise to high energy collisions resulting in many different

types of side-chain cleavages. Quadrupole - quadrupole and quadrupole -

time-of-flight mass spectrometers generate low energy fragmentations with

fewer types of side-chain fragmentations.

Immonium ions (H2N
+=CHR) appear in the very low m/z range of the

MS-MS spectrum. Each amino acid residue leads to a diagnostic immonium

ion, with the exception of the two pairs leucine (L) and iso-leucine (I), and

lysine (K) and glutamine (Q), which produce immonium ions with the same

m/z ratio, i.e. m/z 86 for I and L, m/z 101 for K and Q. The immonium

ions are useful for detecting and confirming many of the amino acid residues

in a peptide, although no information regarding the position of these amino

acid residues in the peptide sequence can be ascertained from the immonium

ions.
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A protein identification study would typically proceed as follows:

a) The protein is digested with a suitable enzyme. Trypsin is useful for

mass spectrometric studies because each proteolytic fragment contains a basic

arginine (R) or lysine (K) amino acid residue and, thus, is eminently suitable

for positive ionization mass spectrometric analysis. The digest mixture is

analyzed - without prior separation or clean-up - by mass spectrometry to

produce a rather complex spectrum from which the molecular weights of all

of the proteolytic fragments can be read. This spectrum, with its molecular

weight information, is called a peptide map (peptide fingerprint). (If the

protein already exists in a database, then the peptide map is often sufficient

to confirm the identity of the protein.) For these experiments, the Q-Tof

mass spectrometer would be operated in the “MS” mode (Figure 3.12) ,

whereby the sample is sprayed and ionized from the nanospray needle and the

ions pass through the sampling cone, skimmer lenses, RF hexapole focusing

system, and the first (quadrupole) analyzer. The quadrupole in this instance

is not used as an analyzer, merely as a lens to focus the ion beam into the

second (time-of-flight) analyzer which separates the ions according to their

mass-to-charge ratio.

b) With the digest mixture still spraying into the mass spectrometer,

the Q-Tof mass spectrometer is switched into “MS-MS” mode (Figure 3.13).

The protonated molecular ions of each of the digest fragments can be inde-

pendently selected and transmitted through the quadrupole analyzer, which

is now used as an analyzer to transmit solely the ions of interest into the

collision cell which lies in-between the first and second analyzers.

An inert gas such as argon is introduced into the collision cell and the sample

ions are bombarded by the collision gas molecules which cause them to frag-

ment. The optimum collision cell conditions vary from peptide to peptide
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Figure 3.12: Q-TOF operating in MS-MS mode

and must be optimized for each one. The fragment (or daughter or prod-

uct) ions are then analyzed by the second (time-of-flight) analyzer. In this

way, an MS-MS spectrum is produced showing all the fragment ions that

arise directly from the chosen parent or precursor ions for a given peptide

component.

An MS-MS daughter (or fragment, or product) ion spectrum is produced for

each of the components identified in the proteolytic digest. Varying amounts

of sequence information can be obtained from each fragmentation spectrum

and the spectra need to be interpreted carefully. Some of the processing can

be automated but, in general, the processing and interpretation of spectra

will take longer than the data acquisition if accurate and reliable results are

to be generated.

The proteomics procedure usually involves excising individual spots from a

2-D gel and independently enzymatically digesting the protein(s) contained
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Figure 3.13: Q-TOF operating in MS mode

within each spot, before analyzing the digest mixture by mass spectrometer

in the manner outlined above.



Chapter 4

Experimental Procedure for

Obtaining MS/MS Spectra

To develop robust algorithms and methods for spectra pre-processing and

cleaning it is necessary to work with real data. For this purpose, cell extract

proteins obtained from IMP laboratories as well as commercially acquired

proteins were used for MS analysis.

4.1 Sample Preparation

Cell extract proteins obtained from IMP laboratories are prepared with fol-

lowing steps: 200 g of purified anti-human Smc2 rabbit polyclonal antibody

[52], crosslinked to Affi-Gel Protein A beads (100 µ L bed-volume, Bio-Rad),

was used to immunoprecipitate the condensin complexes from 10 mg of clar-

ified interphase HeLa cell extract. Following extensive washing, immunopre-

cipitated protein complexes were acid-eluted from the beads, and 10% of the

total eluate was analysed by SDS-PAGE and silver staining. After reduction

and acetylation of cysteine residues using dithiothreitol and iodoacetamide,

28
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respectively, the condensin sample was proteolytically digested using Trypsin

Gold (Promega), and the digestion stopped with tetrafluoroacetic acid.

Commercially acquired proteins are: α-amylase, amylogucosidase, apo-

transferrin, β-galactidase, carbonic anhydrase, catalase, phosphorylase B,

glutamic dehydrogenase, glutathione transferase, immunoglobulin γ, lactic

dehydrogenase, lactoperoxidase, myoglobin.

4.2 Mass Spectrometry

Tryptic peptides from condensin samples were separated by nano-HPLC[53]

on an UltiMate HPLC system and PepMap C18 column (LC Packings, Am-

sterdam, The Netherlands), with a gradient of 5-75% acetonitrile, in 0.1%

formic acid[54, 55]. Eluting peptides were introduced by electrospray ionisa-

tion (ESI) into an LTQ linear ion trap mass spectrometer (Thermo Finnigan),

where full MS and MS/MS spectra were recorded. In another experiment,

a mixture of tryptic peptides from standard, commercially acquired bovine

serum albumin (BSA), yeast alcohol dehydrogenase (ADH) or human trans-

ferrin (TRF) were used for system optimization and testing. 100 fmol of each

protein were injected into a nanoHPLC device (LC Packings, Amsterdam,

The Netherlands) and MS/MS spectra were acquired using a 3D ion trap

mass spectrometer, model DecaXP (Thermo Finnigan).

Commercially acquired proteins were used, each in two preparations. For

chromatography, a UltiMate Plus Nano-LC system. LC-Packings - A Dionex

Co was applied. The sample was loaded (loading solvent: water; 0.1% TFA)

for 10 min onto a reversed phase trap column (which is not online with the

separation column; description: PepMap C18, 300 m ID x 5mm length, 3

m particle size, 100 pore size, LC Packings - A Dionex Co.) at a flow
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rate of 20 l/min and washed free of ion pairing agents and other impurities.

The gradient described starts at 10 min (the trap column is switched online

with the separation column, mobile phase: 95% water, 5% acetonitrile, 0.1%

FA, flow rate 0.275 l/min) and continues for 50 min. After applying a high

organic wash step (95% mobile phase with 20% water, 80% acetonitrile, 0.1%

FA), the trap column is switched back to offline mode and equilibrated with

the loading mobile phase. The mass spectrometric data are recorded only for

the time both columns are online. The mass spectra were recorded with a

Thermo Finnigan LTQ (positive nano-ESI mode, ionizing spray voltage: 1.5

kV, enhanced mass-spec full-scan range: 220 - 2000 amu).

4.3 File Processing

The MS/MS output in the Xcalibur raw-file was converted into dta-files using

BioWorks (by thermo.com). Dta-files are text files with following format:

The first row contains the mass and the charge state of the precursor ion from

which the MS/MS spectrum was generated. All following rows contain m/z

values in the first column and the intensity in the second column. Single dta-

files were used to examine possibilities of spectra cleaning and pre-processing.

In order to check benefits of applying different algorithms and methods

for spectra cleaning and preprocessing, the MS/MS spectra interpretation

software called Mascot[30] was used. The respective dta-files were merged to

generate a single mgf-file (Mascot generic format) using the merge.pl program

from Matrix Science (www.matrixscience.com). This original mgf-file, which

is a collection of dta files, was processed by Mascot. Improved recognition

and protein identification by Mascot was considered as main criterion for

accepting new developments of algorithms and methods.
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Algorithms for Cleaning and

Pre-Processing of MS/MS

Spectra

5.1 Introduction

For a given raw (but centroided) peptide MS/MS spectrum in dta format,

five independent procedures were developed:

(i) for detection of multiply charged peaks (the algorithm “Deconvolute

Spectrum”),

(ii) for removal of latent periodic noise including deisotoping (the algorithm

“Deisotope Spectrum”),

(iii) for removal of high-frequency random noise (the algorithm “Remove

Random Noise”),

(iv) for detection of non-interpretable spectra using information content

31
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from PS (the algorithm “Deisotope Spectrum”), and

(v) for detection of non-interpretable spectra using sequence ladder test

(the algorithm “Check Sequence Ladder”).

Albeit comprehending the exact mechanism of the genesis of background

peaks would allow the construction of an algorithm for their removal, this

knowledge is not available and more phenomenological approaches appear

necessary. The analogy with electrical signal processing is one possibility;

i.e., the series of peaks in the mass spectrum can be considered as a signal

compounded with noise after transfer via an information channel, from which

the original signal has to be recovered.

The simplified cleaning and pre-processing procedure is shown in Fig-

ure 5.1.

5.2 The Algorithm “Check Sequence Ladder”

In this section, an idea from the beginning of mass spectrometry of pro-

teins was used. Originally, experts tried to find amino acid sequence ladders

among the high-intensity peaks. The computational costs are low to check

in a MS/MS spectrum whether small ladders of predefined length do occur

at all among the top fraction of most intense peaks. It is reasonable to sug-

gest that the spectrum is probably not interpretable into a peptide sequence

with statistical significance if no peptide sequence is matched by this crite-

rion. Considerable amounts of MS/MS spectra origin from some non-peptide

compounds present in the probe. Such compounds are mostly preparation

artefacts, non-peptide polymers and other contaminants. On the other hand,

peptide MS/MS spectra contain peaks with m/z values which differ from each

other by amino-acid masses. In this work, the sequence ladder test had been
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Figure 5.1: Simplified schema of spectra cleaning and pre-processing developed
in this work

used to separate peptide MS/MS from other spectra. One might think that

such a constraint is not generally applicable considering that spectra can

contain multiply charged fragment ions. In practice, not all peaks are multi-

ply charged and a relatively short (3-4 amino acid residues) ladder of singly

charged peaks is found also in spectra that contain multiply charged peaks.

From the result chapter, it can bee seen that such a simplification does not

impact negatively the cleaning procedure.

The sequence ladder test algorithm checks an MS/MS spectrum for se-

quences of peaks that could describe an amino acid sequence. The output

depends on input parameters and mass spectrometer resolution. It is a fast

method to separate non-peptide spectra from the set of all spectra.

For the purpose of this algorithm, a “peak” is a tuple < x, y > where x



CHAPTER 5. ALGORITHMS 34

is the peak’s mass-to-charge (m/z) value and y its intensity. Given a peak p,

ip and mp respectively represent the intensity and mass-to-charge ratio of p.

Check Sequence Ladder

Require: S Set of peaks

A Set of amino acid masses

msl Minimum sequence ladder length to be found

mt Mass tolerance

ip percentage of highest intensity peaks

to be included in search

haam Highest amino acid mass = 186.1 Da

1: sll ← 0

2: Find S ′ ⊂ S such that |S ′| = |S| · ip ∧ ∀ x ∈ S ′ : ∄ y ∈ S \ S ′ such

that iy > ix

3: k ← 0

4: j ← k + 1

5: for all peaks p(i) ∈ S ′ do

6: ∆m← |mp(j) −mp(k)|

7: ba← false

8: while ∆m < haam ∧ ba = false do

9: if ∃a ∈ S such that |a−∆m| < mt then

10: k ← j

11: sll ← sll + 1

12: if sll ≧ msl then

13: return Sequence ladder found

14: end if

15: ba← true
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16: end if

17: end while

18: j ← j + 1

19: end for

20: return Sequence ladder not found

The first step is to extract an ordered subset (S ′) of required size con-

taining the most intense peaks. A sequence starts with each peak p(i) ∈ S ′

if there is a peak p(j) ∈ S ′ such that distance between them is equal to a

resudial mass of an amino acid. The sequence is extended until the required

length is found or until all peaks in S ′ have been checked. If an amino acid

sequence of required length could not be founded, the algorithm declares the

spectrum as a non-interpretable spectrum.

The time complexity of the algorithm is O(N2) where N is the number

of peaks in the spectrum (several hundreds). The quadratic complexity is

the worst case and can be reduced if only neighbour peaks are checked if

their m/z difference is equal to a mass of an amino acid. The neighbourhood

width corresponds to the highest amino acid mass. The average case would

then be O(N ·M) where M is the number of peaks in neighbourhood and in

real spectra it takes values 1 < M << 100.

5.3 The Algorithm “Merge Peaks”

This algorithm merges a small intensity peak to a higher intensity neighbor

peak if the m/z distance between them is under some certain value. Although

the algorithm can be applied as a standalone noise removal procedure of

minor peaks, it was developed to be used as a first step before a spectrum is

deconvoluted with the algorithm “Deconvolute Spectrum” (section 5.7).
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Minor peaks found within isotope peak clusters are artifacts that can arise

from random noise or from the transformation of the continuous MS/MS

spectrum into the centroid form as a discrete signal. The interfering peaks

between main isotope cluster peaks have to be merged with the closest main

heavy isotope peak in the cluster. Figure 5.2 and Figure 5.3 (enlarged) depict

this problem.

Figure 5.2: An m/z range showing small peaks between heavy isotope peaks

Figure 5.3: Enlarged view of an m/z range showing small peaks between heavy
isotope peaks

For the peak-merging algorithm, a weighted directed acyclic graph G(V, E)
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is constructed (Figure 5.4).
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Figure 5.4: An m/z range converted into weighted directed acyclic graph

The set of vertices (V) is the set of all mass-over-charge values in the

window. A directed edge ei,j ∈ E is added between two vertices vi, vj ∈ V

if the distance d (in Figure 5.4 depicted with red color, multiplied by 100)

between peaks vi, vj is less than a certain value. The direction of the edge is

defined to be from vi to vj if Intensity(vi) < Intensity(vj). The weight wi

of an edge ei,j is defined as distance between two vertices vi and vj (in 0.01

Da units).

The algorithm “Deconvolute” requires no interfering minor peaks in the

isotope peak cluster. The algorithm “Merge Peaks” creates a new graph

G′(V ′, E ′) ⊂ G(V, E) with V ′ ⊂ V and E ′ = ∅ (Figure 5.5).

The removal of peaks from an MS/MS spectrum is generally not advis-
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Figure 5.5: Enlarged m/z range before and after merging disturbing peaks

able, because some low intensity peaks are still peptide fragmentation peaks.

The intensity of such peaks is low if the fragmentation along that particu-

lar peptide bond does not occur that often. For this reason |V ′| has to be

as large as possible. This can be achieved if the sum of weights w′

i,j of all

removed edges e′i,j is as small as possible.

If a vertex vi giving origin of the edge ei,j is actively removed from the

graph (and its intensity is added to the vertex vj), then edges to other vertices

can also vanish.

For the purpose of this algorithm, three properties have been defined

for each vertex. Given v ∈ G(V, E), mv and iv represent the m/z value and

original index of the corresponding peak in an MS/MS spectrum. OutEv ⊂ E
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is defined as set of all arcs with vertex v as tail (all out-going arcs from v).

Merge Peaks

Require: S Set of peaks

ld the lowest allowed distance between peaks

1: Create an emtpy weighted directed acyclic graph G(V, E)

2: for all peaks p(i) ∈ S do

3: Create new vertex v with properties iv = i ∧mv = mp

4: V ← V ∪ v

5: end for

6: for all vertices vi ∈ V do

7: d← 0

8: j ← i

9: while d ≦ ld ∧ j < |V | do

10: j ← j + 1,

11: d← |mvj
−mvi

|

12: if d ≦ ld then

13: Create new arc ex,y where x and y are indices of tail and head

vertex respectively

14: Weight(e)← d

15: if ipi
< ipj

then

16: e.x← i, e.y ← j

17: else

18: e.x← j

19: e.y ← i

20: end if

21: E ← E ∪ e
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22: end if

23: end while

24: end for

25: G′(V ′, E ′)← TopologicalSort(G(V, E))

26: for all v′

i ∈ V ′ such that |OutEv′i
| > 0 do

27: Find ei,j ∈ OutEv′i
such that ∄ek,l ∈ OutEv′i

such that wk,l < wi,j

28: if iv′i < iv′j then

29: iv′
i
← iv′

i
+ iv′

j
{merge intensities}

30: iv′j ← 0

31: OutEv′i
← ∅

32: OutEv′j
← ∅

33: else

34: iv′j ← iv′j + iv′i {merge intensities}

35: iv′i ← 0

36: OutEv′
i
← ∅

37: OutEv′j
← ∅

38: end if

39: end for

The graph creation has almost linear O(N) time complexity (where N

is the number of peaks in spectrum) because very few peaks are closer than

0.3 Da (dependent on mass spectrometer resolution) to each other. Prior

to peaks merging, a topological sort must be performed. The topological

sort algorithm creates a linear ordering of the vertices such that if an edge

e(u, v) appears in the graph, then v comes before u in the ordering. The

time complexity of topological sort is O(V + E). The next step is to merge

sorted vertices beginning with the lowest edge weight. Time complexity of

this operation in the worst case is O(V · E). This is then the complexity of



CHAPTER 5. ALGORITHMS 41

the whole algorithm.

5.4 The Algorithm

“Make Equidistant Spectrum”

If we want to consider an MS/MS spectrum as a signal in time domain, it

is necessary to convert the spectrum into a signal with equal distances. The

algorithm screens through all peaks in spectrum. If the m/z value of two

peaks differs by a value less then required step distance, the peak with lower

intensity is deleted. All peaks need to have m/z values as:

m1 + f · d (5.1)

where m1 is the m/z value of the first peak in spectrum, d is required step

distance between peaks and f is an multiplication factor. For absent m/z

values new peaks have to be added with an intensity set to 0.

The time complexity of the algorithm is linear to the number of peaks.

The space complexity is O(N+R
D

) where N is the number of peaks and D

is the chosen distance between two signals, and R indicates all imaginary

peaks with intensity 0 which had to be added to form a legal signal in time

domain. This value is strongly dependent on the spectrum quality. In the

spectra with a huge number of noise peaks, this value can be very small but

still considerable because real spectra (even if they are very noisy) do not

have a peak registered on every 0.3 Da (which is an example of the lowest

distance for the peak merging described in the last section).
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Make Equidistant Spectrum

Require: S Ordered set of peaks (from merged spectrum)

e Equidistant step distance between peaks

d Isotope distance between peaks

t Mass tolerance

1: i← 0

2: size← NumberOfPeaks(S)

3: Create emty set of peaks S ′

4: for all 0 < i < size do

5: j ← i + 1

6: currMass← mi

7: nextMass← mj

8: intensity ← ii

9: if |nextMas − currMass| < e ∧ ij > ii then

10: intensity ← ij

11: end if

12: S ′ ← S ′ ∪ k such that mk = currMass ∧ ik = intensity

13: while |nextMass − currMass| > t · d do

14: currMass← currMass + e

15: S ′ ← S ′ ∪ k such that mk = currMass ∧ ik = 0

16: end while

17: end for

18: S ′ ← S ′ ∪ k such that mk = msize ∧ ik = isize
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5.5 The Algorithm

“Calculate Isotope Pattern”

The intensity patterns in isotope clusters become complicated with large frag-

ment masses but still can be exactly calculated [57, 58, 59, 60, 61]. Given the

large number of potential peptide fragment sizes and sequence possibilities,

the computational time for taking into account the exact isotopic patterns

is too high for a background analysis program. As a computational shortcut

for calculating the intensities of expected multiply charged peak cluster, the

Wehofsky’s polynomial approximation [39, 62] was used, where the relative

intensity of the nth isotope variant peak (in a pattern of peaks; N ≦ 7 , k = 6

the order of expansion) is:

I(n, M) = A(n) +
k

∑

j=1

Bj(n) ·M j (5.2)

The intensity patterns have been tabulated with an accuracy of 100 Da

(m/z window width). M is the mass corresponding to the first, monoiso-

topic peak (n=1) in the current m/z window. The relative intensity of this

peak is assumed to be 1. A(n) and Bj(n) are fitting parameters taken from

Wehofsky’s work [39, 63]. Depending on the charge state z, the mass-to-

charge-ratio distance between peaks in the pattern is 1
z

Da and the pattern

length is N−1
z

Da.

Calculate Isotope Pattern

Require: N Number of peaks in the isotope peak cluster

k Order of expansion

M Set of m/z windows

A Set of fitting parameters
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B Set of fitting parameters

1: for all m ∈M do

2: n← 1

3: while n ≦ N do

4: Intensity(n, m)← A(n)

5: for all j such that 0 < j ≤ k do

6: Intensity(n, m)← Intensity(n, m) + Bj(n) ·mj

7: end for

8: end while

9: end for

5.6 The Algorithm “Dense Spectrum”

Applying this algorithm on the merged (Algorithm 5.3) and equidistant (Al-

gorithm 5.4) spectrum is required by the algorithm “Deconvolute” described

in the next chapter. The “Deconvolute” algorithm calculates a correlation

coefficient between experimental and theoretical signals. To achieve high

correlation both signals were densed by adding artifical peaks.

The mass window with the length of the target signal (multiply charged

isotope peak cluster, Figure 5.6) following each peak is densified with linearly

interpolated additional peaks up to the last experimental peak in the window

(Figure 5.7). The addition of further peaks (essentially a transformation to a

semi-analogue signal) compensates for possible small inaccuracies in resolving

the position of isotope-variant peaks by the instrument’s software.
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Figure 5.6: Example of a multiply charged isotope peak cluster

Dense Spectrum

Require: S Ordered set of peaks

(from merged, equidistant spectrum)

d Distance between isotopic peaks

t Mass tolerance

l Length of m/z window

1: i← 1

2: while i ≦ SizeOf(S)− l do

3: Create empty ordered set of peaks S ′

4: S ′ ← all peaks pn ∈ S such that |mpn
−mpi

| < l ± t

5: for all p(k) ∈ S ′ such that ip(k) > 0∧∃f such that d·f = |mpk
−mpi

|±t

do

6: for all p(j) ∈ S ′ such that i < j < k do

7: ipj
← ipi

−
ipi

−ipk

k−i
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Figure 5.7: Densed multiply charged isotope peak cluster

8: end for

9: end for

10: i← k

11: end while

The algorithm screens for peaks within the isotope cluster length l. If

the distance between found peaks in one cluster of peaks is approximately

identically to the required distance between isotopic peaks d, new peaks with

interpolated intensity between original peaks are added.

The time complexity of the densification algorithm is O(N · I
d
) where N

is the number of signals in equidistant spectrum, I is the number of found

peak clusters that could form a multiply charged isotope peak cluster and d

is the distance between isotope peaks for the considered charge state.
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5.7 The Algorithm “Deconvolute Spectrum”

Although ionization techniques such as ESI have the advantage of shifting

heavy ions into lower, detectable mass-over-charge ranges by generating mul-

tiply charged fragment ions [34], they can pollute the spectrum by caus-

ing replicates of otherwise identical peptide fragments with different charge

states. It is expected that the multiply charged signals do not occur as

monoisotopic peaks but as isotope peak clusters. The distance between the

peaks in a peak cluster depends from the charge state of the considered

fragment ion. For the purpose of spectrum interpretation, peak replicates

originating from different charge states have to be unified. This includes

transforming the monoisotopic peaks with higher charge states into singly

charged monoisotopic peaks as well as removing heavy isotope peaks with

higher charge state. Removal of singly charged heavy isotope peaks is de-

scribed in section 5.9.

The relative spectral intensities of isotope-variant peaks in a cluster are

determined by the natural isotope distributions of carbon, hydrogen, oxy-

gen, nitrogen and sulphur, the predominant chemical elements in peptide

fragments. This a priori known form of the intensity pattern from multiply

charged replicates was used in this work to identify multiply charged peaks

in the measured spectrum by correlational analysis.

Although the method for removal of latent periodical noise (including

singly charged isotope clusters) described in section 5.9 detects in some cases

also the multiply charged isotope peaks, the best results are obtained by

applying a dedicated procedure for finding doubly- and triply-charged isotope

peak clusters. A new algorithm is developed for this purpose. The algorithm

is quite robust with respect to inaccuracies in the experimental resolution of

isotope clusters due to two artifices in processing the mass spectrum:
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(i) the merging of small peaks very close to major intensities,

(ii) the procedure of interpolated peak densification in the mass range of

comparison with the predefined pattern.

The algorithm includes several steps (Figure 5.8). Prior to spectrum

analysis, the general form (the etalon) of isotope cluster patterns is pre-

computed for double- and triple-charged fragments (Equation 5.1). Higher

charge states can be easily added by pre-calculating the isotope pattern for

the considered charge state. It is also possible to process negative charge

states. This feature demands a simple correction in the calculation of the

precursor mass and m/z values if necessary.

MS-MS Spectrum

(Merged,

Equidistant)

Dense Spectrum

for 3+ Target

Start

Find 3+ Charged Peak Clusters by

Convolution with 3+ Target

Deconvolute 3+ Charged Peak

Cluster

Dense Spectrum

for 2+ Target

Find 2+ Charged Peak Clusters by

Convolution with 2+ Target

Deconvolute 2+ Charged Peak

Cluster

Add Deconvoluted Peaks to the

Spectrum

End

Deconvoluted MS-

MS Spectrum

Figure 5.8: Determination of multiply charged replicates with correlation anal-
ysis.

To obtain high correlation coefficients the pattern of the etalon has to be

densed for a particular charge state with 1
d
· N−1

z
− N + 1 additional peaks
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in total (with the mass/charge-ratio step, d, as defined in section 5.4) where

their intensity is linearly interpolated from the two surrounding pattern-

defining peaks with masses M + n−1
z

and M + n
z

(Figure 5.6).

The spectrum is divided into windows of peaks (for example 100 Da wide)

in which peak groups are searched that could form an isotope cluster. Divid-

ing the spectrum in windows is important because of the pattern dependence

on m/z vaules. The isotope pattern search criteria are the distance between

peaks and the shape of peak groups. The exactly calculated shape of groups

of peaks is used as a target signal for the convolution in a particular window.

If a group of peaks roughly shows characteristics of an isotope peak cluster

(for example the distance between peaks is ≈0.3Da and first peak is larger

than the second one in the 300-399 Da m/z window) densification is per-

formed for this group of peaks. The intensities are interpolated and a new

peaks are added on every (chapter 5.6).

The next step is the calculation of the correlation coefficient between the

spectrum and target signal for considered window and charge state. Every

peak is considered as possible start point of an isotope cluster. The correla-

tion coefficient is calculated as follows:

r =
N ·

∑N

i=1 Xi · Yi −
∑N

i=1 Xi ·
∑N

i=1 Yi
√

[N ·
∑N

i=1 X2
i − (

∑N

i=1 Xi)2][N ·
∑N

i=1 Y 2
i − (

∑N

i=1 Yi)2]
(5.3)

where N is number of signals in the target, Xi and Yi are the intensities

of the experimental peaks and the intensity of theoretically calculated peaks

respectively. The time complexity of the correlation algorithm is then O(N ·

M) with N being the number of peaks in the spectrum and M number of

signals in the target signal (isotope peak cluster for considered charge state
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and window). The correlation coefficient is calculated for both 2+ and 3+

charge states. If the coefficient is higher than a user-defined threshold (for

example 0.95) the group of peaks is considered as a multiply charged isotope

peak cluster. If both coefficient for 2+ and 3+ charge are higher than the

threshold, the charge state is determined according to the higher correlation

coefficient.

If a multiply charged isotope cluster is found in the spectrum and con-

firmed with a high correlation coefficient, the original peaks that belong to

the isotope cluster are removed from spectrum, and instead of them, a single

peak with charge state 1+ is calculated from the original peaks and added

to the spectrum. The m/z value of the first peak in a multiply charged iso-

tope cluster can be represented as Ki = M+i·m
i

, where i is the charge state,

M is the mass of the peptide without charge carrier and m is the mass of

the charge carrier (in most cases the proton). The m/z value of the singly

charged monoisotopic peak is calculated as M + m = i ·Ki − (i− 1) ·m.

An example of a recognized isotope peak cluster is shown in Figure 5.9.

The signals above the x-axis are peaks from an MS/MS spectrum. Below the

x-axis are corresponding correlation coefficients. In this example, only the

first peak is recognized as a monoisotopic peak (manifested by correlation

coefficient higher as the defined threshold).

5.8 The Algorithm “Median filter”

For power spectra smoothing, required by the algorithm “Deisotope spec-

trum” (section 5.9) a special median filter has been developed. Typically, the

power spectrum of a good MS/MS spectrum is quasi-periodic. The length

of this period is determined with another Fourier-transformation, where the
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Figure 5.9: Determination of multiply charged replicates with correlation anal-
ysis

power spectrum was considered as a signal in the time domain. Determina-

tion of the periodicity fails if the power spectrum shows multiple of the base

frequency (see section 5.9). This can be bypassed by smoothing the power

spectrum before applying the second Fourier-transformation. For this pur-

pose the median filtering is one of standard algorithms [56, ?], replacing all

vaules in the signal by the median from certain range. A median is a number

dividing the higher half of a sample from the lower half. The median of a

finite list of numbers can be found by arranging all the observations from

lowest value to highest value and picking the middle one.

The median filter is designed by creating two self-balancing binary search

trees (AVL trees), the left and the right AVL tree. AVL trees are very
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effective data structures for retrieving smallest or highest elements. From

N signals, those which are smaller than the median are stored in the left

tree and the large ones in the right. The median was held as a value higher

than the highest element of the left AVL tree and less than the minimum

of the right AVL tree. In this way the time complexity of the median filter

algorithm is O(N logN).

Median filter

Require: S(N) Vector of signals to be smoothed by median filter

N Size of the vector of signals

F Median filter size

1: Create emty set MFSthis is the median filtered output signal

2: cnt← 0

3: median← S(0)

4: Create empty AVLTree L

5: Create empty AVLTree R

6: for all signals si ∈ S such that 0 < i < F
2
∧ i < N do

7: if si < median then

8: L← L ∪ si

9: else

10: R← R ∪ si

11: end if

12: end for

13: LastRightBound← N − 1this is the index of the last signal in S

14: RightBound ← LastRightBoundthis is the index of the last signal in

the neighborhood, the neighborhood width is always F
2

15: while RightBound < N + 1 do
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16: for all si ∈ S such that LastRightBound ≧ i < RightBound do

17: if si < median then

18: L← L ∪ si

19: else

20: R← R ∪ si

21: end if

22: end for

23: if cnt > F
2

then

24: j ← cnt− F
2
− 1

25: if sj < median then

26: L← L \ sj

27: else

28: R← R \ sj

29: end if

30: end ifmedian = BalanceTrees(median, L, R)

31: MFS ←MFS ∪median

32: cnt← cnt + 1

33: LastRightBound← RightBound

34: RightBound← min(RightBound + 2, cnt + F
2

+ 1

35: end while

36: for all si ∈ S such that (n− 1− F
2
) ≦ i < n do

37: if si < median then

38: L← L ∪ si

39: else

40: R← R ∪ si

41: end if

42: end for
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43: while cnt < n do

44: if scnt < median then

45: L← L ∪ scnt

46: else

47: R← R ∪ scnt

48: end if

49: if cnt > F
2

then

50: if scnt < median then

51: L← L \ scnt

52: else

53: R← R \ scnt

54: end if

55: end ifmedian = BalanceTrees(median, L, R)

56: MFS ← median

57: cnt← cnt + 1

58: LastRightBound← RightBound

59: RightBound← min(RightBound + 2, cnt + F
2
) + 1

60: end while

61: return MFS

BalanceTrees

Require: median current median value

L Left tree

R Right tree

1: while |L| > |R|+ 1 do

2: R← R ∪median
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3: median← HighestElementOf(L)

4: L← L \median

5: end while

6: while |R| > |L|+ 1 do

7: L← L ∪median

8: median← SmallestElementOf(R)

9: R← R \median

10: end while

11: return median

5.9 The Algorithm “Deisotope spectrum”

Due to the natural isotopic distribution, masses in mass spectrometer are

not detected as single peaks (monoisotopic peaks), but as groups of peaks

(peak cluster) with different intensity and defined mass difference. A mass

spectrum of any organic compound will usually contain a small peak of one

mass unit (Da) greater than the apparent molecular ion peak (M). This is

known as the M+1 peak and originates due to the presence of carbon-13

atoms (13C-isotope). Natural occurrence of the 13C-isotope is ≈1.1%. A

molecule containing one carbon atom will be expected to have an M+1 peak

of approximately 1.1% of the intensity of the M peak as 1.1% of the carbon

atoms will be carbon-13 rather than carbon-12. If an isotope cluster is singly

charged, the distance between the peaks is 1Da.

It should be expected that isotope clusters are the source of latent period-

icity in the signal that should be visible in form of maxima in the frequency

spectrum of the signal. A test was performed to prove this assumption. In

Figure 5.10, an original peptide MS/MS spectrum is depicted.
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Figure 5.10: Example of an MS/MS spectrum

Its corresponding power spectrum (PS)[56] is shown in Figure 5.11.

The power spectrum is calculated as:

PS =
Z − Z̄

n
(5.4)

where Z is Fourier-transformed MS/MS spectrum, Z̄ is its complex conjugate

and n is the number of signals.

If we extract only the peaks that are interpretable by a database search

program (for example Mascot [30]) we get an artificial spectrum such as it is

shown in Figure 5.12. The spectrum has no repeatable signals and this fact

is confirmed in its power spectrum 5.13. The same spectrum with artificially

added isotope peaks is shown in Figure 5.14. This artificial MS/MS spectrum

exhibits latent periodicity in its Fourier transforms 5.15. Thus, disappear-
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Figure 5.11: The same MS/MS spectrum in the frequency domain

ance of isotope clusters correlates with dampening of the prominent periodic

spectral component in the Fourier transform.

Because the singly charged isotope peak clusters have the repetition of

signals as in the case of multiply charged isotope peak clusters, theoreti-

cally, the method described in chapter 5.7 could be used to detect the singly

charged clusters as well. Correlation of the measured MS/MS spectrum with

pre-calculated isotopic intensity distributions is efficient only for multiply

charged peak cluster detection. Singly charged peak clusters cannot be re-

liably detected with the method described in the previous chapter since the

probability of finding additional, unrelated peaks in the spectrum with a

distance of 1 Da is high. Therefore, correlation analysis with pre-defined

patterns is not really useful for deisotoping. But if we treat an MS/MS
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Figure 5.12: MS/MS spectrum containing only interpretable peaks

spectrum as a set of signals in the time domain where the mass-over-charge

axis is the analogue of time and the intensity of each peak in the MS/MS

spectrum as the intensity of a signal at a certain time, we can consider the

single-charged peak signals as periodical function (with periodicity of ≈1 Da

for singly charged peaks). This periodical function in the time domain results

in a power spectrum in the frequency domain where the reoccurring elements

can be much easier recognized.

Besides isotope variants, there can be other sources of spectral contamina-

tion with latent periodicity, for example from the electronic detection system

or from accompanying chemical polymer contaminants such as silanes, etc.

Re-occurring signals at quasi-constant mass shifts can be seen in the fre-

quency domain, i.e. as characteristic reoccurrences of high amplitudes at
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Figure 5.13: Spectrum containing only interpretable peaks looked in frequency
domain

multiples of a base frequency fB in the Fourier transform of the tandem

mass spectrum. A similar periodicity analysis has been previously proposed

for the detection of chemical background in MS fingerprints of small organic

or inorganic compounds [64].

Converting to the frequency domain, the discrete Fourier transform Y of

the MS/MS spectrum S is found by taking the N -point fast Fourier trans-

form Y = FFT (S, N). The value N is calculated as Nn+1 , where n is

⌈log2(
xmax−xmin

0.05
)⌉. The values xmax and xmin are the largest and the smallest

mass-over-charge values in the spectrum respectively. The power spectrum,

a measurement of the power at various frequencies, is calculated according

equation 5.2. Typically, the power spectrum of a good MS/MS spectrum is

quasi-periodic 5.16.
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Figure 5.14: MS/MS spectrum containing interpretable peaks with artificially
added heavy isotope peaks

The length of this period (the base frequency fB) is determined with

another Fourier-transformation, where the power spectrum was considered

as a signal in the time domain (Figure 5.17, called PSPS-graph below).

In order to remove the reoccurring elements from the power spectrum,

a multi-band reject filter has to be introduced for each MS/MS spectrum.

There exist many “standard” modeling techniques using a digital filtering

approach based on different spectral estimation methods [74]. Filter design

functions such as yulewalk, invfreqz, and cremez, are available. The selec-

tion of a method depends on the available response data and target criteria

of the design. A multi-band reject filter is created by the Yulewalk method of

autoregressive moving average (ARMA) spectral estimation [65]. Yulewalk

designs recursive infinite impulse response (IIR) digital filters using a least
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Figure 5.15: Interpretable peaks and artificial added heavy isotope peaks looked
in frequency domain

squares fit to a specified frequency response:

[b, a] = yulewalk(n, f, m) (5.5)

The Yulewalk algorithm returns row vectors b and a containing the n+1

coefficients of the order n IIR filter whose frequency-magnitude characteris-

tics approximately match those given in vectors f and m: f is a vector of

frequency points, specified in the range between 0 and 1, where 1 corresponds

to half the sample frequency (the Nyquist frequency). The first point of f

must be 0 and the last point 1, with all intermediate points in increasing

order. Duplicate frequency points are allowed, corresponding to steps in the

frequency response. m is a vector containing the desired magnitude response
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Figure 5.16: Power spectrum of an MS/MS spectrum showing periodical am-
plitudes

at the points specified in f . f and m must be the same length. The Yulewalk

algorithm’s time complexity is not bound to the number of signals in MS/MS

spectra but on the size of frequency vector which is irrelevant compared to

the size of the spectrum.

Frequencies required by the Yulewalk algorithm are calculated by apply-

ing a median filter to the power spectrum (over 300-500 discrete data points,

see section 5.8) and by computing a second power spectrum (PSPS-graph)

in order to obtain the most prominent frequency of the first power spec-
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Figure 5.17: PSPS spectrum showing the periodicity of the first power spectrum

trum (PS-graph). The method of taking the most prominent frequency from

the PSPS-graph is called rigorous periodicity detection (including some bad

spectra detection). In some cases described in section 5.11.1, this periodicity

detection is not possible (absence of a clear maximum in the PSPS spectrum).

In such cases, a soft detection method can be used. Soft periodicity (and bad

spectra) detection consists of calculating the coefficient of dispersion (see the

section 5.11.1) for every frequency in the PSPS-graph and of selecting the

optimum.

With the calculated frequency of the power spectrum, the Yulewalk can

be performed. The result of the Yulewalk algorithm is a recursive IIR digital

filter [65, 67] described by the numerator and denominator coefficient vectors.

For each MS/MS spectrum, a new filter is created and a spectrum is filtered

in the time domain [67]. The time complexity of this operation is O(Zi ·N)

where N is the number of signals in the equidistant MS/MS spectrum and
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Zi is a vector of length max(length(a), length(b)) − 1. The coefficients a

and b are the numerator and denominator coefficients of the IIR filter (see

references [65, 67]). The length of Zi is much smaller than the size of an

MS/MS spectrum and it depends on the detected periodicity in the PS graph.

Applying the multi-band reject filter on an MS/MS spectrum reduces the

intensity of all signals in time domain. The most affected peaks are latent

periodic noise peaks (including isotope peaks). The peaks that have lost

on their intensity more than a user-defined value (for example 99.9%) are

marked for removal from the original spectrum (Figure 5.18).

Figure 5.18: Multiband-reject filter overlayed on the PS
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After filtering, the recovered MS/MS spectrum might contain some sig-

nals with negative intensity or some new signals with positive intensity. These

two types of signals are corrected to zero. Additionally, some signals oc-

curring with positive intensities both in the original raw spectrum and the

recovered spectrum have lost considerable intensity in the later (threshold of

95%; this number should be higher for very clean and regular spectra). The

result of applying the multi-band reject filter on the raw spectrum is shown

in Figure 5.19. The intensity decrement is different for each peak. Only

peaks that were periodical replicates have lost the most intensity (depicted

in green in Figure 5.19).

The peaks which have lost on intensity more than an empirically deter-

mined value (for example more than 99.99%) are marked for removal from

original MS/MS spectrum. Examination of exemplary spectra has shown

that suppression of latent periodicities in the MS/MS spectrum effectively

also removes peaks originating from heavy isotope peaks in isotope peak

clusters (Figure 5.19).

It should be noted that this algorithm is developed only for marking peaks

for deletion. A spectrum which has lost some frequencies in the PS can not

be used for further analysis, because by applying the multi-band reject filter

also the monoisotopic peaks have lost on the intensity as well. Transforming

the spectrum from frequency domain into time domain and comparison of

the decreased intensity mark the heavy isotope peaks. Marked peaks are

then deleted from the original spectrum (unmodified in the frequency do-

main), and this spectrum is then used for further processing and as a final

output. This is specially emphasized because a reader could get the impres-

sion that the spectrum modified in PS is used as final output. This would be

problematic since modifying PS causes modification on all peaks in the time
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Figure 5.19: An MS/MS spectrum before (blue) and after (red) applying the
multiband-reject filter. The percentage of decreased intensity for
each peak is shown in green

domain.

In some cases, PS-graphs of dta-files display several, overlaying modes of

periodicities. The respective PSPS-graphs have several maxima with similar

intensities. If the numerically largest maximum is at very low base frequencies

fB (e.g., there is only a few maxima in the PS-graph), the application of the

periodical multi-band filter with this fB can lead to severe damage of the

MS/MS spectrum. To avoid this problem, intensities in the PSPS-graph are

set to zero for low frequencies.

If it is not obvious which frequency to choose from PSPS, i.e. if there are

several frequencies visible with almost the same intensity, that spectrum is
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probably a bad spectrum and should not be sent to interpretation software.

Sometimes this rule doesn’t apply and the spectrum is still a good spectrum.

This problem is discussed in the section 5.11.1.

A simplified flow chart of the complete deisotoping procedure with rigor-

ous periodicity detection is shown in Figure 5.20.

Yulewalk

designs

recursive IIR
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using a least-
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Figure 5.20: Simplified schema of the algorithm “Deisotope spectrum”

The algorithm for soft periodicity detection defers from this one in the

way the periodicity is obtained from the PSPS spectrum. In the rigorous

method, the most prominent frequency is taken from the PSPS graph. In

the soft method, all frequencies are checked and the one is taken which has

the smallest coefficient of dispersion.

Deisotoping relies on spectra analysis in frequency domain. The signal is

transformed from the time domain into frequency domain by applying a Fast

Fourier Transform algorithm which has time complexity O(N logN) [72, 73].
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The next step is to calculate the power spectrum (PS)[56] from the signal

in frequency domain (in linear time). To investigate an existence of the PS

shift (low frequencies with low amplitudes), the PS graph was first smoothed

by applying a median filter (section 5.8). The smoothed PS was checked

for the frequency shift by calculating the coefficient of dispersion in linear

time. If the PS was shifted and the coefficient of dispersion was less than a

user defined value (for example ≈3Da) the spectrum was considered as a bad

spectrum. If the PS was shifted but the coefficient of dispersion was higher

than a user defined value that was an indicator that the periodicity could

not be calculated and no decision could be made about the quality of the

spectrum.

In order to estimate the periodical frequency amplitudes in the PS, a

second PS is calculated (PSPS) considering the PS signal as time domain

signal and transforming it into frequency domain. In the rigorous method

the periodicity of the PS was determined by the frequency with the highest

amplitude from the PSPS. In the case of the soft periodicity detection, a

dispersion coefficient has been calculated for all frequencies from the PSPS.

This extra layer of complexity did not significantly change the entire time

complexity of the algorithm because the number of detected frequency in

the PSPS was much lower that the number of points in the power spectrum

(highest values observed were 30-40).

The detected frequency periodicity in the PS graph was handed over to

the Yulewalk algorithm in the form of frequency and magnitude vectors. The

Yulewalk algorithm time complexity is not bound to the number of signals in

MS/MS spectra but on the size of frequency vector which is irrelevant com-

pared to the size of the spectrum. The result of the Yulewalk algorithm is a

recursive IIR digital filter [65, 67] described by the numerator and denomi-
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nator coefficient vectors. For each MS/MS spectrum, a new filter is created

and a spectrum is filtered in the time domain [67].

Detection and removal of latent periodical noise including isotope peaks

reduces the final number of peaks in an MS/MS spectrum and prevents false

interpretation of MS/MS spectra by an interpretation software (see results

chapter 7).

5.10 The Algorithm “Remove Random Noise”

Noisy MS/MS spectra suffer from many superfluous peaks densely distributed

over the whole mass-over-charge ratio range. These peaks are often the re-

sult of electronic noise produced by the mass spectrometer detection system.

Assuming that the random noise in an MS/MS spectrum exists as signals of

high frequency of occurrence, an IIR low-pass filter [66] can be applied to

the spectrum in time domain. A low-pass filter is a filter that passes low fre-

quencies well, but attenuates (or reduces) frequencies higher than the cut-off

frequency (Figure 5.21).

Figure 5.21: Low-pass filter specification

Because of the lack of information about random noise, in order to develop

an algorithm for random noise removal, several tests have been carried out
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with normalized stop frequency of the filter in the range from 0.5 to 0.9

(Figure 5.22). The best results were obtained with stop frequency 0.8 (see

the results section).

Figure 5.22: Low-pass filter with stop frequency 0.8

As in the case of multi-band reject filter, the application of the low-

pass filter reduces intensity of all peaks in a certain amount. An empirical

threshold of 99.99% of intensity decrease is applied to mark random noise

peaks. The signals which have lost intensity above this threshold are removed

from the raw spectrum (Figure 5.23).

It should be noted that the low-pass filtered spectrum was not used in

further analysis but only to detect and mark random noise peaks.

5.11 Bad Spectra Recognition

The MS/MS spectra consist mostly of background noise; typically, about

10% of the peaks in a spectrum contribute to the peptide identification and

only ≈1% of the spectra are recorded with signals from target protein frag-

ments. Thus, computer resources are mostly spent on analyzing irrelevant

data if the identification of the protein with significance is possible within

the background at all, a strategy that clashes with limited compute server
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Figure 5.23: An MS/MS spectrum before (blue) and after (red) applying the
low-pass filter. The percentage of decreased intensity for each peak
is shown in green

capacity in proteomics studies.

With the broad availability of accurate MS/MS instruments with res-

olution in the order of tenths of a Dalton, automatic background removal

procedures before interpretation software application became possible. In

this work, several bad spectra recognition strategies have been developed.

As described in the following subsections, all methods contribute to finding

bad spectra in different ways.
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5.11.1 Bad Spectra Recognition from

the Power Spectrum

The power spectrum analysis of MS/MS spectra in this work also indicated

a criterion that can be used for the identification of bad spectra that are

not useful for further study. Detection and removal of bad spectra saves

computational time for the spectra interpretation and possible false interpre-

tation results can be avoided. Two types of irregularities that coincide with

hard-to-interpret protein MS/MS spectra were observed:

(i) the first power spectrum can exhibit very low amplitudes for low fre-

quencies (the power spectrum is shifted),

(ii) finding the most prominent frequency in the second power spectrum can

be ambiguous (several similarly high peaks). In both cases, the cleaning

procedures for background removal cannot be straightforwardly applied

and, therefore, each mass spectrum is subjected to a routine check

during analysis.

With the base frequency derived from the second power spectrum (Fig-

ure 5.24), it is possible to compute the position of expected maxima and

minima in the first power spectrum (Figure 5.25). The calculated theoretical

maxima and minima have to be confirmed by the real data.

To check if the power spectrum is shifted it is necessary to determine

whether the real minima and maxima within periods are, on average, closer

to the expected positions or closer to the positions with the shift of half a

period. If the spectrum is shifted (i.e., if the sum of distances of real maxima

and minima from their expected positions is larger than to the positions with

a shift of half a period) away from the expected position of minima/maxima,
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Figure 5.24: Power spectrum shows sometimes non-ambiguous periodicity
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Figure 5.25: Theoretical calculated minima and maxima of the power spectrum
considering the highest peak in PSPS as the periodicity of the PS
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the procedure for deisotoping is halted. Unfortunately, large shifts in the

power spectrum away from expected minima/maxima often indicate bad

spectra. For making an appropriate decision, the periodicity of the spec-

trum is also tested with the coefficient of dispersion, a similarly elementary

criterion as the shift. The coefficient of dispersion (Cd) of peak distances in

the power spectrum, was calculated as the ratio of the standard deviation of

peak distances (s) to the mean value of peak distances (X̄).

Cd =
s

X̄
(5.6)

A Cd close to zero indicates good coincidence of distances between max-

ima (and, respectively, minima) of consecutive periods with the expected

distance (equal to the period length). Large values of Cd signal distorted

periodicity in the power spectrum and a periodicity model appears not ap-

plicable. Such spectra are returned to further processing without removal of

latent periodic noise. The large Cd values are in some cases the result of a

false estimation of the periodicity in the power spectrum. This is often the

case if a rigorous periodicity detection algorithm is used. The soft periodicity

detection algorithm yields less bad spectra because the main periodicity of

the PS spectrum is taken which has the lowest coefficient of dispersion.

The case of quasi-periodic but shifted spectra is more complicated. In

such a situation, if the coefficient of dispersion is not larger than 3.3 (an

empirically derived threshold), the algorithm predicts that the respective

MS/MS spectra cannot be reliably analyzed with interpretation software [30].

As will be shown below, spectra flagged with this criterion are indeed not

well interpretable even with database search-based software (i.e., no protein

hits are found or only hits with very low reliability).
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In rare cases, the suppression of very low frequencies in the PSPS-graph

leads to incorrect base frequency determination (fB that is too high) and,

consequently, to apparently shifted spectra. These few spectra marked as

non-interpretable are false-positively rejected and represent part of the price

for automatically cleaning large-scale MS/MS measurements from background

with spectral methods as described here.

5.11.2 Bad Spectra Recognition with SNR

Although a certain amount of bad spectra could be detected with the method

described above, this method alone is not sufficient. The bad spectra found

were really non-interpretable spectra with very low false positive rate. The

problem with the method is that only a few percent of all bad spectra could

be detected. Three other methods were developed and tested. In this section,

signal-to-noise ratio (SNR) is described.

To characterize a spectrum by its SNR, we need to know what is the

signal and what is the noise in the spectrum. In some other signal processing

problems, the frequency of the noise signals is mostly already known. In the

case of MS/MS spectra, this information is not available. To calculate the

SNR for MS/MS spectra, the signal and noise fraction had to be defined.

This method is based on the peaks intensity in an MS/MS spectrum. High

intensity peaks are considered as true peaks, and lower intensity peaks as

noise. It is not possible to define an apsolute intensity threshold for all

spectra. Instead of defining a threshold, a percentage of high intensity peaks

is defined as true signal, and a percentage of low intensity peaks is defined as

noise. For a given percentage of noise and peak signals in MS/MS spectrum,

two numbers were calculated for each spectrum:

n Number of peaks declared as signal peaks
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m Number of peaks declared as noise peaks

Now, the signal-to-noise ratio can be calculated as follows:

SNR = 10 · log10

Seff

Neff

[db] (5.7)

where:

Seff =
1

n
·

n
∑

i=1

Intensity2
i (5.8)

Neff =
1

m
·

m
∑

i=1

Intensity2
i (5.9)

It was expected that good spectra should have much higher SNR values

than non-interpretable spectra. An example of the SNR distribution cal-

culated for 2376 MS/MS spectra of ADH probe (see results chapter 7) is

presented in the Figure 5.26.

The next task is to derive parameter values for the SNR threshold, the

percentage of the noise in spectrum and the percentage of the signal. Table

4.1 shows results of experiments with BSA data. Different signal percentages

were assumed and for each of them SNR was calculated for every spectrum

from a set of 2680 BSA spectra. Separately from this calculation, SNR was

calculated only for the subset of interpretable files among all files (SNRmin).

Setting the SNR threshold to SNRmin, it was possible to extract 200 to 350

bad spectra from set of 2680 spectra. Compared to the previous method,

this method found 20 to 60 new bad spectra. The results are shown in the

table 4.1.

Although Mascot could not interpret spectra marked as non-interpretable
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Signal
[%]

SNRmin
[db]

SNR
Cut-Off

Bad
spectra
detected

Mascot
could

interpret

New bad
spectra
detected

10 17.2 17.15 220 0 26
20 17.75 17.7 257 0 36
30 18.84 18.8 317 0 52
40 19.18 19.15 337 0 54
50 19.39 19.35 346 0 56
60 19.43 19.4 339 0 53
70 19.43 19.4 324 0 49
80 19.53 19.5 319 0 47
90 19.84 19.82 332 0 49

Table 5.1: Signal-to-noise tests dependent on the given signal percentage. In
the first column is listed the given percentage of signal peaks in the
spectrum. The second column lists the smallest SNR values of inter-
pretable spectra. The third column lists chosen SNR cut-off values
in order to remove all bad spectra with SNR below this value. The
fourth column shows how many bad spectra could be detected with
this method. The fifth column lists the number of spectra with SNR
below the SNR cut-off which could be interpreted by Mascot. The last
column contains the number of spectra that could be recognized only
with this method and not with the method described in section 5.11.1



CHAPTER 5. ALGORITHMS 79

Figure 5.26: Signal-to-noise ratio distribution found in several thousand MS/MS
spectra

spectra with this method, the number of detected non-interpretable spectra

is still small.

5.11.3 Bad Spectra Detected by Signal Entropy

As possible criteria for bad spectra detection, the weighted and non-weighted

entropy value was calculated for every MS/MS spectrum.

Weighted entropy:

Ew = −
n

∑

i=1

Pi ln(Pi) (5.10)

Non-weighted entropy:
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Figure 5.27: Weighted and non-weighted entropy of interpretable and non-
interpretable spectra

Ew = −
n

∑

i=1

ln(Pi) (5.11)

With Pi defined as:

Pi =
Intensityi

∑n

i=1 Intensityi

(5.12)

The results of this experiment are presented in Figure 5.27. The figure

shows that some spectra could be successfully marked as bad spectra if an ap-

propriate threshold was chosen. Several data sets with thousands of spectra

were analysed but no uniform rule could be derived.
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Implementation

6.1 Computer Program “MS Cleaner”

The algorithms and methods developed during this thesis were implemented

in a computer program called “MS Cleaner”. The program is developed

with Microsoft Visual Studio 2005 integrated developement enviroment in

C++ programming language. It runs on a single Windows PC as well as

on a Linux cluster. A copy of the program is available for free download at:

http://mendel.imp.ac.at/mass-spectrometry/.

The Windows version is a multithreaded application consisting of 3 com-

ponents (Figure 6.1):

(i) User interface,

(ii) Main program,

(iii) Library of MS handling functions (MSManager),

(iv) Library of DSP functions (DSPLib).

The user interface and main program were implemented in one exe-

81
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«executable»

MSCleaner

«library»

MSManager

«library»

DSPLib

Figure 6.1: MSCleaner component diagram

cutable file, while the libraries were developed as separate dynamic linked

libraries. The user interface was implemented as an MFC (Microsoft Foun-

dation Classes) Windows application.

The two libraries were developed as COM (Component Object Model)

objects.

Interfaces and functions of the “MSManager” COM object are:

1. IImportMSMS interface

• ImportSequestDTA(const char* pchPathName, CDta& dta)

- This function imports MS/MS spectra in dta format (see subsec-

tion 6.1.1).

• ImportNextDtaFromMGF(CStdioFile& fPos, CDta& dtaOut)

- The function imports single dta files from an mgf file.

• ImportFinniganASC(char* pchPathName)

- The function imports MS/MS spectra from Finnigan raw files.
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2. IConvertMSMS interface

• RawToMgf(CString strRAW, CString strMGF, CXRawFileEx*

pRawFile, Raw2MgfParams* pRP, CEvent* pKillEvent, CWnd*

pWnd)

- The function converts Finnigan raw files into mgf files.

• RawToDta(CString strRAW, CString strExportPath, CXRawFileEx*

pRawFile, Raw2MgfParams* pRP, std::list<std::string>& lstrD-

tams, std::list<std::string>& lstrDtams2, std::list<std::string>&

lstrDta, CEvent* pKillEvent, CWnd* pWnd)

- The function converts mgf files into dta files.

• DtaToMgf(const std::list<std::string>* plstDtaFileNames,

std::string strExportPath,

CEvent* pKillEvent, CWnd* pWnd)

- The function converts dta files into mgf files.

• MgfToDta(std::string strMGF, std::string strExportPath, CEvent*

pKillEvent, CWnd* pWnd)

- The function converts mgf files into dta files.

3. IExportMSMS interface

• ExportDTA(const char* pchPathName, const CDta* pDta, int

nCommas = 2)

- The function exports cleaned MS/MS spectra into dta files.

• ExportDTAintoMGF(CStdioFile& fMGF, const CDta* pDta, int

nCommas = 2, std::string strMGF = “”)



CHAPTER 6. IMPLEMENTATION 84

- The function exports cleaned MS/MS spectra into mgf files as a

collection of dta files.

4. IEditMSMS interface

• MakeEqDist(double dDistance, CDta& dtaToDense)

- This is an implementation of the algorithm “Make Equidistant

Spectrum” (section 5.4).

• DenseSpectrum(int nChargeToCheck, CDta* pDtaDensed)

- This is an implementation of the algorithm “Dense Spectrum”

(section 5.6).

• MergePeaks(CDta* pDta, double dLowestDistance)

- This is an implementation of the algorithm “Merge Peaks” (sec-

tion 5.3).

• DeconvoluteMultiCharge(CDta* pDtaDensed,

const std::vector<PeakIter>* pvPeaksMultiCharged,

const CIntensityDistrib* pID, bool bCreateLog,

CStdioFile* pfLog, std::vector<Peak>* pvPeaksToAdd)

- This is an implementation of the algorithm “Deconvolute Spec-

trum” (section 5.7).

5. ICleanMSMS interface

• CleanSpectra(const CleanSpecParams* params)

- This is a generic function for cleaning of MS/MS spectra in all

three formats.

• CleanSequestDTA(const CleanSpecParams* params)
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- This is a function for cleaning of MS/MS spectra in dta format.

• CleanMGF(const CleanSpecParams* params)

- This is a function for cleaning of MS/MS spectra in mgf format.

• CleanRAW(const CleanSpecParams* params)

- This is a function for cleaning of MS/MS spectra in Finnigan raw

format.

6. IAnalyzeMSMS interface

• FindPeakClusters(const CDta* pDta, CDta* pDtaDensed,

int nChargeOfPeakCluster, CIntensityDistrib* pID, double dMinR,

std::vector<PeakIter>* pvFoundPeaksMultiCharged)

- The function scans for isotope peaks clusters according to the

charge state supplied by the parameter “nChargeOfPeakCluster”.

• CheckSeqLadder(const CDta* pDta, int nLeastSeqTagNumber,

double dMassTolerance, int nSLIntPercentage,

bool& bSeqTagsFound)

- The function returns “true” if a sequence ladder of length “nLeast-

SeqTagNumber” was found (section 5.2).

• CheckSNR(const CDta* pDta, double& dSNR)

- This function returns signal-to-noise ratio for defined percentage

of signal and noise peaks (section 5.11.2).

Interfaces and functions of the “DSPLib” COM object are:

1. IDSPLib interface

• Filter(const dVect* pvdB, const dVect* pvdA, const dVect* pvdX,

dVect* pvdZi, dVect* pvdY)
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- This function filters data with an infinite impulse response (IIR)

or finite impulse response (FIR) filter.

• Convolute(dVect* pvdA, dVect* pvdB, dVect* pvdC)

- This function performs convolution and polynomial multiplica-

tion.

• Deconvolute(dVect* pvdA, dVect* pvdB, dVect* pvdQ, dVect*

pvdR)

- This function performs deconvolution and polynomial division.

• DFour(std::vector<double>* pvdData, unsigned long nn,

std::vector<std::complex<double>> * pvcFFT)

- This function performs discrete Fourier transform.

• DIFour(std::vector<double>* pvdData, unsigned long nn,

std::vector<std::complex<double>>* pvcIFFT);

- This function performs inverse discrete Fourier transform.

• PowerSpectrum(std::vector<std::complex<double>>* pvcFT, dVect*

pvdPS, double& dPSMeanOut)

- This function calculates power spectrum of a given signal.

• MedianFilter(const dVect* pvdPS, unsigned long nSignalSize, un-

signed long nFilterSize, dVect* pvdPSMedFiltered, double* pdMean)

- The function implements the algorithm “Median Filter” described

in section 5.8.

• EigenValue(double* pdNxNMatrix, int nN,

std::vector<std::complex<double>>* pvcEigenValue)

- The function returns a vector of the eigenvalues of a given matrix.
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• Roots(std::vector<double>* pvdCoeff,

std::vector<std::complex<double>>* pvcRoots)

- This function returns a column vector whose elements are the

roots of a given polynomial.

• Poly(std::vector<std::complex<double>>* pvcCoeff,

std::vector<std::complex<double>>* pvcPoly)

- This function returns a row vector whose elements are the coeffi-

cients of the polynomial whose roots are the elements of a given

vector.

• PolyStab(std::vector<double>* pvdCoeff, std::vector<double>*

pvdPolyStab)

- The function finds the roots of the polynomial and maps those

roots found outside the unit circle to the inside of the unit circle.

• Toeplitz(std::vector<double>* pvdC, std::vector<double>* pvdR,

std::vector<double>* pvdT)

- The function returns a nonsymmetric Toeplitz matrix T having

“pvdC” as its first column and “pvdR” as its first row.

• FreqResponse(const std::vector<double>* pvdB,

const std::vector<double>* pvdA, long int lnSize,

std::vector<std::complex<double>>* pvcH)

- The function returns the complex frequency response (Laplace

transform) of an analog filter.

• InverseMatrix(std::vector<double>* pvdA, int nNxNMatrixOrder,

std::vector<double>* pvdInvA)

- The function returns the inverse of a given square matrix.
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• MatrixMultiplication(std::vector<double>* pvdA, int nOrderA,

std::vector<double>* pvdB, int nOrderB,

std::vector<double>* pvdResult)

- The function multiplicates two given matrices.

• MatrixDivision(std::vector<double>* pvdA, int nOrderA,

std::vector<double>* pvdB, int nOrderB,

std::vector<double>* pvdResult)

- The function divides two given matrices.

• Yulewalk(int nOrderSize, std::vector<double>* pvdFrequency,

std::vector<int>* pvnMagnitude, std::vector<double>* pvdB,

std::vector<double>* pvdA)

- This function designs recursive IIR digital filters using a least-

squares fit to a specified frequency response.

• LowPassFilter(CLowPassFilter::BandStopFreq w,

const std::vector<double>* pdIn,

std::vector<double>* pdOut)

- The function returns a lowpass filter with a desired cutoff fre-

quency “w” in normalized frequency (Nyquist frequency = 1 Hz).

The Linux cluster version does not have user interface. The main program

and all functions are compiled in one executable file.

6.1.1 Input Data

The spectra cleaning and pre-processing developed in this work is a practice-

oriented solution which allow large scale analysis of real data from MS labs

suitable to be incorporated in the existing protein analysis before the MS
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data are sent to interpretation software. Data supported for processing are

in the following formats:

(i) dta files,

(ii) mgf files and

(iii) raw files.

Dta files are text files describing a single MS/MS spectrum. Dta files

contain precursor mass (floating comma value) and intensity (integer value)

in the first row. All other rows in the file contain m/z and intensity values

(as floating comma values).

Mgf files are text files with multiple MS/MS spectra, mostly all dta files

from an MS analysis merged together.

Raw files are binary data in Thermo Finnigan format containing all MS

and MS/MS spectra as well as all relevant parameters used for the experi-

ment.

MS Cleaner supports input and conversion between these three file for-

mats. As output only dta and mgf files are supported.

6.1.2 User Interface

User interface of the program “MS Cleaner” is implemented as Dialog based

Windows application. Dialog box and options tabs are shown in figures 6.2,

6.3, 6.4.

Parameters and control elements of the program are:

• Data files (string) - This list box displays the input data files to be

cleaned.
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• Export cleaned spectra into directory (string) - This edit box displays

the directory into which the cleaned spectra will be saved.

• Options (boolean) - Clicking this button opens and closes a form al-

lowing user to change the basic, internal and spectra extraction param-

eters.

• Default - A button to reset all parameters to their default values.

• Help - Clicking this button invokes a Help document.

• Start - This button starts the cleaning procedure.

• Close - This button closes the dialog box and quits the program.

• Create log file (boolean) - Selecting this check box will result in gen-

eration of log file, which for each spectrum records the results of the

cleaning procedure.

• Deconvolution of multi-charged peaks (boolean) - If selected, the pro-

gram detects multi-charged isotope peak clusters according to the cho-

sen Deconvolution threshold.

• Deisotoping (boolean) - If selected, the program detects singly-charged

isotope peak clusters according to the chosen Deisotoping threshold.

• Random noise removal (boolean) - If selected, the program removes

random noise from the spectrum according to the Random noise thresh-

old.

• Check for sequence ladder (boolean) - When this option is selected, the

program inspects each MS/MS spectrum for a series of peak spacing
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with m/z values corresponding to amino acids mass (with mass toler-

ance value of the Mass tolerance parameter). The user can define the

length of the sequence ladder in the accompanying-box (values in the

range 3 to 5 are recommended).

• Do only data conversion (boolean) - Selecting this check box will result

in perorming only a data files conversion from raw files without starting

the cleaning procedure.

• Merge output mgf files (boolean) - Selecting this check box will result

in merging all output mgf files into a single file.

• Determines bad spectra handling (array of bool values) - Selecting the

first option will leave spectra designated as “bad” in the “cleaned”

output directory. Using this option doesn’t separate bad spectra from

remaining files. Selecting the second option creates two sets of out-

put file(s):cleaned files (minus the bad spectra), and bad spectra files.

Selecting the third option deletes the bad spectra from the output files.

• Merge peaks (boolean) - If selected, the program merges together peaks

that are closer than the Least Peaks Spacing value.

• Least peaks spacing (double) - Specifies the least allowed spacing be-

tween peaks for the Merge peaks algorithm of the program.

• Median filter (integer) - Specifies how many signals are taken for me-

dian filtering of the power spectrum.

• Deisotoping filter width (double) - Specifies the deisotoping filter width.

• Max PS frequency (integer) - Specifies the maximum allowed frequency

of the power spectrum.
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• Sequence ladder length (integer) - Specifies the sequence ladder length

for the Check sequence ladder algorithm.

• Sequence ladder intensity (integer from 0 to 100) - Specifies a percent-

age of the most intensity peaks to include in the Check sequence ladder

algorithm.

• Rigorous detection of bad spectra (bool) - This mode is used to find

the highest possible number of bad spectra and reduce the amount of

data as much as possible. Although some spectra are bad, they can

still be interpreted by a database search program. With this option,

removal of bad spectra can lead to a lower sequence coverage, but a

higher confidence in the interpretation.

• Soft detection of bad spectra (bool) - Using this option, fewer bad spec-

tra will be identified. This mode is used if a high sequence coverage is

more important than data reduction.

• Deisotoping threshold (integer from 0 to 100) - The deisotoping pro-

cedure reduces the intensity of the potential isotope peaks. If the de-

crease in intensity is greater than this threshold value, the intensity of

the peak will be set to zero.

• Deconvolution threshold (integer from 0 to 100) - The deconvolution

procedure detects multi-charged peaks if the correlation coefficient is

higher than this value.

• Random noise filter (double) - This is the stop frequency for the low

pass filter used for random noise removal.

• Random noise threshold (integer from 0 to 100) - This filter reduces the
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intensity of random noise peaks. If the decrease in intensity is greater

than this value, the intensity is set to zero.

• Mass tolerance (double) - Mass tolerance taken into account during the

sequence tag determination.

• FT MS (bool) - Indicates that input data were produced by an FT MS

instrument.

• LTQ (bool) - Indicates that input data were produced by an LTQ MS

instrument.

• LCQ (bool) - Indicates that input data were produced by an LCQ MS

instrument.

• MW range from, to (two integer values) - Specifies m/z range of pre-

cursor ions.

• Threshold (absolute, relative) - Specifies an intensity threshold of pre-

cursor ions.

• Minimum ion count (integer) - Specifies a min number of peaks that

an MS/MS spectrum needs to have.

• Separate MS2 from MS3 (boolean) - This option is meaningful only if

a “raw” file contains MS3 spectra as well.

• Convert ’.raw’ files to ’.dta’ (’.mgf’)) (boolean) - Specifies the output

file format.
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6.2 Other Tools Developed

Two other tools were developed to analyze the MS/MS spectra.

6.2.1 Tool for Creating Theoretical Fragment Ions from

Protein Sequences “DigestIt”

In many cases, the mass spectrometry is not used to identify protein in the

probe but to examine the characteristics of an already identified protein. The

best example is the analysis of protein post-translational modifications. If

the protein is known, the first question of importance would be: what spectra

are expected to be found in the set of all MS/MS spectra. To avoid manual

creation of fragment ions, a tool was developed to automatically perform

that task. As input, the program needs a protein sequence in text format,

known modification on the protein and the enzyme used for the digestion.

Predefined lists of modifications and enzymes can be extended by creating

or modifying new modifications or enzymes. The tool is especially useful

in the case of analysing post-translational modifications on proteins where

sequences cannot be identified by database search programs.

6.2.2 MS Fragmentation Viewer

Low energy collision induced dissociation causes fragmentation mainly across

the peptide bond. The peptide bond energy is different between amino acids

and the difference should be represented in MS/MS spectra. Studying the

distribution of fragment ions in the spectrum is the first step toward creating

reliable scoring function for any MS/MS spectra interpretation software. For

this purpose, a fragmentation viewer was developed displaying intensity dis-

tribution of different ion types in MS/MS experiments. The program takes
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interpretation results from Mascot and calculates different fragment ions and

counts their occurrence in the interpreted data (Figure 6.6).
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Figure 6.2: User interface of “MS Cleaner” with “Basic Options” tab selected
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Figure 6.3: User interface of “MS Cleaner” with “Internal Options” tab selected
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Figure 6.4: User interface of “MS Cleaner” with “Spectra Extraction Options”
tab selected
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Figure 6.5: Computer program “Digest It” developed as a tool to examine ex-
pected precursor ions in MS and MS/MS spectra
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Figure 6.6: Computer program “MS fragmentation viewer” developed as a tool
to examine the distribution of fragment ions in the spectrum



Chapter 7

Experimental Results

7.1 General Considerations for Testing Pro-

cedures for Background Removal in Tan-

dem Mass Spectra

In the ideal world, background removal algorithms would be parameterized

and tested against a large library of MS/MS spectra where the different types

of all noise (e.g., multiply charged peaks, isotope clusters, random noise,

etc.) are explicitly annotated in electronically readable form and the rates of

true- and false-positive detection of various noise types can be directly com-

puted. Unfortunately, such a library was not available during this research

effort and its creation is beyond the scope of this work. The background re-

moval algorithms were validated implicitly. The automated interpretation of

MS/MS spectra with MASCOT has become a virtual standard in proteomics

laboratories; therefore, the MASCOT-generated interpretations both for the

original MS/MS spectra and the spectrum versions after the application of

our background removal procedure were compared. Discrepancies between

101
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both interpretations can be automatically detected in large-scale tests of real

datasets and summarized by computer programs. The parameters described

above have been selected to achieve a minimum of cases of accidental removal

of peaks that are relevant for interpretation by MASCOT in large-scale tests.

Two sets of large scale tests have been performed during this work. The

first test was aimed to clean interpretable spectra; to improve sequence cov-

erage by increasing quality of peptide spectra that could not be interpreted

before cleaning; to increase the score of peptide spectra by removing back-

ground peaks and transforming heavy isotope peaks (singly and multiply

charged) into singly charged monoisotopic peaks.

The second set of large scale tests was performed in order to find as many

as possible bad spectra reducing on that way the total computational time

of the following interpretation step.

7.2 Tests on Improvement of the Quality of

Interpretable Spectra

Results of background removal in MS/MS spectra obtained with 100 fmol

BSA, ADH and TRF. To test the MS Cleaner in practical large-scale ap-

plications, MS/MS spectra from protein samples with known composition

were used. Such spectra of well known proteins such as BSA, ADH or

TRF are regularly produced for the purpose of quality control of MS in-

strumentation with low concentrations (for example 100 fmol). Original

and cleaned spectra as well as supplementary tables that show changes of

scores of leading peptide hits are available at the associated WWW-site

(http://mendel.imp.ac.at/mass-spectrometry/).

The respective dta-files were merged to generate a single mgf-file (Mascot
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generic format) using the merge.pl program (Matrix Science). This original

mgf-file was then processed using the MS Cleaner program, using the default

internal parameters, generating two new mgf-files with cleaned and bad spec-

tra respectively. All three mgf-files were used to perform Mascot MS/MS

Ions Searches (Matrix Science). In the case of BSA, ADH, and TRF, the

non-redundant protein sequence database was used (as of 15th of December,

2005). In the case of the condensin sample, the identification of posttrans-

lational phosphorylations was the original task. Therefore, the search was

initially performed against a small curated protein database (146 sequences;

68753 residues), which includes components of the condensin, cohesin, and

kinetochore complexes, as well as some common contaminants and trypsin, in

the case of the condensin sample. Additionally, searches against all human as

well as against all proteins in the non-redundant database were carried out.

It should be noted that the Mascot score for recovering the original proteins

tend to be the higher, the smaller the database due to reduced sequence

background; thus, the search with the small database of 146 sequences is

the more stringent condition compared with searches in the non-redundant

database. The Mascot search parameters were the same in all runs (enzyme:

trypsin; fixed modifications: carbamidomethyl (Cys); variable modifications:

oxidation (Met); peptide charges: 1+, 2+ and 3+; mass values: monoiso-

topic; protein mass: unrestricted; peptide mass tolerance: 2 Da; fragment

mass tolerance: 0.8 Da; max. missed cleavages: 1). The Mascot search

results output html-file was formatted with standard scoring, a significance

threshold of p¡0.05, and an ion score cut-off for each peptide of 30.

The results of applying the background removal procedure are summa-

rized in Table 7.2, and Table 7.2. First, it is evident that protein hits are

found from the cleaned MS/MS spectra with considerably increased scores.
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This is evident for the total protein score (between 10% and 15%, see Ta-

ble 7.2). Scores improve for the majority of all leading peptide hits (about

70%, see Table 7.2). A decrease is observed for about 10% of the cases but

did not affect the interpretation except of one case (see below). In general,

the likelihood of retrieving the sample protein and the sequence coverage

improve (see Table 7.2). This conclusion is in line with the logics of MS/MS

spectra interpretation schemes such as Mascot: The MS Cleaner-based back-

ground removal decreases the number of peaks considerably. Therefore, the

number of alternative (including false-positively hit) protein sequences that

might fit a given spectrum reduces and the scores of the top hits against the

alternatives naturally improve.

MS/MS spectra considered non-interpretable by our procedure are in-

deed bad spectra. In only one out of 626 cases was the original protein

recovered by Mascot. Here, Mascot assigned a score of 64 (see Table 7.2 and

also data and figures at mendel.imp.ac.at/mass-spectrometry/falsepositive-

partA.html). Visual inspection of the spectrum revealed almost no significant

peaks above background. This single artifact of rejection by MS Cleaner is

a result of the suppression of low frequencies in the PSPS-graph and would

disappear with a slightly reduced threshold. In contrast, there are a consid-

erable number of spectra (about 10%) that become interpretable for Mascot

only after background removal with our procedures (5 for BSA, 1 for ADH,

8 for TRF, see Table 7.2). An example is shown in Figure 7.1. Figure 7.1-A

represents an original MS/MS spectrum of 100 fmol BSA (abscissa: m/z in

Da, ordinate: relative intensity; totally 373 peaks). Background peaks that

have been removed by MS Cleaner are shown in blue (83), other peaks are

shown in red (290). Figure 7.1-B is Mascot interpretation of the cleaned

spectrum (as peptide sequence LVTDLTK). The spectrum is shown with as-
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Search dta-files Score Match Cov (%)

BSA
Raw spectra 2679 1844 65 51
Cleaned spectra 2484 2094 70 56
Bad spectra 195 195 n/a n/a

Yeast ADH
Raw spectra 2325 536 24 29
Cleaned spectra 2060 594 25 29
Bad spectra 265 n/a n/a n/a

Human TRF
Raw spectra 2608 1643 61 41
Cleaned spectra 2442 1846 65 44
Bad spectra 166 64 1 2

Table 7.1: Influence of background removal on the recovery of BSA, ADH, and
TRF in MS/MS spectra of 100 fmol test samples. The MS/MS spec-
tra were interpreted with MASCOT directly (“raw spectra”) and after
processing with the background removal procedure (“cleaned spec-
tra”) described in this article. The “score” is the MASCOT score
from all successful searches; “match” is the number of searches that
recover the peptides from the protein used. “cov (%)” reports the
sequence coverage. The line “bad spectra” reports the number of files
that are considered not “interpretable” by the criterion described in
the text (n/a - not applicable). Only in one case could MASCOT
recognize a peptide from the original protein in a bad spectrum that
is visually also of low quality.
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BSA ADH TRF

Total peptide hits 70 25 68
Scores increased 47 18 48
Scores unchanged 5 4 3
Scores decreased 13 2 6
Hits only after cleaning 5 1 8
Hits lost after cleaning 0 0 3

Table 7.2: Changes of scores of leading peptides in MASCOT searches as a result
of background cleaning (summary digest of Supplementary tables at
the website http://mendel.imp.ac.at/mass-spectrometry/)

signment of b- and y-ions and the table representing the sequence ladder.

Out of the 373 peaks in the spectrum, 83 are recognized as background and

are removed. As a result, Mascot was no longer confused and was able to

assign a full y-series and many b-ions. Although all procedures described

in this work are essential for various aspects of background reduction, they

contribute differently from the quantitative point of view.

As can be seen from the data in Table 7.2.2, the spectral-analytic criteria

(removal of latent periodic and high-frequency noise) are most efficient in

reducing the background since their share among the removed peaks is above

90%. In the BSA, ADH and TRF applications, about 15% of all peaks in the

original spectra get removed by our program and the file storage requirement

is reduced by the same amount. The computational performance of MS

Cleaner was tested on a stand-alone PC (Intel(R) Pentium(R) Processor,

2.4GHz, 1GB RAM, Windows XP operating system).

For the BSA case, 2679 dta-files were cleaned in 4:52 min (0.11 sec per

spectrum). The Mascot time on the same machine reduced from 64 min (for

the untreated data) to 57 min (cleaned files). The respective numbers for

ADH (2325 files) and TRF (2608 files) are 5:36 (0.14 sec per file), 75, 64 and
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Figure 7.1: Example of a spectrum that was only interpretable after background
removal
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4:15 (0.10 sec per file), 58, 50 (all values in minutes). Thus, savings of com-

putational costs are considerable under the condition of increased reliability

of spectrum interpretation.

7.2.1 Detailed Analysis of MS Cleaner’s Removal of

Multiply Charged Peaks in the dta-Files of the

BSA Set

It was interesting to check whether the multiply charged peaks assigned by

Mascot are detected by the program MS Cleaner. After having manually

analyzed the whole BSA dataset, we found only two peaks interpreted as

doubly charged by Mascot that had also a remnant isotope cluster (in the

dta-file 369.369.2, see supplementary data at http://mendel.imp.ac.at/mass-

spectrometry/beforeafterBSA.htm). For this spectrum, MS Cleaner revealed

7 doubly charged clusters. Two of them (at m/z=315.70 and 320.30) include

the two doubly charged peaks found by Mascot. The other five are composed

of noise peaks. It should be noted that spectral procedures (as a rule, the

algorithm for high frequency noise removal) mark many low intensity peak

clusters (comparable with the five latter ones) as noise, too. As discussed

above, MS/MS measurement accuracy and scanning speed on many instru-

ments prevent the detection of isotope clusters in many cases. The algorithm

for detecting multiply charged clusters will work the better, the more accurate

the spectra are recorded (as in the new generation of Fourier-Transformation

instruments) and the more complete isotope clusters are represented in the

data.
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7.2.2 Application of the Background Removal to the

Condensin Dataset

It should be noted that, in the latter example of BSA, ADH and TRF, low

concentrations of proteins are intentionally applied to achieve limiting cases

of mass spectra. The analysis of the condensin complex mass spectra is a

more biologically relevant application. For this purpose, condensin complexes

from cultured human HeLa cells were purified and analyzed. Human cells

contain two distinct condensin complexes, called condensin I and condensin

II, which bind chromosomes specifically in mitosis and contribute to their

condensation and structural integrity [68, 69, 70, 71]. Both complexes are

hetero-oligomers composed of five subunits. Two ATPase subunits of the

structural maintenance of chromosome (SMC) family, called Smc2 and Smc4,

are shared between condensin I and condensin II. In addition, each complex

contains a set of distinct non-SMC subunits, called kleisin-γ [70], CAP-G

and CAP-D2 in the case of condensin I, and kleisin-β [70], CAP-G2 and

CAP-D3 in the case of condensin II. Both complexes were immunopurified

simultaneously using antibodies to their common Smc2 subunit and analyzed

the resulting sample both by SDS-PAGE and silver staining (Figure 7.2) and

by in-solution digest followed by LC-MS/MS. Silver staining revealed bands

that correspond to Smc2, Smc4 and to all six non-SMC subunits that are

present in condensin I and condensin II. The MS/MS spectra were processed

using the MS Cleaner.

All three datasets, the original, the cleaned and the bad spectra, were

used to perform a Mascot MS/MS Ions Searches against a small and curated

protein database as well as against the non-redundant protein database (all

proteins and all human proteins).

A summary of the Mascot search results for this experiment is shown in
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Figure 7.2: Quality of the condensin complex purification. SDSPAGE silver-
stained gel of the purified human condensin complexes. The bands
were previously identified by Yeong et al. [58]. This result confirms
the purity of the complex obtained in the experiment.
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Table 7.2.2. In the first the case of searching the small database consisting of

146 sequences was considered. Each of the eight condensin subunits showed

an increase in Mascot score (mean increase of 8.2%), and number of peptide

matches (mean increase of 4.8%) following the cleaning procedure.

As a rule, the percentage of sequence coverage obtained was the same or

higher for searches using the cleaned spectra than for those using the original

spectra. The only exception from this list was kleisin-β , which showed a 2%

reduction in the sequence coverage after cleaning. Closer inspection revealed

that this reduction was due to a single peptide match generated by a single

MS/MS spectrum that visually appears of low quality (see data and figures at

http://mendel.imp.ac.at/mass-spectrometry/falsepositive-partB.html). This

MS/MS spectrum has very few significant peaks above the baseline, and is

classified as “non-interpretable” by the MS Cleaner. We found out that

this artifact is a result of low frequency suppression in the PSPS-graph and

could be avoided with a slightly reduced threshold fBT = 12. However, the

Mascot program generated a match between this spectrum and the peptide

QGEVLASR (within kleisin-β). It was classified as a hit with a Mascot score

of 45, although the majority of the peaks that contributed to the assignment

are very small and the most significant peaks do not contribute to this inter-

pretation. Thus in this case, the removal of just a single non-reliable peptide

during the cleaning process resulted in a small reduction in sequence cover-

age, although the Mascot score for the protein as a whole was increased as a

result of background removal.

It should be noted that all cases of peptide detection by Mascot in spectra

classified as “non-interpretable” by MS Cleaner (14 out 1318 dta-files) lead

to low scores with marginal sequence coverage by Mascot when there are

very few significant peaks above an apparent noise. Changing to Mascot
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Protein Raw Cleaned Increment Bad
Score Match Cov(%) Score Match Cov(%) Score(%)Match(%)Cov(%) Score(%)Match(%)Cov(%)

(A)
Smc4 3768 329 57 4125 341 64 9.5 3.6 12.3 98 2 1
CAP-D2 3637 182 65 4038 195 69 11.0 7.1 6.2 33 1 1
Smc2 2957 219 55 3239 231 57 9.5 5.5 3.6 201 4 4
CAP-D3 2627 104 42 2772 108 43 5.5 3.8 2.4 n/a n/a n/a
CAP-G 2554 106 55 2678 110 55 4.9 3.8 0.0 200 3 3
CAP-G2 1992 82 44 2255 86 50 13.2 4.9 13.6 154 3 6
Kleisin-γ 1843 78 61 1979 84 63 7.4 7.7 3.3 n/a n/a n/a
Kleisin-β 1245 45 69 1306 46 67 4.9 2.2 -2.9 45 1 1
(B)
Smc4 4829 416 62 5188 424 64 7.4 1.9 3.2
CAP-D2 4411 229 66 4818 241 68 9.2 5.2 3.0
Smc2 4054 300 61 4436 312 64 9.4 4.0 3.8
CAP-D3 3134 118 43 3329 125 45 6.2 5.9 3.9
CAP-G 2850 117 51 3014 120 52 5.8 2.6 1.5
CAP-G2 2553 106 50 2760 110 51 8.1 3.8 1.8
Kleisin-γ 2158 94 61 2300 96 61 6.6 2.1 0.7
Kleisin-β 1446 48 65 1573 49 65 8.8 2.1 -0.8
(C)
Smc4 4502 321 59.860 4865 328 62 8.1 2.2 3.4
CAP-D2 4176 192 64.954 4590 204 67 9.9 6.3 2.5
Smc2 3747 246 59.733 4137 255 62 10.4 3.7 3.4
CAP-D3 2862 100 53.695 3060 104 54 6.9 4.0 1.5
CAP-G 2453 76 24.860 2627 81 25 7.1 6.6 2.5
CAP-G2 2239 163 39.463 2500 165 41 11.7 1.2 3.4
Kleisin-γ 1892 146 34.005 2167 149 36 14.5 2.1 5.9
Kleisin-β 1043 31 45.785 1104 31 46 5.9 0.0 1.4

Table 7.3: The MS/MS spectra were interpreted with MASCOT directly (“raw
spectra” from 53 944 dta files, total size 460 MB) and after processing
with the background removal procedure (“cleaned spectra” from 52
626 dta files, total size 284 MB) described in this article. The “score”
is the MASCOT score from successful searches; “match” is the number
of searches that recover the peptides from the protein used. “cov
(%)” reports the sequence coverage. We present the results of three
searches: (A) against the database of 146 proteins, (B) against the
human proteins in the nonredundant database and (C) against all
proteins in the nonredundant database. The columns “bad spectra”
report cases of files (among 1318 dta files, total size 7 MB) that are
considered not interpretable by the criterion described in the text (n/a
- not applicable) where MASCOT could, nevertheless, recognize the
original protein in a database of 146 proteins but with a low score.
Cov., Coverage.
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searches against larger databases leads, as a trend, to even more dramatic

improvements of scores and sequence matches (Table 7.2.2). In the case of

the full non-redundant protein sequence database, there is even an increase of

sequence coverage for kleisin-β after background removal with our procedure

because Mascot was unable to assign a match to several noisy spectra against

the extensive sequence background of the largest database.

In a practical setup, the computational efficiency is also important. MS

Cleaner processed the 53944 spectra from the condensin experiment in less

than 4 hours on a single standard PC; i.e., in 0.25 seconds per file. However,

the application of our background removal procedure reduces the pure Mascot

computing time for the body of 53944 dta-files in the condensin complex case

by about 25%, even in the case of a small database of 146 sequences; the size

of the cleaned mgf-file is decreased by 39%. Therefore, application of the MS

Cleaner significantly reduces consumption of computing time and storage.

7.2.3 Comparison Between Mascot Distiller and MS

Cleaner

There are no tools for background removal in peptide MS/MS spectra readily

available in the public domain. Among commercial programs, only Mascot

Distiller is explicitly devoted to this task. From the scientific point of view, a

correct comparison of Mascot Distiller with our tool is not possible, because

the algorithms used in commercial Mascot Distiller have not been properly

described in public and the reasons for differential performance of the two

programs cannot be causally interpreted. Table 7.2.3 shows the results of

application of the two programs on the BSA-, ADH- and TRF-datasets.

Whereas Mascot Distiller produces mixed results with respect to the score

and sequence matches (one increase, two decreases), our program increases
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Protein Raw Mascot Distiller MS Cleaner
Score Match Score Match Time Score Match Time

BSA 1844 65 1565 44 7:40 2094 70 3:58
ADH 536 24 612 15 6:48 594 25 2:34
TRF 1643 61 1532 38 5:48 1846 65 3:23

Table 7.4: The MS/MS spectra for BSA, ADH, and TRF were interpreted with
MASCOT directly (“raw spectra”) and after processing with MAS-
COT Distiller and with the background removal procedure described
in this article (“MS Cleaner”). The “score” is the MASCOT score
from all successful searches; “match” is the number of searches that
recover the peptides from the protein used. The processing time is
presented in min:sec. The performance of the procedure described in
this article is superior compared with that of MASCOT Distiller with
respect to score, and number of correct sequence matches. In addi-
tion, it consumes only 50% time on an identical computer with the
same operating system environment.

the score and the number of matches in all three cases. At the same time,

the computation time is only about 50% of that from Mascot Distiller. In

the case of the larger condensin dataset, Mascot Distiller did not complete

computation regularly and interrupted with a run-time error. As was shown

above, application of our software improved the interpretability of the con-

densin dataset.
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7.3 Tests on the Detection of Large Number

of Non-Interpretable Spectra Using Se-

quence Ladder Length and Peak Inten-

sity Threshold

Detection of non-interpretable spectra within MS Cleaner is carried out by

two independent procedures. The Fourier-transform-based algorithm de-

scribed in section 5.11.1 recognizes only a small number of bad spectra (below

1% of the total raw spectra). The sequence ladder test (see section 5.2) is

highly efficient in removing non-interpretable spectra as the results described

below convincingly show. For its practical application, it is necessary to de-

termine two parameters. For the estimation of their optimal values, a sys-

tematic analysis on more than 270 000 of spectra was performed. Sequence

ladder length was tested with values between 2 and 6; and intensity threshold

ranges from 5% to 35%.

The results of a parameters subset are presented in Table 7.3 and Ta-

ble 7.3. According to the expectations, the number of detected bad spectra

increased with increasing sequence ladder length and decreasing intensity

threshold (TableTable 7.3). The removal of bad spectra by the sequence lad-

der test decreases Mascot computation time with almost unchanged sequence

coverage. Mascot scores increase due to the significance of the interpretation

result obtained from a smaller set of peaks within the spectra.

To detect most of the bad spectra and save the interpretation time, the

parameters are suggested as shown in the Table 7.3. With sequence ladder

length equal 4 and intensity threshold of 20%, it is possible to eliminate

up to ≈90% of all spectra (in average ≈65%) by declaring them as non-
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interpretable spectra. The minor sequence coverage loss observed in only a

few cases (BSA and ADH in TableTable 7.3) doesn’t affect the interpretation

result.

In the cases of small datasets (BSA, ADH and TRF), it was possible to

run Mascot on a single-processor PC as standalone application and to mea-

sure the total computation time for interpretation (Table 7.3). The data

shows that the interpretation time narrows up to only ≈20% of the original

computation time if the intensity threshold 20% is applied. For the remain-

ing larger datasets, computation was only possible on a larger Linux cluster

in parallel calculation with other jobs; thus, the exact determination of the

computation time required was not possible. Since the reduction of com-

putation time required by Mascot is roughly proportional to the number of

MS/MS spectra to be interpreted and the size of the dataset in bytes, we

think that the savings of computation time for the other datasets are in the

same order of magnitude.

It can been seen in Table 7.3 and Table 7.3 that the number of spectra

classified as non-interpretable depends on severity of the parameters “se-

quence ladder length” and “intensity threshold”. Nevertheless, even more

relaxed parameters settings compared with the parameter pair (4; 20%) show

considerable background removal capability. Therefore, if the sequence cov-

erage is more important than computational time savings, softer parameters

can be chosen with intensity threshold of 25%.

The columns A1-A16 from Table 7.3 have the following meaning:

A1 Name of the mass spectrometric dataset,

A2 Number of MS/MS spectra,

A3 Mascot Score obtained before background removal with MS Cleaner,
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Protein Sequence
ladder
length

Intensity
threshold

[%]

Cleaned
spectra

Bad
spectra

MS
Cleaner

time
[min]

Mascot
time
[min]

Mascot
score

Queries
matched

Sequence
coverage

BSA 0 100 - - - 61 586 89 55
3 100 1664 1015 3.92 44 720 91 57
3 15 390 2289 1.21 17 1991 84 52
3 20 490 2189 1.40 21 2108 87 57
3 25 601 2078 1.61 26 2114 89 57
3 30 688 1991 1.75 29 2114 90 57
4 100 940 1739 3.80 36 2108 91 57
4 15 260 2419 0.91 12 1875 78 47
4 20 321 2358 1.06 14 1911 80 47
4 25 380 2299 1.25 18 2114 86 57
4 30 441 2238 1.30 19 2114 89 57
5 100 593 2086 3.82 26 2108 91 57
5 15 174 2505 0.60 9 1579 60 41
5 20 232 2447 0.85 11 1809 72 44
5 25 281 2398 1.00 13 1963 81 49
5 30 313 2366 0.85 14 2058 86 54

ADH 0 100 - - - 64 242 39 39
3 100 1446 879 4.15 45 327 34 39
3 15 269 2056 0.88 12 673 29 35
3 20 347 1978 1.10 13 696 31 37
3 25 440 1885 1.33 17 697 32 37
3 30 697 1628 1.53 20 697 33 37
4 100 902 1423 4.15 35 733 34 39
4 15 173 2152 0.58 7 562 26 28
4 20 216 2109 0.71 9 673 30 35
4 25 271 2054 0.90 12 607 28 33
4 30 325 2000 1.05 13 697 32 37
5 100 594 1731 4.20 23 712 33 39
5 15 94 2231 0.35 5 311 15 21
5 20 125 2200 0.46 6 366 17 25
5 25 145 2180 0.53 7 434 19 26
5 30 186 2139 0.66 9 589 24 31

TRF 0 100 - - - 52 588 86 47
3 100 1587 1021 3.57 42 768 87 49
3 15 373 2235 1.00 17 1988 86 49
3 20 485 2123 1.23 20 1988 86 49
3 25 568 2040 1.36 24 1998 87 49
3 30 639 1969 0.78 27 1998 87 49
4 100 864 1744 3.62 34 1973 87 49
4 15 231 2377 0.70 11 1987 81 49
4 20 298 2310 0.86 13 1988 84 49
4 25 360 2248 1.00 16 1988 85 49
4 30 414 2194 1.12 19 1998 87 49
5 100 540 2068 3.63 23 1973 87 49
5 15 164 2444 0.55 9 1785 68 45
5 20 194 2414 0.61 10 1890 74 47
5 25 245 2363 0.75 12 1957 80 48
5 30 286 2322 0.86 14 1968 84 48

Table 7.5: Influence of background removal on the recovery of MS/MS spectra of 100 fmol test samples. The
original number of MS/MS spectra for the BSA, ADH and TRF datasets are 2679, 2325 and 2608
respectively. The intensity threshold (column 3) describes the search of the sequence ladder (column
2) within the 15%, 20%, 25% or 30% top peaks (100% - all peaks are considered). The following three
columns show the MS Cleaner output - number of spectra with background removal, of unselected
spectra and the MS Cleaner CPU time on a single-processor Windows XP computer (Pentium IV 2.4
GHz, 1G RAM). The remaining four columns present the MASCOT output - the CPU time on the same
machine, the protein score, the number of matching spectra and the final sequence coverage. For each
dataset, the first line shows the results for the case when MS Cleaner is not used for pre-processing and
the MS/MS data is immediately interpreted by MASCOT.
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

BSA 2679 586 55 64.91 2108 57 3.80 88.02 1911 47 1.06 85.82 2114 57 1.25
ADH 2325 242 39 61.20 733 39 4.15 90.71 673 35 0.71 88.34 607 33 0.90
Transferin 2608 588 47 66.87 1973 49 3.61 88.57 1988 49 0.86 86.20 1988 49 1.00
AlphaAmyl-col1 10108 633 24 11.30 667 24 31.65 60.07 667 24 15.13 51.09 667 24 18.07
AlphaAmyl-col2 10184 698 35 9.82 780 35 34.20 50.22 780 35 19.05 20.25 780 35 22.76
AmylGlu-col1 10030 736 28 13.26 761 28 28.40 79.24 761 28 8.66 73.58 761 28 10.63
AmylGlu-col2 9870 801 36 13.31 860 37 29.50 72.62 860 37 11.70 63.95 860 37 14.29
Apo-col1 10032 2606 63 11.72 2814 63 30.76 63.10 2814 63 13.93 54.49 2814 63 16.78
Apo-col2 10090 2571 60 12.13 2761 60 32.95 53.12 2761 60 17.53 44.32 2761 60 21.03
BetaGal-col1 10324 1459 56 7.17 1567 57 34.98 48.06 1567 57 22.05 40.53 1567 57 24.60
BetaGal-col2 10368 1309 51 8.12 1508 56 36.71 42.90 1454 55 24.76 33.10 1454 55 28.61
CarAnly-col1 9946 586 49 12.35 616 49 26.35 90.31 573 49 3.65 84.94 607 49 5.48
CarAnly-col2 9534 582 52 13.40 616 52 26.27 86.07 616 52 5.08 78.44 616 52 7.66
Cat-col1 10098 1798 61 11.13 1886 61 30.88 67.26 1879 61 13.13 57.89 1879 61 16.50
Cat-col2 10034 1567 65 11.78 1693 65 31.90 59.50 1693 65 15.91 48.55 1693 65 19.56
PhosB-col1 10118 2780 59 10.30 3079 61 35.13 63.49 3014 60 14.26 54.46 3047 61 17.25
PhosB-col2 10096 2655 61 10.52 3116 65 32.58 53.96 3084 65 17.58 44.31 3116 65 21.16
GluDey-col1 10006 892 36 11.29 986 36 27.30 79.55 986 36 7.75 73.42 986 36 9.71
GluDey-col2 9886 850 34 11.81 962 34 28.73 72.51 962 34 10.13 62.25 962 34 13.51
GluTra-col1 10022 351 25 10.36 389 25 28.61 71.64 348 25 10.25 62.78 389 25 14.30
GluTra-col2 10156 341 33 9.18 384 33 31.31 61.15 384 33 14.25 49.59 384 33 28.11
Immo-col1 10330 506 35 9.27 565 35 36.20 42.30 565 35 24.95 34.44 565 35 27.66
Immo-col2 10334 356 66 8.61 500 66 38.05 37.06 500 66 27.31 28.47 500 66 30.31
LacDe-col1 10286 1549 58 10.36 1694 58 35.36 53.20 1694 58 20.03 44.86 1694 58 23.15
LacDe-col2 10250 1346 54 9.07 1483 54 36.48 40.16 1483 54 25.60 31.67 1483 54 28.31
LactoPee-col1 10242 1613 45 13.16 1764 45 34.78 62.12 1756 45 15.91 52.37 1764 45 19.53
LactoPee-col2 10402 1679 43 9.09 1890 44 35.18 51.70 1890 44 20.31 41.76 1890 44 23.85
Myo-col1 9958 561 66 11.67 594 66 27.26 85.42 594 66 5.46 79.25 594 66 7.45
Myo-col2 9744 530 66 12.15 584 66 28.01 80.83 584 66 6.95 70.92 584 66 10.35

Table 7.6: Large scale testing of the sequence ladder test as implemented in MS
Cleaner.

A4 Sequence Coverage before background removal with MS Cleaner

[% of original target sequence length],

A5 Non-interpretable spectra detected when applying the sequence

ladder length 4 and the intensity threshold 100% [% of the number of

MS/MS spectra in column A2],

A6 Mascot Score found when applying the sequence ladder length 4

and the intensity threshold 100%,

A7 Sequence Coverage found when applying the sequence ladder length

4 and the intensity threshold 100% [% of original target sequence length],

A8 MS Cleaner computation time [min] when applying the sequence

ladder length 4 and the intensity threshold 100%,

A9 Non-interpretable spectra detected when applying the sequence



CHAPTER 7. EXPERIMENTAL RESULTS 119

ladder length 4 and the intensity threshold 20% [% of the number of MS/MS

spectra in column A2],

A10 Mascot Score found when applying the sequence ladder length 4

and the intensity threshold 20%,

A11 Sequence Coverage found when applying the sequence ladder

length 4 and the intensity threshold 20% [% of original target sequence

length],

A12 MS Cleaner computation time [min] when applying the sequence

ladder length 4 and the intensity threshold 20%,

A13 Non-interpretable spectra detected when applying the sequence

ladder length 4 and the intensity threshold 25% [% of the number of MS/MS

spectra in column A2],

A14 Mascot Score found when applying the sequence ladder length 4

and the intensity threshold 25%,

A15 Sequence Coverage found when applying the sequence ladder

length 4 and the intensity threshold 25% [% of original target sequence

length],

A16 MS Cleaner computation time [min] when applying the sequence

ladder length 4 and the intensity threshold 25%.
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MS/MS dataset Raw data Intensity
threshold

100%

Intensity
threshold

20%

Intensity
threshold

25%

BSA 61 36 14 18
ADH 64 35 9 12
TRF 52 42 20 24

Table 7.7: Computation time required for the interpretation of MS/MS datasets
with Mascot. In this table, the computation time consumed by Mascot
(min) is contrasted for the case of interpreting the untreated data
(column 2) with the cases of application of the sequence ladder test
with sequence ladder length 4 and varying intensity thresholds.



Chapter 8

Conclusions

In this work, it was shown that it is possible to recognize a considerable

amount of background noise in tandem mass spectra of peptides. First of all,

spectra that are non-interpretable as amino acid sequences can be filtered out

with the sequence ladder test. Large scale testing over mass spectrometry

datasets of proteins show that this criterion effectively removes about 65%

of the spectra as non-relevant for protein identification. Spectra that contain

important peptide information still comprise large quantities of noise peaks.

Cases of multiply charged isotope clusters can be recognized with an etalon-

correlation method if the data is accurately recorded. Then, the isotope

cluster can be removed and substituted by correct monoisotopic peak with

single charge level. Spectral analysis methods known from the signal pro-

cessing theory can effectively be used to eliminate oddities in the frequency

spectrum of the MS/MS spectrum (latent periodicities and high-frequency

components) and, in this way, remove a considerable number of non-relevant

peaks. In average, spectra are reduced by one quarter in size.

This processing of peptide MS/MS spectra positively affects protein iden-

tification. Not only does the procedure essentially not lead to any loss of

121
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information, interpretation success rate and reliability is improved in many

cases.

The program MS Cleaner, the implementation of the algorithms described

in this work, is suggested to be used as routine pre-processing procedure in

mass spectrometric applications in the proteomics field.

The results of this work have partially been published in an article of the

journal “Protemics” [33].
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