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Abstract

Very Long Baseline Interferometry (VLBI) is a technique that uses globally dis-

tributed radio telescopes to observe signals from extragalactic objects to measure their

difference in arrival time at the telescopes by cross-correlation. Thereby, VLBI mea-

sures the positions and movements of these telescopes as well as the positions of the

observed sources and orientation of the Earth in space. Since multiple stations have

to observe the same radio sources simultaneously, an observing plan, the so-called

schedule, has to be generated.

The generation of a geodetic VLBI schedule can be seen as an advanced optimiza-

tion problem. It is necessary to optimize the time and observations of every telescope

while many boundary conditions exist. A geodetic VLBI schedule is typically generated

scan after scan by testing and evaluating all possibilities.

In this work, a general overview about VLBI scheduling is given followed by a

discussion of the models and concepts which are used in existing scheduling software,

such as subnetting, fillin-mode, and tagalong-mode. The main topic of this thesis

is the development of a new VLBI scheduling software which is called VieSched++.

The software is written in modern C++ for enhanced performance and uses an object-

oriented software design. Every algorithm in VieSched++ is developed from scratch

based on the knowledge gained through analyzing existing schedules and scheduling

software. The design ideas of these algorithms are discussed in this work in all details.

Since VLBI scheduling is a complex task with many parameters and requirements

interfering with each other, VieSched++ is designed to optimize schedules based on

a brute-force approach, meaning, that it does not only generate one schedule for a

session but is able to generate hundreds of schedules simultaneously by using differ-

ent scheduling input parameters. These schedules can then be compared based on

scheduling statistics or through Monte-Carlo simulations to pick the most appropriate

schedule for the given session and scientific goal.

VieSched++ is already used to schedule multiple official observing programs for the

International VLBI Service for Geodesy and Astrometry (IVS) and other parties. First

results reveal a significant improvement in the accuracy of geodetic parameters during

the analysis of sessions scheduled with VieSched++. It was possible to increase the

number of observations for the T2 observing program by a factor of two to three and

the schedules for the EURR&D program were also improved significantly. On average,

the improvement in accuracy of the geodetic parameters is also a factor of two to three.

In summary, this work highlights the need to improve geodetic VLBI scheduling

and reveals how this can be achieved.
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Kurzfassung

Die Very Long Baseline Interferometry (VLBI) ist ein geodätisches Weltraumver-

fahren, welches global verteilte Teleskope benützt, um Signale von extragalaktischen

Radioquellen zu beobachten. Durch die unterschiedlichen Ankunftszeiten der Signale

an den Stationen, welche durch Kreuzkorrelation bestimmt werden, können die Posi-

tionen und Bewegungen der Teleskope sowie die Position von Radioquellen und die

Orientierung der Erde bestimmt werden. Da mehrere Stationen gleichzeitig dieselbe

Quelle beobachten müssen, ist es notwendig einen Beobachtungsplan zu erstellen.

Die Erzeugung eines solchen Beobachtungsplans kann als ein komplexes Opti-

mierungsproblem betrachtet werden. Es müssen die Beobachtungszeiten und die Beob-

achtungsabfolge unter Einhaltung vieler Nebenbedingungen optimal angeordnet wer-

den.

In dieser Arbeit wird das Problem des Erzeugens von VLBI Beobachtungsplänen

erörtert und alle dafür nötigen Modelle und Algorithmen wie subnetting, fillin-mode

und tagalong-mode erklärt. Der Hauptteil der Arbeit befasst sich mit der Entwick-

lung einer neuen, modernen Software namens VieSched++. Alle Algorithmen von

VieSched++ wurden basierend auf Erfahrungen von anderen Softwarelösungen und

Simulationen für diese Software neu entwickelt. Die Algorithmen werden im Detail

erklärt und diskutiert.

Die VLBI Beobachtungspläne werden von vielen verschiedenen und miteinander

verwobenen Parametern beeinflusst. VieSched++ versucht dabei, einen optimalen Pa-

rametersatz zu finden. Dafür erzeugt die Software viele verschiedene Beobachtungspläne

mit unterschiedlichen Parametern. Diese Beobachtungspläne können in Folge basierend

auf Monte-Carlo Simulationen verglichen werden.

VieSched++ wird bereits operationell für Beobachtungsprogramme des International

VLBI Service for Geodesy and Astrometry (IVS) und für andere Anwendungen einge-

setzt. Erste Resultate zeigen eine signifikante Verbesserung der Genauigkeit der geodäti-

schen Parameter. Dabei wurde die Anzahl an Beobachtungen für das T2 Beobacht-

ungsprogramm um einen Faktor von zwei bis drei erhöht. Außerdem wurde das

EURR&D Beobachtungsprogramm signifikant verbessert. Im Durchschnitt wurden

die Genauigkeiten um einen Faktor von zwei bis drei verbessert.

Zusammenfassend kann gesagt werden, dass sich diese Arbeit mit der Notwendigkeit

des Verbesserns von geodätischen VLBI Beobachtungsplänen befasst und zeigt wie diese

Verbesserungen erreicht werden können.
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1. INTRODUCTION

1 Introduction

Geodetic Very Long Baseline Interferometry (VLBI) is one of the four space geodetic

techniques, together with Global Navigation Satellite System (GNSS), Satellite Laser

Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satel-

lite (DORIS). It plays an important role in the realization of the Terrestrial Reference

Frame (TRF) (Altamimi et al., 2016), in particular of its scale, and has the unique capa-

bility to determine the Celestial Reference Frame (CRF) at radio frequencies (Fey et al.,

2015). Furthermore, it is widely used to determine the orientation of the Earth in space,

which is critical for positioning and navigation, both on Earth and in space. Today it is the

only technique capable of providing the full set of Earth Orientation Parameters (EOPs)

consisting of the Earth rotation angle dUT1, two parameters for polar motion [xpol, ypol],

and two parameters for precession and nutation [dX, dY ] (Petit and Luzum, 2010). In

particular, the direct determination of the precession/nutation parameters of the Earth as

well as the Earth rotation angle is uniquely possible with VLBI (Schuh and Böhm, 2013).

Additionally, interactions within the Earth system such as geodynamic and atmospheric

parameters can be studied as well (Spicakova et al., 2010; Hobiger et al., 2006).

Due to the observing principle of VLBI it is necessary to synchronize observations

between different antennas over the world. It must be ensured that multiple antennas

observe the same source, which is typically an extragalactic radio source, simultaneously.

Therefore, each VLBI session starts by generating an observing plan, the so-called schedule.

VLBI observations are organized in sessions. Typically, a VLBI session is either 1-hour

or 24-hours long and a fixed set of multiple antennas are participating in each session. For

sustainable resource management international collaborations such as the International

VLBI Service for Geodesy and Astrometry (IVS) (Nothnagel et al., 2017) are organizing

VLBI sessions globally using a so-called master schedule listing all VLBI sessions for the

upcoming year.

The generation of geodetic VLBI schedules can be quantified as an advanced opti-

mization problem. During the scheduling process, there is the freedom to select which

extragalactic radio sources should be observed, in which sequence they should be observed

and how many of the available antennas should observe them simultaneously. During a

24-hour session, the number of scans is around 1000 and around 100 sources are observed.

Therefore, the number of possible schedules for a single session is incredibly high, see sec-

tion 3, and by far outnumbers the number of atoms in the known universe. Since it is not

1
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1. INTRODUCTION

possible to test and evaluate all possible schedules, simplifications and generalizations are

necessary to generate a schedule that is considered “good” within a reasonable amount of

time. So far, the definition of a “good” schedule is mostly done based on the number of

observations although other metrics, like the distribution of observations on the sky above

a station, the so-called sky-coverage, is also known to significantly influence the quality of

the result.

1.1 Scientific opportunities

Although optimizing a schedule directly influences the number and distribution of obser-

vations which are available during the analysis, little research work has been done during

the last couple of years to improve scheduling.

If so, most of the research focused on improving the intensive schedules which are

observed daily to measure dUT1, the difference between the Universal Time (UT1) defined

through the Earth rotation and the Coordinated Universal Time (UTC) dUT1 = UT1 −
UTC. Typically, only two stations are participating in these sessions and they only observe

for one hour with low recording rate to reduce the time delay between the observations

and the analysis providing a rapid estimation of dUT1. Multiple studies indicate that

observations near the corners of the mutual visibility between the participating stations

reduce the dUT1 formal errors for intensive sessions (Uunila et al., 2012). A lot of research

focused on preselecting sources for intensive schedules intending to generate schedules with

good sky-coverage while only observing strong sources and thus reducing the observing time

per scan (Baver et al., 2012; Baver and Gipson, 2013, 2014, 2018; Gipson and Baver, 2016).

Another intensive scheduling approach based on so-called “Impact-Factors” was developed

by Leek et al. (2015). However, since intensive sessions are typically only one hour long

and only consist of two stations, scheduling intensive sessions is very simple compared to

scheduling a global 24-hour session. Furthermore, the goal of intensive sessions is clearly

defined as measuring dUT1, while the goal of a 24-hour session can be more complex

such as measuring all EOPs in conjunction with station coordinates and source positions.

Therefore, intensive scheduling concepts and algorithms cannot be easily applied for 24-

hour sessions.

With the development of the new VLBI Global Observing System (VGOS) with its fast

slewing antennas, new demand on more research based on VGOS scheduling arose (Petra-

chenko et al., 2009). A new source-based scheduling approach for VGOS was developed

2
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1. INTRODUCTION

by Sun et al. (2014) as part of their scheduling program “Vie Sched”. Another approach

based on dynamic scheduling is introduced by Lovell et al. (2016). However, optimizing

VGOS scheduling is still an open research topic and improvements to existing scheduling

programs are needed (Niell et al., 2018). Additionally, extensions to existing scheduling

software are necessary to fully support the new observing modes used in VGOS.

Besides the rapid estimation of dUT1 during intensive sessions, the main VLBI products

are EOP time series, as well as station and source coordinates provided through 24-hour

sessions. Very little research has been done in optimizing the scheduling of these 24-hour

sessions. Currently, almost all of these sessions are scheduled using the same software,

called “sked” which is developed and maintained by the Goddard Space Flight Center’s

IVS Analysis Center “GSFC”. Unfortunately, most schedules are simply generated by using

the same parameters as always regardless of the antenna network and some schedulers spend

very little effort in trying to optimize these schedules

1.2 Objectives and outline of this thesis

In this work, a new VLBI scheduling software called VieSched++ is presented. Similar as

sked and Vie Sched, VieSched++ uses a brute force approach to generate the schedules,

see sections 3 and 5. Although some ideas are based on those two software packages,

every algorithm and concept of VieSched++ is redesigned and written from scratch. In

contrast to existing scheduling software, which inserts scans in sequential order into the

schedule, VieSched++ provides a recursive scan selection which helps to minimize station

idle time. Furthermore, it fully automates the optimization of schedules through another

brute force approach of generating multiple schedules using varying parameters. Great

care was taken to ensure a sophisticated definition of optimization conditions which are

used to decide which scans should be selected in the schedule. The software is written in

modern C++, reducing the run time of the generation of a schedule, which is problematic

in other scheduling software like Vie Sched.

3
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1. INTRODUCTION

The main objectives of VieSched++ can be summarized as the following:

Requirements for VieSched++

• provide an easy-to-use software, which is flexible, powerful and generates

high-quality schedules for intensive, 24-hour, and VGOS session.

• automate the optimization of VLBI schedules for any given network, source

list, and scientific goal

• simplify interactions with existing VLBI software, in particular with Vienna

VLBI and Satellite Software (VieVS), for selecting and comparing schedules

based on Monte-Carlo simulations instead of scheduling statistics like

number of observations

• high performance for a fast generation of schedules and possibility to carry

out large-scale studies

Section 2 gives an introduction to the geodetic VLBI technique in general. Section

3 presents a detailed overview of VLBI scheduling as well as the general antenna (3.4)

and source-based models (3.5) that are used. Furthermore, it discusses special scheduling

concepts such as subnetting (3.7.1), fillin-mode (3.7.2) and tagalong-mode (3.7.3). Section

4 gives a short overview of the analysis of geodetic VLBI sessions and how these sessions

can be simulated. This section focuses only on topics needed to understand this thesis

and the upcoming results. In particular, it focuses on the VieVS package. Section 5 is

the main part of this thesis. It lists the design concept of VieSched++ and gives a detailed

explanation of the algorithms and models used in the software. Furthermore, it gives

insight in parts of the implementations of scheduling in VieSched++ (5.3) as well as the

parameters which can be used to fine-tune the generated schedules (5.8). It reveals how the

scan selection during the scheduling process is done based on newly developed optimization

criteria and weight factors (5.4). Main features such as the recursive scan selection (5.5)

and the multi-scheduling feature (5.6) are discussed in detail. Finally, section 6 briefly

summarizes improvements gained by changing the scheduling software to VieSched++.

4
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2. VERY LONG BASELINE INTERFEROMETRY (VLBI)

2 Very Long Baseline Interferometry (VLBI)

In this section, a summary of the early history, as well as the basic concepts of VLBI, is

provided. Further information about VLBI in general can be found in Sovers et al. (1998),

Campbell (2000), Kellermann and Moran (2001), Petrov et al. (2009), Nothnagel (2019),

and the references therein. More information about the history of VLBI can be found in

Schuh and Böhm (2013).

The development of VLBI started in the mid-1960s by radio astronomers, see Matveenko

et al. (1965) and Broten et al. (1967). It is an outgrowth of radio interferometry with

cable connected antennas, which was made possible with the development of stable atomic

time and frequency standards (Moran et al., 1967). Soon after VLBI was used by radio

astronomers, the potential of VLBI was recognized for geophysical applications (Gold,

1967; Shapiro and Knight, 1970) and first experiments were carried out (Hinteregger et al.,

1972; Shapiro et al., 1974).

Since the 1970s, the technique rapidly improved due to technological improvements like

the wide spanned bandwidths made possible by the bandwidth synthesis technique (Rogers,

1970), low system temperature cryogenic receivers and dual-frequency observations to cor-

rect dispersive effects on the radio signal due to the Earth’s ionosphere as well as due to

improvements in data processing methods and physical models (Petit and Luzum, 2010).

In the 1980s it was for the first time possible to estimate the length change of a transat-

lantic baseline over time (Herring et al., 1986). While the station coordinate accuracy was

a few meters at the beginning, it is nowadays at the sub-centimeter level (Schlüter and

Behrend, 2007).

VLBI measures the difference in arrival time of signals from objects, mostly extragalac-

tic radio sources, in radio frequencies. Therefore, at least two stations have to observe the

same source simultaneously. Since the extragalactic radio sources are very far away, up to

billions of light-years, its radiation can be assumed to arrive as plane wavefronts on Earth

and the direction to the source ~s0 becomes parallel for all ground-based stations. Thus,

the geometric principle of VLBI reduces to a simple rectangular triangle. The observed

difference in arrival time τ , defined as the difference between the arrival time of the signal

between two stations 2 and 1 t2−t1, can be expressed through the baseline vector~b between

the two stations, the direction to the radio source ~s0 and the velocity of light c, see Figure
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2. VERY LONG BASELINE INTERFEROMETRY (VLBI)

Figure 1: Geometric principle of VLBI (Schuh and Böhm, 2013).

1 and equation (1) (Campbell, 2000).

τ = −
~b · ~s0
c

= t2 − t1 (1)

The observing principal highlights the necessity of organizing the VLBI observations via

a schedule since two stations have to observe the same source simultaneously to form an

observation. Typically, the necessary observing time is defined through a desired Signal to

Noise Ratio (SNR) and is calculated based on the recording rate, the sensitivity of the two

stations and the luminosity of the source, see section 5.3.4.

Often, more than two stations are observing the same source simultaneously leading to

multiple observations. The sum of all simultaneously recorded observations of a source at

a particular time is called a scan.
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2. VERY LONG BASELINE INTERFEROMETRY (VLBI)

In geodetic VLBI, the signals of the observed radio sources are typically recorded in

16 individual channels, 6 within S-band (2.3 GHz) and 10 within X-band (8.4 GHz). The

two frequency bands are necessary to correct dispersive effects on the radio signal due to

the Earth’s ionosphere. Since the luminosity of the source described through its signal flux

density is very low, in the order of 1 Jansky (1 Jy = 1× 10−26 W
Hzm2 ), high recording rates

or long observing times are needed. Today, the observing rate of standard SX observations

vary between 128 Mbit/s and 1 Gbit/s and the observing times are between 30 and 600

seconds.

Around the beginning of the new millennium, the Global Geodetic Observing System

(GGOS) (Plag and Pearlman, 2009) defined a major goal of providing a TRF with an

accuracy of 1 millimeter in station position and stability of 0.1 millimeters per year. To

reach this goal, considerations of a next-generation VLBI system, initially called VLBI2010

but later renamed to VGOS were carried out (Niell et al., 2005) and requirements were

defined (Petrachenko et al., 2009). With the new VGOS, the frequency setup changed

to observing channels between 2 and 14 GHz with very high data rates. Today, VGOS

observations are recorded with 8 Gbit/s at 4 frequency bands and plans exist to move to

16 Gbit/s soon.

The observed signal is digitized, recorded on disks, marked with highly precise time-

stamps provided through hydrogen masers and sent to the correlator. Today, some of the

data can be sent via broadband internet links but since the amount of data is very large,

in the order of multiple Terabytes, disks still have to be shipped from some locations.

At the correlator, the recorded signal from the antennas is combined pairwise producing

an interference pattern as described in Sovers et al. (1998). The difference in arrival time τ

can be estimated by comparing the recorded bitstreams at the two antennas s1(t) and s2(t)

by using cross-correlation. The maximum of the cross-correlation function C12 is searched

through shifting one of the bit-streams in time as shown in equation (2a) and equivalently

in equation (2b) (Nothnagel, 2019).

C12(τ) =
1

T

∫
∞

−∞

s1(t) · s∗2(t− τ) · dt (2a)

C12(τ) =
1

T
F−1

(

F(s1) · F(s2)
)

(2b)

In equation (2a), T represents the averaging interval, the asterisk denotes the complex

conjugate and τ corresponds to the difference in signal arrival times between the two
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2. VERY LONG BASELINE INTERFEROMETRY (VLBI)

stations. In equation (2b), F and F−1 are the Fourier and inverse Fourier transforms and

the long bar indicates the complex conjugate operator. Today, software correlators such as

DiFX (Deller et al., 2007, 2011) are used in conjunction with high-performance computers

to correlate VLBI data.

During the correlation process, amplitude and phase are determined for each frequency

channel. In the so-called post correlation processing, the phase, group delay and phase

rate are fitted to the phase samples from the various frequency channels, with the group

delay being the prime observable in geodetic VLBI (Schuh and Böhm, 2013).

The resulting group delays can be analyzed by a least-squares parameter estimation

algorithm or other methods like Kalman filters. For the parameter estimation, systematic

effects presented in the raw observations have to be removed since they limit the accuracy

of the results. One requirement for the least-squares parameter estimation is that the

observation equation has to be linear. This is achieved by linearizing the VLBI observation

equation by a first-order Taylor expansion. Precise a priori information is necessary for the

Taylor expansion to work with sufficient accuracy. Based on the precise a priori information

and by using models with the highest precision as described in the International Earth

Rotation and Reference Systems Service (IERS) conventions (Petit and Luzum, 2010) the

theoretical delay can be modeled and the parameters can be estimated. Since some effects

are too variable and too hard to predict with sufficient accuracies, like the tropospheric

wet delay and clock drifts, these parameters have to be estimated as well and cannot be

modeled. More information about the analysis of VLBI sessions and the modeling of the

theoretical delay is provided in Schuh and Böhm (2013).
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3. VLBI SCHEDULING

3 VLBI Scheduling

Geodetic and astrometric VLBI sessions can be classified into three different groups: 24-

hour SX sessions, 1 to 2-hour intensive sessions and 24-hour VGOS sessions. A fixed

antenna network is assigned to each session and can be used for carrying out observations.

One of the first tasks for every VLBI session is to generate a schedule. The scheduler has

to decide which sources should be observed, how long to integrate and in which sequence

the sources should be observed. Simplified speaking, a schedule is a list defining for each

station which sources should be observed in which order and when the recording should

start and stop. It also adds additional information on how the observations should be

recorded, for example, which sample rate should be used and which frequencies should be

observed.

A typical 24-hour VLBI session contains roughly 1000 scans. Considering a list of 300

sources which can be observed during a session, the total number of possible schedules can

theoretically become 3001000 or 1.3× 102477. However, for a typical 24-hour global VLBI

session schedules are usually created using subnetting, see section 3.7.1, which means that

two sources are simultaneously considered during the scheduling process, which increases

the complexity of a schedule and leads to a total of
(
(300·299)

2

)1000
or 5.7× 104651 possi-

bilities. As a reference, the estimated number of atoms in the known universe is around

1× 1080.

Not all of these theoretically possible schedules are also practically possible because

sources might not be above the horizon of multiple antennas at a time and other constraints

need to be considered leading to a considerably smaller number of admissible schedules.

However, the number of admissible schedules is still huge enough that it can be exploited

for optimization.

Usually, a so-called scheduling software is used to prepare the schedule and automate

this process. Only a handful of scheduling software exist which can generate VLBI schedules

like sked (Vandenberg, 1999), sched (Walker, 2018), Vie Sched (Sun, 2013) and VieSched++

(Schartner and Böhm, 2019c). Usually, the scheduling software is creating the schedule

scan after scan, as indicated in Figure 2 (Gipson, 2016). It starts selecting scans at the

beginning of a session and tests observations to every possible combination of sources at a

specific time, compares them by some metrics and finally decides which scan is considered

the best by these metrics and adds it to the schedule. After a scan is scheduled, the software

moves on in time and the whole process starts over again by testing every possible next
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3. VLBI SCHEDULING

Figure 2: Flowchart of general scheduling concept based on the generation of schedules on
a scan-by-scan basis

scan. This is repeated until the schedule is completed.

The tricky part is to decide which metrics should be used for comparison of individual

scans. A rule of thumb for comparing VLBI sessions is “a higher number of observations

yields to a better schedule” (Gipson, 2010). The idea behind this rule is, that a high number

of observations increases the redundancy and averages out random errors. Another rule

of thumb says “the better the sky-coverage, the better the schedule”. The idea behind this

rule is, that evenly distributed observations help to estimate tropospheric delays, which

are considered the dominating error source in VLBI (Böhm et al., 2006). Although both

of these rules are true, the problem is that they are competing against each other.

Sky-coverage is considered good if within a certain time interval, like 30 minutes, the

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. VLBI SCHEDULING

station records observations at different azimuth and elevation angles. However, providing

evenly distributed observations over the sky means that the station needs to slew a lot

to reach these different angles. While a station is slewing, it is not possible to record

observations leading to a lower number of scans and thus observations.

In contrast, if the goal is to schedule as many observations as possible, the station

has to observe a lot. Since the observing time per scan is limited by the antenna System

Equivalent Flux Density (SEFD), the source flux density, the recording mode, and the

target SNR (see section 3.6) it is not possible to save time here, unless the observing mode

is changed. The same is true for calibration time and necessary overhead time needed for

field system commands which are usually fixed as well. The only available point where time

can be saved is slew time. Therefore, if the goal is to schedule a high number of observations

it is necessary to save time by minimizing the slew time as much as possible, leading to

poor sky-coverage. One of the main challenges for generating optimized schedules is to find

the sweet spot between a good sky-coverage and a high number of observations.

Another problem arises since a scheduling software is generating the schedules scan

after scan by selecting the “best” scan at a certain time from a pool of possible scans.

The problem is that all possible scans have to be compared with each other which is far

from trivial. For example, time is one of the most critical factors for scheduling VLBI

sessions and has to be considered during this comparison. It might be advantageous to

not schedule the scan which would lead to the highest number of observations or best sky-

coverage improvements if it would take too long to observe this scan. Often it is beneficial

to select scans which are slightly worse in terms of their performance but can be observed

faster. This could result in situations where scheduling a high number of slightly imperfect

scans would lead to an overall improvement compared to scheduling a smaller number of

perfect scans.

Together, these three quantities, namely the number of observations, the sky-coverage

and the duration of a scan are the most important parameters a scheduling software has

to keep in mind when comparing scans to generate a good schedule. These factors are

used as optimization criteria during the scheduling process, see section 5.4. Every scan

is given a score based on these and other optimization criteria and this score is further

used as the metric to compare all possible scans at a certain time to pick the “best” one.

One of the most challenging aspects while developing a scheduling software is to provide a

sophisticated definition of these optimization criteria leading to a good scan selection.
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3. VLBI SCHEDULING

3.1 Master schedule

Since VLBI is a global endeavor with stations and institutes working together all over the

world, tasks have to be organized properly. In this activity, the IVS plays an important role.

The IVS master schedule, or Masterfile, is a list of all geodetic and astrometric sessions

within the IVS. Every session can be identified by unique experiment codes. Additionally, it

includes the session start date, duration, participating stations as well as which institution

is responsible for scheduling, correlation, and analysis of the session. The IVS master

schedule is available at https://ivscc.gsfc.nasa.gov/sessions/. Currently1 184 24-

hour sessions and 460 intensive sessions are organized via the master schedule for the year

2019 as well as bi-weekly VGOS experiments. The master schedule organizes activities of

almost 50 stations including the Very Long Baseline Array (VLBA) visualized in Figure 3.

Figure 3: Active VLBI stations participating in IVS sessions in 2019 including the VLBA.

Table 1 lists the observing programs for the year 2019. On average a 24-hour session

contains ≈ 10 stations. One exception are sessions focusing on the southern hemisphere,

like AUA, CRDS and CRF sessions. Due to the lack of southern stations, which can also

be seen in Figure 3, the average number of participating stations is considerably smaller.

In contrast, typically more than 20 stations are participating per T2 session. Table 1 lists

1checked at 25. April 2019
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3. VLBI SCHEDULING

the average of all scheduled stations per session. However, oftentimes single stations can

drop out of a session due to maintenance or technical problems leading to a lower average

number of stations per session in reality.

Table 1: List of IVS observing programs organized via the schedule master for the year
2019. The top lists the 24-hour sessions while the bottom lists intensive sessions. In the
session code, xx and xxx stands for a two or three digit consecutively increasing number
while yy is the placeholder for the two digit year and doy is a placeholder for the day of
the year.

Program Code duration [h] #sessions #stations

AOV AOVxxx 24 12 9.1
APSG APSGxx 24 2 10.0
AUS-AST AUAxxx 24 12 5.8
IVS-CN CNxxx 24 6 10.0
IVS-CRDS CRDxxx 24 6 5.0
IVS-CRF CRFxxx 24 6 6.2
EUROPE EURxxx 24 2 8.5
EURR&D EURDxx 24 4 8.8
IVS-OHG OHGxxx 24 6 8.7
IVS-R&D RDyyxx 24 10 8.6
IVS-R1 R1xxx 24 53 10.2
IVS-R4 R4xxx 24 52 10.2
IVS-T2 T2xxx 24 7 20.9
VLBA RVxxx 24 6 14.0

IN1 Iyydoy or Wyydoy 1 or 2 307 2.5
IN2 Qyydoy 1 104 2.0
IN3 Qyydoy 1 49 4.2

3.2 Sked

Sked is an interactive command-line program that helps prepare schedules for VLBI ob-

serving sessions (Vandenberg, 1997; Gipson, 2010, 2016). The software is developed and

maintained by Goddard Space Flight Center. Currently, it is the most used scheduling

software for geodetic VLBI. With sked, it is possible to

• enter an entire schedule interactively

• automatically let the software create a schedule
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3. VLBI SCHEDULING

• edit an existing schedule

• list, check, evaluate and summarize a schedule.

In automatic mode, sked generates a schedule until the end time of the session is reached.

New scans are added to the schedules scan-by-scan until the end of the last scan finishes

later than the session end time (Gipson, 2016). Thereby, it schedules new scans in a strong

sequential time ordering, meaning that the next scheduled scan is always occurring after

the previous scan ends.

Sked calculated a source visibility table, which is a table that indicates which sources

are visible by which station providing a list of possible scans. So-called “major options”

together with the SNR targets determine which of the possible scans are generated and

kept for further consideration. Major options can be the minimum angular distance be-

tween scans, the minimum angular distance of a source from the sun or the maximum

allowable slew time of an antenna to the observed source. Afterwards, sked does an initial

ranking either by comparing the covariance matrix of the observations or sky-coverage and

is removing a certain percentage of low-quality scans. Finally, so-called “minor options”

are used to assign a score to each scan based on some criteria like the number of obser-

vations per scan or the number of low observations at low elevation. The scan with the

highest score is then selected and scheduled and the process is repeated until the end time

is reached. A detailed description of sked and the sked commands can be found in Gipson

(2016).

3.3 Sked catalogs

To create a VLBI schedule it is necessary to have access to information about the partici-

pating stations as well as about the observed sources and the observing mode which should

be used. Most VLBI antennas are unique and they vary greatly in terms of slew speed (see

section 3.4.2), cable wrap limits (see section 3.4.1) and sensitivity (see section 3.4.4). The

same is true for sources. While some sources are very bright and compact some are faint

and have significant structure (see section 3.5). Additionally, the recording hardware can

be different at different stations. All this has to be considered during the generation of a

schedule.

The information necessary to generate a schedule is bundled and updated in the so-

called sked catalogs (Vandenberg, 1999). They are organized in three groups as indicated

in Figure 4, catalogs related to stations (see section 3.3.1), sources (see section 3.3.2)
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3. VLBI SCHEDULING

and observing mode (see section 3.3.3). A detailed description of the content of the sked

catalogs and the entries is available in Vandenberg (1999).

Figure 4: Organization of the sked catalogs.

The sked catalogs are de facto standard for creating geodetic and astrometric schedules

within the IVS. They are maintained and updated by the Goddard Space Flight Center

and serve as input for various scheduling software like sked, Vie Sched and also VieSched++.

3.3.1 Station catalogs

Station dependent information is organized in four different catalogs connected via indi-

vidual Identifiers (IDs) as indicated in the following box. A detailed description of the

catalog entries can be found in Vandenberg (1999).
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3. VLBI SCHEDULING

antenna.cat:

ID Name Axis Offset Rate1 C1 Lim11 Lim12 Rate2 C2 Lim21 Lim22 Diam PO EQ MS

V WETTZELL AZEL 0.0 180.0 0 251.5 831.0 90.0 0 5.0 89.0 20.0 Wz 33 Wz

equip.cat:

Antenna ID DAT Name Heads Tape len SEFD SEFD Equip

WETTZELL 33 WETTZELL 2x56000 17640 X 750 S 1115 DBBC MARK5B

position.cat:

ID Name X (m) Y (m) Z (m) Occ.Code Lon Lat Source

Wz WETTZELL 4075539.899 931735.270 4801629.351 72247801 347.12 49.15 GLB1069

mask.cat:

C Name ID az1 el1 az2 ... eln-1 azn (step wise)

H WETTZ13N Wn 0 5 360

C Name ID az1 el1 az2 ... eln-1 azn eln (line segments)

H HARTRAO Hh 0 7 90 9.5 100 7 110 8 120 7 300 9 320 9.5 330 9 350 7 360 7

antenna.cat This catalog holds information about antenna characteristics such as an-

tenna mount, slewing speed along the individual axes, cable wrap limits per axes and

antenna diameter. Additionally, it notes IDs which are used in the other station based

catalogs for identification of corresponding elements.

equip.cat This catalog holds information on the equipment at a station. The corre-

sponding entry for an antenna is identified via an ID defined in the antenna.cat. It lists

which recorder and rack are used at each station as well as the SEFD information per band.

Additionally, elevation dependent SEFD parameters (see section 3.4.4) can be listed.

position.cat The position catalog lists the geodetic earth-centered-earth-fixed coordi-

nates per station. The corresponding entry for an antenna is identified via an ID from the

antenna.cat file. For user convenience the geodetic west longitude and north latitude is

listed as well.

mask.cat If necessary, this catalog defines a horizon mask for a station. The correspond-

ing horizon mask of a station can be found via the ID from the antenna.cat file. There

are two input formats available, one as a representation of a step function and one as a

representation of line elements (see section 3.4.3). If an even number of parameters are
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3. VLBI SCHEDULING

listed, the horizon mask is represented with line elements, an odd number indicates the

representation as a step function.

3.3.2 Source catalogs

Source related information is organized in two individual catalogs and the source name

serves as a link between those as indicated in the following box. A detailed description of

the catalog entries can be found in Vandenberg (1999).
source.cat:

IAU-Name Common hh mm ss.ssss sdd mm ss.sssss epoch Vel. source

0059+581 $ 01 02 45.762382 +58 24 11.13660 2000.0 0.0 ICRF2 def

flux.cat:

NAME Band Type Flux MajAx Ratio PA Off1 Off2

0059+581 X M 2.00 0.30 1.00 0. 0.0 0.0

0059+581 S M 2.13 1.50 1.00 0. 0.0 0.0

NAME Band Type Base1 Flux1 Base2 Flux2 ... Fluxn-1 Basen

3C274 S B 0 1.41 900 1.16 1530 0.92 2600 0.69 4420 0.45 7520 0.36 12800

3C274 X B 0 1.02 900 0.84 1530 0.65 2600 0.47 4420 0.41 7520 0.41 12800

source.cat This catalog lists source positions with right ascension and declination values

of ≈ 700 sources. An additional catalog called “source.cat.geodetic.good” is also part of the

official sked catalogs, which includes only ≈ 300 sources which are especially suitable for

geodetic VLBI.

flux.cat This catalog holds source strength and structure information. There are two

possibile formats of how this information is provided, either as step function profiles as a

function of the baseline length, indicated as type “B” or based on an elliptical Gaussian

model indicated as type “M ”, see section 3.5. The flux information is provided for each

band individually.

3.3.3 Observing mode catalogs

Observing modes are organized via six different catalog files and linked through keywords

as indicated in the following box. Previously, there have been seven catalog files including
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3. VLBI SCHEDULING

hdpos.cat which is already deprecated since it is related to tape recording. A detailed

description of the catalog entries can be found in Vandenberg (1999).
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3. VLBI SCHEDULING

modes.cat:

Mode name freq.cat chan bw samp rate rec.cat

256-16(R1-R4) GEOSX 8.0 16.0 00-16-0-1

freq.cat:

Name Code Sub-groups RXname

GEOSX SX STD SX WIDE

band pol sky freq SB ChanID BBC# PCFreq

- X R 8212.99 U CH1 1 10000.0

- X R 8252.99 U CH2 2 10000.0

rx.cat:

RXname

SX WIDE

Stn.Name LOIFname

- WETTZELL ODB WIDE

- WETTZ13N TWN DBBC

rec.cat:

name

00-16-0-1

Stn.Name HDpos tracks.cat Rec.Fmt.

- WETTZELL MK3V-A 14U2L-1-1-B Mk34

- WETTZ13N MK3V-A 14U2L-1-1-B Mk34

- BADARY MK3V-A 14U2L-1-1-B Mk34

loif.cat:

LOIF name

TWN DBBC

BBC/VC IF Band Freq SB

- 1 A1 X 7580 U

- 2 A1 X 7580 U

- 3 A1 X 7580 U

tracks.cat:

name fanout bits

14U2L-1-1-B 1 1

chan pass(us,ls,um,lm)

- 1 1(-1,7)

- 2 1(0)

- 3 1(1)
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3. VLBI SCHEDULING

mode.cat This is the top-level catalog for the observing modes including the name of

the observing mode, the channel bandwidth and sample rate and keywords to freq.cat and

rec.cat.

freq.cat This catalog lists frequency sequences and is linked via a keyword from the

modes.cat catalog. Besides the sky frequency per channel, it lists which physical Base

Band Converter (BBC) number is used per channel. It further defines the keyword for

rx.cat.

rec.cat This catalog is linked via a keyword defined in modes.cat. It holds the recording

mode information. It includes keywords for the tracks assignment information of each

station defined in tracks.cat.

rx.cat This catalog is linked via a keyword defined in freq.cat. This catalog holds the

receiver setup for each station. It defines the keyword for the loif.cat for each station.

tracks.cat This catalog includes the track assignments for each station and is referenced

through a keyword from rec.cat.

loif.cat This catalog includes the local oscillator frequencies and Intermediate Frequen-

cies (IF) setup. The setup is referenced through a keyword from rx.cat.

3.4 Antenna models

Nowadays, almost all antennas used by the IVS are Alt-Azimuth antennas, often also

referred to as azimuth elevation or az-el antennas. From all antennas included in the 2019

master schedule, only two antennas are different, namely HARTRAO having an Equatorial

mount and HOBART26 with a so-called XY mount. Antennas with Equatorial mounts

have a polar axis parallel to the rotation axis of the Earth, and a declination axis while the

XY mount has a horizontal fixed axis. The Equatorial mount is suited for easy tracking

of radio sources, since the telescope only has to turn around one axis to follow a source,

while the XY mount is built especially for spacecraft tracking since the maximum slew

distance per angular distance occur near the horizon and not in the zenith as it is the case

for Alt-Azimuth antennas Salzberg (1967).

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. VLBI SCHEDULING

The most used Alt-Azimuth design consists of one vertical azimuthal axis and a hor-

izontal altitude/elevation axis. While this is the most symmetrical and thus most stable

antenna mount type it is also easier to build then Equatorial or XY mounts. The downside

of an azimuth elevation mount is, that real-time coordinate transformations are necessary

to transform celestial equatorial source coordinates provided by right ascension and decli-

nation to local horizontal coordinates defined by azimuth and elevation. Additionally, it is

necessary to slew the antenna around both axes simultaneously to track a source over the

sky.

Many VLBI antennas are uniquely built and therefore their characteristics vary greatly.

While some antennas have a dish diameter of only 6 meters others span up to 100 meters.

Figure 5 displays the dish sizes of all S/X antennas included in the 2019 IVS master

schedule up to 40 meters. Two stations, namely EFLSBERG with a 100-meter dish size

and TIANMA65 with a 65-meter dish size are not shown. The high occurrence of 25-meter

antennas is due to the VLBA.

Figure 5: Dish diameter of all S/X antennas included in the IVS master schedule.

Since the antennas vary greatly in terms of size and thus slewing speed and sensitivity,

it is necessary to provide unified models which are valid for all antennas.
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3. VLBI SCHEDULING

3.4.1 Cable wrap

Cable wrap is only a concern for az-el antennas. The entire cable is viewed as a single

continuous wrap which begins at a certain azimuth and proceeds clockwise through ever-

increasing azimuths to the end of the cable (Gipson, 2016). Since the dish is rotating

around an azimuthal axis while the cable is connected to equipment fixed at the ground,

it is not possible for the stations to slew always in the same direction since the cable

would twist around the mount. Therefore, it is necessary to monitor the cable wrap during

scheduling to avoid the situation of a twisted cable wrap. If the total angular range is less

than 360 degrees, there are no overlaps and the cable wrap position can be determined

unambiguously. However, many az-el antennas have a cable wrap bigger than 360 degrees

to allow more flexible scheduling and slewing. If this is the case, the unwrapped position

of the cable wrap has to be monitored instead, see Figure 6.

Figure 6: Visualization of the cable wrap for two different stations. The left plot visualizes
the cable wrap for WETTZ13N while the right plot visualizes the cable wrap for HART15M.
Different cable wrap sections are color-coded.

At the lower limit of the cable wrap, the counter-clockwise cable wrap (ccw) section

starts. The ccw section covers the overlapping azimuth range of the cable wrap. After the

ccw section, the neutral cable wrap (n) section starts and continues until the overlapping

azimuth starts again. In this azimuth range, the cable wrap can be resolved unambiguously.
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3. VLBI SCHEDULING

Afterwards, the clockwise cable wrap (cw) section starts until the upper limit is reached.

If the antenna is observing sources in the overlapping areas it is of critical importance to

know in which cable wrap section the antenna is located to properly calculate the slew

times of the antennas and thus the possible start of the scan.

The cable wrap limits of each station are listed in the sked antenna catalog (see section

3.3.1). Typically, a small error margin is added to the cable wrap limits by the scheduling

software to avoid tracking of sources near the limit.

Since the antenna cannot slew unrestricted it is possible that the slew distance between

relatively close sources is very big. Considering a situation for WETTZ13N (Figure 6 left)

where one source is observed at an azimuth of 280 degrees and the next source should be

observed at an azimuth of 260 degrees. Depending on the cable wrap section the antenna

is located, the slew distance differs greatly. If the antenna is at the cw section, the slew

distance would only be 20 degrees, since the antenna can slew counter-clockwise. However,

if the antenna is at the ccw section, it is not possible to slew in the counter-clockwise

direction. Instead, the antenna has to slew 340 degrees in the clockwise direction resulting

in a way longer slew time.

3.4.2 Slew time

The slew time between two subsequent scans is determined by the angular distance of the

sources, the current cable wrap position, the required cable wrap position and the slew

rates around the two rotation axis. Depending on the antennas, the slew times can vary

greatly as indicated in Figure 7.

Figure 7 depicts the slew time models2 for all azimuth elevation antennas included in

the 2019 master schedule (see section 3.1). Some commonly used stations are highlighted

for the sake of comparison. The slew time model consists of a constant offset c and a fixed

slew rate r, usually defined in degrees per minute, resulting in a linear model. The model

parameters are stored in the sked antenna catalog (see section 3.3.1).

Equation (3) can be used to calculate the required slew duration dur in seconds for a

given angular distance d in degrees.

dur = c+
d

r
· 60 (3)

2according to sked antenna.cat version 2018Apr27 iGSFC
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3. VLBI SCHEDULING

Figure 7: Slew time models for individual azimuth elevation antennas. The left plot displays
the required slew time around the azimuthal axis up to 180 degrees angular distance. The
right plot displays the same for the elevation axis up to 90 degrees angular distance.

The required slew time is calculated for both axis individually and the total slew time is

the maximum of those two slew times.

While newer VGOS stations like WETTZ13N or ISHIOKA are especially built to pro-

vide fast slew time (Petrachenko et al., 2009; Petrachenko et al., 2012), other stations like

FORTLEZA need significantly more time for slewing longer distances. Additionally, some

stations like BADARY have a high constant offset c leading to high slew times for short

distances as well.

3.4.3 Horizon mask

VLBI observes electromagnetic waves at radio frequencies which do not penetrate solid

material very well. Therefore, it is not possible to observe sources at negative elevations,

since the Earth is in between the source and the antenna. At some stations it is not possible

to observe sources at certain areas above the horizon due to nearby mountains or obstacles

like buildings or other antennas.

The information about visible areas from a station is stored in a so-called horizon mask,

defined in the sked mask catalog (see section 3.3.1). Figure 8 visualizes two of those horizon
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3. VLBI SCHEDULING

masks for station HART15M and KOKEE12M3.

Figure 8: Horizon mask for station HART15M (left) and KOKEE12M (right). While the
horizon mask on the left is defined via line segments, the mask on the right is defined
through a step function.

Two different formats exist for horizon masks in the sked mask catalog (Gipson, 2016;

Sun, 2013). The first is defined by azimuth elevation points which are connected through

line elements as can be seen in Figure 8 left. The second is defined as a step function,

providing azimuth ranges with a fixed elevation as can be seen in Figure 8 right.

Since not all stations have a defined horizon mask it is possible to set a minimum

elevation of scans in the scheduling software which typically lies at 5 degrees elevation.

While this is a fixed parameter in case of sked and VieVS Sched, the minimum elevation

can be set individually for each antenna and source in VieSched++, see section 5.8.2 and

5.8.3.

3.4.4 Antenna sensitivity

The sensitivity of an antenna is defined through its SEFD parameter:

SEFD =
2kTS

Ae
· 1026 = 2kTS

ηAAg
· 1026 = 8kTS

ηAπD2
· 1026, (4)

3according to sked antenna.cat version 2018Feb01 iGSFC
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3. VLBI SCHEDULING

where k is the Boltzmann constant, Ae is the effective aperture, Ag is the effective aperture

with the aperture efficiency factor ηA. For a circular aperture antenna, Ag can be calculated

from the antenna diameter D as shown in the last term of equation (4). The unit of the

SEFD parameter is Jansky (Jy) being:

1 Jy = 1× 10−26 W

Hzm2 (5)

A smaller SEFD parameter indicates a better system performance of the antenna. Thus,

all things being equal, antennas with a larger dish have a better sensitivity and therefore

shorter observing times until the required SNR is reached (see section 3.6).

Figure 9 depicts the distribution of antenna sensitivities for all antennas listed in the

2019 IVS schedule master. The SEFD parameter is stored per band in the sked equip

catalog 3.3.1. The high number of stations with SEFD around 500 Jy for X-band and 400

Jy around S-band is due to the ten identical antennas forming the VLBA. The histogram

in Figure 9 only shows SEFD values up to 7000 Jy for better visualization although five

stations have significantly higher SEFD values like AGGO with 20 000 Jy in X-band and

15 000 Jy in S-band or OHIGGINS with 10 000 Jy in X-band and 18 000 Jy in S-band4.

Figure 9: Histogram of the SEFD values of all antennas listed in the 2019 IVS schedule
master.

Due to the atmospheric contribution to the system temperature and the changes in

the amount of ground pickup caused by feed spillover, elevation depending SEFD values

are calculated for some stations. Out of all stations included in the IVS master schedule

elevation depending SEFD models are provided for 16 antennas. The SEFD parameter at

4according to sked equip.cat version 2018Oct09 IGSFC
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3. VLBI SCHEDULING

a certain elevation el is calculated by multiplying the SEFD parameter in zenith direction

with a elevation depending function.

SEFD(el) = SEFDzenith · f(el) (6)

The scaling factor function f(el) is given in equation (7).

f(el) =

n∑

i=0

ci

(sin ely)i
(7)

The elevation depending SEFD parameters are listed in the sked equip catalog (see section

3.3.1). Since this catalog only lists the parameters y, c0 and c1 (Vandenberg, 1999),

equation (7) simplifies to equation (8).

f(el) = c0 +
c1

sin ely
(8)

Figure 10 displays the elevation depending scale factor f(el) model, see equation (8) for

some stations5.

Figure 10: Elevation depending SEFD factors f(el) for all antennas included in the IVS
master schedule.

Typically, the elevation depending scale factor f(el) is greater than 1. It increases with

5according to sked equip.cat version 2018Oct09 IGSFC
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3. VLBI SCHEDULING

lower elevations resulting in higher SEFD values and thus longer integration times to reach

the required SNR, see section 3.6. The elevation depending SEFD model is provided per

band. While for some stations, only very low elevations are effected, the SEFD of stations

like PIETOWN in S-band already increases for high elevations.

3.5 Flux models

Besides the position of the source, which defines the slew time between scans, their bright-

ness is an important quantity defining the required integration time to reach a certain SNR

(see section 3.6). The flux information is stored in the sked flux catalog (see section 3.3.2).

This catalog is regularly updated due to changes in the flux density of sources over time.

Figure 11 depicts the changes in the flux density of the often observed source 0059+581.

Source 0059+581 is one of the brightest and thus most observed sources. It is one of the

ICRF3 defining sources with over 400 000 observations from over 2600 sessions. The flux

density displayed in Figure 11 is taken from the sked flux catalog (see section 3.3.2). Some

values, which were only calculated based on one session were removed from the visual-

ization. It can be seen that the brightness is not stable over time and varies over short

time frames. Therefore, it is always necessary to use the latest version of the catalog files

including the newest source flux information to properly calculate the required observing

time and create a correct schedule.

Figure 11: Evolution of flux density of source 0059+581 over time.

There are two different models available for defining the flux density, based on the
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3. VLBI SCHEDULING

projected baseline length or provided via elliptical Gaussian models. Figure 12 depicts the

expected flux density for source 3C274, also known as 1228+126 6. It is a well-observed

source in VLBI and part of the ICRF3 with over 70 000 observations from over 1900 sessions.

Figure 12: Expected flux density of source 3C274 derived from a baseline length based
model on the uv-plane. Left for S-band and right for X-band.

The expected source flux of this source is provided per projected baseline length in the

uv-plane:

ha = gmst− ra (9)

u = bx · sinha+ by · cosha (10)

v = bz · cos δ + sin δ · (−bx · cosha+ by · sinha) (11)

where bx, by and bz are the x, y and z components of the baseline vector, δ is the declination

and ra is the right ascension of the source and gmst is the Greenwich mean sidereal time.

The projected baseline length bproj is given by:

bproj =
√

u2 + v2 (12)

As it can be seen in Figure 12, the expected flux density model is defined by concentric

circles in the uv-plane. Typically, sources with an extended structure are partially resolved

on long baselines, thus reducing the observed flux.

6according to sked flux.cat version 2019APR04 iGSFC
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3. VLBI SCHEDULING

Figure 13 visualizes the expected flux density for source 0458-020 provided by an el-

liptical Gaussian model7. This source is an ICRF3 defining source with more than 80 000

observations from over 2700 sessions.

Figure 13: Expected flux density of source 0458-020 derived from an elliptical Gaussian
model on the uv-plane. Left for S-band and right for X-band. The X-band model consists
of two components, see Figure 14.

The model is defined as the sum of Gaussian components. Each component is defined

by four parameters, the strength of the component F , typically in unit Jansky, see equation

(5), the size of the component’s major axis Θ, the axial ratio of the component R and the

position angle of the major axis pa. The expected flux density Fobs can be calculated using

the following equations for an observed wavelength of λ:

uλ =
u

λ
(13)

vλ =
v

λ
(14)

l =

√

(vλ cos pa+ uλ sin pa)
2 +R2 (uλ cos pa− vλ sin pa)

2 (15)

Fobs = F · exp − (πΘl)2

4 ln 2
(16)

The total X-band flux density model of source 0458-020 displayed in Figure 13, is

defined through the sum of two components, displayed in Figure 14. While one of the two

components is radially symmetric, the other one has an axial ratio of 0.3.

7according to sked flux.cat version 2019APR04 iGSFC
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3. VLBI SCHEDULING

Figure 14: Two components of the elliptical Gaussian flux model of source 0458-020 in
X-band. While the first component has a axial ratio R of 0.3, the second component is
radial symmetric.

Although there is the possibility to create the flux model as a sum of multiple ellipti-

cal Gaussian components in the sked flux catalog, almost all models consist of only one

component.

3.6 Required scan length

The required scan length is calculated per baseline between participating stations. It is

determined by the desired SNR, the source strength F , the antenna SEFD and the recording

rate rec.

The recording rate is the total number of recorded bits per second. It can be calculated

using the sample rate per channel, which is usually two times the channel bandwidth, the

number of channels #ch and the number of recorded bits per sample #bits.

rec = sample rate ·#ch ·#bits (17)

The expected SNR is defined via

SNR = η
F√

SEFD1 · SEFD2

√
rec · sec (18)
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3. VLBI SCHEDULING

which can be inverted to calculate the required scan lenght T in seconds per baseline

T =

(
SNR

ηF

)2

·
(
SEFD1 · SEFD2

rec

)

(19)

The variable η in equation (18) and (19) is the so-called efficiency factor, which depends on

the bit efficiency, which is the degradation in SNR due to digital sampling and varies de-

pending on how many bits are recorded per sample, and the correlator efficiency depending

on the correlation software.

Figure 15 visualizes the required scan length depending on antenna SEFD and source

strength.

Figure 15: Required scan length necessary for reaching a SNR of 20. The left plot displays
the required scan length depending on the source flux density assuming two antennas with
the same SEFD. The right plot displays the required scan length for a fixed source flux of
0.25 Jansky but with varying SEFD parameters for both antennas. Both figures assume
an observing mode with 2-bit sampling, a sample rate of 32 MHz and 10 recorded channels
as well as an efficiency factor η of 0.6175.

Equation (19) shows that the required scan duration is calculated per band and baseline

since the SEFD parameters differ between stations and between bands as well as the source

flux density and the recording rate. The required scan duration per station is the maximum

of the required scan duration per band and baseline containing this station. The right plot

in Figure 15 indicates, that if one station has low sensitivity, meaning it has a high SEFD
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3. VLBI SCHEDULING

it is still possible to achieve a relatively low required scan duration if the second station

forming the baseline is very sensitive with a low SEFD. This makes it possible to include

low sensitive antennas in scans with other highly sensitive antennas.

Since the antenna performance varies from time to time and the slew models 3.4.2 might

not be 100% accurate, typically, a minimum scan time is set in the scheduling software, to

avoid scan time below a certain threshold. Similar a maximum allowed scan time can be

set, to avoid very long scans, which are inefficient and may suffer from unresolved changes

in the troposphere during the scan time. Additionally, a few extra seconds are usually

added to the required scan time for the correlator synch up, changing equation (19) to

(20).

T =

(
SNR

ηF

)2

·
(
SEFD1 · SEFD2

rec

)

+ corsynch (20)

3.7 Special scheduling algorithms

3.7.1 Subnetting

Subnetting is a technique used in global geodetic VLBI. The idea is to split the network

into two parts, so-called subnets, and observe two sources simultaneously as indicated in

Figure 16 (Gipson, 2016). The idea behind this approach is that it is not possible that

all stations observe the same source simultaneously in a global antenna network, simply

because the source is not visible from all parts of the Earth at the same time. The trade-off

for subnetting is, that the number of observations gets reduced. The number of observa-

tions in a scan grows by n(n−1)
2 with the number of participating stations. Since during

subnetting the network is divided into two subnetworks, the total number of observations

from those two scans is smaller than it would be from one scan with the maximum number

of observations. However, if this is not done, the scheduling software would likely focus

always mainly on a subset of stations which are near to each other, especially, in case of an

asymmetric station distribution, which is quite common due to the lack of southern sta-

tions as indicated in Figure 3. Thus, by using subnetting, the overall sky-coverage increases

since the stations are way more flexible with what they observe.

Subnetting is a necessary tool in scheduling geodetic VLBI sessions. Although it drasti-

cally increases the complexity of the scheduling process, it also increases the overall quality

of the generated schedule. By using subnetting it is way better for the scheduling software

to compare different scan situations and select the best one. When subnetting is used, the
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3. VLBI SCHEDULING

Figure 16: Schematic representation of subnetting. The network is split into two subnets
which observe two sources simultaneously.

score of both considered subnetting scans is combined in the comparison process and this

overall score is compared against other situations. Without subnetting some stations are

idling during the scan comparison process due to the lack of common visibility, which the

scheduling software usually tries to avoid. Idling stations do not contribute to the score

of a scan thus making the scan comparison unfair and resulting in a scan selection mostly

based on the number of participating stations. By using subnetting, scans including all

stations can be evaluated and the comparison process works a lot better.

However, the optimization criteria used by the scheduling software have to be designed

to work in the case of subnetting and without subnetting and they need to be able to

compare those two situations with each other, making the definition of optimization criteria

a lot harder. This means that the scheduling software has to be able to switch subnetting

on and off, depending on what is best at this time.

It has to be noted that it is possible and in fact often the case that two or even more

sources are observed simultaneously without the use of subnetting. Stations which are con-

sidered as idling during a scan or which have finished their observation earlier due to higher

sensitivity can form another scan in the next scheduling step or can form a scan during the
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3. VLBI SCHEDULING

fillin-mode process described in section 3.7.2, which overlaps with already existing scans.

Subnetting only effects the decision, which scans should be selected by providing a lot more

possibilities. The difference is, that by using subnetting the comparison of scans during the

scheduling process works a lot better since the scheduling software already knows what all

stations are doing. Without the use of subnetting the software only knows what stations

participating in the investigated scan are doing, since the scheduling of the next scan or

a fillin-mode scan is done in a further step. Additionally, by using subnetting the sched-

ule can and often will contain situations where three or more sources are simultaneously

observed for the same reasons although only two sources are evaluated simultaneously.

Section 5.3.5 describes in detail how subnetting is considered by VieSched++.

3.7.2 Fillin-mode

Fillin-mode is a method of reducing station idle time (Gipson, 2016). The possible start

point of a scan and the observing duration can vary greatly between stations for multiple

reasons.

Figure 7 visualizes that the slew speed of individual antennas can be very different.

Additionally, it is possible that stations start slewing from different sources leading to

different slew distances and thus slew times. In general, the slew distances are different

for each station, since most antennas are azimuth and elevation antennas and the sources

are on different positions on the local sky at different places on the Earth. The higher

the elevation of a source the longer the azimuth slew distance becomes for Alt-Azimuth

antennas. Since by definition of the .skd format a scan always starts at the same time for

each station it is possible that fast slewing stations wait for slow slewing stations until they

reach their final destination.

Furthermore, the required integration time of a scan is also different for different sta-

tions. Figure 9 depicts that the sensitivity of the antennas is very variable between anten-

nas, leading to a different required scan duration according to equation (20) per antenna.

Since the scan start time is fixed for all stations it can happen that some stations finish a

scan earlier than others.

Both of these two factors introduce idle time to a schedule. Additionally, although

subnetting is used, it is sometimes possible that one antenna is not part of any scan at a

certain time resulting in this antenna idling as well.

The idea of a fillin-mode is to use this occurring idle time productively and schedule
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3. VLBI SCHEDULING

Figure 17: Visualization of fillin-mode. The top figure displays a situation without fillin-
mode, the bottom figure displays the same situation with fillin-mode active. Red blocks
are observing times during a scan. Blue lines represent required slew time. Orange lines
represent the occurring idle time. Green blocks represent fillin-mode scans scheduled during
the idle time between scans.

additional scans with a reduced number of otherwise idling stations as indicated in Figure

17. The observing duration of scan 1 in Figure 17, represented as a red bar, is different for

each station and longest for station 4 and 6. The required slew time is drawn as a blue line.

The observation of scan 2 starts as soon as all participating stations have finished their

previous observation and finished slewing to source 2 observed in scan 2. In this example,

the last station arriving at source 2 is station number 6. As soon as station 6 arrives on

source 2 scan 2 can start. This leads to a lot of idle time for most other stations represented

as an orange line. Station number 4 is not participating in scan 2 so it is idling as well.
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3. VLBI SCHEDULING

After scan 2 is observed all stations are slewing to source 3 observed in scan 3. Again,

every station has to wait until the latest station finishes slewing to source 3, which is in

this example station 6 again. The bottom plot in Figure 17 visualizes how the occurring

idle time can be used by scheduling fillin-mode scans. In this example, it is possible for

station 1, 2 and 3 to observe another source during the idle time between scan 1 and 2.

Similarly, it is possible for station 1, 2, 3 and 4 to observe a fillin-mode scan during the

idle time between scan 2 and scan 3.

While both sked and Vie Sched implement fillin-mode scans as part of an own schedul-

ing mode by alternating between the standard scan selection and the fillin-mode described

by Gipson (2016) and Sun (2013), VieSched++ schedules fillin-mode scans during the re-

cursive scan selection described in section 5.5 by using its main algorithm. Another main

difference between the implementation in VieSched++ in contrast to sked or Vie Sched is

that VieSched++ schedules the fillin-mode scans between two already scheduled scans and

thus taking advantage of the full available idle time (mainly due to different slew times

and different observing times) while sked and Vie Sched only add fillin-mode scans at the

end of an already fixed scan (Gipson, 2010) and, thus, only minimizing idle time due to

different observing times of antennas and not due to different slew times. More information

about the sked fillin-mode including a visual example can be found in (Gipson, 2010).

Figure 18 depicts an example of different fillin-mode approaches. The top figure displays

the initial situation without the use of fillin-mode. Scan 1 is scheduled with different

observing times and different slew times. Scan 2 is scheduled with different slew times.

The middle figure displays a fillin-mode solution where only different observing times are

considered, such as it is the case of sked and Vie Sched, where the order of scheduled scans

would be: scan 1, fillin-scan 1, scan 2, scan 3. In this case, the algorithm is only able to

schedule a short fillin-mode scan between scan 1 and scan 2. The bottom figure displays

a fillin-mode solution where both, different observing times and different slew times are

taken into account. In this case, the algorithm is able to schedule two fillin-mode scans.

This situation reflects the case of VieSched++ where the scans are scheduled recursively

(see section 5.5), leading to the following scan schedule order: scan 1, scan 2, fillin scan 1,

scan 3, fillin scan 2.
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3. VLBI SCHEDULING

Figure 18: Comparison of different fillin-mode approaches. The top figure displays a
situation without fillin-mode. The middle figure displays the same situation with a fillin
mode considering different observing times. The bottom figure displays the same situation
with a fillin-mode considering both, different observing times and different slew times. Red
blocks are observing times during a scan. Blue lines represent required slew time. Orange
lines represent the occurring idle time. Green blocks represent fillin-mode scans scheduled
during the idle time between scans.

3.7.3 Tagalong-mode

Sometimes it is not sure if a station will participate in a session or if the recorded data of a

station can be used for correlation. This is often the case for new stations or stations that

might be on maintenance. If this is the case, it is often advantageous to add these stations

as so-called tagalong stations.

The idea behind the tagalong-mode is, that the schedule is first created without con-

sidering the tagalong station and, in a further step, the tagalong station is added to the

schedule trying to additionally observe as many of the already scheduled scans as possible.

This makes sure that the schedule is still intact in case the tagalong station drops out of
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3. VLBI SCHEDULING

the session.

Figure 19: Visualization of tagalong-mode. Red blocks are observing times during a scan.
Green blocks are observing times added during tagalong-mode. First the schedule is created
without the tagalong stations as displayed in the top figure and later the tagalong station
is added in a further step as displayed in the bottom figure.

Figure 19 visualizes the concept of the tagalong-mode. The top figure displays the first

step of this process, where the schedule is created without considering the tagalong station.

If the schedule is finished the second step starts, visualized in the bottom figure, where the

tagalong station is added to the already fixed scans.

3.7.4 Extending observing time

Another possibility to reduce station idle time is to extend the observing duration of a scan

in case of available idle time. Typically, the station observing time is exactly as long as

required until the target SNR can be reached on all scheduled baselines with this station,

see section 3.6. If the idle time is not long enough to squeeze in another scan via the
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3. VLBI SCHEDULING

fillin-mode the occurring idle time can be decreased by increasing the observation duration

of already scheduled scans. The algorithm does not add any additional observations to the

schedule, it just increases the SNR of the observations by increasing its observing duration

which in turn will increase the precision of the observations. The downside of this approach

is that the amount of recorded data, which is often a bottleneck in VLBI, gets increased

without increasing the number of observations.

Figure 20: Visualization of how extending observing time works. The top figure displays
a schedule without extending the observing time, the bottom figure displays the same
situation with extended observing time. Red blocks are observing times during a scan.
Blue lines represent required slew time. Orange line represent the occurring idle time.
Purple blocks represent extended observing times.

Figure 20 visualizes this process. Red blocks represent observing times during a scan,

blue lines the required slew time and orange line the occurring idle time. The purple blocks

indicate extended observing times. In this example, the latest station which participates
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3. VLBI SCHEDULING

in scan 2 and finishes slewing to the observed source is station number 6. The idle time

of the other stations can be extended as far as there is still enough time slewing between

the sources of scan 1 and scan 2. Note that in this example the total scan duration is

increasing, since station 4 and 5 can both extend their observing time. Between scan 2 and

3 it is possible for stations 1, 2 and 3 to extend their observing time. It is not possible for

station 5 since at least two stations have to observe simultaneously.

Both sked and VieSched++ have implemented an algorithm to extend the observing

times in case of available idle time but it is missing in Vie Sched. Since VieSched++ has the

option to not only align scans at the scan start time but also at the end time or individually

as described in section 5.11 it offers the possibility to extend the observing times at the end

of a scan, at the beginning of a scan or both. Furthermore, VieSched++ recalculates the

required slew time between sources when extending the observing time since the antenna

is moving while tracking a source, thus, leading to different slew distances and slew times.
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4. SIMULATIONS AND ANALYSIS

4 Simulations and Analysis

The following section gives a brief overview about VLBI simulations and the analysis of

VLBI sessions. It covers topics which are necessary to understand the content of the

upcoming sections, especially for the results, see section 6. Throughout this work, the

VieVS package is used to generate simulations and analyze VLBI sessions.

4.1 Vienna VLBI and Satellite Software (VieVS)

The Vienna VLBI and Satellite Software (VieVS) is a scientific software package which is

used for research and teaching space geodetic techniques (Böhm et al., 2012; Böhm et al.,

2018). It is mostly known for its state-of-the-art VLBI analysis tools for geodesy and as-

trometry. VieVS is developed at TU Wien, Department of Geodesy and Geoinformation,

since 2008 with contributions from multiple international colleagues. The software is writ-

ten in MATLAB, which makes it easy to develop and test new approaches. The downside

of MATLAB is, that it is an expensive commercial software.

The main purpose of the VieVS VLBI module is the analysis of VLBI sessions. There-

fore, a least-squares adjustment is used. The theoretical delay for each observation is

calculated according to the IERS conventions (Petit and Luzum, 2010) and their newest

updates. Within the least-squares adjustments, most parameters are estimated by us-

ing Piece-Wise Linear Offsets (PWLO), see Schuh and Böhm (2013) and Teke (2011) for

further information.

Besides analyzing individual VLBI sessions, it is possible to combine the results of

single solutions to a so-called global solution by stacking the normal equation matrices.

This opens up the chance to combine the whole history of VLBI sessions to estimate

parameters with the highest precision. This is commonly used for the estimation of a new

TRF or CRF as described in Krásná et al. (2014) and Mayer (2018).

Additionally, VieVS includes a tool to simulate artificial VLBI observations (Pany et al.,

2011). The simulated observations can be analyzed similarly to a real VLBI experiment.

Based on Monte-Carlo simulations (Metropolis and Ulam, 1949), statistical information

like the repeatability of the estimated parameters can be calculated and investigated.

Finally, VieVS already includes a VLBI scheduling software called Vie Sched (Sun,

2013; Sun et al., 2014). In the past, Vie Sched was used to schedule the AUSTRAL VLBI

sessions (Plank et al., 2017) and test new scheduling approaches like the star scheduling

mode (McCallum et al., 2017). Additionally, this scheduling software includes the ca-
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4. SIMULATIONS AND ANALYSIS

pabilities to schedule satellite observations with VLBI, see Hellerschmied et al. (2016),

Hellerschmied et al. (2017), and Hellerschmied (2018)

More information about VieVS can be found at vievswiki.geo.tuwien.ac.at.

4.1.1 Simulation setup

Throughout this work, simulations include three of the main VLBI error sources, namely

the tropospheric wet delay, station clock drifts and measurement errors in form of white

noise (Pany et al., 2011). Another major error factor, especially for VGOS, are source

structure effects (Anderson and Xu, 2018). Time delays due to source structure effects are

not simulated in this work due to limitations in the software and limitations in available

models.

If not explicitly stated otherwise, the following parameters are used to generate simu-

lations in this work:

The tropospheric wet delay is simulated following an approach suggested by Nilsson

et al. (2007). This approach is based on a turbulence model by Treuhaft and Lanyi (1987)

which is using the Kolmogorov turbulence theory. All stations are simulated using a re-

fractive index structure constant Cn of 1.8× 10−7 m−1/3, with an effective height of 2 km

and a constant wind velocity of 8 m/s towards east.

Stochastic errors of the station clock are simulated as the sum of random walk and

integrated random walk (Herring et al., 1990). All stations are simulated assuming a clock

accuracy with an Allan Standard Deviation (ASD) of 1× 10−14 s after 50 minutes.

Additionally, 20 picoseconds of white noise are added to the observations to account

for measurement errors.

4.1.2 Analysis setup

Within this work, standard 24-hour sessions are analyzed using the following setup:

The tropospheric zenith wet delay is estimated every 30 minutes using PWLO per sta-

tion and loose relative constraints of 1.5 centimeters after 60 minutes are applied. The

tropospheric north and east gradients are estimated as PWLO every three hours. Addi-

tionally, relative constraints of 0.05 centimeters after six hours and absolute constraints of

0.1 centimeters are applied.
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4. SIMULATIONS AND ANALYSIS

The clock is estimated using PWLO every 60 minutes, as well as one rate and one

quadratic term per clock. This is done for all stations, except for the station providing

the reference clock. Relative constraints between the PWLOs are introduced with 1.3

centimeters after 60 minutes.

The EOP parameters are estimated using daily PWLO at 00:00 UTC. Very tight relative

constraints of 1× 10−4 microarcseconds are introduced between the PWLO. Effectively,

this results in the estimation of the EOP parameters as one offset per session.

The station coordinates are estimated as one offset per session by introducing No Net

Translation (NNT) and No Net Rotation (NNR) condition equations.

No source coordinates are estimated in case simulations are analyzed.

The least-squares method implemented in VieVS is following a two-step approach:

First, a so-called first-solution is performed estimating a reduced set of parameters, followed

by the main solution. The reason for the first solution is to provide good a priori values

for the parameters. Most importantly, the clocks are only estimated as one offset, one rate

and one quadratic. Then during the main solution, these a priori values are then used and

all requested parameters are estimated as listed above.

In the case a real session is analyzed, an outlier test is applied and the outliers are

removed from the analysis.
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5. VIESCHED++

5 VieSched++

5.1 Software design

VieSched++ (Schartner and Böhm, 2019c) is developed at the Department of Geodesy and

Geoinformation at Technische Universität Wien (TU Wien) under the umbrella of VieVS.

It is written in modern C++ using an object-oriented software design. The software is

distributed in two parts: the scheduler and a Graphical User Interface (GUI). The source

code of both parts is hosted on GitHub under https://github.com/TUW-VieVS. The

GUI is based on the Qt5 libraries and aims to be very intuitive and highly interactive. It

provides a built-in help and multiple interactive schedule analysis and comparison features.

The main function of the GUI is to create an Extensible Markup Language (XML) file with

the scheduling setup. This XML file serves as input for the scheduler. To be consistent with

today’s schedules created with sked (Vandenberg, 1999; Gipson, 2010), the sked catalogs

(Vandenberg, 1997) can be used in VieSched++.

5.2 Installation

VieSched++ provides an installer for Windows 10 and Ubuntu 18.04. The installer includes

the scheduler as well as the GUI and additionally a recent version of the sked catalogs.

Therefore, it is not necessary to manually build the software on these operating systems,

which can be quite challenging and time consuming by itself, especially for scientific soft-

ware.

In case the software has to be built manually, VieSched++ tries to simplify the process

as much as possible by reducing the number of third-party libraries to a minimum as

well as providing cmake and qmake script files. For the scheduler, the only dependency

is the Standards of Fundamental Astronomy (SOFA) library (SOFA, 2019). Apart of

that, a header-only version of the C++ boost libraries (Ling, 2011) is sufficient to compile

the scheduler, although some features like improved log files are only available if a build

version of the C++ boost libraries is available. The scheduler can be built easily using a

provided cmake script file, which is a cross-platform tool to build software independent of

the compiler.

For building the GUI, additionally, the Qt5 libraries are required. The build process

can be automated by using a qmake script file, which is similar to cmake but specially

designed to support the Qt libraries.
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5. VIESCHED++

VieSched++ is a multi-platform application and is successfully tested on Linux and

Windows using different compilers.

5.3 General scheduling concept

Figure 21 visualizes the work flow of the scheduling process in VieSched++. There are two

input sources for VieSched++. An XML file which is typically called “VieSchedpp.xml”

and is typically created by using the GUI and the sked catalog files. The XML file contains

the full scheduling setup, containing the list of participating stations, the observing mode

and most important the scheduling logic which should be used to generate the schedule.

Additionally, it points to the catalog files (see section 3.3) where the information of the

antennas, sources, and hardware is stored.

Using these input files, VieSched++ starts with the so-called initialization phase. During

this phase the content of the input files is parsed, all necessary objects are constructed and

the scheduling logic is set up. Furthermore, multiple look-up tables are generated to speed

up the scheduling process. These look-up tables include astronomical parameters such as

the IAU 2006 precession-nutation model (Petit and Luzum, 2010; Capitaine et al., 2009),

Earth velocity and Sun positions but also fast look-up tables for trigonometric functions

and the angular distance between two points on a sphere. Additionally, azimuth elevation

values are provided per station for each source every minute which is further used for

interpolation.

After the initialization process finishes the scheduling phase starts. During this phase,

the schedule is generated scan after scan as indicated in Figure 2. The main algorithm used

during the scheduling phase is the recursive scan selection, further explained in section 5.5

as well as in Schartner and Böhm (2019b) and Schartner and Böhm (2019c).

Optionally, it is possible to fix some scans a priori before the main recursive scheduling

algorithm starts to make sure that these scans are always scheduled. This can be used

to fix scans to sources near the corners of the commonly visible sky for intensive sessions,

which are assumed to be the most important scans (Uunila et al., 2012). After the main

recursive scheduling algorithm the fillin-mode a posteriori can be used to try to schedule

additional scans. The concept of fillin-mode is discussed in detail in section 3.7.2 and

further explanations are available in Gipson (2010). Additionally, VieSched++ provides a

fillin-mode a posteriori which can be used optionally. While the basic fillin-mode is already

handled by the main recursive scheduling algorithm, this mode is especially designed in

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. VIESCHED++

Figure 21: Flowchart of VieSched++ concept.

case multiple tagalong stations (see section 3.7.3) are used, like it was the case at the

beginning of the VGOS era (Schartner and Böhm, 2019b).

At this stage, all scans and observations are fixed. VieSched++ is then evaluating if all

required conditions, like the minimum number of scans per source, are fulfilled. If this is
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5. VIESCHED++

not the case, the schedule is recreated using a reduced source list, as described in detail in

section 5.7.

If all conditions are fulfilled it is possible to extend the observing times of all observa-

tions, similar as described in section 3.7.4, and finally, the output files are written.

VieSched++ supports a feature called multi-scheduling, see section 5.6 (Schartner et al.,

2017; Schartner and Böhm, 2019b,c). By using this tool multiple schedules are generated

simultaneously using varying parameters, as illustrated in Figure 21 with dotted lines.

Since scheduling is a complex task and it is not possible to generate all possible schedules

for a given session, the goal is mainly to generate a schedule which is considered “reasonably

good”, although it is unlikely that it is the “best” one. By generating multiple schedules

and using a huge variety of scheduling parameters, the likelihood increases that one of

these schedules is good enough. The VieSched++ multi-scheduling feature supports the

automatic variation of over 40 parameters and can generate hundreds of schedules in a

reasonable short time. Since the antenna network, the source list, and the setup stays

the same, the initialization phase has to be done only once. VieSched++ supports multi-

threading for the multi-scheduling feature and thus benefits greatly in case multiple Central

Processing Units (CPUs) are available.

5.3.1 Implementations of a scan

To understand the following sections and upcoming algorithm better, this section gives an

insight into the implementation of a scan in VieSched++.

A scan consists of three major parts as illustrated in Figure 22, namely antenna pointing

vectors at the observing start and end time, a list of all scheduled observations between

the antennas and a time management system.
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5. VIESCHED++

Figure 22: Main components of a scan in VieSched++.

A pointing vector describes the expected orientation of the antenna at a certain ref-

erence time. It stores the (unwrapped) azimuth and elevation information between an

antenna and a source as well as the local hour angle and the declination. Pointing vectors

are stored per station for the observation start and end time. Therefore, the number of

pointing vectors per scan npv is two times the number of participating stations nsta.

npv = 2 · nsta (21)

Additionally, a scan contains a list of all observations which are assumed to be ob-

served. Although the maximum possible number of observations per scan is given by (32),

VieSched++ can decide to ignore certain observations. This is done in case the required

observing time would be too long. Additionally, it is possible to define generally or for each

source if observations at certain baselines should be ignored to be able to imitate the Star

Scheduling Mode developed by McCallum et al. (2017). This can also be used to avoid the

scheduling of single baseline scans between twin telescopes.

Therefore, the number of observation objects per scan nobs is equal or less than the

possible number of observations.

nobs ≤
nsta · (nsta − 1)

2
(22)

In VieSched++ an observation object stores the information about which two antennas are
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5. VIESCHED++

forming the baseline between which the delay will be observed, as well as which source

should be observed. Additionally, the observation objects store its start time and the

necessary duration of the observation needed to reach the desired SNR on all observed

bands.

Finally, a time management system is included in each scan for performance reasons.

The purpose of the time management system is to store information about the necessary

slew time, idle time, calibration time, overhead time due to the execution of field system

commands, as well as the observing start time and duration per station. During the

computationally expensive scan selection process it is inapplicable to store the information

about the observing start time and duration only in the antenna pointing vectors and

observation objects. Many steps during scheduling require an iterative adjustment of the

observation start and thus end time, see section 5.3.3, but their changes are mostly in

the order of a few seconds. Since the information within a pointing vector or observation

object should be consistent, a change of the reference time from one of these objects would

require a recalculation of all other content with very little change. For this reason, the

time management system is used. During the computationally expensive scan selection,

the timing information is only updated in the time management system and is therefore

allowed to differ from the reference times defined in the pointing vector and observation

objects. As a first approximation during the iterative adjustment of the times, resulting

changes in azimuth and elevation, and thus slew time and observing start and end time are

often ignored, since they would not vary too much. Only if a scan is finally selected and is

about to be scheduled this information is brought into consistency again, as described in

section 5.3.7.

The important takeaway message of this section is, that in VieSched++ the smallest

quantity is not a scan but an observation and individual antenna pointings. The following

sub-chapters describe how VieSched++ calculates and handles scans.

5.3.2 Scan generation

For the selection of a scan during the generation of the schedule, VieSched++ investigates

all available scans at the current schedule time. Therefore, the visibility of every source

is evaluated from every station. Since this is done individually for each station, the real

possible observing start time and thus the correct reference time is unknown since it is

based on the availability of other antennas as well as the necessary slew times which are
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5. VIESCHED++

not available at this point. As a first step, VieSched++ evaluates the visibility for a time

calculated by using the end time of the last observation from this station plus the constant

overhead and calibration times which are defined in the scheduling setup.

If a source is visible by more than the minimum number of required stations, it is

further considered and slew times to this source are calculated using the models described

in section 3.4.2.

Since VieSched++ is using a recursive scan selection it is possible that scans are al-

ready scheduled after the investigated scan. Therefore, VieSched++ checks, if this already

scheduled scan can be reached after scheduling the tested scan, assuming an additional

five second long slew time to reach the upcoming scan and an observing time equal to the

minimum allowed observing time defined in the scheduling setup. This is done to reduce

the number of scans which are further investigated for performance reasons. By assuming

only five extra seconds for slewing and a minimum observing time, the possibility that a

valid scan gets falsely removed is minimized.

5.3.3 Possible scan start

At this time, it is known which stations can participate in a scan and an initial slew time to

reach the source is calculated. However, the antenna pointing reference time and thus the

azimuth and elevation information used to calculate the slew time is still based on the end

time of the previous observation of this station plus the constant overhead and calibration

times, as described in section 5.3.2. Since the observation duration is defined through

antenna sensitivity and source flux density and is calculated per baseline (see section 5.3.4),

the observing time differs between stations leading to different observation end times per

station. Additionally, antenna slew rates are very different, as already discussed in section

3.4.2, and the slew distances vary based on the position of the source at the sky, the antenna

mount, and cable wrap limitation, see section 3.4.1. All these factors lead to a possible

scan start time which is different for each station and the reference time has to be adjusted.

In geodetic VLBI, per definition, every station starts its observation at the same time and

thus the slowest antenna defines when the observation starts introducing idle time at all

other antennas.

At this point, the antenna pointing vectors and the necessary slew times are recalculated

using the real observation start time as the reference time. The real observation start time

can differ multiple seconds up to some minutes from the earliest possible observing start
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5. VIESCHED++

time per station which was earlier used as a reference time. Therefore, it can introduce

changes in slew time, since the Earth keeps rotating during the occurring idle, changing

the source position on the sky.

Most of the time, those changes in slew time are negligible but since VieSched++ often

evaluates hundreds of millions of scans during a multi-scheduling approach, rare scenarios

arise where e.g. the cable wrap changes or the cable wrap limit is reached which in turn is

changing the slew direction and is changing the slew time significantly.

For providing a rigorous solution, the scan start time and the necessary slew time has

to be iteratively calculated as done during the rigorous scan check, see section 5.3.7.

5.3.4 Scan observing duration

The required observation duration is calculated per observed baseline and per observed

frequency band according to equation (20) in section 3.6. The maximum of the required

observing time per band is used as the required time of this observation.

If the required observing time is longer than the maximum allowed observing time for

this baseline the observation is not scheduled, meaning it is not included in the list of

observations for this scan as described in section 5.3.1. In case the observation duration is

shorter than a user-defined minimum observing time the minimum observing time is used

instead. If it turns out that there are no valid observations with an antenna, the antenna

is removed from the scans.

After all possible observations are generated and the necessary recording times per

observation are known, the required recording time per antenna can be calculated. The

required recording time per antenna covers the time span between the earliest observation

start time of this antenna until the latest observation stop time of this antenna. It is

further compared with the maximum allowed observing time per antenna. If the required

observing time is longer than the allowed observing time per antenna, stations are iter-

atively removed from the scan until the required observing times are within the allowed

duration. VieSched++ starts by removing the stations with the highest number of observa-

tions with a duration greater than the allowed duration per antenna. If multiple stations

have the same number of observations with greater duration, the station with the highest

SEFD parameter is removed. In case the SEFD parameter is equal for multiple stations

the antenna with the lowest slew time is removed. In the rare scenario where all of these

quantities are equal, a random antenna is chosen and removed from the scan.

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. VIESCHED++

If the required observing time is shorter than a minimum required observing time, the

required observing time is extended to meet this requirement.

If there is already a scan scheduled after the investigated scan through the recursive

scan selection, VieSched++ checks if the already scheduled scan can be reached after the

tested scan within the available time. This is done multiple times during the calculation

of the observing duration per observation and antenna to minimize the computation load

and improve the performance.

5.3.5 Subnetting

As already discussed in section 3.7.1, subnetting is a good way to increase the quality of

schedules, especially in case global networks are used, by considering not only one scan at

a time but two parallel scans simultaneously during the scheduling process. Since for a

global network, no source can be seen from every antenna simultaneously, the consideration

of a second scan opens the possibility to consider and evaluate all antennas at the same

time which works a lot better for the scan selection algorithm. As a side effect, it helps

to provide a better sky-coverage, since it becomes more likely that sources at the edges of

common visibility areas are selected if two of these scans are investigated simultaneously

due to the combination of the individual scores per scan during the scan selection, see

section 5.3.6.

Subnetting drastically increases the pool of possible scans to choose from. If the number

of sources is denoted by nsrc without subnetting there are only nscans ≤ nsrc possible scans

which can be observed and thus have to be considered during the scan selection. By using

subnetting the number of possible scan constellations increases to nscans ≤ nsrc·(nsrc−1)
2 .

In numbers, this means by using a list of 100 sources the number of possible subnetting

scan combinations becomes ≈ 5000, in case of a list of 300 sources, as it is the case in

the commonly used geodetic good sources catalog, the number of possible subnetting scan

combinations increases to ≈ 45 000.

Due to performance reasons, it is clear that the number of actually considered sub-

netting scan combinations per scan selection step has to be drastically lower. Therefore,

several parameters can be used in VieSched++.

Since one benefit of subnetting is to be able to schedule all antennas of a global network

in one step, it only makes sense to consider subnetting scan constellations to sources which

are far apart on the sky to make sure that at least one source is visible for every antenna.
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5. VIESCHED++

During the initialization phase of VieSched++, pairs of possible subnetting sources are

calculated based on the angular distance between the sources and an user-defined minimum

distance. Only subnetting scan constellations between these pairs of subnetting sources

are further considered by the software. Additionally, subnetting scan constellations which

include only a fraction of all available antennas are ignored as well since they mitigate the

benefit of subnetting.

As an example: a standard ten station R4 network is scheduled in VieSched++ by

evaluating ≈ 400 000 scans in total if subnetting is allowed between sources with an angular

distance of 150◦ and the minimum number of participating antennas during subnetting

is nine. The number of scans increases to ≈ 3 500 000 if the angular distance between

subnetting scans is lowered to 120◦ and scan constellations with up to seven antennas are

considered. Therefore, minimizing the number of evaluated subnetting constellations and

a fast implementation of these algorithms is the key for increased software performance.

However, limiting these quantities too much can mitigate the benefit of subnetting, since

possible good subnetting constellations are not considered.

VieSched++ is considering all possibilities for subnetting. For example, a situation

as visualized in Figure 23 where two sources are visible from multiple antennas would

lead to an investigation of multiple possible scan combinations as listed in Table 2. In

this example, there is a total of ten antennas and both sources are visible from seven

antennas each. For three of these antennas, only source one is visible, while for three

other antennas only source two is visible. For the remaining four antennas both sources

are visible simultaneously. This would result in 18 different scan constellations containing

these two sources which are investigated, as listed in Table 2. In the case of version one

and two, only one scan to one source is scheduled without the use of subnetting. All other

versions are defined through different subnetting situations.

Figure 23: Example of a subnetting situation.
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5. VIESCHED++

Table 2: List of all possible scans which are evaluated from a situation displayed in Figure
16 by using subnetting.

version scan of source 1 scan of source 2

1 Ft Kk Wf Ht Ny On Wz
2 Bd Ke Ww Ht Ny On Wz

3 Ft Kk Wf Ht Ny On Wz Bd Ke Ww
4 Ft Kk Wf Ht Ny On Bd Ke Ww Wz
5 Ft Kk Wf Ht Ny Wz Bd Ke Ww On
6 Ft Kk Wf Ht On Wz Bd Ke Ww Ny
7 Ft Kk Wf Ny On Wz Bd Ke Ww Ht
8 Ft Kk Wf Ht Ny Bd Ke Ww On Wz
9 Ft Kk Wf Ht On Bd Ke Ww Ny Wz
10 Ft Kk Wf Ht Wz Bd Ke Ww Ny On
11 Ft Kk Wf Ny On Bd Ke Ww Ht Wz
12 Ft Kk Wf Ny Wz Bd Ke Ww Ht On
13 Ft Kk Wf On Wz Bd Ke Ww Ht Ny
14 Ft Kk Wf Ht Bd Ke Ww Ny On Wz
15 Ft Kk Wf Ny Bd Ke Ww Ht On Wz
16 Ft Kk Wf On Bd Ke Ww Ht Ny Wz
17 Ft Kk Wf Wz Bd Ke Ww Ht Ny On
18 Ft Kk Wf Bd Ke Ww Ht Ny On Wz

5.3.6 Scan selection

As described in earlier sections, a schedule is typically generated scan after scan, as in-

dicated in Figure 2. Each scan is selected from a pool of all possible scans, which can

be hundreds or even thousands. VieSched++ is using optimization criteria for evaluating

which scans should be scheduled. This process is discussed in detail in section 5.4. In

short, the software calculates multiple scores based on several optimization criteria. A

weighted sum of these individual scores is used to calculate the total score of a scan. This

is done for every possible scan. In case of using subnetting the score is calculated for every

scan constellation by adding the scores of the two individual scans forming the subnetting

constellation. The scan or scan constellation with the highest score is then selected and

added to the final schedule.
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5. VIESCHED++

5.3.7 Rigorous scan check

After a scan or subnetting scan constellation is selected from the pool of possible scans

by having the highest total score, rigorous checks are run to verify that everything is

calculated correctly. For the sake of simplicity, only the case of a single scan is further

discussed. In case a subnetting scan constellation is selected, the following steps are done

for each subnetting scan individually.

First, the slew times are rigorously and iteratively recalculated. An iterative calculation

is necessary, since the slew time depends on the source position, while the source position

depends on the slew time due to Earth rotation. Afterward, the observing start and stop

times are calculated again by rigorously calculating the observing duration per baseline

followed by the observing duration per station as already described in section 5.3.4. Finally,

it is investigated if the source is visible throughout the full scan. Therefore, the visibility is

checked at the start of the observation and the end of the observation, as well as every 30

seconds in between. After these calculations, the reference times from the pointing vectors

and the time management system are consistent and the score of the scan is recalculated.

If the scan is still the highest-scoring scan it is finally selected and scheduled. Otherwise,

these steps are repeated with the now highest-scoring scan until the rigorously updated

scan is the highest scoring scan.

Based on these algorithms and ideas the full schedule is generated in VieSched++.

5.4 Optimization criteria and weight factors

The optimization criteria definitions and equations are discussed in Schartner and Böhm

(2019c).

As discussed in section 3, a schedule is typically created scan after scan. Similar

to sked and Vie Sched, VieSched++ uses a brute force approach to select and schedule

scans by generating and evaluating all possible scans and subnetting scan combinations

(Gipson, 2010; Sun, 2013). To select the best scan out of the pool of all possibilities,

multiple optimization criteria are used. Every possible scan gains a score based on these

optimization criteria scoreopt. The total score scorescan is the weighted sum of the scores

per optimization criterion. Weight factors weightopt are used to combine multiple criteria
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5. VIESCHED++

similar to “minor options” in sked, see Gipson and Baver (2016) or Gipson (2010).

scorescan =

nopt∑

iopt=0

weightiopt · scoreiopt (23)

Weight factors are scalar values which can be varied in VieSched++. The higher the value

of a weight factor weightopt is, the more the score of this optimization criterion scoreopt

contributes to the total score of a scan scorescan. For example, if only two optimization

criteria, namely the number of observations per scan and the sky-coverage improvement

should be used to generate a schedule, all weight factors except these two should get a value

of zero. If the weight factor for improving the sky-coverage (see section 5.4.2) is given a

value of 1 and the weight factor for the number of observations per scan (see section 5.4.3)

is given a value of 0.1, the software will focus on optimizing the sky-coverage for all stations

rather than try to schedule scans with a high number of observations. Instead, if the weight

factor for improving the sky-coverage is given a value of 0.1 and the weight factor for the

number of observations per scan is given a value of 1, the software tries to focus more on

scheduling scans providing many observations.

Based on equation (23) it can be seen that only the relative ratio between the individual

weight factors is of importance. Using only two weight factors with the values 1 and 0.1

will lead to the same schedule as if the same weight factors are used with values 10 and 1

or 100 and 10.

In the case of subnetting scan combinations, the score is calculated for each scan indi-

vidually and summed up.

scoresubnetting = scorescan1
+ scorescan2

(24)

The scan or subnetting combination of two scans with the highest score is selected and

scheduled.

Currently VieSched++ supports nine optimization criteria:

• duration

• sky-coverage

• number of observations

• idle time

• average observations per stations
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5. VIESCHED++

• average observations per sources

• average observations per baselines

• low elevation

• low declination

Choosing a good set of optimization criteria and weight factors are the key to create an

optimized schedule (Schartner et al., 2017).

For developing a VLBI scheduling software like VieSched++, defining sophisticated opti-

mization criteria is tricky because the criteria should be generally valid for all combinations

of different antennas, sources and observing modes. Since by considering subnetting the

score of two scans is added together, see equation (24), it is necessary to scale the weight

factors carefully to allow a fair comparison between single-source scans and subnetting scan

combinations objectively. Since the optimization criteria directly determine which scans

are scheduled, they are the most critical part of the scheduling software. Thus, there are

regular changes and improvements to these algorithms aiming to improve the quality of

the schedule.

5.4.1 Duration

The optimization criterion for the duration of a scan is one of the trickiest to define while

being one of the most important for the generation of a good schedule (Schartner and

Böhm, 2019c). The difficulty arises due to the big variety of different antenna slew speeds

(see section 3.4.2) and differences in recording modes. For fast slewing VGOS antennas

recording with high sampling rates of several Gbit/s, observing a scan takes far less time

than for slow slewing antennas with sampling rates of some hundred Mbit/s. The same

is true for fillin-mode scans which include a reduced number of stations and are typically

faster to perform. However, it is necessary to define an optimization criterion for the

duration of a scan which is generally valid in all cases.

The idea behind this optimization criterion is that, all things being equal, a schedule

with a high total number of observations leads to better results than a schedule with a

lower total number of observations. The number of observations per schedule is determined

by two factors: the number of scans and the number of observations per scan. The du-

ration optimization criterion tries to maximize the number of scans, while the number of

observations criterion (see section 5.4.3) tries to maximize the number of observations per

scan. Together, they are used to influence the total number of observations in the schedule
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5. VIESCHED++

which has to be balanced with the antenna sky-coverage.

The duration dur which is used as a metric to compare scans in this optimization

criterion includes everything between the end of the previous scan until the end of the

tested scan. This includes overhead time for field system commands, slew time, idle time,

calibration time and observing time. In this context, the “end of the previous scan”

is defined as the earliest time an in this scan participating antenna stops recording its

previous scan. The score scoredur (25) is based on the minimum durmin and maximum

time durmax for all scans forming the pool of possible scans as well as on the duration dur

of the tested scans (Schartner and Böhm, 2019c). Finally, a scale factor is applied based

on the number of participating stations nsta which is necessary to compare single source

scans and subnetting scan combinations. Assuming scans containing all antennas, the scan

with the shortest duration gains a score of 1 while the scan with the longest duration gets

a score of 0 and linear interpolation is used in between.

scoredur = 1− dur − durmin

durmax − durmin
· nsta

nstamax

(25)

Initial tests reveal that this weight factor is one of the most important for generating a

good schedule (Schartner et al., 2017). It indirectly improved the sky-coverage as well, due

to the inclusion of more scans.

5.4.2 Sky-coverage

An evenly distributed sky-coverage helps to estimate tropospheric time delays which are

considered one of the major error sources in VLBI (Böhm et al., 2006). Therefore, a

schedule should be optimized by planning observations at different azimuth and elevation

angles over short periods. The idea of this score is to use the angular distance between the

azimuth and elevation of previously scheduled observations and the azimuth and elevation

of possible next observations together with the time difference between these observations

to decide which scans would improve the sky-coverage at the stations best, see Figure 25

for some examples.

However, a proper definition of the sky-coverage is not trivial. Therefore, VieSched++

uses several parameters which define the sky-coverage:

• an angular distance transfer function distfun,

• an influence distance distinf ,
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5. VIESCHED++

• a time transfer function timefun and

• an influence time timeinf .

First, VieSched++ calculates the saturation of the sky-coverage based on the angular

distance between each previously scheduled observation and the tested one, see equation

(26a) and (27a). Additionally, VieSched++ calculates the saturation based on the time

difference between each previously scheduled observation and the tested one, see equation

(26b) and (27b). Finally, these two individual saturation values are combined to calculate

the total impact of the tested observation for the sky-coverage based on each previously

scheduled observation, see equation (28).

Currently, there are three possible angular distance and time transfer functions im-

plemented, called: cosine, linear and constant. The variety of different parameters are

necessary for providing a generally valid and usable sky-coverage optimization criterion.

The basic concept behind this optimization criterion is that the antenna pointings of

each station are compared to all already scheduled antenna pointings of previous scans

iprev scan (Schartner and Böhm, 2019c). Depending on the time difference ∆time and

angular distance ∆dist a score per antenna pointing satdistiprev scan
and sattimeiprev scan

is

calculated as shown in equation (26a) and (26b). Equation (27a) and (27b) list the possible

functions used to describe the dependency of the angular distance and the time difference

while Figure 24 displays the corresponding functions.

satdistiprev scan
=







0 ∆dist > distinf

distfun(∆dist) ∆dist < distinf

(26a)

sattimeiprev scan
=







0 ∆time > timeinf

timefun(∆time) ∆time < timeinf

(26b)
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5. VIESCHED++

with

distfun(∆dist) =







1 distfun = constant

1− ∆dist
distinf

distfun = linear

1
2 + 1

2 · cos
(
∆dist·π
distinf

)

distfun = cosine

(27a)

timefun(∆time) =







1 timefun = constant

1− ∆time
timeinf

timefun = linear

1
2 + 1

2 · cos
(
∆time·π
timeinf

)

timefun = cosine

(27b)

Figure 24: Available functions for calculation of sky-coverage saturation based on angular
distance and time between two observations.

Based on the saturation due to the angular distance (26a) and the time difference

(26b) to one previously scheduled scan the score based on the previously scheduled scan

scoreiprev scan can be calculated according to (28).

scoreiprev scan = 1−
(

satdistiprev scan
· sattimeiprev scan

)

(28)

The total score per sky-coverage scoreisky is defined as the minimum score from each

previously scheduled scan scoreiprev scan .

scoreisky = min
prev scan

(
satiprev scan

)
(29)

Therefore, the maximum achievable score per sky-coverage is one.
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5. VIESCHED++

Finally, the total score for the sky-coverage optimization criterion is calculated based

on the sum of the improvements for each sky-coverage isky divided by the total number of

sky-coverages in this session nsky. The normalization ensures that the maximum achievable

score for this criterion is one.

scoresky =

nsky∑

i=0

scoreisky ·
1

nsky
(30)

If all stations are participating in a scan and all antennas point to a direction in the sky

where no other observations were scheduled for a certain amount of time, this scan would

get the highest possible score of 1 (Schartner and Böhm, 2019c). Figure 25 illustrates

different sky-coverage scores based on a combination of different transfer functions.
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5. VIESCHED++

Figure 25: Example of sky-coverage score scoresky from equation (30) based on a combi-
nation of different transfer functions. Observations in areas which are marked blue gain a
low score, while observations in areas which are marked yellow gain a high score. Previous
observations are marked with red circles.

VieSched++ supports the use of twin telescopes and more general multiple telescopes

per observing site. In case of multiple telescopes per observing site all of these stations

share the sky-coverage information. Therefore, the number of sky-coverages nsky is always
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5. VIESCHED++

less or equal to the number of stations participating in the session nsta.

nsky ≤ nsta (31)

5.4.3 Number of observations per scan

A rule of thumb for evaluating a good schedule suggests that the higher the number of

observations, the better the schedule (Gipson, 2010). Therefore, the number of observations

per scan optimization criterion helps to generate a schedule with a high total number of

observations. Since a schedule is generated scan after scan (see section 3), this can only

optimize the number of observations per scan, not the total number of observations in

the schedule. The total number of observations in the schedule is also determined by the

number of scans per schedule, determined through the duration optimization criterion (see

section 5.4.1).

The score for the number of observations scorenobs
per scan optimization criterion

is defined through the total number of observations nobs scheduled in this scan and the

maximum theoretically possible number of observations nobsmax
assuming a scan with all

stations nstamax (Schartner and Böhm, 2019c). While the number of possible observations

is defined by equation (32) the scheduled number of observations per scan can be lower

in VieSched++ as explained in section 5.3.1 due to the way, how a scan is implemented in

VieSched++ and how stations and observations are removed from scans.

nobsmax
=

nstamax · (nstamax − 1)

2
(32)

The score scorenobs
is defined through the ratio of observations nobs at this scan and

the maximum possible observations nobsmax
assuming a scan with all stations, see equation

(32).

scorenobs
=

nobs

nobsmax

(33)

5.4.4 Idle time

The score for the idle time optimization criterion scoreidle is calculated per station. The

idea behind this optimization criterion is to give stations which have not been included in

the schedule for the last couple of minutes a higher weight (Schartner and Böhm, 2019c).

This helps to include geographically remote stations or stations with low sensitivity in the
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5. VIESCHED++

schedule and makes sure that all antennas observe regularly.

Two parameters are used to calculate the idle time optimization criterion score, the so-

called idle time interval interval and the actual idle time per station idle before this scan.

The idle time before this scan idle is defined through equation (34), where current time

refers to the end time of the last observation scheduled for this station. From the scheduling

software point of view, this is the current position and time of the antenna. The station

idle time is divided by the interval time to get the idle time score per station idleista as

shown in equation (34).

idleista = max(current time)− current timeista (34)

According to equation (34), stations which have not been observing for a duration of

interval gain a score of one, while stations which have not been observing for a duration

of 2 · interval gain a score of two and so on.

The total score scoreidle is defined as the sum of the idle time scores per station idleista .

scoreidle =

nsta∑

ista=0

idleista
interval

(35)

Therefore, if a scan includes stations which previously have been idling for a long period

of time, this scan gets a higher score and is more likely to get scheduled.

The idle time score is the only optimization criterion which is completely independent

of the tested scan. This is necessary because otherwise, scans which would include long

idle times would gain a higher score. This is unwanted because it is in direct contradiction

to the score based on the duration, see section 5.4.1.

Additionally, the idle time score is the only score which can grow without bounds. All

other scores are defined in a way, that the maximum achievable score is one for a scan or

subnetting scan combination. The likelihood of selecting a scan with a station increases

the longer this station is idling. Additionally, this means that scaling of the score by the

total number of stations is not necessary for an objective comparison of single-source scans

and subnetting scans as can be seen in equation (34).

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. VIESCHED++

5.4.5 Average observations per station

The idea behind the average observations per station optimization criterion is to increase

the weight of stations with a lower number of scheduled observations compared to the

average number of scheduled observations per station (Schartner and Böhm, 2019c). If the

number of observations of a station nobsista
is lower than the average number of observations

per station nobsmean
, it gets a score scoreastaista based on the difference, as defined in

equation (36).

scoreastaista =







0 nobsista
> nobsmean

nobsmean−nobsista

nobsmean−min(nobssta
) nobsista

< nobsmean

(36)

Therefore, the station with the lowest number of observations gets a score of one while a

station with an average or higher number of scheduled observations get a score of zero.

Linear interpolation is used in between.

The total score of the average observations per station criteria scoreasta is the sum

of the station wise scores scoreastaista multiplied by a scale factor as defined in equation

(37). The scale factor is the fraction between the number of observations with this station

nobsista
in the tested scan and the maximum number of theoretically possible observations

per station, which is the number of stations in this session minus one. While the numerator

of the scale factor is used to prefer scans with many observations with this station, the

denominator is necessary to properly compare single source scans and subnetting scans.

scoreasta =

nsta∑

ista=0

(

scoreastaista ·
nobsista

nstamax − 1

)

(37)

Together, this makes sure that scans with so far rarely scheduled stations would get an

increased weight and the weight gets higher the more observations with these stations are

scheduled in the scan.

5.4.6 Average observations per sources

Similar to the average observations per station optimization criterion (see section 5.4.5),

the average observations per source criterion is using equation (36) to calculate the score

for this source scoreasrcisrc but with the number of observations per source nobsisrc
instead

of the number of observations per station as can be seen in (38).
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5. VIESCHED++

scoreasrcisrc =







0 nobsisrc
> nobsmean

nobsmean−nobsisrc

nobsmean−min(nobssrc )
nobsisrc

< nobsmean

(38)

The total score per source is calculated using equation (39). Similar to most other score

functions, a scale factor is necessary. The scale factor is defined as the fraction between the

number of observations scheduled in this scan nobs and the theoretically maximum number

of observations possible, see equation (32).

scoreasrc = scoreasrcisrc ·
nobs

nobsmax

(39)

The scale factor satisfies two purposes: the numerator makes sure, that the scans with more

observations get a higher weight while the denominator is necessary to properly compare

subnetting scans with single-source scans.

However, this optimization criterion will only work if a small source list is used and

all of those sources should be observed during the schedule. The official sked source lists

contain 300 (source.cat.geodetic.good) or 700 sources (source.cat). In a typical 24-hour

global session, only ≈ 80 different sources are scheduled. This leads to a lot of sources with

zero observations and equation (38) might not work as intended due to the low average

number of observations. Therefore, it is advisable to use the iterative source selection

feature described in section 5.7 for geodetic purposes.

5.4.7 Average observations per baselines

The idea of this optimization condition is to increase the weight of certain baselines which

have not been regularly scheduled so far to create scans with different subnetworks. The

score per baseline is defined similar as (36) and (38) based on the number of observations

per baseline obsibl instead of the number of observations per station or source to calculate

the score per baseline scoreablibl
.

scoreablibl
=







0 nobsibl
> nobsmean

nobsmean−nobsibl

nobsmean−min(nobsbl
) nobsibl

< nobsmean

(40)
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5. VIESCHED++

The final score scoreabl is the sum of the individual baseline scores scoreablibl .

scoreabl =

nbl∑

ibl=0

scoreablibl
(41)

A scale factor is not necessary, since the number of observations per baseline during a scan

is always one.

5.4.8 Low elevation

Tropospheric time delays are considered to be one of the biggest error sources in geodetic

VLBI (Böhm et al., 2006; Petrachenko et al., 2012). The tropospheric time delays can be

better estimated if observations are scheduled at low elevation angles (Schuh and Böhm,

2013). Therefore, the low elevation optimization criterion can be used to prefer scheduling

scans with stations observing also at low elevations. The score scoreel is calculated per

station scoreelista and is based on the elevation of the observation as well as on two elevation

thresholds elbegin and elfull (Schartner and Böhm, 2019c). If the elevation is above the

elbegin threshold the score is zero. If the elevation is lower than the elfull threshold the

score is one. Linear interpolation is used in between.

scoreelista =







0 el > elbegin
elbegin−elista
elfull−elbegin

elbegin > elista > elfull

1 el < elfull

(42)

A visualization of equation (42) is visualized in Figure 26.
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5. VIESCHED++

Figure 26: Low elevation score function.

The approach of using two thresholds and a linear interpolation in between is used for

smoothing the score function. If a step function is desired, this can be achieved by giving

the two parameters elbegin and elfull the same value.

The total score scoreel is calculated via the sum of the individual scores per station for

all participating stations normalized by the total number of stations in this session nstamax .

Due to the normalization, the maximum achievable score is one.

scoreel =

nsta∑

ista=0

scoreelista · 1

nstamax

(43)

5.4.9 Low declination

Since most VLBI antennas are located in the northern hemisphere (see Figure 3) most

scans are observing sources at high declination and between northern baselines (Plank

et al., 2015). Therefore, the accuracy of sources at high declination is better than on low

declination. To address this situation, special focus should be put on observing sources in

the south (Fey et al., 2015).

The low declination optimization criterion helps to achieve this by increasing the score

of scans to sources at lower declination. Similar to the low elevation criterion (see section

5.4.8) the low declination criterion is defined by two parameters, decbegin and decfull and

by the declination of the source dec. Equation (44) shows the formula used to calculate
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5. VIESCHED++

the low declination score per source scoredecsrc and Figure 27 visualizes the function.

scoredecsrc =







0 dec > decbegin
decbegin−dec

decfull−decbegin
decbegin > decsrc > decfull

1 dec < decfull

(44)

Figure 27: Low declination score function.

The total score scoredec is the source based score scoredecsrc multiplied by a scale factor

where nobs is the number of observations in this scan and nobsmax
is the maximum possible

number of observations assuming a scan with all stations, see equation (32).

scoredec = scoredecsrc ·
nobs

nobsmax

(45)

Due to the scale factor scans with a higher number of observations at low declination get

an increased score.

5.4.10 Other

Besides optimization criteria 5.4, other factors influence the calculated score (Schartner

and Böhm, 2019c). All stations, sources and scheduled baselines can get an individual

weight in the parameters, weightsta, weightsrc, and weightbl, see section 5.8. As described

in section 5.3.1 VieSched++ does not necessarily schedule all possible observations between

all participating stations. Therefore, only the weights of baselines which are scheduled are

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. VIESCHED++

used. By default, all weights are set to one which means they have no influence on the

total score scorescan. When using individual weight equation (23) expands to (46), where
∏

is used to represent the product of the terms.

scorescan =

nopt∑

iopt=0

(
weightiopt · scoreiopt

)
·

nsta∏

ista=0

·weightsrc (weightista) ·
nbl∏

ibl=0

(weightibl)

(46)

Besides this, there is another optional multiplicative factor of the score based on custom

scan sequences, see section 5.10. When using this option scores from scans observing sources

of the current target group are multiplied by a factor of 100 otherwise they are divided by

a factor of 100.

5.5 Recursive scan selection

A scheduling software should aim to generate a schedule which is as good as possible.

This means that the scan sequence should be carried out as efficiently as possible to meet

all requirements and especially antenna idle time should be avoided as much as possible.

There are three main reasons why antenna idle time can occur: First, an antenna cannot

participate in any of the scheduled scans at that time. Second, the antenna has to wait for

other antennas to finish slewing until the observations can start. Third, an antenna is more

sensitive than the other, thus leading to shorter observing times since the observing time

is based on the antenna sensitivity, the recording rate, the observed source flux density,

and the SNR which should be achieved, see section 5.3.4. While the first cause can be

avoided by scheduling scans that include all antennas, the second and third reason cannot

be avoided easily. However, an antenna with a bigger dish size is more sensitive but is, in

general, slower slewing. This means that a bigger antenna will finish its observation earlier

and can use the extra time to earlier start slewing to the next source. Although this helps

in theory, in practice the effects do not fully balance each other out and idle time still

occurs in the schedule.

To minimize the idle time additional scans are inserted in case multiple antennas are

idling for too long which is called a fillin-mode (Gipson, 2010). Previously developed

scheduling software is checking if multiple stations finish a scan way earlier than other

stations. If this is the case additional scans which only consider these early finishing

antennas are evaluated and scheduled. While this works well in certain cases it has some
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5. VIESCHED++

drawbacks: It only considers idle time at the end of a scan, which is mostly appearing due

to different sensitivities and thus observing times. Idle time due to different slew times is

not affected by this approach.

VieSched++ uses a different approach to minimize idle time. It is using a recursive scan

selection (Schartner and Böhm, 2019b,c). After VieSched++ schedules a scan, it checks if it

is possible to squeeze in another scan between the scheduled scan and previous scans and,

if available, between the scheduled scan and next scans. Using this approach the idle time

can be reduced significantly and idle times due to all causes like different slew times and

observing times are considered. Moreover, the idle time due to different observing times

from the previous scans and the idle time due to different slew times of the upcoming scan

can be combined, and viewed as one larger idle time block, making it more likely that a

fillin-mode scan can be scheduled successfully.

5.5.1 Concept

Figure 28 illustrates how the recursive scan selection algorithm works. At the beginning

of the session, scan 1 is scheduled followed by scan 2. As soon as scan 2 is fixed the first

recursion starts and the algorithm checks if there is time between scan 1 and scan 2 to

schedule another scan. In this example, it is possible to schedule scan 3. As soon as scan 3

is scheduled the next recursion starts and checks if there is time between scan 1 and scan

3. If this is not the case this recursion stops and the time between scan 3 and scan 2 is

investigated. Here, it is possible to schedule scan 4, leading to a new recursion checking

the time between scan 3 and scan 4. In this example, it is possible to schedule scan 5,

which starts a new recursion, testing the time between scan 3 and scan 5 followed by the

time between scan 5 and scan 4. Since no additional scans can be scheduled in these two

cases, the recursion stops and the time between scan 4 and scan 2 is tested. If all recursions

stopped the time between scan 1 and scan 2 is fully optimized and the scheduler continues

to schedule scan 6, starting the whole process again. These steps are repeated until the

full schedule is generated.

After the schedule is finished, leftover idle time can be used to extend the observing

time of the stations to increase the SNR as described in section 3.7.4.

Obviously Figure 28 is highly simplified. In reality, most stations have a different

possible start and stop time which has to be monitored individually. If there are multiple

antennas participating in a session, and their sensitivities and slew speed are very different,
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5. VIESCHED++

Figure 28: Concept of recursive scan selection.

it commonly happens that scans are scheduled which are three levels deep in the recursion,

which is even one level deeper as illustrated in Figure 28.

Figure 29 visualizes the flowchart of how the recursive scheduling process is implemented

in detail. It starts with the currently scheduled antenna pointing directions and times as

well as optionally some required antenna pointing and times for already scheduled scans

in the future. Based on the currently scheduled antenna pointing direction and time, all

available sources are investigated based on the visibility of the stations, see section 5.3.2.

If enough stations are available to form a valid scan to a source, the slew times from the

antennas to this source are calculated, see section 5.3.3.

If the slew times of enough stations are valid based on the defined scheduling parame-

ters, observations are formed between the participating stations and the minimum required

observing duration is calculated, first per baseline and per band and later per antenna, see

section 5.3.4.

After the necessary observing durations are fixed it is checked if a possible required

antenna pointing can be reached within the available time or not. If this is not the case,
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5. VIESCHED++

single stations are removed from the scan until this is the case for all stations. Finally, all

subnetting scan combinations are formed as discussed in section 5.3.5 resulting in a pool

of all available scans at this time.

Based on this pool of scans it is decided if the recursion continues. If there is at least

one valid scan, the scores per scan based on the optimization criteria are calculated, see

section 5.4. The scan, or subnetting scan combination, with the highest score is selected

and checked with rigorous models as described in 5.3.7. If it passes all rigorous models it

is saved and it is about to be added to the schedule.

This is when the first recursion starts, which checks the time between the previously

scheduled scans and the scan which is selected and about to be scheduled. In this recursion,

the required antenna pointings and times for the “next scan” are replaced by the antenna

pointings at the start time of the selected schedule. However, the slew times and observing

duration of all possible scans stay the same and the algorithm can start directly to check

if the required antenna pointings and times for the next scan can be reached as visualized

in Figure 29.

If the iteration stops, the previously selected scan which was about to be scheduled is

finally added to the schedule and the second part of the recursion starts. In this recursion,

the current antenna pointings and times are replaced based on the antenna pointings at

the end time of the selected scan. This time, the recursion has to start from the beginning,

since the progression in time changes the position of all sources in the sky.

5.5.2 Fix scans a priori

The recursive scan algorithm opens up the chance to create schedules which are not nec-

essarily in sequential time order. As visualized in Figure 21, VieSched++ supports the

creation of the schedule in different phases. During the first phase, it is possible to fix

some scans in the schedule. This option can be used in case some scans are considered

to be highly important for the success of the session. For example, in case the session is

scheduled for a certain experiment like for close observations to the Sun (Titov et al., 2018)

the necessary scans can be fixed a priori. Or in case of intensive sessions, scans which are

close to the edges of the commonly visible sky can be fixed because it is assumed that those

scans have the highest impact on the result (Uunila et al., 2012). In the future, it is also

planned to use this feature to fix scans to satellites in the schedule.

After these scans are fixed the recursive scan selection algorithm is used to fill the gaps
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5. VIESCHED++

Figure 29: Recursive scan selection flowchart.

between the already scheduled scans. Although the option of fixing scans a priori is not

regularly used during the scheduling of geodetic VLBI sessions, the algorithm works, and

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. VIESCHED++

VieSched++ supports this process.

5.5.3 Fillin-mode a posteriori

Another possible use case of the recursive scan selection which is already implemented in

VieSched++ and regularly used is the so-called fillin-mode a posteriori. The fillin-mode a

posteriori starts if the schedule is already generated after the main recursive scan selection.

This algorithm checks the time between every scheduled scan and tries to squeeze in another

scan in between to further minimize the idle time. In standard VLBI sessions this will not

lead to huge improvements since the time between two scans is already investigated by the

main recursive scheduling phase. However, it can help to reduce idle time in case some

stations are scheduled in tagalong-mode, see section 3.7.3. Since tagalong stations are not

considered during the main recursive scan selection phase and are instead added to already

scheduled scans, these stations are not scheduled in an optimal way. This is intended

since observations with tagalong stations will not necessarily be observed and correlated.

Therefore, scheduling these stations like normal will affect the quality of the remaining

schedule in case the tagalong station will drop out.

The fillin-mode a posteriori is perfectly capable to include the tagalong stations more

into the existing schedule, without mitigating the result gained from the remaining stations.

5.6 Multi-Scheduling feature

VieSched++ comes with a feature called multi-scheduling which helps to optimize a schedule

through finding a good set of scheduling parameters and weight factors (Schartner et al.,

2017; Schartner and Böhm, 2019b,c). Instead of creating only one single schedule for a

session, it is possible to create multiple schedules automatically, as already indicated in

Figure 21.

The benefit of this approach is, that different sessions benefit greatly by using indi-

vidually optimized scheduling parameters instead of using the same parameters for all

sessions independent of the antenna network and scientific goal. In total, over 40 different

parameters can be adjusted via the multi-scheduling feature. The parameters can be se-

lected and different values of the parameters which should be tested can be defined. The

multi-scheduling feature will then generate schedules with all combinations of different

parameters.

For example, if the tested multi-scheduling parameters are:
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5. VIESCHED++

• subnetting subnet (sec: 5.3.5): yes, no

• sky-coverage influence distance distinf (sec: 5.4.2): 15, 30, 45 [deg]

• sky-coverage influence time timeinf (sec: 5.4.2): 900, 1800, 3600 [s]

a total of 18 schedules (2 · 3 · 3) will be generated as shown in equation (47) and (48).

subnet :=

(

yes

no

)

, distinf :=






15

30

45




 , timeinf :=






900

1800

3600




 (47)






subnet

distinf

timeinf




 =






yes

15

900






︸ ︷︷ ︸

v1

,






yes

15

1800






︸ ︷︷ ︸

v2

,






yes

15

3600






︸ ︷︷ ︸

v3

,






yes

30

900






︸ ︷︷ ︸

v4

,






yes

30

1800






︸ ︷︷ ︸

v5

...






no

45

3600






︸ ︷︷ ︸

v18

(48)

Since the number of possible schedules based on different parameters grows fast, it is

possible to limit the number of generated schedules. Presently, a total maximum of 999

schedules can be generated at once. If the number of generated schedules is less than the

total number of possible parameter combinations, the tested parameter combinations are

randomly picked. However, it is possible to seed the random number generator to duplicate

the result.

When optimizing schedules, the recommended option is to adjust the weight factors

as they directly determine the scan selection and, therefore, have the most significant

impact on the result. Since only the relative ratio between the individual weight factors

is of importance, see equation (23), parameter combinations which will lead to the same

schedule are not tested. Therefore, only solutions with linearly independent weight factors

are generated.

If the tested multi-scheduling parameters are:

• duration weight factor (sec: 5.4.1): 0.25, 0.50, 0.75, 1.0

• sky-coverage weight factor (sec: 5.4.2): 0.25, 0.50, 0.75, 1.0

• number of observations weight factor (sec: 5.4.3): 0.25, 0.50, 0.75, 1.0

and this are the only weight factors 6= 0, a total of 55 schedules ((4 · 4 · 4 − number of

linearly dependent combinations) will be generated.

The result of the VieSched++ multi-scheduling feature is the individual output files

from every generated schedule, as well as a summary file in comma-separated values (csv)

format called statistics.csv. This summary file contains all scheduling statistics, including
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5. VIESCHED++

the number of scans and observations separated by stations, sources, baselines and in total,

as well as the sky-coverage scores (see section 5.13, the multi-scheduling parameters used

to derive this solution, the weight factors and statistics about how much time is spent per

station for the individual tasks. The content of this summary file can be displayed in the

VieSched++ multi-scheduling analyzer which is part of VieSched++.

5.6.1 Multi-core support

To keep processing time low the multi-scheduling feature uses multi-core support. Four

different types of job scheduling approaches can be selected:

• static: the total number of schedules is divided by the total number of CPU threads

to generate blocks of equal-sized chunks. Each of these chunks is assigned to one

CPU thread. This option produces the least overhead, but in case some schedules

take longer to finish than others, the total run time is limited by the slowest CPU

thread. Especially if subnetting or weight factors are changed, the time it takes to

generate a schedule and thus the CPU time which is needed can vary highly.

• dynamic: The total number of schedules is grouped in (smaller) individual blocks of

equal size. Every CPU thread gets one of these groups to process. If a CPU thread

finishes processing its block, it gets a new block. This is repeated until all blocks are

processed. This approach produces more overhead since blocks have to be assigned

to individual CPUs more often, but it also averages out the workload more evenly

which can result in faster run times.

• guided: Similar to the dynamic job scheduling mode the total number of schedules

is grouped in individual blocks. This time, the blocks are bigger at the beginning

and become smaller at the end. Therefore, the CPU thread starts by processing a

big group of schedules. When the scheduling process comes near to its end, the size

of the block decreases to average out the CPU load. This approach produces less

overhead than the dynamic job scheduling approach since fewer blocks exist while

providing the benefit of averaging out the workload more evenly than in the static

job scheduling approach.

• auto: If this option is used, the decision which job scheduling approach should be

used is forwarded to VieSched++, or more precisely, to the C++ compiler which was

used to build the application.
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5. VIESCHED++

All of the listed job scheduling approaches have their benefits and drawbacks. The

decision which approach should be used depends on the hardware and has to be tested on

every computer individually. However, on standard computers and for generating normal

schedules the differences should not be too big. The focus of this feature is to provide tools

to increase the performance for large-scale studies running on server CPUs with many

threads.

5.6.2 Interaction with VieVS

Since VieSched++ is part of VieVS, the interaction between the two software packages is

straightforward. The result of VieSched++, especially the result of the multi-scheduling

feature, can be used directly in VieVS to perform Monte-Carlo simulations. This opens

up the chance to compare the generated schedules based on repeatability values or formal

uncertainties of geodetic parameters instead of using abstract scheduling statistics like the

number of observations or sky-coverage. The result of the Monte-Carlo simulations from

VieVS can be written directly in the summary statistics csv file and can be displayed in

the VieSched++ multi-scheduling analyzer.

5.7 Iterative source selection

A challenging problem for VLBI scheduling is the selection of appropriate sources. Typi-

cally, a geodetic source list contains several hundred sources. During a standard 24-hour

session typically less than one hundred of those sources are observed. One requirement

which is often used is that every source should be scheduled at least three times to prop-

erly be able to estimate the source position. This is a challenge for the scheduling software

because the schedule is created scan after scan (as discussed in 3) and the software does

not know in advance if a source will be scheduled again. Several studies have been made to

manually preselect sources, especially for intensive sessions like Baver et al. (2012), Baver

and Gipson (2013), and Gipson and Baver (2016). Sked has an algorithm which tries to

preselect the “best” sources for the session and only creates a schedule using these sources.

It creates a highly simplified test schedule using a series of pseudo-scans in a fixed interval

of ten minutes. A score is given to each scheduled scan and the cumulative score for each

source is calculated. Based on this score and the sky-coverage, the list of best sources is

selected which can then be used to generate the final schedule. More information about

the algorithm can be found in Gipson (2016) under the bestsource command.
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5. VIESCHED++

However, there are two downsides in this approach: First, it is necessary to manually

select the number of sources which shall be used. Second, the source selection does not

rely on a real schedule but rather on a series of pseudo-scans with equal spacing of ten

minutes. The first issue can be countered by using an experienced scheduler operating

the scheduling software who knows the number of necessary sources to generate a good

schedule. The second issue is more complicated since the number of scans per session varies

greatly between the different observing programs. A fixed spacing of ten minutes is most

likely not optimal in all cases. The frequency of scan occurrences during VGOS sessions is

way higher than for T2 sessions, which include many slow slewing stations. Additionally,

the generated schedule using pseudo-scans does not represent a real schedule. The “best”

sources during the pseudo-scan schedule are not necessarily scheduled often enough during

the real schedule.

VieSched++ solves this issues by using an iterative source selection algorithm which

runs a posteriori, as indicated in Figure 21 and in more detail in Figure 30.

A desired number of required scans and observations can be defined for each source.

The idea of this approach is, that the software starts by generating a schedule using all

available sources. After the schedule is finished, the total number of scans and observations

per source are compared with the number of required scans and observations for this source.

If there are more scheduled scans and observations than required scans and observations

the source is considered a good candidate for the session, otherwise it is considered a bad

candidate for the session. If the number of sources which are scheduled but do not reach

the required number of scans and observations is higher than a user defined threshold,

a new schedule is generated automatically using the reduced source list. This process is

repeated until all requirements are met, making sure that each source is scheduled often

enough. Therefore, the source selection is based on a real schedule instead of a sequence of

pseudo-scans. The iterative source selection approach is somehow similar to using sked’s

“cull” command (Gipson, 2016).

There are multiple ways to fine-tune the removal of the sources between each iteration.

Typically, the biggest difference is between the first and the second iteration. The first

iteration starts by using all available sources form the source list, which can be several

hundred. Based on the scheduling parameters it often happens that too many sources

are used to generate the schedule and most of them are only scheduled in a few scans.

Therefore, the number of removed sources between the first and second iteration is likely

too high, resulting in too few sources to generate a good schedule. To counter this, a
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5. VIESCHED++

Figure 30: Iterative source selection flowchart.

so-called “gentle source reduction” can be used for the first couple of iterations. During

this gentle source reduction, the removal of the sources is done differently. All sources

are ranked based on the number of scheduled scans and only an user-defined percentage

of sources is removed from the source list, starting with the lowest ranking sources as

indicated in Figure 30. This makes sure, that there are enough sources left between the

iterations and it will not happen that too many sources are removed at once.

The ranking does not include sources which have never been scheduled in the session,

since these sources are assumed to either never be visible by enough antennas, or are bad

in general. These sources are always removed.
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5. VIESCHED++

5.8 Parameterization

VieSched++ aims to be as flexible as possible. Therefore, it is possible to change the pa-

rameters of every station, source, and baseline individually. Examples for these parameters

are the minimum and maximum allowed observing time, the minimum time between two

scans to the same source, or the minimum number of stations per scan. Additionally, these

parameters can be changed over time. To simplify the scheduling setup as much as possi-

ble, multiple stations, sources or baselines can be organized in groups and the parameters

can be set for each group as well. Furthermore, a tree-based parameter setup is used. This

allows to efficiently generate schedules with individual parameters.

There are several use-cases where using individual parameters are advantageous:

If the goal for the sessions is astrometry, special sources are introduced for calibra-

tion purposes. These calibration sources should be scheduled differently than astrometric

sources (Petrov et al., 2009). While the goal of calibration sources is to reach a high SNR,

it might be necessary to optimize astrometric sources concerning the uv-plane for imaging.

It is possible to generate two source groups, one for the calibrator sources and one for the

target sources and adjust the scheduling parameters accordingly.

Another use-case is the distinction between VGOS and legacy antennas during geodetic

sessions. While VGOS antennas are small and fast slewing antennas the legacy antennas are

bigger and slower. Different parameters can help to optimize the given network (Schartner

and Böhm, 2019b). For example, the slew distance of legacy antennas can be limited to

increase the number of observations, while there is no restriction for the VGOS antennas.

Finally, one more use-case is if the session has a specific purpose and should highly

focus on specific sources as described in Titov et al. (2018). Additionally, the session

described in Titov et al. (2018) is a good example of when a change of parameters over

time is useful since it is scheduled using three different phases: The session start with a

standard geodetic block followed by a long period where the special sources which were

needed for the experiment were observed very frequently followed by another block with

standard geodetic scans.

The time-dependent change of parameters is most often used to add station downtime

to schedules which might appear if there is an intensive schedule during a 24-hour session

or satellite passes should be observed. During the downtime, the station can simply be

set to “not available”. Moreover, it is also possible to schedule the stations in tagalong-

mode during this time, which was done in the Continuous VLBI Campaign (CONT) 2014
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5. VIESCHED++

(Behrend, 2015).

Since the optimal parameters depend on the network, the source list, and other factors,

the multi-scheduling feature, described in section 5.6, is a handy tool to test and compare

different approaches.

As noted in Table 3, 5 and 6, several parameters are defined multiple times in different

places. If this is the case it is made sure, that each definition is fulfilled through the

scheduling process. For example, the minimum required observing time can be set in the

station based parameters, the source based parameters, and the baseline based parameters.

If the minimum required observing time is set to 20 seconds for the station, 10 seconds for

the source and 30 seconds for the baseline forming the observation, the actual scheduled

minimum time is set to 30 seconds to fulfill all conditions. Similarly, if the maximum

allowed observing time is set to 600 seconds for the station, 400 seconds for the source and

900 seconds for the baseline forming the observation, a value of 400 seconds is used.

5.8.1 Groups

As already mentioned it is possible to group certain elements, to speed up the parametriza-

tion of the schedule. A group does always contain only one type of elements: either stations,

sources or baselines. Instead of changing the properties of each station, source or baseline

individually, the parameters of a whole group can be changed instead. It simply serves as

a quality of live improvement. The groups can further be used for defining custom scan

sequences, see section 5.10, defining calibrator sources for calibration blocks, see section

5.9.2, defining minimum number of scans and observations per source, see section 5.7, and

for multi-scheduling setups, see section 5.6.

5.8.2 Station based parameters

Table 3 lists the station based parameters which can be used to define the scheduling setup.

Moreover, it lists the default values of these parameters and gives a short description of

the idea of this parameter.
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5. VIESCHED++

Table 3: List and description of station based parameters.

name [unit] default short description

available yes Defines if the antenna is available or not. This option

can be used to define antenna downtime.

available for fillin-mode yes Defines if the antenna is available for fillin-mode scans

during the recursive scan selection. Some stations have

restrictions on how many scans they can participate per

session. Since fillin-mode scans tend to have less im-

pact on the solution due to the lower number of partic-

ipating stations, stations can be defined to ignore those

fillin-mode scans and instead focus purely on standard

scans including many other stations.

tagalong no Used to put stations in tagalong mode, see section

3.7.3.

weight 1.00 Individual weight of the antenna, see equation (46).

max slew time [s] 600 Maximum allowed slew time of this station, see section

3.4.2. If the slew time to the source is longer than this

value, the station is removed from the scan.

min slew distance [deg] 0.00 Minimum required slew distance of this station. If the

slew distance to the source is shorter than this value,

the station is removed from the scan.

max slew distance [deg] 175.00 Maximum allowed slew distance of this station. If the

slew distance to the source is longer than this value,

the station is removed from the scan.

max wait time [s] 600 Maximum allowed waiting time for slow stations. If the

resulting idle time is longer than this value, the station

is removed from the scan.

min elevation [deg] 5.00 Minimum elevation for observations to a source. If the

elevation to the source is lower than this value, the

station is removed from the scan. This parameter can

also be set for sources individually.

(Continued on following page)
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5. VIESCHED++

Table 3: List and description of station based parameters (continued).

name [unit] default short description

max number of scans 9999 Maximum number of scans for this station. If the max-

imum number of scans is reached, no more scans will

be scheduled with this station.

min scan time [sec] 30 Minimum required observing time. If the estimated

observing time is lower than this value, it is extended

to this value, see section 5.3.4. This parameter can also

be set for sources and baselines individually.

max scan time [sec] 600 Maximum allowed observing time. If the necessary ob-

serving time is higher than this value, the observation

is removed from the scan, see section 5.3.4. This pa-

rameter can also be set for sources and baselines indi-

vidually.

target SNR [Jy] 0.00 Target SNR per band. This parameter is also defined

globally in the observing mode and can additionally be

set for each source and baseline individually.

ignore sources - List of sources or source groups which should not be

scheduled with this station.

Additionally the following parameters listed in Table 4 can be set per station as well

but the values are fixed over the whole session duration:

Table 4: Constant station (overhead) times and cable wrap buffers.

name [unit] default short description

field system time [s] 6 Constant overhead time per scan for field system

commands.

preob time [s] 10 calibration time per scan.

extra midob time [s] 3 Additional observing time added to estimated ob-

serving time, see equation (20).

(Continued on following page)
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5. VIESCHED++

Table 4: Constant station (overhead) times and cable wrap buffers (continued).

name [unit] default short description

postob time [s] 0 Constant overhead time after scan finishes - cur-

rently not properly implemented!

axis limit buffer (1 low) [deg] 5.00 Cable wrap buffer for lower limit of first axis.

axis limit buffer (1 up) [deg] 5.00 Cable wrap buffer for upper limit of first axis.

axis limit buffer (2 low) [deg] 0.00 Cable wrap buffer for lower limit of second axis.

axis limit buffer (2 up) [deg] 0.00 Cable wrap buffer for upper limit of second axis.

5.8.3 Source based parameters

Table 5 lists the source based parameters which can be used to define the scheduling setup

as well as the default values and a short description of the idea of this parameter.

Table 5: List and description of source based parameters.

name [unit] default short description

available yes Defines if the source should be scheduled or not.

available for fillin-mode yes Defines if the source should be scheduled during

fillin-mode.

weight 1.00 Individual weight of the antenna, see equation

(46).

min number of stations 2 Minimum number of stations required in a scan

to this source.

min flux [Jy] 0.05 Minimum flux density required for scans to this

source. If the flux density is lower, scans to this

source are not scheduled. This option is used to

reduce the number of possible sources and thus

scans for performance reasons.

max number of scans 999 Maximum number of scans to this source. If the

maximum number of scans is reached, no more

scans will be scheduled to this source.

(Continued on following page)
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5. VIESCHED++

Table 5: List and description of source based parameters (continued).

name [unit] default short description

min elevation [deg] 0.00 Minimum elevation for observations to this

source. If the elevation to the source is lower

than this value, the station is removed from the

scan. This parameter can also be set for each

station individually.

min sun distance [deg] 4.00 Minimum angular distance between the sun and

the source. If the distance is lower, scans to this

source are not scheduled.

variable scan duration:

min scan time [s]

0 There are two options to define the scan dura-

tion, either by using a variable approach which

calculates the required observing times as de-

scribed in section 3.6 or by using a fixed time

per scan. Minimum required observing time for

the variable scan duration approach. If the es-

timated observing time is lower than this value,

it is extended, see section 5.3.4. This param-

eter can also be set for stations and baselines

individually.

variable scan duration:

max scan time [s]

9999 Maximum allowed observing time. If the esti-

mated observing time is higher than this value,

the observation is removed from the scan, see

section 5.3.4. This parameter can also be set

for stations and baselines individually.

variable scan duration:

target SNR [s]

0.00 Target SNR per band. This parameter is also

defined globally in the observing mode and can

additionally be set for each station and baseline

individually.

(Continued on following page)

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. VIESCHED++

Table 5: List and description of source based parameters (continued).

name [unit] default short description

fixed scan duration [s] 300 All observations to this source are scheduled by

using this observation duration, independent of

the flux density of the source and the achieved

SNR.

variable minimum time

between scans:

target number of scans

2 There are two options to define a minimum time

between two scans to the same source, either by

using a fixed value or by calculating the min-

imum time based on a target number of scans

which should be scheduled and the visible time

of this source. By using the variable minimum

time option, the minimum time between two

scans to the same source is calculated based

on the visible time of this source and based

on the target number of scans to this source

min tim = visible time
target #scans

variable minimum time

between scans:

duration [s]

1800 Backup minimum value for the minimum time

between two scans in case it is calculated based

on the visible time of the sources and the target

number of scans. If the calculated time is lower

than this value, this value is used instead.

fixed minimum time be-

tween scans [s]

1800 Minimum time between two scans of the same

source. This value is independent of the visible

time of the source in this session.

increase weight if ob-

served once:

weight factor

1.00 This option is used to increase the weight of ob-

servations to this source, as soon as it is sched-

uled once, making it more likely that this source

is scheduled again in the future. The weight is

increased by this value, based on the occurrence

and the increase-type.

(Continued on following page)
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5. VIESCHED++

Table 5: List and description of source based parameters (continued).

name [unit] default short description

increase weight if ob-

served once:

occurrence

once Defines how often the weight of a scan to a

source should be increased as soon as it is sched-

uled. Can either be once or per scan.

increase weight if ob-

served once:

type

multiplicative Increasing type of the weight of a source as soon

as it is scheduled once. Can either be multiplica-

tive or additive. In the case of multiplicative,

the score of the scan is multiplied by the pre-

viously defined increase weight if observed once

weight factor. In case of additive, the defined

increase weight if observed once weight factor

value is added to the score of the scan

ignore stations - List of stations or station groups which should

be ignored and thus never participate in scans

to this source.

required stations - List of stations or station groups which are re-

quired to form a valid scan to this source.

ignore baselines - List of baselines or baseline groups which should

be ignored and thus never be scheduled in scans

to this source.

5.8.4 Baseline based parameters

Table 6 lists the baseline based parameters which can be used to define the scheduling

setup as well as the default values and a short description of these parameters.
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5. VIESCHED++

Table 6: List and description of baseline based parameters.

name [unit] default short description

ignore no Defines if observations on this baseline should be ignored

or not. If it is ignored, it is never scheduled in a scan, see

section 5.3.1

weight 1.00 Individual weight of the baseline, see equation (46).

min scan time [sec] 30 Minimum required observing time. If the estimated observ-

ing time is lower than this value, it is extended, see section

5.3.4. This parameter can also be set for station and source

individually.

max scan time [sec] 600 Maximum allowed observing time. If the estimated ob-

serving time is higher than this value, the observation is

removed from the scan, see section 5.3.4. This parameter

can also be set for station and source individually.

target SNR [Jy] 0.00 Target SNR per band. This parameter is also defined glob-

ally in the observing mode and can additionally be set for

each station and source individually.

5.9 Astrometric optimization

The main focus of VieSched++ is to generate high-quality geodetic VLBI schedules. Ad-

ditionally, it supports the generation of astrometric schedules. Astrometric schedules typ-

ically contain two source lists, one for calibrator sources and one for astrometric sources

(Petrov et al., 2009). In VieSched++, it is possible to distribute the source list in different

groups, as described in section 5.8.1. This can be used to separate calibrator sources from

target astrometric sources. Based on their role, the different groups can be assigned to

different parameters, see section 5.8.

Astrometric target sources can be scheduled to optimize the uv-coverage of these

sources. This helps with generating images. To achieve this, a target number of scans

target scans can be set, see Table 5. VieSched++ calculates how many minutes the source

is visible min visible based on the parameters. The fraction of the minimum visible time

and the target number of scans is then set as the minimum time between two scans to the
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5. VIESCHED++

same source.

min betweensrc =
min visiblesrc

target scanssrc
(49)

In conjunction, it is possible to increase the weight of sources as soon as they are scheduled,

see Table 5, which makes it more likely that scans to this source are scheduled again after

it is selected once. By increasing the weight drastically, the chance increases that the

source is scheduled every time the minimum time between two scans is reached, resulting

in observations spanning the maximum of different hour angles and therefore optimizes the

uv-coverage. This astrometric optimization approach can be mixed into standard geodetic

sessions as well. It is possible to define only a small subset of sources during a geodetic

schedule to be scheduled in a way that they are optimized for imaging. This might be

useful for VGOS schedules where it is necessary to image the sources regularly for highest

precision.

5.9.1 Source selection

In contrast to geodetic scheduling, where the source selection and distribution of scans over

sources do not play a major role, the situation is very different in astrometry. Typically,

a source has to be observed for a certain amount of times. Too many scans per source

should be avoided since the time could be more efficiently used to schedule other sources.

Therefore, source selection is very challenging. It has to be made sure, that each source

is scheduled between a lower limit (e.g.: 6) and an upper limit (e.g.: 8). As already

described in section 5.9.1, it is beneficial if the scans are spread out over the different hour

angles, meaning, it should be scheduled at different times during the session. Since the

schedule is generated scan after scan, it is unknown if the lower limit will be reached for a

source at the time it is first scheduled. Moreover, the source list can be a lot longer than

for geodetic sessions. For the official IVS CRF sessions, the source list includes several

thousand sources.

The iterative source selection (see section 5.7) together with the weight increase after a

source is scheduled once (see Table 5) can be used to reach the minimum number of scans.

Defining a target number of scans, as listed in Table 5, helps to limit the number of scans

per source to the upper bound and distributes the observations over the visible time.

By using the iterative source selection (see section 5.7), with many gentle source re-

ductions that only reduce a low percentage of the sources (e.g.: 5%), the source list can

iteratively be reduced step by step until every source meets the requirement. This often
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5. VIESCHED++

takes over twenty iterations, depending on the source list and the minimum and maximum

number of scans. However, this process is fully automated and very fast and efficient in

VieSched++.

For adding calibrator scans to the schedule, either calibration blocks (see section 5.9.2),

or a custom scan sequence (see section 5.10) can be used.

5.9.2 Calibration block

The idea of the calibrator block is to observe 3-5 tropospheric calibrators. Observations

to tropospheric calibrators should occur at different elevations. The purpose of including

calibrators is to estimate the tropospheric delay during analysis and to link the positions of

rarely observed astrometric sources with those of frequently observed calibrators (Petrov

et al., 2009). During the calibration block, the calculation of the score of a scan is not done

by using the weight factors but instead a high elevation score and a low elevation score is

used. The limits of the high and low elevation areas are user-defined as indicated in Figure

31.

Figure 31: High and low elevation score functions during calibration blocks.

5.10 Custom Scan sequence

It is possible to define in which sequence sources or source groups should be observed. The

sequence length can be set by the user. It is possible to assign a source or source group to

every step of the sequence. Figure 32 depicts an example, with a sequence length of five. In

the first three scans, a source from the source group named target will be observed, followed
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5. VIESCHED++

by two sources from the source group named calibrator. Afterward, the whole process starts

over again and three sources of the source group named target will be observed again.

Figure 32: Source sequence flowchart.

If no source of the defined group is available at this point in the schedule, any of the

other sources will be scheduled instead.

Internally, VieSched++ will multiply the score of a scan with the factor of 100 if the

scan observes a source which is contained in the assigned source group at this step of

the sequence. Otherwise, the score will be multiplied by a factor of 0.01. This should

make sure, that scans to sources of the assigned group will have the highest score and are

therefore selected by the scheduling algorithm.

An user-defined custom scan sequence can serve multiple use-cases: It can be used to

schedule calibrator scans in between other scans, as indicated in Figure 32. Other than that,

it can be used to force scans to special sources as needed for the relativistic experiments

described in Titov et al. (2018). In this example, two sources, namely 0229+131 and

0235+164 are passing the sun at a very small elongation. The goal of the experiment is

to observe these two sources as much as possible. Therefore, the sequence length of four

can be used, first a scan of source 0229+131 followed by a scan of 0235+164 and two

scans to any other source. The two scans to any other source are necessary to provide

good sky-coverage which is needed to estimate tropospheric time delays. During the times

where source 0229+131 and 0235+164 are not available, any other source with the highest

score will be scheduled instead.

5.11 Scan alignment

VieSched++ supports three ways to align the observing times of individual stations within

a scan:

• start

• end

• individual

The default and typically used version is to align the start time of the observations. This
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5. VIESCHED++

means every station starts recording at the same time. Stations which finish slewing earlier

must wait for slower slewing stations. This is also the only option which is supported by the

skd scheduling file format, the scheduling file format used within the IVS. An example of

aligning the observing start time is visualized in Figure 33 in red color. The benefit of this

approach is, that the scheduling process becomes easier when all stations start observing

at the same time.

The other options of aligning the observation end time and the individual start and

end times are only available by using the VLBI experiment definition (vex) scheduling file

format. An example of aligning the observing end time is visualized in Figure 33 in green

color. The benefit of this approach is, that all stations are at the same time available

for evaluating the next scan and thus it is less likely that the network is falling apart.

The third option of using individual start and stop times is visualized in blue in Figure

33. This is the most complex approach, since the individual start and stop times of the

recording has to be monitored by each station individually and it must be made sure that

the overlapping observing time between two stations is long enough to reach the target

SNR of this observation. However, it also introduces the least idle time at the stations.

Figure 33: Comparison of different scan alignment approaches.
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5. VIESCHED++

5.12 Manual and multiple observing modes

There are multiple ways to define an observing mode in VieSched++. The default option is

to use a predefined observing mode provided in the sked catalogs, see section 3.3.3. These

catalog files contain all necessary information to generate schedules in skd and vex format.

However, not all stations are defined for every observing mode in the official sked catalogs.

Adding new stations to existing observing modes can be challenging since the observing

mode catalogs are heavily linked, see section 3.3.3 and Figure 4. Therefore, VieSched++

adds the possibility to manually define or update observing modes via a GUI.

5.12.1 Simple manual Observing mode

The simple manual observing mode is the easiest to define but is only useful if the schedules

are made for simulations or if the observing mode blocks in the schedule files are copied

and inserted manually from another already existing scheduling file.

It is defined through four parameters:

• the sample rate,

• the number of sampling bits,

• the sky frequency per band and

• the number of channels per band.

This is the minimum number of information needed to calculate the observing duration of

a scan, see equation (20). As all other manual observing modes, this mode is not limited

to two bands per schedule.

This option is very useful, if the effect of different observing modes and data rates

should be investigated for a given network, or if a new antenna is added to the network

which is not yet defined in the official sked catalogs. In both cases, it is not necessary to

manually edit the sked catalogs which saves a lot of work and is a lot safer.

However, in the output files, the observing mode block remains empty when using this

option, since not enough hardware information is available.

5.12.2 Advanced manual Observing mode

The advanced manual observing mode is a powerful tool to test new observing modes

and setups. It is inspired by the vex observing mode blocks. By using this option, a

new GUI appears, where all necessary information of the observing mode can be inserted.

This includes the frequency setup, BBC, IF, and tracks information, or more generally,
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5. VIESCHED++

everything observing mode related which is also listed in the vex output format. To simplify

the process of defining a new observing mode per band, it is instead possible to start the

definition based on an already existing official sked observing mode. The GUI guides

the user and lists the appropriate keywords during the creation of the observing mode.

Additionally, a summary of the defined observing mode can be displayed and missing

connections between the individually defined parts of the observing mode are highlighted.

The advanced manual observing mode can also be used to define mixed-mode observa-

tions and to define multiple observing modes per session.

5.12.3 Mixed-mode observations

VieSched++ supports mixed-mode observations defined through an advanced manual ob-

serving mode. For mixed-mode observations, overlaps between the observed bands of two

stations are calculated. Based on these overlaps, the effective observing rate per observation

is calculated.

5.12.4 Multiple observing modes

In theory, VieSched++ supports the definition of multiple observing modes through an

advanced manual observing mode. However, so far it cannot be defined which scan should

be observed in which observing mode. The reason for this is, that it is still unclear how

the change of the observing mode should be defined. Possible options are, to define an

observing mode per source, or to define observing mode changes after a certain amount of

time. It is planned to use this option in the future to include satellite schedules into the

schedule.

5.13 Sky-coverage quantification

As already described in section 5.4.2, the sky-coverage during the scheduling process is

defined through the angular distance and time between observations. Based on a combina-

tion of the distance and time and two transfer functions, the saturation of the sky-coverage

at the observation point is calculated. While this is a very sophisticated approach, it is

difficult to compare the sky-coverages between different stations and sessions based on this

metric. For this reason, several sky-coverage quantifications are defined. The result of each

sky-coverage quantification is a single number, ranging from zero to one, while one being

a perfect sky-coverage based on this quantification.
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5. VIESCHED++

The calculation of the sky-coverage quantification number is based on distributing the

sky in different areas over short periods. So far, VieSched++ uses three different numbers

of areas, namely 13, 25 and 37 (see Figure 35) and two different time duration, 30 and 60

minutes, to calculate a total of six different sky-coverage scores. Depending on the network,

the average number of scans per hour and the purpose of the sessions, one score might be

more appropriate than the others for this session. For example, in VGOS sessions, the

average number of scans per hour is very high and the troposphere should be estimated in

short time intervals. Therefore, the most appropriate sky-coverage score is the score based

on 37 different areas with a 30 minutes time interval.

The sky-coverage quantification is defined through two parameters, the number of areas

in which the sky is separated and the duration of one block. The algorithm used to calculate

the score is visualized in Figure 34.

Figure 34: Sky-coverage score calculation flowchart.
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5. VIESCHED++

As a first step, the sky above the station is divided into smaller areas with approximately

equal size. This is done in two ways by using a different number of elevation levels. Figure

35 depicts the distribution of the different areas for both ways with 13, 25 and 37 areas. The

two different definitions are necessary to avoid high scores in cases where the observations

are clustered near the edges of the individual areas.

Within a given time interval, the azimuth and elevation of every scheduled scan are

investigated. If the azimuth and elevation fall into one area, the area is marked as saturated.

This is done for all scans within the time interval and for both area definitions. The score

per station, area definition and time interval scoresta,def,int is the number of saturated

areas divided by the total number of areas.

scoresta,def,int =
saturated areas

total number of areas
(50)

The intervals start at the session start time and have a duration of either 30 or 60 minutes.

The next interval starts half of the duration later than the previous interval, meaning, half

of the time is overlapped. This helps to smooth out effects which might otherwise occur at

the end of the intervals. Therefore, a 24-hour long session with an interval duration of 60

minutes would result in 47 different time intervals: 00:00-01:00, 00:30-01:30, 01:00-02:00

... 22:30-23:30, 23:00-24:00. The use of 30-minute intervals would result in 95 different

intervals. Based on these scores, the total score per station and area definition scoresta,def

is calculated as the average over the scores of all intervals.

scoresta,def =
1

nint
·
nint∑

i=1

scoresta,def,inti (51)

The total score per station scoresta is defined through the average of the two scores with

the different area definitions.

scoresta =
scoresta,def1 + scoresta,def2

2
(52)

Finally, the total score per session score is defined through the average of all station

dependent scores.

score =
1

nsta
·
nsta∑

i=0

scorestai (53)
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5. VIESCHED++

Figure 35: Distribution of sky-coverage areas based on 13 (top), 25 (middle) and 37 (bot-
tom) areas. The first two columns display the two different distributions while the third
column displays them on top of each other.

5.14 Output

VieSched++ supports a variety of different output formats. The scheduling files are available

in both, skd and vex format. Preparations are already made to support vex2 if the definition
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5. VIESCHED++

of the file format is finally released. Additionally, VieSched++ generates an operation notes

file, which includes useful information and many statistics about the schedule as well as

the whole scheduling setup. For simulations and the interaction with VieVS, ngs files can

be written.

Furthermore, VieSched++ will generate useful log files monitoring the scheduling pro-

cess.

It is also possible to generate SNR tables, which is a list of all observations at all bands

including the information of the antenna SEFDs, source flux density, observing duration,

theoretical SNR and more.

If needed, source group based statistics files can be generated as well. This is useful for

astrometric sessions since these files include information about all sources, including their

visible times, scheduled observations and their parameters.
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6. RESULTS

6 Results

In the following sections, results from sessions scheduled with VieSched++ are summarized

and comparisons with previous sessions are made.

All schedules which are generated with VieSched++ and are created with the multi-

scheduling feature 5.6 in conjunction with large-scale Monte-Carlo simulations as described

in section 4.1.1. The analysis of the simulated and real sessions is done as described in

section 4.1.2.

6.1 T2

The T2 observing program aims to provide high-quality station coordinates for the real-

ization of a TRF. Sessions of the T2 observing program use the biggest station network

of all official IVS programs observing with a low recording rate of only 128 Mbit/s. One

challenging aspect of the T2 sessions is, that the antennas are very different in terms of

sensitivity and slew speed. In the years 2018 and 2019, the scheduled network contained

between 15 and 22 antennas, see Table 1 and 7. Figure 36 visualizes the position of all

antennas scheduled in recent T2 sessions.

Figure 36: Antennas participating in recent T2 sessions.

Another challenge in scheduling T2 sessions is the asymmetry of the antenna network.
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6. RESULTS

Most of the antennas are located in the northern hemisphere. This leads to problems

when trying to properly include the antennas located in the southern hemisphere into the

schedule. For example, session T2129 was scheduled using a network of 15 antennas. Of

these 15 antennas, only two were located in the southern hemisphere, namely HART15M

in South Africa and OHIGGINS in Antarctica.

As already noted, one difficulty in scheduling these sessions is the big difference in

antenna sensitivity compared with the low recording rate of only 128 Mbit/s. Some stations

have very high SEFD values, such as AGGO (X-band: 20 000 Jy, S-band: 15 000 Jy),

SYOWA (X-band: 11 230 Jy, S-band: 7500 Jy), KASHIM11 (X-band: 11 000 Jy, S-band:

3000 Jy), OHIGGINS (X-band: 10 000 Jy, S-band: 18 000 Jy) and METSAHOV (X-band:

6000 Jy, S-band: 8000 Jy)8.

While the overall goal of the T2 sessions is to provide high-quality coordinates for all

participating antennas, special focus is laid on the proper involvement of OHIGGINS into

the schedule, since it is especially difficult to include OHIGGINS in a schedule due to its

remote location and its low sensitivity.

Table 7 lists some general scheduling statistics for the T2 sessions scheduled in 2018 and

2019. Starting with T2129, VieSched++ is used to generate the schedules. It is difficult

Table 7: Scheduling statistics for all T2 sessions from the year 2018 and 2019. Sessions
highlighted in blue were scheduled using VieSched++.

#sta #scans #obs %idle %obs #obs Oh

T2124 17 733 7175 28.10 44.54 22
T2125 17 1064 5528 22.94 53.70 48
T2126 17 1075 6081 24.55 49.66 98
T2127 19 627 6304 34.30 45.22 73
T2128 18 803 5983 26.24 44.90 97
average 17.6 860 6214 27.23 47.60 77

T2129 15 526 12713 8.20 66.90 400
T2130 22 626 16730 10.45 69.24 451
T2131 19 771 15714 4.33 73.68 267
T2132 18 631 10219 6.04 73.37 406
T2133 19 732 12978 10.07 65.90 285
average 18.6 657 13671 7.82 69.82 362

8according to sked equip.cat version 2018Oct09 IGSFC
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6. RESULTS

to directly compare the individual sessions since the antenna network changes between

sessions. However, it can be seen that the schedules generated with VieSched++ are superior

in terms of raw scheduling statistics. The number of observations has increased by at least

a factor of two and the average observing time per antenna has increased from ≈ 50%

to ≈ 70%, while the average idle time per antenna has decreased from ≈ 27% to ≈ 8%.

Additionally, the inclusion of OHIGGINS into the schedule works a lot better as can be

seen by looking at the number of observations with OHIGGINS (Oh) listed in Table 7.

It is important to note here that the big differences in terms of the number of observa-

tions as well as observing and idle time is not necessarily only explainable by the superior

algorithm VieSched++ uses. More importantly, the multi-scheduling feature compared

with the Monte-Carlo simulations are increasing the quality of the schedule by finding a

set of good weight factors and good scheduling parameters. The key for generating a good

schedule is to not simply use the same parameters for all sessions as it was done before

VieSched++ but instead, optimize each schedule individually. Luckily, this process is fully

automated in VieSched++ and VieVS.

6.1.1 Simulations

The VieSched++ schedules are generated using the multi-scheduling feature and Monte-

Carlo simulations. Based on the repeatability of the station coordinates, the best schedule

is selected and submitted to the participating stations.

Figure 37 visualizes the expected 3D-station coordinate accuracy defined through:

√

δx2 + δy2 + δz2 (54)
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6. RESULTS

Figure 37: Simulated station coordinate repeatabilities of T2 sessions. A black box indi-
cates that this station was not scheduled in this session. A gray box indicates that this
station was not included in the official schedule but did participate.

Based on these simulations, the improvements in terms of station coordinate accuracy

are only minor for most stations. By comparing the average of the expected station coordi-

nate accuracy for all sessions before the use of VieSched++ and after the use of VieSched++,

an average improvement of 35% can be seen. The highest improvement based on the sim-

ulations is achieved for OHIGGINS and FORTLEZA. Both stations are located in remote

places as can be seen in Figure 36.
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6. RESULTS

Figure 38 displays the expected EOP accuracy based on the repeatability estimates

from Monte-Carlo simulations. It can be seen, that the expected EOP accuracy signifi-

Figure 38: Simulated EOP repeatabilities of T2 sessions.

cantly increases for the sessions scheduled with VieSched++. The EOP accuracy of session

T2129 is still on the same level as the accuracy of the sessions before VieSched++. Es-

pecially the low accuracy of the polar motion variables can be explained by the antenna

network. Polar motion is most sensitive to north-south baselines and since there are only

two stations in the southern hemisphere for T2129, the number of north-south baselines is

very low in this session. Additionally, T2129 was the first big 24-hour session scheduled

with VieSched++ and thus the experience in generating these sessions was very low. The

session was also generated using an old version of VieSched++ and several improvements

have been implemented in the meantime, which would increase the quality of the schedule

now.

All other sessions scheduled with VieSched++ reveal a noticeable improvement in terms

of expected EOP accuracy.
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6. RESULTS

6.1.2 Real observations

Currently, two of the five scheduled sessions, namely T2129 and T2130, are correlated and

VgosDB files are available and ready for analysis.

Unfortunately, the T2 sessions suffer a lot from antenna losses. Many of the parti-

cipating stations are not built for geodetic VLBI and do not regularly observe geodetic

sessions. Figure 39 visualizes the number of scheduled observations and compares them

with the number of successfully correlated and recoverable observations and it lists the

number of observations which were used for the analysis. The number of correlated, re-

Figure 39: Number of observations scheduled, correlated, recoverable and used for the T2
sessions as listed in the official IVS analysis report.

coverable and used observations are taken from the official IVS analysis reports, while the

number of scheduled observations is taken from the scheduling operator notes files. It can

be seen that the number of available observations for the analysis significantly increases

for the two schedules generated with VieSched++. The increase is a factor of two for T2129

and a factor of three for T2130, although these two sessions both lost five antennas due

to technical, non-scheduling related problems. Most other sessions lost fewer antennas, as

can be seen later in Figure 41.

There is no official IVS analysis report for session T2127. For session T2128, the number

of scheduled observations does not include all observations with WETTZELL, since this

station was only scheduled for 55 minutes in the official schedule due to human error
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6. RESULTS

in defining the station downtime. Nevertheless, WETTZELL did participate in T2128

through an unofficial update of the schedule file (which is not publicly available) where

the station was added in tagalong mode and thus the number of successfully correlated

observations extends the number of scheduled observations for this station.

Figure 40 visualizes the EOP formal errors which are analyzed using VieVS as described

in section 4.1.2. The dUT1 formal error is multiplied by a factor of 15, to convert it from

µs to µas. Although the simulations predicted a different behavior, the formal errors for

Figure 40: Formal errors of EOP estimates from T2 sessions.

the EOPs decreased drastically for both sessions scheduled with VieSched++. As expected,

T2130 is superior to T2129.

Figure 41 depicts the average 3D-station coordinate formal errors as defined in equation

(54). Although a fair comparison cannot be made due to the change in the antenna network,

a clear positive trend can be seen. The coordinate accuracy of most stations has increased

by at least a factor of two. Furthermore, a big improvement can be seen for OHIGGINS.

Figure 41 also displays how many antennas did not make it to the analysis. Most of the

antenna losses are due to hardware problems, but some are also removed during the analysis

since their observations were too noisy.
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6. RESULTS

Figure 41: Formal errors of 3D-station coordinate estimates of T2 sessions. A black box
indicates that this antenna was not scheduled in this session. A gray box indicates that
this antenna was scheduled but was not available or usable in the analysis.
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6. RESULTS

6.2 EURR&D

The goal of the EURR&D observing program is to provide high-quality station coordinates

for the realization of a TRF. Thereby, the EURR&D antenna network mostly consists of

European antennas with the addition of some Russian antennas as displayed in Figure 42.

A 512 Mbit/s observing mode is used to record the observations.

Figure 42: Antennas participating in recent EURR&D sessions.

Since this is a regional station network consisting of antennas which are well suited for

geodesy and observing with a high recording rate, scheduling EURR&D sessions is easier

compared to scheduling T2 sessions.

Table 8 lists some general scheduling statistics for the EURR&D sessions scheduled in

2018 and 2019. Compared with the results gained with the T2 sessions, the improvement in

terms of the number of observations and additional observing time is not that impressive.

The schedules generated with VieSched++ contain ≈ 30% more observations. However, the

average idle time decreases from ≈ 25% down to ≈ 5%. Instead of idling, the antennas

are slewing a lot more when using VieSched++, leading to a far better sky-coverage. The

improvement in sky-coverage is listed in Table 8 in terms of the sky-coverage score by using

13 and 25 areas after 60 minutes, see section 5.13. The scores with more areas or a shorter

time span are not listed since the average number of scans per station is around 15 before
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6. RESULTS

Table 8: Scheduling statistics of all EURR&D sessions from the year 2018 and 2019.
Sessions highlighted in blue were scheduled using VieSched++. The columns 13@30, 13@60
and 25@60 refer to the sky-coverage scores, calculated with 13/25 areas after 30/60 minutes
(see section 5.13).

#sta #scans #obs %idle %obs 13@30 13@60 25@60

EURD05 8 374 10134 25.00 39.97 0.44 0.59 0.42
EURD06 6 538 8061 21.63 30.87 0.51 0.64 0.49
EURD07 8 344 9437 36.42 29.40 0.39 0.56 0.40
EURD08 7 361 7215 25.78 33.08 0.46 0.56 0.40
average 7.3 404 8712 27.21 33.33 0.45 0.59 0.43

EURD09 8 665 11565 5.78 39.03 0.64 0.80 0.60
EURD10 8 669 13480 3.08 42.70 0.65 0.80 0.60
average 8 667 12523 4.43 40.87 0.65 0.80 0.60

the use of VieSched++ and around 22 when using VieSched++.

Figure 43 visualizes the sky-coverage of three selected stations for sessions scheduled

before and after the use of VieSched++. These sky-coverage visualizations are representative

of all antennas and all sessions. VieSched++ generates schedules with a far better sky-

coverage. The reason for this is, again, the use of individually optimized weight factors but

also the fact, that VieSched++ decides more often to use subnetting even for this regional

network, to improve the sky-coverage. This is possible since the optimization conditions

are specially designed to properly compare single source observations with subnetting scan

combinations, see section 5.4. The fact that subnetting is often used can also be seen when

looking at the number of scans listed in Table 8. The number of scans almost doubles when

using VieSched++ compared to previously observed schedules.

To confirm this, Table 9 lists the number of stations per scan for all EURR&D sessions.

When looking at Table 9, it is visible that before the use of VieSched++ the scheduling

software was trying to generate scans containing all antennas. This is the reason, why the

sky-coverage is that poor since the commonly visible part of the sky is very small. This

also explains why it is not possible to increase the number of observations by a factor of

two for these sessions as it is the case for T2. Since before the use of VieSched++ almost

all scans include all antennas and since the observations focus on a small part of the sky

with short slew distances, the total number of observations is already very high for these

sessions.
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6. RESULTS

Figure 43: Sky-coverage of selected stations of EURR&D sessions. The first row visualizes
the sky-coverage of a session before the use of VieSched++, while the second row visualizes
it for a session scheduled with VieSched++. The cable wrap information is color-coded with
green being neutral, blue being clockwise, and red being counter-clockwise cable wrap. The
results look similar for all other stations and sessions.

Table 9: Number of stations per scan for EURR&D sessions. Sessions highlighted in blue
were scheduled using VieSched++.

percentages [%] EURD05 EURD06 EURD07 EURD08 EURD09 EURD10

2-station scans: 0.00 0.00 0.00 0.00 0.00 0.15
3-station scans: 0.00 0.00 0.00 0.00 17.59 15.25
4-station scans: 2.41 0.19 0.58 3.88 13.23 7.92
5-station scans: 0.00 0.00 0.29 0.00 3.61 9.12
6-station scans: 0.00 99.81 0.00 7.20 2.41 0.90
7-station scans: 5.35 5.52 88.92 33.23 7.03
8-station scans: 92.25 93.60 29.92 59.64
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6. RESULTS

However, as already discussed in section 3, a high number of observations comes with

the cost of poorer sky-coverage and one of the major challenges is to find a good compromise

between these two factors.

The high occurrence of three and four station scans for the VieSched++ schedules

EURD09 and EURD10 can be explained through subnetting and fillin-mode scans. For

EURD09, 148 out of 665 scans are scheduled using subnetting and 63 scans are scheduled

during the fillin-mode. For EURD10, 148 out of 669 scans are scheduled using subnetting

and 73 scans are scheduled during the fillin-mode.

6.2.1 Simulations

Figure 44 visualizes the expected accuracy of the EOPs based on Monte-Carlo simulations

as described in section 4.1.1. Since the network for EURD05, EURD07 is identical with

EURD09 and EURD10 (see Figure 45), the results of these sessions can be directly com-

pared. It can be seen that improvements for the accuracy of the EOP can be expected

Figure 44: Simulated EOP repeatabilities from EURR&D sessions.

based on the simulations, especially for polar motion. However, since this is a regional

network without good north-south baselines, the overall quality of the EOP accuracy is

rather poor.
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6. RESULTS

The dedicated goal of the EURR&D session are high-quality station coordinates. There-

fore, Figure 45 visualizes the expected 3D-station coordinate accuracy. Especially by

Figure 45: Simulated station coordinate repeatabilities of EURR&D sessions. A black box
indicates that this station was not scheduled in this session.

comparing the sessions with an identical network (EURD05, EURD07, EURD09, and

EURD10), clear improvements can be expected for the VieSched++ schedules.

6.2.2 Real observations

Figure 46 displays the number of scheduled observations and compares them with the

number of correlated, recoverable and used observations as listed in the official IVS anal-

ysis reports. There are no official analysis reports available for EURD05 and EURD06.

Unfortunately, BADARY did not participate in EURD10 although it was scheduled and

MEDICINA missed a total of ≈ 6 hours due to software crashes in this session. This

explains the big difference in scheduled observations compared to correlated observations

for EURD10. However, no major issues are reported from stations participating in session

EURD05, EURD07 and EURD09. Since these sessions are scheduled using the same anten-
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6. RESULTS

Figure 46: Number of observations scheduled, correlated, recoverable and used for the
EURR&D sessions as listed in the official IVS analysis report.

nas with the same observing mode, direct comparisons of these three sessions are possible.

Figure 47 displays the EOP formal errors of the EURRD sessions. A clear improvement,

especially for polar motion, can be seen for EURD09. Since BADARDY dropped out of

EURD10 the improvement is smaller for EURD10 because BADARY provides the longest

baselines in this session.

By taking the average formal errors of EURD05 and EURD07 and comparing it with

the formal errors of EURD09, the improvement is a factor of three for polar motion, a

factor of 2.5 for dUT1 and a factor of 1.4 for nutation.

Most importantly, Figure 48 displays the 3D-station coordinate formal errors. Similar

to the T2 sessions, a clear improvement can be seen when comparing the schedules which

are generated with VieSched++ with the previously submitted schedules. If the 3D-station

coordinate formal errors of EURD05 and EURD07 are compared with the 3D-station co-

ordinate formal errors of EURD09, the average improvement is almost a factor of three.

The real results outperform the expectations from the simulations in terms of EOPs

and 3D-station coordinate accuracy. This indicates that the simulation strategy maybe
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6. RESULTS

Figure 47: Formal errors of EOP estimates from EURR&D sessions.

has to be adjusted to provide more realistic values. Therefore, further research is necessary

to improve the simulation. For example, the tropospheric wet delay of all stations is

simulated using the same refractive index structure constant Cn. Individually adjusted Cn

values should increase the simulation quality and provide more realistic results.

6.3 INT3

Starting in January 2019, VieSched++ is used to schedule the INT3 intensive sessions.

The goal of the INT3 observing program is to provide high-quality dUT1 estimates

with a short time delay. Therefore, the INT3 antenna network consists of only three to

five antennas, visualized in Figure 49 and the session duration is only one hour. Since

long baselines with an east-west orientation are most sensitive for dUT1, the network

geometry tries to focus on providing these baselines. Although the time delay between

the observations and the result is critical for the success of intensive sessions and the data

transfer is one bottleneck in this process, the observations are recorded with a relatively

high recording rate of 1 Gbit/s for INT3.

The intensive sessions are not analyzed as described in section 4.1.2 to minimize the

number of estimated parameters. This is necessary because most of the times only a small
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6. RESULTS

Figure 48: Formal errors of 3D-station coordinate of EURR&D sessions. A black box
indicates that this antenna was not scheduled in this session. A gray box indicates that
this antenna was scheduled but was not available or usable in the analysis.

number of observations is available for the parameter estimation.

In this section, the dUT1 formal errors are not estimated using VieVS. Instead, the

formal errors from the official IVS analysis reports are taken for comparison.

The VieSched++ intensive schedules are generated using the following steps: First, a

trial schedule is generated with very high weight on the sky-coverage weight factor (see

section 5.4.2) and very little weight on the duration weight factor (see section 5.4.1) to

generate a schedule with a very good sky-coverage containing many different sources. By

using the VieSched++ Analyzer, a tool that can visualize schedules graphically, multiple

sources which are near the two edges of the commonly visible sky area are selected since

it is assumed that these sources contribute the most to the estimation of dUT1 (Uunila

et al., 2012).

Afterward, the final schedule is generated using the following procedure: The sources

located in one corner of the commonly visible sky area are given a very high weight. This
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6. RESULTS

Figure 49: Antennas participating in recent INT3 sessions.

ensures, that these sources are observed at the start of the session. Additionally, the sources

from the other corner of the commonly visible sky area get a very high weight, but only

starting 15 minutes deep into the session (see section 5.8). The minimum time between

two scans to the same source is set to 30 minutes for all sources. Furthermore, the weight

factors are changed to a very low weight on the sky-coverage weight factor and a very high

weight on the duration weight factor 5.4.1.

This results in a situation, where the schedule starts by observing the sources at one

corner of the commonly visible sky due to the high weight of these sources. Since the

duration weight factor is dominant, the following scans are scheduled to strong sources

close to each other. This ensures a high number of observations and little slew time. After

15 minutes, the weight of the sources at the other side of the commonly visible sky has

increased. This ensures, that the next scans are scheduled at this corner followed by scans

to strong sources near this area. After 30 minutes the minimum time between two scans

to the same source is reached for the sources located at the first corner of the commonly

visible sky, resulting in new observations to these sources due to their high weight. After

45 minutes the same happens for the second corner.

Therefore, the schedule is specially designed to observe sources near the corners of the

commonly visible sky area twice per schedule while providing a high number of observations
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6. RESULTS

due to the high weight on the duration weight factor.

Figure 50 displays the number of schedule observations for all INT3 sessions in 2018 and

2019. Similar to 24-hour sessions, the number of observations increases with VieSched++

Figure 50: Number of observations for INT3 sessions scheduled in 2018 and 2019.

compared to previous schedules. Some outliers exist, which can be explained through the

test of different source lists.

Figure 51 displays the UT1 formal error accuracy according to IVS analysis reports for

all intensive sessions from mid-2017. It can be seen that sessions with a high number of

stations and a higher recording rate lead to better results. The UT1 formal error is only

shown up to 30µs.

For a better visibility, Figure 52 displays the same as Figure 51 but highlights the INT3

observing program. The legend is the same as in Figure 52. The INT3 observing program

provides the highest accuracy for UT1 estimates of all intensive programs. A yellow line

marks the time, where the scheduling software is changed to VieSched++. The accuracy

of the UT1 estimates is more or less constant since January 2019. As expected, the three-

station networks tend to have worse accuracy than the four or five-station networks.

A situation, where the accuracy is worse over a longer period, as it was the case in

mid-2018, is so far avoided with the use of VieSched++. The reason for the accuracy drop

in mid-2018 is unclear. However, this period coincided with a drop in the number of

observations as can be seen in Figure 50.
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6. RESULTS

Figure 51: UT1 formal error accuracy according to IVS analysis reports for all intensive
sessions.

A more detailed analysis of the INT3 results will be provided in a later work when more

data is available.
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7. VGOS SIMULATION STUDY

Figure 52: UT1 formal error accuracy according to IVS analysis reports for all INT3
sessions. The legend is identical as in Figure 51.

7 VGOS simulation study

In this section, results of simulation studies aiming to optimize a schedule for the VGOS

session VT9175 are presented, similar as in Schartner and Böhm (2019a). At the time

when this study was done, VT9175 was the most recent VGOS session. It consists of six

stations, displayed in Figure 53. The antennas are located in Europe and North-America

including Hawaii. Since the network lacks stations in the southern hemisphere and Asia,

it cannot be seen as a global network. While four of the six participating antennas are fast

slewing, GGAO12M and WESTFORD have slower slew rates. Additionally, the azimuth

cable-wrap span (see section 3.4.1) of WESTFORD is only 360 degrees, which is uncommon

for geodetic VLBI antennas and adds difficulty in scheduling this antenna since the slew

directions are more restricted.

Table 10 lists the key attributes of the participating antennas.

The simulation study is performed using the VieSched++ multi-scheduling tool (see
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7. VGOS SIMULATION STUDY

Figure 53: VT9175 antenna network.

Table 10: Antennas participating in VT9175 and their key attributes for scheduling.

station slew rate az slew rate el azimuth span
[deg/min] [deg/min] [deg]

GGAO12M 300 66 540
KOKEE12M 720 300 500
ONSA13NE 720 360 540
RAEGYEB 720 360 480
WESTFORD 200 120 360
WETTZ13S 720 360 540

section 5.6) in conjunction with Monte-Carlo simulations using VieVS. Several hundred

schedules are generated and each schedule is simulated 1000 times. The troposphere is

simulated using a refractive index structure constant Cn of 2.0× 10−7 m−1/3, the clock

with an ASD of 1× 10−14 s after 50 minutes and 4 picoseconds of white noise are added as

discussed in Pany et al. (2011), Petrachenko et al. (2009).

The analysis is done as described in section 4.1.2 but the tropospheric zenith wet delay

is estimated every 15 minutes and the tropospheric north and east gradients are estimated

every 30 minutes.

The schedules are generated using a constant observing time of 30 seconds as it is the
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7. VGOS SIMULATION STUDY

case for the official VGOS schedules. The slew rate is not fixed to a constant value but is

instead calculated based on the real slew rates of the antennas. The minimum number of

scans per source is set to three through the iterative source selection (see section 5.7). The

VieSched++ multi-scheduling tool is used to vary four weight factors, namely the duration

weight factor (see section 5.4.1), the number of observations weight factor (see section

5.4.3), the sky-coverage weight factor (see section 5.4.2) and the idle time weight factor

(see section 5.4.4). Additionally, different sky-coverage definitions (see section 5.4.2), the

impact of enabling subnetting (see section 3.7.1), and the effect of a minimum slew distance

between two scans is investigated as discussed in Schartner and Böhm (2019a).

For the first three weight factors, the tested values are {0, 0.33, 0.67, 1}, while for the

idle time weight factor only the values {0.5, 1} with an interval of 300 seconds are tested.

Since VGOS sessions are assumed to observe a scan every minute, the idle time weight

factor mostly acts as a safety net to prefer scheduling scans with an antenna if it did not

participate in the last couple of scans. This makes sure that all antennas are observing

regularly and is important for the station KOKEE12M since its location is remote.

The sky-coverage definition is tested with an influence distance of {15, 30, 45} degrees

and an influence time of {900, 1800, 3600} seconds, see section 5.4.2 and equation (27a)

and (27b).

All previous studies reveal that the use of subnetting is beneficial, even for this regional

network. Since the introduction of a required minimum slew distance does not lead to

a better schedule, (as it will be discussed in section 7.1) only results with no additional

minimum slew distance and with subnetting are further discussed in this section.

The following figures visualize the results of 1152 schedules, generated by using com-

binations of all multi-scheduling parameters as described above. Figure 54 visualizes the

number of observations, number of scans and the sky-coverage score with 37 areas after

30 minutes (see section 5.13 and Figure 35). In blue, a histogram of the result of all 1152

schedules is visualized. One of the 1152 schedules is highlighted as the “selected” schedule,

meaning this is the result from the schedule which would have been sent to the stations

as the official schedule for observation. It is selected based on the repeatability values of

the geodetic results from the Monte-Carlo simulations. The key scheduling parameters for

this selected schedule are summarized in Table 11.

Figure 54 reveals that the number of scheduled observations is between 10 000 and

17 000 for most sessions. The number of observations of the selected schedule is 13 066 and

thus located in the middle of the total range. The situation is similar for the number of
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7. VGOS SIMULATION STUDY

Figure 54: Histogram of scheduling statistics for all generated schedules (Schartner and
Böhm, 2019a). The selected schedule is highlighted in red. The sky-coverage score is
calculated using 37 areas and 30 minutes.

Table 11: Key scheduling parameters used to generate the optimized schedule based on
the results from the repeatabilities.

parameter value unit

sky-coverage weight factor 0.67
number of observations weight factor 0.33
duration weight factor 0.67
idle time weight factor 1.00
sky-coverage influence distance 45 [deg]
sky-coverage influence time 1800 [s]
sky-coverage transfer functions half cosine
minimum slew distance 0 [deg]
considering subnetting yes
minimum scans per source 3

scans per session, where the total range is between 1500 and 2900 scans while the number

of scans for the selected schedule is 2256. Surprisingly, the selected schedule providing the
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7. VGOS SIMULATION STUDY

best geodetic results in terms of repeatability values does not have the highest number of

observations. However, when looking at the sky-coverage score calculated with 37 areas

and 30 minutes the total range is between 0.4 and 0.7 and the selected schedule is located

at 0.62. This value is close to the maximum of the total range.

As already discussed in section 3 the challenge of generating a good schedule is to find a

good compromise between a high number of observations and a good sky-coverage. Based

on the simulations, it seems like a good sky-coverage is more important than a high number

of observations.

Figure 55 visualizes how the antenna time is spend during the VGOS sessions. The

Figure 55: Histogram of the time spent during the VGOS sessions for all generated sched-
ules (Schartner and Böhm, 2019a). The selected schedule is highlighted in red.

total observing time is between 41 and 53 percent for all sessions, while the slew time is

between 18 and 28 percent and the idle time is between 14 and 24 percent. The selected

schedule is located in the middle of the total range for observing and slew time and on

the lower end in terms of idle time. Figure 55 does not visualize calibration and overhead

time for the field system commands since these times are constant for each scan. The

relatively high observing time can be explained by the fixed scan duration of 30 seconds.
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7. VGOS SIMULATION STUDY

It is assumed, that this time reduces in the future when the recording rate of the VGOS

sessions is increased and the required observing time is calculated based on the source flux

density and the antenna SEFD values as described in section 5.3.4. It is important to note,

that the idle time is relatively high compared to other sessions generated with VieSched++

because the occurring idle time is not used to extend the observing time as discussed in

section 3.7.4 since this is only a simulation study and it is also not done in reality for VGOS

sessions.

Figure 56 visualizes the estimated repeatability values of the geodetic parameters based

on the Monte-Carlo simulations. The result of the EOP estimates and the 3D-station

coordinates defined through equation (54) are displayed. The range of the 3D-station

Figure 56: Histogram of the estimated repeatabilities for geodetic parameters based on
Monte-Carlo simulations (Schartner and Böhm, 2019a). The selected schedule is high-
lighted in red.

coordinates is between 1.2 and 1.8 millimeters, which is close to the GGOS goal of 1

millimeter (Plag and Pearlman, 2009). It can be seen that the selected schedule, which is

highlighted in red, provides very good estimates for all parameters. The schedule is selected

based on these six parameters. If the dedicated goal of the session would be narrowed down
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7. VGOS SIMULATION STUDY

to simply provide high-quality station coordinates or one of the EOPs, the selection process

could be adjusted for additional small improvement.

Figure 57 plots the number of observations against the sky-coverage scores and visual-

izes the expected EOP and station coordinate accuracy. This time, the selected schedule

is highlighted as a green star. The shape of the dots indicates, that a high number of ob-

servations lead to a worse sky-coverage and vice versa as already discussed several times.

Surprisingly, the location of the selected schedule is not at the top-right edge, meaning

there would be schedules which provide a better sky-coverage while having more obser-

vations. This indicates, that neither the number of observations nor the sky-coverage

are perfect metrics for comparing and selecting schedules with the highest quality. Since

scheduling is a complex optimization process including a multitude of different parameters

and requirements, a simplification through either of these two metrics is not suitable for

the highest quality. Instead, it is necessary to perform simulations to compare and select

schedules based on these results.

Additionally, Figure 57 depicts that the highest precision of different geodetic param-

eters is achieved by using different schedules with different properties. This is especially

visible for polar motion in the x-direction (XPO) where the area of highest accuracy (dark

blue) is located in a different position as, for example, for the 3D-station coordinates.

Similar to Figure 57, Figure 58 plots the number of observations against the sky-

coverage scores but it color-codes the values of the weight factors which were used to

generate these schedules. When looking at the number of observations weight factor values,

a clear trend can be seen. As expected, the number of observations rises if this optimization

criterion gets a high relative weight. In case the number of observations weight factor is set

to zero, less than 12 000 observations are scheduled. The maximum number of observations

is achieved if the number of observations weight factor is set to a high value. However, this

also leads to the poorest sky-coverage. It is necessary to note, that this is only the case

for these regional VGOS networks like VT9175. Otherwise, a combination of high weight

for the duration optimization criterion and high weight for the number of observations

optimization criterion is needed to achieve the highest number of observations.

As noted before, the idle time weight factor is mainly used as a safety net to make sure

that all antennas observe regularly. The one outlier with a poor sky-coverage score and a

low number of observations on the bottom left of Figure 57 and 58 can be explained by a
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7. VGOS SIMULATION STUDY

Figure 57: Number of observations versus sky-coverage score. The 3D-station coordinates
and EOP repeatabilites are color-coded. The selected schedule is highlighted with a green
star.

poor combination of weight factors, where only the idle time optimization criterion is used

during the scan selection procedure, while all other weight factors have a value of zero.

A small positive correlation between the sky-coverage weight factor value and the sky-
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7. VGOS SIMULATION STUDY

Figure 58: Number of observations versus sky-coverage score (Schartner and Böhm, 2019a).
The weight factor values are color-coded. The selected schedule is highlighted with a green
star.

coverage score can be seen. However, since other effects such as the number of scans also

play an important role in the sky-coverage score this correlation is not that strong.

It can also be seen, that the duration weight factor plays a role in the total number

of observations, although its impact is smaller compared to the number of observations

weight factor.

7.1 Optimizing through minimum slew distance

The introduction of a minimum required slew distance between two consecutive scans is an

alternative way to achieve a good sky-coverage and is used in the official VGOS schedules.

To test the impact of this approach with VieSched++, another simulation study is
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7. VGOS SIMULATION STUDY

performed. In this study, a required minimum slew distance between 0 and 60 degrees is

used in 10-degree steps. Based on this restriction, schedules are generated. Per minimum

required slew distance, 64 different schedules are generated using different weight factor

ratios as visualized in Figure 59. The 64 different schedules are generated to avoid effects on

Figure 59: Ratio of weight factors used to generate the VT9175 schedules (Schartner and
Böhm, 2019a).

the results which might occur based on bad optimization conditions for the scan selection.

It is expected, that the introduction of a required minimum slew distance between scans

has an influence on the optimal scheduling parameters and thus on the weight factors.

Since the study aims to analyze the impact of a minimum slew distance on the schedule

these additional influences should be minimized as much as possible. Together, this leads

to a total of 448 investigated schedules.

Figure 60 visualizes the number of observations as well as the expected average 3D-

station coordinate accuracy based on the repeatability values from the Monte-Carlo simu-

lations. The different required minimum slew distances between two scans are color-coded.

As expected, the number of observations lowers in case the minimum slew distance rises.

This makes sense since the stations have to slew longer distances and have less time to

observe. However, the difference between 0 and 50 degrees minimum slew distance is of-

tentimes not that big. The difference between the different versions, visible through a

prominent zig-zag pattern, is higher than the difference between the minimum slew dis-

tance. This means that the weight factor has a higher influence on the result since the

versions differ based on the weight factor ratios.
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7. VGOS SIMULATION STUDY

Figure 60: Impact of different minimum slew distances on geodetic results (Schartner and
Böhm, 2019a). The abscissa lists the version number of the corresponding weight factor
ratio visualized in Figure 59.

When looking at the estimated 3D-station coordinate repeatabilities in Figure 60, no

improvement can be seen between 0 and 50 degrees minimum slew distance. In the case

of 60 degrees minimum slew distance, a significant decrease of the accuracy is visible.

Therefore, it can be concluded that the introduction of a required minimum slew distance

between consecutive scans does not lead to an improvement of the schedule.

7.2 Optimizing through sky-coverage definitions

Since tropospheric time delays are considered one of the dominant error source for VGOS

sessions, see Pany et al. (2011) and Petrachenko et al. (2009), a sophisticated definition of

the sky-coverage implementation is necessary for generating high-quality VGOS schedules.

Therefore, different definitions through the influence distance and time (see section 5.4.2)
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7. VGOS SIMULATION STUDY

are tested.

In this study, nine different combinations of sky-coverage influence distances and times

are investigated. The tested influence distance values are 15, 30, 45 degrees and the tested

influence times are 900, 1800, 3600 seconds. Similar as for the minimum required slew

distance study (see section 7.1), 64 different weight factors are investigated per sky-coverage

definition, leading to a total of 576 schedules.

Figure 61 visualizes the results in terms of the number of observations and expected 3D-

station coordinate repeatability per session. The sky-coverage influence time is color-coded

Figure 61: Impact of different sky-coverage definitions on geodetic results (Schartner and
Böhm, 2019a). The abscissa lists the version number of the corresponding weight factor
ratio visualized in Figure 59.

while the sky-coverage influence distance is distinguished by the line style.

When looking at the total number of observations in Figure 61, no difference can be seen
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7. VGOS SIMULATION STUDY

between the different sky-coverage definitions for the first 16 versions. This makes sense

since the first 16 versions are generated with zero weight for the sky-coverage optimization

criterion as visualized in Figure 59. In terms of the number of observations, even for the

remaining versions, no big differences can be seen between the individual sky-coverage

definitions. The only noticeable difference is, that the dashed lines which represent a

sky-coverage influence distance of 15 degrees seems to lead to more observations. This

can be explained through the shorter slew distances which lead to more leftover time for

observations. However, a strong zig-zag pattern can be seen, which indicates that the

weight factor ratios are again the dominant scheduling input parameters.

When looking at the expected 3D-station coordinate repeatability values in Figure

61, again a strong zig-zag pattern can be seen. The difference between the individual

sky-coverage definitions is rather small, with the exception that the dashed lines, which

represent a sky-coverage influence distance of 15 degrees, tend to produce worse schedules

although these definitions lead to the highest number of observations. Therefore, it can

be concluded that a sky-coverage influence distance of only 15 degrees is not enough for

VGOS sessions.

Since the first 16 versions lead to completely identical schedules in this study, their

3D-station coordinate repeatability values should, in theory, be identical as well and can

be used to validate the simulation approach. The results of the 3D-station coordinate

repeatability values visualized in Figure 61 agree quite well, which leads to the conclusion

that the 1000 simulations provide robust repeatability values.

7.3 Optimizing through weight factors

When looking at Figure 60 and Figure 61, the difference between the individual versions

(abscissa) is more prominent as the difference between the tested parameters (lines). Since

the individual versions differ only in terms of weight factor ratio, it can be concluded that

a proper selection of well-suited weight factors is most important for the generation of

high-quality VGOS sessions. The same is true for SX-sessions, as discussed in Schartner

et al. (2017) and Schartner and Böhm (2019c).

When looking at Figure 60 and Figure 61, it can be seen that the accuracy of the

3D-station coordinate repeatability tends to decrease with a higher version number. A

higher version number tends to put more weight on the sky-coverage optimization criterion,

as it can be seen in Figure 59. Since the troposphere is the dominant error source in
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7. VGOS SIMULATION STUDY

these simulations, a high weight on the sky-coverage optimization criterion which aims to

help to estimate tropospheric time delays is beneficial. To further confirm this statement,

the correlations between some selected scheduling input parameters with the repeatability

values of geodetic parameters are calculated and displayed in Figure 62. The ratios of the

Figure 62: Correlations between scheduling parameters including weight factors and sky-
coverage definitions with geodetic results (Schartner and Böhm, 2019a).

four tested weight factors and the two sky-coverage definition parameters are correlated

against the repeatability values from the EOP accuracy and the 3D-station coordinate

accuracy. A correlation close to zero would indicate, that this scheduling input parameter

has no impact on the achieved geodetic result, while a correlation of plus or minus one

would mean that this geodetic result is heavily influenced by the scheduling parameters.

It can be seen that for the 3D-station coordinates, the sky-coverage weight factor has the

highest influence with a correlation of -0.7.

In general, the correlation of the geodetic results with the weight factors is higher than

the correlation with the sky-coverage definitions. This further confirms, that a proper

selection of good weight factors is the dominant requirement for the generation of a high-

quality schedule.
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8. SUMMARY AND CONCLUSION

8 Summary and Conclusion

The generation of geodetic VLBI schedules is a complex challenge and sophisticated soft-

ware is needed to get the best out of any session. VieSched++ is a high-quality scheduling

software capable to fully optimize VLBI schedules. The software is written in modern C++

using an object-oriented software design. It is easy to install through a setup program for

Windows and Ubuntu and easy to use via an intuitive GUI.

In the heart, VieSched++ works similarly as existing scheduling software, such as the

popular “sked” software, which is developed and maintained by the Goddard Space Flight

Center. It generates schedules on a scan-by-scan basis. First, all possible scans at a certain

time are created. These scans are investigated based on so-called optimization criteria, and

based on these optimization criteria a score is calculated for each scan. Then, the scan

with the highest score is selected and scheduled and the whole process starts over again.

Additionally, VieSched++ uses many new approaches. For example, it is selecting its

scans recursively, instead of generating the schedule in consecutive time order. Further-

more, all algorithms and optimization criteria are developed from scratch and great care

was taken to be able to generate high-quality schedules. An iterative source selection

is used to make sure that only the best sources for this session are observed. Although

the main purpose of VieSched++ is the generation of high-quality geodetic VLBI sessions,

additional algorithms for the optimization of astrometric purposes are also implemented.

Since scheduling is a complex task, the generation of high-quality schedules cannot be

narrowed down to a simple rule or recommendation. Instead, every session has to be treated

and optimized individually since the boundary conditions such as the station network and

source strength changes constantly. For this purpose, the so-called multi-scheduling feature

is implemented. With the multi-scheduling feature, multiple schedules are generated auto-

matically and efficiently by using different scheduling input parameters. These schedules

can then be used in additional software such as VieVS to carry out large scale Monte-Carlo

simulations. Based on the results from these simulations the best schedule for a session

can be selected based on real simulation results instead of raw scheduling statistics which

are very hard to interpret. This process is fully automated in VieSched++ and VieVS and

it runs with multi-core support to reduce the run time significantly.

VieSched++ is already successfully used to generate official schedules for the IVS. It is

used to schedule the official T2, EURR&D, EUR, OHG, CRF, CRDS and INT3 observing
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8. SUMMARY AND CONCLUSION

programs as well as some sessions which are not organized by the IVS. First results with

these schedules show a significant increase in the accuracy of these programs through the

optimized schedules which were used.

The number of observations for the T2 observing program has increased by a factor of

two to three through the use of VieSched++ and the formal errors of the station coordinates

are decreased on average by a factor of two. Additionally, the EOP formal errors are

significantly reduced.

For the EURR&D observing program, big improvements in terms of sky-coverage, as

well as improvements in terms of the number of observations, could be achieved. This leads

to a reduction of the station coordinate formal errors by a factor of three. The same could

be achieved for the polar motion formal errors.

With the INT3 observing program, VieSched++ is used to schedule the most accurate

intensive sessions in the IVS.

Many additional sessions are already scheduled using VieSched++ but are not yet cor-

related and ready for analysis. However, simulations show that further improvements can

be expected.

The multi-scheduling feature combined with the possibility to run VieSched++ in a

batch mode without the GUI makes VieSched++ a perfect software for large scale simulation

studies. In this work, one of these studies about the optimization of VGOS schedules is

presented. Since VGOS is the future of geodetic VLBI, great care should be taken to

provide high-quality VGOS schedules. It is shown, that a proper definition of the weight

factors is the key for the generation of high-quality VGOS schedules.
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9. OUTLOOK

9 Outlook

Through the ongoing development and improvement of VGOS, geodetic VLBI is changing

rapidly and new challenges and opportunities arise. This is especially true for scheduling,

since the new fast slewing antennas open new possibilities. So far, brute force approaches

still yield the best results for geodetic VLBI scheduling. Following this, VieSched++ is

well equipped for the future development of VLBI. It is capable to generate hundreds

of schedules efficiently and no restrictions regarding the station network size or in terms

of observing mode such as the number of observed bands exist. Moreover, preparations

and initial tests are made for many additional features such as mixed-mode schedules or

special scan alignments. Additionally, the object-oriented software design allows a simple

extension and improvement of the software.

In the future, it is planned to include observations to artificial VLBI targets, such as

satellites into the software. The idea is, to schedule these scans during the a priori phase

and use the recursive scan selection in between these satellite scans to fill this time with

observations to quasars. VieSched++ already supports the definition of multiple observing

modes, which will be useful for the observation of satellites. Additionally, the recursive

scan selection already works as intended. The missing piece is the proper implementation

of satellite observations.

Another point for the future is the sophisticated implementation of the VGOS ob-

serving mode and scheduling files. Although preparations for this are already made, the

problem lays in the lack of standards and official scheduling output formats which support

all requirements for VGOS. The proper implementation of VGOS observations will be

implemented as soon as the proper standards and file formats exist. However, VieSched++

is already capable to schedule VGOS observations as it is currently done by the IVS.

In terms of real observations, one goal is to use VieSched++ for more observing pro-

grams in the future and to get more people of the geodetic VLBI community to use the

software. Initial simulations and tests show that big improvements can be expected for

most observing programs such as R4 and VGOS. In both cases, it is possible to almost

double the number of observations and improve the sky-coverage as it was done for T2

and EURR&D. Although the GUI is already of high quality and high-quality schedules

can be generated with very little learning effort, further improvement is being considered

to simplify the scheduling generation process even further allowing more people to use the
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9. OUTLOOK

software. Additionally, a VieVS YouTube channel exists, which hosts videos about how to

use VieSched++ and how to generate high-quality schedules. The VieVS YouTube channel

can be reached via this link.
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Böhm, J., Werl, B., and Schuh, H. (2006). Troposphere mapping functions for GPS and

very long baseline interferometry from European Centre for Medium-Range Weather

Forecasts operational analysis data. Journal of Geophysical Research (Solid Earth),

111:B02406.

Broten, N. W., Legg, T. H., Locke, J. L., McLeish, C. W., Richards, R. S., Chisholm,

R. M., Gush, H. P., Yen, J. L., and Galt, J. A. (1967). Long base line interferometry: A

new technique. Science, 156(3782):1592–1593.

Campbell, J. (2000). From Quasars to Benchmarks: VLBI Links Heaven and Earth. In

International VLBI Service for Geodesy and Astrometry 2000 General Meeting Proceed-

ings.

Capitaine, N., Mathews, P. M., Dehant, V., Wallace, P. T., and Lambert, S. B. (2009).

On the iau 2000/2006 precession–nutation and comparison with other models and vlbi

observations. Celestial Mechanics and Dynamical Astronomy, 103(2):179–190.

Deller, A. T., Brisken, W. F., Phillips, C. J., Morgan, J., Alef, W., Cappallo, R., Mid-

delberg, E., Romney, J., Rottmann, H., Tingay, S. J., and Wayth, R. (2011). DiFX-2:

A more flexible, efficient, robust, and powerful software correlator. Publications of the

Astronomical Society of the Pacific, 123(901):275–287.

Deller, A. T., Tingay, S. J., Bailes, M., and West, C. (2007). DiFX: A software correla-

tor for very long baseline interferometry using multiprocessor computing environments.

Publications of the Astronomical Society of the Pacific, 119(853):318–336.

Fey, A. L., Gordon, D., Jacobs, C. S., Ma, C., Gaume, R. A., Arias, E. F., Bianco, G.,
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Plank, L., E.J. Lovell, J., S. Shabala, S., Böhm, J., and Titov, O. (2015). Challenges for

geodetic VLBI in the southern hemisphere. Advances in Space Research, 85.

Plank, L., Lovell, J. E. J., McCallum, J. N., Mayer, D., Reynolds, C., Quick, J., Weston,
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