
D I P L O M A T H E S I S

Planar quad meshes from relative principal
curvature lines

Institute of

Discrete Mathematics and Geometry
Vienna University of Technology

supervised by o.Univ-Prof. Dr. Helmut Pottmann

Author:

Alexander Schiftner

Hustergasse 9/10, 1140 Wien

Date Signature

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Abstract

This thesis proposes a technique for the approximation of surfaces by PQ meshes. These
are meshes with planar and mostly quadrilateral faces. Relative differential geometry
is used for the generation of conjugate curve networks. It is well known that a discrete
choice of curves from these networks naturally leads to meshes with quadrilateral faces,
which are in turn planarized using optimization algorithms. The possibility to choose
a convex object, defining the relative differential geometry, gives rise to bounding the
minimum intersecting angle of conjugate curves from below. This is a requirement for
practical applications. Methods from convex geometry and Fourier analysis on the unit
sphere are utilized to allow an interactive layout of the conjugate curve networks. This
is followed by a discussion of the possibility to influence singularities in the conjugate
curve networks, and consequently in the resulting PQ meshes. In a new approach,
non-flat isotropic subdomains can be given an anisotropy, which is a replacement for
the smoothing techniques introduced in recent papers on quad-dominant meshing. Fi-
nally, examples from architecture are used for demonstrating the capabilities of these
techniques.
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Kurzfassung

In dieser Diplomarbeit wird ein Verfahren zur Approximation von Flächen mit PQ
Netzen vorgestellt. PQ Netze bestehen aus planaren und hauptsächlich viereckigen
Flächenstücken. Relative Differentialgeometrie wird dazu benutzt um konjugierte Kur-
vennetze zu erzeugen, welche auf natürliche Weise zu Netzen mit viereckigen Flächen-
stücken führen. Die Flächenstücke werden danach mit Hilfe von Optimierungsmethoden
planarisiert. Durch die Wahl einer entsprechenden konvexen Fläche, welche die relative
Differentialgeometrie definiert, kann der minimale Schnittwinkel konjugierter Kurven
nach unten beschränkt werden. Dies ist eine Forderung, die in praktischen Anwendun-
gen auftaucht. Methoden der konvexen Geometrie, sowie der Fourieranalyse auf der
Einheitssphäre, werden dazu verwendet um die Erzeugung von konjugierten Kurven-
netzen interaktiv vorzunehmen. Darauf folgend wird beschrieben wie Singularitäten in
den konjugierten Kurvennetzen, und dadurch auch in den resultierenden PQ Netzen,
beeinflusst werden können. Darüber hinaus können isotrope Teilbereiche wie anisotrope
behandelt werden. Dies führt zu einem Ersatz der Glättungstechniken, die in kürzlich
erschienenen Veröffentlichungen zur Erzeugung von Vierecksnetzen vorgestellt wurden.
Schlussendlich werden die Möglichkeiten der untersuchten Methoden an Beispielen aus
der Architektur demonstriert.
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Preamble

The topic of this thesis was motivated by architecture. Architects commonly use freeform
surfaces in their designs. These freeform surfaces are used for modelling roofs, walls or
other components of buildings. Meshes arise in a natural way in the construction of
such surfaces, because of constraints depending on the material used. As an example
consider a roof built from glass, which can not be produced of arbitrary shape and size.
Moreover a supporting structure carrying the roof is needed.

The use of quadrilateral meshes in the construction of freeform surfaces is motivated
by different aspects. First of all stands aesthetics of a construction. Quadrilateral faces
naturally define two distinguished directions, which can be used to emphasize the shape
of a surface. Another aspect is the cost of a construction. Consider the supporting
structure for a roof made of quadrilaterals respectively triangles. Less faces will meet
in the vertices of the supporting structure when using quadrilaterals. In addition, if the
quadrilaterals and triangles are of similar diameter, less quadrilaterals will be needed
for covering the surface. Planarity of the faces arises as a further matter of cost.

There are various approaches for the construction of planar quad meshes. For example
one can start from a polygonal boundary of a surface by successively cutting and glueing
pieces of wooden plates. In contrast, the approach described in this thesis starts from a
given freeform surface. Exploiting the geometry of this surface, one wants to construct
an approximating planar quad mesh. The question addressed in this thesis is, how
relative differential geometry can be applied to this approach.

vii



1 Introduction

Given a surface, one wants to generate an approximating mesh consisting of planar
quadrilateral1 faces. Such meshes are commonly called PQ meshes. A mesh consisting
of mainly quadrilateral faces could be generated by joining neighbouring faces of an
isotropic triangular mesh, resulting in a mesh that does not reflect the geometry of the
approximated surface. The planarity of the quadrilaterals leads to meshes that can be
seen as discrete counterparts of so-called conjugate curve networks on a surface, this will
be explained in section 4.1. PQ meshes thus reveal the underlying geometry and are
anisotropic in general. In practice this will lead to the need of allowing not only quads
but also some triangles or planar n-sided polygons (n-gons) in the resulting PQ mesh.

In [2] and [26] investigation has been done in quad-dominant meshing using principal
curvature lines, which form a special conjugate curve network. The authors do not focus
on planarity, but this can be addressed by the methods described in [23]. PQ meshes
from principal curvature lines are also of interest from artistic and psychological view-
points, see [14]. A disadvantage of using principal curvature lines for the generation of
PQ meshes lies in the fact that they are uniquely determined on most surfaces. A lack
of flexibility is the consequence. The generalization of differential geometry to relative
differential geometry leads to relative principal curvature lines, which form conjugate
curve networks as well2. A lot of flexibility is gained by the possibility to choose a spe-
cific relative differential geometry.

The thesis is structured as follows:

• Chapter 2 gives a short introduction to differential geometry, focussing on what
will be needed throughout the thesis and providing a consistent notation. In the
second section the concepts of relative differential geometry are motivated and
summarized.

• Chapter 3 shortly describes how discrete surfaces can be represented by meshes.
The surfaces which one starts from are usually given by triangular meshes and thus
not differentiable, which leads to the nontrivial task of defining and computing
curvature. This chapter also shortly addresses the method used for curvature
computation within the accompanying software.

• Chapter 4 describes how to generate quad meshes approximating a surface using
relative principal curvature lines. It addresses the difficulties of this step and
explains how one can gain PQ meshes from quad meshes.

1“Quad” will be used as a short form of quadrilateral.
2This will be described in section 2.2. See [29] for another application of relative differential geometry.
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1 Introduction

• Chapter 5 shows two types of representations that were used for the relativesphere
defining the relative differential geometry. Details regarding the calculation of
curvature specific to the type of representation are given. Furthermore a method
for prescribing curvature at certain points of the relative sphere is described, which
is an important tool for influencing the resulting conjugate curve network.

• Chapter 6 describes important and critical details of the implementation in the
accompanying software.

• Chapter 7 shows and discusses results for some freeform surfaces from architecture.

• Chapter 8 concludes and describes issues that were found to be of interest for
further investigation.
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2 Relative Differential Geometry

2.1 Basics from Differential Geometry

This section gives a brief summary of basic facts from differential geometry. The fo-
cus will be on two-dimensional embedded surfaces S ⊂ R3. In the following a single
parametric representation

x : D ⊂ R2 → V ⊂ S ⊂ R3 : u ∈ D 7→ x(u) ∈ S (2.1)

of an open subset V ⊂ S will be used to define geometric objects or properties like
tangential space, normal vector, curvature and so forth. These objects can be shown to
be independent of a specific parameterisation by defining S in an appropriate way. In
this chapter S is required to be a regular surface (for a definition of regular surface and
further details see [12]). This basically means that S can locally be parametrized by
diffeomorphisms as defined in 2.1.

2.1.1 Tangent Space

The partial derivatives of the parameterisation x shall be denoted by x,1 and x,2, their
evaluation at a surface point1 p = x(q), q ∈ D by xp,1 and xp,2. At a given point p ∈ S
they span the tangent space Tp(S) of S at p, which will be considered as a subspace of

R3. Partial derivatives of higher order will be denoted analogously: x,ij := ∂2

∂i∂j
x. x,1

and x,2 clearly depend on x and are called an associated basis to x. Note that Tp(S)
does not depend on x. The regularity of S ensures that the dimension of Tp(S) is two
for all p ∈ S. The union of all tangent spaces2 of S is called the tangent bundle TS.

2.1.2 First Fundamental Form

Let R3 be equipped with the Euclidean scalar product, which will be denoted by 〈., .〉.
As the tangent spaces Tp(S) are subspaces of R3, a scalar product can be defined in
them by restricting 〈., .〉 to Tp(S)×Tp(S). This bilinear form is called first fundamental
form of S in Euclidean space.

Consider the parameterisation x. The functions E := 〈x,1, x,1〉, F := 〈x,1, x,2〉,
G := 〈x,2, x,2〉 are called the associated coefficients of the first fundamental form. If
vectors v, w ∈ Tp(S) are given by their coordinate vectors (v1, v2), (w1, w2) with respect
to the associated basis, then 〈v, w〉 = v1w1E + (v1w2 + v2w1)F + v2w2G.

1Throughout this chapter p and q will be used as defined here.
2This is not a strict definition, see e.g. [12] or [3].
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2 Relative Differential Geometry

2.1.3 Differentiability

A function f : V ⊂ S → R defined on an open subset V of S is called differentiable at
p ∈ V , if f ◦ x : D ⊂ R2 → R is differentiable at x−1(p), f is called differentiable if it is
differentiable at all p ∈ V . Differentiability of higher order is defined analogously. The
notation f ∈ Ck(V, R) will be used for a k-times differentiable f .

This definition can easily be extended to functions mapping from S to another regular
surface R ⊂ R3, which shall be parametrized by y. A function g : V ⊂ S → R, defined
on an open subset V of S, is called differentiable at p ∈ V , if y−1 ◦ g ◦x : D ⊂ R2 → R2

is differentiable at x−1(p). Moreover g is called differentiable if it is differentiable at all
p ∈ V , which will be denoted by g ∈ Ck(S,R). The regularity of S ensures that these
notions of differentiability do not depend on the parameterisation x.

Using the concept of tangent spaces, the differential of a mapping g between two
regular surfaces can be defined as follows:
Given a vector v ∈ Tp(S) there is a curve c : (−ε, ε) → S : t 7→ c(t) = x(u1(t), u2(t))
such that c(0) = p and c′(0) = v. The mapping g gives a curve g ◦ c : (−ε, ε) → R with
(g ◦ c)(0) = g(p) ∈ R and (g ◦ c)′(0) = w ∈ Tg(p)(R). The vector w does not depend
on the choice of c and thus a mapping dgp : Tp(S) → Tg(p)(R) can be defined, which is
clearly linear.

If one considers the case R = R the tangent space Tg(p)(R) can be identified with R
and thus the differential is a linear form on Tp(S). The tangent space Tp(S) equipped
with 〈., .〉 is a Hilbert space, which implies that there is a unique w ∈ Tp(S) such that
∀v ∈ Tp(S) : dgp(v) = 〈v, w〉. This vector will be denoted by ∇0

pg and is called the
gradient of g with respect to S. The coordinates ti of this vector in the associated basis
are given by

∂

∂i

g(x) = dgp(x,i) = 〈∇0
pg,x,i〉 = ti〈x,i, x,i〉. (2.2)

If g : S 7→ R is given as the restriction of a g̃ : R3 7→ R onto S, then the following
relation holds for the conventional gradient ∇g̃ and ∇0g in a point p ∈ S:

∇0
pg = πp(∇pg̃). (2.3)

Here πp denotes the orthogonal projection onto Tp(S).

2.1.4 Normal Vector and Orientation

Given a point p ∈ S, the unit normal vector3 at p is defined by

np :=
xp,1 × xp,2

||xp,1 × xp,2||
(2.4)

Note that this definition depends on the parameterisation x. Depending on the orien-
tation of the associated basis x,1, x,2 the normal vector changes its sign. The definition

3In the following the phrase normal vector will always refer to unit normal vector.
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2 Relative Differential Geometry

(2.4) shows that the Gaussian map is locally differentiable (for a single parameterisa-
tion). If S can not be covered by a single parameterisation, it might be that the mapping
p 7→ np (also called the unit normal vector field) can not be extended differentiably to
all of S. An example for this case is a Möbius strip.

In contrast, a regular surface S is called orientable if it permits a globally differentiable
unit normal vector field. An orientable surface with a chosen unit normal vector field is
called oriented. This gives rise to the so-called Gaussian map:

Definition 2.1 (Gaussian Map). The gaussian map n of an oriented regular surface S
is defined by

n : S → S2 : p 7→ np, (2.5)

where S2 ⊂ R3 denotes the unit sphere.

It has to be kept in mind that this global definition still depends on the choice of an
orientation. The orientability of S just guarantees that an orientation can be chosen,
but there are still two possibilities to choose from.

2.1.5 The Second Fundamental Form and Normal Curvature

Further inspection of the differential of the Gaussian map will finally lead to the notion
of curvature. The differential of the Gaussian map dnp at p ∈ S maps from Tp(S) to
Tnp(S

2). It is also referred to as shape operator or Weingarten map. As the unit normal
vector to a n ∈ S2 equals n, these two tangent spaces are parallel and can be identified.
Thus dnp can be considered as a mapping of TpS onto itself:

dnp : Tp(S) → Tp(S) (2.6)

The most important property of dnp is:

Proposition 2.2. The differential dnp : Tp(S) → Tp(S) of the Gaussian map is a self
adjoint linear mapping.

Proof. We have to show that ∀v, w ∈ Tp(S) : 〈dnp(v), w〉 = 〈v, dnp(w)〉. As dnp is
linear, it suffices to show that for a basis of Tp(S), e.g. for xp,1 and xp,2.

We write np,1 and np,2 for the partial derivatives of np analogously to xp,1 and xp,2.
Then it is easy to see that dnp(xp,1) = np,1 and dnp(xp,2) = np,2. Thus it suffices to
show that 〈np,1, xp,2〉 = 〈np,2, xp,1〉 holds.

This can be accomplished by differentiating the identities 〈np, xp,1〉 and 〈np, xp,2〉 in
the second and first components respectively:

∂

∂2

〈np, xp,1〉 = 〈np,2, xp,1〉+ 〈np, xp,12〉 = 0

∂

∂1

〈np, xp,2〉 = 〈np,1, xp,2〉+ 〈np, xp,21〉 = 0

As xp,12 = xp,21 one gets

〈np,1, xp,2〉 = −〈np, xp,12〉 = 〈np,2, xp,1〉

5



2 Relative Differential Geometry

From the linear mapping dnp : Tp(S) → Tp(S) being self adjoint, one can directly
deduce that dnp has an orthonormal basis of two eigenvectors e1, e2 ∈ Tp(S), corre-
sponding to real eigenvalues −k1,−k2. We will now give a geometric meaning to these.

Remark. Without loss of generality we assume k1 ≥ k2. The sense of reversing the sign
of the eigenvalues will become clear in proposition 2.5.

Definition 2.3 (Second Fundamental Form). The bilinear form

Πp : Tp(S)× Tp(S) → R : (v, w) 7→ −〈dnp(v), w〉 (2.7)

is called second fundamental form of S at p.

Consider the parameterisation x. The functions L := Πp(x,1, x,1), M := Πp(x,1, x,2),
N := Πp(x,2, x,2) are called the associated coefficients of the second fundamental form.
If vectors v, w ∈ Tp(S) are given by their coordinate vectors (v1, v2), (w1, w2) with respect
to the associated basis, then

Πp(v, w) = v1w1L + (v1w2 + v2w1)M + v2w2N. (2.8)

Differentiating the identities 〈np, xp,i〉 as in the proof of proposition 2.2, one can derive
the following formula for the coefficients:

Πp(xp,i, xp,j) = −〈dnp(xp,i), xp,j〉 = −〈np,i, xp,j〉 = 〈np, xp,ji〉

= 〈 xp,1 × xp,2

||xp,1 × xp,2||
, xp,ji〉 =

1

||xp,1 × xp,2||
det(xp,1, xp,2, xp,ji). (2.9)

Definition 2.4 (Normal Curvature). Let c be a regular curve on S parameterized by
its arc length and passing through p ∈ S. The curvature of c in p shall be denoted by k,
its tangent and normal vectors by t and nc respectively4. It holds that t′ = knc. The
normal curvature of the curve c at p is defined by kn = k〈nc

p, np〉. It can be interpreted
as the curvature of the curve obtained by projecting c onto the normal plane to S along
tp, which is spanned by np and tp.

Remark. The sign of kn depends on the choice of orientation of S.

Proposition 2.5. Let c be a regular curve as above. For the normal curvature of c in p
it holds that kn = Πp(tp, tp).

Proof. We use the identity 〈np, tp〉 = 0 to get

〈n′
p, tp〉+ 〈np, t

′
p〉 = 0

Now a straightforward calculation shows

Πp(tp, tp) = −〈dnp(tp), tp〉
= −〈n′

p, tp〉
= 〈np, t

′
p〉

= 〈np, knc
p〉 = kn

4Without loss of generality c shall be parameterized by its arc length, which implies ||t|| = 1.
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2 Relative Differential Geometry

This proposition implies that the normal curvature only depends on the tangent vector
of a curve.

Corollary 2.6 (Meusnier). All curves on S passing through p ∈ S with the same tangent
vector tp ∈ Tp(S) share the same normal curvature.

Given a v ∈ Tp(S) with ||v|| = 1 it can be uniquely be expressed as

v = 〈v, e1〉e1 + 〈v, e2〉e2 = cos φe1 + sin φe2

for some φ ∈ [0, 2π). The normal curvature of curves on S passing through p with
tangent vector v is

kn = Πp(v, v) = −〈dnp(v), v〉
= 〈k1 cos φe1 + k2 sin φe2, cos φe1 + sin φe2〉
= k1 cos2 φ + k2 sin2 φ

This shows that k1 and k2 are the extremal values of the normal curvature at p ∈ S.
These extremal values of normal curvature are attained by curves passing through p
with tangent vectors e1 and e2 respectively.

Definition 2.7 (Principal Curvatures). k1 and the k2 are called principal curvatures,
the corresponding directions given by e1 and e2 are called principal directions.

The product of the principal curvatures is called Gaussian curvature K := k1k2. It
is obvious that it is equal to the determinant of the Weingarten map: K = det(dnp).
Points p ∈ S are classified regarding the sign of Gaussian curvature. For K > 0, K =
0, K < 0 they are called elliptic, parabolic, hyperbolic respectively. A point is called flat
if k1 = k2 = 0.

Definition 2.8 (Curvature Tensor Field). The mapping that assigns to each p ∈ S the
linear mapping −dnp on Tp(S) is called curvature tensor field.

The curvature tensor field is a second order symmetric tensor field5. It determines two
orthogonal eigenvector fields e1 and e2 and two corresponding scalar fields k1 and k2.
Without loss of generality we will consider the eigenvectors as normed. Notice that the
eigenvectors are still only defined up to their sign, consequently the eigenvector fields do
not possess a specific direction, as opposed to vector fields.

The degeneracies that can occur in the curvature tensor field, which are of great
interest, will be defined in the following.

2.1.6 Umbilic Points

Consider a point on a plane or on a sphere. In these cases k1 = k2 and the differential
of the Gaussian Map is just a multiple of the identity I: dnp = k1I. This means that
the principal directions are not uniquely defined. These points will be of special interest
later on. This gives rise to the following definition:

5For an introduction to tensor fields see [19].
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2 Relative Differential Geometry

Definition 2.9 (Umbilic point). A point p ∈ S with k1 = k2 is called umbilic point.

A connected subset of S that contains umbilic points only, is called umbilic area.
Examples for this are (connected subsets of) spheres or planes. For a further classification
of umbilic points see section 4.2.1.

Remark 2.10. In points that are not umbilic, the different eigenvalues can be used to
distinguish the two orthogonal eigenvector fields defined by the curvature tensor field.
If k1 > k2, the eigenvector fields e1 and e2 are called major and minor eigenvector field
respectively.

2.1.7 Principal Curvature Lines

The principal directions on a surface can be used to trace networks of curves.

Definition 2.11 (Principal Curvature Line). A regular connected curve c on S that is
tangent to a principal direction of S in every p ∈ c is called principal curvature line.

A necessary and sufficient condition for c to be a principal curvature line is:

Proposition 2.12. Let c(t), t ∈ (a, b) ⊂ R be a regular curve. Then

∀t ∈ (a, b) : n′
c(t) = λ(t)c′(t) (2.10)

if and only if c is a principal curvature line. In this case −λ(t) is the principal curvature
in direction of c′(t).

Proof. Let c be a principal curvature line, which means that the tangent vector c′(t) is
an eigenvector of dnc(t). Thus n′

c(t) = dnc(t)(c
′(t)) = −k(t)c′(t) where k(t) is a principal

curvature and (2.10) holds with λ(t) = −k(t).
On the contrary if (2.10) holds then c′(t) is an eigenvector of dnc(t) for all t ∈ (a, b),

which is the defining property of a principal curvature line.

In order to proof the existence and uniqueness of principal curvature lines starting from
a point p ∈ S, the classical Picard-Lindelöf theorem can not be applied directly, because
the eigenvector fields are only defined up to their sign6. As follows from definition 2.9,
there can not be two unique principal curvature lines passing through an umbilic p.

In non-umbilic areas it is possible to distinguish between the major and minor eigen-
vector fields. Therefore one can define a continous vector field from one of the eigenvector
fields by assigning a consistent orientation to the eigenvectors. The theorem of Picard-
Lindelöf can now be applied to these continous vector fields. In section 4.2.1 we will see
that a consistent orientation is in general not possible in the vicinity of umbilic points.
In practice the orientation of the eigenvector fields can be fixed on the fly between inte-
gration steps of a principal curvature line, as long as the line does not get too close to
umbilic points.

6Remember that we have required e1 and e2 to be of unit length without loss of generality.
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2 Relative Differential Geometry

In points of umbilic areas of S all directions are principal directions. This means that
any regular connected curve c in such an area is a principal curvature line.

If one considers the normals of S along a curve on S, the lines along these normals
generate a ruled surface. The principal curvature lines can be characterized by the special
property that these normal ruled surfaces along them are torsal and thus developable7,
see [30] and [34]. If c(t), t ∈ (a, b) ⊂ R denotes a principal curvature line of S, the ruled
surface can be parametrized by

(s, t) ∈ (a, b)× R : y(s, t) := c(t) + snc(t).

It is well known that the developability of a ruled surface can be characterized by the
surface normals being constant along the rulings, see [34]. The normals in this case are
given up to a constant by nc(t) ×

(
c′(t) + sdnc(t)(c

′(t))
)
. Since the tangent vector c′(t)

is an eigenvector of dnc(t), it follows directly that the normals along a ruling are constant.

Remark. Consider a regular curve c ⊂ S given by c(t) := x(u(t), v(t)), t ∈ (a, b) ⊂ R,
where (u(t), v(t)) is a curve in the parameter domain D. The differential equation (2.10)
leads to a differential equation for u(t), v(t), see [34, page 96]. However this differential
equation is not useful for numerical integration of the principal curvature lines, another
approach will be described in 4.2.3.

2.1.8 Conjugate Directions and Curve Networks

Definition 2.13. Consider a point p ∈ S with attached tangent space Tp(S). Two
vectors v, w ∈ Tp(S) \ {0} are called conjugate if

Πp(v, w) = −〈dnp(v), w〉 = 0. (2.11)

Correspondingly, the directions given by v, w are called conjugate.

An example for conjugate directions are the principal directions. These are given by
the orthonormal basis of eigenvectors e1, e2 of dnp and thus

〈dnp(e1), e2〉 = −k1〈e1, e2〉 = 0.

Given a p ∈ S and a v ∈ Tp(S), there is at least one w ∈ Tp(S) conjugate to v.
All conjugate directions can be computed by solving (2.11) for w, which is a linear
equation system for fixed v. If p ∈ S is an umbilic point, each pair of orthogonal
vectors v, w ∈ Tp(S) \ {0} is conjugate. Self conjugate directions are called asymptotic.
In hyperbolic points there are always two distinct asymptotic directions, in parabolic
points there exists at least one.

A conjugate curve network consists of two one-parameter families of curves C1, C2

which cover S. For all p ∈ S there are unique curves c1 ∈ C1 and c2 ∈ C2 passing
through p, such that the tangents of c1 and c2 in p are conjugate. An example are the
principal curvature lines.

7Developable essentially means locally isometric to the plane.
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2 Relative Differential Geometry

Remark. In section 4.2.1 it will become clear that the curvature tensor field can exhibit
degenerate points which violate the requirement that there are unique curves passing
through them.

The curves on the surface generated by fixing one of the parameters of x are called
parameter lines. The following proposition will be needed later on:

Proposition 2.14. The parameter lines of a parameterisation x of S are conjugate if
and only if for the coefficients of the second fundamental form holds M = 0.

Proof. The coordinates of tangent vectors belonging to the parameter lines clearly fulfill
v1 = w2 = 1 and v2 = w1 = 0 for all p ∈ S. Thus Πp(v, w) = M (see 2.8), which means
that the tangents to the parameter lines are conjugate if and only if M = 0.

2.2 From Differential Geometry to Relative Differential
Geometry

In relative differential geometry the Gaussian Map is generalized. In particular the unit
sphere S2 will be replaced by a more general object, which will be called relativesphere
in the following.

A compact convex nonempty subset K ⊂ R3 is called convex body. We will consider
convex bodies with nonempty interior only. A convex body is called strictly convex if
the interior of every line segment contains no boundary points of K. The boundary
of a convex body will be called convex surface. In the following a convex surface R
will always be assumed regular, such that the methods from differential geometry can
be applied. In particular this leads to the equivalence of strict convexity and positive
Gaussian curvature.

Let R be a strictly convex surface. As an example consider an ellipsoid. The Gaussian
map of R shall be denoted by ν. The strict convexity of R ensures that ν : R → S2

is a bijective mapping. Thus it is possible to define a relative Gaussian map of S with
respect to R:

Definition 2.15 (Relative Gaussian Map). Let R be a strictly convex surface. The
relative Gaussian map of an oriented regular surface S with respect to R is defined by:

nR : S → R : p 7→ ν−1(np) (2.12)

The differential of the relative Gaussian map, also referred to as relative Weingarten
map, can easily be computed from the differentials of the Gaussian maps of S and R:

dnR
p : Tp(S) → Tν−1(np)(R)

dnR
p = (dνν−1(np))

−1 ◦ dnp

= dν−1
np
◦ dnp (2.13)

10



2 Relative Differential Geometry

Figure 2.1: Composition of the relative Weingarten map

As the tangent spaces Tp(S) and Tν−1(np)(R) are parallel, one can identify them and
view dnR

p as a mapping of Tp(S) onto itself:

dnR
p : Tp(S) → Tp(S)

In general this mapping will not be self adjoint any more. However, it still possesses a pair
of real eigenvalues −kR1 ,−kR2 ∈ R and corresponding real eigenvectors eR1 , eR2 ∈ Tp(S)
as will be shown in the following. For simplicity of notation we skip the superscript R in
−kRi , eRi , if no confusion with the classical principal curvatures and principal directions
is to be expected.

Theorem 2.16. Let −k1,−k2 be the eigenvalues of dnR
p and e1, e2 ∈ Tp(S) the corre-

sponding eigenvectors. Using the strictly positive Gaussian curvature of R in ν−1(np),
it follows that k1, k2 ∈ R.

Proof. First we show that e1, e2 are conjugate directions of S as well as R. Using
kiei = dnR(ei) = dν−1 ◦ dn(ei), i ∈ {1, 2} and the self-adjointness of dν, dn we get

〈e2, dn(e1)〉 = k1〈e2, dν(e1)〉 =

〈dn(e2), e1〉 = k2〈dν(e2), e1〉 = k2〈e2, dν(e1)〉

and thus (k1 − k2)〈e2, dν(e1)〉 = 0. If k1 6= k2 it follows that

〈e2, dν(e1)〉 = 〈e2, dn(e1)〉 = 0. (2.14)
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2 Relative Differential Geometry

In case k1 = k2, dnR
p is a multiple of the identity and e1, e2 can be chosen as the

eigenvectors of dν, such that (2.14) holds too.
Now assume k1 ∈ C \ R. As complex zeros of real polynomials appear in conjugated
pairs it follows that k2 = k̄1 and e2 = ē1. Let c1, c2 ∈ C denote the coefficients of e1

in the orthonormal basis of eigenvectors of dν. The eigenvalues of dν, which are both
negative8, shall be denoted by l1, l2 ∈ R. Then

〈e2, dν(e1)〉 = l1c1c̄1 + l2c2c̄2 = l1|c1|2 + l2|c2|2 < 0.

in contradiction to (2.14).

The last proof shows why it is important to choose R as a convex surface with strictly
positive Gaussian curvature. Consistent with definition 2.7 we now define:

Definition 2.17 (Relative Principal Curvatures). kR1 and kR2 are called relative principal
curvatures, the corresponding directions given by eR1 and eR2 are called relative principal
directions.

Analogously the definitions of Gaussian curvature, umbilic points, curvature tensor
field and principal curvature lines are carried over to relative differential geometry.

2.2.1 Relative umbilic points

Umbilic points play a significant role in the generation of networks of relative principal
curvature lines.

A point p ∈ S is a relative umbilic point, if and only if dnR
p is a multiple of the identity.

This happens if and only if the differential of the Gaussian map of S in p is a multiple
of the Gaussian map of R in ν−1(np), which means that the principal directions of S
and R are the same and there is a constant c ∈ R \ {0} such that for the principal
curvatures holds ck1 = k̃1, ck2 = k̃2, where k̃1, k̃2 denote the principal curvatures of
R. This means that R in ν−1(np) multiplied by c approximates S in p up to second
order9. The interesting topic of prescribing umbilic points by choosing an appropriate
relativesphere will be addressed in section 5.3.

2.2.2 Relative principal curvature lines

Analogously to proposition 2.12, a necessary and sufficient condition for c to be a relative
principal curvature line is:

Proposition 2.18. Let c(t), t ∈ (a, b) ⊂ R be a regular curve. Then

∀t ∈ (a, b) : (nR
c(t))

′ = λ(t)c′(t) (2.15)

if and only if c is a relative principal curvature line. In this case −λ(t) is the relative
principal curvature in direction c′(t).

8Assuming that the normal vector on R is directed outside.
9Neglecting a necessary translation.
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2 Relative Differential Geometry

Proof. See proof of proposition 2.12.

The relative principal curvature lines possess a characteristic property similar to the
one described in 2.1.7. In the case of relative principal curvature lines one considers
the ruled surface generated by the relative normals given by the relative Gaussian map
nR. Let c(t), t ∈ (a, b) ⊂ R be a relative principal curvature line, then the ruled surface
parametrized by

(s, t) ∈ (a, b)× R : y(s, t) := c(t) + snR
c(t)

is developable. As in section 2.1.7 it suffices to show that the normals of this surface
are constant along the rulings. The normal in a point (s, t) of this surface is given by

nR
c(t) ×

(
c′(t) + sdnR

c(t)(c
′(t))

)
. As c(t) is a relative principal curvature line, c′(t) is an

eigenvector of dnR
c(t) and thus the normal does not depend on s, which parameterizes

the rulings.

Remark. If one considers a curve (u(t), v(t)) in D as parameterisation of a relative prin-
cipal curvature line, a differential equation for this curve in D can be derived (cf. [29]).
As this differential equation is not useful for numerical integration, another approach
described in 4.2.3 will be used.

2.2.3 Influencing the Direction of Relative Principal Curvature Lines

In the proof of theorem 2.16 it has been shown that e1 and e2 are conjugate directions
of both S and R. Consequently one can influence the direction of relative principal
curvature lines by influencing the conjugate directions of R. Without loss of generality
consider a q ∈ R with k1/k2 = a > 1. The conjugate directions v, w in Tq(R) can be
parameterized by

v = cos αe1 +
√

a sin αe2

w = − sin αe1 +
√

a cos αe2,

which follows directly from the definition of conjugate directions in section 2.1.8. Clearly
v and w represent points on the same ellipsoid in Tq(R). Figure 2.2 shows how w can be
geometrically constructed given v and vice versa. Apparently the distinguished direction
for conjugate pairs is e2. This means that by choosing R such that a � 1 in large parts
of R, one can set a preferred direction for the relative principal curvature lines, see figure
7.6 for an example.

The above representation of conjugate directions can also be used to calculate the
minimum angle that can occur between e1 and e2. Denote the angle between between
v and w by β(α). It holds that

cos β(α) =
〈v, w〉
||v||||w||

.

As cos is a monotonous function on [0, π], the extremal values of β(α) can be calculated
using the extremal values of cos β(α). Differentiating the right hand side in α shows that
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2 Relative Differential Geometry

these are attended for cos α = ± sin α = 1/
√

2 and are equal to ±a−1
a+1

. Consequently, if

a ≤ ã for all of R, the minimum angle β̃ that can occur between e1 and e2 is given by

β̃ = cos−1

(
ã− 1

ã + 1

)
.

Remark 2.19. The above considerations show, that setting a preferred direction leads
to a small minimum angle between conjugate directions. This is unwanted in many
applications. Consequently a compromise has to be taken.

-

6

e2

e1

·
v

w

Figure 2.2: Geometrical construction of conjugate directions in the elliptic case
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3 Surface Representation by Meshes

In differential geometry surfaces are given as differentiable manifolds. Usually the degree
of differentiability of the manifolds is not explicitly mentioned. It is just assumed to be
high enough to justify all the operations from differential calculus that need to be done
for the definitions of geometrical objects.

In contrast to surfaces represented by differentiable manifolds are surfaces represented
by meshes. Loosely speaking, these are given as the union of polyhedrons, consequently
they are discrete by nature and in general not differentiable. The definitions of tangent
space, normal vector, curvature, etc. can not be carried over directly. However, similar
objects can be defined using the discrete surface representation. If a mesh stems from
the discretisation of a differentiable manifold one can study the behavior of these ob-
jects in the limit when the mesh is refined. This field of mathematics is called discrete
differential geometry, see [34] and [10].

Nowadays many surfaces that are considered in different applications are represented
by meshes, since it is easy to construct meshes from other representations. Meshes
can easily be exchanged between different kinds of software, they are convenient to
work with and allow for a fast rendering using modern computer graphics libraries and
hardware. Therefore, in practical applications the ability to export and import meshes
is a must-have. In fact, the software which implements the methods described in this
thesis implements what is called a remeshing process. A new coarse mesh is generated
from a surface given by a mesh on a much finer level.

3.1 Overview of Meshes

A formal definition of a mesh can be given by a graph (V, E), V := {v1, . . . , vn} denoting
the set of vertices and E the set of edges1 (vi, vj). The vertex degree, also called valence
in the context of meshes, is the number of edges incident to a vertex. A path between
the vertices a and b is a sequence of vertices and edges (v1, e1, v2, e2, . . . , en−1, vn) such
that v1 = a, vn = b and the vertices as well as the edges are pairwise different. If a = b
the path is called cycle. The graph (V, E) is called connected if for any two vertices
there is a path connecting them. Faces are cycles which can not be shortened, the set
of all faces shall be denoted by F . A graph is embedded in Rn if a p ∈ Rn is assigned to
each vertex. A planar graph is a graph that can be embedded in R2 such that its edges
do not intersect. Planar graphs can be drawn using straight lines only, called straight

1We do not consider graphs with edges connecting vertices to themselves, i.e. edges (vi, vi).
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3 Surface Representation by Meshes

line planar graphs. A triangulation is a straight line planar graph all of whose faces are
triangles. Finally a mesh is a straight line graph embedded in R3.

In the following we will not distinguish strictly between a vertex and its coordinate
vector. The meaning of the symbol v should be clear from the context.
The edges of a mesh can be classified as follows:

Boundary edge adjacent to exactly one face

Regular edge adjacent to exactly two faces

Singular edge adjacent to more than two faces

Meshes without boundary/singular edges are called closed/manifold meshes respectively.
In the following we will consider connected manifold meshes only. Meshes representing
S shall always be triangular.

There are numerous ways to represent a mesh within data structures on a computer,
see [5] for an overview. When choosing between these representations, one has to bal-
ance between performance and storage requirements. A possibility, usually used as an
exchange format for meshes, is to store a table of vertices along with their coordinates
and a table of faces pointing to the vertex table.

Vertex table
Vertex Coordinates

v1 x1 y1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

Face table
Face Vertices

f1 v1 v2 v3

f2 v1 v4 v2

Table 3.1: Vertex and Face Tables

This representation requires little memory, but it is not useful for quickly answering
questions like

Question 1 Which faces are adjacent to vertex a?

Question 2 What are the vertices directly connected2 to vertex a?

Question 3 Which faces are adjacent to the edge (a, b)?

In order to answer these questions it is necessary to do full table scans of the face table.
A commonly used structure that resolves these problems is the doubly-connected edge

list. It is also called half-edge structure, because each regular edge is considered consisting
of two half-edges, individually assigned to the adjacent faces. The data structure consists
of vertex, face and half-edge records.

2The set of these vertices is called the 1-ring of a.
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e

prev(e)

nex
t(e
)

twin(e)
origin(e)

incidentface(e)

Figure 3.1: Illustration of a half-edge record

Vertex v

• Coordinates

• Pointer to one half-edge originating from the vertex (halfedge(v))

Face f

• Pointer to one half-edge on its boundary (halfedge(f))

Half-edge e

• Pointer to the vertex it originates from (origin(e))

• Pointer to the face it bounds (incidentface(e))

• Pointers to next/previous edge on boundary of incidentface (next(e)/prev(e))

• Pointer to its twin half-edge (twin(e))

Figure 3.1 gives an example for a half-edge record. At the expense of a higher memory
requirement, the above questions can now be answered much easier:

Answer 1 incidentface(halfedge(a)), incidentface(next(twin(halfedge(a)))),

incidentface(next(twin(next(twin(halfedge(a)))))),...

Answer 2 origin(next(halfedge(a))), origin(next(next(twin(halfedge(a))))),

origin(next(next(twin(next(twin(halfedge(a))))))), ...

Answer 3 incidentface(halfedge(a)), incidentface(halfedge(b))
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3 Surface Representation by Meshes

Figure 3.2: An orientable mesh

Remark. A half-edge structure can represent manifold meshes only. The examples
above show meshes consisting of triangular faces only, nevertheless the representations
presented are not limited to this kind of meshes. In the first representation the face table
just needs to be enhanced to the maximum amount of vertices adjacent to each face.
The half-edge representation the data structure directly supports the representation of
polyhedral faces.

The orientation of faces in the face table / half-edge representations is given by the
order of vertices / half-edges respectively. A mesh is called orientable if the faces can
be oriented consistently, such that each regular edge is oriented in both directions, see
figure 3.2.

Consider a manifold orientable triangular mesh. For a face f with vertex coordinates
(v1, v2, v3) the face normal nf is defined by

ñf := (v2 − v1)× (v3 − v1) (3.1)

nf :=
ñf

||ñf ||
(3.2)

Let N e(v) denote the set of edges adjacent to vertex v. The vertex normal can then be
defined by

nv :=

∑
f∈Ne(v) nf

||
∑

f∈Ne(v) nf ||
. (3.3)

If the vertices of a given face are not collinear (which shall be assumed for all faces of
the meshes considered), they span a plane which is the tangent plane in all points inside
the face. The definition of vertex normal leads to a natural definition of the tangent
space in a vertex v. It is defined as the plane orthogonal to nv through v.
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3 Surface Representation by Meshes

3.2 Defining and Computing the Curvature Tensor Field

The classical concepts from differential geometry are based on differentiation, as the
name suggests. Consequently differentiability of the objects studied is a prerequisite.
The stringent requirement that surfaces S be regular can be relaxed, e.g. for the defini-
tion of the Weingarten map it is sufficient that S is C2. Nevertheless it is not possible
to directly carry over these concepts to polyhedral surfaces like triangle meshes, which
are not smooth.

In recent years numerous ways of overcoming this have been investigated. One way
is to generate a smooth representation from a mesh. For example this can be done by
subdivision and smoothing of the mesh, or using local approximations of the mesh by
smooth surfaces. Other ways of generalizing the curvature tensor to triangle meshes
stem from discrete differential geometry, for an example see [6], which has been used
in [2] for tracing principal curvature lines.

For our purposes integral invariants obtained by integration over local neighbourhoods
were used, an approach that has been proposed in [31], [38]. These neighbourhoods are
defined by the intersection of balls or spheres of radius r with the surface S or the domain
bounded by it. Principal component analysis of these point sets leads to a definition of
principal curvatures at the scale r. In [31] asymptotic analysis for r → 0 is used to show
that this definition is consistent with the classical curvature theory.

In practice this technique is used to compute the curvature tensor in the vertices of the
mesh. A continous curvature tensor field can then be defined by linearly interpolating
between the curvature tensors in the vertices adjacent to a face.

Remark 3.1. Consider a face f of S, remember that we require f to be a triangle. If
one wants to introduce local coordinates on f , it is convenient to work with barycentric
coordinates. We denote the coordinate vectors of the vertices adjacent to f by v1, v2 and
v3. Any point p on the face can be written as an affine combination p = λ1v1+λ2v2+λ3v3

subject to the constraints λ1 + λ2 + λ3 = 1 and 0 ≤ λi ≤ 1, 1 ≤ i ≤ 3. (λ1, λ2, λ3) are
called the barycentric or area coordinates. These coordinates are extremely useful for
linear interpolation of data a1, a2, a3 defined in the vertices of f . This interpolation
evaluated at a point p with barycentric coordinates (λ1, λ2, λ3) is given by λ1a1 +λ2a2 +
λ3a3. Note that by adding a face-index to the barycentric coordinates (f, λ1, λ2, λ3), a
global coordinate system for the mesh can be defined.
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4 Planar Quad Meshes

First of all a few words on the existence of PQ meshes. Consider two polylines given by
vertices vi, i ∈ {1, . . . ,m} and vj, j ∈ {1, . . . , n}. Translate one of the polylines along
the other, which produces a mesh with vertices vi,j = vi + vj. Let the edges between
neighbouring vertices vi,j and vi′,j′ be denoted by vi,jvi′,j′ . Clearly the translation of the
polyline ensures that opposing edges on the faces are parallel, which means the faces are
planar. An example can be seen in figure 4.1 left.

An infinite number of PQ meshes can be constructed by using two polylines for pre-
scribing the boundary vertices vi,1, i ∈ {1, . . . ,m} and v1,j, j ∈ {2, . . . , n}. PQ meshes
can be constructed by choosing vertices in a sequence ordered by the sum of the indices
k = i+j, k > 2 such that vi,j lies in the plane spanned by the vertices vi−1,j−1, vi−1,j, vi,j−1.
Figure 4.1 right gives an example where the faces are numbered in order of creation.
Clearly this construction is a generalization of the first one.

Figure 4.1: Examples for the construction of PQ meshes

In the following we are interested in the construction of a PQ mesh approximating a
given surface.

4.1 Analogy to Conjugate Curve Networks

In 2.1.8 the notion of conjugate curve networks was defined. In the following it should
become clear, that PQ meshes can be understood as a discrete analogon to such curve
networks.

Consider a curve c(t), t ∈ (a, b) on S. The family of tangent planes along this curve

20



4 Planar Quad Meshes

can be parameterized by(
Tc(t)(S)

)
t∈(a,b)

=
(
{v ∈ R3|〈nc(t), v〉 = 〈nc(t), c(t)〉

)
t∈(a,b)

.

The right hand side 〈nc(t), c(t)〉 is the distance of the tangent plane to the origin. These
tangent planes envelop a surface T . Surfaces enveloped by a family of planes are devel-
opable ruled surfaces also called torsal, see [34], [30]. T is determined by the equations1

〈nc(t), p〉 = 〈nc(t), c(t)〉
〈dn(c′(t)), p〉 = 〈nc(t), c(t)〉′ (4.1)

Consider a solution p(t) to these equations for some fixed parameter t. The vector
r(t) := nc(t) × dn(c′(t)) solves the homogenous equations and thus all points of the line
p(t)+sr(t), s ∈ R are solutions to 4.1. Consequently these lines are the rulings of T . The
direction of the rulings can also be calculated using the shape operator. Let w ∈ Tc(t)(S)
be the conjugate direction to the tangent vector c′(t), which means 〈dn(c′(t)), w〉 = 0
by definition. Therefore w is a solution of the homogenous equations too, and thus a
multiple of r. In other words:

A ruling of the tangent surface generated by a curve c on S and passing through a
p ∈ c, is conjugate to the tangent vector of c in p. The two families C1 and C2 of conju-
gate curves are thus dual to each other in the sense of tangent surfaces and their rulings.
The rulings of tangent surfaces generated by curves from C1 are tangent to curves from
C2 and vice versa.

Now we will focus on PQ meshes. First we study a single row of planar quadrilat-
eral faces, a so-called PQ strip. The rows of vertices shall be denoted by v1,j, v2,j, j ∈
{1, . . . , n}, a line through vertices v1 and v2 by v1v2, see figure 4.2 left. A PQ strip is a
discrete model for a developable surface, it can be mapped isometrically to the plane by
unfolding it along the lines v1,jv2,j. These lines may be parallel, in which case the PQ
strip is cylindrical. They can meet in a single point a, thus defining a conical surface
with apex a. In the general case two consecutive lines v1,jv2,j, v1,j+1v2,j+1 cross each
other in a point rj. These points define a polyline r1, . . . , rn−1. The PQ strip is a patch
on the tangent surface of this polyline, which is a discrete counterpart of the fact that
a developable surface is in general part of the tangent surface of a space curve (cf. [30]
and [34]). The rulings of the discrete tangent surface are represented by v1,jv2,j.

These considerations lead to a discrete version of the duality of conjugate curves
for PQ meshes. The column of faces between two consecutive polylines along vi,j, j ∈
{1, . . . , n} and vi+1,j, j ∈ {1, . . . , n} create a PQ strip, see figure 4.2 right. As we
have seen above, this PQ strip represents a patch of a discrete developable surface,

1More generally consider a family of planes given by the equation F (t, p) = 0. This equation defines a
surface Q in R4. The envelope can be defined as the boundary of this surface projected to R3, also
called the contour. The normal vector in a point of Q, whose projection belongs to the contour,
must be orthogonal to the t-axis. These are precisely the points with ∂F/∂t = 0. This is represented
by the second equation in 4.1.
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4 Planar Quad Meshes

Figure 4.2: PQ strip on tangent surface and PQ strip on PQ mesh

which is tangent to the PQ mesh between the two polylines. The edges along rows
vi,jvi+1,j, j ∈ {1, . . . , n} are rulings of this developable surface. The same property
holds if one exchanges rows with columns, thus considering PQ strips along polylines
vi,j, i ∈ {1, . . . ,m} and vi,j+1, i ∈ {1, . . . ,m}. The rulings of these developable surfaces
are represented by vi,jvi,j+1, i ∈ {1, . . . ,m}. Thus the rows and columns of polylines are
a discrete conjugate network of polylines.

The authors of [23] point out the following conclusion: If a PQ mesh gets refined by
a subdivision process, which preserves the PQ property and produces a curve network
in the limit, then this curve network must be a conjugate network on a surface.

On the contrary, if one starts from a conjugate curve network on a surface, then the
faces of a quad mesh produced from a discrete choice of conjugate curves will be close
to planarity. This has been shown already in [34], and will be outlined in the following.

Consider a quad face on S defined by the points x(u1, u2), x(u1 + ε, u2), x(u1, u2 +
δ), x(u1 +ε, u2 +δ) on parameter lines of x, as sketched in figure 4.3. The sides aε, bδ, dε,δ

span a tetrahedron, whose volume V is a measure for the planarity of the quad. V can
be calculated using the well-known formula V = Ah/3, where A denotes the base area
and h the height. The base area of the triangle spanned by aε, bε is of order2 εδ, as well
as the height of x(u1 + ε, u2 + δ) above the plane spanned by aε, bε. Consequently one

2O((ε, δ)k) will be used as short notation for O(
∑k

i=0 εiδk−i). For a definition of the Landau symbol
O see a book on numerics, e.g. [27].
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x(u1,u2) x(u1+ε,u2)

x(u1,u2+δ)
x(u1+ε,u2+δ)

aε

bδ
dε,δ

μfε,δ

Figure 4.3: Quad face on S defined by points on parameter lines

can expect the volume of the tetraeder to be of order ε2δ2.
Another way of measuring the planarity is the angle µ, see figure 4.3. The height h

can be calculated by means of h = sin µ||fε,δ|| ≈ µ||fε,δ||. As ||fε,δ|| = O((ε, δ)), which
means that it depends linearly on δ and ε, it follows that µ = O((ε, δ)) too.
We will use the following second order Taylor expansions for estimation of V :

aε :=x(u1 + ε, u2)− x(u1, u2) = εx,1 + ε2x,11 +O(ε3)

bδ :=x(u1, u2 + δ)− x(u1, u2) = δx,2 + δ2x,22 +O(δ3)

dε,δ :=x(u1 + ε, u2 + δ)− x(u1, u2)

=εx,1 + δx,2 + ε2x,11 + 2εδx,12 + δ2x,22 +O((ε, δ)3) (4.2)

Calculating det(aε, bδ, dε,δ) = 〈aε × bδ, dε,δ〉 = 2Ah = 6V we get

aε × bδ = εδ(x,1 × x,2) + ε2δ(x,11 × x,2) + εδ2(x,1 × x,22) +O((ε, δ)4)

6V = 〈aε × bδ, dε,δ〉
= ε3δ det(x,1, x,2, x,11) + 2ε2δ2 det(x,1, x,2, x,12) + εδ3 det(x,1, x,2, x,22)

+ ε3δ det(x,11, x,2, x,1) + εδ3 det(x,1, x,22, x,2) +O((ε, δ)5)

= 2ε2δ2 det(x,1, x,2, x,12) +O((ε, δ)5)

= 2ε2δ2||x,1 × x,2||M +O((ε, δ)5) (4.3)
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where we have used 2.9. As a result the volume V is of order O((ε, δ)5) if and only if the
parameter lines are conjugate, see proposition 2.14. In this case the angle µ is of order
O((ε, δ)2).

4.2 Quad Meshes from Relative Principal Curvature
Lines

We have seen that PQ meshes are a discrete analogon of conjugate curve networks.
Therefore it is reasonable to use a conjugate curve network for the generation of an
approximating PQ mesh of a given surface S. Roughly speaking, the core idea is to

1. Pick some subset D1 of curves from family C1 as well as a subset D2 of curves from
family C2 such that they cover S in a reasonable way3.

2. Generate mesh vertices at intersection points of curves in D1 with curves in D2.

3. Connect these mesh vertices using straight edges that are direct neighbours along
curves in D1 or D2.

4. Generate a quad-dominant mesh from this set of vertices and edges.

5. Perturb the mesh such that all quadrilateral faces become planar.

Most of these points have pitfalls and will be analyzed in more detail in the following.
Principal curvature lines can be traced uniquely through points of a surface that are not
umbilic and they form a special conjugate curve network. The use of principal curvature
lines for quad-dominant (re-)meshing has been studied e.g. in [2] and [26]. Relative
differential geometry leads to relative principal curvature lines, which form conjugate
curve networks as well4. Consequently one can influence the relative curvature flow
and thus the mesh generation by choosing different relativespheres. In the following
the phrase curvature line will refer to relative curvature line as well, if no distinction
between the two is done within the context.

Remark. The usage of relative differential geometry is just one way to generate a
conjugate curve network consisting of curve families C1, C2. Another possibility is to
prescribe one of the curve families and determine the second family by integrating the
eigenvector field determined by the conjugate directions of the prescribed family.

4.2.1 Classification of Umbilic Points

Before discussing point 1 in more detail, it is important to understand singularities
that can occur in the curvature tensor field. The notions of umbilic point and umbilic
area where defined in 2.1.6. In these points the surface S is isotropic, which means

3See section 2.1.8 for the definition of C1 and C2.
4This was shown in 2.16.
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the principal curvature directions are not uniquely defined. As a result the principal
curvature lines belonging to either one of the curve families D1 or D2 are not uniquely
defined and will meet each other in these points.

A brief introduction to the singularities5 in second order symmetric tensor fields is
given in [9]. Elaborate discussions can be found in [28], [8] and [35]. In the following a
brief recapitulation will be given.

First of all we will concentrate on symmetric tensor fields like the curvature tensor
field6. The Weingarten map dnp is defined on the tangent space Tp(S), for a further
treatment it is convenient to flatten the surface S and the curvature tensor field via a
conformal7 mapping to R2. This can be done at least locally, see [12, Chapter 4]. A
recent approach to this is described in [33]. The corresponding parameterisation shall
be denoted by x. In the plane we choose the Cartesian coordinate system and consider
the coordinate matrix T (x, y) ∈ R2×2, (x, y) ∈ R2 of the flattened curvature tensor field
−dnx(x,y) in the associated basis. For an umbilic point p = x(x̄, ȳ) the coordinate matrix
must be a multiple of the identity matrix:

T (x̄, ȳ) =

(
k1 0
0 k1

)
Consequently umbilic points fulfill the conditions

T11(x̄, ȳ)− T22(x̄, ȳ) = T12(x̄, ȳ) = 0. (4.4)

Another possibility is to define the deviator8 part of our tensor field

D := T − tr(T )

2
I2 =

(
α β
β −α

)
(4.5)

and check for the condition α = β = 0. These conditions can be used to locate umbilic
points.

In the following we want to inspect the curvature flow in close neighbourhood of an
umbilic point. Therefore we will consider the Taylor expansion of D around the umbilic
point, neglecting higher order terms. For convenience, the origin of the coordinate
system shall be translated to the umbilic point.

D(x, y) ≈ ∇D(x, y)T =

(
ax + by cx + dy
cx + dy −ax− by

)
(4.6)

Regarding the curvature flow around the umbilic point, one is interested in curvature
lines that run into the umbilic point, these are called separatrices. Accordingly we are
looking for points in the neighbourhood with the curvature flow direction pointing to

5Also called degenerate points in [9] and [8], umbilic points is used in the context of differential
geometry.

6Remember that the relative curvature tensor field is not symmetric.
7Conformal meaning angle-preserving.
8A trace free tensor is called deviator.
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Figure 4.4: Umbilic points: trisector and wedge types

the umbilic point. This leads to the condition det(D(x, y)T , (x, y)T ) = 0. We choose
polar coordinates (x, y) = r(cos θ, sin θ), use the approximation 4.6 and get

r2 det(∇D(cos θ, sin θ)T , (cos θ, sin θ)T ) = 0, (4.7)

thus in the linear case there is no dependency on r. Further we get

det(D(x, y)T , (x, y)T ) =

= (c cos θ + d sin θ)(sin2 θ − cos2 θ) + 2(a cos θ + b sin θ) sin θ cos θ

= 0 (4.8)

(4.9)

Multiplying by cos−3(θ) and substituting tan θ = u one arrives at the cubic polynomial

du3 + (c + 2b)u2 + (2a− d)u− c = 0 (4.10)

Each real root ū of this equation corresponds to an angle between a separatrix and the
x-axis via θ̄ = tan−1 ū. As there are exactly one or three real roots, there are no more
than three separatrices running into an umbilic point. If equation 4.10 has three real
roots there are two possibilities, shown in figure 4.4 left. The one with three distinct
separatrices is called trisector type, the middle one wedge type. The case of only one real
root is shown in figure 4.4 right. Such an umbilic point is classified as wedge type too,
it is a special case of the middle one such that the two separatrices degenerate into one.

Remark 4.1. Notice that the angles θ̄ are defined via tan−1, which means they are only
defined modulo π so that we actually get six solutions. This is due to the two eigenvector
fields of the curvature tensor field. As we focus on one of the eigenvector fields only, this
can not be seen in figure 4.4.

The step to equation 4.10 can not be done for cos(θ) = 0. In this case one has to
multiply by sin−3(θ), substitute cot θ = v and gets

cv3 + (d− 2a)v2 − (c + 2b)v − d = 0. (4.11)
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The roots of this polynomial are equivalent to the roots of 4.10 in case c 6= 0 and d 6= 0 via
the substitution u = 1/v. As an example assume d = 0, in which case 4.10 is a quadratic
polynomial. In this case the solution v = 0 of 4.11 corresponding to θ = π/2 mod π
has to be considered too.
Figure 4.4 illustrates that the eigenvector fields can not be oriented consistently in the
vicinity of umbilic points in general. Moreover the separatrices divide the neighbour-
hood of umbilic points into sectors with different behavior of the curvature lines. In the
sectors of the trisector type, the integral lines sweep past the umbilic point, while in the
wedge type another sector occurs where integral lines end in the umbilic point.

Up to now we have been focussing on the linear approximation of D(x, y). It is
pointed out in [35, Section 3.4.2] that this is a good approximation if ∇D is a regular
matrix. Otherwise there may be additional solutions to 4.7. The regularity of ∇D may
be expressed in the coefficients a, b, c, d:

δ :=
∣∣∣ a b

c d

∣∣∣ 6= 0 (4.12)

The sign of this determinant can be used to distinguish between the trisector and wedge
types as pointed out in [9]. For the case δ = 0 I refer to [28], [8] and [35].

The classification for the flattened relative curvature tensor field −dnR
x(x,y) can be

done in a very similar way, taking care of the fact that this tensor field is not symmetric.
Let TR(x, y) be its coordinate matrix. Condition 4.4 has to be replaced by

T11(x̄, ȳ)− T22(x̄, ȳ) = T12(x̄, ȳ) = T21(x̄, ȳ) = 0 (4.13)

to check for umbilic points, and the deviator is not symmetric anymore.

DR := TR − tr(TR)

2
I2 =

(
α γ
β −α

)
(4.14)

Now one has to check for α = β = γ = 0 in order to locate umbilic points. Consequently
the linearization becomes assymetric:

DR(x, y) ≈ ∇DR · (x, y)T =

(
ax + by ex + fy
cx + dy −ax− by

)
(4.15)

Analogous steps as in 4.7 and 4.8 lead to the polynomials

fu3 + 8e + 2b)u2 + (2a− d)u− c = 0 (4.16)

cv3 + (d− 2a)v2 − (e + 2b)v − f = 0 (4.17)

which are equivalent to 4.10 and 4.11 respectively for c = e and d = f , as could be
expected.
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Figure 4.5: Practical examples of umbilic points: trisector and wedge types

Remark. In the practical case, the surface S is defined via a triangular mesh and the
curvature tensor is available only in the vertices, see section 3.2. Linear interpolation
is used to define the curvature tensor on the faces, such that checking condition 4.4 or
4.13 results in 2 × 2 or 3 × 2 linear equation systems respectively. For a description of
the implementation see section 6.4.

Figure 4.5 shows some practical examples of an eigenvector field near umbilic points
of different type.

4.2.2 Smoothing of the Curvature Tensor Field

Smoothing of the curvature tensor field is reasonable because of the following:

1. Given a discete surface by a mesh, the curvature tensor field may be available only
in discrete points of the surface (usually in the vertices). As a consequence of the
discreetness, the curvature tensor field is prone to jitter.

2. In umbilic areas the eigenvector fields are not uniquely defined. One wants to
propagate the directions of the eigenvectors from neighbouring non-umbilic areas
into the umbilic areas by smoothing the eigenvector fields.

Several techniques have been proposed for the smoothing of discretely defined curvature
tensor fields. In [26] a technique involving a discrete Laplacian operator was proposed
that addresses both points above. A global approach is described in [33]. In the following
short introductions to both methods are given. Note that these methods were developed
for the smoothing of the classical curvature tensor field, and are not directly applicable
to the relative curvature tensor field. This will be discussed in the following.

Laplacian smoothing

This technique originates from the discretisation of the heat equation. Let u be a scalar
field defined in the vertices of a mesh. We consider the discretisation of the equation

ut = (1− λ)∆u (4.18)

28



4 Planar Quad Meshes

where 0 < λ < 1 may depend on the spatial coordinates x and y. Now we discretise
the time derivative by a forward difference quotient (uk+1 − uk)/dt and the Laplacian
according to [11] and obtain

uk+1
v = ut

v + dt(1− λ)∆u

= ut
v + dt(1− λ)

∑
q∈Nb(v)

wvq(u
k
q − uk

v)

= λut
v + dt(1− λ)

∑
q∈Nb(v)

wvqu
k
v . (4.19)

Here uk
v denotes u at time step k at vertex v, Nb(v) the neighbouring vertices to v and

wvq weights assigned to the edges. These weights shall fulfill
∑

q∈Nb(v) wvq = 1. It is well

known that for this type of explicit Euler integration scheme dt(1 − λ) < 1 must hold
for stability. One may choose dt = 1, as 0 < λ < 1.

In [26] Marinov and Kobbelt suggest to plug the flattened curvature tensor matrices
T instead of u into 4.19 and use confidence coefficients for λ and the wvq, as described
in the following.

The parameter λ in 4.18 controls the amount of smoothing, this can also be seen in
4.19. The smaller λ, the more influence the neighbouring vertices will have and thus
more smoothing will occur. This is what one would like to have near and in umbilic
areas. Consequently one could use conditions 4.4 and 4.13, which occur exactly at
umbilic points, as a basis for λ, e.g. λ = ||D|| or λ = |k1/k2 − 1|.

Another possibility can be seen in figure 4.5. Consider the direction of the eigenvectors
in vertices attached to a single face. For faces near umbilic points or in umbilic areas
there will be bigger differences in these directions. Therefore in [26] it is suggested to use
this direction coherence as a measure for the confidence coefficients. This can be done
for each face of the triangulated surface by projecting the directions of one eigenvector
field onto the plane defined by the face and computing the cosine of the angles α0, α1, α2

between each pair of such flattened directions. The confidence coefficient for a face f
can then be defined by

λ(f) = min
j=0,1,2

| cos αj| (4.20)

Note that a possible inconsistency in the direction of the eigenvectors does not matter
in this case because of | cos αj|. For the vertices the confidence coefficients can now
be defined by averaging the confidence coefficients of the adjacent faces. Marinov and
Kobbelt in [26] suggest to use the following setup:

T k+1
v =

λ(v)

2
T t

v +

(
1− λ(v)

2

)∑
q∈Nb(v) λ(q)T k

q∑
q∈Nb(v) λ(q)

(4.21)

The damping factor of 1/2 is chosen in order to allow for more smoothing in non-
umbilic areas. With each iteration the directions of neighbouring anisotropic areas are
propagated into umbilic regions, as can be seen in figure 4.6.
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Figure 4.6: Laplacian smoothing of eigenvector field. Note that the eigenvector direc-
tions have been ordered according to the absolute value of the corresponding
curvatures, as opposed to remark 2.10. The plots show the eigenvector di-
rections corresponding to the curvature with less absolute value.
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Global smoothing

A global approach based on the minimization of an energy functional is presented in [33].
The degrees of freedom in this energy functional are the angles α by which the eigenvector
fields are rotated in the vertices. Roughly speaking the energy functional consists of two
terms. A fitting term that controls the deviation of the eigenvector fields from their
original directions, and a smoothing term that aims at minimizing the variation of the
directions in the faces. In order to define this terms one uses reference directions in each
of the vertices. This can be achieved by choosing an arbitrary edge adjacent to a vertex
and projecting it to the tangent plane in this vertex. Using these reference directions
one computes the angles α0

v between one of the curvature directions and the reference
direction for the vertices v. These angles are then used as references for measuring the
deviation and variation as mentioned above. In [33] the energy functional is defined in
the form

E(α) = (1− ρ)
∑
v∈V

|k1

k2

|g(αv − α0
v)

2

︸ ︷︷ ︸
fitting term

+ρ
∑
f∈F

Rf (α)2

︸ ︷︷ ︸
smoothing term

(4.22)

where α denotes a vector consisting of all αv, g is used to take care of the periodicity of
αv and Rf measures the variation of the eigenvector field on the face f and depends on
the angles αv corresponding to vertices adjacent to f only. The parameter ρ is used to
control the amount of smoothing. This method gives very good results for the generation
of quad meshes because of its global nature, see [33]. It evenly distributes umbilic points
over the surface, a property not exhibited by the Laplacian smoothing. These advantages
come at the cost of higher computational effort, because the energy functional possesses
number of vertices parameters. The method is not directly applicable to the smoothing
of the relative curvature tensor field, as will become clear in the following.

Implications of the Smoothing to the Generation of PQ Meshes

In practice the relative curvature tensor field is computed from the curvature tensor
fields of S and R. If one wants to smooth the relative curvature tensor field, one has
to take care about the conjugacy of the relative eigenvector fields with respect to the
curvature tensor field of S. Remember that the conjugacy of the relative eigenvector
fields is important because we want to generate a quad mesh with nearly planar faces,
which we can expect using conjugate curvature lines only. This could be incorporated
into the global smoothing method by smoothing one of the relative eigenvector fields
and afterwards calculating the second eigenvector field using equation 2.11. Moreover,
the two points at the beginning of this section, that motivated the smoothing, can also
be addressed differently:

1. The method for computation of the curvature tensor field described in section 3.2
smooths the curvature tensor field by nature.

2. Umbilic areas that are not flat can be transformed to relative non-umbilic areas
by choosing an appropriate relativesphere. This is illustrated in figure 4.7, which
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shows a cylinder topped by a half of a sphere. The short lines indicate the direc-
tion of the minor eigenvector field. Clearly the half sphere part of the surface is
umbilic. The relativesphere used in the example was generated by slightly stretch-
ing the unitsphere in the upward direction using a factor of 1/2, resulting in an
ellipsoid. Consequently the umbilic area becomes relative non-umbilic and a single
umbilic point is left at the top. Another example, were an appropriate choice of
a relativesphere led to the removal of an umbilic region, will be given in example
5.13, see also figure 5.1.

4.2.3 Integration of Relative Curvature Lines

In this section we will focus on the integration of integral curves of the eigenvector
fields9 given by the relative principal directions. Assume that starting points for the
relative curvature lines are given, the question how to choose these will be addressed in
the next section. Different techniques for integration of (eigen)vector fields have been
described in [13], [26] and [2], requiring no, a local and a global surface parameterisation
respectively. The following listing gives a short comparison.

No parameterisation, [13] This is the easiest of the three methods. Integral lines are
traced directly on the given triangulated surface. Straight line segments are used
on faces, which are parallel to the eigenvector direction averaged over the respec-
tive face. The intersection points of these line segments with the faces’ edges define
the vertices of the integral lines. They are used as starting points for the contin-
uation of the integration on the neighbouring faces. This can be interpreted as
an explicit Euler scheme with step lengths chosen such that one reaches an edge.
Implementation of this method is straightforward, but results depend strongly on
the original mesh and can be expected to be inaccurate.

Local parameterisation, [26] In this method faces are mapped isometrically to the
plane. Line integration is done via an explicit Euler scheme again, but the step
length is chosen according to the norm of the deviator, see 4.5 and 4.14. Conse-
quently the step length will become smaller in the vicinity of umbilic points, where
the eigenvector field is prone to fast turns. Using this concept, crossing of one or
several edges within one integration step might occur, in which case the corre-
sponding faces are unfolded isometrically to the plane. The confidence coefficients
as defined in 4.20 are used to judge between regions where the directions of the
eigenvector field are reliable or not. Accordingly the authors propose to switch
between two types of line tracing. In anisotropic regions, where the directions
given by the eigenvector field are clearly defined, they use those to trace curvature
lines. When the confidence coefficients fall below a given threshold, they trace
the lines in the last reliable direction. On leaving an isotropic area (detected by
the confidence coefficients rising above the threshold) they start to trace curvature

9In this section eigenvector field refers to either the major or the minor eigenvector field.
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Figure 4.7: Smoothing of eigenvector fields by using an appropriate relativesphere
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lines again, but the use of minimum or maximum eigenvector field may change
according to which direction fits better the last direction traced in the isotropic
region.

Global parameterisation, [2] If a global parameterisation is available, it is possible to
trace the principal curvature lines directly in parameter space, omitting the need
to take care of the discrete surface representation. Therefore sophisticated higher
order integration schemes can be used, the authors of [2] use a fourth order Runge-
Kutta integration scheme with adaptive step length.

The first method was implemented in the accompanying software. Given a starting
point, the relative curvature lines are traced in both directions defined by the eigenvector
field, until one of the following stopping criteria is fulfilled:

1. A boundary of the given surface is reached.

2. The relative curvature line comes too close to an existing one or itself. Closeness
in this context depends on the local curvature of the surface, this will be addressed
in the next section.

3. The relative curvature line reaches a face containing an umbilic point.

4. |k1/k2 − 1| falls below a predefined threshold.

If a curvature line does not reach a predefined length, it will be removed again and
another starting point will be chosen. This is done because few long curvature lines
produce less hanging nodes in the resulting mesh than a lot of short curvature lines, see
section 4.2.5.

Point 2 indicates that a lot of proximity queries need to be done during the integration,
namely in each integration step. For this reason the performance of the integration
routine will depend strongly on the response time of these queries.

A classical tool for the subdivision of 3D data is an octree. Roughly speaking a tree
is a data structure consisting of connected nodes, which are accessed starting at a root
node. Each node is classified either as leaf or internal node. An internal nodes has at
least one child node, the unique internal node connected to a child is also referred to
as its parent. For a formal definition see [7]. An octree is a tree such that all internal
nodes have exactly 8 child nodes, figure 4.8 shows an example.

The cube corresponding to the root node is chosen such that it contains the given
surface. Next this root cube is subdivided into 8 subcubes and the spatial objects one
wants to structurize are assigned to the cubes they lie in. This process is iterated until
all objects have been assigned to leaf cubes of a given predefined size. Using this data
structure, the amount of objects to be processed in proximity queries can be restricted
significantly. Assume that given a point p ∈ S one wants to find all objects within a
geodesic disc of radius r on S, denote this set by U . A superset V ⊃ U can be found by
choosing all objects that lie in leaf cubes which intersect the ball with radius r around
p, these is a direct conclusion from the fact that the distance on S is bounded below
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Figure 4.8: An example octree

by the Euclidean distance in R3. The leaf cubes fulfilling this property are found easily
by traversing the octree structure. V can now be further limited to all objects with
Euclidean distance less or equal r to p, which gives a good upper approximation to
U at least in directions starting from p with small normal curvature. This has been
implemented in the accompanying software, using the meshes vertices’ as objects for
doing proximity queries to.

Remark. Using this octree data structure we get a list of vertices, but we want to check
for the proximity to segments of the curvature lines. Since the integration method used
produces line segments on the faces, one can approximate the distance to a line segment
by taking the distance to the faces’ closest vertex plus the distance from this vertex to
the line segment.

Another possibility would be to build an octree structure of the line segments directly.
A drawback of this approach is, that the octree would have to be updated after each
integration step in order to include the new line segments.

In [26] the authors propose a method that does not use an octree or similar global
search structure. Instead they keep a list of faces with at least one vertex within distance
r to p. A list of such vertices can be computed using Dijkstra’s algorithm (cf. [7]).
Afterwards the corresponding list of faces is looked through for line segments.
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Figure 4.9: Osculating circle and linear approximation, seed point selection

4.2.4 Seed Point Selection

So far the selection of starting points has not been discussed. This is maybe the most
crucial point for the remeshing process. The relative curvature lines should cover S
evenly and still follow its anisotropy, which seems to be an antagonism at first glance.
In practice one maintains a list of possible starting points, these points are referred to as
seed points. Within this list the candidates get prioritized according to different criteria.
After each generation of a curvature line the list gets updated: candidates that are too
close to existing curvature lines are removed, new seed points might be added. Then
the seed point with the highest priority is chosen as the next starting point. Usually
seed points are also added to the list during the integration of a curvature line. Each
seed point in the list might be marked belonging to a specific one of the two eigenvector
fields. The creation of curvature lines goes on until no more seed points are left in the
queue.

First we will have a look at the local density that the integral lines of the two eigen-
vector fields should have. Apparently this density will depend on the local curvature.
Consider an integral line through a point p ∈ S and its orthogonal projection onto the
normal plane to S along the integral line10. The curvature of this projection is the nor-
mal curvature kn of the integral line in p. As we have seen in 2.5 it can be calculated
by means of the tangent vector and the second fundamental form. The osculating circle
with radius 1/kn and midpoint p + 1/knnp approximates the projection of the integral
line up to second order. We will use this approximation of the integral line to derive
an expression for the local density. According to figure 4.9 left, if we want the maxi-
mum error between the osculating circle and the linear approximation to be less than a

10Cf. definition 2.4.
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predefined parameter ε > 0, a simple calculation shows that for the distance d(kn) the
following must hold: (

1

|kn|

)2

=

(
1

|kn|
− ε

)2

+

(
d(kn)

2

)2

⇔ d(kn) = 2

√
ε

(
2

|kn|
− ε

)
(4.23)

As a result, an approximation of the optimum distance of integral lines for one eigenvec-
tor field is given by 4.23 evaluated at the normal curvature in the direction of the other
eigenvector field.

Remark. When integrating a curvature line, 4.23 is used as a stopping criterion. Typ-
ically one stops the integration if the distance to the closest curvature line falls below
the optimum distance times a user-defined parameter. It makes sense to relax this cri-
terion in the vicinity of umbilic points, as the curvature lines will meet in these points
anyway. Thus one gets a finer discretisation near these points in order to better resolve
the singularity.

In practice 4.23 can not be used directly, because of its singularity for kn = 0. There-
fore one can replace it by

d(kn) = 2

√
ε

(
2

c + |kn|
− ε

)
(4.24)

where the choice of c > 0 determines a maximum distance of curvature lines in flat
regions of S.

From the ideas above, a first possibility of seed point generation can be deduced. If
one integrates a curvature line for the eigenvector field eR1 , seed points for both of the
eigenvector fields can be generated along the way.

Type 1 Seed points for the conjugate eigenvector field eR2 can be generated directly
along the curvature line in distances d(kn(eR1 )).

Type 2 Seed points for the same eigenvector field can be calculated from p±d(kn(eR2 ))eR2 ,
where p denotes a point on the curvature line.

Note that the distance along the curvature line for seed points of the second type does
not matter. Figure 4.9 right illustrates the two types of seeding.

Type 1 generation of seed points was originally introduced in [20]. The same method
is used in [2], the two eigenvector fields are treated separately. The authors of [26] use
type 2 seeding, they integrate curvature lines alternating between the eigenvector fields.

Depending on the surface, the type of seeding and the prioritisation in the queue of
seed points, there might be some parts of the surface that are left uncovered. This can
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be resolved by randomly picking points on the surface and checking the optimum versus
the actual distance of curvature lines, or by scanning the surface systematically. In
the accompanying software the user also has the possibility to manually choose starting
points for curvature line integration.

Both types of seeding need some initial seeds to be chosen. In [2] umbilic points are
chosen as initial seeds. Depending on wedge or trisector type, one or three lines are
started respectively, see figure 4.4. In [26] arguments against this option are presented,
because the directions near umbilic points are by nature unreliable. Thus the authors
propose to choose the starting seeds in anisotropic areas, where the eigenvector directions
are clearly defined.

The prioritisation in the queue of seed points can be done by comparing the local
optimum distance to the actual distance of the seed point to neighbouring lines. Fur-
thermore hierarchy levels can be introduced. If a curvature line belongs to level l, the
seed points that are generated while integrating this line will be marked belonging to
level l + 1. This makes sense if one uses the umbilic points as initial seeds, because lines
starting from these usually give a good topological division of the surface. By using the
hierarchy level as primary sorting criterion, the coverage with curvature lines will grow
uniformly around the initial lines.

4.2.5 Construction of the Output Mesh

The previous steps have covered the surface with a network of curvature lines, which
partition the surface into quadrilateral patches in non-umbilic regions. In the next step
a mesh has to be constructed from these curvature lines.

Vertex creation

First of all a list of intersection points of curvature lines is generated. The curvature
lines are stored as straight line segments per face, consequently the intersection points
can easily be calculated. One only needs to consider faces that contain line segments of
curvature lines from different eigenvector fields.

Additional points added to the list are the umbilic points, as well as intersection points
of curvature lines with the boundary.

Edge creation

The list of edges is generated by walking along the curvature lines and connecting sub-
sequent intersection points that have been calculated in the previous step. At last the
intersection points on the boundary are connected by tracing the boundary on the orig-
inal mesh.
As the remeshing is done without parameterisation, care has to be taken about the
orientation. At this step of the process a vertex list and an edge list are available. A
half-edge list is created in the next step, containing one record for boundary edges and
two records for the remaining edges. In order to keep the orientation consistent with
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the original surface, the normal vector of the underlying face is attached to the newly
generated vertices in the vertex creation phase. It can now be used to define tangent
spaces in these vertices and consistently orient them. Consider the projection of the
edges adjacent to a vertex onto the tangent space. An arbitrary reference edge is chosen
from these projections. The edges can now be sorted according to their angle to the
reference edge. The next/prev pointers of an incoming half-edge record can thus be set
pointing to the next outgoing half-edge record in counter-clockwise direction.

Face creation

In this step the half-edge list is searched for loops, which will define the faces. First
of all the half-edges are added to a list of free half-edges. Then the free half-edges
are traversed using the next-pointers starting from an arbitrary half-edge. On reaching
the starting half-edge again, a new face is created and the corresponding half-edges are
removed from the list of free half-edges. This process is continued until no more free
half-edges remain. It might happen that no more loops can be found in the half-edge
list while it still is not empty. This might happen if the original mesh is coarse and the
projection onto the tangent space changes the orientation (see previous step). This can
resolved by removing the wrongly oriented edges from the half-edge list at the cost of
loosing details in the resulting mesh.

Remark. The steps described above produce a mesh that consists mainly of quad faces.
Note that it is not clear whether this mesh is topologically equivalent to the original one.
It is very likely that holes are created near umbilic points, because the integration of
curvature lines towards these points may stop before reaching them. This must be
resolved by connecting the vertices at umbilic points to nearby mesh vertices. Usually
this can not be done using quadrilateral faces only.

Subdomains of the original surface that are umbilic should be addressed in earlier
steps. Non-flat umbilic subdomains can be dealt with easily by choosing a different
relativesphere. For flat subdomains the approach described in [26] (cf. section 4.2.3)
gives very good results.

Remark. The faces created in the last step will possibly include n-gons for n > 4.
Moreover quadrilaterals and these n-gons might be concave. One can avoid this by
decomposing them into convex quadrilaterals and triangles, thereby creating a mesh
consisting of mostly quadrilaterals and some triangles (called quad-dominant mesh in
the following).

4.3 Planarization of Quad Meshes

Section 4.1 suggests that the quadrilaterals generated will be close to planar. The topic
of this section is how to transform the quad-dominant mesh into a planar quad-dominant
mesh. The method presented here was initially mentioned in [23] and is called PQ per-
turbation. In the following we will consider a mesh (V, E) consisting of quad faces only,
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which is no restriction because the constraint of planarity addresses these faces only.

The main idea is to minimally perturb the vertices of the quad mesh in order to
planarize the faces. The resulting mesh shall still be close to the original surface. A
possibility to measure this is to use the squared distances from vertices v to corresponding
closest points pv ∈ S. Summing over the vertices this gives the so-called closeness term

fclose :=
∑
v∈V

||v − pv||2. (4.25)

In addition, the smoothness of the mesh can be controlled by adding a so-called fairness
term that measures the bending energies in the rows and columns defined by the quad
mesh. Let v1

+, v1
− and v2

+, v2
− denote the neighbouring vertices to v in the two eigenvector

directions respectively. The bending energy is defined by means of a second order central
difference quotient:

ffair :=
∑
v∈V

(
||v1

+ − 2v + v1
−||2 + ||v2

+ − 2v + v2
−||2
)
. (4.26)

The perturbation can then be stated as a constrained optimization problem, where the
constraints express the planarity of the faces. A possible choice for the constraints is
to consider the angles enclosed by consecutive edges of the quad faces. For a face f
we denote the angles corresponding to vertices v1, . . . , v4 by αf

1 , . . . , α
f
4 . They shall be

measured in the interval [0, π], see figure 4.10 for examples. Consider the unit vectors
eij :=

vi−vj

||vi−vj || , i 6= j. The angles can be computed by

αf
1 = cos−1(〈e21, e41〉)

αf
2 = cos−1(〈e32, e12〉)

αf
3 = cos−1(〈e43, e23〉)

αf
4 = cos−1(〈e14, e34〉) (4.27)

The following proposition holds for the sum of these angles:

Proposition 4.2. Given a quad face f consider the quadrilateral polygon defined by its
edges. The sum of angles

af := αf
1 + αf

2 + αf
3 + αf

4 (4.28)

is equal to 2π if and only if f is planar and convex.

Proof. If f is planar and convex then obviously af = 2π.
On the contrary we show that f not planar or f not convex implies af < 2π. In order

to do this consider the following cases:
f is planar but concave: The sum of inner angles equals 2π, but one of the inner

angles, say β, exceeds π (see figure 4.10). It will be measured by αf
3 = 2π − β and thus

af < 2π.
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α1 α2

α3α1

α2

α3
α4

β

Figure 4.10: Definition of αf
1 , . . . , α

f
4

α4

α1 α2

α3

α1 α3
α2

Figure 4.11: Unfolding of a non-planar face

f is not planar: Choose two vertices of the polygon that are not connected by an
edge, without loss of generality these shall be αf

1 and αf
3 . Rotate vertex v4 around the

axis defined by v1 and v3 such that f becomes planar. Doing this, the angles αf
2 and αf

4

stay the same, but αf
1 , αf

3 change to α̃f
1 and α̃f

3 respectively, see figure 4.11. According
to the first case it holds that α̃f

1 + αf
2 + α̃f

3 + αf
4 ≤ 2π, depending on the convexity of f .

Now it suffices to show αf
1 < α̃f

1 and αf
3 < α̃f

3 .
It holds that cos(α̃f

3) = 〈ẽ43, e23〉. Choose a unit vector n orthogonal to ẽ43 and e23

and 0 < γ < π such that e43 = cos γẽ43 + sin γn. From this follows

cos αf
3 = 〈e43, e23〉 = cos γ〈ẽ43, e23〉 = cos γ cos α̃f

3 < cos α̃f
3

and thus αf
3 < α̃f

3 . The inequality for αf
1 can be shown analogously.

We define constraints cf := af − 2π. The constrained optimization problem can thus
be stated using the Lagrangian multiplier formulation

fpq(x, λ) := wclosefclose(x) + wfairffair(x) +
∑
f∈F

λfcf (x). (4.29)
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where x denotes a vector of all vertex coordinates, λ = (λf )f∈F is the vector of La-
grangian multipliers and wclose, wfair are user-defined constants that control the weight-
ing of approximation error and smoothness. An unconstrained minimizer (x̃, λ̃) of 4.29
minimizes wclosefclose + wfairffair subject to the constraints (cf )f∈F = 0. The authors
of [23] use Sequential Quadratic Programming (SQP) as described in [25] for the compu-
tation of a minimizer. In the following an overview of SQP applied to this minimization
problem is given, for a more detailed description see [23] and [25].
For better readability we define f(x) := wclosefclose(x)+wfairffair(x), c(x) := −(cf (x))f∈F

and rewrite 4.29 in vector notation fpq(x, λ) = f(x) − λT c(x). Let ∇x,λfpq denote the
gradient of fpq with respect to (x, λ), ∇f(x) shall represent the gradient of f(x) and
J(x) the Jacobian of the constraints c(x). The following condition is necessary for a
minimizer (x̃, λ̃) of fpq:

∇x,λfpq(x̃, λ̃) =

(
∇f(x̃)− JT (x̃)λ̃

−c(x̃)

)
= 0 (4.30)

This nonlinear equation can be solved iteratively using Newton’s method of linearizing
around a given pair (xi, λi):

∇(x,λ)fpq(xi + hi, λi + ηi) ≈ (4.31)

≈
(
∇f(xi)− JT (xi)λi

−c(xi)

)
+

(
[∇2f(xi) +

∑
f∈F ∇2cf (xi)λif ] −JT (xi)

−JT (xi) 0

)(
hi

ηi

)
Here ∇2f and ∇2cf denote the Hessians of f and cf with respect to x. For shorter
notation we define H(x, λ) := ∇2f(x) +

∑
f∈F ∇2cf (x)λf . Plugging the linearization

into 4.30 we get a linear equation system for the update steps (hi, ηi):(
H(xi, λi) −JT (xi)
−JT (xi) 0

)(
hi

ηi

)
=

(
−∇f(xi) + JT (xi)λi

c(xi)

)
(4.32)

Substituting λi+1 = λi + ηi one gets(
H −JT (xi)

−JT (xi) 0

)(
hi

λi+1

)
=

(
−∇f(xi)

c(xi)

)
(4.33)

The actual update step is determined using a line-search strategy, which roughly means
that a factor 0 < d ≤ 1 is determined such that fpq(xi + dhi) < fpq(xi). Several update
steps will be necessary in order to reach a predefined stopping criterion. Usually one
uses maxf∈F |cf | for that purpose.

Remark. Note that 4.30 is not a sufficient condition, in fact it is also necessary for local
maxima. However these will not occur in practice.

It is necessary to repeatedly compute the Hessians∇2cf ,∇2ffair,∇2fclose. Expressions
for the first two Hessians can be derived from 4.27 and 4.26 respectively, but the definition
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of fclose involves the computation of closest points on S and thus the Hessian can not be
given in a closed form. The authors of [23] therefore suggest the following approximation
for ||v − pv||2. As the difference v − pv is orthogonal to the tangent plane Tpv(S), the
normal vector npv in the point pv on S is a multiple of v− pv, consequently ||v− pv||2 =
〈v−pv, npv〉2. The right hand side of this equation is used as an approximation by fixing
pv and npv .
The matrix in 4.33 is highly sparse, which follows directly from 4.29 because all terms
depend on neighbouring vertices only. Thus efficient solvers can be used.

Remark 4.3. In practice one might want to fix certain vertices, e.g. the boundary
vertices. This is simple done by optimizing for the remaining vertex coordinates only.

Penalty method

The optimization problem can also be stated without the use of constraints for expressing
the planarity of the quads. In this case 4.29 is replaced by

fpenalty
pq (x) := wclosefclose(x) + wfairffair(x) + fangle (4.34)

where
fangle :=

∑
f∈F

|cf |. (4.35)

The minimizer of 4.34 can effectively be computed using the Gauss-Newton method with
Levenberg-Marquardt regularization, see [24].

Example 4.4. Figure 4.12 shows a section of a quad mesh before and after planarization.
The lower part shows two different results, which were obtained by the penalty method
using the stopping criterion maxf∈F |cf | < 5 · 10−4 and wclose = wfair = 1. The right
result shows the case of fixed boundary vertices. Fixing all boundary vertices imposes
a strict constraint on faces touching the boundary, depending on the number of vertices
of the face that lie on the boundary. Therefore it makes sense to subdivide faces with
more than two vertices on the boundary, if all of the boundary vertices should stay fixed.
Otherwise the planarization might result in a mesh that is less fair, as can be seen in
figure 4.12.

Remark. In section 4.2.5 it has become clear that the construction of the output mesh
will possibly include n-gons with n > 4. For aesthetical purposes one might want to
refrain from decomposing them into quads and triangles. The planarization of such faces
is done by planarizing sufficiently many overlapping sub-quads, see also [23].
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Figure 4.12: Quad mesh before and after planarization - detail
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5 The Relative Sphere

5.1 Representation by a Triangular Mesh

A straightforward way to represent a relativesphere R is by means of a triangular closed
orientable mesh. The requirement that R be strictly convex can be replaced by requiring
that the surface normals nv, v ∈ V are unique. The curvature tensor field of R can be
computed using the methods described in section 3.2. Computation of the relative
curvature tensor field in a p ∈ S involves finding a vertex v ∈ V that best matches np,
for a description of how to do this efficiently see section 6.1. In the second step the
mapping dνv has to be reconstructed from the curvature tensor field of R. Finally it
is applied to dnp and the new eigenvectors and -values are computed, see also equation
2.13 and section 6.1.

Remark. The advantage of this representation of R is its simpleness, it can be imple-
mented easily using the methods also needed for computing the curvature tensor field
of S. Its disadvantages are:

• The computational cost of computing the curvature tensor field as described in
section 3.2 is high. In an implementation one would like to change the relative-
sphere interactively and see the effects on the relative curvature tensor fields within
a short response time. This is not possible, because a recomputation of the cur-
vature tensor field would be necessary in most cases. An exception to this are
rotations of the relativesphere, as the curvature tensor field is invariant under
these transformations.

• The curvature tensor field of R is available in the vertices only, thus the matching
of normal vectors and calculation of the relative curvature tensor field is prone
to inaccuracy and jitter. An optimum mesh representing R should be isotropic
regarding the vertex normals nv. A possibility how to obtain such a mesh will be
explained in the following section.

5.2 Representation by a Support Function

The representation of a convex surface by its support function is a classical tool in convex
geometry, see [4]. Support functions will proof to have some very useful properties for
the representation of a relativesphere.

A convex surface R ⊂ R3 can be described by the distance of its tangent planes to the
origin of the coordinate system. Given an n ∈ S2 and a d ∈ R the hyperplane H(n, d) :=
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{v ∈ R3|〈v, n〉 = d} separates R3 into the half spaces H+(n, d) := {v ∈ R3|〈v, n〉 > d}
and H−(n, d) := {v ∈ R3|〈v, n〉 < d}. For a given convex surface its support function
can now be defined by

h : S2 → R : n 7→ inf{d ∈ R|H+(n, d) ∩R = ∅} (5.1)

Thus H(n, h(n)) intersects with R in at least one p ∈ R, and the set H(n, h(n)) ∩ R
is called the support set. As ||n|| = 1 it follows that dist(0, H(n, d)) = d. p is called a
support point and H(n, h(n)) is called the support plane in p. It is clear that H(n, h(n))
is a tangent plane to R.

In the following it is assumed that 0 ∈ R3 is an interior point of the convex body
enveloped by R. In this case the support function can also be defined by

h̃(n) = sup{< n, p > | p ∈ R}.

This gives a natural extension of h from S2 to R3. The mapping h̃ : R3 7→ R is called
extended support function. The following relationship holds for a support function and
its extension:

h̃(n) = ||n||h
(

n

||n||

)
. (5.2)

It follows directly from the definition that h̃ is a convex function:

h̃(λx + (1− λ)y) = sup{〈λx + (1− λ)y, p〉|p ∈ R}
≤ λ sup{〈x, p〉|p ∈ R}+ (1− λ) sup{〈y, p〉|p ∈ R}

= λh̃(x) + (1− λ)h̃(y)

Furthermore h̃ is positively homogenous of degree 1, which means

∀λ ≥ 0 : ∀x ∈ R3 : h̃(λx) = λh̃(x). (5.3)

If one starts from a convex, positively homogeneous1 h̃, there is exactly one convex sur-
face whose extended support function is h̃, for a proof see [4, section 17]. The convexity
and homogeneity imply that h̃ is Lipschitz-continous and thus differentiable nearly ev-
erywhere.

Remark 5.1. The concept of Minkowski addition has a direct analogon regarding sup-
port functions. The Minkowski sum of two convex surfaces R1,R2 is defined as

R1 +R2 :=
{
a + b | a ∈ R1, b ∈ R2

}
Obviously R1 +R2 is a convex surface again. Similarly one defines

λR := {λa | a ∈ R} .

Let hR1 , hR2 denote the corresponding support functions. It is easy to show (cf. [4]) that
for λ1, λ2 ≥ 0

hλ1R1+λ2R2(n) = λ1hR1(n) + λ2hR2(n)

is the support function of λ1R1 + λ2R2.

1In the following positively homogeneous will always refer to positive homogeneity of degree 1.
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From here on we will concentrate on strictly convex surfacesR, for more general results
see [4] and [15]. The strict convexity implies that the support sets of all support planes
consist of single points. For p ∈ R the support function can be computed by 〈p, np〉. It
can easily be shown that R can be fully reconstructed given h. Let h : S2 → R be the
support function of R. The strict convexity implies that R can be parameterized by its
normal vectors, say p = p(n) ∈ R. Thus one gets the following formula for computing
the support function:

h(n) = 〈p(n), n〉. (5.4)

The envelope yh of a support function h is defined by

yh : S2 → R3 : n 7→ h(n)n +∇0
nh. (5.5)

Using 5.4, one can prove that the envelope gives exactly the parameterisation p(n):

Proposition 5.2. Let h be the support function of a strictly convex surface R. The
envelope yh of h is a parameterisation of R such that nyh(n) = n.

Proof. Notice that the two summands in (5.5) are orthogonal, because ∇0
nh ∈ Tn(S2).

Consider a p ∈ R, let n be the normal vector of R at p, and decompose it into orthogonal
components:

p = h(n)n + [p− h(n)n] = h(n)n + [p− 〈p, n〉n] = h(n)n + πn(p) (5.6)

where πn denotes the orthogonal projection onto Tn(S2) (Notice that Tn(S2) and Tp(R)
are parallel). We will now calculate ∇0

nh using h(n) = 〈p(n), n〉 and a local parameteri-
sation n(x1, x2) of S2:

∂h

∂xi

(n) = 〈dpn(n,i), n〉+ 〈p(n), n,i〉 = 〈p(n), n,i〉

From this it follows immediately that the differential of h at n is given by

dhn : Tn(S2) → R : v 7→ 〈p(n), v〉 = 〈πn(p(n)), v〉. (5.7)

Thus ∇0
nh = πn(p) and a comparison of (5.5) and (5.6) completes the proof.

The property that yh parameterizes R by its normal vectors leads to

Corollary 5.3. The Gaussian map and the Weingarten map of R are given by
y−1

h : R→ S2 and dy−1
h respectively.

Remark 5.4. The envelope yh can also be expressed in terms of the extended support
function h̃. Differentiating the identity in 5.3 to λ one gets the so-called Euler relation
〈∇h̃, x〉 = h̃(x). Using this and equation 2.3 gives

∇0
nh = πn(∇nh̃) = ∇nh̃− 〈∇nh̃, n〉n = ∇nh̃− h(n)n. (5.8)

Consequently the envelope can also be defined by

yh̃ : S2 → R3 : n 7→ ∇nh̃. (5.9)
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Example 5.5. Consider the function h̃(x) =
√

a2
1x

2
1 + a2

2x
2
2 + a2

3x
2
3 with ai > 0. Obvi-

ously this function is convex and positively homogeneous and therefore it is the support
function of a strictly convex surface. According to remark 5.4 the envelope of this sup-
port function has the coordinates yi = a2

i xi/
√

a2
1x

2
1 + a2

2x
2
2 + a2

3x
2
3. From this follows∑3

i=1 y2
i /a

2
i = 1, which is the defining equation of an ellipsoid. More generally an analo-

gous calculation shows that h̃(x) = l/(l−1)
√
|a1x1|l/(l−1) + |a2x2|l/(l−1) + |a3x3|l/(l−1) is the

support function of the superellipsoid
∑3

i=1 |yi/ai|l = 1.
The support function of the sphere with radius r and center 0 is given by the constant

function r.
It is a direct consequence of 5.4, that the support function of a point p ∈ R3 is given by

〈p, n〉. Together with remark 5.1 this implies that the support function of R translated
by p is given by hR + 〈p, n〉.

In the following we would like to choose a relativesphere such that it fulfills certain
conditions. This can be done by parameterizing h. However care has to be taken that
the resulting h is still a support function of a strictly convex surface. If we define h on
S2, this involves checking for the convexity of h̃, which is not a straightforward task.
In [15] the author proves a proposition on the perturbation of support functions. The
following corollary is a direct consequence of it, which will be referred to in the following.

Corollary 5.6. If h is a twice differentiable function on Sd−1 such that for all p ∈ Sd−1

and all i, j ∈ {1, . . . , d}

2d3|Dij
0 h(p)|+

√
2d3|Di

0h(p)|+ |h(p)| < ro

then r0 + h is the support function of a convex surface in Rd.
Di

0h(p) and Dij
0 h(p) are defined as

Di
0h(p) :=

(
∂h(x/|x|)

∂xi

)
x=p

, Dij
0 h(p) :=

(
∂2h(x/|x|)

∂xi∂xj

)
x=p

Proof. See [15, Proposition 2.2.4]

Up to now, no parameterisation of S2 was considered, which we will need for the
evaluation of the envelope and its differential. We choose the following parameterisation:

n : [0, π]× [0, 2π) → S2 ⊂ R3 : (θ, φ) 7→ (sin θ sin φ, sin θ cos φ, cos θ) (5.10)

The associated basis to this parameterisation is given by

nθ = (cos θ sin φ, cos θ cos φ,− sin θ) , ||nθ|| = 1

nφ = (sin θ cos φ,− sin θ sin φ, 0) , ||nφ|| = sin θ (5.11)

In the following we derive expressions for yh and dyh in this parameterisation. First of
all we compute the coefficients of ∇0

nh in the basis nθ, nφ. Using the parameterisation
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(5.10) we can write h = h(θ, φ). According to (2.2) the coordinate vector of ∇0
nh reads

(hθ/||nθ||2, hφ/||nφ||2) = (hθ, hφ/ sin2 θ). Thus we get

yh(θ, φ) = h(θ, φ)n(θ, φ) + hθ(θ, φ)nθ(θ, φ) +
hφ(θ, φ)

sin2 θ
nφ(θ, φ) (5.12)

for the envelope, see also [18]. This expression, and the fact that the tangent spaces of S2

and R at given values (θ, φ) are parallel, gives an easy way of calculating the coefficients
of dyh in the basis (nθ, nφ) by simply computing ∂

∂θ
yh and ∂

∂φ
yh and projecting these

onto the tangent space. One gets

dyh(nθ)
∣∣∣
(θ,φ)

= (h + hθθ)nθ + (−hφ
cos θ

sin3 θ
+

hθφ

sin2 θ
)nφ

dyh(nφ)
∣∣∣
(θ,φ)

= (−hφ cos θ

sin θ
+ hθφ)nθ + (h +

hθ cos θ

sin θ
+

hφφ

sin2 θ
)nφ (5.13)

using the identities

〈n, nθ〉 = 0 〈n, nφ〉 = 0
〈nθθ, nθ〉 = 0 〈nθθ, nφ〉 = 0
〈nθφ, nθ〉 = 0 〈nθφ, nφ〉 = sin θ cos θ
〈nφφ, nθ〉 = − sin θ cos θ 〈nφφ, nφ〉 = 0

which follow directly from 5.11.

Remark. The formulas 5.12 and 5.13 suggest singularities at the poles for θ ∈ {0, π}.
These are no singularities but cancel with ||nφ|| and inner derivatives of h(θ, φ). However,
numerical problems can arise, because 5.12 and 5.13 are evaluated in the software as
shown. Therefore an alternative coordinate system was used for evaluation at the poles,
see section 6.3.

Remark 5.7. Assume that h(θ, φ) and its derivatives up to second order can be com-
puted by given expressions. Formulas 5.12 and 5.13 show that for a given normal vector
n it is easily possible to evaluate the corresponding point on R as well as the inverse
Weingarten map, see also corollary 5.3. This is exactly what is needed for the compu-
tation of the relative curvature tensor in a point p ∈ S with np = n. The cost2 needed
for the curvature tensor update in p is bounded by a constant, depending on the cost
of the evaluation of h and its derivatives. Note that it is not necessary to evaluate the
trigonometric functions. Given np = (x, y, z) they can easily be computed using 5.10:

cos θ = z, sin θ =
√

1− z2, sin φ = x/ sin θ, cos φ = y/ sin θ (5.14)

Again, special care has to be taken near the poles where sin θ ≈ 0, see section 6.3.

2Cost meaning amount of arithmetic operations.
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Remark. The support function representation can also be used to generate a mesh of
a convex surface R whose vertex normals are evenly spread3. Given such a mesh on S2,
simply map it to R using yh.

We have seen above, that the cost of the curvature tensor update strongly depends on
the cost of the evaluation of h and its derivatives up to second order. A representation
that allows approximation of a big class of support functions up to arbitrary accuracy,
and still can be evaluated cheaply, will be described in the following section.

5.2.1 Representation of Support Functions by Spherical Harmonics

Consider Laplace’s equation in R3. The spherical harmonics are the angular portion of an
orthogonal set of solutions, if Laplace’s equation is represented in spherical coordinates
(cf. [37]). They are defined on S2 and can thus be represented using the parameterisation
5.10.

Definition 5.8. The real spherical harmonics for degree l ≥ 0 are defined as

Y m
l (θ, φ) :=

{
Cm

l Pm
l (cos θ) cos(mφ) 0 ≤ m ≤ l

C
|m|
l P

|m|
l (cos θ) sin(mφ) −l ≤ m < 0

(5.15)

where (θ, φ) ∈ [0, π]× [0, 2π).
Here Pm

l and Cm
l denote the so called associated Legendre functions4 and normaliza-

tion constants respectively, which are defined by

Pm
l (x) :=

1

2ll!
(1− x2)m/2 ∂l+m

∂xl+m
[(x2 − 1)l] (5.16)

Cm
l :=


√

(2l+1)(l−m)!
4π(l+m)!

m = 0

√
(2l+1)(l−m)!

2π(l+m)!
m > 0

(5.17)

l and m are called degree and order of Y m
l respectively.

Consider the Hilbert-space H(S2, R) of real-valued square-integrable functions defined
on the unit sphere, with the canonical inner product

< f, g >:=

∫
S2

fg dF.

It can be shown that the family (Y m
l | − l ≤ m ≤ l)l∈N is a complete orthonormal

set of H(S2, R), see [15, Thm. 3.2.10]. Thus any square integrable support function
h ∈ H(S2, R) can be expressed as its expansion into spherical harmonics:

3These meshes are ideal for the representation of a relative sphere.
4Cf. [36].
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hm
l := < h, Y m

l > =

∫ π

θ=0

∫ π

φ=−π

h(θ, φ)Y m
l (θ, φ) sin(θ) dφ dθ (5.18)

h(θ, φ) =
∞∑
l=0

m=l∑
m=−l

hm
l Y m

l (θ, φ) (5.19)

This implies a natural way of approximating h by limiting the expansion to a finite
degree lmax ∈ N:

h(θ, φ) ≈ hlmax(θ, φ) :=
lmax∑
l=0

m=l∑
m=−l

hm
l Y m

l (θ, φ) (5.20)

Remark 5.9. If h is the support function of a convex surface R then it is not clear
whether hlmax is the support function of a convex surface too. However it can be proven
(see [15, Thm. 5.1.4]) that their is a l0 ∈ N, which depends on R, such that this is the
case for all lmax > l0. The proof of this theorem is based on corollary 5.6.

Remark 5.10. A simple calculation shows that the number of spherical harmonics with
degree ≤ lmax is given by

k(lmax) := lmax(lmax + 2) + 1.

Example 5.11. The real spherical harmonics of positive order up to degree 2 are given
by:

Y m
l

l\m 0 1 2

0
√

1
4π

1
√

3
4π

cos θ
√

3
2π

sin θ cos φ

2
√

5
8π

(3 cos2 θ − 1)
√

15
4π

cos θ sin θ cos φ
√

15
16π

sin2 θ cos 2φ

For Y −m
l , m > 0, replace cos mφ by sin mφ in Y m

l . This shows that the Y m
1 are

multiples of the coordinates of the parameterisation 5.10. As a result the contri-
bution of the spherical harmonics of degree 1 to h is of the form 〈p, n〉 with p =

(
√

3
2π

h−1
1 ,
√

3
2π

h1
1,
√

3
4π

h0
1). According to example 5.5 this corresponds to a translation,

which is not of interest for the representation of the relativesphere. Consequently the
coefficients of degree 1 will be assumed being equal to 0 in the following.

5.2.2 Evaluation of Spherical Harmonics

If one wants to numerically evaluate the envelope yh of a support function defined via
a finite spherical harmonic expansion, it is necessary to evaluate value and first order
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derivatives of the spherical harmonics. Computation of the curvature tensor enforces us
to calculate the second order derivatives of the spherical harmonics too.

Considering 5.15, the core problem is to compute the associated Legendre functions
Pm

l (cos θ) and its derivatives

∂

∂θ
Pm

l (cos θ) = −Pm′

l (cos θ) sin θ and (5.21)

∂2

∂θ2
Pm

l (cos θ) = Pm′′

l (cos θ) sin2 θ − Pm′

l (cos θ) cos θ. (5.22)

The Pm
l fulfil several recurrence relations, an extensive listing can be found in [1]. These

are commonly used for evaluation, see [32]. However, in common literature, recurrence
relations are given for the associated Legendre functions and their derivatives only. The
following recurrence relation in the degree l holds for the derivatives of the Pm

l as defined
above.

∂

∂x
Pm

l (x) =
lxPm

l (x)− (l + m)Pm
l−1(x)

x2 − 1
(5.23)

∂

∂x
Pm

m (x) =
∂

∂x

(
1

2mm!
(1− x2)m/2 ∂2m

∂x2m
[(x2 − 1)m]

)
=

∂

∂x

(
(1− x2)m/2(2m− 1)!!

)
= −mx(1− x2)m/2−1(2m− 1)!! (5.24)

From this recurrence relation, one can derive another one for the second derivatives by
differentiation.

(1− x2)
∂2

∂x2
Pm

l (x) = −lPm
l (x) + (2− l)x

∂

∂x
Pm

l (x) + (l + m)
∂

∂x
Pm

l−1(x) (5.25)

(1− x2)
∂2

∂x2
Pm

m (x) = m(2m− 1)!!(1− x2)m/2−1
[
(m− 1)x2 − 1

]
(5.26)

The term (1 − x2) is kept on the left hand side, because it will be equal to sin2 θ
if evaluated at cos θ as needed in equation 5.22. Using equations 5.21 to 5.26, the
derivatives up to second order can easily be evaluated:
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∂

∂θ
Y m

l (θ, φ) =

{
−Cm

l Pm′

l (cos θ) sin θ cos(mφ) 0 ≤ m ≤ l

−C
|m|
l P

|m|′
l (cos θ) sin θ sin(mφ) −l ≤ m < 0

(5.27)

∂

∂φ
Y m

l (θ, φ) =

{
−mCm

l Pm
l (cos θ) sin(mφ) 0 ≤ m ≤ l

mC
|m|
l P

|m|
l (cos θ) cos(mφ) −l ≤ m < 0

(5.28)

∂2

∂θ2
Y m

l (θ, φ) =

{
Cm

l

(
Pm′′

l (cos θ) sin2 θ − Pm′

l (cos θ) cos θ
)
cos(mφ) 0 ≤ m ≤ l

C
|m|
l

(
P
|m|′′
l (cos θ) sin2 θ − P

|m|′
l (cos θ) cos θ

)
sin(mφ) −l ≤ m < 0

(5.29)

∂2

∂θ∂φ
Y m

l (θ, φ) =

{
mCm

l Pm′

l (cos θ) sin θ sin(mφ) 0 ≤ m ≤ l

−mC
|m|
l P

|m|′
l (cos θ) sin θ cos(mφ) −l ≤ m < 0

(5.30)

∂2

∂φ2
Y m

l (θ, φ) =

{
−m2Cm

l Pm
l (cos θ) cos(mφ) 0 ≤ m ≤ l

−m2C
|m|
l P

|m|
l (cos θ) sin(mφ) −l ≤ m < 0

(5.31)

5.3 Prescribing Curvature

In chapter 4 we have seen that umbilic points and areas are critical for the generation of
a PQ mesh. Consequently one would like to have some sort of control of umbilic points
and remove umbilic areas. In section 4.2.2 and figure 4.7 an example has been given,
showing how an appropriate choice of the relativesphere can lead to the transformation
of an umbilic area into a single relative umbilic point. In the following we will consider
the placement of umbilic points. Umbilic points are clearly recognizable when viewing
curvature lines or the resulting quad mesh, which means it is desirable to have a possi-
bility to choose their location. An arbitrary choice is not possible, as will become clear
in the following.
The defining property of a relative umbilic point is, that there exists a λ ∈ R such that

dν−1
np
◦ dnp = λI. (5.32)

In flat points p ∈ S this equation is fulfilled for any choice of R with λ = 0, because
dnp = 0. Note that the relativesphere R is elliptic everywhere by definition, which
means the eigenvalues of dν−1 are of the same sign. Consequently 5.32 can be fulfilled
for elliptic or flat points p ∈ S only.

If one wants to choose a single elliptic p ∈ S as relative umbilic point, R has to be
chosen such that 5.32 holds. This can be achieved by an ellipsoid, consider example 5.5.
The principal curvatures k1, k2 in the point q : y1 = a1, y2 = y3 = 0 are equal to the
curvature of the intersection curves of R and the two symmetry planes passing through
q. It is well known that k1 = a1/a

2
2, k2 = a1/a

2
3. The principal curvatures of R in q can

thus be chosen equal to the principal curvatures of S in q. Afterwards two rotations are
applied to the ellipsoid. The first rotation is chosen such that the normal vectors np
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and nR
q coincide. In a second step the ellipsoid is rotated around the axis defined by np

in order to align the corresponding principal directions.

Consider a family P := (p1, . . . , pn) of points in S that one would like to be relative
umbilic points. Note that it is not clear at all whether a strictly convex relativesphere
exists such that 5.32 holds for all p ∈ P . In the following a possible approach to this
problem is outlined, using the representation by spherical harmonics.

In the rest of this section h(θ, φ) denotes a support function defined according to 5.20
up to degree lmax. For each p ∈ P equation 5.32 can be expressed in terms of a matrix
equation. We know from corollary 5.3 that

dν−1
np

= dyh

∣∣
np

.

Consequently its coordinate matrix Ap in the basis (nθ, nφ) can be computed using
equation 5.13. As h is given by a linear combination of spherical harmonics Y m

l , Ap

can be written as a linear combination of matrices Al,m
p as well: Ap =

∑
l,m hm

l Al,m
p

where Al,m
p denotes the coordinate matrix of dyY m

l
. Furthermore we define Bp to be

the coordinate matrix of dnp in the same basis. Using this notation one arrives at the
following formulation:

Find coefficients hm
l such that ∀p ∈ P :

∑
l,m

hm
l Al,m

p = Bp (5.33)

Note that this is a linear equation system, thus the λp could be dropped. In order to write
this linear equation system in matrix-vector notation, one introduces a lexicographical
ordering of the coefficients hm

l :

h := (h0
0, h

−2
2 , h−1

2 , h0
2, h

1
2, h

2
2, h

−3
3 , h−2

3 , . . . , hlmax
lmax

)T ∈ Rk̃(lmax)

where k̃(lmax) := lmax(lmax + 2)− 2. Using this ordering we define

A :=



(A0,0
p1

)(1,1) (A2,−2
p1

)(1,1) (A2,−1
p1

)(1,1) · · ·
(A0,0

p1
)(1,2) (A2,−2

p1
)(1,2) (A2,−1

p1
)(1,2) · · ·

(A0,0
p1

)(2,1) (A2,−2
p1

)(2,1) (A2,−1
p1

)(2,1) · · ·
(A0,0

p1
)(2,2) (A2,−2

p1
)(2,2) (A2,−1

p1
)(2,2) · · ·

(A0,0
p2

)(1,1) (A2,−2
p2

)(1,1) (A2,−1
p2

)(1,1) · · ·
...

...
...

. . .


∈ R4n×k̃(lmax)

b :=
(
(Bp1)(1,1), (Bp1)(1,2), (Bp1)(2,1), (Bp1)(2,2), (Bp2)(1,1), . . .

)T ∈ R4n

which allows to replace 5.33 by Ah = b. As was mentioned before, the existence of a
solution depends on the choice of P . If a solution exists, it might not correspond to the
support function of a strictly convex surface. In the following it will be assumed that a
solution h exists.
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Remark 5.12. Further investigation should be done in clarifying the existence of a
convex surface that fulfills 5.32 for all p ∈ P , which seems to be a non-trivial task.

As no result on that could be obtained, the following rudimentary approach was
chosen. It is easy to see that for each p ∈ P condition 5.32 fixes three degrees of freedom.
Therefore lmax should be chosen such that k̃(lmax) ≥ 3n. Note that lmax in general can
not be chosen such that k̃(lmax) = 3n. Consequently, depending on the choice of lmax

the kernel of the matrix A will change. This additional degrees of freedom have proven
useful in practice, because they might allow to choose h such that the resulting surface
is strictly convex. In order to compute a solution h, the singular value decomposition
of A can be used. If a solution exists, the set of all solutions is given by h + ker(A),
where ker(A) denotes the kernel. A basis of ker(A) can be computed using again its
singular value decomposition. Corollary 5.6 suggests that a solution should be chosen
from h + ker(A) such that h0

0 � hm
l , l > 0.

Remark. The approach described above should be considered as a method of trial and
error, as one does not know in advance whether a strictly convex relativesphere exists
that fulfills the desired criteria.

Example 5.13. Figure 5.1 shows an example where the location of two umbilic points
was successfully prescribed using the method described above. The maximum degree
lmax was set to three in this example, resulting in k̃(lmax) = 13. Consequently 7 degrees of
freedom where left, which allowed to choose a strictly convex relativesphere. The upper
plot shows classical principal curvature lines and umbilic points, whereas the lower plot
displays the resulting relative principal curvature lines. The prescribed umbilic points
are marked by green points. This example shows that the prescription of umbilic points
has a global influence on the relative curvature tensor field. In this case it resulted in
the removal of the central umbilic area, that can be seen in the upper plot.
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Figure 5.1: Example for the prescription of umbilic points

56



6 Implementation

6.1 Computation of Relative Curvature Tensor Field

According to 2.13, the relative curvature tensor field of S with respect to R can be
computed using the curvature tensor fields of S and R. In practice S is given by
a triangulation. Its curvature tensor field is computed using the method described in
section 3.2 in discrete points of S, usually its vertices. The computation of the curvature
tensor field of R depends on the type of representation of R.

In the accompanying software the curvature tensor field is represented as a data struc-
ture attached to the vertices. This consists of normed coordinate vectors b1, b2 ∈ R3

corresponding to the eigenvectors e1, e2 and the principal curvatures k1, k2. The follow-
ing procedure needs to be done for the computation of the relative curvature tensor in
a vertex v:

1. Find a q ∈ R with matching normal vector νq to nv.

2. Set up the coordinate matrix B of dnv with respect to the basis e1, e2, which is
clearly given by

B =

(
−k1 0
0 −k2

)
.

3. Set up the coordinate matrix C of (dνq)
−1 with respect to the same basis. Let

c1, c2 ∈ R3 denote the normed coordinate vectors corresponding to the eigenvectors
of dνq and l1, l2 the matching principal curvatures. Define the transformation
matrix D = (dij) ∈ R2×2 by dij = bT

i cj. Then C can be calculated by

C = D

(
−l−1

1 0
0 −l−1

2

)
D−1 (6.1)

4. Compute the eigenvectors and -values of the composition CB. The negative eigen-
values are the relative principal curvatures kR1 , kR2 , whereas the eigenvectors are
coordinate vectors of eR1 , eR2 in the basis e1, e2.

Interactivity

In practice one would like to parameterize the relativesphere interactively and immedi-
ately see the results in a visualization of the relative curvature tensor field. Consequently
the computational effort for the steps described above needs to be kept as low as possi-
ble, because these steps have to be done for all vertices of the given mesh representing
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S. Therefore the curvature tensor field of S is precomputed. The following sections
describe the specialties of the different representations of R regarding the interactivity.

Relativesphere represented by a Triangular Mesh

In this case the curvature tensor field of R has to be precomputed too. This gives a
strong limitation on the interactive parameterisation of R, because the curvature tensor
field should stay invariant under the transformations involved, which is true only for
affine transformations consisting of a rotation and a translation. Translations of the
relativesphere will not change its Gaussian map, thus rotations of R are left in this case
for the parameterisation.

The computational effort for steps 2 to 4 is not significant, it involves a fixed number
of operations and thus is of order O(|V |). More care has to be taken regarding step 1.
Let the set of vertices of R be denoted by V R. For a given v ∈ V one wants to find a
vertex w ∈ V R such that

〈nw, nv〉 = max
w′∈V R

〈nw′ , nv〉 (6.2)

Note that this vertex is not necessarily a unique maximizer, although the existence of
two maximizers is very unlikely in practice. A naive approach for finding w would be to
compute this inner product for all w ∈ V R, resulting in an overall number of operations
of order O(|V ||V R|). The following algorithms drastically reduce this effort by making
use of the connectivity information of the mesh representing R. The notation N v(v)
will be used to denote the 1-ring of v.

Algorithm 6.1 (Matching of a single vertex). For v ∈ V determine w ∈ V R as in 6.2
by :

1. Choose a starting vertex w0 ∈ V R, set ipmax := 〈nw0 , nv〉, vList := {} and i := 0

2. Loop over

a) Find u such that
〈nu, nv〉 = max

u′∈Nv(wi)\vList
〈nu′ , nv〉

b) If ipmax ≥ 〈nu, nv〉 then break

c) else set ipmax := 〈nu, nv〉, wi+1 := u, vList := vList ∪N v(wi)

d) Set i := i + 1

3. Set w := wi

This algorithm locally makes the best possible choice, as R is convex it will stop at a
maximizer of 6.2 regardless of the starting vertex w0. Note that the amount of vertices
to be visited depends strongly on the choice of w0. Up to now we have made use of the
connectivity of R only. This gives rise to an algorithm which does the matching for all
v ∈ V .
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Algorithm 6.2 (Matching of all vertices). For all v ∈ V determine wv ∈ V R as in 6.2
by :

1. Choose a starting vertex v ∈ V

2. Compute wv according to algorithm 6.1

3. Set vQueue := (N v(v)× {wv}) and vList := {v} ∪N v(v)

4. Loop over

a) If vQueue is empty then break

b) Pop first element (v, w0) from vQueue

c) Compute wv according to algorithm 6.1 using starting vertex w0

d) Set vQueue := (vQueue, (N v(v) \ vList)× {wv})

e) Set vList := vList ∪N v(v))

Remark. The main idea behind this algorithm is to provide good starting vertices for
algorithm 6.1. If the matching vertex wv ∈ V R has been computed for a vertex v ∈ V ,
it is reasonable to choose wv as starting vertex for the neighbouring vertices to v, which
is represented in the ordered pairs (v, w0) ∈ vQueue. This algorithm visits all vertices
in rings1 around the starting vertex, provided that the mesh is connected.

Relativesphere represented by a Support Function given by Spherical Harmonics

In this case step 1 is trivial because according to proposition 5.2 the envelope of the
support function is a parameterization by normal vectors. Step 3 is done according to
remark 5.7. The corresponding coordinate matrix C can thus be calculated by:

Y :=

(
(h + hθθ) (−hφ

cos θ
sin3 θ

+
hθφ

sin2 θ
)

(−hφ cos θ

sin θ
+ hθφ) (h + hθ cos θ

sin θ
+

hφφ

sin2 θ
)

)

D :=

(
bT
1 nθ bT

1 nφ

bT
2 nθ bT

2 nφ

)
C := DY D−1

It can be expected that the cost of the evaluation of Y depends quadratically on the
maximum degree lmax of the spherical harmonics used in the representation of the sup-
port function, see remark 5.10. Consequently this representation can be used for a fully
interactive parameterisation of the relativesphere, as long as lmax is kept low enough to
not disturb the interactivity.

1In the sense of connectivity by edges.
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Computation Times

The following table 6.1 shows computation times needed for updating the relative cur-
vature tensor field of a mesh with 4845 vertices and 9408 faces for both types of repre-
sentations of R. The experiments were done on a workstation using a 1.8GHz processor.
The figures for the representation by meshes clearly show, that the matching of normal
vectors scales better than linearly with the number of vertices of R. In remark 5.10
we have seen that the number of spherical harmonics grows quadratically depending on
lmax. Consequently a quadratic dependency of the computation time on lmax could be
expected. In fact it scales better than quadratic, which can be explained by the use of
recurrence relations for the evaluation of the spherical harmonics. Table 6.1 might sug-
gest that the mesh representation performs better. This has to be put into perspective
with the need of precomputation of the curvature tensor field, which is necessary for the
relativesphere in this case.

Mesh representation
Number of Vertices of R Time [ms]

2039 291
4487 389
16004 651

Support function representation
Maximum Degree lmax Time [ms]

5 274
10 464
20 1109
30 2123
40 3610
50 5377

Table 6.1: Computation times needed for updating the relative curvature tensor field

6.2 Approximation of Support Functions using Spherical
Harmonics

As was mentioned in section 5.2.1, the representation by spherical harmonics can be used
to approximate a given support function h up to a predefined degree lmax. Remember
that there is l0 ∈ N depending on h such that the approximation of degree lmax > l0
is again the support function of a convex surface, see remark 5.9. This is a theoretical
result and there is no known way to compute l0. Still, the following method of trial and
error can be used to choose a suitable lmax. Step 4 in the update procedure described in
section 6.1 can be used as indicator whether lmax was chosen high enough. If the enve-
lope of the approximating support function is not convex, it is not guaranteed that the
relative Weingarten map has real eigenvalues. Therefore, by encountering a v ∈ V such
that the eigenvalues are not real, one knows that lmax should be increased. Figure 6.1
shows examples for the approximation of a support function with lmax ≤ l0 and lmax > l0.

In order to calculate the coefficients hm
l , one needs to compute the integrals in 5.18.

These integrals can be approximated and efficiently computed by a FFT on S2 (cf. [21]).
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Figure 6.1: Example for approximation of support function with too small lmax

In order to do this, h(θ, φ) is sampled on an equiangular grid of size 2lmax × 2lmax:
θj = π(2j + 1)/4lmax, φk = 2πk/2lmax, j, k = 0, 1, . . . , 2B − 1. The collection of sums
of the form

ĥ(l,m) =

√
2π

2lmax

2lmax−1∑
j=0

ωjP
m
l (cos θj)

2lmax−1∑
k=0

e−imφkh(θj, φk)

for |m| ≤ l ≤ lmax is called Discrete Spherical Harmonic Transform, where the constants
ωj are quadrature weights. Note that this transform uses a complex set of spherical har-
monics Ỹ m

l instead of definition 5.15, because it allows for a more efficient computation
by FFTs.

Ỹ m
l :=

{
1√
2
(Y m

l + iY −m
l ) m ≥ 0

1√
2
(Y −m

l − iY m
l ) m < 0

The real coefficients hm
l can thus be calculated from the coefficients ĥm

l by

hm
l =

{
1√
2
(ĥm

l + ĥ−m
l ) m ≥ 0

1√
2i

(h−m
l − ĥm

l ) m < 0

In the accompanying software the freely available implementation S2kit (cf. [22]) of
discrete spherical harmonic transforms was used.

6.3 Avoiding Numerical Problems when Evaluating
Spherical Harmonics

As was mentioned before, equations 5.12 and 5.13 can not be evaluated at the poles
θ ∈ {0, π}. Moreover numerical problems can be expected and were encountered for θ
close to 0 or π. A possible solution to this problem is to change the parameterisation
n(θ, φ) (see 5.10) of the unit sphere. This can be done by applying a bijective mapping
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f : S2 → S2 to n. We choose an orthogonal transformation represented by a matrix
R ∈ R3×3, RT R = I, such that the poles are not mapped onto themselves, e.g. by
choosing

R =

 1 0 0
0 0 1
0 −1 0

 . (6.3)

Denote the poles of the new parameterisation by P := {Rn(0, 0), Rn(π, 0)}. Given a
p ∈ S2 \ P its parameters (θ̄, φ̄) in the new parameterisation Rn can be calculated by
applying n−1 to RT p.

The representation of h by spherical harmonics needs to be transformed to the new
coordinate system too, this changed representation of h shall be denoted by h̄. Given the
coefficients hm

l we need to calculate the rotated coefficients h̄m
l such that for all (θ, φ)

holds h(θ, φ) = h̄(n−1(RT n(θ, φ))). It can be shown that the rotated coefficients h̄m
l

depend on the coefficients hm
l of same degree l only, see [16] and [17]. In these papers a

recurrence relation for the transformation matrices Rl, corresponding to the coefficients
of degree l, is derived. In the accompanying software the rotation matrices Rl are
precomputed up to a configurable degree at startup and kept in memory. This allows for
fast computation of the rotated coefficients h̄m

l by simple matrix vector multiplications,
whenever the coefficients hm

l are changed.

6.4 Umbilic Points

This section describes how relative umbilic points can be determined, making use of
the linearity of the curvature tensor field on the faces. Let vi, 1 ≤ i ≤ 3 denote the
vertices adjacent to face f . Computation of umbilic points is done per face f ∈ F using
barycentric coordinates2.

1. Compute the flattened curvature tensor matrices for adjacent vertices.

2. Compute the asymmetric deviator matrices DR
i .

3. Compute solutions (λ1, λ2, λ3) of
∑3

i=1 λiD
R
i = 0.

According to 4.14 the deviator matrices DR
i of the relative curvature tensor field in the

vertices vi are given by

DR
i =

(
αi γi

βi −αi

)
.

Using
∑3

i=1 λi = 1, point 3 leads to the linear equation system α1 − α3 α2 − α3

β1 − β3 β2 − β3

γ1 − γ3 γ2 − γ3

( λ1

λ2

)
=

 α3

β3

γ3

 .

2For the definition of barycentric coordinates see remark 3.1.
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Note that we are only interested in solutions such that 0 ≤ λi ≤ 1. As this linear equation
system can be solved in a fixed number of steps for every vertex, the computation of
umbilic points can be done in O(|V |), which allows to do it interactively.

Remark 6.3. In the symmetric case, when determining classical umbilic points, it holds
that βi = γi. Thus the above linear equation system reduces to a 2× 2 linear equation
system.

Remark 6.4. Due to the linear interpolation of the relative curvature tensor field be-
tween vertices, it is not guaranteed that all umbilic points are detected. Consequently,
in the accompanying software a possibility was built in to manually add umbilic points,
because they are used for the integration of curvature lines, see section 4.2.3. Examples
for the failing detection of umbilic points can be seen in the following chapter.
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7 Results

This chapter illustrates some results that were obtained using the accompanying soft-
ware. Most of the plots show the particular relativesphere used for generating the
examples.

7.1 Curvature Lines - Influence on Shape Perception

In [14] the authors emphasize that the direction of lines on a surface may have an impor-
tant influence on shape perception. An example for this can be seen in figures 7.1 and
7.2. The figures show a hyperbolic paraboloid S with different types of conjugate curve
families. In the first plot the classical principal curvature lines can be seen. In contrast,
the second plot shows parameter lines of the parameterisation z = x2−y2, which can be
obtained as relative principal curvature lines using a relativesphere that partly consists
of the elliptic paraboloid z = x2 + y2. Such a relativesphere can be generated using
the graph of z = x2 + y2 ≤ r2, where r is chosen big enough such that the image of S
under nR lies within this graph. This surface is then closed using a sphere. The third
plot shows the case where r is chosen such that nR partly maps to the spherical part of
R. Consequently the curvature lines near the center are parameter lines and change to
principal curvature lines towards the boundary.

The figure to the right shows a sectional
drawing of the rotationally symmetric rela-
tivesphere. Its support function h can easily
be calculated and was approximated accord-
ing to 6.2. The radii r for the second and
third plot were chosen as 2 and 0.75 respec-
tively. The support functions were approxi-
mated up to degree lmax = 30 for the second
plot and lmax = 20 for the third plot. -

6

r x, y

z

·

7.2 Architectural Examples

The following examples document the steps of the remeshing process using surfaces from
architectural projects. They demonstrate the possibilities of the accompanying software
and provide input for future improvements.
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Figure 7.1: Saddle: Comparison of relative curvature lines for different R
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Figure 7.2: Saddle: Comparison of relative curvature lines for different R

66



7 Results

7.2.1 Architectural Example 1

The given surface S was the easiest to cope with out of the three examples. It consists
of two nearly cylindrical parts and two parts that are close to a surface of revolution,
which are connected by a central part. Figure 7.3 top shows classical principal curvature
lines and umbilic points1. The umbilic points clearly cumulate in the central part of S
and consequently would cause problems for the generation of a planar quad mesh. A
possible approach is to choose a relativesphere R such that the central part exhibits
less umbilic points. Figure 7.3 bottom shows a choice of R that drastically reduces
the number of umbilic points in the central region. An approximation2 up to degree
lmax = 35 of the superellipsoid with a1 = 2, a2 = 0.7, a3 = 1.4 and l = 2.5 was used for
R, see also example 5.5. The accompanying software was used to interactively rotate
R relatively to S, such that most of the umbilic points were removed. Figure 7.4 top
shows a quad mesh generated using the curvature lines presented in 7.3. This quad mesh
is not planar, as can be seen in the reflection of some faces. Planarization of the faces
was done using the penalty method described in section 4.3, where the weights have
been set to wclose = wfair = 1 and the boundary vertices at corners have been fixed.
The optimization was stopped at maxf∈F |cf | = 5 · 10−4. Figure 7.4 bottom shows the
resulting planar quad mesh. A critical region of the mesh before and after planarization
has already been shown in figure 4.12, see also example 4.4.

7.2.2 Architectural Example 2

The challenge in this example lies in the changing scale and orientation of similar fea-
tures. Figure 5.1 shows the classical curvature lines and the umbilic points. While the
features at the left and the lower side show the same geometry, they clearly differ in size
from the right side. This leads to curvature lines becoming very close and eventually
stopping, which can be recognized as singularities in a resulting quad mesh. The um-
bilic region on the right side can be reduced to isolated umbilic points. A possibility for
doing this has been presented in section 5.3. Figure 5.1 and example 5.13 explain its
application to this example.

Figure 7.6 shows two interesting examples using another relativesphere. In both cases
R was chosen as an approximation up to degree lmax = 50 of the ellipsoid with a1 =
4, a2 = 0.5, a3 = 1. As can be seen in figure 7.6, one can impose a main direction to
one family of curves, which has been discussed in section 2.2.3. However this may lead
to curvature lines crossing each other in sharp angles, which results in an undesirable
appearance in the extracted quad meshes shown in figure 7.7.

Figure 7.5 shows a planar quad mesh obtained from the relative principal curvature
lines shown in figure 5.1. The planarization was done using the penalty method with
fixed boundary vertices and weights wfair = 0, wclose = 1. Due to the fixed boundary
vertices, the planarization stagnated at maxf∈F |cf | ≈ 3 · 10−3. Looking closely, the
reflection of some faces reveals their unplanarity, as can be seen in figure 7.7.

1In figure 7.3 it can be seen that the recognition of umbilic points may fail, see remark 6.4.
2See section 6.2.
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Figure 7.3: Architectural Example 1: Classical and relative curvature lines
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Figure 7.4: Architectural Example 1: Quad mesh before and after planarization
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Figure 7.5: Architectural Example 2: PQ mesh from relative curvature lines shown in
figure 5.1
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Figure 7.6: Architectural Example 2: Relative curvature lines and umbilic points for
different orientations of R
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Figure 7.7: Architectural Example 2: Quad meshes corresponding to figure 7.6. Note
that the faces of these quad meshes are not planar.
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Figure 7.8: Architectural Example 3: Classical curvature lines and umbilic points

7.2.3 Architectural Example 3

The third surface mimics a flying carpet. It can be considered as the graph of a function
defined on a rectangle. Figure 7.8 shows the umbilic points as well as classical curvature
lines. As can be seen, the surface possesses a rich geometry with lots of valleys, saddles
and hilltops. Consequently, choosing the relativesphere such that the number of umbilic
points is reduced and curvature lines are spread more equally, becomes a game of luck.
Figure 7.9 top shows a choice that resulted in the relative curvature lines orbiting around
two umbilic points. The lower plot shows a planar quad mesh obtained from these.
Note that some hand editing was done to the quad mesh before planarization. The
penalty method was used for planarization using fixed vertices at the corners and wfair =
0, wclose = 1.
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Figure 7.9: Architectural Example 3: Relative curvature lines and PQ mesh
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8 Conclusion

In chapter 4 it was shown that it is essential to start from a conjugate curve network, if
one wants to obtain a quad mesh with planar quadrilateral faces approximating S. The
use of relative principal curvature lines is one way to obtain a conjugate curve network.
Representing the relativesphereR by its support function allows for a fast computation of
the relative curvature tensor field from the classical curvature tensor field. Consequently
the process of laying out the conjugate curve network can be done interactively. This has
partly been implemented in the accompanying software, which allows for a fast change
between different support functions as well as rotation of the represented relativesphere
with respect to the given surface S. The changes in the relative curvature tensor field
as well as the relative umbilic points can be seen immediately. Apart from choosing
R by trial and error, in sections 2.2.3 and 5.3 methods for influencing the direction of
relative curvature lines, as well as for choosing the placement of relative umbilic points,
were investigated. The approach described in section 5.3 has been implemented in the
accompanying software, although some questions stated there remain open for further
investigation. Concluding, the method described provides a powerful tool for the layout
of conjugate curve networks and consequently for the generation of planar quad meshes.
A drawback is the global choice of R, which results in the requirement that it be strictly
convex (cf. definition 2.15 of the relative Gaussian map nR). This could be relaxed by
requiring that nR can still be defined in a differentiable way and R being locally strictly
convex in nR(S) ⊂ R. Furthermore it would be interesting to investigate whether R
can be chosen as a function of p ∈ S.

The examples in the previous chapter show that a lot of work remains to be done in
order to make the method useable for architectural purposes. Aesthetics of the resulting
mesh plays a dominant role in this case, which results in the conflictive requirements of
tracing long curvature lines while covering the surface uniformly.

Regarding the implementation of the described methods in the accompanying software,
the following improvements could be done. The approach chosen for integration of
curvature lines without a parameterisation of the surface has major drawbacks. First
of all higher order integration schemes can not be used for curvature line integration,
and the results depend strongly on the mesh which defines S. This issues could be
addressed by a global parameterisation. Moreover a global conformal parameterisation
as described in [33] directly leads to a flattened curvature tensor field, which simplifies
the computation of umbilic points. The construction of a quad-dominant output mesh
from relative curvature principal lines would benefit from a global parameterisation too,
because this can be done easier and more reliable in 2-dimensional parameter space.
Finally, extensive editing capabilities of the curvature lines would prove very useful to
improve the mesh construction.
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