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Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit kristallographischen und
physikalischen Eigenschaften ternärer Verbindungen, und verknüpft struk-
turelle Eigenschaften mit dem physikalischen Verhalten. Physikalische Eigen-
schaften und Phasenbeziehungen innerhalb des Systems Ce-Pt-Si wurden
mittels verschiedener Meßmethoden untersucht. Verbindungen des Typs
Ce-Pt-Si haben interessante elektrische und/oder magnetische Eigenschaften
wie z.B. schweres Fermionen Verhalten, Kondo-Gitter Verhalten, unkonven-
tionelle Supraleitung in nicht zentrosymmetrischer Symmetrie, das großes
Interesse an physikalischen Eigenschaften von Ce-Pt-Si hervorgerufen hat.
Kristallwachstum und Synthese der Verbindungen erfordern vertieftes Wis-
sen über Phasenrelationen sowie Kristallstrukturen. Zu diesem Zweck wurden
die Phasenrelationen im ternären System Ce-Pt-Si für den isothermen Schnitt
bei 800◦C bestimmt.

Die Untersuchung gefüllter Skutterudite hat in den vergangenen Jahren
eine Vielzahl von Verbindungen mit einer reichen Mannigfaltigkeit physikalis-
cher Eigenschaften erbracht. MPt4Ge12, mit M = (Ca, Sr,Ba,Eu), sind die
ersten Mitglieder einer neuen Kategorie von Skutteruditen, Raumgruppe Im3̄
(Nr. 204), deren Käfigstruktur ausschließlich durch Ge-Atome gebildet wird.
Weitere Mitglieder dieser Materialfamilie wurden auch mit M = Th und U
hergestellet. Für ThPt4Ge12 entwickelt sich Supraleitung unter Tc = 4.75 K.
Für BaPt4Ge12 und SrPt4Ge12 wurde unterhalb Tc = 5.35 K und 5.10 K
Supraleitung bei mittelstarker Elektron-Phonon Wechselwirkung festgestell.
Supraleitung wird den Eigenschaften des Pt-Ge Gerüsts zugeschrieben, in
dem Ge-p Zustände die elektronische Struktur an der Fermi Energie bes-
timmen. Auch Ca (zum Teil) und Eu (komplett) stabilisieren diese neuen
Skutterudite. Ein maximaler Füllungsgrad von ungefähr 20% Ca ist in
Ba1−xCaxPt4Ge12 möglich und führt zu einer Supraleitung unter Tc = 5.2 K.
Messungen des elektrischen Widerstands zeigen, dass EuPt4Ge12 sich erst un-
terhalb von Tm ≈ 1.7 K magnetisch ordnet. Die physikalische Eigenschaften
von UPt4Ge12 werden von Spinfluktuationen bei niedrigen Temperaturen do-
miniert; sie verhindern magnetische Ordnung bzw. Supraleitung.

Sowohl Skutterudite {Ca,Sr,Ba,Eu,Th,U}Pt4Ge12 als auch Clathrate vom
Typ I auf Ge-Basis Ba8TxGey; (T = Cd,Pd,Pt,Zn) sowie Si Clathrat vom
Typ II Ba8ZnxSiy und Ba8PtxSiy sind auch von Interesse für thermoelektrische
Anwendungen. Clathratsysteme Ba8MxGe46−x−y�y (M = Pd,Pt,Zn,Cd),
in denen M-Atome in die Käfig bildende Struktur eingebaut werden, wur-
den mittels Kristallchemie, elektrischem und thermischem Transport und
Wärmekapazität erforscht. Die Ergebnisse dieser Studie stellten dar, dass die
Erhöhung des M-Gehalts die Konzentration von Leerstellen in der Kristall-
struktur verringert und das metallische System in Richtung eines Metall-



Isolator Übergangs driftet, wodurch die Ladungsträgerkonzentration drama-
tisch verringert wird.

Die Struktur von M2Pd14+xB5−y mit M = Th,La,Ce,Pr,Nd,Sm,Eu und
Gd wurde mittels Einkristall Röntgendaten an Nd2Pd14B5 und Th2Pd14B5

(tetragonale Zelle und Raumgruppe I41/amd, Nr. 141) bestimmt. Dabei
wurde eine nahe strukturelle Verwandtschaft mit Sc4Ni29Si10 festgestellt.
Die elektrischen Widerstände von M2Pd14+xB5−y sind im Allgemeinen durch
kleine RRR (Restwiderstandsverhältnis) Werte gekennzeichnet, die auf De-
fekte der Kristallstruktur zurückzuführen sind. Studien bei niedrigen Tem-
peraturen zeigen, dass langreichweitige magnetische Ordnung in Gd2Pd14B5

unterhalb 6 K existiert. Die Wärmekapazitätsmessungen weisen darauf
hin, dass auch die Verbindungen mit Ce, Nd und Sm unterhalb von
2 K magnetisch geordnet sind, während die Pr-Verbindung als Folge des
kristallelektrischen Feldeffekts (CEF) keinen magnetischen Ordnungszustand
aufzuweisen scheint, zumindest nicht bis zu 400 mK. Der Gesamtdrehimpuls
J = 4 des Pr Ions im Rahmen der CEF Effekte der tetragonalen Kristallstruk-
tur von Pr2Pd14B5 kann einen nicht-magnetischen Grundzustand auf Grund
eines Singlett- oder eines nicht magnetischen Dublett-Zustandes einnehmen.
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Abstract

The present thesis deals with crystallographic and physical properties
of ternary compounds, and connects structural properties with physical be-
haviour. Physical properties and phase relations within the ternary Ce-Pt-Si
system were studied by means of different measuring methods.

Besides the fact that many compounds from the Ce-Pt-Si system have
shown interesting electrical and/or magnetic properties such as heavy-fermion
behavior, Kondo-lattice behaviour, unconventional superconductivity with-
out an inversion center, provoked large interest in the physical properties of
Ce-Pt-Si system. Crystal growth and bulk material syntheses require de-
tailed knowledge of phase relations as well as of crystal structures. Therefor
the phase relations were investigated in the ternary system Ce-Pt-Si for the
isothermal section at 800◦C.

In the past years research in the field of filled skutterudites evidenced a
rich diversity of ground state properties as well as the potential for thermo-
electric applications. Cage-forming compounds such as zeolithes, fullerenes,
clathrates or skutterudites have proven to be not only of scientific but also
of significant technological interest. Members of a novel class of materials
are essentially composed from MPt4Ge12, space group Im3̄, (No. 204), with
M=(Ca, Sr, Ba, Eu). Below Tc = 5.35 K and 5.10 K for BaPt4Ge12 and
SrPt4Ge12, respectively, electron-phonon coupled superconductivity emerges,
ascribed to intrinsic features of the Pt-Ge framework, where Ge-p states dom-
inate the electronic structure at the Fermi energy. Further members of this
family are M= Th, U, whereby ThPt4Ge12 develops superconductivity (SC)
below Tc = 4.75 K. Electropositive elements Ca (partially) and Eu (com-
pletely) stabilize new compounds within the novel class of skutterudites based
on a framework solely constituted by Ge-atoms. A maximum filling level of
about 20 % of Ca is possible in Ba1−xCaxPt4Ge12, yielding a superconduct-
ing ground state below Tc= 5.2 K. Low temperature resistivity studies of
EuPt4Ge12 evidence magnetic ordering at Tm ≈ 1.7 K. The physical prop-
erties of UPt4Ge12 are dominated by spin fluctuations at low temperatures,
preventing magnetic order and SC.

The series of skutterudites {Ca,Sr,Ba,Eu,Th,U}Pt4Ge12 as well as Ge-
based type I clathrates Ba8TxGey; T = (Cd,Pd,Pt,Zn) and Si-based type II
clathrates Ba8ZnxSiy and Ba8PtxSiy compounds are of particular interest for
thermoelectric applications. Ba- and Ge-based clathrate Ba8MxGe46−x−y�y

(M = Pd, Pt, Zn, Cd), where M-atoms substitute for framework atoms, were
investigated by means of crystal chemistry, electrical and thermal transport
measurements, and heat capacity. The results of this study showed that an
increasing M-content reduces the concentration of vacancies in the crystal
structure and drives the metallic system towards the metal-to-insulator tran-



sition, whereby the charge carrier concentration is dramatically reduced.
The structure of M2Pd14+xB5−y with M = Th, La, Ce, Pr, Nd, Sm, Eu

and Gd was determined by means of X-ray single crystal data for Nd2Pd14B5

and Th2Pd14B5 (tetragonal unit cell and space group I41/amd, No. 141),
and was found to be closely related to the structure type of Sc4Ni29Si10. The
electrical resistivity of M2Pd14+xB5−y, in general, is characterized by small
RRR (residual resistivity ratio) values originated by defects, inherent to the
present crystal structure. Studies at low temperatures clearly indicate long
range magnetic order in Gd2Pd14B5 below 6 K. Heat capacity measurements
evidence that the compounds based on Ce, Nd and Sm order magnetically
below 2 K, while the Pr compound seems not to exhibit a magnetically ordered
state, at least down to 400 mK, as a consequence of crystal electric field (CEF)
effects. The total angular momentum J = 4 of the Pr ion in the context of
CEF effects of the tetragonal crystal structure of Pr2Pd14B5 can create a non-
magnetic ground state due to singlet formation or due to the presence of a
non-magnetic doublet.
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Introduction

Since the discovery of superconductivity in CeCu2Si2 by Steglich et al. (1980)
[1] with high-effective-mass electrons m∗, (m∗ ∼200me, where me is the mass
of a free electron), the search for characterization of such heavy fermion
systems, originating from strong electron-electron correlations, has been a
rapidly growing field of study. The heavy fermion (HF) systems [2, 3, 4, 5, 6]
known to date include compounds with a variety of ground states, e.g. mag-
netically ordered compounds such as Ce3Cu4Sn4 [7] and Ce2Ni3Ge5 [8], su-
perconductivity (CeCu2Si2, UBe13, UPt3)[9], coexistence of magnetic order-
ing and superconductivity compounds (UPd2Al3, CeCu2Si2)[10], or (CePt3Si)
[11, 12, 13, 14, 15], insulating materials [16, 17] (UPtSn, SmB6), non-Fermi
liquid materials (U2Pt2In, CeCu6−xAgx)[18, 19]. Besides the fact, that
many compounds from the Ce-Pt-Si system have shown interesting electri-
cal and/or magnetic properties such as heavy-fermion behavior in CePtSi
[20, 21, 22, 23, 24] and/or Kondo-lattice behaviour in CePtSi2 [25, 26, 27] and
CePt2Si2 [28, 29, 30, 31, 32], the recent discovery of CePt3Si (CePt3B type)
as the first heavy fermion superconductor without a center of symmetry has
triggered widespread research activities to search for novel superconducting
states in related ternary or quaternary alloy systems [15, 33]. To gain more
insight into general physical and chemical properties of such compounds, our
studies were extended to the investigation of phase relations in the isother-
mal section at 800◦C which is the subject of the first part of the present
work. In fact, these f-electron materials typically have, in comparison to nor-
mal metals, enormous electronic specific heat values (100-1500 mJ/mol K2),
large values of the low-temperature magnetic susceptibility χ, frequently a
maximum in the electrical resistivity at low temperatures, as well as unusual
temperature dependencies of the specific heat below about 10 K. In this field,
valence instabilities, [6, 34, 35] and the Kondo effect in particular also have
received extensive interest [5, 36, 37]. The physical properties of such systems
are very different from the behavior of normal metals and compounds, and
can be traced back to the presence of semi-filled f electron shells and their
interaction with conduction electrons. Usually, electrons in fully occupied
shells make no contribution to metallic conduction and magnetic properties
[38, 39].
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In the search for novel, promising thermoelectric materials, skutterudites
are prospective candidates for achieving figures of merit above unity. High
power factors S2σ and the realistic prospect of a significant reduction of the
lattice thermal conductivity have attracted great attention. Due to the fact
that the skutterudite structure offers interesting possibilities to change both
the electronic and lattice properties, many research groups worldwide now
focus their efforts on optimizing these materials.

The name ”skutterudite” derives from a naturally occurring mineral,
CoAs3, first found and mined extensively in a small village in Norway called
Skutterud. The crystal structure was firstly identified by Oftedal in 1928 [40].
Already in the mid-1950s researchers in the Soviet Union discovered skutteru-
dites in their search for thermoelectric materials. But binary skutterudites,
at that time the only known form, possessed thermal conductivity values too
high in order to achieve high figures of merit. In 1977 Jeitschko et al.[41],
however, found that the large voids of the CoAs3-structure can be filled with
atoms of the lanthanoid group. As firstly predicted by Slack et al. in 1994,
atoms placed in the voids of these compounds substantially reduce the ther-
mal conductivity by introducing phonon scattering centers [42]. Until then
a large number of skutterudites crystallizing in the filled LaFe4P12-structure
have been syntesised. Figures of merit, already above unity were found for
temperatures around 600◦C. Besides their thermoelectric potential, rare earth
filled skutterudites exhibit a large variety of interesting ground state prop-
erties. Among them are superconductivity, metal-insulator transitions, mag-
netic order, heavy fermion behaviour or structural phase transitions.

The state of the art on the chemistry and physics of skutterudites has
been reviewed by Uher [43] and Nolas [44]. The filled skutterudite structure
is named after the first synthesized filled skutterudite, LaFe4P12. Compounds
crystallizing in this structure are represented by the general formula EpT4X12,
where Ep stands for the electropositive filler element that may be an alkaline
earth, a lanthanide or an actinide. Recent investigations showed that even Tl
[45] and under special conditions also Y, Hf, Pb, Ge and Sn [46, 47, 48] are
able to occupy the 2a position of the LaFe4P12-type structure. A high pres-
sure preparation technique allows to prepare even EpFe4P12 compounds with
the heavy lanthanides, Ep = Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, as filler
elements [49]. A detailed discussion of the role of the filler atoms (Ba, Eu or
alkaline earth atoms) in the skutterudite structure is given in chapter 4. The
filler atom on the 2a site is sixfold coordinated by X-atoms, thereby enclosed
in an irregular dodecahedral (12 fold coordinated) cage. Rather large bond-
ing distances between the electropositive filler element and the X-atoms give
rise to large thermal, or so called atomic displacement parameters (ADP). It
appears that the guest ions ”rattle” in their oversized cages, providing soft
phonon modes to the total phonon spectrum. The dynamic disorder caused
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by the filler elements manifests itself in a strong reduction of the lattice ther-
mal conductivity. In 1999 Sales et al. [50] drew attention to the fact that the
ADPs could be used to estimate the lattice thermal conductivity of solids. In
the case of skutterudites the authors showed that the room temperature ther-
mal conductivities estimated using isotropic ADPs are in good agreement with
experimental data. For recent reviews regarding the superconducting prop-
erties of these classes of materials see Ref. [51, 52, 53]. The simple structure,
however, acts as a prototype for a large class of compounds including binary
as well as ternary and higher order representatives. Building blocks in the
framework are 8 tilted octahedra per unit cell enclosing two icosahedral cages.
Each of the octahedra is centered by a transition metal atom like Co or its
homologues (Rh, Ir). Motivated by the known manifold of interesting phys-
ical properties among skutterudites, we searched for ternary and/or higher
order compounds exploiting the combination of (i) a high density of d-states
of a platinum group metal at the Fermi level with (ii) a rigid framework of
rather covalently four-bonded atoms such as Si and/or Ge. Thereby a novel
family of Ge based skutterudites, MPt4Ge12 (M = Sr,Ba,BaCa,Eu,Th,U) has
been identified [54, 55, 56]. It was shown that the superconducting transi-
tion in these series (about 5 K) is ascribed to intrinsic features of the Pt-Ge
framework, where Ge-p states dominate the electronic structure at the Fermi
energy.

As the new class of Ge-based skutterudites was found to extend to 4f-
electron systems {La,Ce,Pr,Nd}Pt4Ge12 [58], the aim of the present work is
a study of the stability and the characterization of bulk properties by means
of resistivity, magnetization, specific heat measurements and band struc-
ture calculations for {Sr, Ba, BaCa, Eu}Pt4Ge12 and actinoid compounds
{Th,U}Pt4Ge12 [59]. For most compounds in this study, the low tempera-
ture behavior is dominated by the appearance of superconductivity around
5 K. While, in general, Th-based systems are in a nonmagnetic 4+ state, (elec-
tronic configuration 5f 06s2p2), thus behaving like simple systems, the ground
state of U is dominated by the partial occupation of the 5f shell giving rise to
long-range magnetic order if Stoner criterion is fulfilled [57]. In the opposite
case spin fluctuations may be provoked.

In chapter 5 of this study we focus on novel thermoelectric materials called
clathrate. ”Clathrate” derives from Latin ”clathratus”, ”furnished by a lat-
tice”. Wells et al. [60] defined clathrate materials as inclusion complexes, in
which particles of one substance are completely enclosed in cavities formed by
the crystal lattice or present in large molecules of another substance, i.e., the
crystal takes in foreign molecules during growth, that cannot escape until the
crystal is decomposed. Davy [61] first mentioned the formation of clathrates
on the basis of crystalline water complexes with inclusion molecules such as
Cl2 - so-called gas hydrates or ice clathrates, since gas molecules are entrapped
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in crystalline H2O. Ice clathrates are thus characterized by a hydrogen-bonded
framework similar to that of normal ice, but with a more open structure con-
taining different types of cavities enclosing atoms or molecules. The crystal
structure was determined by Stackelberg [62], Clausen [63] and Pauling and
Marsh [64]; the formation of two types of clathrates was reported, type I and
type II. Now, 9 different clathrate structures are known, type I to IX, which
were attempted to be classified by Jeffrey [65], yet, types IV, V, VIII lack
any representatives among intermetallics.

In order to raise the efficiency of thermoelectric devices Glen Slack in
1995 proposed the PGEC-concept (Phonon Glass and Electron Crystal) for
novel thermoelectric materials, which should combine the properties for good
electric conductivity of a crystal with poor thermal conductivity of a glass
[66]. This idea was realized in compounds with a rigid structure, responsible
for the electrical conductivity and by heavy atoms rattling in large cages,
thereby ensuring low thermal conductivity via additional scattering of the
phonons [67]. The new approach applies to clathrate phases with an extended
three-dimensional framework of germanium or silicon atoms, providing huge
voids usually filled by electropositive elements, R = Na, K, Cs, Rb, Sr, Ba, Eu.
Taking into account that some d and p elements are necessary for stabilization
of the framework structure as well as for a proper adjustment of the electronic
structure, the objects of this investigation are the ternary clathrate phases.

The present work continues systematic investigation of ternary clathrate
phases Ba8MxGe46−x−y�y and Ba6MxGe25−x, where p and d elements (M =
Pd, Cd, Zn, Pt), are used for stabilization of the framework structure as
well as for proper adjustment of the electronic density of states at the Fermi-
level. Very limited information is hitherto available on the thermoelectric
performance of clathrates stabilized by other transitional metals, such as Pd,
Zn or Cd [69, 70].

In general, cage-forming clathrates are expected to be located in a region
between metals and insulators where large thermopower values are found
(S ∼ 1/n, where S is the Seebeck coefficient and n the charge carrier density).
The principal tasks of these investigations are (i) to establish the extensions of
single-phase clathrate regions in the ternary system Ba-M-Ge, (ii) to elucidate
details of the crystal structure of clathrate type I, and (iii) to investigate the
physical properties of these ternary clathrates.

Another part of this study will focus on ternary silicon-based clathrate
phases in combinations with Ba and M = Pd, Pt. Although most (Si, Ge)-
based clathrates have been detected by Cordier and Woll [68, 71, 72] hitherto
little information is available on the formation and thermoelectric perfor-
mance of Si-based clathrates Ba8MxSi46−x−y�y (M = Pd, Pt). Therefore the
present research work was designed to elucidate formation, crystal structure
and physical properties of these materials as well. Theoretical considerations
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of thermoelectricity as well as of transport, magnetic and thermodynamic
properties of solids are presented within chapter 1. In order to account for
the large variety of phenomena expected within these classes of materials, var-
ious measurements were carried out; the techniques employed together with
aspects of sample preparation are shortly outlined in chapter 2. Each chapter
provides a detailed summary of literature already available and structural
features of each class of intermetallic compounds investigated in this thesis
followed by analyses and interpretation of the experimental results obtained.



Chapter 1

Theoretical Concepts

1.1 Electrical resistivity

The electrical resistivity of metals or intermetallic compounds is determined
by the number and mobility of charge carriers. In the Drude model [73],
the current density j is expressed as j = (ne2τ/m)E, where E = �

2k2/2m∗.
Hence, the resistivity ρ is expressed as

ρ =
m∗

ne2τ
, (1.1)

here m∗ is the effective electron mass, |e| electron charge, n is the charge
density, and τ is the relaxation time for scattering processes. Electrons mov-
ing through a metallic conductor are scattered not only by phonons but also
by lattice defects, impurity atoms, and other imperfections in an otherwise
perfect lattice. These impurities produce a temperature-independent contri-
bution that places an upper limit on the overall electrical conductivity of the
metal. In a first approximation both scattering processes can be considered as
independent from each other (Matthiessens’s rule). The resulting relaxation
time follows then from

1

τ
=

1

τ0
+

1

τph
. (1.2)

τ0 and τph are the respective relaxation times for impurity- and phonon scat-
tering. The relaxation time τ determines the magnitude and temperature
dependence of the electrical resistivity. According to Matthiessen’s rule, it
follows

ρ(T ) = ρ0 + ρph(T ). (1.3)

ρ0 is equal to the resistivity of the alloy at the absolute zero temperature
and its magnitude is determined by the concentration of lattice defects and
other static impurities and errors. ρph denotes to the electron-phonon scat-
tering. For the temperature-dependent part of resistivity, further scatter-

15



16 Chapter 1: Theoretical overview

ing mechanisms should be considered; one is the electron-electron scatter-
ing which always happens between electrons that take part in conduction,
and with energies near the Fermi energy, EF = (�kF )2/2m [73, 39, 74]. In
terms of scattering theory, the contribution to the total resistivity from the
electron-electron scattering is given by ρ ∝ T 2. But this contribution is often
completely overshadowed at elevated temperatures by other scattering mech-
anisms, like scattering from thermally excited lattice vibrations. Using the
linearized Boltzmann equation with the variational method based on the De-
bye model the Bloch-Grüneisen expression [75] obtains for electron-phonon
scattering resistivity ρph

ρph(T ) = cθD

(
T

θD

)5 ∫ θD/T

0

z5dz

(ez − 1)(1 − e−z)
, (1.4)

with z = �ω
kBT

, θD is the Debye temperature and c denotes a temperature in-
dependent constant, which is proportional to the electron-phonon interaction
strength and contains the ionic mass, the Fermi velocity, etc. U-processes
decay exponentially at low temperature. At sufficiently low temperature,
electron-phonon scattering is almost elastic [76, 77] and the scattering prob-
ability reaches a T 5 dependence so that ρph ∝ T 5 [78]. A further resistivity
term ρmag(T ) has to be considered in magnetic materials and the resistivity
can be written in the form of

ρ(T ) = ρ0 + ρph(T ) + ρmag(T ) (1.5)

In a localized picture and for the paramagnetic temperature region T > Tord,
where the spins are independently from each other, ρmag is given by

ρmag(T ) =
3πNm∗

2�e2EF
|J |2(g − 1)2j(j + 1) (1.6)

with J the exchange interaction constant between the conduction electron
spin and the spin total angular momentum of the magnetic ion, j is the total
angular momentum of the magnetic ion and (g− 1)2j(j + 1) is the deGennes
factor. g is the Lande-factor.

1.2 Thermal conductivity

Thermal conductivity is a fundamental and important physical parameters.
The study of the underlying physics of the heat-conduction process has pro-
vided a deep and detailed understanding of the nature of lattice vibrations in
solids. Heat conduction is usually quantified in terms of the thermal conduc-
tivity coefficient λ, which is defined through the macroscopic expression for
the rate of heat energy flow per unit area 	Q normal to the gradient ∇T

	Q = −λ∇T. (1.7)
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Within classical thermodynamics,

λ =

(
1

3

)
ncvvl, (1.8)

where l = vτ is the particle mean free path, v average particle velocity, τ is
the relaxation time and cv is the heat capacity. The thermal conductivity of
solids, in general, is maintained by the heat conduction by electrons λe and
by lattice vibrations λph

λtot = λe + λph. (1.9)

The Wiedemann-Franz law compares the electronic thermal conductivity λe

with 1/σ as given in equations 1.1 and 1.8 [79] revealing

λe = L0σT, (1.10)

with the Lorenz number L0 = (π2/3)(kBe)
2 = 2.45×10−8WΩK−2. This shows

that all metals have the same electronic thermal conductivity to electrical
conductivity ratio. In the scope of the free electron gas model, ve = vF and
ce = π2k2

BT/mv
2
F , the electronic thermal conductivity λe can be expressed as

λe = (1/3)ncevele, (1.11)

where ce is the electronic heat capacity per electron, ve the electron velocity, n
the number of conduction electrons per volume and le the electron mean free
path. According to the Matthiessen-rule, the electronic thermal resistivity
We of simple metals can be written as:

We ≡ 1

λe
= We,0 +We,ph. (1.12)

Here, We,0 is the electronic thermal resistivity, caused by electron scatter-
ing due to impurities and defects and We,ph is the lattice thermal resistivity,
caused by electron scattering due to thermally excited phonons. Assum-
ing that all defects and imperfections scatter electrons elastically, scatter-
ing processes of conduction electrons with impurities can be described as
We,0 = ρ0/L0T ∝ α/T , where α is a material dependent constant. The
thermal resistivity We,ph can be expressed by the Wilson equation[80]:

We,ph =
A

L0T

(
T

θD

)5

J5(θD/T )

{
1 +

3

π2

(
kF

qD

)2(
θD

T

)2

− 1

2π2

J7(θD/T )

J5(θD/T )

}
.

(1.13)
kF is the wave vector at the Fermi surface, qD is the phonon Debye wave vector
and A is material constant, depending on the strength of the electron-phonon
interaction, Debye temperature, the effective mass of electron, number of unit
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cells per unit volume, Fermi velocity and on the electron wave number at the
Fermi surface. The Debye integrals have the form

Jn(x) =

∫ x

0

zndz

(ez − 1)(1 − e−z)
, (1.14)

with z = θD

T
. At high temperatures a series expansion of Eqn. 1.13 yields

We,ph(T ) ≈ A

L0θD

= const. for T � θD (1.15)

while at low temperatures

We,ph(T ) ≈ const.

(
124.4

θD

)3

T 2 for T � θD. (1.16)

Lattice thermal conductivity is the dominant thermal conduction mech-
anism in non-metallic systems. λph is constrained by scattering processes of
the phonons with different scattering centers. A quantitative description of
lattice thermal conductivity is possible in terms of Callaway’s theory [81].
The temperature dependence of λph follows from Eqn. 1.8. According to
Callaway [81, 82, 83], this transforms for the heat carrying lattice vibrations
to

λph =
kB

2π2vs

(
kB

�

)3

T 3

∫ θD/T

0

τcx
4ex

(ex − 1)2
dx+ I2, (1.17)

with the velocity of sound vs = kBθD

�(6π2n)1/3 (in the Debye model) and x =

�ω/kBT , where n is the number of atoms per unit volume and ω the phonon
frequency. The second integral in 1.17 can be expressed as

I2 =

[∫ θD/T

0

τc
τN

x4ex

(ex − 1)2
dx

]2 / ∫ θD/T

0

1

τN

(
1 − τc

τN

) x4ex

(ex − 1)2
dx, (1.18)

where τ−1
c is the sum of the reciprocal relaxation times for point defect scatter-

ing (Eqn. 1.19) and τ−1
N is relaxation time for the normal 3-phonon scattering

processes. The various processes that scatter phonons are assumed to be in-
dependent of one another and to be described by individual scattering rates
τ−1
i such that:

τ−1
c = τ−1

N + τ−1
D + τ−1

U + τ−1
B + τ−1

E , (1.19)

where τ−1
N stands for normal three phonon scattering processes, τD, τU , τB and

τE denote point defect scattering, Umklapp processes, boundary scattering
and scattering of phonons by electrons. In general, the various scattering
processes will depend on both temperature and phonon frequency. If all
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phonon branches are scattered by resistive processes, then τN � τU ; as a
consequence, the first integral in Eqn. 1.17 predominantly contributes to
the observed thermal conductivity [84]. The N -processes are, in general,
important only at low temperatures and in nearly perfect, low-anharmonicity
crystals.

1.3 Thermopower (Seebeck Coefficient)

A discovery by T. J. Seebeck almost 180 years ago, opened the way for modern
thermoelectricity. In 1823, Seebeck [85] found that an electric current flows
in a closed circuit of two dissimilar metals when one of the two junction is
heated with respect to the other. In such a thermocouple circuit the current
continues to flow as long as two junction are at different temperatures. The
magnitude and direction of the current is a function of the temperature differ-
ence between the junctions and of the thermal properties of the metals used
in the circuit. This phenomenon is known as the Seebeck Effect. Ohmic and
Seebeck currents are fundamentally different in nature. When a metallic bar
is subjected to a voltage (V) or a temperature (T) difference, electric current
is generated. For small voltage and temperature gradients we may assume a
linear relation between the electric current density j and the gradients:

j = σE − A∇T (1.20)

where σ is the electrical conductivity. In an open circuit condition no electric
current flows, thus

σEs −A∇T = 0, (1.21)

where Es is the field generated by the thermal electromotive forces (emf).
The Seebeck coefficient, also called the thermopower, S, is defined through

E = S∇T, S ≡ A/σ. (1.22)

The conductivity σ is positive but the Seebeck coefficient S can be positive
or negative. Figure 1.1 represents an electric circuit consisting of the metal A
and B, which are joined with their junctions and maintained at temperatures
T1 and T2 = T1 +ΔT . The open ends are kept at a temperature T0. An open-
circuit voltage ΔV is generated if T1 	= T2. For homogeneous materials, this
voltage is independent of the precise details of the temperature gradient and
of T0. Only the difference T1 − T2 is important. The observed voltage

ΔVAB =

∫ T2

T1

[SA(T ) + SB(T )] dT, (1.23)

depends on the Seebeck coefficient of material A and B.
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Figure 1.1: Thermoelectric circuit.

Assuming a one-band system, the coefficient of the thermoelectric power
follows from

S =
1

eT

∫
(E −EF )jx(E)dE∫

jx(E)dE
. (1.24)

The electrical current associated with electrons of energy lying between E
and (E + dE) is jx(E)dE. If we write the current density as jx =

∑
i evi(x)

when the electric field is in x-direction, then in the scope of the linearized
Boltzmann equation, the current in the relaxation time approximation is given
as

jx =
−e2εx
4π3�

∫ ∫
τ
v2

x

v
ds
df0

dE
dE. (1.25)

Here the first integral is taken over a surface of constant energy and the second
integral is performed over all energies. The partial electrical conductivity σx

can be written as

σx =
e2

4π3�

∫
τ
v2

x

v
ds (1.26)

where the integration is made over constant energies E in the 	k space.

S =
1

eT

∫∞
0
σ(E)(E − EF )df0

dE
dE∫∞

0
σ(E)df0

dE
dE

. (1.27)

σ(E) is the energy dependent electrical conductivity, EF is the Fermi energy.
As equation 1.27 shows, the Seebeck coefficient is correlated to the electrical
conductivity and its energy dependence. Thus, S = 0 if σ(E) is constant
over a range of energy E ∈ (−kBT,+kBT ) for which df0

dE
	= 0. Equation 1.27

finally leads to the Mott relation [86], expressed by

S =
π2k2

BT

3e

1

N(EF )

∂N(E)

∂E
|E=EF

, (1.28)
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where the absolute values are depending on the energy derivative of the elec-
tronic density of states N(E) right at the Fermi energy. kB is the Boltzmann
constant and e is the electron charge.

Linearity of the diffusion part of the thermopower is then predicted in
terms of the free-electron model [87, 88]. For T > θD, (θD is the Debye tem-
perature) the electron phonon interaction dominates scattering mechanism
and the thermopower follows from:

Sd(T > θD) =
π2k2

B2me

e�2(3nπ2)2/3
T, (1.29)

where the dominating term is the inverse proportionality of S(T ) on the
charge carrier concentration n, me, the mass of the carriers and e is the
respective charge. The subscript d indicates diffusion thermopower being
linearly dependent on T .

In the most general case, the total Seebeck coefficient of a metal is the sum
of different contributions, the diffusion term Se originated by the movement
of electrons due to a temperature gradient, the phonon-drag term Sph, which
represents the electron drag due to phonons and finally Smag, which is caused
by the electron drag caused by magnons. The thermoelectric power of a metal
is given by different contributions:

S = Se + Sg + Sm. (1.30)

Since phonons interact with the electrons, there will be a momentum transfer
from the phonon flow to the electron flow causing an additional contribution
to the thermopower. This contribution is known as phonon drag Sph

Sph ∝
{

T 3 T � ΘD

T−1 T � ΘD.
(1.31)

These interaction processes, in contradiction to the electrical - and the ther-
mal resistivity, cannot be put together according to the Matthiessen rule to a
certain “total effect”. Instead of it, the so called Kohler rule has to be used.

S ·W =
∑

i

Si ·Wi (1.32)

where W is the thermal resistivity [89].

1.4 Specific heat of solids

The specific heat is a physical property of solids specifying the capability of
a substance to absorb heat. For real solids, like metals, the heat capacity Cp

consists of different additive terms:

C(T ) = Cel + Cph + Cmag + Cnuc. (1.33)
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Here, Cel represents the conduction electron term, Cph is the contribution due
to the lattice, Cmag is the magnetic contribution in both the ordered and the
disordered temperature range, while Cnuc is the nuclear contribution, which
is of importance just at very low temperatures.

Heat capacity of the conduction electrons in solids: The sim-
plest model for the conduction electrons is the model of the free electron gas.
The well-known thermodynamic result of this model is the low temperature
approximation for the electronic part of the specific heat yielding a linear
temperature dependence of

Cel =
π2

3
NAN(EF ) = γT, (1.34)

and is directly proportional to the density of states at the Fermi energy. Here
NA is the number of atoms per formula unit, N(EF ) is the density of states
at the Fermi energy and γ denote the Sommerfeld coefficient in [J/molK2]
and is usually estimated from the linear coefficient of the experimental low
temperature specific heat of non- magnetic metals.

Lattice contributions: An expressions of the temperature dependence
of the lattice contribution to the specific heat is usually based on the approx-
imation that all lattice vibrations are strictly harmonic. Anharmonic effects
can be taken into account with a perturbation series [90], but will be ne-
glected in the following discussion. Within the harmonic approximation the
3N vibration modes of the solid consisting of N atoms can be represented
by a set of 3N linear harmonic oscillators with the frequencies υi (i=1,...,
3N). The quantum excitations of the oscillators are called phonons and can
be indexed with their wave vector 	q and the branch index j of the dispersion
relation 	ωq,j = c · 	k. Their quantum mechanical excitation energy is given
by �ω�q,j and their occupation number n�q,j by the Bose-Einstein factor. The
total excitation energy is thus given by

E =
∑
�q,j

1

e�ω�q,j/kBT − 1
�ω�q,j. (1.35)

In the scope of the Debye model the overall temperature dependency of
the phonon part of the specific heat can be expressed as:

Cph = 9NikB

(
T

θD

)3 ∫ θD/T

0

exx4

(ex − 1)2
dx (1.36)

with x = �ω/kBT . Here θD is Debye temperature. For high temperatures,
i.e. T � θD, the phonon contribution of the specific heat becomes indepen-
dent of temperature following Dulong-Petit’s law, i.e. Cph = 3NikB; at low
temperature a T 3 term follows. The heat capacity of simple metals at low
temperatures is then given by

C(T ) = Cel(T ) + Cph(T ) = γT + βT 3. (1.37)
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The coefficient β corresponds to the low temperature limit of the Debye-
temperature ΘLT

D according to

ΘLT
D = 3

√
1944 · n

β
, (1.38)

where n is the number of atoms per formula unit.

An attempt was made in order to evaluate the specific heat data of mate-
rials using a model proposed by Junod et al. [91, 92], which was successfully
applied to a large number of A15-type compounds. If the sum in equation 1.35
is replaced by an integral introducing a phonon density of states, F (ω), one
obtains the harmonic lattice heat capacity Char ≡ ∂Ehar/∂T in the general
form

Cph(T ) = R

∫ ∞

0

F (ω)
ω2
(

ω
2T

)2
sinh2

(
ω
2T

) dω. (1.39)

In order to obtain Cph(T ) in [J/mol K], F (ω) has to be normalized to the
number of branches of the dispersion relation (3n for n atoms in one unit
cell) and the gas constant, R = 8.314 [J/mol K].

The most common assumptions of F (ω) are F (ω)=δ(ω) and F (ω) ∝ ω2

up to a cut-off frequency ωD which corresponds to the well known Einstein
and Debye model, respectively. The first approximation, the Einstein model
assumes that all lattice atoms are in an equivalent oscillator potential, inde-
pendent of each other and have therefore one common vibration frequency.
The Debye model where the coupling of the oscillators is taken into account
leads to F (ω) ∝ ω2. This approximation corresponds to a continuous medium
with a linear dispersion relation ω(q) = cq, where c denotes the velocity of
sound. Since the number of atoms N is finite, a cut-off is required. The cut-off
is the well-known Debye-frequency ωD given by the 3N possible modes. The
low temperature approximation of the Debye-model yields the cubic tempera-
ture dependence of Cph already given in equation 1.37. Note that the Einstein
frequencies can assume a finite spectral weight.

Magnetic contributions: In the case of magnetic materials a temper-
ature dependent contribution Cmag(T ) has to be added to the total specific
heat. Cmag depends sensitively on magnetic order and thermally induced
excitations of electrons populating, e.g. certain crystal electric field (CEF)
levels. In the scope of the molecular field model and T < Tord, Cmag(T ) can
be related to the magnetization M

Cmag(T ) = −1

2
α
∂M2

∂T
(1.40)

where α is the molecular field constant. In the presence of crystal field split-
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ting the contribution to the specific heat is given by:

CCEF =
R

k2
BT

2

⎡
⎣ 1

Z

n∑
i=0

E2
i e

−βEi −
(

1

Z

n∑
i=0

Eie
−βEi

)2
⎤
⎦ , (1.41)

with the partition function Z =
∑n

i=0 e
−(Ei/kBT ) and the universal gas con-

stant R=NkB=8.314 J/mol K. Eqn. 1.41 represents the so called Schottky
formula.

1.5 Some aspects of the BCS theory

The main idea of the BCS (Bardeen, Cooper, Schrieffer) theory is based on
the work of B. Cooper [94]. In 1956, Cooper showed that two electrons with
an attractive interaction can bind together in the momentum space to form a
bound pair. This bound state of two electrons is known today as the Cooper
pair. As the criterion for the occurrence of superconductivity, Cooper stated
that the attractive interaction between electrons mediated by phonons should
overcome the screened Coulomb repulsive interaction between electrons. In
1957, Bardeen, Cooper and Schrieffer [95, 97] showed how to construct a
wave function in which the electrons are paired. The wave function which
is adjusted to minimize the free energy was used as the basis for a complete
microscopic theory of superconductivity in metals.

An attractive interaction between electrons mediated by phonons can lead
to a ground state separated from excited states by an energy gap. The critical
field, the thermal properties, and most of the electromagnetic properties are
consequences of the energy gap. The penetration depth and the coherence
length emerges as natural consequence of the BCS theory. The way in which
a superconductor expels from its interior an applied magnetic field with small
magnitude (the Meissner effect) is by establishing a persistent super current
on its surface which exactly cancels the applied field inside the superconduc-
tor. This surface current flows in a very thin layer of thickness λ, which is
called the penetration depth. In the framework of the Ginzburg-Landau the-
ory, the coherence length ξGL is the characteristic scale over which variations
of the order parameter Ψ occur, for example, in a spatially-varying magnetic
field or near a superconductor-normal metal boundary. Thus, the central
phenomenon in superconductivity, the Meissner effect, is obtained in a natu-
ral way. The criterion for the transition temperature involves the density of
states of orbitals N(0) at the Fermi level and the electron lattice interaction
V . In the framework of the BCS theory, one can derive an expression for the
critical temperature [96]

kBTc = 1.14θD exp

(
− 1

N(0)V

)
, (1.42)
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where θD is the Debye temperature. Another important BCS result is the
ratio of the critical temperature Tc and the energy gap Δ(0) at T = 0, given
by

Δ(0)/kBTc = 3.528, (1.43)

referring to comparable magnitudes [96]. Near the transition temperature
Tc, the temperature dependent gap width can be found from the following
relation:

Δ(T ) ≈ 3.2kBTc

√
1 − T

Tc

, (1.44)

consistent with Landau’s theory of second-order phase transitions. The ex-
pression for the free-energy of the superconducting state yields an exponential
temperature dependence of the electronic specific heat in the superconducting
state

CeS
∼= 8.5γTc exp

[
−1.44

(
Tc

T

)]
. (1.45)

The BCS theory predicts that the electronic specific heat jumps abruptly at
Tc from the normal state value γTc to the superconducting state value CeS

[97]. The height of the specific heat jump is given by

ΔC

Cn
(T = Tc) ≡ CeS − Cn

Cn
|T=Tc = 1.43. (1.46)

Because of the gap in the electronic density of states at E = EF the specific
heat falls exponentially, as the temperature decreases,

CeS ∝ exp

(
−Δ(T )

kBT

)
. (1.47)

In the two-fluid model, the exponential temperature dependence means that
below Tc, only the normal component transports heat. The Cooper-pair con-
densate does not contribute to the energy transfer. In the strong electron-
phonon coupling regime, i.e. when 2Δ> 3.52 kBTc, the value of specific-heat
jump increases, i.e. ΔC/Cn> 1.43.

1.6 Some concepts of the Ginzburg-Landau

Abrikosov-Gor’kov Theory

In 1950, Ginzburg and Landau [98] proposed a new phenomenological theory
to explain superconductivity that contained the London theory and could
account for a density of superconducting electrons varying in space. It was
originally introduced as a phenomenological theory, but later Abrikosov [99]
and Gor’kov [100] showed that it can be derived from the microscopic BCS
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theory in a reasonable limit. The Ginzburg Landau theory makes many useful
and important predictions. Macroscopic and thermodynamic properties of
superconductors usually are more easily and more reliably measured than
microscopic quantities like e.g. the energy gap Δ or the electron-phonon
coupling function α2F (ω).

The fundamental ideas for a basic understanding of the magnetic prop-
erties of superconductors (e.g. type II superconductivity) was worked out
by Ginzburg, Landau, Abrikosov and Gor’kov, referred to as GLAG theory.
Ginzburg and Landau argued that the free energy F of a superconductor near
the superconducting transition can be expressed in terms of a complex order
parameter ψ. The free energy F can be expanded in a Landau series of the
form

Fs − Fn0 = α |ψ|2 +
β

2
|ψ|4 +

1

2m∗

∣∣∣(−i�	∇− μ0e
∗ 	A
)
ψ
∣∣∣2 +

μ0H
2

2
(1.48)

where Fn is the free energy in the normal phase, the e and m refers to the
superconducting charge carriers and α and β are phenomenological parame-
ters. A is the electromagnetic vector potential, and H is the magnetic field.
If ψ= 0, the free energy density f reduces to the free energy density of the
normal state fn − fn0 = h2/(8π) as expected. Here F and H replaced by
their densities f and h. As with all Landau theories the difference in free en-
ergy between the low temperature and high temperature states is calculated
by expanding the order parameter. To fourth order, the free energy in the
absence of fields and gradients is

Fs − Fn0 = α |ψ|2 +
β

2
|ψ|4 . (1.49)

This can be interpreted as a Taylor series expansion in ns(T ) = |ψ|2 stopped
after the second term. This requires ns(T ) = |ψ|2 to be small, i.e. the system
has to be close enough to the transition temperature Tc. With β> 0, two
cases arise:

• α positive: The minimum free energy occurs at |ψ|2 = 0, corresponding
to the normal state.

• α negative: The free energy is minimized when the derivative of
Eqn.1.49 with respect to |ψ|2 is cancelled, i.e. when

|ψ|2 = |ψ∞|2 ≡ −α
β
, (1.50)

where the notation ψ∞ suggests that ψ takes on this value infinitely deep
in the superconductor where it is screened from any surface fields or cur-
rents. The case α< 0 thus stands for the superconducting state of the system.
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Therefore, α changes sign at Tc. Substituting 1.50 back into 1.49 and using
the definition of the thermodynamical critical field Hc, which it discussed in
subsection 1.7, the free energy difference becomes

Fn − Fn0 = −H
2
c

8π
= −α

2

2β
(1.51)

as expected. Introducing boundary conditions and applying variational prin-
ciples to minimize the overall free energy, Ginzburg and Landau derived the
so-called Ginzburg-Landau equations [96]. From these equations they ob-
tained qualitatively the temperature dependencies of the spatial variation
length of the order parameter (Cooper-pair density), ξGL and the penetration
depth of the local magnetic field, λGL.

Since within the GL theory these two parameters are related to each
other via the thermodynamic critical field Hc, they introduced the dimen-
sionless Ginzburg-Landau parameter κ, which is defined as the ratio of the
two characteristic lengths, penetration depth λ and coherence length ξ,

κGL ≡ λ

ξ
=

2π
√

2μ0Hc(T )λ2
GL(T )

Φ0
(1.52)

where Φ0=h/2e = 2.07 ×10−15 Wb, is the fluxoid quantum. Ginzburg and
Landau noted that the surface energy of the interface between superconduct-
ing and flux-bearing normal conducting regions is positive for κ � 1 and
negative for κ� 1.

Abrikosov’s [99] more detailed that magnetic flux penetrating into a type
II superconductors will be subdivided to distinct flux lines each carrying a
quantum of flux Φ0=h/2e. This so-called ”mixed state” reduces the diamag-
netic energy and therefore superconductivity can persist up to the so-called
upper critical field Hc2 (> Hc). The relation of Hc2 to the thermodynamic
critical field Hc is clarified and given by [101]

Hc2 =
Φ0

2πμ0ξ2
=

4πλ2H2
c

Φ0
=

√
2κHc (1.53)

where ξ is the coherence length and κ is the Ginzburg-Landau parameter.
From Eqn. 1.53 it clear that the value κ = 1/

√
2 indeed separate the materials

for which Hc2>Hc (type II superconductors) from those for which Hc2<Hc

(type I superconductors). It is inherent in the Ginzburg-Landau theory that
superconductors may divided in two groups [102] according to the value of
the dimensionless Ginzburg-Landau parameter κ; for type I superconductors;

κ<1/
√

2, Hc2<Hc for type I SC (1.54)

the total surface energy of the normal-superconducting boundary is positive
and materials exhibits ideal magnetic behavior, but for type II superconduc-
tors

κ>1/
√

2, Hc2>Hc for type II SC (1.55)
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a negative surface energy [103, 104] and quite different magnetic behavior are
expected [105].

For the case of κ � 1, Abrikosov derived a relation for the lower critical
field Hc1 given by

Hc1 =
Φ0

4πμ0λ2(T )
lnκ. (1.56)

Equations 1.53 and 1.56 can be used to estimate ξ(T ) from specific heat and
magnetic measurements.
In 1959 Gor’kov [100] showed that the phenomenological Ginzburg-Landau
equations follow from the microscopic BCS theory of superconductivity in the
temperature region close to Tc. It terms the microscopic GL theory, Gor’kov
analyzed the behaviour of superconducting alloys (i.e. type II superconduc-
tors) in a magnetic field near the critical temperature and pointed out the
importance of simple material parameter namely the electron mean free path
l. The essential length scale determining the results of Gor’kov calculation is
of the order of l if l � ξ0 (dirty limit) and of the order of ξ0 if l � ξ0 (clean
limit). The BCS coherence length ξ0 is given by

ξ0 =
�vF

πΔ(0)
= 0.18

�vF

kBTc
(1.57)

where vF denotes the Fermi velocity and Δ(0) the gap in the one particle exci-
tation spectrum at zero temperature. Since in any calculation of the magnetic
properties of type II superconductors one has to distinguish between pure or
clean-limit superconductors (l � ξ0) and impure or dirty-limit superconduc-
tors (l � ξ0), Gor’kov introduced the so-called G-L impurity parameter α∗

defined as

α∗ ≡ 0.882
ξ0
l

=
�vF

2πlkBTc
(1.58)

and derived the following expressions for κ close to Tc:

κ = 0.96
λL(0)

ξ0
for clean SC if, α∗ � 1, l � ξ0 (1.59)

κ = 0.725
λL(0)

l
for dirty SC if, α∗ � 1, l � ξ0 (1.60)

where λL(0) = (2μ0e
2υ2

fN(0)/3)−1/2 is the London penetration depth at the
temperature of absolute zero. Equation 1.60 shows that κ of a superconduc-
tor is increased if the electron mean free path is shortened by a high impurity
concentration, which implies an increase of the electrical resistance of super-
conductors in the normal state region.
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1.7 The thermodynamic critical field Hc

Meissner and Ochsenfeld [106] investigated the magnetic properties of elemen-
tary superconductors and revealed the fundamental thermodynamic property
of the superconducting state that perfect diamagnetism persists up to a crit-
ical field Hcrit.(T). Superconductivity vanishes in external magnetic fields
larger than Hcrit., because the static magnetic energy, μH2/2, exceeds the
condensation energy of the superconducting state, Fn-Fs. So-called type I
superconductors are characterized by M = - H if H≤ Hcrit. and M=0. The
thermodynamic critical field is calculated from the free energy difference be-
tween the superconducting and normal state:

ΔF (T ) = Fn(T ) − Fs(T ) = μH2
c (T )/2 =

∫ T

Tc

∫ T ′

Tc

(Cs − Cn)

T ′′ dT ′′dT ′. (1.61)

Almost all elementary superconductors belong to this group, but the much
larger group of superconducting alloys and compounds show a more complex
magnetic behavior, because their magnetic energy is lowered by the formation
of the mixed state.

1.8 The critical magnetic field Hc2

From the critical field slopes near Tc several important superconducting and
normal-state parameters can be estimated. These estimates are based on the
evaluation of the Ginzburg-Landau (GL) parameters from the BCS-Gor’kov
equations near Tc [107, 109, 110]. The main link between superconducting
and normal-state properties is given by

−dHc2

dT
|Tc =

24π2

7ζ(3)

k2
Bc

�e

Tc

v2
F

χ−1(λtr) =
�c

2e

1

ξ2
GL(0)

1

Tc

(1.62)

where ξGL(0) is the zero-temperature Ginzburg-Landau (GL) coherence
length, Tc transition temperature, ζ(3)=1.20205, ..., is the Riemann’s ζ func-
tion and transport scattering length given by

λtr = �vF/2πkBTcltr = 0.9ξ0/ltr, (1.63)

with the mean free path ltr and Fermi velocity vF . Here χ(λtr) is the Gor’kov
function, also expressed as χ(λtr) = R(λtr)/(1+λtr), where R(λtr) is always
of order unity [R(0)=1 and R(∞)=1.17] [107, 109, 110]. The slope of the
upper critical field (dHc2/dT )Tc

can be rewritten as [111]

H ′
c2 = −dHc2

dT
|Tc =

ηHc2(Tc)

R(λtr)

[(
24π2

7ζ(3)

k2
Bc

�e

)
Tc

v2
F

+

(
12π

7ζ(3)

kBc

e

)
1

vF ltr

]
(1.64)
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= ηHc2(Tc)
R(∞)

R(λtr)

(
(2.17 · 108)

Tc

v2
F

+ (3.29 · 10−4)
1

vF ltr

)
, (1.65)

here, ηHc2(Tc) is the ratio of the strong-coupled magnetic pair-breaking
parameter and can be estimated if the electron-phonon spectral function
α2F (ω) is known [112, 113, 114, 115]. Some simplifications yields:

• R(l) = 1; dirty limit (l = 0)

• R(l) = 1.17; clean limit (l =∞)

with R(l) = ηHc2(Tc)R(∞)/R(λtr). In the clean limit only the first term
contributes significantly to H ′

c2. H
′
c2 increases with decreasing Fermi velocity

vF . The second term of equation 1.64 increases with decreasing values of
the mean free path l and determines therefore H ′

c2 in the dirty limit. If all
parameters and coefficients are taken together in the case of the dirty limit
with spherical Fermi surface we have [89]:

H ′
c2(dirty) =

(
(4490)

Tm2K

ΩJ

)
γρ0, (1.66)

with γ the Sommerfeld value of the electronic specific heat in [J/m3K2] and
ρ0... the residual resistivity in [Ω cm]. The Fermi velocity vF can be calculated
according to Orlando et al. [111]:

〈vF 〉 = k2
B�

−1(π4/3)1/3
(
n2/3S/SF

)
γ−1 = 5.77 × 10−5

(
n2/3Ss/SF

)
γ−1,

(1.67)
where Ss is the Fermi-surface area, on which Cooper-pairs are formed; Ss/SF

is the ratio of the free Fermi-surface area S to that of a free electron gas of
density n and SF is given by

SF = 4π(3π2n)2/3. (1.68)

The effective Fermi surface Ss can be calculated as shown by Rauchschwalbe
[116]

Ss =

(
1.18 × 1035 · γ2Tc

H ′
c2/R(l) − (4490γρ0)

)1/2

. (1.69)

Combining Ss and ρ0 derives an expression for the free path ltr

ltr = 9 × 1011
�(3π2)1/3

(
e2Sρn

)−1
= 1.27 × 104

[
ρn(Ωcm)

(
n2/3Ss/SF

)]−1
cm.

(1.70)
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Experimental

2.1 Sample preparation

2.1.1 Ce–Pt–Si

The investigations were carried out an about 100 samples having masses of
about 1 g. Alloys were made in an electric arc furnace under an argon atmo-
sphere with a non consumable tungsten electrode and a water cooled copper
hearth. The purity of cerium was 99.9 at.%, the purity of platinum and silicon
was better than 99.9 at.%. Titanium was used as a getter prior to melting.
The alloys were remelted two times in order to improve their homogeneity.
The mass loss of the alloys after melting was less than 1%. After melting,
the as-cast samples were cut into two pieces with a diamond wheel saw. The
smaller piece of specimen cut again into two halves of which on half was used
for X-ray powder diffraction and one halves of the piece used for electron
probe microanalysis. After examination of the as-cast microstructures the
other half of the samples were thermally heat-treated in evacuated quartz
ampoules which were sealed under residual atmosphere of argon. Annealing
was done in a resistance furnace at 800◦C for 720 h with subsequent quench-
ing into cold water. After annealing and standard metallography preparation,
the diffusion and the equilibrated alloys were examined by light optical mi-
croscopy (LOM), electron probe microanalysis (EPMA) and X-ray diffraction
(XRD) analysis was performed to identify the ternary alloys.

2.1.2 Clathrate Ba-X-Ge Systems (X=Pd, Cd, Zn)

Alloys with a weight of 1-2 grams were prepared from elemental ingots (Ba
99.9, Pd, Cd, Zn 99.99, Zn 99.99 and Ge 99.999 mass%) by melting in sealed
quartz tubes at 1000◦C for 2 h (weight loss less than 0.1 %). Afterwards
samples were furnace cooled to 800◦C and annealed at this temperature for
4-7 days prior to quenching in cold water. Single crystals were mechanically
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isolated from crushed alloys. Inspection on an AXS-GADDS texture goniome-
ter assured high crystal quality. Unit cell dimensions and Laue symmetry of
the specimens prior to X-ray intensity data collection on a four-circle Nonius
Kappa diffractometer equipped with a CCD area detector employing graphite
monochromatic MoKα radiation (λ = 0.071073 nm). Orientation matrix
and unit cell parameters for a cubic system were derived using the program
DENZO [117]. No absorption corrections were necessary because of the rather
regular crystal shape and small dimensions of the investigated specimens. X-
ray intensity data for a single crystal with composition Ba8Cd7.6Ge38.4 were
collected at three temperatures: 100, 200 and 300 K whereby isothermal tem-
peratures for the crystal, mounted with transparent varnish on a glass rod,
were assured by a continuous stream of nitrogen gas enclosing the crystal at
preset temperature.

The Pd alloys were annealed at T = 800◦C for 7 days before quench-
ing in cold water. Phase diagram studies, X-ray structure determina-
tions/refinements on powders as well as on a single crystal Ba8Pd3.7Ge42.3

and subsequent measurements of the various bulk properties on single phase
polycrystalline material were carried out with a series of standard techniques.

Samples with nominal composition Ba8Zn8Ge38 were annealed at 700, 600,
500 and 450 ◦C. Single crystals were mechanically isolated from crushed alloys.
No absorption corrections were necessary because of the rather regular crystal
shape and small dimensions of the investigated specimens. The structures
were refined with the aid of the SHELXL-97 program [118]. Compounds
Ba8Ge43 and Ba6Ge25 were used as EPMA standards.

2.1.3 Clathrate I Systems Ba8{Pd,Pd}xSi46−x

Clathrate I Si phase samples, namely novel Ba8{Pd,Pd}xSi46−x were also
prepared by argon arc melting of the constituent metal pieces of minimum
99.9% mass purity. The alloys were sealed in evacuated quartz tubes and
annealed at 900◦C for 5-7 days prior to quenching in cold water. Details of
the various techniques of characterization of composition have been described
in detail by Melnychenko et al. [69, 70].

2.1.4 RE2Pd14+xB5−y

Alloys with nominal composition M2Pd14+xB5−y, M= Th, U, La, Ce, Pr, Nd,
Sm, Eu, Gd, with a weight of about 1 gram each were prepared by argon
arc-melting (weight loss less than 0.1%) from elemental ingots with minimal
purity of 99.9 mass%. All alloys were sealed in quartz tubes and annealed
at 900◦C for 240 h before quenching in cold water. Single crystals were
mechanically isolated from the crushed as-cast alloy Nd2Pd14B5.
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2.2 Physical and chemical investigations

2.2.1 Structure analysis

Phase conditions of the samples were checked at room temperature using X-
ray powder diffraction data, which were obtained using a Huber Guinier pow-
der camera and monochromatic CuKα-radiation with an image plate record-
ing system. Precise lattice parameters were calculated by least squares fit
of the indexed 4θ-values obtained from X-ray film recordings using Ge as
internal standard (aGe=0.5657906 nm). For quantitative refinement of the
atom positions, X-ray intensities were collected in transmission from a flat
specimen in a Guinier image plate camera. Quantitative Rietveld refinement
of X-ray powder diffraction data was performed with the program package
FULLPROF [119, 120], with the use of its internal tables for the atomic form
factors.

The as cast and annealed samples were polished using standard proce-
dures and were examined by optical metallography and scanning electron
microscopy (SEM). Additionally electron probe micro analyses were carried
out for some of the compounds in order to control the correct composition.
Compositions were determined via EPMA on a Carl Zeiss DSM 962 equipped
with a Link EDX system operated at 20 kV and 80μA. Ba8Ge43 and Ba6Ge25

compounds were used as EPMA standards. Samples for physical property
measurements were all examined by LOM, SEM, EPMA and only specimens
with an amount of secondary phases (typically Ge) of less than 2 vol. %
were used. The thorium palladium boride alloy was analyzed on a CAMECA
SX50 wavelength dispersive spectrograph comparing the characteristic X-rays
of the three elements in the alloy with those from the pure elements and stan-
dards (ThB6 and Pd2B) applying a peak deconvolution and ZAF correction
procedure [121]. The experimental parameters employed were: acceleration
voltage of 15 kV, sample current of 15 nA and spectrometer crystals such as
PET for Th, Mα, PET for Pd, Lα and PC3 for the B, Kα radiation. Mea-
surements of the various physical properties were carried out with a series of
standard techniques.

2.2.2 Electrical resistivity measurements

Electrical resistivity measurements were carried out in a standard 4 terminal
a.c. and d.c. technique, respectively. Measurements were performed from
4.2 K to room temperature in a conventional 4He bath cryostat with sample
dimension of 1 × 1 × 5 mm3. The specimen were mounted on an electrically
isolated brass plate and contacted by four gold needles, serving as electrical
contacts. For temperature measurements resistive sensors of Ge for T < 30 K
and Pt for T > 30 K, respectively, were used. A Lakeshore a.c. resistance
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bridge 370 with an additional low resistance scanner (Model 3716L) acquired
the experimental data.

Electrical resistivity down to 400 mK as function of external magnetic
fields up to 12 T was measured in a Cryogenics nitrogen-coated 3He cryo-
stat, sample geometry and contacting resembling those of the 4He cryostat
setup. Temperature was determined using calibrated Cernox temperature
sensors supplied by Lakeshore Cryogenics. A description of the cryostat, the
operation principles, the sample holder as well as measurement setup and
equipment are given in Ref. [122, 123].

2.2.3 Thermopower measurements

Thermopower measurements were carried out from 4 K to 300 K with a so-
called a differential seesaw-heating method [124]. The absolute thermopower
Sx(T ) was calculated using the following equation:

Sx = SA − VA

VA − VB
(SA − SB). (2.1)

where SA and SB represent the absolute thermopower of Chromel and Con-
stantan and VA and VB, the voltages along Chromel (AuFe0.07%) and Con-
stantan circuits depending on the temperature difference ΔT , respectively.
The spot welded junctions of thermocouple pairs Chromel-Constantan were
connected to the surface of the sample by soldering or by a two component
silver conductive Epoxy Epo-TeK-H20E. During the measurement a temper-
ature gradient 0.2< T <2 K is applied to the specimen, in both directions
(seesaw heating). The heaters provides the essential temperature gradient.
The voltages between the thermocouple wires were measured in both direc-
tions by a Keithley 192 nanovoltmeter. The sample temperature and the
absolute temperature were measured with a Pt sensor in the range from 40
to 300 K and a Ge sensor below 40 K, respectively.

2.2.4 Thermal conductivity measurements

Thermal conductivity measurements from 4 to 300 K were carried out by a
steady state heat flow method in a 4He Cryostat. The sample was surrounded
by three radiation shields; the inner is held on the same temperature as the
heat sink. Generally the rectangular shaped samples with a typical cross sec-
tion A of 1-2 mm2 and a length of about 10 mm were studied. One end of the
sample was placed to a copper stage at a reference temperature T0. At the
other end of the sample, a strain gauge was attached as heater establishing
the temperature gradient ΔTS. ΔTS was determined by a differential ther-
mocouple (AuFe0.07%/Chromel), which had its reference temperature from
Pt and Ge sensors at the heat sink. The temperature gradient between the
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heat sink and the lower sample end is ΔTB. The voltage drop at the strain
gauge was measured, allowing to deduce the thermal flux Q. Using these
temperatures the average sample temperature TS is given as:

TS = T0 +
ΔTS

2
+ ΔTB (2.2)

and the thermal conductivity λ is calculated

λ =
l

A

Q

ΔTS
. (2.3)

A is the sample cross-section and l the effective length. This configuration
has been used for high accuracy measurements by including a radiation shield
and establishing about the same temperature profile along the shield as exists
along the sample. This helps to minimize the radiative losses making T0 ≈ TS.
The heat loss due to radiation is given by the Stefan Boltzmann law:

Q = εσSBA(T 4
S − T 4

0 ), (2.4)

where TS is the sample temperature, T0 is the temperature of the heat sink
and the surrounding radiation shield and A is the surface of the sample,
σSB = 5.710−8 Wm−2K−4 is the Stefan Boltzmann constant; the emissivity ε
in general ranges between 0 and 1, respectively.

2.2.5 Specific heat measurements

Specific heat measurements were carried out on samples of about 1 g in the
temperature range 1.8 K to 300 K employing a quasi adiabatic step heating
technique in external magnetic fields up to 11 T. Temperature was obtained
from a calibrated Cernox resistor; heat capacity data were calibrated against
high purity Cu. By means of a design originating from a quasi-adiabatic
Nernst setup [125], a temperature sensor (Cernox ) is placed in the bore of
a sapphire plate sample holder fixed by nylon wires and surrounded by a
radiation shield. A unique feature of these specific heat experiments is the
heat pulse evaluation software which was worked out by G. Schaudy [126].
Details concerning implemented algorithms as well as calibration are found
in [127, 128].
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Structural chemistry of ternary
Ce–Pt–Si system

3.1 Introduction

The recent discovery of CePt3Si (CePt3B type) as the first heavy fermion
superconductor without a center of symmetry [11, 12, 13, 14] has triggered
widespread research activities to search for a novel superconducting state in
related ternary or quaternary alloy systems [15, 33]. However, not only the
superconducting properties but also normal state physics of ternary CePt3Si
show a number of exceptional features which are not all fully elucidated.
To gain more insight into general physical properties of such compounds,
our studies were extended to rare earth-M-Si (M = Pt, Pd, Rh, Ir) systems
in search for novel materials with similar property characteristics and/or a
possibly high Seebeck effect due to strong electron correlations. Up to now
the isothermal section of Ce-Pt-Si system at 800◦C was not studied in the
whole concentration range, but the existence of many ternary compounds was
reported in the isothermal section of the phase diagram Ce-Pt-Si at 600◦C
[129], namely CePtSi, CePtSi2, CePt2Si2 and Ce2Pt15Si7. Each of them shows
unusual properties: CePtSi: coherent Kondo lattice and heavy fermion com-
pound [130]; CePtSi2: Kondo compound with a Kondo temperature TK =
10K [131]; CePt2Si2: compound with valence fluctuation [132]. In this part
of work the aim was to investigate the interaction of the components in the
ternary system Ce-Pt-Si in the whole concentration range and to determine
the crystal structures of ternary compounds. Phase relations in the ternary
system Ce-Pt-Si have been experimentally established for the isothermal sec-
tion at 800◦C based on X-ray powder diffraction, metallography, SEM and
EPMA techniques on about 100 alloys, which were prepared by various meth-
ods employing arc melting under argon or by powder reaction sintering in
closed crucibles.
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3.2 Binary systems

Binary Ce-Pt is characterized by six intermediate phases [133]. Crystal struc-
ture and lattice parameter are summarised in Table 3.1 together with refer-
ences [134]. The binary system Ce-Pt is used in the version of [135]. The
melting temperature of Ce7Pt3, however, was re-measured in a DTA exper-
iment and found to be at 860◦C [136]. The binary systems bounding the
ternary system were published in the literature. CePt2 has a wide homogene-
ity region of ∼ 9 at.%, it dissolves platinum up to the composition ∼ Ce25Pt75.
The solubility of Pt and Ce in each other compounds in this binary system is
reported to be negligible. The Pt-Si binary-phase diagram was investigated a

Phase Space group Prototype Lattice Parameters Ref.
a (nm) b (nm) c (nm)

Ce5Si3 I4/mcm Cr5B3 0.7855(2) 1.3850(5) [138]
Ce3Si2 P4/mbm U3Si2 0.77870(6) 0.43824(6) [138]
CeSi Pnma FeB 0.8254(1) 0.39997(7) 0.59452(9) [138]
Ce5Si4 P41212 Zr5Si4 0.79669(6) 1.44948(2) [138]
CeSi1.34 Cmcm V2B3(Nd2Si3−x) 0.44035 2.48389 0.39517(2) [139]
CeSi1.67 Imma GdSi2−x 0.4189 0.4109 1.3917 [138]
CeSi2−x I41mma ThSi2 0.4154 1.3822 [129]
Pt25Si7 Unknown Unknown [135, 145]
Pt3Si- ht Pnma Fe3C 0.5579 0.7697 0.5520 [135, 143]
Pt3Si- rt C2/m Fe3Ge 0.7702 0.7765 0.7765 [135]
Pt3Si Unknown Unknown [134]
Pt5Si2 Unknown Unknown [145]
Pt12Si5- ht I4/m Ni12Si5 (Ni12P5) 0.9607 0.5542 [143]
Pt12Si5- rt P4/n Pt12Si5 1.34055(5) 0.55186(3) [134]
Pt2Si- ht P6̄ 2m Fe2P 0.64567(9) 0.35772(5) [134]
Pt2Si- rt I4/mmm ThH2 0.39282(2) 0.59215(5) [134]
Pt6Si5 P21/m Pt6Si5 0.6158(2) 0.34915(7) 1.5425(3) [134]
PtSi Pnma MnP 0.55828(4) 0.35942(3) 0.59245(5) [135]
Ce7Pt3 P63mc Fe7Th3 1.0204 0.6399 [129, 145]
Ce3Pt2 R3̄ Er3Ni2 0.8976(2) 1.7124(3) [129, 145]
CePt Cmcm CrB 0.3974(1) 1.0940(4) 0.4479(1)
Ce3Pt4 R3̄ Pu3Pd4 1.3661(7) 0.5779(3) [134]
Ce(Ce1−xPtx)Pt4 F4̄3m AuBe5 0.76380 [129]
CePt5 P6/mmm CaCu5 0.5348(6) 0.4364(5) [134]

Table 3.1: Crystal structure and Lattice parameters data for the binary sys-
tem Ce-Si, Pt-Si and Ce-Pt.

couple of times. A very recent version is summarised in Ref. [137]. According
to this paper there are five binary intermediate phases, Pt3Si, Pt12Si5, Pt2Si,
Pt6Si5, and PtSi.

Ce-Si system was adopted from a recent investigation by [138]. There is
no doubt about the formation of an additional phase, Ce2Si3−x (CeSi1.34),
for which crystal and magnetic structure were determined by [139]. A new
investigation of the Pt-Si system by Massara et al. [135] superseded the Pt-Si
diagram presented in [140] and two more compounds, Pt25Si7 and Pt17Si8,
were discovered from detailed DTA-analyses of about 110 alloys. X-ray data
were merely used to identify changes in the intensity patterns, however, no
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details were given on the crystal structures of the binary compounds. From
a comparison of the phase diagram of [141] with the new version of [135] the
compound Pt12Si5, described by [142], [143], appears to be shifted to compo-
sition Pt5Si2. In order to eliminate contradicting information in literature on
formation and crystal structure of Pt-Si compounds, several alloys with com-
positions Pt6Si5, Pt2Si, Pt17Si8, Pt12Si5, Pt3Si and Pt25Si7 were prepared and
investigated by means X-ray powder diffraction in as-cast state and after an-
nealing at 800◦C. Our Rietveld refinements confirm structural details for PtSi,
Pt6Si5, Pt2Si (for both the low- and high-temperature modification) whilst
significant disagreement was noticed for the atom positions of Pt3Si (Pt3Ge-
type structure [141]). Structural parameters reported for Pt12Si5 (Pt12Si5-
type [142, 144] show significant differences between calculated and observed
X-ray intensities. Furthermore, Pt3Si (Fe3C-type), Pt17Si8 and Pt25Si7 were
not observed in the investigated alloys: the X-ray powder diffraction spectrum
recorded from an alloy with composition Pt17Si8 was indexed as a mixture of
Pt2Si and ”Pt12Si5” and similarly the alloy Pt25Si7 consists of Pt3Si and Pt.
Consequently, the phase relations derived from the present investigation at
800◦C were found to be consistent with those reported by [140].

3.3 Ternary systems

The state of knowledge about the Ce-Pt-Si system before/after this work is
summarised in Table 3.2 [129, 134]. The phase diagram was determined for
the Ce-Pt-Si system at 800◦C. Crystal growth and bulk material syntheses
require detailed knowledge of phase relations as well as of crystal structures. A
critical assessment by Gribanov et al. [146] summarised all data available then
on the Ce-Pt-Si system with respect to phase equilibria [129] incorporating
also unpublished data [147] and knowledge on physical properties. As a result
of the critical review an isothermal section at 600◦C [129] was presented,
which, however, left many regions in the diagram (with dashed tie-lines)
open for further detailed studies. Therefore a reinvestigation of the phase
relations became the subject of the present work. In order to profit from
enhanced diffusion in the system combining elements with rather different
melting points, a temperature of 800◦C was chosen in our reinvestigation for
the isothermal section. Only one phase, CePt3Si, (the most stable in this
system) could be prepared as a single phase. A phase analysis of samples
with different compositions was carried out. The results are schematically
summarised in the presented isothermal section of the phase diagram for the
Ce-Pt-Si system at 800◦C, see Fig. 3.1.
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Figure 3.1: Isothermal cross-section of the Ce-Pt-Si system at 800◦C.

3.4 Phase relations; the Isothermal Section

Ce-Pt-Si at 800◦C

Phase relations in the ternary system at 800◦C are shown in Fig. 3.1.
The most striking difference to the equilibria at 600◦C as presented by
[129, 147, 146] is the much larger amount of ternary phases as well as the
absence of a significant solubility for silicon throughout the full homogene-
ity region of the binary compound Ce(Ce1−xPtx)Pt4. Furthermore, phase
equilibria are characterized by the absence of cerium solubility in the various
platinum silicides. However, mutual solubilities among cerium silicides and
cerium platinides are significant. The essentially random substitution of the
almost equally sized atom species platinum and silicon is reflected in extended
homogeneous regions at constant Ce-content for several binary and ternary
compounds such as for τ13-Ce(PtxSi1−x)2 or τ6-CePt2−xSi2+x.

The directions of homogeneous regions of the ternary compounds indicate
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Code Phase Space group Prototype Lattice Parameters Ref.
a (nm) b (nm) c (nm)

τ1 Ce3Pt23Si11 Fm3̄m Ce3Pt23Si11 1.68647(5) [134]
τ2 Unknown Unknown
τ3 Ce2Pt7Si4 Pnma Ce2Pt7Ge4 1.96335(2) 0.40361(1) 1.12240(2) [134]
τ4 Unknown Unknown
τ5 CePtSi3 I4mm CeNiSi3 0.43222(1) 0.96017(5) [134]
τ6 Ce2Pt3Si5 Ibam U2Co3Si5 0.9966(6) 1.1663(8) 0.6062(3) [134]

presumable 0.9956(1) 1.16526(1) 0.60693(7)
τ7 CePt2Si2 P4/nmm CaBe2Ge2 0.42441(2) 0.98341(7) [134]

0.42550(3) 0.97951(1) [134]
τ8 CePt3Si P4mm CePt3B 0.40786(4) 0.54475(4) [134]
τ9 Unknown Unknown
τ10 CePtSi2 Cmcm CeNiSi2 0.42908(3) 1.6739(2) 0.42371(5) [134]
τ11 CePt2Si Cmcm Inv.-CeNiSi2 0.41008(4) 1.8046(2) 0.41734(4) [134]
τ12 Unknown Unknown
τ13 Ce(PtxSi1−x)2 P6/mmm AlB2 0.41560(1) 0.42535(8) [134]

0.40960(4) 0.43130(3) [134]
τ14 CePt1−xSix I41md LaPtSi 0.4206(1) 1.4490(3) [134]

0.41866(2) 1.44914(8) [134]
τ15 Unknown Unknown
τ16 Ce3Pt5Si Imma Ce3Pd5Si 0.74025(8) 1.2951(2) 0.7508(1) [134]
τ17 Ce3PtSi3 Immm Ba3Al2Ge2 0.41044(5) 0.43243(5) 1.8353(3) [134]
τ18 Ce5(Pt,Si)4 Pnma Gd5Si4 0.77223(2) 1.53279(3) 0.80054(2) [134]

0.7643(1) 1.5330(3) 0.8007(2) [134]
0.7704(2) 1.5321(4) 0.8000(3) [134]

τ19 Unknown Unknown

Table 3.2: Crystal structure and Lattice parameters data for the ternary
intermediate phases of the Ce-Pt-Si system at 800◦C .

a substitution mechanism between Pt and Si atoms. Such a direction of solid
solutions and such a mechanism with substitution between Pt and Si are typ-
ical for similar ternary systems and may be explained by the similarity of the
atomic radii of Pt (1.38 Å) and Si (1.34 Å). The ternary phase CePt2−xSi2+x

(τ7) shows also a homogeneity region up to 4 at.%. The homogeneity range of
CePt2−xSi2+x with CaBe2Ge2 structure type stretches from 38.9 at.% to 42.4
at.% Si at 800◦C (Fig. 3.2). The other ternary phase at 800◦C is CePt1−xSix
with LaPtSi structure type, which shows a homogeneous region up to 6.7
at.% Si. The homogeneity range of CePt1−xSix stretches from 33.4 at.% to
40.1 at.% Si at 800◦C.

In order to characterize the ternary phase Ce(Pt,Si)2 (τ13), six samples
were investigated. EPMA and XRD data for τ13 phase indicate a wide homo-
geneity region up to 9 at.%. As shown in Fig. 3.2a the homogeneity range
of Ce(PtxSi1−x)2 (τ13) with AlB2 structure type stretches from 40.0 at.% to
53.2 at.% Si (13.69 at.% and 25.62 at.% Pt (0.2<x<0.38)) at 800◦C. In or-
der to characterize the ternary phase CePt2−xSi2+x(τ7), nine samples were
investigated. EPMA and XRD data for the τ7 phase indicate a wide homo-
geneity region up to 4 at.% Si. Lattice parameters of this phase vary strongly
from sample to sample, indicating a large homogeneity region of this phase,
confirmed by microprobe measurements and by the variation of lattice pa-
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Figure 3.2: Lattice parameters as function of Pt content for ternary phases;
(a) Ce(PtxSi1−x)2 (τ13); (b) CePt2−xSi2+x (τ7) and unit-cell volume.

rameters versus the Pt content (see Fig. 3.2a). A smooth increase of lattice
parameter a is observed from a= 0.42415 nm to 0.42607 nm. On the other
hand, there is a slight decrease of lattice parameter c from c= 0.98419 nm
to 0.97925 nm (Fig. 3.2b). The unit-cell volume increases initially up to
the alloy which lying in area No. 8 of the phase diagram (see Fig. 3.1). It
should be noted, however, that absolute changes of the volume values are
rather small. The lattice parameters a and c as well as the unit-cell volume
V [nm3] obtained from Rietveld refinement of powder X-ray diffraction data
are plotted in Fig. 3.2b.

Composition and lattice parameters for phases forming three-phase equi-
libria at 800◦C are listed in Table 3.2. It has to be noted that in addition to the
ternary phases listed in Table 3.2, compounds with compositions Ce30Pt40Si30
and Ce22Pt46Si22 (at.%) were detected with structures still unknown, however,
these phases do not participate in phase equilibria at 800◦C.

The complete phase diagram was determined for the Ce-Pt-Si system at
800◦C (Fig. 3.1). 19 ternary compounds were observed at 800◦C. Atom
order in the crystal structures of τ18-Ce5(Pt,Si)4 (space group Pnma; a=
0.77223(3), b= 1.53279(8), c= 0.80054(5) nm), τ3-Ce2Pt7Si4 (space group
Pnma; a= 1.96335(8), b= 0.40361(4), c= 1.12240(6) nm) and τ10-CePtSi2
(space group Cmcm; a= 0.42943(2), b= 1.67357(5), c= 0.42372(2) nm) was
determined by direct methods from X-ray single crystal studies and found
to be isotypic with the Sm5Ge4-type, the Ce2Pt7Ge4-type and the CeNiSi2-
type, respectively. Rietveld refinements established atom arrangement in the
structures of τ16-Ce3Pt5Si (space group Imma) and τ17-Ce3PtSi3 (space group
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Immm).

3.5 Determination of Crystal structures new

ternary silicide

Crystal structures for all those ternary compounds, which were already re-
ported earlier, were found to be consistent with data in literature. For a
series of new compounds crystal structures were derived by single crystal X-
ray diffractometry and Rietveld analyses. Crystal data are summarised in
Table 3.3 and Fig. 3.8. Structural chemistry of the new compounds and
solution phases follow in all cases the characteristics already outlined for
the prototype structures. Interatomic distances agree well with the sum of
metal atomic radii of the elements. In the system Ce–Pt–Si, nine ternary
compounds with different structure types were found in preceding studies
[129] which are summarised in Table 3.2: CePtSi2 (CeNiSi2 structure type,
space group Cmcm) [25], CePt2Si2 (ThCr2Si2 structure type, I4/nmm) [148],
CePtSi (LaPtSi structure type, I41/md) [149], Ce3Pt23Si11 (Ce3Pt23Si11 struc-
ture type, Fm3̄m) [150] and CePt3Si (CePt3B structure type, space group
P4/mm) [151]. The reinvestigation of this phase diagram yields the existence
of six new ternary phases. The new ternary silicide Ce5(Pt,Si)4 (τ18) with or-
thorhombic unit cell and space group Pnma (No.62) crystallizes with Gd5Si4
structure type. In order to characterize the ternary phase Ce5(Pt,Si)4, five
samples were investigated. The structural data and interatomic distances for
Ce5(Pt,Si)4 are summarised in Table 3.3.

3.5.1 The crystal structure of τ18-Ce5(Pt0.12Si0.88)4 with

Sm5Ge4-type

Binary Ce5Si4 is well known to crystallize with the tetragonal Zr5Si4-type
structure. EMPA data (see Table 2 in Ref. [134]) indicate that the solubil-
ity of Pt at 800◦C proceeds up to 4.6 at.% Pt beyond which on rising Pt
content a narrow two-phase region of about 3 at.% is formed connecting to
a ternary phase, τ18, with an extended homogeneity region up to 15 at.%
Pt. A single crystal, broken from an alloy with composition Ce55.5Pt5.3Si39.2

(nominal composition in at.%) within the τ18 region, revealed orthorhombic
symmetry with space group Pnma and lattice parameters: a= 0.77223(3),
b= 1.53279(8), c= 0.80054(5) nm. The structure was solved by direct meth-
ods yielding a partial random distribution of Pt and Si sites fully compatible
and isotypic with the Gd5Si4-type branch of the Sm5Ge4-type of structure.
Results of the refinement for Ce5(Pt0.12Si0.88)4, which converged to R2

F =0.037
with residual electron densities smaller than ±3.7 e−/Å3, are summarised in
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Figure 3.3: EPMA Microstructure of alloys; (a) Ce53Pt7Si40 and (b)
Ce42Pt12Si46.

Table 3.3.
Fig. 3.3a shows the EPMA microstructure of alloy Ce53Pt7Si40 revealing

two different ternary phases and one binary phase. Analyzing the phase
relations in the crystallization region one can see that the alloy Ce53Pt7Si40 is
in equilibrium with other phases in this part of the phase diagram (see three-
phase region No.42). EPMA and X-ray diffraction analyses confirmed that
the bright gray phase corresponds to Ce(Pt,Si)2 (τ18) with phase composition
55.5Ce6.7Pt37.8Si (in at.%), the dark gray region to the compounds Ce3PtSi3
(τ17) with phase composition 43.0Ce14.0Pt42.9Si (in at.%) and the gray phase
to compounds Ce5Si4 with phase composition 55.6Ce4.6Pt39.8Si (in at.%),
respectively.

3.5.2 The crystal structure of τ3 - Ce2Pt7Si4

The phase field τ1 (Ce3Pt23Si11) - τ7 (CePt2−xSi2+x) - τ8 (CePt3Si) was found
to contain a new powder spectrum from a compound with practically no
homogeneity region centered around composition Ce15.3Pt53.9Si30.8 (in at.%,
from EPMA). The intensity pattern of a single crystal, isolated from the alloy
Ce15.4Pt54.1Si30.5, was indexed with a orthorhombic symmetry i.e. space group
Pnma and lattice parameters: a= 1.96335(8), b= 0.40361(4), c= 1.12240(6)
nm. Direct methods yielded a completely ordered atom arrangement isotypic
with the structure type of Ce2Pt7Ge4. Results of the refinement for Ce2Pt7Si4,
which converged to R2

F =0.029 with residual electron densities smaller than
±5.9 e−/Å3, are summarised in Table 3.3. The composition derived from
the refinement is in perfect agreement with EPMA. Fig. 3.4b shows the
EPMA microstructure of alloy Ce18Pt50Si32. EPMA investigation and phase
analysis of Ce18Pt50Si32 indicate a three-phase field τ3 + τ7 + τ8 in the phase
diagram (see the three-phase region No.26). Based on EPMA and XRD
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Parameter Ce5(Pt,Si)4 Ce2Pt7Si4 CePtSi2

Phase code τ18 τ3 τ11
space group Pnma Pnma Cmcm

Formula from refinement Ce5(PtxSi1−x)4 x=0.12 Ce2Pt7Si4 CePtSi2
in at.% 55.5Ce5.3Pt39.2Si 15.4Ce53.8Pt30.8Si 25Ce25Pt50Si

Structure type Sm5Ge4(branch Gd5Si4) Ce2Pt7Si4 CeNiSi2
Lattice parameter a; b[nm] 0.77223(3); 1.53279(8) 1.96335(8); 0.40361(4) 4.2943(2); 16.7357(5)

c[nm] 0.80054(6) 1.12240(6) 4.2372(2)

Habs [mm−1] 38.51 120.10 61.11
Crystal size 54 × 70 × 80 54 × 54 × 27 27 × 27 × 54

Data collection, 2Θ range (◦) 2 ≤ 2Θ ≤ 72.6 2 ≤ 2Θ ≤ 72.6 2 ≤ 2Θ ≤ 72.6
Total number of frames 75 sec/frame; 356 ; 5 sets 150 sec/frame; 400 ; 5 sets 220 sec/frame; 523 ; 7 sets
Reflections in refinement 1800≥ 4σ(F0) of 2238 2058≥ 4σ(F0) of 2376 428≥ 4σ(F0) of 440

mosaicity 0.45 0.50 0.55
Number of variables 53 80 18

R2
F =

∑
|F 2

0 − F 2
c |/
∑

F 2
0 0.037 0.029 0.021

RIn 0.062 0.065 0.067
wR2 0.109 0.90 0.056
GOF 1.111 1.192 1.259

Extinction (Zachariasen) 0.0002(1) 0.00068(4) 0.0015(2)
Atom parameters

Atom site 1 Ce1 in 8d (x,y,z); Ce1 in 4c (x, 14 ,z); Ce1 in 4c (0,y, 14 );
0.31321(5), 0.12119(2) 0.18026(4) 0.21910(4), 0.51894(7) 0.39465(3)

Occ. 1.00(1) 1.00(1) 1.00(1)
U11,U22,U33 (102nm2) 0.0151(2), 0.0133(2),0.0146(2) 0.0071(3), 0.0075(3),0.0052(3) 0.0035(2),0.0038(2), 0.0045(2)
U23,U13,U12 (102nm2) 0.0003(1), 0.0011(1), 0.0005(1) U23=U12=0, U13=-0.0019(2) U23=U13=U12=0

Atom site 2 Ce2 in 8d (x,y,z); Ce2 in 4c (x, 14 ,z); Pt1 in 4c (0,y, 14 );
0.03037(5), 0.59774(3), 0.18278(4) 0.02914 (4), 0.74378(6) 0.18004(2)

Occ. 1.00(1) 1.00(1) 1.00(1)
U11,U22,U33 (102nm2) 0.0159(2), 0.0172(2), 0.0145(2) 0.0055(3), 0.0066(3),0.0026(3) 0.0043(1),0.0044(1), 0.0048(2)
U23,U13,U12 (102nm2) 0.0026(1), 0.0022(1), 0.0036(1) U23=U12=0, U13=0.0008(2) U23=U13=U12=0

Atom site 3 Ce3 in 4c (x, 14 ,z); Pt1 in 4c (x, 14 ,z); Si1 in 4c (0,y, 14 );
0.14248(8), 0.51233(7) 0.21227(3), 0.19866 (5) 0.7495(1)

Occ. 1.00(1) 1.00(1) 1.00(1)
U11,U22,U33 (102nm2) 0.0266(3), 0.0171(3), 0.0232(3) 0.0046(2), 0.0083(2),0.0082(2) 0.0044(8),0.0046(7), 0.0046(8)

U23=U12=0,U13 (102nm2) 0.0004(2) -0.0022(2) U23=U13=U12=0
Atom site 4 M1 in 8d (x,y,z); Pt2 in 4c (x, 14 ,z); Si2 in 4c (0,y, 14 );

0.1394(1), 0.04027(8),0.47641(1) 0.03354(3), 0.06290(5) 0.0359(1)
Occ. 0.114(2)Pt + 0.886 Si 1.00(1) 1.00(1)

U11,U22,U33 (102nm2) 0.0213(6), 0.0179(5), 0.0163(5) 0.0041(2), 0.0063(2),0.0035(2) 0.0060(8),0.0025(6), 0.0034(9)
U23,U13,U12 (102nm2) 0.0032(4), -0.0005(4), -0.0029(4) U23=U12=0, U13=-0.0001(2) U23=U13=U12=0

Atom site 5 M2 in 4c (x, 14 ,z); Pt3 in 4c (0,y, 14 );
0.0201(2), 0.0973(2) 0.65850(3), 0.55722 (5)

Occ. 0.152(2) Pt + 0.848 Si 1.00(1)
U11,U22,U33 (102nm2) 0.0111(6), 0.0155(6), 0.0143(6) 0.0059(2), 0.0070(2),0.0040(2)

U23=U12=0, U13 (102nm2) 0.0010(4) U23=U12=0, U13=-0.0012(2)
Atom site 6 M3 in 4c (x, 14 ,z); Pt4 in 4c (x, 14 ,z);

0.2528(2), 0.8784(2) 0.37290(3), 0.62011 (5)
Occ. 0.096(2) Pt + 0.904 Si 1.00(1)

U11,U22,U33 (102nm2) 0.0141(8), 0.0153(7), 0.0129(7) 0.0061(2), 0.0066(2),0.0027(2)
U23=U12=0, U13 (102nm2) -0.0005(5) 0.0010(2)

Atom site 7 Pt5 in 4c (x, 14 ,z);
0.04156(3), 0.45063(5)

Occ. 1.00(1)
U11,U22,U33 (102nm2) 0.0054(2), 0.0064(2), 0.0040(2)

U23=U12=0, U13 (102nm2) 0.0009(2)
Atom site 8 Pt6 in 4c (x, 14 ,z);

0.36574(3), 0.86767(5)
Occ. 1.00(1)

U11,U22,U33 (102nm2) 0.0071(2), 0.0085(2), 0.0024(2)
U23=U12=0, U13 (102nm2) -0.0004(21)

Atom site 9 Pt7 in 4c (x, 14 ,z);
0.34850(3), 0.24305(5)

Occ. 1.00(1)
U11,U22,U33 (102nm2) 0.0046(2), 0.0162(2), 0.0043(2)

U23=U12=0, U13 (102nm2) -0.0006(2)
Atom site 10 Si1 in 4c (x, 14 ,z);

0.2446(2), 0.7976(4)
Occ. 1.00(1)

U11,U22,U33 (102nm2) 0.007(2), 0.009(2), 0.003(2)
U23=U12=0, U13 (102nm2) 0.0014(12)

Atom site 11 Si2 in 4c (x, 14 ,z);
0.4131(2), 0.0615(3)

Occ. 1.00(1)
U11,U22,U33 (102nm2) 0.004(1), 0.006(2), 0.003(1)

U23=U12=0, U13 (102nm2) 0.0005(11)
Atom site 12 Si3 in 4c (x, 14 ,z);

0.4136 (2), 0.4245(4)
Occ. 1.00(1)

U11,U22,U33 (102nm2) 0.003 (1), 0.008(2), 0.002 (1)
U23=U12=0, U13 (102nm2) 0.0005(12)

Atom site 13 Si4 in 4c (x, 14 ,z);
0.0933 (2), 0.2515(3)

Occ. 1.00(1)
U11,U22,U33 (102nm2) 0.007(2), 0.006(2), 0.003(2)

U23=U12=0, U13 (102nm2) 0.001(1)
Residual density; e/Å3 max; min 3.67; -3.02 7.67; -2.71

Principal mean square atomic Ce1 0.0161 0.0138 0.0131 Ce1 0.0082 0.0075 0.0040 Ce1 0.0045 0.0038 0.0035
displacements U Ce2 0.0218 0.0130 0.0129 Ce2 0.0065 0.0055 0.0026 Pt1 0.0048 0.0044 0.0043

Ce3 0.0266 0.0231 0.0171 Pt1 0.0092 0.0083 0.0036 Si1 0.0046 0.0046 0.0044
M1 0.0236 0.0183 0.0136 Pt2 0.0063 0.0041 0.0035 Si2 0.0060 0.0034 0.0025
M2 0.0155 0.0145 0.0108 Pt3 0.0070 0.0065 0.0035
M3 0.0153 0.0143 0.0127 Pt4 0.0066 0.0063 0.0024

Pt5 0.0064 0.0058 0.0036
Pt6 0.0085 0.0071 0.0024
Pt7 0.0162 0.0050 0.0039
Si1 0.0087 0.0073 0.0026
Si2 0.0062 0.0042 0.0027
Si3 0.0084 0.0036 0.0023
Si4 0.0072 0.0059 0.0026

Table 3.3: X-Ray single crystal data at RT for various compounds from the
Ce-Pt-Si system (Mo Kα radiation); structure data are standardized with
program Structure Tidy[152].
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Figure 3.4: EPMA Micrograph of alloys; (a) Ce38Pt55Si7 and (b) Ce18Pt50Si32.

results, it is determined that the darkest phase is τ7, the light gray phase is
τ3 and the bright phase is τ8. It is assumed that the main phase is the light
gray phase (τ3 - Ce2Pt7Si4) with phase composition 15.4Ce54.1Pt30.5Si (in
at.%). The bright phase is CePt3Si (τ8) with composition 20.5Ce60.4Pt19.6Si
(in at.%) and the darkest phase is the CePt2Si2 phase (τ7) which contains
19.9Ce40.1Pt39.9Si (in at.%).

3.5.3 The crystal structure of τ10 - CePtSi2

Figure 3.5: Perspective view of CePtSi2-(τ10) in a three-dimensional view
along the c-axis.

Although the crystal structure of CeNiSi2 has been elucidated in sev-
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eral representatives, the X-ray intensity pattern of a single crystal, isolated
from the alloy Ce25Pt25Si50, was studied (space group Cmcm and lattice pa-
rameters: a= 0.42943(2), b= 1.67357(5), c= 0.42372(2) nm). From direct
methods a completely ordered atom arrangement was prompted being iso-
typic with the structure type of CeNiSi2. No site defects were observed. The
refinement converged to R2

F = 0.021 with residual electron densities smaller
than ±7.6 e−/Å3. The crystallographic unit cell is shown in Fig. 3.5.

All atoms occupy the 4c site: (0,y,1/4), with different values of the posi-
tion parameter y for each atom. The values of the lattice parameters a, b and
c as well as of the positional parameters y, corresponding to the minimum of
the appropriate reliability factor, are listed in Table 3.3.

3.5.4 Rietveld refinement of Pt3Si

For Pt3Si two polymorphic modifications (Fe3C –type [143] and Pt3Ge-type
[141]) are reported in literature. However, Pt3Si in as-cast state and after
annealing at 800◦C showed an X-ray powder diffraction pattern incompati-
ble with the Fe3C-type structure, which was reported for ht-Pt3Si [143] and
was suggested to exist in the temperature range from 440 to 876◦C [135].
The structure data presented for rt-Pt3Si (Pt3Ge-type, space group C2/m
[143]) resulted in poor reliability factors, RF = 0.266 and RI= 0.396. But
further Rietveld refinement of the atomic positions arrived at satisfactorily
low residual values RF= 0.098 and RI= 0.089 (for results see Table 3.8).

3.5.5 Rietveld refinement of τ16 - Ce3Pt5Si

Due to absence of good single crystals for Ce3Pt5Si the crystal structure of
this compound was resolved by Rietveld refinements of X-ray powder diffrac-
tion intensities. EPMA of alloy Ce33.3Pt55.6Si11.1 (at.%) annealed at 800◦C
shows almost single phase Ce3Pt5Si with small amounts of CePt2. An anal-
ysis of X-ray diffraction intensities reveals complete atom order for Ce3Pt5Si
(see Table 3.8), which crystallizes in the Ce3Pd5Si-type [145] (space group
Imma, Z=4, a= 0.74025(8), b= 1.2951(2), c= 0.7508(1) nm). Rietveld re-
finement of the structure (see Table 3.8) shows a complete order in the lat-
tice: the atoms solely occupy the corresponding positions of the prototype
structure that results in a small homogeneity region (from 10.6 to 11.2 at.%
Si after EPMA) of this phase. The crystal structure is presented in Fig.
3.6a in a three-dimensional view along the [100]-axis. The cerium atoms
are located at the 4e- and 8j-site with eight-(Pt2) and ten-platinum (8 Pt2
and 2 Pt1) neighbours, respectively. Platinum atoms occupy the 4c- and
16j-site, with distances between the Pt1- and Si-site dPt1−Si=0.2447 nm and
dPt2−Si=0.2483 nm. Si atoms are occupy the 4e-site (0, 1/4, 0.037(2)) with
distances dSi−Ce1=0.2978 nm, dSi−Pt2=0.2483 nm and dSi−Pt1=0.2447 nm,



3.5 Determination of Crystal structures new ternary silicide 47

Figure 3.6: Crystal structure of Ce3Pt5Si - (τ16) in a three-dimensional view
along the [100]-axis.

respectively. As one of the typical structural units for metal rich silicides,
Si-atoms are found in a coordination unit formed by two trigonal prisms
face-connected on a common quadratic base and formed by six platinum
atoms and one cerium atom (Fig. 3.6b). The distance between the Pt1-
and Pt2-site is dPt1−Pt2=0.3016 nm and the distance between the Ce2- and
Pt2-site dCe1−Pt2=0.3237 nm. Each Ce2 atom is surrounded by 10 platinum
atoms. Interatomic distances (Table 3.8) generally agree well with the metal-
lic radii of pure elements. Figure 3.4a shows the EPMA micrograph of alloy
Ce38Pt55Si7. In order to characterize the three-phase equilibrium region τ16
+ CePt + Ce3Pt4 in the phase diagram (see the three-phase region No.56)
EPMA and powder X-ray diffraction of sample Ce38Pt55Si7 show that three
different phase regions exist for which the light gray region correspond to
τ16, the dark gray region to the CePt phase and a minor black phase to the
Ce3Pt4 phase. As shown in Fig. 3.4a EPMA confirmed the main light gray
regions with phase composition 33.5Ce55.5Pt11.0Si (in at.%), the dark gray
phase with composition 48.9Ce50.2Pt0.9Si (in at.%) and a minor black phase
with composition 43.1Ce56.7Pt0.2Si (in at.%).

3.5.6 Rietveld refinement of τ17 - Ce3PtSi3

Another new phase, which has been established in this study, is the ternary
compound Ce3PtSi3. Ce3PtSi3 was detected in the alloy with nominal com-
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position Ce43Pt14Si43. It forms incongruently and consequently the as-cast
alloy contains significant amounts of secondary phases τ13 Ce(PtxSi1−x)2 and
CeSi which both decompose slowly during annealing at temperatures from
800 to 1000◦C (Fig. 3.3b). In order to overcome this problem, the sample
was re-powderized, cold compacted and sintered at 800◦C for 20 days. Such
heat treatment reduces significantly the amount of the secondary phases to a
level below 10 vol.%. Rietveld refinement for Ce3PtSi3 yields isotypism with

Figure 3.7: Crystal structure of Ce3PtSi3 - (τ17) in a three-dimensional view
along the [100]-axis.

the Ba3Al2Ge2 structure type with orthorhombic unit cell and space group
Immm (No.71; Z=2, a= 0.41065(5), b= 0.43221(5), c= 1.8375(3) nm). Ri-
etveld refinement of the structure (Table 3.8) shows that platinum and silicon
atoms randomly share only the 4i site in ratio 2.05:1.95. Splitting this site
into two 2a sites (0,0,z ) in the lower symmetry space group Imm2 does not
support full order of the structure. Despite statistical distribution of plat-
inum and silicon atoms in the 4i site of Immm, the compound has a limited
homogeneity region smaller than 1 at % at 800◦C . In order to characterize
the new ternary phase Ce3PtSi3, six samples were investigated. The struc-
tural data and interatomic distances for Ce3PtSi3 are summarised in Table
3.8. The crystal structure is presented in Fig. 3.7a in a three-dimensional
view along the [100]-axis.
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Parameter Pt3Si Ce3Pt5Si(τ16) Ce3PtSi3(τ17)

Phase code τ16 τ17

space group, Prototype C2/m, Pt3Ge Imma, Ce3Pd5Si Immm, Ba3Al2Ge2

Composition, EPMA at.% Pt75.0Si25.0 Ce32.9Pt55.6Si10.6 Ce42.8Pt15.1Si42.1

Composition, refinement Pt75.0Si25.0 Ce33.3Pt55.5Si11.1, Ce42.9Pt14.6Si42.5,
Ce3Pt5Si Ce3Pt1.02Si2.98

a [nm], Ge standard 0.7724(2) 0.74025(8) 0.41065(5)
b [nm], Ge standard 0.7767(2); β=133.86 1.2951(2) 0.43221(5)
c [nm], Ge standard 0.5390(2) 0.7508(1) 1.8375(3)
Data collection Image plate Image plate Image plate
Radiation CuKα CuKα CuKα
Reflections measured 147 247 138
Θ range 8 ≤ 2Θ ≤ 100 8 ≤ 2Θ ≤ 100 8 ≤ 2Θ ≤ 100
Number of variables 24 25 36
RF 0.098 0.043 0.043
RI 0.089 0.060 0.052
RwP 0.074 0.047 0.037
RP 0.058 0.036 0.030
Re 0.022 0.016 0.020
χ2 = (Rwp/Re)

2 11.8 8.82 3.37

Atom parameters; [nm]

Ce1 - 4 Ce1: 4e(0,1/4, 0.6393(3)) 2 Ce1: 2a (0,0,0)
Biso(102nm2) - 0.25(5) 1.34(3)
Ce2 - 8 Ce2: 8h(0, 0.0502(1), 0.2840(2)) 4 Ce2: 4j (1/2,0, 0.18426(3))
Biso(102nm2) - 1.94(4) 1.88(2)
M 4 Pt1: 4i(0.2843(2),0, 0.6325) 4 Pt1: 4c(1/4, 1/4, 1/4) 4 M: 2.05(1)Pt+1.95Si:
Biso(102nm2) 0.98(3) 2.71(6) 4i (0,0, 0.43564(4)); 1.71(2)
Pt2; 4 Pt2: 16h(0, 0.2742(2), 1/2) 16 Pt2: -

16j(0.2006(1), 0.60806(7), 0.0654(2)) -
Biso(102nm2) 0.9(3) 2.17(2) -
Pt3; 4 Pt3: 4g(0, 0.1870(2),0) - -
Biso(102nm2) 0.56(3) - -
Si1 4 Si1: 4i(0.292(2),0, 0.061(2)) 4 Si1: 4e(0,1/4,0.037(2)) 4 Si1: 4j (1/2,0,0.3604(2))
Biso(102nm2) 2.1(2) 3.2(3) 2.70(9)

Interatomic distances [Å]; standard deviations generally < 0.0005 nm

- Ce1 - 4 Pt2: 0.2931 Ce1 - 2 M: 0.3085
- Ce1 - 1 Si1: 0.2978 Ce1 - 4 Si1: 0.3089
- Ce1 - 4 Pt2: 0.3237 Ce1 - 1 Si1: 0.3231
- Ce1 - 2 Pt2: 0.3457 Ce1 - 4 Ce1: 0.3834
- Ce1 - 2 Ce2: 0.3712

- Ce2 - 2 Pt2: 0.3151 Ce2 - 8 M: 0.3204
- Ce2 - 4 Pt2: 0.3014 Ce2 - 4 Si1: 0.3354
- Ce2 - 1 Si1: 0.3182
- Ce2 - 2 Pt1: 0.3189
- Ce2 - 2 Pt2: 0.3221
- Ce2 - 1 Ce2: 0.3489
- Ce2 - 1 Ce1: 0.3712
- Ce2 - 2 Ce2: 0.3738

- Pt1 - 2 Si1: 0.2447 M - 1 M: 0.2363
- Pt1 - 4 Pt2: 0.3061 M - 2 Si1: 0.2473
- Pt1 - 4 Ce2: 0.3189 M - 2 Ce1: 0.3085
- Pt1 - 2 Ce1: 0.3457 M - 4 Ce2: 0.3204
- Pt1 - 2 Pt1: 0.3703

- Pt2 - 1 Pt2: 0.2863
- Pt2 - 1 Si1: 0.2483
- Pt2 - 1 Ce1: 0.2931
- Pt2 - 1 Pt2: 0.2963
- Pt2 - 1 Pt2: 0.2963
- Pt2 - 1 Pt2: 0.2972
- Pt2 - 1 Ce2: 0.3014
- Pt2 - 1 Pt1: 0.3016
- Pt2 - 1 Ce2: 0.3104
- Pt2 - 1 Ce2: 0.3151
- Pt2 - 1 Ce2: 0.3221
- Pt2 - 1 Ce1: 0.3237

- Si1 - 2 Pt1: 0.2447 Si1 - 2 M: 0.2473
- Si1 - 4 Pt2: 0.2483 Si1 - 4 Ce1: 0.3089
- Si1 - 1 Ce1: 0.2978 Si1 - 1 Ce1: 0.3231
- Si1 - 2 Ce2: 0.3182 Si1 - 2 Ce2: 0.3354

Figure 3.8: Crystallographic data for Pt3Si, Ce3Pt5Si(τ16) and Ce3PtSi3(τ17)
(X-ray powder diffraction, room temperature data) standardized with pro-
gram Structure Tidy [152].



Chapter 4

Ge-based skutterudites:
{Sr,Ba,Eu,Th,U}Pt4Ge12;
crystal structure and physical
properties

4.1 {Sr,Ba,Eu,Th,U}Pt4Ge12 System

4.1.1 Crystal structure

{Sr,Ba,Th,U}Pt4Ge12 and EuPt4Ge12 were prepared by argon arc melting
from stoichiometric amounts of high purity ingots of alkaline earths and Eu
plus a pre-melted Pt4Ge12 master alloy. Whilst {Sr,Ba,Th}Pt4Ge12 were sub-
sequently heat treated in evacuated quartz capsules at 800◦C for two weeks,
UPt4Ge12 has to be directly quenched from the melt with nominal compo-
sition U0.8Pt4Ge12. Phase purity and lattice parameters were checked by
EPMA and x-ray diffraction. Phase purity was achieved in several steps
by careful compensation of alkaline earth or europium losses during melt-
ing. The single crystals, mechanically isolated from the crushed alloys, were
inspected on an AXS-GADDS texture goniometer prior to X-ray intensity
data collection on a four-circle Nonius Kappa diffractometer equipped with
a CCD area detector employing Graphite monochromated MoKα radiation
(λ = 0.071073 nm). Crystal structures were studied at room tempera-
ture for {Sr,Ba,Th,U}Pt4Ge12 but X-ray intensity data for BaPt4Ge12 were
recorded at three temperatures: 100, 200 and 300 K. The crystal structure of
{Sr,Ba,Th}Pt4Ge12 (from Rietveld refinements) and UPt4Ge12 (from Kappa-
CCD single crystal X-ray data at 300 K, 200 K and 100 K) was found to be
in all cases a body-centered cubic lattice with space group Im3̄, (No. 204),
isotypic with the filled skutterudite type LaFe4Sb12 [41]. Rietveld refinements

50
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of the X-ray intensities with the space group Im3̄ in all cases converged satis-
factorily for a fully ordered atom arrangement with respect to the atom site
distribution among Sr, Ba and Eu atoms [54, 55, 56]. No extra reflections

c

ab

M

Ge

Pt

Im3

Figure 4.1: The crystal structure of MPt4Ge12 (M={Sr,Ba,Eu,Th,U}) reveal-
ing the Ge-framework made by tilted corner connected octahedra centered by
Pt-atoms. Eu-atoms are at the centers of the Ge-icosahedra.

indicating a supercell were detected in the crystals investigated. Refinements
converged to low residual values generally below RF= 0.07. Residual electron
densities less than 2.5e/Å3 for {Sr, Ba}Pt4Ge12 and less than 3.5e/Å3 for a
lower quality crystal EuPt4Ge12 finally provide featureless difference-Fourier
maps Fobs − Fcalc for atom structures without any sign for deviation from
full occupation. The results of the refinements for all three crystals {Sr, Ba,
Eu}Pt4Ge12 are compared in Table 4.1. The crystal structure of MPt4Ge12

(M={Sr,Ba,Eu,Th,U}) are shown in three dimensional view in Fig. 4.1. X-
ray powder spectrum and the corresponding Rietveld profile are shown in
Fig. 4.2 for BaPt4Ge12 and SrPt4Ge12 alloy (taken with Cu-Kα1 radiation in
8◦ < 2θ < 100◦). The minor differences between observed Yobs. and the calcu-
lated intensities Ycalc. prove the model applied as well as the sample quality
(compare figures 4.2a and b). Structure and lattice parameters are collected
in Table 4.1. Due to cubic low Laue symmetry (absence of 4-fold axes) the
Ge-octahedra are not regular but as seen along the three-fold axes [111] are
composed of two equilateral triangles, which are rotated against each other
by 180◦. Both types of distances along the octahedral edges (within the two
equilateral triangles and within the six isosceles of the non regular octahe-
dron) are larger than 0.3 nm and thus are no strong bonding Ge-Ge distances:
Tight bonding, however, is established not only between Ge and Pt atoms at
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Figure 4.2: X-ray pattern of the skutterudite {Sr, Ba}Pt4Ge12. The solid line
derives from the Rietveld refinement and Yobs.-Ycalc. is the intensity difference
between experimental data and Rietveld calculations

the center of the Ge-octahedra but also to some extent between filler atoms
(Eu or alkaline earth atoms) at the centers of Ge-icosahedra, thereby docu-
menting the true intermetallic nature of the Ge-based skutterudites. In fact
Ge-atoms exhibit only two homonuclear tight bonds to neighbouring octahe-
dra tilted towards each other, altogether resulting in open Ge4-rectangles. As
seen from data in Table 4.1 (see Refs. [54, 55, 56]) the Eu compound shows a
volume only slightly smaller than isostructural SrPt4Ge12 indicating divalent
Europium like an alkaline earth element. Although both, skutterudites and
clathrates (see chapter 5), are considered as cage-compounds, bonding is es-
sentially different in both structure types: whereas Ge atoms in skutterudites
do not construct a covalently four-bonded framework but rather form strong
bonds to octahedral and icosahedral filler atoms, clathrate type I structures
do exist as four-bonded Ge-framework with the large filler atoms embedded
in the framework cages. Occupation factors were refined, corresponding to
a full occupancy of the Pt and Ge sublattices. Although not revealed from
single crystal refinement, minor deviations (up to 3 %) from full occupancy
are possible for the Ba and Sr atoms. Since the size of the Ge-framework
is significantly smaller than the corresponding Sb-framework in Ba0.3Co4Sb12

[43, 153], effective bonding between the framework cages (two icosahedra per
unit cell) and the Ba(Sr)-center atoms is ensured. As a consequence of this
stronger bond between cage and guest atom, we observe very regular thermal
atom displacement factors (ADP) on all atoms. The temperature dependen-
cies of ADP’s in the temperature region from 100 to 300 K reveal for all atoms
similar trends: pronounced rattling modes caused by the heavy guest atoms
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Parameter BaPt4Ge12 SrPt4Ge12 EuPt4Ge12
Crystal size 100×70×80 μm3 70×70×100 μm3 54×70×95 μm3

a[nm], from Guinier(Cu-Kα1) 0.86928(2) 0.86601(2) 0.86435(1)

μabs[mm−1] 72.29 74.20 75.31
Data collection 2θ(◦) 2≤2Θ ≤72.5; 70 sec/frame 2≤2Θ ≤ 72.54; 70 sec/f. 2≤2Θ ≤ 72.33; 70 sec/f.
Total number of frame 246 for 5 sets 236 for 5 sets 236 for 5 sets
Reflections in refinement 273Fo ≤ 4σ(Fo) of 309 236Fo ≤ 4σ(Fo) of 309 216Fo ≤ 4σ(Fo) of 309
mosaicity <0.47 <0.48 <0.45
Number of variables 11 11 11
Reflections measured 84 81 86

R2
F 0.0172 0.0192 0.0317

RInt 0.046 0.044 0.068
wR2 0.0456 0.0406 0.089
GOF 1.145 1.124 1.053
Extinction (Zachariasen) 0.0012(1) 0.00105(8) 0.0003(2)

Atom parameters
M in site 2a (0,0,0); occ. 1.00(1) 1.00(1) 1.00(1)

U11=U22=U33(in 102nm2) 0.0075(2) 0.0118(3) 0.0142(3)

Pt in site 8c ( 1
4 , 1

4 , 1
4 ); occ. 1.00(1) 1.00(1) 1.00(1)

U11=U22=U33; 0.0061(1); 0.0069(1); 0.0090(2);
U23=U13=U12; 0.0003(1) 0.0005(1) 0.0004(1)

Ge in site 24g (0,y,z); occ. 1.00(1) 1.00(1) 1.00(1)
y, z : 0.15302(7), 0.35681(6) 0.15197(7), 0.35536(6) 0.1512(1), 0.3544(1)
U11;U22 0.0073(2); 0.0120(3) 0.0073(3); 0.0124(3) 0.0102(4); 0.0135(4)
U33;U23 0.0078(3); -0.0002(2) 0.0095(3); 0.0003(2) 0.0120(4); 0.0001(3)
U13=U12 0.000 0.000 0.000

Residual density; max; min 2.45; -1.56 2.39; -1.90 4.38; -3.65
Principal mean square Ba 0.0075 0.0075 0.0075 Sr 0.0118 0.0118 0.0118 Eu 0.0142 0.0142 0.0142
atomic displacements Uii Pt 0.0066 0.0058 0.0058 Pt 0.0078 0.0064 0.0064 Pt 0.0099 0.0086 0.0086

Ge 0.0120 0.0078 0.0073 Ge 0.0124 0.0095 0.0073 Ge 0.0135 0.0120 0.0102

Interatomic distances [nm]; standard deviations generally < 0.0005 nm
M - 12 Ge 0.3375 0.3347 0.3430
Pt - 6 Ge 0.2509 0.2498 0.2493

- 2 M 0.3764 0.3750 0.3750
Ge - 2 Pt 0.2509 0.2498 0.2493

- 1 Ge 0.2489 0.2505 0.2517
- 1 Ge 0.2660 0.2632 0.2614
- 1 M 0.3375 0.3347 0.3330

Table 4.1: X-Ray single crystal data at room temperature for {Sr, Ba,
Eu}Pt4Ge12, space group Im3̄, (No. 204), LaFe4Sb12-type. Standardized
with program Structure Tidy [152].

in Sb-based skutterudites are absent in {Sr,Ba}Pt4Ge12, compare Fig.4.3.
In case of {Th,U}Pt4Ge12 occupation factors were refined, corresponding

to a full occupancy of the actinoid, Pt and Ge sublattices. Although the
Ge-icosahedra are significantly smaller than the corresponding Sb-framework
and therefore effective bonding between the framework cages and the Th-
center atoms is ensured, temperature dependent single crystal X-ray data
for UPt4Ge12 unambiguously defined a strong temperature dependency of
atomic displacement parameters (ADP) in the temperature region from 100
to 300 K for the smaller uranium atoms. Thus typical rattling modes caused
by uranium as filler atoms are derived yielding an Einstein temperature of
θE ≈ 59 K. Structure and lattice parameters are collected in Table 4.2.

4.1.2 Lattice dynamics of {Sr, Ba, Eu}Pt4Ge12

Thermal expansion of lattice parameters for BaPt4Ge12 is plotted in Fig.
4.3a shows a smooth variation from 100 to 300 K indicating stability of
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Property ThPt4Ge12 UPt4Ge12

Lattice parameter a @300 K [nm] 0.85931(3) 0.85887(4)
Ge 24g site: y 0.1515(3) 0.15048(9)
Ge 24g site: z 0.3556(3) 0.35275(9)
RF2 =

∑ |F 2
o − F 2

c |/
∑
F 2

o 0.057 0.026
Ueq(Th,U) [nm2] 0.00012(1) 0.000210(3)
Ueq(Pt) [nm2] 0.00009(1) 0.000079(2)
Ueq(Ge) [nm2] 0.00010(2) 0.000102(1)

Table 4.2: Crystallographic properties of ThPt4Ge12 and UPt4Ge12 which
crystallize in the skutterudite structure: space group Im3̄, (No. 204); Th
and U are at the 2a (0, 0, 0) sites, Pt at the 8c (1

4
, 1

4
, 1

4
) sites, and Ge at the

24g (0, y, z) sites. Ueq is a mean value of the atomic displacement ellipsoid.
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Figure 4.3: (a) Atom displacements parameters (APD) and lattice parame-
ters versus temperature for BaPt4Ge12. (b) Atom displacements parameters
(APD) and lattice parameters for {Sr, Ba, Eu}Pt4Ge12.

the skutterudite phase. As the size of the Ge-framework for the Ge-based
compounds {Sr, Ba, Eu}Pt4Ge12 is significantly smaller than that for corre-
sponding Sb-based skutterudites [43, 153, 154, 184], effective bonding between
the Ge-framework cages (two icosahedra per unit cell) and the Eu, Sr, Ba-
center atoms provides rather small thermal atom displacement parameters
on all atoms. The temperature dependencies of ADP’s scale with the atom
masses and furthermore are practically constant for all atoms of the lattice
(see Fig.4.3a). Thus no special rattling effect can be seen for Ba-atoms. The
situation is similar for all compounds with Sr, Ba and Eu, although Eu and Sr
show ADP’s higher than Ge-atoms (see Refs. [54, 55, 56]) (see Fig.4.3b). We
also tried to synthesize CaPt4Ge12 but our attempts were unsuccessful insofar
as no ternary skutterudite compound exists in the Ca-Pt-Ge system, however,
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EPMA and Rietveld refinements on Ba1−xCaxPt4Ge12 alloys for various val-
ues of x, heat treated at 800◦C, confirm a maximal solid solubility limit of
about 20 mol % Ca for {Ba1−xCax}Pt4Ge12 with a= 0.86842(1) nm.

4.1.3 Physical Properties; Electrical resistivity

Temperature dependent electrical resistivities ρ(T ) of {Sr, Ba, Ca, Th
Eu}Pt4Ge12 and UPt4Ge12 are plotted in Figs. 4.4-4.5-4.6 and 4.8. Supercon-
ductivity is found for BaPt4Ge12 and SrPt4Ge12 from resistivity measurements
using polycrystalline samples at the critical temperatures 5.3 K and 5.1 K,
respectively. The normal state regions, T > Tc of these ternary compounds do
not behave like simple metals, since the standard model of the electrical resis-
tivity of metallic systems, i.e., the Bloch-Grüneisen formula is not applicable.
Such observations were made in many superconducting materials and may be
attributed to a substantial electron-phonon interaction strength, responsible
for the formation of Cooper pairs in conventional superconductors. Rather,

BaPt4Ge12

T [K]
0 50 100 150 200 250

 [
cm

]

0

20

40

60

80

100

120

140

160

BaPt4Ge12
Woodward & Cody 

T [K]
0 2 4 6 8

 [
cm

]

0

10

20

30

40

50

0 T
0.5 T
1 T
1.5 T
2 T
2.25 T
2.5 T
2.75 T
3 T
3.25 T

(a) (b)

Figure 4.4: (a) Temperature dependent electrical resistivity ρ of BaPt4Ge12

(Dashed line is least squares fits of the data according to Woodard and Cody
formula (Eqn.A.1). (b) The field dependence electrical resistivity of ρ(T ) of
BaPt4Ge12 at various applied magnetic fields.

the overall ρ(T )-dependence of BaPt4Ge12 and SrPt4Ge12 skutterudites fol-
lows the model of Woodard and Cody [155], which initially was applied to
A15 superconductors such as Nb3Sn. This model reads,

ρ(T ) = ρ0 + ρ1T + ρ2 exp(−T0/T ), (4.1)
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Figure 4.5: (a) Temperature dependent electrical resistivity ρ of SrPt4Ge12

(Dashed lines are least squares fits of the data according to the Woodard
and Cody formula (Eqn.4.1). (b) The field dependence electrical resistivity
of ρ(T) ρ of SrPt4Ge12 at various applied magnetic fields.

where ρ0 is the residual resistivity; ρ1, ρ2 and T0 are material dependent pa-
rameters. The second and third terms of Eqn. 4.1 represent the high and
low temperature limits of the occupation number of a particular phonon,
which assists in interband scattering according to Wilson’s model [156]. A
more detailed discussion on the temperature dependent resistivity of vari-
ous superconductors in the normal state region is also given in Ref. [156].
Least squares fits of this model to the experimental data of {Sr, Ba, Ca, Eu,
Th}Pt4Ge12 are shown in figures 4.4a-4.5a, 4.6a and 4.7a as a dashed lines,
revealing reasonable agreement for characteristic temperatures of the order of
120 K. The least squares fits parameters for all compounds are summarised
in Table 4.1.3. The differences of the residual resistivities may correspond
to small differences in the filling of the 2a-sites by Ba or Sr. In case of the
smaller atom Sr, filling seems to be more complete. Dashed lines in Figs.
4.4a-4.5a are least squares fits of the data according to the Eqn. 4.1.

Temperature dependent resistivity measurements of SrPt4Ge12 and
Ba0.8Ca0.2Pt4Ge12 indicated superconductivity (SC) at Tc=5.1 and 5.2 K, re-
spectively. The temperature dependent electrical resistivity ρ(T ) of SrPt4Ge12

and Ba0.8Ca0.2Pt4Ge12 are displayed in figures 4.5 and 4.6.

The suppression of superconductivity (SC) with rising external magnetic
fields checked by resistivity measurements down to 300 mK and displayed
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Figure 4.6: (a) Temperature dependent electrical resistivity ρ of
Ba0.8Ca0.2Pt4Ge12 (Dashed line is least squares fits of the data according to
the Woodard & Cody formula (Eqn.4.1). (b) The field dependence electrical
resistivity of ρ(T) ρ of Ba0.8Ca0.2Pt4Ge12 at various applied magnetic fields.

in Figs. 4.4b-4.5b, 4.6b. It is obvious from the zero-resistance points of
the curves (ρ(T,H)= 0) that Tc(H) varies linearly with the applied field.
The critical temperatures gradually diminishes with rising field strength and
already in a field of 2.25 T drops below 0.35 K in case of BaPt4Ge12. The
same situation was observed in other compounds like in SrPt4Ge12 and the
critical temperatures reduces with rising magnetic field and in a field of 1.25 T
drops below 0.35 K.

ρ0 ρ1 ρ2 T0 Tc

[μΩcm] [μΩcm] [μΩcm] [K] [K]

BaPt4Ge12 60.66 0.071 37.01 123.93 5.35
SrPt4Ge12 32.66 0.078 64.84 121.58 5.1
EuPt4Ge12 26.17 0.072 64.82 129.04 TN=1.7

{Ba0.8Ca0.2}Pt4Ge12 57.37 0.075 47.38 128.92 5.2
ThPt4Ge12 2.91 0.25 113.4 131.7 4.76

Table 4.3: Least squares fits parameters result of electrical resistivity data of
{Sr, Ba, Th}Pt4Ge12 and {Ba0.8Ca0.2}Pt4Ge12 from the model according to
Woodard & Cody model (Eqn.A.1).
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Figure 4.7: (a) Temperature dependent electrical resistivity ρ of ThPt4Ge12

and UPt4Ge12. The solid line is a least squares fit of the data according to
the Woodard and Cody formula (Eqn.A.1). (b) Low temperature resistivity
details evidencing superconductivity of ThPt4Ge12.

The application of a magnetic field suppresses the superconducting tran-
sition of BaPt4Ge12 (Fig. 4.4b), revealing an upper critical field of about 2 T,
while for SrPt4Ge12 the upper critical field Hc2(0) ≈ 1 T (Fig. 4.5b).

In Fig. 4.8a the metallic like resistivity behaviour and transition tempera-
tures into the superconducting state are compared for {Sr,Ba,Eu,Th}Pt4Ge12.
Temperature dependent resistivity measurements of UPt4Ge12 do not exhibit
superconductivity down to 1.9 K. Results of resistivity measurements is shown
in Fig. 4.8b. The overall ρ(T ) features of UPt4Ge12 turn out to be different
at low temperatures; ρ(T ) behaves according to

ρ(T ) = ρ0 + A · T n, (4.2)

where ρ0 is residual resistivity in [μΩcm]. The inset in Fig. 4.8b shows a least
squares fits to UPt4Ge12 according to Eqn.4.2, revealing ρ0 = 13.8 μΩcm,
A = 0.36 μΩcm/K1.5 and n = 1.5. The latter refers to distinct deviations
from a Fermi liquid ground state due to strong spin fluctuations, which are
evident also from a large value of the Sommerfeld constant γ = 156 mJ/molK2

(see below). Moreover, classical spin fluctuation systems like YCo2 [157] or
UAl2 exhibit at elevated temperatures a tendency towards saturation [158],
which can also be conceived from Fig. 4.8b for UPt4Ge12.

In Fig. 4.7a the temperature dependent resistivity ρ(T ) of UPt4Ge12 is
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Figure 4.8: (a) A comparison of temperature dependent electrical resistivity
ρ of {Sr,Ba,Eu,Th}Pt4Ge12 in the normal state regions, T > Tc up to 300 K.
The solid lines are least squares fits of the data according to the Woodard
and Cody formula (Eqn.A.1). (b) Temperature dependent resistivity ρ of
UPt4Ge12. The inset shows low temperature details and the solid line is a
least squares fits based on the model as explained in the text.

compared to that of ThPt4Ge12. This significant difference in the ground
states of similar compounds is already reflected in the temperature dependen-
cies of the resistivity in the normal state region. The resistivity measurements
of ThPt4Ge12 indicated superconductivity at Tc ≈ 4.8 K, but the residual re-
sistivity values strongly differ from each other and reach values about 3 μΩcm
at 4.76 K (see Fig. 4.8b).

4.1.4 Specific heat and phonon density of states

The Low temperature specific heat of the filled skutterudites BaPt4Ge12 and
SrPt4Ge12 determined for various external magnetic fields are shown in a
Cp/T vs. T representation in Fig. 4.9. The jump of Cp(T ) below 6 K evi-
dences bulk superconductivity in all cases. As demonstrated by the resistivity
measurements (see figures 4.4, 4.5 and 4.6) a magnetic field of 3 T is sufficient
to suppress superconductivity to determine the normal state heat capacity.
Assuming that the normal state heat capacity of metallic compounds at low
temperature follows for Cp(T ) = Cel+Cph ≡ γT+βT 3 (θD = 3

√
(1944 × n)/β)

where γ is the Sommerfeld coefficient and β is proportional to the Debye tem-
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Figure 4.9: (a) Temperature dependent specific heat Cp of BaPt4Ge12, (b)
SrPt4Ge12 plotted as Cp/T vs. T for various magnetic fields up to 3 T.

perature θD, least squares fits reveal γ = 42 mJ/molK2 and θLT
D = 247 K for

BaPt4Ge12 and γ = 41 mJ/molK2 and θLT
D = 220 K for SrPt4Ge12 compound.

It is worth to be noted that the Debye temperature of BaPt4Ge12 is larger
than that of SrPt4Ge12. In general, however, materials with smaller masses
exhibit larger Debye temperatures. This anomaly may correspond to the fact
that, while the volume of the unit cells of both compounds differ by only 1%,
the atomic volumes of Sr and Ba differ by about 12 %. This causes a weaker
bonding of Sr to the framework, hence a weaker force constant may result in
lower values of θD. An idealization of the heat capacity anomaly under the
constraint of entropy balance between the superconducting and the normal
state yields Tc = 5.35 and 5.1 K for the Ba and Sr based compounds, re-
spectively. The heat capacity measurement for ThPt4Ge12 is plotted in Fig.
4.10a as Cp/T vs. T for various externally magnetic fields up to 0.2 T. The
jump of Cp(T ) below 5 K evidences bulk superconductivity. Idealizing the
specific heat anomaly under the constraint of entropy balance between the
superconducting and the normal state we arrive at Tc = 4.75 K (to compare
see Fig. 4.16a). As shown in Fig. 4.16a the entropy balance between the
superconducting and the normal state defines Cp/T (T = 0)=35 mJ/molK2

and thus to extrapolate the superconducting and normal state heat capacity
(i.e., measurements at 0 and 0.2 T, respectively) (dashed lines in Fig. 4.10a),
indeed yielding ΔS(T = Tc) = 0. To derive these extrapolations, the phonon
contribution is taken from the model for phonon density of states [91, 92]



4.1 {Sr,Ba,Eu,Th,U}Pt4Ge12 System 61

T [K]
0 50 100 150 200

C
p/

T 
[J

/(m
ol

 K
2 )]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 T

U0.75Pt4Ge12

T [K]

0 2 4 6 8 10

C
p 

[J
/(m

ol
 K

)]

0

1

2

3

4

5

6

= 156 [mJ/mol K2]

(b)

T [K]
0 1 2 3 4 5 6

C
p/

T 
[J

/(m
ol

 K
2 )]

0.00

0.05

0.10

0.15

0.20

0.25

0 T
0.05 T
0.1 T
0.2 T

= 35 mJ/mol K2

ThPt4Ge12
(a)

Figure 4.10: (a) Temperature dependent specific heat of ThPt4Ge12 plotted as
Cp/T vs. T in various externally applied magnetic fields. The dashed and the
dashed-dotted lines are extrapolations from the normal - and superconducting
states, respectively. (b) Temperature dependent specific heat of UPt4Ge12

plotted as Cp/T vs. T . The inset shows low temperature details and the
solid line is a least squares fit based on a spin fluctuation model.

(see discussion in section 4.1.5 and Fig.4.12b). The sum curve is displayed
as dashed line. As demonstrated by the specific heat measurements a mag-
netic field of 0.2 T is sufficient to suppresses superconductivity of ThPt4Ge12.
Thus, the 0.2 T measurement represents the normal state heat capacity. The
low temperature fit of the 0.2 T data allows to extract the Sommerfeld value
γ=35 mJ/molK2 and the Debye temperature θLT

D = 260 K for ThPt4Ge12.

The temperature dependent specific heat Cp of UPt4Ge12 is plotted in
Fig. 4.10b as Cp/T vs. T . The absence of any low temperature anomalies
evidences the lack of a phase transition, in agreement with the ρ(T ) data in
figures 4.8b and 4.7a. The inset in Fig. 4.10b shows Cp/T for T below 10 K.
A standard procedure to isolate the magnetic contribution via subtraction of
Cp(T ) of isomorphous nonmagnetic ThPt4Ge12 fails, since both Cp functions
intersect each other, i.e., Cp(T ) of nonmagnetic ThPt4Ge12 surmounts that of
UPt4Ge12 for T > 12 K. The observation of such a crossover is not a unique
feature of the {U,Th}Pt4Ge12 systems but frequently occurs in isostructural
pairs of {La, Ce} or complementary {Yb, Lu} compounds. In all these cases,
common explanations such as mass or volume differences do not apply, rather,
referring to a magnetic origin [59]. Although the phonon spectra of both
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compounds are more complex than that of a simple Debye solid, we attempted
to fit the low temperature data of UPt4Ge12 with the ansatz,

Cp(T ) = γT + βT 3 + δT 3 ln(T/T ∗), (4.3)

where the latter term accounts for spin fluctuations and T ∗ is characteristic
temperature. Satisfactory agreement is found for γ= 156 mJ/molK2 and T ∗

= 4.7 K (solid line, inset Fig. 4.10b), suggesting spin fluctuations in the
nearly localized regime. The least squares fit in inset Fig. 4.10b is based on
the spin fluctuation model (Eqn.4.3); the experimental heat capacity Cp(T )
data reveals β = 0.0021 and δ = 0.0025.

Although the combination of lattice and magnetic contributions does not
allow a detailed analysis of lattice dynamics in UPt4Ge12, it should be noted
that from temperature dependent ADP parameters an Einstein mode for the
U atoms was found at θE = 59 K, in close analogy to the phonon spectrum
derived from the specific heat analysis of ThPt4Ge12 [59].

4.1.5 Phonon specific heat

As phonon dynamics is a key feature for the occurrence of BCS supercon-
ductivity, a detailed analysis of the specific heat allows a definition of those
phonon modes responsible for Cooper pairing. Significant deviations from
the simple Debye model indicate a rather complicated phonon spectrum for
this family of skutterudites. The spectrum is supposed to be composed of
background vibrations originating from the cage-like structure represented
by a Debye spectrum and, additionally, from specific phonon branches which
are represented by Einstein-like contributions. In order to qualitatively and
quantitatively describe the lattice dynamics, we have adopted a model which
incorporates some fine structure in the phonon density of states as described
in chapter 1.4 [91, 92]. In a first step the electronic contribution to the spe-
cific heat is subtracted from the measured specific heat data. In the second
step an appropriate phonon density of states F (ω) has to be found, which
explains specific heat data [159].

The latter is represented by a spectral function F (ω), allowing to ex-
press the heat capacity in the general form by Eqn. A.11 The most common
assumptions on F (ω) are: F (ω) = δ(ω) and F (ω) ∼ ω2 up to a cut-off
frequency ωD, corresponding to the well known Einstein and Debye model,
respectively. Junod et al. [91] demonstrated that certain functionals of the
phonon specific heat take the form of convolutions of the phonon spectrum.
The approach of Junod et al. for the phonon density of states (DOS), which
was successfully applied to a large number of A15-type compounds, consists
of a ω2-dependence but with different coefficients for different frequency re-
gions. The phonon density of states vanishes for ω > ωD. In particular,
(5/4)Rπ4CphT

3 is an image of the spectrum ω−2F (ω) with ω = 4.93 T .
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Figure 4.11: Phonon part of the temperature dependent specific heat Cp of
{Sr, Ba, Ca}Pt4Ge12, plotted (Cp − γT )/T 3 vs. lnT . The dashed lines are
the result of the fitting procedure of the experimental data using the model
described in the text. The solid lines (referring to the right axis) sketch the
phonon spectral function F (ω) plotted as (5/4)Rπ4ω−22F (ω) vs. ω/4.93.

In our case the density of states takes the following form

F (ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Aω2 ω < ω1

(A+B)ω2 ω1 < ω < ω2

Aω2 ω2 < ω < ω3

(A + C)ω2 ω3 < ω < ω4

Aω2 ω2 < ω < ωD

0 ω > ωD

(4.4)

Here ω frequencies are given in degrees Kelvin. The phonon density of states
vanishes for ω > ωD.

Based on these considerations we have constructed an elementary phonon
spectrum and have carried out least squares fits to the data. In a first approx-
imation we assumed that the systems contains two additional energetically
separated Einstein-type modes ωE1 and ωE2. In contrast to the standard
Einstein model of the specific heat, a certain frequency width Δω for each of
these branches is allowed.

Results of this ansatz are shown in Fig. 4.11 for {Sr, Ba, Ca}Pt4Ge12 as
dashed lines. The phonon spectra are constructed and plotted in Fig. 4.11
referring to the right axis (solid line). The spectral weight follows from the
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Figure 4.12: Temperature dependent specific heat Cp of ThPt4Ge12, plotted
as (Cp − γT )/T 3 vs. lnT . The dashed line is a least squares fit of the
experimental data using model Junod et al. [91, 92] (see Eqn. A.11) with a
Debye spectrum (θD = 260 K) and two Einstein-like modes ωEL1 = 34.7 K
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line (referring to the right axis) describes the phonon spectral function F (ω)
plotted as (4/5)Rπ4ω−2F (ω) vs. ω/4.93. ω is given in degrees Kelvin.

constraint that for T →0 the height of the phonon density of states (DOS)
coincides with the value of Cp/T 3 for T →0. The low lying phonon branch
in each of the samples investigated may render those lattice vibrations which
couple to the electron system and hence promote Cooper pairing, thereby
enabling BCS-type superconductivity.

In all cases of the MPt4Ge12 skutterudites the phonon part of the specific
heat is well described by a Debye spectrum together with two Einstein-like
contribution in the frequency regions 27 K< ω <33 K and 71 K< ω <90 K.

Details of these fits are summarised in Table 4.4. For BaPt4Ge12 the width
of these contributions Δω in low and high frequency regions (30 K < ω < 33 K
and 85 K < ω < 90 K) are significantly smaller than for SrPt4Ge12 (see Table
4.4). A narrow contribution to F (ω) at high frequencies can be expected due
to the most regular lattice in this compound. It should be noted that besides
the increase of the 2a occupancy, an increase of the Ba content renders the
skutterudite structure more regular.

The reconstruction of the phonon density of states (DOS) in the case of
SrPt4Ge12 is plotted in Fig. 4.11. The overall goodness of the fit is high,
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property SrPt4Ge12 BaPt4Ge12 Ba0.8Ca0.2Pt4Ge12 ThPt4Ge12

γ [mJ/molK2] 41 42 44 35(1)
θLT

D [K] 220 247 213 260
ωE1 [K] 28.5 32 30 34.7
ΔωE1 [K] 1.6 1.7 1 2.2
ωE2 [K] 72 85 75 63.8
ΔωE2 [K] 4.3 2.8 4.4 6.4
ωD [K] 231 248 233 256
A 2.1 1.7 1.58
A+B 22.7 18.9 22.4
A+C 17.7 24 10.4

Table 4.4: Debye frequencies ωD, Einstein frequencies ωEi
and with corre-

sponding spectral widths according to least squares fits to the data with Eqn.
A.11. Parameters for the phonon density of states F (ω) and normalized to
(4/5)Rπ4ω−2F (ω) [mJK−4 g atom−1], γ and θD values were evaluated in the
temperature region below 6 K.

revealing reasonable sets of parameters, summarised in Table 4.4. The best
fit the specific heat data (Cp − γT )/T 3 of SrPt4Ge12 with γ= 41 [mJ/molK2]
revealed that the Debye temperature θD= 220 K.

From the experimental data it is obvious that the filling of the 2a position
with calcium atoms in {Ba0.8Ca0.2}Pt4Ge12 influences also the phonon spec-
trum F (ω) of the host lattice in comparison with BaPt4Ge12. A rather sharp
Einstein-like contribution occurs at around 30 K which is slightly lower than
in the case of Ba and Sr filled compounds.

The inapplicability of a Debye-like extrapolation of Cp(T ) towards high
temperatures (as usually applied in simple metallic systems) demonstrates
the existence of a complicated phonon spectrum in ThPt4Ge12. Based on
Eqn.A.11, the phonon spectra are constructed and plotted in Fig. 4.12b
referring to the right axis (solid line). The overall goodness of the fit is
extremely high, revealing reasonable sets of parameters (see Table 4.4).

4.1.6 Superconducting and normal state

Superconductivity only occurs in a phase space spanned by three key
parameters, i.e, the critical temperature Tc, the critical current Ic and the
critical magnetic field Hc(T ) which are specific for each material. The
superconducting state is characterized by various length scales, and the
ratio of such scales λGL/ξGL ≡ κGL (λGL is the penetration depth and ξ the
coherence length) determines whether the material is a type I superconductor
(κ <1/

√
2) with perfect diamagnetism up to a critical field above which the



66 Chapter 4: Ge-based skutterudites: {Sr,Ba,Eu,Th,U}Pt4Ge12 . . .

material becomes normal conducting or it is a type II superconductor (κ
>1/

√
2).

Determination of the electron-phonon coupling strength λep:
An evaluation of the electron-phonon enhancement factor λep from data

for Tc and ΘD is based on the McMillan formula [160] and postulates an
assumption on the Coulomb pseudopotential. Within this model, the super-
conducting transition temperature Tc is given by:

Tc =
ΘD

1.45
exp

[ −1.04(1 + λep)

λep − μ∗(1 + 0.62λep)

]
, (4.5)

where λep is dimensionless electron-phonon coupling constant, ΘD is Debye
temperature for the characteristic phonon frequency. λep determines the at-
tractive part of the Cooper pair bonding, while μ∗ is the repulsive screened
Coulomb part (μ∗ ≈ 0.1−0.13). For weak coupling superconductors, electron-
phonon mass enhancement λep depends importantly on the value assigned to
μ∗. Thus, it is widely accepted to approximate μ∗ by a typical mean value.
McMillan proposed μ∗ = 0.13 for transition metal superconductors [160].
Taking into account the McMillan model allows calculation of the dimension-
less electron-phonon coupling constant λep, related in terms of the Eliashberg
theory to the phonon density of states. Applying this simple model yields
for Ba and Sr cases λep ≈ 0.7 and in case of Th λep = 0.66. This refers
to superconductors well beyond the weak coupling limit. In comparison, μ∗

of different cage forming compounds have been found to cover a range from
≈ 0.1 to ≈ 0.3 [51, 52, 53]. The applicability of this approximation can be
checked with the empirical formula by Bennemann and Garland [161]

μ∗ = 0.26N(0)/[1 +N(0)], (4.6)

where N(0) is the electronic density of states at the Fermi-energy EF which
has to be taken in the unit [states/eV atom]. In the following, λep will be
evaluated with the Bennemann and Garland formula. Using Eqn. 4.6 and
taking N(EF ) from band structure results yields μ∗ ≈ 0.113 for BaPt4Ge12

(N(EF ) = 13.2 states eV−1 f.u−1 [54]), μ∗ ≈ 0.108 for SrPt4Ge12 (N(EF ) =
12.1 states eV−1 f.u−1 [54]) and μ∗ ≈ 0.094 in the case of ThPt4Ge12 (N(EF )
= 9.63 states eV−1 f.u−1 [59]). These values are close to the value of μ∗ = 0.13
estimated for transition metal superconductors. Note that N(EF ) is usually
given in [states/eV f.u.], but Eqn. 4.6 requires the use of N(EF )/(number
of atoms in unit cell). In section 4.1.9 of this chapter, more detail of the
band-structure calculations of {Sr,Ba,Th}Pt4Ge12 and the electron-phonon
enhancement parameter taken from the McMillan will be given. In Table
4.5 are collected the results of λep from McMillan formula (calculated
with μ∗= 0.13), the estimates of μ∗ obtained from empirical formula by
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Figure 4.13: Comparison of the electron-phonon mass enhancement factors
λep (= γobs/γband − 1) with λep estimated from Bennemann et. al. [161] and
McMillan [160] as function of Tc/θD.

´ N(EF ) μ∗ λep μ∗ λep

[states eV−1 atom−1] Eqn.4.6 Eqn.4.5 Eqn.4.5
BaPt4Ge12 0.774 0.113 0.65 0.13 0.69
SrPt4Ge12 0.711 0.108 0.66 0.13 0.71
ThPt4Ge12 0.566 0.094 0.58 0.13 0.66

Table 4.5: Comparison of the electron-phonon mass enhancement factors λep

(= γobs/γband − 1) with λep estimated from Bennemann et. al. [161] and
McMillan [160]. More detail discussed in section 4.1.9.

Bennemann and Garland are compared with value of λep = γobs/γband − 1.
Figure 4.13 illustrates the electron-phonon mass enhancement factors λep

(= γobs/γband − 1) with λep estimated from Bennemann et. al. [161] and
McMillan [160] as a function of Tc/θD.

Thermodynamic BCS ratios:

Fig. 4.14a displays the zero-field and normal state (3 T and in case of
Th compound 0.2 T) specific heat of {Sr,Ba,Th}Pt4Ge12 in Cp/T versus T
representation. The idealization of the superconducting transition conform-
ing the constraint of entropy conservation is shown by the solid line which
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Figure 4.14: (a) Temperature dependent specific heat in the superconducting
and normal state plotted as Cp/T vs. T for 0 and 3 T; the solid line accounts
for an ideally sharp transition. The filled symbols correspond to the zero
field and open symbols to the 3 and 0.2 T measurements. (b) The normalized
electronic specific heat CeS of {Sr,Ba,Th}Pt4Ge12 plotted as semi-logarithmic
CeS/γTc as a function of the inverse reduced temperature Tc/T .

yields the height of the specific heat jump (ΔCp)/T |Tc=(Cs − Cn)/T |Tc at
Tc and the thermodynamic mean value of superconducting transition at T̄c,
summarised in Table 4.6. The jump of the specific heat (ΔCp/T )T=Tc ≈
58 mJ/molK2 for BaPt4Ge12 and ≈ 57 mJ/molK2 for SrPt4Ge12 allows cal-
culation of ΔCp/γnTc ≈ 1.38 as well as 1.39 for BaPt4Ge12 and SrPt4Ge12,
which is near to the figure expected from BCS theory [ΔCp/γTc ≈ 1.43], re-
spectively. In the case of Ba0.8Ca0.2Pt4Ge12 the same analysis yields a specific
heat jump ΔCp/γnTc ≈ 1.2, where (ΔCp)/T |Tc ≈ 53 mJ/molK2 is determined
from the zero field data assuming an idealized sharp drop at the supercon-
ducting transition at Tc.

ΔCp/T of ThPt4Ge12 and SrPt4Ge12 is displayed in Fig. 4.15a. As shown
in Fig. 4.15a, in the case of ThPt4Ge12, taking the jump of the specific heat
ΔCp/T |T=Tc= 61(2) mJ/molK2, ΔCp/γnTc is calculated to be ≈ 1.74, above
the value expected from the BCS theory (ΔCp/γTc ≈ 1.43) [54, 55, 56, 59].
As the magnetic field strength increases, both the transition temperature and
the anomaly right at Tc are suppressed, defining the phase diagram shown in
figures 4.17 and 4.18(b). The results of these evaluation are summarised in
Table 4.6.
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property SrPt4Ge12 BaPt4Ge12 ThPt4Ge12 Ba0.8Ca0.2Pt4Ge12

Tc [K] 5.1 5.35 4.75 5.2
θlt

D [K] 220 247 260 213
γ [mJ/molK2] 41 42 35(1) 44
ΔCp/T (T = Tc) 58 57 61(2) 53
ΔCp/γnTc 1.39 1.38 1.74 1.2
μ0Hc2 [T] 1 1.8 0.22 1.75
BCS: Δ(0) [K] 9.7(1) 9.4(1) 8.4(1) 8.8(1)

Table 4.6: The basic quantities describing the thermodynamic properties of
superconducting state of MPt4Ge12, M = {Ca, Sr,Ba,Th}.

Superconducting gap:
The analysis of the zero-field superconducting state heat capacity of

{Ca, Sr,Ba,Th}Pt4Ge12 for T < Tc/2 reveals a BCS-like exponential temper-
ature dependence. The BCS expression for the electronic specific heat in the
superconducting state well below Tc (Eqn.1.45) can be written as [162, 163]

CeS(T ) = 8.5γTc exp

(
−0.82

ΔBCS(0)

kBT

)
, (4.7)

where ΔBCS(0) represents the superconducting gap width at T = 0. The
superconducting gap Δ(0) of {Ca, Sr,Ba,Th}Pt4Ge12 can be derived from a
comparison of the modified BCS expression (Eqn.4.7) with the experimental
heat capacity data. The temperature dependence of the electronic specific
heat CeS of {Ca, Sr,Ba,Th}Pt4Ge12 in the superconducting state, is obtained
by subtracting the phonon contributions Cph (derived from the normal state
heat capacity data) from zero-field measurements (see dashed-dotted line in
Fig. 4.12a in case of ThPt4Ge12). Fig. 4.14b shows a semi-logarithmic plot of
the normalized electronic specific heat CeS/γTc as a function of the reduced
temperature Tc/T for {Sr,Ba,Th}Pt4Ge12. The exponential temperature
dependency of the electronic specific heat CeS in all cases indicating a ratio
Δ(0)/kBTc in close agreement with the weak coupling BCS value. From
the exponential dependence curve, the superconducting energy gap at zero
temperature Δ(0) can be estimated to be 0.81 meV (9.4 K) for BaPt4Ge12

and 0.83 meV (9.7 K) for SrPt4Ge12, respectively. These yielding a ratio
Δ(0)/kBTc ≈1.77(1) for BaPt4Ge12 and 1.89(1) in case of SrPt4Ge12 in
close agreement with the weak coupling BCS value (ΔBCS(0) = 1.76kBTc).
From the exponential dependence curve of ThPt4Ge12 (for T < Tc/2), the
superconducting energy gap at zero temperature Δ(0) can be estimated to
be 0.72(1) meV. By using these values, the ratio Δ(0)/kBTc � 1.75 is in fine
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Figure 4.15: (a) comparison of ΔCp/T (T = Tc) between ThPt4Ge12 and
SrPt4Ge12. (b) comparison of free energy difference ΔF (T ) = Fn − Fs be-
tween the superconducting and normal state (see Eqn. 1.61) of ThPt4Ge12

and SrPt4Ge12. The dashed lines are extrapolations from the normal- and
superconducting states, respectively.

agreement with the BCS value. The reason why these values are not identical
to the BCS weak-coupling values is probably the sample inhomogeneities.

The thermodynamic critical field:

Figure 4.16b displays the thermodynamic critical field μ0Hc of ThPt4Ge12

and SrPt4Ge12. Hc(T ) is obtained by integrating the entropy difference
between the normal and superconducting state. The temperature dependent
entropies ΔS of ThPt4Ge12 and SrPt4Ge12 with ΔS(T ) = Sn − Ss are dis-
played in Fig. 4.16a. The application of equation 1.61 to the data in figures
4.9a,b - 4.12a reveals the thermodynamic critical field Hc(T ). The entropy
of any system is the derivative of the free energy S = −(∂F/∂T )B and the
specific heat is Cp = T (∂S/∂T )B . By starting with experimental specific
heat data and integrating twice, the free energy can be recovered for each
state, and the difference can be calculated at any temperature. The results
of calculation of free energy difference ΔF (T ) = Fn − Fs = μ0H

2
c (T )/2,

where Fn and Fs are evaluated from the specific heat data in the normal
and superconducting state, respectively, are displayed in Fig. 4.15b for
ThPt4Ge12 and SrPt4Ge12 as μ0Hc vs. temperature. Cs(T ) is obtained from
the zero field specific heat measurements and Cn(T ) are taken from the
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Figure 4.16: (a) comparison of ΔS(T ) between ThPt4Ge12 and SrPt4Ge12.
(b) comparison of thermodynamic critical field μ0Hc of ThPt4Ge12 and
SrPt4Ge12. The dashed lines are extrapolations from the normal- and su-
perconducting states, respectively.

0.2 T data for the Th compound and 3 T for the Sr compound, respectively.
The thermodynamic critical field (filled symbol) and the upper critical field
values for ThPt4Ge12 are displayed in Fig. 4.18b; an extrapolation T → 0
yields μ0Hc(0) ≈ 50 mT, very similar to the figures derived for SrPt4Ge12

and BaPt4Ge12 (μ0Hc(0) ≈ 53 (2) and 52 (2)mT for the Ba and the Sr-based
compound, respectively) [54].

Upper critical field:

The upper critical field Hc2 is one of the most fundamental quantities in
type-II superconductors. After the pioneering work by Abrikosov [99] based
on the Ginzburg-Landau (GL) equations [98], theoretical efforts have been
made for its quantitative description at all temperatures [100, 164]. The tem-
perature dependent upper critical field μ0Hc2 of SrPt4Ge12 and BaPt4Ge12

as deduced from field dependent resistivity, magnetisation and heat capac-
ity measurements is illustrated in Fig. 4.17. The slopes of the upper criti-
cal field ∂(μ0Hc2)/∂T ≡ μ0H

′
c2 are collected in Table 4.1.6, yielding slightly

larger values deduced from magnetisation and resistivity data (surface effects)
than those from specific heat. The further evaluation of μ0Hc2 is thus based
on the specific heat measurement data. μ0H

′
c2 of BaPt4Ge12 is larger than

μ0H
′
c2 of SrPt4Ge12. The temperature dependent upper critical field μ0Hc2
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of ThPt4Ge12 as deduced from the specific heat measurements Cp(T,H) is
displays in Fig. 4.18b, with ∂(μ0Hc2)/∂T ≡ μ0H

′
c2 = −0.064 T/K [59].

Essentially two mechanisms limit the value of μ0Hc2: orbital pair breaking
and Pauli limiting. Werthamer et al. [165] derived an expression (Wertham-
mer, Helfand, Hohenberg,WHH model) for the upper critical field μ0Hc2 in
terms of orbital pair-breaking, including the effect of Pauli spin paramag-
netism and spin-orbit scattering.

Werthamer noted that the expression for the upper critical field μ0Hc2 of
dirty limit type II superconductors can be expressed in terms of the digamma
function. Orlando [111] showed for bulk type II superconductors in the dirty
limit, that μ0Hc2(t) is an implicit function of

ln t = ψ

(
1

2

)
− 1

2

(
1 +

λso/4

X

)
ψ

(
1

2
+
Y + λso/4 −X

t

)
−

− 1

2

(
1 − λso/4

X

)
ψ

(
1

2
+
Y + λso/4 +X

t

)
, (4.8)

where ψ is the digamma function, t = T/Tc,

Y =
2h

π2
with h = Hc2(T )/

[
dHc2

dT
|Tc · Tc

]
(4.9)
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and

X =
[
(λso/4)2 − 4h2α2/π4

]1/2
with α =

21/2π2

8eγ

− (dHc2/dT |Tc)Tc

Hp(0)
(4.10)

here Hp(0) = πkB/(2
1/2eγμB)Tc[(1 + λep)

1/2ηHc(0)] is the Pauli limiting field
(with no other pair breaker and in the absence of spin-orbit scattering) [111]
and α is Maki1 parameter [164].

A comparison of the experimental results with the WHH model is based
on two parameters, α, the Pauli paramagnetic limitation (Maki parameter)
and λso describing spin-orbit scattering (see A.3.1). If the atomic numbers
of the elements constituting the material under investigation increase, λso is
expected to increase as well.

For an interpretation of the experimental data and a comparison of the
experimental results we used the WHH model Eqn. 4.8 and 4.9. μ0Hc2

is almost linear near Tc and saturates at lowest temperatures. Using the
approach by Werthamer et al. yields μ0Hc2(0) = 0.7μ0TcH

′
c2|Tc = 0.22 T

for ThPt4Ge12 (Fig. 4.18b), 1.8 and 1 T for BaPt4Ge12 and SrPt4Ge12,
respectively. The best fit for Ba0.8Ca0.2Pt4Ge12 using equation 4.8 yields
μ0Hc2(0) = 0.7μ0Tc(dHc2/dT )|Tc = 1.75 T.

The Maki parameter α can be estimated via the Sommerfeld value γ and
ρ0 [165], i.e.,

α = (3e2�γρ0)/(2mπ
2k2

B) (4.11)

where γ is the normal state electronic specific heat coefficient in
[erg/cm3K2], ρ0 is the residual resistivity in [Ω cm], � the Boltzmann’s con-
stant in [erg/K] and e the electron charge and m the electron mass. Taking
the experimental residual resistivity ρ0 and the Sommerfeld value γ yields
α = 0.18 for BaPt4Ge12, α = 0.14 for SrPt4Ge12 and α = 0.016 for ThPt4Ge12,
respectively. A value of similar magnitude can be derived from [164]

α = 5.3 · 10−5

(−dHc2(T )

dT

)
|T=Tc . (4.12)

An increasing value of α reduces Hc2 from the upper limit
h∗ = Hc2/ (Tc∂μ0Hc2/∂T |T=Tc) = 0.693. Spin-orbital scattering, on
the contrary, compensates for the decrease due to the paramagnetic limita-
tion and restores h∗ ≈ 0.693 for λso → ∞. Wong et al. [166] pointed out that
λso > 10 for 5d compounds, which also should hold for the present Pt-based
system. We have adjusted the WHH model to the experimental data (dashed
and dashed-dotted lines in Fig. 4.17 and solid line in Fig. 4.18b), revealing
λso ≈ 15 for all data-sets. Note, however, Hc2(T → 0), is quite insensitive for

1In memoriam: on 10 September 2008 Kazumi Maki, world-renowned physicist in the
field of superconductivity, died at age 72 (1936 - 2008).
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λso > 10. Both enhancement effects as well as strong coupling are expected
to have only minor influence on these data [166].

Ginzburg-Landau parameter κ and the characteristic lengths ξ
and λGL:

The thermodynamic and the upper critical field are used to calculate the
ratio of the penetration depth λGL(0) to the coherence length ξGL(0) via
Abrikosov’s relation

λGL(0)/ξGL(0) ≡ κGL(0) = Hc2/[
√

2Hc(0)], (4.13)

yielding the Ginzburg-Landau parameter κGL = 24 (2) and 14 (2) for the Ba-,
Sr- and κGL = 3 for Th-based compounds, respectively. In case Ba and Sr
compounds the coherence length ξ0 for T→0 was obtained from two indepen-
dent relations. One follows from the BCS equation (Eqn.1.57), yielding about
13.8×10−8 m, 18.1×10−8 m for the Ba and Sr compounds, respectively. A
second expression stems from the well known formula

ξ =

(
Φ0

2πμ0Hc2

)1/2

= 14(1) × 10−8 m (4.14)

for the Ba- and 18(1)×10−8 m for Sr-based compound, respectively, in fair
agreement with the former. The absolute values of ξ0 and λ(0) can be eval-
uated via the isotropic Ginzburg-Landau-Abrikosov-Gor’kov (GLAG) theory
(Eqn.1.52 and Eqn.1.53), resulting in ξ0 = 4×10−8 m and λ(0) = 1.2×10−7 m
for ThPt4Ge12. The values for ξ and λ are collected in Table 4.1.6.

Gor’kov [100] has derived an expression for Ginzburg-Landau parameter
κ to be valid when the electronic mean free path ltr is much smaller than the
intrinsic coherence length ξ0. This was shown by Goodman [105] to have the
convenient form

κ = κ0 + 0.0237
√
γρ0, (4.15)

where κ0 is the clean limit value of the Ginzburg-Landau parameter, γ is
the Sommerfeld coefficient in units [J/m3K2] and ρ0 the residual resistivity
in [Ω cm]. Using the Gor’kov-Goodman relation the experimental value κ ≈
2.9 provides a rough estimate of κ0=1.9 for {Sr,Ba,Th}Pt4Ge12 in the hypo-
thetical clean limit case. The results of these evaluation are given in Table
4.1.6 and will be compared with direct estimation from the Abrikosov’s re-
lation Eqn.4.13 and the Gor’kov-Goodman relation Eqn.4.15. These findings
are illustrated in Fig.4.18a, where κGL(0) calculated from the Abrikosov’s
relation and the Gor’kov-Goodman relation are compared. Good agreement
is obtained between Ginzburg-Landau parameter κGL(0) calculated from the
Abrikosov’s relation and the Gor’kov-Goodman relation for all compounds.



4.1 {Sr,Ba,Eu,Th,U}Pt4Ge12 System 75

0=1.9

J/m3 K2 cm

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

25

30
Abrikosov's:  GL=Hc2/ 2Hc(0)
Gor'kov-Goodman

Tc [K]

0 1 2 3 4 5

μ 0
H

c2
[T

]

0.00

0.05

0.10

0.15

0.20

0.25
WHH model 

Hc
Hc2

H'c2 = 0.066 T/K

H'c2(0,theo.) = 0.22 T

 = 0.016

so = 15

= 0 + 0.0237 1/2
0

Sr

Th

Ba

μ0Hc(0) = 0.05 T

Figure 4.18: (a) comparison of the Ginzburg-Landau parameter κGL(0) calcu-
lated values from the Abrikosov’s relation and the Gor’kov-Goodman relation.
(b) Upper critical field μ0Hc2 and the thermodynamic critical field μ0Hc (filled
green symbol) of ThPt4Ge12. Data are taken from the heat capacity data.
The dashed and the dashed-dotted lines corresponds to the WHH model as
explained in the text.

For interpretation of the experimental data these relations are collected in
Appendix A.3.

The fact that μ0H
′
c2 of ThPt4Ge12 is substantially smaller than that

of isomorphous {Sr,Ba}Pt4Ge12 (μ0H
′
c2(Sr) ≈ −0.275 T/K, μ0H

′
c2(Ba) ≈

−0.46 T/K) [54, 55, 56, 59] might be a consequence of the observed variation
of the Sommerfeld value γ and the residual resistivity ρ0.

As shown in Fig. 4.17 μ0H
′
c2 of BaPt4Ge12 is larger than that of SrPt4Ge12,

a fact that can be understood in terms of the Ginzburg-Landau theory. Hake
et al. [167] and Orlando et al. [111] derived a model equation for μ0H

′
c2

with the assumption of a spherical Fermi surface which primarily depends
on two parameters: on the inverse of the square of Fermi velocity vF and on
the inverse of the electronic mean free path ltr (see Eqn. 1.64). The Fermi
velocity vF can be calculated from

vF =
ξ0kBTc

0.18�
[m/s], (4.16)

with coherence length ξ0 in [m].

Taking into account the parameters deduced from the above analyses ex-
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property BaPt4Ge12 SrPt4Ge12 ThPt4Ge12

transition temperature Tc [K] 5.35 5.10 4.75
upper critical field μ0Hc2 [T] 1.8 1 0.22
thermod. critical field μ0Hc [T] 0.053 0.052 0.050
slope of μ0Hc2, μ0H

′
c2(Cp) [T/K] -0.46 -0.275 -0.067

Fermi velocity vF [m/s] 52500 67000 136000
effective Fermi surface Scl

s [m−2] 2.74×1020 3.43×1020 5.69×1020

coherence length ξ0 [nm] (BCS Eq.) 13.8 18.1 39.4
coherence length ξ [nm] 14(1) 18(1) 40(1)
penetration depth λ [nm] 320(10) 250(10) 120 (10)
mean free path ltr [m] 1×10−8 1.4×10−8 6.5 ×10−8

G.L. parameter κGL 24(1) 14(1) 3(1)
G.L. parameter κGL (Goodman Eq.) 23.7 13.65(1) 3.01
α 0.18 0.14 0.016
λep 0.7 0.7 0.66
ltr/ξ 0.5(2) 0.7(2) 3.2(2)

Table 4.7: The normal and superconducting state properties of SrPt4Ge12,
BaPt4Ge12 and ThPt4Ge12.

plains in all cases, at least qualitatively, differences of μ0H
′
c2. While the

decrease of vF from the Sr case (vF = 0.67 × 105 m/s) to the Ba case
(vF = 0.52× 105 m/s) [54] and finally to the Th compound can be conceived
by the increase of the unit cell volume (vF ∝ (N/V )1/3, for free electrons),
the increase of the electronic mean free path ltr corresponds to the very low
residual resistivity (ρ0 = 3 μΩcm) of ThPt4Ge12 and the decrease of the
mean free path ltr corresponds to the increase of the residual resistivity from
SrPt4Ge12 to BaPt4Ge12, respectively. Both of these parameters are larger
in the case of ThPt4Ge12, explaining straightforwardly the reduced value of
μ0H

′
c2. Values are summarised in Table 4.1.6. The importance of the latter

parameter is obvious from μ0H
′
c2 = const ·γρ0 [111], which is valid within the

dirty limit case (const is a numerical constant, Eqn. 1.66). For the mean free
path, ltr, we then followed the scheme of Rauchschwalbe [116] developed for
s-wave superconductors:

ltr = 1.533 × 106 1

ρ0Ss
(4.17)

with ρ0 the residual resistivity in [Ω cm] and the effective Fermi surface
Ss in [m]. Combining Ss and ρ0 according to Eqn. 4.17, a mean free path ltr
of about ≈ 1.0 × 10−8 m and ≈ 1.4 × 10−8 m for the Ba and Sr compound,
respectively, is derived. For the Th compound we derived ltr ≈ 6.5× 10−8 m.

From ltr/ξ ≈ 1 we classify {Sr,Ba}Pt4Ge12 as a dirty limit superconduc-
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tor, and κ of the order of 10 to 20 refers to a pronounced type II supercon-
ducting behaviour and the ThPt4Ge12 as a SC grouped between the clean
(ltr � /ξ) and the dirty (ltr � /ξ) limit; κ of the order of 3 refers to a type
II SC behaviour.

4.1.7 Magnetic properties

Magnetisation measurements were carried out down to 2 K with a SQUID
magnetometer on the {Sr,Ba,Eu,Th,U}Pt4Ge12. The low field susceptibil-
ity χ(T ) of BaPt4Ge12 is plotted as a function of temperature in Fig. 4.19a
for the magnetic field up to 0.1 T. The susceptibility χ exhibits a rather
sharp transition at TC = 5.3 K, dropping from an initially small positive
value to the diamagnetic value of [−1/(4π)] for zero field cooling, which cor-
responds to a full Meissner Ochsenfeld effect. The irreversibility upon field
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Figure 4.19: (a) Temperature dependent susceptibility χ of BaPt4Ge12, plot-
ted as MH vs. T at various applied magnetic fields after zero-field cooling.
(b) Temperature dependent magnetic susceptibility χ of SrPt4Ge12, plotted
as MH vs. T at various applied magnetic fields after cooling the specimen
in zero-field.

and zero-field cooling can be attributed to type II superconductivity. The
temperature dependent magnetic susceptibility χ(T ) of SrPt4Ge12 is shown
in Fig.4.19b for applied fields up to 0.1 T. In a field of 1 mT, the onset of
the superconducting state occurs at 5.1 K. The strong diamagnetic signal
observed at 3.3 K upon cooling the sample in zero field (ZFC) corresponds



78 Chapter 4: Ge-based skutterudites: {Sr,Ba,Eu,Th,U}Pt4Ge12 . . .

ThPt4Ge12

T [K]
2 3 4 5

M
/H

  [
cm

3 /
g]

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

5 G
10 G
50 G
100 G
200 G

ZFC

T [K]
0 50 100 150 200 250

 [m
ol

/e
m

u]

0

100

200

300

400

500

600

0.1 T
3 T

mod. Curie-Weiss law

UPt4Ge12

μeff = 1.98 μB /f.u.

p = - 43 K

c0 = - 2.6 10-7 cm3/g

(b)(a)

Figure 4.20: (a) Temperature dependent susceptibility M/H of ThPt4Ge12.
The jump at T = Tc for 5 G reveals a full Meissner effect. Filled and open
symbols refer to zero field and field cooling, respectively. The jump at reveals
a full Meissner effect. (b) Temperature dependent magnetic susceptibility χ
of UPt4Ge12 compound, plotted as χ−1 vs. T . The solid line is a least squares
fit using the modified Curie-Weiss law.

to the perfect shielding of the total volume of the sample by super currents.
With rising magnetic field strength the critical temperature Tc gradually de-
creases, and the superconductivity becomes hardly observable by means of
χ(T ) measurement already in fields above 0.15 T. The temperature depen-
dent magnetic susceptibility χ(T ) of ThPt4Ge12 is displayed in Fig. 4.20a at
various magnetic field, plotted as M/H vs. T . The magnetic susceptibility,
χ, of ThPt4Ge12 is diamagnetic in the normal state region, revealing a tem-
perature independent susceptibility χ = −1.5 ·10−7 g/cm3. At T = 4.8 K, the
sharp transition evidences bulk superconductivity, in perfect agreement with
the specific heat and the resistivity data. The diamagnetic value of [−1/(4π)]
for zero-field cooling (ZFC) corresponds to a complete flux exclusion of the
total sample volume due to the screening currents. In the low field limit (<
5 mT) the shielding signal is in good agreement with the value expected for
perfect diamagnetism (using the X-ray density 9.063 g/cm3 and a correction
for demagnetisation due to the macroscopic sample geometry). The flux ex-
pulsion (Meissner-Ochsenfeld effect) for field cooling (FC) in 5 and 20 mT
is only 21% and 17% of the shielding signal, which indicates a rather strong
flux pinning in a type II superconductor. With growing external fields the
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transition is washed out and shifted to lower temperatures and is suppressed
in fields larger than 0.13 T above 2.2 K.

The inverse magnetic susceptibility χ−1(T ) of UPt4Ge12 at a magnetic
field of μ0H = 0.1 and 3 T is plotted as a function of temperature in Fig.
4.20b. Above about 30 K a Curie-Weiss like behaviour indicates a simple
paramagnetic state. At high temperatures, a least squares fit to the modified
Curie-Weiss law, i.e., χ = χ0+C/(T−θp) yields an effective magnetic moment
μeff = 1.98 μB and a paramagnetic Curie temperature θp = −43 K. Such
value, however, is lower than the expected moment for a free uranium in either
5f 2 or 5f 3 configuration, which resulting μeff = 3.58 μB and μeff = 3.62 μB,
respectively [168]. This may refer to a loss of localisation in favour of an
itinerant 5f state. Similar low effective moments are known for other U-
intermetallics such as the heavy fermion superconductors of UPt3, UPd2Al3
and URu2Si2, for which the 5f -bands lie very close to the Fermi level tending
to delocalise [169, 170, 171, 172].

4.1.8 Seebeck coefficient

The temperature dependent thermopower S(T ) of {Sr, Ba, Eu}Pt4Ge12 skut-
terudites as well as of (Ba0.8Ca0.2)Pt4Ge12 is displayed in Fig. 4.21. Data were
collected between 4.2 to 300 K. Throughout the series, positive thermopower
is observed, reaching room temperature values of about 5.4 μV/K in the case
of SrPt4Ge12, 6.7 μV/K in the case of BaPt4Ge12 and 4.4 μV/K in the case
of EuPt4Ge12. For BaPt4Ge12 and Ba0.8Ca0.2)Pt4Ge12, S(T ) shows an almost
linear behaviour. Most remarkable is the fact that for (Ba0.8Ca0.2)Pt4Ge12,
SRT ≈ 9.7 μV/K, is even higher than the value for BaPt4Ge12. S(T ) of
EuPt4Ge12 is slightly reduced in comparison to the S(T ) of SrPt4Ge12. It
shows a steep increase at low temperatures up to 100 K, reaching a maximum
value Smax ≈ 5.1 μV/K followed by a plateau from 100 K up to room temper-
ature, were it reaches a value SRT ≈ 4.4 μV/K comparable to SrPt4Ge12 with
SRT ≈ 5.4 μV/K. At temperatures below about 100 K S(T ) for SrPt4Ge12

and EuPt4Ge12 is larger than that of corresponding BaPt4Ge12 as well as
(Ba0.8Ca0.2)Pt4Ge12.

4.1.9 Electronic structure

Lastly, in this section the superconducting state from a theoretical perspective
of the calculated electronic band structure was discussed. For the band-
structure calculations, density functional theory (DFT) was applied using the
Vienna ab initio simulation package (VASP) [173, 174] with a fully relativistic
spin-orbit coupling approach [175, 176]. The Brillouin zone was sampled with

5×5×5 Monkhorst-Pack 	k-point grids. The exchange-correlation functional
was treated within the local density approximation. The calculated total
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Figure 4.21: Temperature dependent thermopower S(T ) of {Sr, Ba,
Eu}Pt4Ge12 and {Ba0.8Ca0.2}Pt4Ge12.

density of states (DOS) for BaPt4Ge12 in comparison to SrPt4Ge12 is plotted
in left panel of Fig. 4.22. The broken line at E=0 indicates the Fermi
energy. The calculated total density of states (DOS) reveal the individual
contributions of X=(Ba,Sr), Pt and Ge atoms showing that Ge states, which
are of p− and s-like states, are dominating at Fermi energy. The Ge states
hybridize with Pt 5d-like states by which the spin-orbit coupling effect is
transmitted to the DOS at EF . Consequently, by making use of the electron
localization function technique [177], expressive Ge-Ge covalent bonds and
typical metallic Pt bonding are being deduced. The metallic features of the
DOS around EF convincingly confirm that the Zintl concept no longer applies
to {Sr,Ba}Pt4Ge12, while its applicability is quite obvious among pnictogen-
based skutterudites.

The right panel of Fig. 4.22 shows the total calculated DOS for
ThPt4Ge12. The calculated DOS reveals the individual contributions of the
Th, Pt, and Ge atoms. The relativistic effect of spin-orbit coupling does not
significantly influence the DOS at EF . The directed covalent bonds of Ge in-
termixed with the more metal-like charge distribution of Pt states contribute
to the peak of the DOS at EF . From Bader’s charge analysis [178], about
0.13 electrons are transferred from each Ge to Pt, indicating only weakly ionic
Pt-Ge bonds.

The electron-phonon coupling parameter can be obtained directly from
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Figure 4.22: DOS for BaPt4Ge12 (a,b),SrPt4Ge12 (c,d) and ThPt4Ge12 (e,f) as
derived from DFT calculations. Fermi energy is situated at zero energy. The
upper half (a),(c) shows the density of states for a fully relativistic calculation,
which includes spin-orbit (SO) coupling. The lower half (b),(d) of the figure
presents the DOS of a standard non-relativistic calculation. The total DOS
is decomposed into the local DOS representative for one Ba(Sr), four Pt,
and twelve Ge atoms. The upper half (e) shows the density of states for a
fully relativistic calculation, which includes spin-orbit (SO) coupling. The
lower half (f) of the figure presents the DOS of a standard non-relativistic
calculation. The total DOS is decomposed into the local DOS representative
for one Th, four Pt, and twelve Ge atoms. The graphs clearly demonstrate
the very dominant character of Ge states particularly at Fermi energy. These
states are of expressed p-like character. The relativistic effect is small but
important, because it shifts the Fermi level of the non-relativistic DOS almost
into the maximum of the relativistic DOS.

the relation
γobs = γband(1 + λep), (4.18)

where index band means that band structure, γband(0) = 1/3π2k2
BN(EF )

and λep is the electron–phonon mass enhancement parameter. The experi-
mental observed values γobs slightly larger than 40 mJ/molK2 for the Ba and
Sr compounds, along with an electron-phonon enhancement factor λep = 0.7
(estimated via the McMillan formula Eqn.4.5) would require a bare DOS
equivalent to ≈ 25 mJ/molK2, which compares favorably with the DOS cal-
culations involving spin-orbit coupling: 31 mJ/molK2 for the Ba (N(EF ) =
13.2 states eV−1 f.u−1) and 28 mJ/molK2 for the Sr compound (N(EF ) =
12.1 states eV−1 f.u−1). Without spin-orbit coupling, the specific heats, γ,
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Figure 4.23: X-ray pattern and Rietveld refinement of the skutterudite
EuPt4Ge12. The solid line derives from the Rietveld refinement and Yobs.-
Ycalc. is the intensity difference between experimental data and Rietveld cal-
culations.

are 19.5 and 21.0 mJ/molK2 for Ba and Sr, respectively.

The total DOS at EF can be compared with the Sommerfeld value of
the specific heat γ = 1

3
π2N(EF )k2

B. The experimental values of about
35 mJ/molK2 for ThPt4Ge12 along with an electron-phonon enhancement fac-
tor λep = 0.66 (estimated via the McMillan formula Eqn. 4.5) would require a
bare DOS equivalent of ≈ 21 mJ/molK2, which compares favorably with the
DOS calculation involving spin-orbit coupling: 22.7 mJ/molK2, N(EF ) =
9.63 states eV−1 f.u−1. Without spin-orbit coupling, γ = 20.1 mJ/molK2,
documenting the insignificance of relativistic effects. For UPt4Ge12, how-
ever, standard Perdew-Burke-Ernzerhof (PBE) [179] calculations (not shown
here) do not disclose any magnetic ordering, thereby confirming experimen-
tal observations. The total DOS at EF of 16.21 states eV−1 f.u−1 is signifi-
cantly larger than that of ThPt4Ge12. The corresponding Sommerfeld value
γ = 38.2 mJ/molK2 turns out to be smaller than the experimental value of
156 mJ/molK2 pointing towards the pronounced effect of spin fluctuations.

4.2 Bulk properties of EuPt4Ge12

The powder X-ray diffraction pattern of a EuPt4Ge12 sample was perfectly
indexed by considering the skutterudite structure with a body-centered cu-
bic lattice, space group Im3̄, (No. 204), isotypic with the filled skutterudite
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Figure 4.24: (a) Temperature dependent electrical resistivity ρ of EuPt4Ge12.
The inset shows ρ for different field values; the arrow indicates the magnetic
ordering temperature. (b) Isothermal magnetoresistance ρ(B)/ρ(0) vs. B
(ρ(B) and ρ(0) are the resistivities with and without magnetic fields, respec-
tively) of EuPt4Ge12 at various temperatures.

type EuFe4Sb12 [41]. Rietveld refinements of the X-ray intensities with the
space group Im3̄, (No. 204) in this case converged satisfactorily for a fully
ordered atom arrangement (compare crystal structure in Fig. 4.1). A rep-
resentative Rietveld profile is shown in Fig. 4.23. The lattice parameter for
the Eu compound calculated from a least squares fit of the observed powder
X-ray pattern and is a=0.8689(9) nm. Rietveld refinements converged to low
residual values below RF = 0.054.

4.2.1 Electrical resistivity of EuPt4Ge12

The temperature dependent resistivity ρ(T ) of EuPt4Ge12 is shown in Fig.
4.24a. Runs at various magnetic fields carried out down to 350 mK are dis-
played in the inset of Fig. 4.24a. These results clearly evidence long range
magnetic order around 1.7 K, presumably of antiferromagnetic nature. The
latter is inferred from the specific features of ρ(T ) below about 1.7 K, which
can be accounted for in terms of superzone-boundary effects. Antiferromag-
netism is also favoured by the negative paramagnetic Curie-temperature. The
application of a sufficiently large external magnetic field suppresses magnetic
order. A Fermi-liquid ground state, however, is not recovered since measure-
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ments even at 12 T do not reveal a T 2 dependence of ρ(T ) at low temperatures.
At elevated temperatures, ρ(T ) follows the behaviour of a simple metal, but
the strong curvature found experimentally requires adding of a Mott-Jones
term to the Bloch-Grüneisen formula. The former is a consequence of con-
duction electron scattering on a narrow feature in the electronic density of
states below the Fermi energy. Results of such a fit are shown as solid line
in Fig. 4.24a. Scattering of conduction electrons on disordered Eu moments
reveals only a temperature independent contribution, since CEF effects are
absent.

The isothermal magnetoresistance ρ(B)/ρ(0) as function of external mag-
netic fields up to 12 T for various temperatures between 0.5 K and 30 K is
shown in Fig. 4.24b. At lowest temperatures (T = 0.5 K), the system is in its
magnetically ordered state, and the pronounced minimum around 10 T may
indicate a field induced re-orientation of the antiferromagnetic spin-structure.
Above the ordering temperature, the quenching of magnetic fluctuations by
the applied magnetic field decreases the electric resistivity as obvious from
the data for runs from 4 to 12 K. Above those temperatures, a small positive
contributions due to the classical magnetoresistance is observed.

4.2.2 Magnetic properties of EuPt4Ge12

The rare earth element Eu exhibits either the magnetic Eu2+ state, which is
equivalent to Gd3+ with only a spin component to the total angular momen-
tum j, i.e., j = s =7/2, while the Eu3+ electronic configuration (EC) is non-
magnetic. To prove the EC of Eu in EuPt4Ge12 we have carried out magnetic
measurements. Results regarding the temperature dependent magnetic sus-
ceptibility χ(T ), plotted as χ−1 vs. T , are shown in Fig. 4.25a. Above about
50 K a Curie-Weiss like behaviour indicates a simple paramagnetic state. A
least squares fit to the modified Curie-Weiss law, i.e., χ = χ0 + C/(T − θp)
yields an effective moment μeff = 7.35 μB and a paramagnetic Curie tem-
perature θp = −11.5 K.

The effective magnetic moment is close to the theoretical value asso-
ciated with the Eu2+ state (μtheo

eff = 7.91 μB), while the negative param-
agnetic Curie temperature indicates antiferromagnetic interactions between
conduction electrons and the almost localized 4f electrons. The slight curva-
ture of 1/χ(T ) originates from a temperature independent Pauli contribution
χ0 = 0.001 emu/mol. Distinct crystalline electric field effects are absent in
this compound because of the spin-only contribution to the total angular
momentum. A magnetic phase transition is not obvious from these measure-
ments, at least, down to 2 K, although the system holds a very large effective
magnetic moment. The small deviation of the observed effective magnetic
moment from the theoretical value may be a result of various features: i)
a filling grade slightly below 100 % of Eu on the 2a site cannot completely
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Figure 4.25: (a) Temperature dependent magnetic susceptibility χ of
EuPt4Ge12 compound, plotted as χ−1 vs. T . The solid line is a least
squares fit using the modified Curie-Weiss law. (b) Isothermal magnetisa-
tion of EuPt4Ge12 compound.

be excluded from our x-ray study and/or ii) the valency of the Eu ion may
not fully match the integer 2+ state. Specifically, LIII measurements carried
out on EuFe4Sb12 [180] have shown that about 13 % of the Eu ions have for-
mally a valence of 3+, associated with the nonmagnetic EC of this element.
Isothermal magnetisation curves shown in Fig. 4.25b also demonstrate that
magnetic order does not occur above 2.5 K. Furthermore, the linear M(H)
dependence of EuPt4Ge12 reflects the absence of CEF effects as well as of
significant magnetic correlations.

4.2.3 Density of states DOS of EuPt4Ge12

The calculated DOS of EuPt4Ge12 is shown in Fig. 4.26. Because the Eu-4f
states are strongly localized, these states are treated in terms of the LDA+U
approach as proposed by Dudarev et. al. [181]. Only the difference Δ = U−J
of the on-site Coulomb and exchange parameters enters then the calculation.
Similar to the study of EuB6[182], Δ = 7 eV is selected for Eu. Similar
calculations performed for Δ = 6, 8, and 9 (without optimization of the
internal parameter) showed that the bulk properties are almost unaffected by
the choice of Δ. As can be realized from Fig. 4.26, the choice of Δ = 7 eV
yields the f bands ≈ 2 eV below the Fermi level. Switching off Δ causes a
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Figure 4.26: Density of states (DOS) for EuPt4Ge12 as derived from DFT
LDA+U (U−J = 7 eV) calculations. Fermi energy is situated at zero energy.
The total DOS is split into the local DOS corresponding to all the Ge and Pt
atoms. The effect of spin polarization on Pt and Ge states is negligible. For
Eu the local f DOS is shown for the majority spin occupation and is fully
occupied resulting in a total localized moment of μeff = 7 μB. Inset: DOS
around Fermi energy.

shift of the Eu-4f states to energies just below the Fermi energy. The long
range magnetic coupling is very weak, because both the ferromagnetic and
antiferromagnetic calculation for EuPt4Ge12 results in the same total energy,
and consequently the same structural parameters as well as in the same local
moment of 7 μB for Eu. The magnetic moment of 7 μB is in agreement to the
above susceptibility data. The states at the Fermi level are mainly composed
of Ge 4p states (about 90%) and a small Pt-5d contribution (10%). The total
DOS value at EF is 9.2 states eV−1 f.u.−1 [55].

Although Eu2+ has a rather large magnetic moment, the ordering tem-
perature is small. In general, magnetic order of metallic rare earth systems
is maintained by the oscillating RKKY interaction between the localized
magnetic moment and the conduction electron system. The electronic density
of states as well as the distance between magnetic moments are playing
a crucial role. A comparison with the Eu-based skutterudite EuFe4Sb12

reveals for the latter a much larger phase transition temperature, Tc ≈ 84 K,
exhibiting a ferrimagnetic ordered state. The striking difference between
both isomorphous compounds, however, is due to the fact that the [Fe4Sb12]
host lattice is nearly ferromagnetic [180, 183], with an moment of about
0.21 μB, antiferromagnetically coupled to the Eu moment. The resulting
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Figure 4.27: (a) Temperature dependent specific heat Cp of EuPt4Ge12 plot-
ted as Cp vs. T for 0 T. The inset shows Cp/T vs. T 2 for the low temperature
region. (b) Phonon part of the temperature dependent specific heat Cp of
EuPt4Ge12, plotted (Cp − γT )/T 3 vs. lnT . The dashed lines are the result
of the fitting procedure of the experimental data using the model described
in the text. The solid lines (referring to the right axis) sketch the phonon
spectral function F (ω) plotted as (5/4)Rπ4ω−22F (ω) vs. ω/4.93.

f -electron interaction with nearly ferromagnetic [Fe4Sb12] is then the origin
of the relatively high transition temperature observed for EuFe4Sb12. Since
[Pt4Ge12] does not possess a magnetic moment, the above indicated enhance-
ment mechanism is absent. Thus, the spin-only moment of Eu considerably
fluctuates, and ordering can be easily destroyed with increasing temperature,
as observed experimentally. This scenario is corroborated from ordering
temperatures below 3 K if Fe in EuFe4Sb12 is replaced by isovalent Ru [184].

4.2.4 Heat capacity of EuPt4Ge12

The temperature dependent specific heat Cp of EuPt4Ge12 above 2 K is shown
in Fig. 4.27a. The smooth Cp(T ) dependence indicates phonon-dominated
specific heat. The application of the simple Debye model in the whole tem-
perature range, however, fails. Plotting the data as Cp/T

3 vs. T (Fig. 4.27b)
reveals a local maximum around 15 K which refers to an Einstein-like phonon
branch around 75 K. A plot of Cp/T vs. T 2 is shown in the inset of Fig. 4.27.
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Clearly visible is the rapid upturn below 5 K, reflecting short range order
effects above the magnetic phase transition at 1.7 K. Apart from this upturn,
a standard specific heat analysis (solid line, inset, Fig. 4.27a) allows to ob-
tain the electronic contribution to the specific heat γ=220 [mJ/molK2] and
the Debye temperature θD ≈ 212 K. γ of the present compounds consists
of the pure electronic contribution due to the distinct DOS at EF as well
as of enhancement factors such as the electron-phonon term and a term due
to magnetic fluctuations above ordering. Previously we have shown that for
{Sr,Ba}Pt4Ge12 λe,ph ≈ 1.7 [54]. Adopting the value (1 + λe,ph ≈ 1.7) in
the context of the theoretically calculated DOS at EF (9.2 states eV/f.u.,
corresponding to a specific heat coefficient γ ≈ 21 [mJ/molK2]) would reveal
a contribution of about 35 [mJ/molK2]. The remaining share to the observed
value γ ≈ 220 mJ/molK2 is thus a result of fluctuations of the Eu magnetic
moment.



Chapter 5

Clathrate Ba-X-Ge Systems
(X=Cd, Pd, Zn)

5.1 Ba-Cd-Ge Clathrate System; crystal

structure and physical properties

5.1.1 Crystal Chemistry of Ba8CdxGe43−5x/8�3−3x/8

In order to evaluate atom site preferences in Ba8CdxGe43−5x/8�3−3x/8 X-ray
diffraction data from single crystals with x = 2.4, 4.7, 6.5 and 7.6 were col-
lected at room temperature. In all cases extinctions and diffraction intensities
were consistent with a primitive cubic lattice (space group Pm 3̄n, a≈ 1.1 nm)
and indicated isotypism with the structure of Clathrate type I. No extra re-
flections indicating a larger unit cell a’= 2a as reported by [194] for Ba8Ge43

were detected in the investigated ternary crystals.

The composition dependence of the lattice parameters for
Ba8CdxGe46−x−y�y is shown in Fig. 5.1a and compares well with available
literature data. The increase of the unit cell parameters with cadmium
content is in line with the difference of atomic radii of the elements. The
sample Ba8Cd8Ge38(nominal composition) is a single phase Clathrate with
lattice parameter a= 1.09499(3) nm, but ternary alloys with higher Cd
content were found to be multiphase with a similar lattice parameter for the
clathrate phase.

The heavy barium atoms were unambiguously found in sites 2a (0, 0, 0)
and 6c (1/4, 0, 1/2) and the electron density distribution for the remaining
sites appeared as two features.: (i) constant electron densities of about 32
e/atom in both lattice sites 16i and 24k, (ii) an increasing number of electrons
in the 6d site from 16 e/atom for binary Ba8Ge43�3 (data of Ref.[194]) to ∼
46 e/atom for Ba8Cd6.5Ge39.1�0.4 and Ba8Cd7.6Ge38.4.

X-ray diffraction data for crystals with smaller Cd contents

89
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Figure 5.1: (a) Thermal displacement parameter of Ba8Cd7.6Ge38.4 vs tem-
perature. (b) Lattice parameters versus Cd-content for Ba8CdxGe46−x−y�y

alloys. The dashed line denotes the solubility limit of Cd at 800◦C.

(Ba8Cd2.4Ge41.4�2.2 and Ba8Cd4.7Ge40.3�1.0) were refined with fixed va-
cancy or/and Cd content in the 6d site. For all refinements anisotropic
thermal displacement parameters (ADP) were employed.

Analyzing the thermal atomic displacement parameters ADP’s we en-
countered a large anisotropy of electron densities in two cases (i) Ba atoms
in the 6c site for all investigated single crystals and (ii) Ge atoms in 24k site
(Ge3) for Cd-concentrations smaller than x = 5. However, with increasing
Cd-content the anisotropy of ADP’s for Ge3 decreases and finally vanishes
for x � 6. As the direction of the ADP ellipsoids point towards the nearest
neighbours in the 6d site (M1), we may associate this behaviour with vacancy
formation: the three species (Ge- or Cd- atoms or vacancy) occupying the
6d site engage in different interactions with Ge atoms located in the 24k site
and interatomic distances dM1−Ge3 increase in the sequence �-Ge, Ge-Ge, Cd-
Ge. Accordingly the shape of the 6d site electron density adopts an ellipsoid
elongated along the direction of the M-Ge3 bonds (Fig. 5.2).

The change of the crystallographic parameters (lattice parameter, atomic
coordinates and site occupancy) with Ge/Cd substitution is well reflected by
a compositional dependence of the interatomic distances (Tables 2 and 3 in
Ref.[69]).

The ADP parameters for Ba atoms located in the 6c site (Ba2) show sig-
nificant anisotropy in contrast to Ba1 atoms in site 2a, which seem to have
normal behaviour (Tables 3 and 4 in Ref.[69]). Coordination polyhedra for
both barium atoms are shown on Fig. 5.2. If the Ba8Cd7.6Ge38.4 crystal
is considered as a simple Debye solid and additionally with Ba2 atoms be-
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Figure 5.2: Cages and atom thermal displacement parameters in Clathrate
Ba8CdxGe43−5x/8�3−3x/8 (Ge3 atoms in unsplit model). The replacement of
Ge3 by split Ge31 and Ge32 sites is indicated in the right upper corner.

having like Einstein-oscillators, the thermal displacements and the Einstein
temperatures ΘE,ii are related by Eqn. 5.1

Uii =
�

2

2mBakBθE,ii
coth

(
θE,ii

2T

)
, (5.1)

where mBa is the atomic mass of Ba. From symmetry constraints U11 is
different from U22 = U33, yielding θE,ii = 78K and θE,ii = 58K in line with
the flat rotational ellipsoid of Ba2 atoms squeezed between the two hexagons
of the framework tetradecahedron (see Fig. 5.2). It is interesting to note that
Ba1 atoms in the smaller pentagondodecahedral cage do not show a thermal
displacement factor (spherical by symmetry) enhanced over the general ADP
values for framework atoms. Thus no special rattling effect can be expected
from Ba1 atoms.

5.1.2 Physical Properties; Heat Capacity

Specific heat measurements were performed on the clathrate having the high-
est content of Cd, i.e., Ba8Cd7.6Ge38.4. Results of this investigation are dis-
played in figures 8a,b. The heat capacity at low temperature (T < 4 K) can be
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Figure 5.3: (a) Temperature dependent specific heat Cp of
Ba8CdxGe43−5x/8�3−3x/8, plotted as Cp versus T. (b) Temperature de-
pendent specific heat of Ba8Cd7.6Ge38.4, plotted as (Cp − γT )/T 3 vs. lnT .
The dashed line is a least squares fit of the experimental data using the
model described in the text(Eqn.A.11). The solid and the dashed-dotted
lines sketch the phonon spectral function F (ω) plotted as ω/4.93 vs.
(5/4)Rπ4ω−2F (ω) for which ω is given in Kelvin. The essential parameters
of the model used to construct the spectral function F (ω) (solid lines, right
axis), are θD = 220 K, θE1 = 47 ± 2 K and θE2 = 78 ± 1.6 K.

described in terms of an electronic contribution γ = 3 mJ/molK2 and a lattice
contribution β = 0.0085 J/molK4, yielding a low temperature Debye temper-
ature θLT

D = 231 K. This standard description, however, breaks down already
above about 4 K, referring to a rather complicated phonon spectrum due to
the distinct crystal structure of Ba8Cd7.6Ge38.4, filled by the electropositive
element Barium.

Results of least squares fits of Ba8Cd7.6Ge38.4 based on the Junod’s model
[91, 92] are shown in Fig. 5.3b. The Sommerfeld value γ is subtracted,
thus, the experimental points in Fig. 5.3b refer to the phonon contribution
only. A proper description of the temperature dependent specific heat is
obtained employing a Debye temperature θD = 220 K and two Einstein-
like contributions, θEL1 = 47 and θEL2 = 78 K, with corresponding spectral
widths of 3.7 and 1.9 K, respectively. Accordingly, both contributions have
different spectral weights. Adding these additional branches means to account
for very localized phonon branches. In a first view, the cage like structure
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formed by the (Cd,Ge) network may constitute the background Debye-like
spectrum, while the electropositive element barium, which fills the over sized
cages, gives rise to rattling modes, represented by two Einstein-branches.
Here, it should be noted that the Einstein contribution is not a δ-function,
rather, it replenishes a temperature width of a few Kelvins. However, when
comparing this type of analysis with data available for skutterudites [185], a
much narrower temperature range regarding the Einstein branches is obtained
for clathrates.

Although the treatment of the temperature dependent specific heat co-
incides with the Einstein temperatures obtained from the ADP’s, a 1:1 cor-
respondence between both sets of temperatures may be somehow artificial.
Assuming that the smaller Einstein temperature belongs to the Ba2 sites, the
cage structure around Ba2 atoms and its elastic deformation may then give
rise to a further Einstein mode, ΘEL2 = 78.5 ± 1.6 K.

5.1.3 Electrical resistivity

Materials under investigation are characterized by their proximity to a metal-
to-insulator transition because of a significantly reduced charge carrier con-
centration. As a result, the overall resistivities are quite large, exceeding
those of typical intermetallic compounds by more than one order of magni-
tude (see Fig. 5.4a). The room temperature resistivities are 8322, 10330, 401
and 453 μΩ cm for the Ba8CdxGe46−x−y�y, x= 2.4, 4.7, 6.5 and 7.6 sam-
ples, respectively. Ba8CdxGe46−x−y�y, x= 6.5 and 7.6 exhibit metallic like
behaviour, i.e., ρ(T ) increases steadily with increasing temperature, however,
particular features in ρ(T ) do not follow a simple temperature dependence
originated by scattering of charge carriers (electrons or holes) on thermally
excited phonons. The latter is usually expressed by the Bloch-Grüneisen for-
mula 1.4 where C is a temperature independent electron-phonon interaction
constant and ΘD is the Debye temperature. Bloch-Grüneisen formula (Eqn.
1.4) causes a T 5 behaviour of ρ(T ) at low temperatures (T � ΘD), whilst at
elevated temperatures ρ(T ) should behave linearly. A closer inspection of the
data of Fig. 5.4a shows that ρ(T ) at low temperatures follows roughly a T2.5

dependence, which never can be reproduced applying Eqn. 1.4. Moreover,
the tendency of the data towards a positive slope, i.e., dρ/dT > 1, is not
accounted for in terms of Eqn. 1.4. Deviations from the Bloch-Grüneisen
behaviour become even worse if the number of charge carriers is changed,
varying the Cd content (Fig. 5.4a).

The temperature dependent resistivity ρ(T ) evidences a crossover from a
metallic-like behaviour for large Cd contents, to a more complex temperature
dependence for x = 2.4 and 4.7. Both latter compounds exhibit around room
temperature a semiconducting-like temperature dependence of ρ(T ), while
below a maximum, a metallic like behaviour becomes obvious. Additionally,
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a small upturn of ρ(T ) can be observed for T < 10 K. In order to get rid
of those rather uncommon features, we have developed a model [69], which
combines the description of simple metals via the Bloch-Grüneisen law with a
temperature dependent charge carrier density. The latter follows from distinct
features of the electronic density of states (DOS) around the Fermi energy
EF . To simplify the calculations, we have assumed that the DOS can be
represented by rectangular bands. The proximity of the present systems to
isolating states has to be reflected by a gap in the DOS slightly above EF

having an appropriate width Eg (compare the inset in Fig. 5.4b). These
assumptions allow to calculate both, the density of electrons, nn, as well as
the density of holes, np, using standard statistics and involving the Fermi-
Dirac distribution function f(E,T). Considering this rectangular density of
states model, N(E), nn follows from

nn(T ) =

∫ ∞

EF

N(E)f(E, T )dE (5.2)

as
nn(T ) = −NEg +NkBT ln (1 + exp (Eg/kBT)) (5.3)

where N is the band height. With similar arguments, the hole density np can
be derived:

np(T ) =

∫ EF

−∞
N(E) (1 − f(E, T )) dE (5.4)

revealing np(T ) = −NkBT ln 2. The total charge carrier density is then
simply given by

n(T ) =
√
nn(T )np(T ) + n0 (5.5)

where n0 is a residual density of states, accounting for the fact that at T = 0
the samples investigated exhibit finite residual resistivity. Finally, the overall
resistivity of such systems can be expressed as

ρ(T ) =
ρ0n0 + ρph

n(T )
(5.6)

where ρ0 is the residual resistivity and ρph is given by Eqn.1.4.
A least squares fit to the data of Fig. 5.4a was carried out considering Eqn.

5.6. Results of such a procedure are plotted in Fig. 5.4b as solid blue lines.
Despite of the fact that the model is simple, the results describe astonishingly
well the experimentally derived temperature dependences. The most impor-
tant parameter appears to be the gap width Eg, which for Ba8Cd2.4Ge41.4�2.2

and Ba8Cd4.7Ge40.3�1.0 amounts to 2570 and 3230 K, respectively. Besides
other features in ρ(T ) within the model outlined, a very narrow region of the
DOS right above EF , also defining the gap distance from EF , is responsible for
the metallic ρ(T ) dependence of the present clathrates at lower temperatures.
Note also, that features, like a small upturn in ρ(T ) at lowest temperatures,
are quite well reproduced, too.
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Figure 5.4: (a) Temperature dependent normalized resistivity ρ/ρ(295K) of
Ba8CdxGe43−5x/8�3−3x/8. Dashed red lines are least squares fits of the data
according to Woodard and Cody formula (Eqn.A.1). The solid blue lines are
least squares fits according to model which explained in the text. (b) Nor-
malized electrical resistivity ρ of Ba8Cd2.4Ge41.4�2.2 and Ba8Cd4.7Ge40.3�1.0.
The solid lines are least squares fits explained in the text. The inset is a
sketch of the electronic density of states model in the vicinity of the Fermi
energy EF .

5.1.4 Thermal conductivity

The temperature dependent thermal conductivity, λ, of
Ba8CdxGe43−5x/8�3−3x/8 is displayed in Fig. 5.5a for the temperature
range from 4 K to room temperature. As expected for clathrates, overall
λ(T ) values are small and are dominated by the lattice thermal conductivity
λph at low temperatures.

A more quantitative description of λ(T ) is possible in terms of Callaway’s
theory [81, 82, 83] of lattice thermal conductivity, λph. To derive λph from the
total thermal conductivity λ, the Wiedemann-Franz law is applied to the ρ(T )
data, allowing to define the electronic thermal conductivity, λe. Although this
model is valid in extended temperature ranges only for free electron systems, it
is widely used even for complex materials such as skutterudites or clathrates.
The Wiedemann-Franz relation states that increasing electrical resistivities
cause decreasing λe values.

In the Eqn. 1.17 second integral is I2 = I2(τc, τN , τU), where τN denotes
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Figure 5.5: (a) Temperature dependent thermal conductivity λ of
Ba8CdxGe43−5x/8�3−3x/8 with x= 2.4, 4.7, 6.5, 7.6. (b) Temperature depen-
dent lattice thermal conductivity λph for the same samples.

normal 3-phonon processes. If all phonon branches are scattered by resistive
processes, then τN � τU ; as a consequence, the first integral in Eqn. 1.17
predominantly contributes to the observed thermal conductivity [84]. The N -
processes are, in general, important only at low temperatures and in nearly
perfect, low-anharmonicity crystals. The rather large resistivity values, typi-
cal for skutterudites and clathrates, allow in a first approximation to neglect
contributions from the Integral I2 of Eqn. 1.17. Thus, I2 in the Eqn. 1.17
is disregarded in the present analysis. In order to get rid of radiation losses,
proprietary to the steady state heat flow method used, a T 3 term was added
to Eqn. 1.17 for the analysis. In the relaxation times Eqn. 1.19 does not
contain terms for resonance scattering, since they seem to be of minor im-
portance in both compounds studied. The initial rise of λph may be referred
to boundary and point defect scattering; it becomes large when both quanti-
ties are small. Note that defects comprise also vacancies. If the strength of
Umklapp scattering increases, λph starts to strongly decrease, thereby form-
ing a maximum at lower temperatures. The latter depends also weakly on
the Debye temperature but occurs in general well below θ/10. Additionally,
an increase of θ slightly reduces overall λph values. Enhanced scattering of
phonons on electrons also efficientency reduces the lattice reduces the lattice
thermal conductivity.

The lattice thermal conductivity (see Fig. 5.5) shows very small values at
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Figure 5.6: (a) Separation of the total thermal conductivity λ(T) of
Ba8Cd2.4Ge41.4�2.2 (b) Ba8Cd4.7Ge40.3�1.0 into the electronic part λe and the
lattice part λph. The electronic λe (filled blue diamonds) and the lattice
contribution λph (filled red circles) are derived from the Wiedemann-Franz
law. The filled ⊕ symbol indicate thermal conductivity data obtained from a
correction procedure taking radiation losses into account. The solid and the
dashed lines are least squares fits applying the model of Callaway with a T 3

term for radiation losses. The green lines are calculations of the theoretical
lower limit of thermal conductivity λmin.

medium temperatures, thereby evidencing an important interaction process
to substantially lowering λph: scattering of the phonons on charge carriers
(compare Eqn. 1.19).

In fact the compounds richest in Cd content (x = 6.5 and 7.6) ex-
hibit the lowest lattice thermal conductivity. This is referred to the
previously-indicated mechanism since the compounds Ba8Cd7.6Ge38.4 and
Ba8Cd6.5Ge39.1�0.4 show the least resistivity, giving rise to an enhanced inter-
action of the heat carrying phonons with the conduction electron system. On
the other hand, the Ba8Cd4.7Ge40.3�1.0 compound exhibits a almost doubled
lattice thermal conductivity around 150 K. This coincides with the largest
overall electrical resistivity of the present series. One can then conclude that
the reduced charge carrier density and/or smaller mobility yields only to
weak interactions of both phonons and the charge carriers. Hence, the lattice
thermal conductivity keeps relatively large.

The temperature dependent thermal conductivity λ(T ) of
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Figure 5.7: (a) Separation of the total thermal conductivity λ(T) of
Ba8Cd6.5Ge39.1�0.4 (b) Ba8Cd7.6Ge38.4 into the electronic part λe and the
lattice part λph. The electronic λe (filled blue diamonds) and the lattice
contribution λph (filled red circles) are derived from the Wiedemann-Franz
law. The filled ⊕ symbol indicate thermal conductivity data obtained from a
correction procedure taking radiation losses into account. The solid and the
dashed lines are least squares fits applying the model of Callaway with a T 3

term for radiation losses. The green lines are calculations of the theoretical
lower limit of thermal conductivity λmin.

Ba8Cd2.4Ge41.4�2.2 and Ba8Cd4.7Ge40.3�1.0 is displayed in Figs. 5.6a,b.
The separation of the total thermal conductivity λ(T ) into the electronic
contribution λe and the lattice contribution λph was done in terms of the
Wiedemann-Franz law. The solid bold lines correspond to the radiation losses
data. Application of the Wiedemann-Franz law (Eqn. 1.10) in both cases
reveals only small electronic thermal conductivities λe only ≤ 1 mW/cmK.
The filled symbol in Figs. 5.6a,b denote the corrected lattice thermal
conductivities. The overall values of λ(T ) in cases of Ba8Cd2.4Ge41.4�2.2

and Ba8Cd4.7Ge40.3�1.0 are lower than those of Ba8Cd6.5Ge39.1�0.4 and
Ba8Cd7.6Ge38.4 at low temperature, typically in the range of 15 to 30
mW/cmK. Results of least squares fits are shown as solid and dashed lines
in Fig. 5.6, where the bold solid line corresponds to the T 3 correction.

The experimentally observed fact that an increase of the Cd content en-
hances the low temperature maximum in λph(T ) (compare figures 5.5(a,b)-
5.7(a,b)) would refer to a lowering of boundary and/or point defect scattering.
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Figure 5.8: Temperature dependent thermal conductivity λ of
Ba8CdxGe43−5x/8�3−3x/8 with x= 2.4, 4.7, 6.5, 7.6 (a) thermal conduc-
tivity λmeas.corr.(T ) indicate measured thermal conductivity data obtained
from a correction procedure taking radiation losses into account and (b) The
right panels displays the difference between the measured and the corrected
thermal conductivity λmeas. − λcorr. as a function of T 3.

Although the Ge/Cd substitution creates increasing statistical disorder, the
replenishing of the vacancies is made responsible for this observed low tem-
perature feature. According to Cahill and Pohl [187], the theoretical lower
limit of the lattice thermal conductivity is primarily defined by the number of
atoms per unit volume and by the Debye temperature. The minimum ther-
mal conductivity shown in Fig. 5.6 as solid green line was calculated using
a Debye temperature θD= 211 K and a number of atoms per unit volume
n = 4.3446× 1028/m3 for Ba8Cd2.4Ge41.4�2.2. The outcome of this is a room
temperature value λmin of 1.3 mW/cmK. Figure 5.6b also demonstrates that
the lattice thermal conductivity of Ba8Cd4.7Ge40.3�1.0, yields 54.5 mW/cmK
at room temperature.

Larger overall thermal conductivity were obtained for Ba8Cd7.6Ge38.4.
Similar observations was done also for a Ba8Cd6.5Ge39.1�0.4. The separa-
tion of the total thermal conductivity λ(T ) of Ba8CdxGe43−5x/8�3−3x/8 with
x= 6.5, 7.6 into the electronic contribution λe and the lattice contribution λph

is plotted in Fig. 5.7. The solid bold lines correspond to the radiation losses.
The filled symbol in Figs. 5.7a,b denote the corrected lattice thermal conduc-
tivities. The application of the Wiedemann-Franz law in both cases yields
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Figure 5.9: (a) Comparison of the electronic contribution λe(T ) deduced from
the Wilson’s equation (Eqn.1.13)(right panels) and (b) Wiedemann-Franz law
(left panels). The curves for Ba8CdxGe43−5x/8�3−3x/8 with x= 2.4, 4.7, 6.5,
7.6 show a remarkably good agreement.

large electronic contribution λe for Ba8Cd6.5Ge39.1�0.4 17.9 mW/cmK and
15.8 mW/cm for Ba8Cd7.6Ge38.4, respectively. The lattice thermal conduc-
tivity λph of Ba8CdxGe43−5x/8�3−3x/8 with x= 6.5, 7.6 at room temperature
varies between 31 and 41 mW/cmK. In case of Ba8Cd6.5Ge39.1�0.4 the ther-
mal conductivity at room temperature reaches 50 mW/cmK. The theoretical
value of λmin of Ba8Cd6.5Ge39.1�0.4 is calculated,revealing 2.6 mW/cmK. Al-
though λph of this compound is larger than λmin, they are of the same order of
magnitude. Thus the phonons appear to be not very different from the glassy
state (see Fig. 5.7a). Figure 5.7b also demonstrates that the lattice thermal
conductivity of Ba8Cd7.6Ge38.4 is near to theoretical limit of thermal con-
ductivity, a necessity for thermoelectric applications of such materials. The
lattice thermal conductivity λph of Ba8Cd6.5Ge39.1�0.4 and Ba8Cd7.6Ge38.4 at
room temperature varies between 31 and 41 mW/cmK. With increasing x
content to 6.5 and 7.6, λph increases strongly up to 20 K and decreasing up to
100 K, the Ba8Cd7.6Ge38.4 compound shows the lowest λph (31 mW/cmK) at
room temperature. Essentially the minimum thermal conductivity is a lower
limit of λph, which is achieved if the phonon spectrum resembles that of glass-
like or in general amorphous systems especially at high temperatures. The
glass-like λph is realized in some rattling systems where the phonon mean free
path becomes extremely short due to the scattering by rattling guest atoms.
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According to Einstein model [186] the phenomenological expression for λmin

is given by [187, 188],

λmin =

(
3n

4π

) 1
3 k2

BT
2

�θD

∫ θD/T

0

x3ex

(ex − 1)2
dx. (5.7)

Here n is the number of atoms per unit volume and x is a dimensionless
parameter connected to the phonon frequency ω via x = �ω/kBT . The theo-
retical lower limit of the lattice thermal conductivity is primarily defined by
the number of atoms per unit volume and by the Debye temperature [187].
Taking n =4.11×1028 m−3, two curves are calculated for θD = 192 K and
θD = 230 K, respectively. Results are shown in Fig. 5.7b as dashed-dot and
dashed-dot-dot lines, respectively, revealing λmin(300 K, θD= 192 K)= 3.65
mW/cmK and λmin(300 K, θD= 230 K)= 4.34 mW/cmK. In fact, these cal-
culations demonstrate that the lattice thermal conductivity of Ba8Cd7.6Ge38.4

at elevated temperatures is in the proximity of the theoretical minimum. This
refers to the fact that at least Ba8Cd7.6Ge38.4 behaves within the concept of
a phonon glass.

Figure 5.8 display λmeas.(T ) contribution corrected for radiation losses
(left) of Ba8CdxGe43−5x/8�3−3x/8 with x= 2.4, 4.7, 6.5, 7.6. Due to poor elec-
trical conductivities, λe may also stay below about 10% of the overall quantity,
compare e.g. Ba8Cd2.4Ge41.4�2.2 or Ba8Cd4.7Ge40.3�1. The right panel (Fig.
5.8b) displays the difference between the measured and the corrected ther-
mal conductivity λmeas. − λcorr. as a function of T 3. The derived curves are
plotted in the right panel as a function of T 3 evidencing rough linearity. Fig.
5.9 displays a comparison of λe(T ) derived from the Wiedemann-Franz law
and from the Wilson equation. It should be noted that both models provide
comparable values. For x= 2.7, 4.7 the curves derived by Wiedemann-Franz
are slightly different to the other compounds, which is due to the small elec-
trical resistivity ρ(T ) of these compounds. The curves for x= 6.5, 7.6 show
remarkably good agreement.

5.1.5 Thermopower

Measurements of the temperature dependent thermopower, S, are shown in
Fig. 5.10a for Ba8CdxGe43−5x/8�3−3x/8 with M = Cu, Zn, Cd. Common to
all systems displayed are negative thermopower values referring to electrons
as majority charge carriers. Moreover, S(T) does not exhibit much struc-
ture in it’s temperature dependence, evidencing electronic transport without
significant correlations within the system of charge carriers. This absence
follows also from the Sommerfeld value of the specific heat being as low as 2
mJ/molK2. Moreover, the moderate thermopower values of the present fam-
ily of clathrates may also follow from a rather weak energy dependence of the
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(a)

(b)

Figure 5.10: (a) Temperature dependent thermopower of
Ba8CdxGe43−5x/8�3−3x/8 with x= 2.4, 4.7, 6.5, 7.6. (b) Concentration
dependence of the resistivity ρ (circles) and of the Seebeck coefficient S
(square symbols) at room temperature (RT).

DOS right at EF . This, in turn, somehow justifies the use of a simple DOS as
considered for the analysis of the temperature dependent resistivity. Figure
5.10b shows the concentration dependent variation of the room temperature
resistivity and of the Seebeck coefficient. Both quantities are characterized
by a significant variation around a Cd content of 6 Cd atoms per formula
unit. These abrupt changes correlate well with the filling of the 6d site by
Cd atoms, simultaneously reducing the vacancy concentration. Above a Cd
content of 6, Cd subsequently enters the 16i sites. This distinct substitution
mechanism obviously changes details of the electronic density of states at the
Fermi level, thereby altering electronic transport such as resistivity and the
Seebeck coefficient.

5.2 Ba-Pd-Ge Clathrate System

5.2.1 Heat Capacity

Temperature dependent heat capacity measurements were carried out on
Ba8Pd3.3Ge42.5�0.2 and Ba8Pd3.82Ge42.18 as representatives of this family of
clathrates. Results of these investigations are displayed in Figs. 5.11a,b as
Cp/T vs. T and as (Cp − γT )/T 3 vs. lnT for Ba8Pd3.82Ge42.18. The latter
representation can be used to visualize deviations of the lattice dynamics from
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Figure 5.11: (a) Temperature dependent specific heat Cp of
Ba8PdxGe46−x−y�y at x = 3.3, 3.82 and y = 0, 0.2 plotted as Cp vs.
T . (b) (Cp − γT )/T 3 vs. lnT . The dashed line is a least squares fits
of the experimental data using the model described in the text with two
Einstein-like modes. The dotted and the solid lines sketch the simple
Debye model and the phonon spectral function F (ω) plotted as ω/4.93 vs.
(5/4)Rπ4ω−2F (ω) for which ω is given in Kelvin.

that expected in terms of the simple Debye model, plotted in Fig. 5.11b as
dotted line. Obviously, Ba8Pd3.82Ge42.18 does not follow the Debye model in
the whole temperature range studied. The same holds for Ba8Pd3.3Ge42.5�0.2,
shown in Fig. 5.11b. Using only data below 4 K and applying a standard
analysis of the specific heat of metals at low temperatures allows to extract
the Sommerfeld value γ and the low temperature Debye temperature θLT

D .
The electronic contributions γ to the specific heat for Ba8Pd3.3Ge42.5�0.2 and
Ba8Pd3.82Ge42.18, respectively are deduced as 3.4 and 18 mJ/molK2, whereas
θLT

D yields 260 and 268 K The observed electronic contribution to the spe-
cific heat refers to distinctly different density of states (DOS) features around
the Fermi energy EF . While the former compound shows a metallic-like
behaviour, the latter refers to a DOS almost vanishing at EF . The signifi-
cant deviations from the simple Debye model indicate a rather complicated
phonon spectrum for this family of clathrates. The spectrum is supposed to
be composed of background vibrations originating from the cage-like structure
represented by a Debye spectrum and, additionally, from the rattling modes
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Figure 5.12: (a) Temperature dependent resistivity ρ of various concentrations
of Ba8PdxGe46−x−y�y. (b) Normalized resistivity of Ba8PdxGe46−x−y�y. The
solid lines are least squares fits as explained in the text.

of the loosely bound electropositive Ba-atoms. The latter should follow the
behaviour Einstein-like frequencies.

In the case of Ba8Pd3.3Ge42.5�0.2 and Ba8Pd3.82Ge42 the phonon part of
the specific heat is well described by a simple Debye-function with a Debye
temperature of 215 K and 227 K together with two additional Einstein-like
contributions. Results of the least squares fits to the data according to model
Junod et al. model performed for Ba8Pd3.3Ge42.5�0.2 and Ba8Pd3.83Ge42 are
shown in Fig. 5.11b.

The overall goodness of the fit is extremely high in case Ba8Pd3.82Ge42,
revealing a Debye temperature θD = 227 K and two narrow structures at θEL1

= 53.4 K with width of ΔωEL1= 2.3 K and θEL2 = 84.7 K with a corresponding
spectral width of ΔωEL2= 2.1 K, respectively. Based on this fit, the phonon
spectrum is constructed and plotted in 5.11(b) referring to the right axis
(solid line). The spectral weight follows from the constraint that for T → 0
the height of the phonon density of states coincides with the value of Cp/T

3

for T → 0. Very similar figures are derived for Ba8Pd3.3Ge42.5�0.2 (shown
Fig. 5.11b)(θD = 214 K, θEL1 = 54 K and θEL2 = 85.4 K, with corresponding
spectral widths of 2.3 and 2.2 K, respectively). A comparison of the phonon
density of states of Ba8Pd3.82Ge42 with a higher Debye temperature (θD =
227 K) and the phonon density of states of Ba8Cd7.6Ge38.4 clearly signals an
shift of the Einstein-like contribution to higher frequencies (see Fig5.3).
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5.2.2 Electrical resistivity

Results of our resistivity study on various concentrations of
Ba8PdxGe46−x−y�y are displayed in Figs. 5.12a,b. Data in Fig. 5.12a
are plotted on a logarithmic resistivity scale in order to get rid of the large
variation of the absolute resistivity values. Obviously, the temperature de-
pendent resistivity, ρ(T ), changes from a metallic like behaviour for smaller
Pd concentrations to a semiconducting one (for the whole temperature
range studied) for the compound containing 3.82 Pd. The semiconducting
behaviour of the latter compound is in excellent agreement to the observation
that the Sommerfeld value of the specific heat γ < 0.05 mJ/molK2 refers to
a vanishing density of states right at the Fermi energy.

A closer inspection of the data (except x = 3.82), shows that even the sys-
tem containing the smallest amount of Pd does not behave according to sim-
ple metals, compare Fig. 5.12b. Rather, specific structures of ρ(T ) indicate
that all the materials investigated are in fact very near to the semiconducting
state. The overall behaviour reminds to both, metallic and activation-like be-
haviours as reflected from positive and negative slopes in ρ(T ). Least squares
fits according to Eqn. 5.6 are shown in Fig. 5.12b as solid lines. The principal
parameter is the gap width Δ, which increases from about 1000 K for x = 2
to 2200 K for x = 3.8. Although the applied model is quite simple, it fairly
well describes the temperature dependent resistivity of Ba8PdxGe46−x−y�y.
The metallic behaviour derives from scattering of conduction electrons into
unoccupied sites in reciprocal space just above the Fermi energy. Once this
region of the DOS becomes occupied, electrons have to be promoted across
the gap, originating in semiconducting features. However, a distinct exponen-
tial behaviour does not become obvious due to the proximity to the metallic
state.

5.2.3 Thermal conductivity

The temperature dependence of the thermal conductivity λmeas.(T ) has been
measured for Ba8PdxGe46−x−y�y for concentrations x= 2, 3.8 and y= 1.5, 0.
and the results are displayed in Fig. 5.13. The overall thermal conductivity
values are rather small, expectable for cage forming compounds which are
filled by loosely bound electropositive elements. The increasing Pd content
enables a low temperature maximum to evolve. An analysis of the data relies
on the Wiedemann-Franz law, which, in a first approximation, allows to split
the measured thermal conductivity into an electronic part, λe and into the
lattice part, λph.

The large overall resistivity of the present samples is thus the cause that
λe is clearly the minority channel of the total measured effect in both cases,
compare Figs. 5.14a,b. Results of a separation of the total thermal conduc-
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Figure 5.13: (a) Temperature dependent thermal conductivity λ of two con-
centrations of Ba8PdxGe46−x−y�y. (b) Temperature dependent lattice ther-
mal conductivity λph for the same samples.

tivity λ(T) of Ba8Pd2Ge42.5�1.5 and Ba8Pd3.8Ge42.2 into the electronic part λe

and the lattice part λph plotted as a function of temperature in Figs. 5.14a,b.

The filled symbol in Figs. 5.14a and 5.14b denote the corrected ther-
mal conductivities data. The λph-curves are calculated by applying the
Wiedemann-Franz law and subtracting the radiation losses, assuming a T 3-
dependence. Least squares fits according to Eqn. 1.17 are shown in Figs.
5.14a,b as solid line, revealing only rough agreement with the data observed.
Comparing the set of fit parameters indicates that the relaxation time refer-
ring to point defect scattering, i.e., τ−1

D = Dx4T 4, with the material depen-
dent parameter D decreases by more than a factor of 2 when proceeding from
the sample with x=2 to the sample x = 3.8. In turn, the strength of the Umk-
lapp processes increases simultaneously. The remaining parameters do not
show significant changes. These results, which should be used only in a quali-
tative manner, although the disorder due to the Ge/Pd substitution rises, the
overall disorder of the crystal decreases much stronger due to the vanishing
of the vacancies provoked the growing Pd content. A comparison of the lat-
tice thermal conductivity λph of Ba8Pd2Ge42.5�1.5 with Ba8Pd3.8Ge42.2 clearly
signals an overall and significant reduction of λph for the Ba8Pd2Ge42.5�1.5

case. With decreasing Pd content λph increases, Ba8Pd3.8Ge42.2 shows the
highest λph (45 mW/cmK) at 10 K. For the compound Ba8Pd3.8Ge42.2, λph
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Figure 5.14: (a) Separation of the total thermal conductivity λ(T) of
Ba8Pd2Ge42.5�1.5 (b) Ba8Pd3.8Ge42.2 into the electronic part λe and the lattice
part λph. The electronic λe (filled blue diamonds) and the lattice contribution
λph (filled red circles) are derived from the Wiedemann-Franz law. The half
filled symbol indicate thermal conductivity data obtained from a correction
procedure taking radiation losses into account. The solid and the dashed lines
are least squares fits applying the model of Callaway (Eqn. 1.17) with a T 3

term for radiation losses. The green lines are calculations of the theoretical
lower limit of thermal conductivity λmin.

at room temperature is already reduced to a value 30 mW/cmK. The eval-
uation of the measured λmeas. and corrected thermal conductivity λcorr. of
Ba8PdxGe46−x−y�y for the Pd content x= 2, 3.8 and y= 1.5, 0 are plotted
in Fig. 5.15. The left panel of this figure displays the corrected λcorr. ther-
mal conductivity data, obtained from a correction procedure taking radiation
losses T 3 into account (λcorr. = λmeas. − βT 3). The right panel of this fig-
ure convincingly demonstrates the T 3 behaviour of λmeas. − λcorr. which is
expected, if the error is caused by radiation losses.

Taking n = 4.32× 1028 m−3 and θD = 225 K for Ba8Pd2Ge42.5�1.5 reveals
the lower limit of the lattice thermal λmin(300 K) = 4.3 mW/cmK. A slightly
larger value of 5 mW/cmK is derived taking θD = 268 K, obtained from the
low temperature extrapolation of the heat capacity data. Results below room
temperature are shown in Figs. 5.13 and 5.14 as solid green lines and filled
area for both sets of parameters.
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Figure 5.15: (a) Temperature dependent thermal conductivity, λmeas.(T), of
Ba8PdxGe46−x−y�y for the content x= 2, 3.8 and y= 1.5, 0. (b) λmeas.−λcorr.

of Ba8PdxGe46−x−y�y vs. T 3.

5.2.4 Thermopower

Results regarding the temperature dependent thermopower, S(T ), are plot-
ted in Figs. 5.16a,b for various concentrations of Ba8PdxGe46−x−y�y. S(T )
is characterized by a Pd-dependent evolution of the absolute S(T ) values up
to about x = 3.8. Within this concentration range S(T ) is negative, refer-
ring to electrons as the principal charge carriers. In contrast, S(T ) becomes
positive for x = 3.82, indicative of holes as majority charge carriers. The
compound with x = 3.8 exhibits thermopower values up to -145 μV/K well
below room temperature and thus belongs to those members of clathrates
having the largest S(T ) values. The almost linear temperature dependence
of S(T ), except those compounds with very large Pd concentrations, sug-
gests a simple origin, depending primarily on the charge carrier density n.
As demonstrated e.g., in Ref. [88], the diffusion part of the thermopower can
simply be represented by

Sd(T>θD) =
π2k2

B2me

e�2(3nπ2)2/3
T (5.8)

where me is the mass of the carriers and e is the respective charge. Approach-
ing the data of Fig. 5.16 by a linear dependence, at least for concentrations
from x = 2 up to x = 3.6, and T < 350 to 400 K allows calculating the charge
carrier density (Eqn. 5.8), which decreases almost by one order of magnitude
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Figure 5.16: (a) Temperature dependent thermopower for various concentra-
tions of Ba8PdxGe46−x−y�y. (b) S(T ) of x=3.3 and x=3.6 in an extended
temperature range.

from n = 2.9 × 1021 cm−3 for x = 2 to n = 3.4 × 1020 cm−3 for x = 3.75.
A further justification for such an estimation of n from thermopower data
regarding clathrate I systems was obtained previously from measurements of
the optical conductivity in Ba8(Ge,Zn)46 compounds, where n deduced from
the plasma frequency excellently agreed with an estimation of n based on
Eqn. 5.8 [189].

Figure 5.16b demonstrates that the almost linear dependence of S(T ) is
restricted to lower, concentration dependent temperatures. Above the nearly
linear dependence, a minimum develops, followed by a decrease of |S(T )|. A
possible explanation of this observation may follow from the concentration
dependent gap in the electronic density of states above EF : Once, thermal
energy is sufficient to appreciably populate the states above the gap, the num-
ber of charge carriers increases, accordingly |S(T )| becomes reduced (compare
Eqn. 5.8).

In order to understand the non-monotonous variation of the absolute resis-
tivity, we have carried out Hall measurements at low temperatures and have
analyzed the data in terms of the free electron model, i.e, RH = −1/(ne) and
ρ = RH/μ (RH is the Hall resistance, n is the charge carrier density, e is the
electron charge and μ is the mobility). At T = 10 K and μ0H = 3 T, n is
found to be -3.5, -3.2, -0.83 and 0.56× 1021cm−3 for x = 2, 2.9, 3.6 and 3.82,
respectively. The mobility μ of these carriers is, respectively, 0.64, 1.6, 0.9
and -0.07 cm2/Vs. These results refer to electrons as main charge carriers,
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except for x = 3.82, which seems to be dominated from holes (compare also
the thermopower data in Fig. 5.16). The charge carrier density in the context
of the mobility derived for the present series, directly renders the sequence
of the resistivity data observed. The material with the highest mobility and
reasonable charge carrier density was found for x = 2.9 which, in fact, shows
the lowest overall resistivity. The compound with x = 2 has similar values
of n, but the mobility is smaller, hence ρ(T ) is larger, in agreement with the
experimental data. The largest resistivity is found for x = 3.82, owing to
both small n and small μ values.

5.3 Ba-Zn-Ge Clathrate System

5.3.1 Heat Capacity

Temperature dependent heat capacity measurements were carried out on
Ba8Zn7.7Ge38.3. Results of this investigation are displayed in Figs. 5.17a,b as
Cp vs. T and as (Cp − γT )/T 3 vs. lnT . The latter representation allows em-
phasizing deviations from the simple Debye model, which at low temperatures
causes a T 3 dependence. Note that the Sommerfeld value γ ≈ 2 mJ/molK2 is
also subtracted in Fig. 5.17b. Obviously, the heat capacity of Ba8Zn7.7Ge38.3

exhibits distinct deviations from a Debye-like behaviour in the entire tem-
perature range studied. In fact, a standard plot of the heat capacity data
according to Cp/T vs. T 2 does not reveal any sufficiently extended tempera-
ture range, where the simple behaviour of metals holds, i.e., Cp/T = γT+βT 3.
The finite value of γ refers to a finite electronic density of states at the Fermi
energy, thus indicating a metallic state, at least, for Ba8Zn7.7Ge38.3. Also,
the complete Debye function is unable as well to account for the temperature
dependent specific heat of Ba8Zn7.7Ge38.3 in an extended temperature range.
Figure 5.17a also shows that there are no phase transitions below about 80 K.

Based on Eqn. A.11 as mentioned in the previous sections (see Pd and
Cd clathrates) we have constructed an elementary phonon spectrum and have
carried out least squares fits to the data. Results of this procedure are also
shown in Fig. 5.17b. In a first approximation we have assumed that be-
sides a Debye density of states, the system is composed of two additional,
energetically separated Einstein-like modes.

The parameters obtained by least squares fits of the experimental data
reveal for Ba8Zn7.7Ge38.3 a Debye temperature of θD = 225 K and two narrow
structures at θEL1 = 46.2 K and θEL2 = 77.1 K, with corresponding spectral
widths of ΔωEL1= 5.6 and ΔωEL2= 3.4 K, respectively. A similar set of
frequencies and Debye temperature were obtained also for the related Pd and
Cd clathrates. Based on this fit, the phonon spectrum is constructed and
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Figure 5.17: (a) Temperature dependent specific heat Cp of Ba8Zn7.7Ge38.3,
plotted as Cp/T vs. T and (b) (Cp − γT )/T 3 vs. lnT . The dashed line is
a least squares fit of the experimental data using the model described in the
text with two Einstein-like modes (θD = 225 K, θEL1 = 46.2 K with width of
5.6 K and θEL2 = 77.1 with a width of 3.4 K). The bold solid line sketch the
phonon spectral function F (ω) plotted as ω/4.93 vs. (5/4)Rπ4ω−2F (ω) for
which ω is given in Kelvin.

plotted in Fig. 5.17b referring to the right axis (solid line).

5.3.2 Electrical resistivity

The temperature dependent electrical resistivity ρ(T ) of Ba8ZnxGe46−x−y�y is
plotted in Fig. 5.18. Doping and substitutions are valuable tools to reduce the
charge carrier density of a certain family of compounds to an optimum level.
Resistivities of such materials, however, become large, frequently behaving
in-between a simple metallic state and semiconducting features. Moreover,
relatively small gaps Δ in the electronic density of states near the Fermi
energy drive a continuous crossover from metallic-like transport to a more
semiconducting-like behaviour. Such features are also obvious for the series
Ba8ZnxGe46−x−y�y, x = 2.1, 4.6, 5.7 and 7.7, respectively; compare Figs.
5.18a,b. While samples with larger Zn concentrations behave metallic, the
Ba8Zn2.1Ge41.5�2.4 compound obviously shows at low temperatures a metallic-
like resistivity. At higher temperatures, however, there is a crossover to an
activation-like dependence of ρ(T ).
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Figure 5.18: (a) Temperature dependent resistivity ρ of Ba8ZnxGe46−x−y�y.
The solid line is a fit to the compound Ba8Zn2.1Ge41.5�2.4 (see text). (b) Nor-
malized resistivity of Ba8Zn4.6Ge40.0�1.4 and Ba8Zn5.7Ge40.0�0.3. The solid
lines are least squares fits according to the Bloch-Grüneisen formula.

Since there are no magnetic interactions between conduction electrons and
magnetic ions, electrical resistivity should be well described by a temperature
independent residual resistivity ρ0 together with the Bloch-Grüneisen law ρph

(Eqn. 1.4). Least squares fits to the data in the temperature range from 4.2
K to 300 K reveal the values for ρ0, the Debye temperature θD and the elec-
tron phonon interaction strength R. Least squares fits according to Eqn. 1.4
(solid lines, Fig. 5.18b reveal ΘD = 235 and 210 K for the Ba8Zn4.6Ge40.0�1.4

and Ba8Zn5.7Ge40.0�0.3 compounds, respectively. While above about 30 K
the fit is convincing, at lower temperatures distinct differences between the
experimental data and Eqn. 1.4 occur, most likely as a consequence of the
insufficient phonon model, missing a pronounced Einstein-like contribution.
A description of ρ(T ) of the Ba8Zn7.7Ge38.3 sample in terms of Eqn. 1.4
totally fails since the data exhibit a positive slope, i.e., dρ/dT > 1; such
behaviour can never be traced by Eqn. 1.4. The Ba8Zn2.1Ge41.5�2.4 sample,
however, shows a low temperature behaviour reminiscent of metals, whilst at
higher temperatures an activation type resistivity becomes evident. In or-
der to account for such these distinct features, we used the model given in
section 5.1, Electrical resistivity [185]. A least-squares fit according to this
procedure (Eqn. 5.6) is shown in Fig. 5.18a as a solid line. The principal pa-
rameter is the gap width Δ, derived as 1650 K. Although the applied model
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is quite simple, it fairly well describes the temperature dependent resistiv-
ity of Ba8Zn2.1Ge41.5�2.4. The metallic behaviour derives from scattering of
conduction electrons into unoccupied sites in reciprocal space just above the
Fermi energy. Once this region of the DOS becomes occupied, electrons have
to be promoted across the gap, originating semiconducting features.

5.3.3 Thermal conductivity
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Figure 5.19: (a) Temperature dependent thermal conductivity λ of
Ba8ZnxGe46−x−y�y with x = 2.1, 4.6, 5.7, 7.7. The hatched area renders the
minimum thermal conductivity (see text). (b) Lattice thermal conductivity
λph of Ba8ZnxGe46−x−y�y.

The thermal conductivity, λ, of Ba8ZnxGe46−x−y�y is displayed as a func-
tion of temperature in Fig. 5.19a for a temperature range from 4 K to room
temperature. The main characteristics of all the samples measured are pro-
nounced maxima at low temperatures. This feature is opposite to a number
of clathrates, e.g. Eu8Ga16Ge30, [192], where λ(T ) does not exhibit a maxi-
mum in this temperature range. The suppression of these kinds of maxima
is attributed to resonance scattering as demonstrated recently by Nolas et
al. [193]. This scattering of the heat carrying phonons is based on static
and dynamic disorder associated with the rattling motion of the guest atoms,
i.e. Ba2, in the large voids of the structure formed by Zn and Ge atoms. In
general, this mechanism has a large impact on thermal transport and is con-
sidered responsible for the glass-like transport in cage forming compounds
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Figure 5.20: (a) Separation of the total thermal conductivity λ(T) of
Ba8Zn2.1Ge41.5�2.4 (large circles) and (b) Ba8Zn4.6Ge40.0�1.4 (large circles).
The electronic λe (blue symbols) and the lattice contribution λph (red filled
circles) are derived from the Wiedemann-Franz law. The small filled circles
represent the lattice contribution corrected for radiation losses. The solid and
the dashed lines are least squares fits applying the model of Callaway with
and without a T 3 term for radiation losses. The green lines correspond to the
upper border of the theoretical lower limit of the lattice thermal conductivity
λmin according to Eqn. 5.7.

such as clathrates and skutterudites. In comparison to already mentioned
Eu8Ga16Ge30, the Zn-based compounds have overall larger thermal conduc-
tivities.

Taking into account the most relevant scattering processes present in the
clathrates investigated, the relaxation time can be expressed by Eqn. 1.19.
Equation 1.19 does not contain terms for resonance scattering, since they
seem to be of minor importance in the series of compounds studied. Addi-
tionally, a T 3 term was added to Eqn. 1.17 in order to get rid of radiation
losses. Equation 1.17 highlights that the lattice thermal conductivity can be
influenced from scattering on the charge carrier system, too (τ−1

E = Eω, E is
a material constant). This seems to significantly influence λph at somewhat
elevated temperatures. The compound having the lowest electrical resistivity,
and thus the largest charge carrier density, i.e., Ba8Zn4.6Ge40.0�1.4, exhibits a
well reduced lattice thermal conductivity above about 100 K. On the other
hand, the lattice thermal conductivity of Ba8Zn2.1Ge41.5�2.4 becomes much
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Figure 5.21: (a) Separation of the total thermal conductivity λ(T) of
Ba8Zn5.7Ge40.0�0.3 (large circles) and (b) Ba8Zn7.7Ge38.3 (large circles). The
electronic λe (blue symbol) and the lattice contribution λph (red circles) are
derived from the Wiedemann-Franz law. The small filled circles represent the
lattice contribution corrected for radiation losses. The solid and the dashed
lines are least squares fits applying the model of Callaway with and with-
out a T 3 term for radiation losses. The green lines correspond to the upper
border of the theoretical lower limit of the lattice thermal conductivity λmin

according to Eqn. 5.7.

larger, most likely due to the reduced efficiency of phonon scattering on con-
duction electrons. As indicated above, this compound is next to a metal to
insulator transition.

The thermal conductivity λ(T ) shows a distinct increase with increasing x
at low and high temperatures for all compounds except Ba8Zn7.7Ge38.3, which
shows lower thermal conductivity values at high temperature (from 100 K to
room temperature). Most notably is the suppression of the maximum at
about 10 K. In a basic theory of thermal conductivity, the atomic masses
distinctly influence the absolute values of λ(T ). The heavier the masses in-
volved, the lower is the overall λ(T ). Taking n = 4.329 × 1028 m−3 and θD=
225 K for Ba8Zn7.7Ge38.3 reveals λmin(300 K)= 4.3 mW/cmK (Eqn. 5.7).
Results below room temperature are shown in Fig. 5.19a as hatched area.
Owing to the strong interaction of the phonons with the weakly bound, the
lattice thermal conductivity of such Clathrates systems is strongly reduced
and the theoretical minimum thermal conductivity, as found for glass-like
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Figure 5.22: (a) The corrected thermal conductivity λmeas−corr., of
Ba8ZnxGe46−x−y�y for concentrations x = 2.1, 4.6, 5.7, 7.7. (b) λmeas.−λcorr.

of Ba8ZnxGe46−x−y�y with x= 2.1, 4.6, 5.7, 7.7 vs. T 3.

materials. Although the Wiedemann-Franz law is valid in extended tempera-
ture ranges only for free electron systems, it is widely used even for complex
materials such as skutterudites or clathrates. The Wiedemann-Franz relation
states that increasing electrical resistivities cause decreasing λe values. If,
e.g, ρ(295 K) = 720 μΩcm, λe = 10 mW/cmK; a resistivity of 100 μΩcm
is equivalent to 72 mW/cmK. The relatively large resistivities of the series
investigated cause λe values well below λph, (Fig. 5.21b). In Fig. 5.22a data
corrected for radiation losses are displayed. The right panel of Fig. 5.22b
displays the difference between the measured and the corrected thermal con-
ductivity λmeas.−λcorr. as a function of T 3. λmeas−corr.-curve in the right panel
indicate thermal conductivity data obtained from a correction procedure tak-
ing radiation losses into account. This is in fine agreement with the Stefan
Boltzmann

To evaluate procedure λph(T ) theoretical model of Callaway et al. [81, 82,
83] was used. The filled symbol in Fig. 5.20a show λph(T ) and corrected with
respect to radiation losses.

The temperature dependent thermal conductivity λ(T ) of
Ba8Zn5.7Ge40.0�0.3 and Ba8Zn7.7Ge38.3 is displayed in Figs. 5.21a,b.
The filled symbols in Figs. 5.20a,b correspond to λph corrected for radiation
losses (λcorr. = λmeas. − βT 3). The lattice thermal conductivity λph of
Ba8Zn5.7Ge40.0�0.3 at room temperature shows the highest λph value in this
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series (62 mW/cmK). In case Ba8Zn7.7Ge38.3 the values have to be compared
with the theoretical minimum thermal conductivity obtained from Eqn. 5.7.
In case Ba8Zn5.7Ge40.0�0.3 the minimum thermal conductivity as shown in
figures was calculated using a Debye temperature θD of 210 K and a number
of atoms per unit volume n = 4.3453 × 1028/m3. The outcome of this is a
room temperature value λmin of 4 mW/cmK.

A further interesting feature is the observation that the low temperature
maximum in λ(T ) of the present series becomes more pronounced with in-
creasing Zn content and reaches its maximum for Ba8Zn7.7Ge38.3. Although
this sequence is expected to introduce some disorder in the crystal structure
and thus enhances the thermal resistivity, the vanishing of the vacancies in
the lattice due to the Zn/Ge substitution, which obviously completes for the
Ba8Zn7.7Ge38.3 compound, seems to overcompensate by far the former mech-
anism. Results of least squares fits according to Eqn. 1.17 and 1.19 are
shown as solid and dashed lines in Fig. 5.21b for Ba8Zn7.7Ge38.3. The filled
symbols correspond to the T 3 correction of the experimental lattice thermal
conductivity and demonstrate that the corrected thermal conductivity λph(T )
of this compound is in proximity of the theoretical limit of thermal conduc-
tivity, a necessity for thermoelectric applications. The initial rise of λph(T )
may be referred to boundary and point defect scattering; it becomes large
when both quantities are small. It should be noted that defects comprise also
vacancies. If the strength of Umklapp scattering increases, λph(T ) starts to
strongly decrease above a certain temperature, thereby forming a maximum
at lower temperatures. The latter weakly depends on the Debye temperature
but occurs well below θD/10. Additionally, an increase of θD slightly reduces
overall λph(T ) values (see Figs. 5.20-5.21).

While λe increases strongly from Ba8Zn2.1Ge41.5�2.4 to Ba8Zn4.6Ge40.0�1.4,
which shows the highest λe in these series (according to the decrease of the
electrical resistivity owing to an increasing carrier number), the observed de-
crease of λph is assigned to scattering of the phonons on the filler element.
The application of the Wiedemann-Franz law yields there an electronic con-
tribution of Ba8ZnxGe46−x−y�y where x= 2.1 only 2.4 mW/cmK and for
x= 4.6 is 13 mW/cmK at room temperature, respectively. Thermal con-
ductivity λ(T ) and lattice thermal conductivity λph at room temperature of
Ba8Zn2.1Ge41.5�2.4 ranges between 46 and 49 mW/cmK. Due to the small
values of λ(T ) in this case, in contrast to ordinary metals, radiation losses
during the measurement process at elevated temperatures have to be taken
into account. For the compound Ba8Zn4.6Ge40.0�1.4, λph at room temperature
is already reduced to values as small as 43 mW/cmK. The filled symbol in
Figs. 5.20a,b denote the corrected lattice thermal conductivities.
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Figure 5.23: Temperature dependent thermopower of Ba8ZnxGe46−x−y�y

with x = 2.1, 4.6, 5.7, 7.7.

5.3.4 Thermopower

Measurements of the temperature dependent thermopower are shown in Fig.
5.23 for Ba8Znx(Ge46−x−y�y). Common to all systems displayed are nega-
tive S(T) values, referring to electrons as majority charge carriers. Moreover,
S(T) exhibits weak low temperature structures, most likely a consequence of
phonon-drag effects. The compound richest in Zn, however, behaves almost
linearly up to the 600 K range (inset, Fig. 5.23). Deviations from linearity are
most likely measurement errors. Ba8Zn7.7Ge38.3 is characterized by a slope
of -0.28 μV/K. Linearity of the diffusion thermopower is predicted in terms
of the free-electron model (see Eqn.5.8) [88]. For T > θD, electron phonon
interaction dominates. This simple relation (Eqn.5.8) allows an estimation of
the charge carrier densities. Taking m = me, which should hold at high tem-
peratures for systems without significant electronic correlations, the charge
carrier density is estimated to be n ≈ 6.1×1020 cm−3, in excellent agreement
with the optical data [189]. These numbers appear reasonable in comparison
to e.g. Ba6Ge25 [88], where a charge carrier density n ≈ 7.8 × 1021 cm−3 was
observed from Hall data; the Seebeck effect for that compound is about 10
times smaller than that of Ba8Zn7.7Ge38.3.
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5.4 Ba8{Pd,Pd}xSi46−x Clathrate I systems;

crystal structure and physical properties

5.4.1 Crystal chemistry of Ba8PdxSi46−x and Ba8PtxSi46−x

Atom site preferences were studied for Ba8PdxSi46−x and Ba8PtxSi46−x by
room temperature X-ray powder diffraction from single-phase samples with
2 ≤ x ≤ 5. For four single crystals, selected from samples with nominal
composition Ba8Pd4.2Si41.8, Ba8Pt2.5Si43.5, Ba8Pt3.1Si42.9, Ba8Pt3.8Si42.2, X-
ray intensity data were recorded at three temperatures: 100, 200 and 300 K.
In all cases extinctions were consistent with a primitive cubic lattice (space
group Pm3n, a ∼ 1.035 nm) and inferred isotypism with the structure of
clathrate type I. A plot of the unit cell dimensions of the clathrate type
I solution (κ1) versus increasing Pd, Pt content shows a volume expansion
in accordance with the atomic size of Pd, Pt and Si (Fig. 5.24a and Fig.
5.25a). The data derived by Cordier and Woll [68] from single crystals selected
from alloys melted at T = 1400◦C (Ba8Pd2.5Si43.5 and Ba8Pt2.7Si43.3). In
contrast to binary Ba8Ge43�3 [194] where the 6d site contains vacancies,
the Si-containing samples did not reveal any defects in the 6d -sites. The
site preference shown in Fig. 5.24b and Fig. 5.25b demonstrates that Pd
or Pt atoms essentially occupy the 6d sites with only a small but significant
fraction of Pd, Pt atoms gradually entering the 24k sites. The crystal analyses
confirm earlier single crystal data by Cordier and Woll [68] which from our
phase diagram study turned out to be at the low-(Pd, Pt) side of the ternary
homogeneity region of the clathrate phases.

Thermal atomic displacement parameters (ADP) in all crystals investi-
gated are consistent with features generally observed for clathrate type I
compounds: whereas Ba2 atoms in the 6c site showed a large anisotropy of
electron densities, Ba1 in 2a behave rather normal. However, in contrast
to Ge-containing clathrates with (M = Pd, Pt, Zn, Cd) [69, 70, 202, 203],
ADP’s of Si atoms in 24k (Si3) show only slight deviations from spherical
shape without any tendency to split into two 24k sites.

The small differences among the atomic radii of Pd, Pt and Si are re-
flected in an insignificant variation of the crystallographic parameters with
the noble metal content (lattice parameter, atomic coordinates and site occu-
pancy). Distances monotonically increase following the trend defined by the
unit cell dimensions (Fig. 5.24 and 5.25). As generally observed in clathrates
[69, 70, 202], the ADP parameters for Ba2 atoms in the 6c site show a signif-
icant anisotropy in contrast to Ba1 atoms, which behave normal with respect
to the framework atoms. Although the ADP’s of Ba2 atoms are significantly
larger (by a factor of 3) than those of Ba1 atoms, the temperature dependen-
cies of ADP’s are practically constant for all atoms of the lattice. Thus no
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special rattling effect can be seen for Ba-atoms and an evaluation of Einstein-
oscillations is not justified. Thermal expansion of lattice parameters shows
a smooth variation in the temperature region from 100 to 300 K indicating
continuous stability of the clathrate type I phase.

5.4.2 Physical Properties; Electrical Resistivity

Corresponding to the substitution of Si/Pd and Si/Pt distinct changes of
carrier concentration and thus of transport quantities such as resistivity or
thermopower are expected in Ba8{Pd,Pt}xSi46−x.

Results of resistivity measurements for various concentrations of
Ba8{Pd,Pt}xSi46−x are displayed in Figs. 5.26a,b in a normalized repre-
sentation. The absolute values at room temperature are 59990, 1660 and
1685 [μΩcm] for x = 2.5, 2.9 and 3.9 in the case of the Pd-based series, and
1997, 448 and 990 [μΩcm] for x = 2.8, 3.2 and 3.8 for the Pt-based materials.

As obvious from Figs. 5.26a,b, the temperature dependent resistivity ρ(T )
does not behave metallic-like and the absolute ρ(T ) values are large, in a
range of typical semi-metals or semiconductors. Two features may dominate
the distinct ρ(T ) behaviour observed: i) The exchange of Si/Pd or Si/Pt
distinctly changes the charge carrier density of the system. Following the Zintl
concept, the removal of one Si atom creates 4 uncompensated charges which
can be compensated - or even overcompensated - by the electrons provided
by Ba as well as by Pd and Pt. While the valence state of Ba is rather clear,
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i.e., Ba2+, giving rise to an extra of 2 electrons/Ba. In general, Pd and Pt are
assumed to be neutral and do not allocate extra electrons. Such a scenario
causes that the increase of the Pd or Pt content in the present Si-based type I
clathrates reduces the charge carrier density from about 6 electrons/f.u. in the
case of x = 2.5 to about 0.4 electrons/f.u. for the sample with x = 3.9. This
indicates that a further increase of Pd or Pt would cause a compensated state,
or even a crossover to an electronic transport guided by holes as predominant
charge carriers. The scenario described follows from:

Ba8; 8 × 2e = 16e
P t2; 2 × 0 = 0

Si44; (46 − 44) × 4h = 8h

⎫⎬
⎭⇒ 8e

Ba8; 8 × 2e = 16e
P t4; 4 × 0 = 0

Si42; (46 − 42) × 4h = 16h

⎫⎬
⎭⇒ 0

where the index e and h denotes electrons and holes, respectively. A fully
compensated states, however, is not reached in the present substitution study.

ii) As clearly demonstrates in Fig. 5.26a the material shows tempera-
ture ranges with metallic behaviour but also ranges where a semiconducting
scenario would better apply. Similar to Ge-based type I clathrates such a
behaviour can be explained in terms of a density of states (DOS) model,
where a narrow gap in the DOS is located slightly above the Fermi level. As
a result both the metallic and the semiconducting features are accounted for
[69, 70, 202, 203]. The metallic behaviour derives from scattering of conduc-
tion electrons into unoccupied states in reciprocal space just above the Fermi
energy. Once this region of the DOS becomes occupied, electrons have to be
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Figure 5.26: Temperature dependent electrical resistivity, ρ, of Ba8PtxSi46−x

(a) and Ba8PdxSi46−x (b) for various concentrations x.

promoted across the gap, originating in a semiconducting behaviour. A dis-
tinct exponential temperature dependence, however, is not observed because
of the proximity to the metallic state.

5.4.3 Thermal conductivity of Ba8(Pd,Pt)xSi46−x

The temperature dependent thermal conductivity, λ, of Ba8PdxSi46−x and
Ba8PtxSi46−x has been measured from 4 K to room temperature. Results are
shown in Figs. 5.27-5.28. Overall, thermal conductivity of both sets of sam-
ples is larger than required for thermoelectric materials. The comparison of
Ba8PdxSi46−x and Ba8PtxSi46−x with Ge-based Pd and Pt compounds shows
that the Ge-based type I clathrates have significantly smaller λ(T )-values
throughout the temperature range investigated. Within a first approximation,
the substantial mass difference between the Si and the Ge based compounds
is made responsible for this observation since, in general [67],

λ = 8

(
kB

h

)3
MV 1/3θ3

D

γ2T
. (5.9)

γ is the Grüneisen parameter, M is an average atomic mass and V the aver-
age atomic volume. The Debye temperature follows from θD ∝ 1/M . Thus,
Eqn. 5.9 points to a decrease of the thermal conductivity as the average
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Figure 5.27: (a) Temperature dependent thermal conductivity, λ(T ), of
Ba8PdxSi46−x (b) Ba8PtxSi46−x for various concentrations x= 2.5, 2.9, 3.9.

masses of a certain system increases. Consequently, a reduced Debye temper-
ature associated with the higher Ge mass naturally explains the experimental
findings.

Based on the Wiedemann-Franz law, the data observed are separated into
the lattice (λph) and the electronic contribution (λe), with λ = λe + λph.
Results are shown in Fig. 5.29a for λph of Ba8Pd2.5Si43.5. Due to the large
electrical resistivities of the present series, the electronic contribution λe is
small, of the order of several percent at room temperature of the total mea-
sured quantity, i.e., 0.15, 4.7 and 4.5 mW/cmK for x = 2.5, 2.9 and 3.9,
respectively. Thermal conductivity at room temperature of Pd clathrates
varies between 43 and 89 mW/cmK at room temperature. Similar obser-
vations were done also for a Pt clathrates. The overall values of λ(T ) are
higher, typically in the range of 53 to 103 mW/cmK at room temperature.
With increasing Pt content λ decreases; Ba8Pt2.8Ge43.2 shows the highest λ
values (∼ 100 mW/cmK). The minimum thermal conductivity as shown in
the figures 5.29, 5.30 and 5.31 as solid green lines was calculated using a
Debye temperature θD and a number of atoms per unit volume n. Adding
Pd to Ba8PdxSi46−x causes that the low temperature maximum in λ(T ) be-
comes suppressed, converging a glass-like behaviour. However, none of the
samples investigated is characterized by a dip in λ(T ) at lower temperatures,
attributed to resonance scattering. This mechanism is expected to have a
significant impact on thermal transport and is considered responsible for the
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Figure 5.28: (a) Temperature dependent lattice thermal conductivity, λph(T ),
of Ba8PdxSi46−x for various concentrations x= 2.5, 2.9, 3.9 (b) Ba8PtxSi46−x

for x= 2.8, 3.2, 3.8.

glass-like temperature dependence of λ(T ) in some cage forming compounds.
An archetypal example for the latter is Eu8Ga16Ge30 [192]. To obtain such
true glass-like thermal conductivity, not only resonance scattering on the rat-
tling modes is of importance, rather, tunneling states are necessary for this
occurrence. A very intriguing proof of that fact was provided from a study on
α-Eu8Ga16Ge30 (type VIII Clathrate) and β-Eu8Ga16Ge30 (type I Clathrate)
[200]. While the former is the low temperature modification, the latter ex-
ists in a range of only 3◦C, melting congruently at 699◦C. β-Eu8Ga16Ge30 is
characterized by a plate-like displacement ellipsoid, referring to a split-site of
Eu, which is entirely absent in α-Eu8Ga16Ge30. As a consequence, tunneling
states are missing and the thermal conductivity becomes much larger, the
glass like behaviour got lost. It was pointed out that a large carrier concen-
tration (n ≈ 1021) also can be responsible for “washing out” the resonance
dip in λ(T ) due to enhanced phonon-electron scattering processes [201]. As
already noted in the previous subsection a quantitative description of λ(T ) is
possible in terms of Callaway’s theory [82, 83] (Eqn.1.17) of lattice thermal
conductivity.

A comparison of the lattice thermal conductivity of the Pd with Pt com-
pounds clearly signals an overall and significant reduction of λ(T ) for the Pd
cases. The separation of the total thermal conductivity λ(T ) of Ba8Pd2.5Si43.5

and Ba8Pt2.8Ge43.2 into the electronic part λe and the lattice part λph plotted
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Figure 5.29: Separation of the total thermal conductivity λ(T) of
Ba8PdxSi46−x for x = 2.5 (b) Ba8PtxSi46−x for x = 2.8 into the electronic
part λe and the lattice part λph. The electronic contribution λe is deduced
from the Wiedemann-Franz law. The solid lines are least squares fits accord-
ing to Callaway model (Eqn. 1.17). The green lines correspond to the upper
border of the theoretical lower limit of the lattice thermal conductivity λmin.
The black line demonstrates the radiation losses, the corresponding T 3 term.
The half filled symbols indicate lattice thermal conductivity data obtained
from a correction procedure taking radiation losses into account.

as a function of temperature in Figs. 5.29a,b. In both cases upon an increas-
ing Pd and Pt content, λph decreases. Among the Pd series Ba8Pd2.5Si43.5

compound shows the highest λph (87 mW/cmK) at 300 K while for the Pt
case Ba8Pt2.8Ge43.2 is largest, λph = 87 mW/cmK at room temperature (see
Fig. 5.29b).

The application of the Wiedemann-Franz law yields an electronic contribu-
tion of only about 0.1 mW/cmK in case of Ba8Pd2.5Ge43.5 and 3.5 mW/cmK
in case of Ba8Pt2.8Ge43.2, respectively. With decreasing Pd content λe is
reduced strongly from Ba8Pd2.9Si43.1 to Ba8Pd2.5Si43.5. As already noted
in the previous subsection the λph-curves are calculated by applying the
Wiedemann-Franz law and subtracting the radiation losses assuming a T 3-
dependence. The filled symbol in Figs. 5.29a and 5.29b denote the corrected
thermal conductivities data.

A comparison of the lattice thermal conductivity λph of the Ba8Pd2.5Si43.5

with Ba8Pt2.8Si43.2 compound clearly signals an overall and significant re-
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Figure 5.30: Separation of the total thermal conductivity λ(T ) of
Ba8PdxSi46−x for x = 2.9 (b) Ba8PtxSi46−x for x = 3.2 into the electronic
part λe and the lattice part λph. The electronic contribution λe is deduced
from the Wiedemann-Franz law. The solid lines are least squares fits accord-
ing to Callaway model (Eqn. 1.17). The green lines correspond to the upper
border of the theoretical lower limit of the lattice thermal conductivity λmin.
The black line demonstrates the radiation losses. The half filled symbols indi-
cate lattice thermal conductivity data obtained from a correction procedure
taking radiation losses into account.

duction of λph for the Ba8Pd2.5Si43.5 case. With increasing Pd content λph

decreases, the Ba8Pd2.5Si43.5 compound shows the highest λph values (about
71 mW/cmK at 70 K. For the compound Ba8Pt2.8Si43.2, λph at room temper-
ature is about 103 mW/cmK. On the other hand Ba8Pt2.8Si43.2 shows highest
λtot. and λph values in the whole temperature range in this series. The min-
imum thermal conductivity was calculated using a Debye temperature θD of
233, 238 K and a number of atoms per unit volume n = 4.8652 ×1028/m3

in case Pd compounds, 4.8695 ×1028/m3 in case Pt compounds, respectively.
The outcome of this for Ba8Pd2.5Si43.5 is a room temperature values of λmin

about 4.7 mW/cmK and 4.8 mW/cmK in case of Ba8Pt2.8Si43.2, respectively.

The separation of the total thermal conductivity λ(T ) of Ba8Pd2.9Si43.1

(left panel) and Ba8Pt3.2Si42.8 (right panel) into the electronic part λe and
the lattice part λph plotted as a function of temperature in Figs. 5.30a,b.
The thermal conductivity λ(T ) of Ba8Pd2.9Si43.1 and Ba8Pt3.2Si42.8 is about
44 and 77 mW/cmK at 300 K, respectively. Least squares fits according to



5.4 Ba8{Pd,Pd}xSi46−x Clathrate I systems; crystal structure and
physical properties 127

T [K]
0 100 200 300

[m
W

/c
m

K]

0

10

20

30

40

50

60

70

meas.
Callaway Fit

ph  T3 corr.

e

radiation 
losses

ph

min

Ba8Pd3.9Si42.1

T [K]
0 100 200 300

[m
W

/c
m

K]

0

20

40

60

80

100

meas.

ph  T3 corr. 
Callaway Fit

e

radiation 
losses

ph

min

Ba8Pt3.8Si42.2(a) (b)

Figure 5.31: Separation of the total thermal conductivity λ(T) of (a)
Ba8PdxSi46−x for x = 3.9 (b) Ba8PtxSi46−x for x = 3.8 into the electronic
part λe and the lattice part λph. The electronic contribution λe is deduced
from the Wiedemann-Franz law. The solid lines are least squares fits accord-
ing to Callaway model (Eqn. 1.17). The green lines correspond to the upper
border of the theoretical lower limit of the lattice thermal conductivity λmin.
The black line demonstrates the radiation losses. The half filled symbols indi-
cate lattice thermal conductivity data obtained from a correction procedure
taking radiation losses into account.

Eqn. 1.17 are shown in Fig. 5.30 as dashed lines, revealing fine agreement
with the data observed. Filled symbols in Figs. 5.30a,b indicate thermal
conductivity data obtained from the correction procedure taking radiation
losses into account. In all cases lattice thermal conductivity λ below ∼ 200 K
can be described by means of Callaway’s model. This procedure allows an
extrapolation of λ(T ) towards higher temperatures and helps to account for
the radiation losses. For the compound Ba8Pt3.2Si42.8 with respect to radia-
tion losses, λph at room temperature is already reduced from 77 mW/cmK to
60 mW/cmK. Similar features for Ba8Pd2.9Si43.1 reveals at room temperature
λph 38 mW/cmK. The electronic thermal conductivity λe for Ba8Pt3.2Si42.8

at room temperature shows the highest value (17 mW/cmK). The minimum
thermal conductivity as shown in Fig. 5.30a (solid green line) was calculated
using a Debye temperature θD of 202 K, and n = 4.86 ×1028/m3; thus λmin

= 4 mW/cmK (at room temperature). In case of Ba8Pt3.2Si42.8 λmin is lower
compared to the Pd compound. Debye temperature θD = 123 K, and n =
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4.862 ×1028/m3 reveals λmin = 2.5 mW/cmK at 300 K.

Similar observations were made also for Ba8PdxSi46−x and Ba8PtxSi46−x

for x = 3.9, 3.8. The temperature dependent thermal conductivity λ(T ) of
Ba8Pd3.9Ge42.1 and Ba8Pt3.8Ge42.2 is displayed in Figs. 5.31a,b. The left
panel of Fig. 5.31 shows λ(T ) of Ba8Pd3.9Ge42.1 (large circles). λph(T ) and
λe(T ) are separated according to equation 1.9. The measured thermal con-
ductivity is indicated by large circles, the lattice thermal conductivity by
filled symbols and the electronic thermal conductivity by triangle symbols.
The phonon contribution λph(T ) is further interpreted by using the model
of Callaway, according to Eqn. 1.17. The filled symbols in Figs. 5.31a,b
show λph(T ) derived from the Wiedemann-Franz law (Eqn. 1.10) and cor-
rected with respect to radiation losses. The left panel of Fig. 5.31 shows the
measured data in case Ba8Pd3.9Ge42.1 with an oversized slope of the curves
at higher temperatures due to radiation losses. The different contributions
to λ(T ) as well as the corrected thermal conductivities of Ba8Pt3.8Ge42.2 are
plotted in Fig. 5.31b as examples of this correction procedure. Thermal
conductivities of Ba8Pd3.9Ge42.1 and Ba8Pt3.8Ge42.2 are 64 mW/cmK and
53 mW/cmK at room temperature, respectively. The electronic thermal
conductivity, deduced from the Wiedemann-Franz law yields larger λe for
Ba8Pt3.2Si42.8, 7.5 mW/cmK at 300 K. Correcting the λ(T ) data for radiation
losses demonstrates that the lattice thermal conductivity of Ba8Pd3.9Si42.1

reaches at room temperature about 10 mW/cmK (lower curve, Fig. 5.31a).
The radiation-corrected lattice thermal conductivity of Ba8Pd3.9Si42.1 is of
the same order of magnitude as λmin, suggesting that phonons behave like
in a glassy state. Taking n = 4.8523 × 1028 m−3 and θD = 230 K reveals
λmin(300 K)= 4.4 mW/cmK. Results below room temperature are shown in
Fig. 5.31a as solid green line. A similar scenario is valid for Ba8Pt3.2Si42.8.
The minimum thermal conductivity was calculated using a Debye tempera-
ture θD= 221 K and n = 4.8523 × 1028/m3. The outcome of this is a room
temperature value λmin of 4.42 mW/cmK. With increasing x, λph decreases
in whole temperature range and Ba8Pt3.2Si42.8 shows the lowest value of λph

(44 mW/cmK) at room temperature.

The fit parameters A, B, C and D from Eqn. 1.19 are listed in Table 5.1
and obtained by least squares fits of the lattice thermal conductivity data λph

according to Callaway’s model (Eqn. 1.17). Table 5.1 shows the influence of
each parameter and, therefore, of each physical process of the phonon contri-
bution λph to thermal conductivity. The probability for Umklapp-processes

(τ−1
U = BT 3x2e−

θD
3T ) represents by the parameter B and indicate that the

probability of Umklapp-processes increases with the more platinum and less
silicon atoms a unit cell contains. Since Umklapp-processes become dominant
as the temperature increases above 15 K the influence of the grain size (param-
eters C) decreases as the platinum/palladium content increases in both cases.
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θD A B C D
[K] [K−4s−1] [×10−4K−3s−1] [×109s−1] [×107K−1s−1]

Ba8Pt2Si44 238 551.7 5.4 9.9 1.07
Ba8Pt3Si43 200 6306.1 11.85 0.14 0.51
Ba8Pt4Si42 126 10458.5 23.4 0.104 0.0002
Ba8Pd2Si44 234 1087.05 8.08 9.9 9.8
Ba8Pd3Si43 204 7683.7 16.83 0.42 0.36

Ba8Pd4.5Si41.5 311 15990 13.64 0.24 1.3

Table 5.1: The fit parameters A, B, C and D were obtained by least squares
fits of the lattice thermal conductivity data λph in the temperature range
4.2 K < T < 300 K according to Callaway’s model Eqn. 1.17.

While the added platinum/palladium atoms replace the silicon atoms in the
crystal lattice scattering of phonons on crystal defects such as unoccupied
places become more important. Parameter A indicates for phonon scattering
on the crystal defects. Comparing the set of fit parameters indicates that the
scattering rate referring to point defect scattering, i.e., τ−1

D = Ax4T 4 (A is a
material dependent parameter) increases by several orders of magnitude upon
the increasing Pd/Pt content. Thus, scattering on point defects as created by
the Pd/Si substitution turns out to be an extremely efficient scattering pro-
cess. Parameter D denotes the electron-phonon scattering processes. Since
the probability for the electron-phonon interaction increases with increasing
electron concentration, the values of parameter D is larger for the compounds
containing less platinum and palladium atoms. It should be noted that the
values of the Debye temperature θD do not correspond to those calculated by
the fit for heat capacity or electrical resistivity because the Debye tempera-
ture is temperature dependent. For the lattice thermal conductivity the low
temperature range is more important. Thus θD was optimized in this range
in order to improve the quality of the fit. Consequently, the Debye temper-
ature resulting from the lattice thermal conductivity fits is lower than that
resulting from the fits for specific heat or electrical resistivity measurements.

5.4.4 Thermopower

Results regarding the temperature dependent thermopower, S(T ), are plot-
ted in Fig. 5.32 for various concentrations of Ba8{Pd,Pt}xSi46−x. Different
to most of the clathrates studied previously [69, 70, 202, 203], both series
exhibit a rather complicated temperature dependence. This refers to distinct
electronic correlations, particularly in the case of the Pd-based materials. As
a consequence, S(T ) differs from the linear dependence evident in simple met-
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Figure 5.32: Temperature dependent thermopower S(T ) for various concen-
trations of of Ba8PtxSi46−x (a) and Ba8PdxSi46−x (b).

als. The largest values [S(RT ) ≈ 30 μV/K for Ba8Pt3.8Si42.2] is well above
S(T ) of simple metals, but still below those values sufficient for thermoelectric
applications [S(RT ) ≈ 150 − 200 μV/K].

S(T ) is negative in the high temperature range for both series, indi-
cating electrons as the dominant charge carriers. Exceptionally, however,
Ba8Pt2.8Si43.2 behaves positive, referring to holes as predominant charge car-
riers in electronic transport.

Using Eqn. 5.8 for the linear S(T ) dependence as observed for
Ba8Pt3.2Si42.8 and Ba8Pt3.8Si42.2, the charge carrier density n can be cal-
culated. Approaching the data of Fig. 5.32 by a linear dependence for
150 ≤ T ≤ 300 K reveals the charge carrier density which for the Pt3.2 com-
pound amounts to n = 6.3× 1021 cm−3 and for Pt3.8 to n = 3.2× 1021 cm−3.
These figures are about two orders of magnitude above the charge carrier
concentration providing the optimum power value α = S2/ρ of degenerate
semiconductors with a narrow gap in the electronic density of states.



Chapter 6

Non-centrosymmetric BCS
superconductor BaPtSi3

6.1 Introduction

The research on superconductivity in non-centrosymmetric materials has at-
tracted growing interest in recent years. The ternary barium transition-metal
silicides are new intermetallic superconductors where SC without inversion
symmetry can be studied in non strongly correlated electron systems. For
most superconductors, the atomic lattice is centrosymmetric. Due to the
Pauli principle and the parity conservation Cooper-pairs with orbital even
parity should have antiparallel spin states, namely spin singlets (total spin S
= 0), while those having orbital odd parity should have a parallel spin state,
i.e., a spin triplet (total spin S = 1).

Non-centrosymmetric structures allow for the existence of a mixture of
spin singlet and spin triplet pairing. From a detailed investigation of the
Ba-Pt-Si system at 800◦C the formation of a novel compound, BaPtSi3,
was identified which is a representative of the non-centrosymmetric structure
BaCuSn3.

6.2 Crystallographic details

BaPtSi3 was prepared by argon arc melting and subsequent heat treatment
under high vacuum at 900◦C for 100 h. X-ray powder diffraction data from
as-cast and annealed alloys were collected on a Guinier-Huber image plate
recording system with CuKα-radiation (8 ≤ 2Θ ≤ 100◦).

The crystal structure of BaPtSi3 was determined from X-ray Rietveld
refinement. Typical final observed, calculated, and difference X-ray powder
diffraction patterns for BaPtSi3 are shown in Fig. 6.1a. The low residual value
confirmed isotypic with the tetragonal unit cell. Indexing of the X-ray powder
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Figure 6.1: (a) X-ray pattern and Rietveld refinement of BaPtSi3. The solid
line derives from the Rietveld refinement and Yobs.-Ycalc. is the intensity dif-
ference between experimental data and Rietveld calculations. (b) The crystal
structure of BaPtSi3 in three-dimensional view.

pattern prompted space group I4mm (No. 107), isotypic with BaNiSn3-Type.
The crystal structure of BaPtSi3 is shown in Fig. 6.1b in three-dimensional
view in comparison with the TrCr2Si2 structure type. Crystallographic data
(standardized) are: a = 0.44071(2) nm, c = 1.0018(3) nm in as-cast condition
and a = 0.44080(3), c = 1.0022(4) nm in 900◦C; Ba in 2a site at (0, 0, 0.6040);
Pt in site 2a at (0, 0, 0.25322), Si(2) in 2a site at (0,0,0) (fixed) and Si(1) in
4b site with (0, 0.5, 0.3640).

6.3 Electrical resistivity of BaPtxSiy

The temperature dependent electrical resistivity ρ(T ) of BaPtSi3 is displayed
in Fig. 6.2a in comparison with ρ(T ) of BaPt5Siy12 and Ba12Pt23Si65. All
compounds are characterized by temperature dependencies implying metallic
behaviour throughout the whole temperature range. The resistivity ρ(T )
in the normal state region is similar to that of simple metals and can be
described in terms of a temperature independent residual resistivity ρ0 and a
Bloch-Grüneisen term (compare expression 1.4) in combination with a Mott-
Jones contribution KT 3 allowing to account for the strong curvature of ρ(T ).
With increasing Pt and Si content the absolute resistivity increases in the
whole temperature region.

The respective room temperature values of the electrical resistivity in cases
of BaPt5Si12 and Ba12Pt23Si65 are 423.5, 378.4 [μΩcm] and 35.3 [μΩcm] for
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Figure 6.2: (a) Temperature dependent electrical resistivity, ρ(T ) for vari-
ous concentrations x and y of BaPtxSiy plotted in a normalized representa-
tion. The solid lines are least squares fits according to the modified Bloch-
Grüneisen model (see Eqn. 1.4). (b) Temperature dependent electrical resis-
tivities of BaPtSi3 measured in various externally applied magnetic fields of
up to 0.5 T.

BaPtSi3, respectively. The Debye temperatures θD, ranging between 180 K
and 346 K, are typical for intermetallic compounds. Further fit data are listed
in Table 6.1. Least squares fits to the data of BaPtSi3 in the temperature
range from 4.2 to 300 K reveal the values for ρ0= 6 [μΩcm], the Debye tem-
peratures θD= 346 K and the electron phonon interaction strength R= 36.7
[μΩcm].

Figure 6.2b show temperature dependent electrical resistivities measured
in various externally applied magnetic fields of up to 0.5 T for BaPtSi3. These
data demonstrate that BaPtSi3 undergoes a sharp superconducting transition
around 2.3 K, which becomes suppressed already at small magnetic fields.

The evaluation of the electron-phonon coupling constant λ of BaPtSi3 can
be made in terms of the McMillan formula (see Eqn. 4.5). For weak coupling
superconductors (SC), λe,ph depends crucially on the value attributed to μ∗,
but not in the case of strong coupling SC, because the possible variation of
the Coulomb pseudopotential is small compared to λe,ph. Taking repulsive
screened Coulomb part μ∗ = 0.13 (for transition metal superconductors and
their intermetalilc counterparts) and θD= 370 K one obtains λe,ph ≈ 0.5,
referring to a superconductor in the weak coupling limit.
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ρ0 θD R
[μΩcm] [K] [μΩcm]

BaPt5Si12 273 180 135
Ba12Pt23Si65 351 268 35.1

BaPtSi3 6 346 36.7

Table 6.1: Fit-parameters for the electrical resistivity obtained by the Bloch-
Grüneisen law, ρ(T ) = ρ0 + ρph(T ), and Residual resistivity ρ0, Debye tem-
perature θD, electron-phonon interaction strength R.

6.4 Low-temperature specific heat and

phonon specific heat of BaPtxSiy

The low-temperature specific heat of BaPtSi3 is shown in a Cp/T versus T rep-
resentation for various external magnetic fields in Fig. 6.3a. BaPt5Si12 is non-
superconducting down to 2 K while BaPtSi3 shows a pronounced anomaly,
which, in agreement to the resistivity data, follows from superconductivity
with an onset temperature of about 100 mK. As can be seen from Fig. 6.3a, a
field of 0.05 T is sufficient to suppress superconductivity to below 2 K. Thus,
the 0.05 T and the zero-field data of BaPtSi3 represent the superconducting-
and normal-state specific heat. Approximating normal-state data at low-
est temperatures by Cp/T = γT + βT 3 yields the Sommerfeld coefficient γ
= 5.7 mJ/molK2 (see inset Fig. 6.3a) and the Debye temperature θD ≈
370 K. Idealization of the heat capacity anomaly under the constraint of en-
tropy balance between the superconducting and the normal state is shown
in Fig. 6.3a, yields Tc= 2.3 K and the height of the specific heat jump
ΔCp/T |Tc = (Cs − Cn)/T |Tc = 7.1 mJ/molK2. The normalized specific heat
jump (ΔCp)|Tc/(γnTc) ≈ 1.2, which is slightly below the figure expected from
BCS theory(ΔCp/(γTc) ≈ 1.43). BCS type superconductivity follows also
from an application of the data set of Mühlschlegel [196] to the heat capacity
results of BaPtSi3. Results of this procedure are shown as a solid line in the
Fig. 6.3a, revealing fine agreement with a fully gapped BCS superconductiv-
ity. The residual deviation at the lowest temperatures might be due to same
impurities or measurement uncertainties.

In order to obtain more aspects on the lattice dynamics, we employ in Fig.
6.3b a (Cp − γT )/T 3 vs. lnT representation. This particular representation
allows us to emphasize deviations from the simple Debye model, which, at
low temperatures, follows Cp ∝ T 3. Based on the already discussed model of
Junod et al.[91] the phonon spectra F (ω) (right axis, solid line) are recon-
structed and plotted as (Cp − γT )/T 3 vs. lnT for BaPtSi3 and BaPt5Si12 in
Fig. 6.3b. The low lying phonon branch in BaPtSi3 may render those lattice



6.4 Low-temperature specific heat and phonon specific heat of BaPtxSiy135

BaPtSi3
(b)

T [K]
2 5 20 501 10 100

(C
p-

T
T3  [J

/g
-a

to
m

K
]

0.00

0.02

0.04

0.06

0.08

(4
/5

)R
2 F(

) [
J/

(g
-a

to
m

K
)]

0.0

0.1

0.2

0.3

0.4

BaPtSi3
BaPt5Si12

( /4.93) [K]

simple Debye 
function

Junod et al. model 
F( ) (BaPtSi3)
F( ) (BaPt5Si12)

D = 370 K

D = 305 K

(b)

BaPtSi3

T [K]
0.0 0.5 1.0 1.5 2.0 2.5

C
p/

T 
[m

J/
m

ol
K2 ]

0

2

4

6

8

10

12

14

0 T
0.01 T
0.02 T
0.05 T
0.1 T

(a)

T2 [K2]
0.5 1.0 1.5 2.0 2.5

C
p/

T 
[m

J/
m

ol
K2 ]

5

6

7= 5.7 mJ/molK2

Mühlschlegel, 1959

Figure 6.3: (a) Temperature dependent specific heat Cp of BaPtSi3 plotted
as Cp/T vs. T for various magnetic fields up to 0.1 T. The solid line adjusts
the numerical data of Mühlschlegel (Ref. [196]) to the present experiment.
Inset: low temperature heat capacity Cp of BaPtSi3 plotted as Cp/T vs.
T 2. (b) Phonon part of the specific heat of BaPtSi3 and BaPt5Si12 plotted
as (Cp − γT )/T 3 vs. lnT . The dashed line is a least squares fits of the
experimental data using the model described in the text with two Einstein-
like modes θD = 369 K in case BaPtSi3 and θD = 305 K in case of BaPt5Si12.
The solid and the dashed-dotted lines sketch the phonon spectral function
F (ω) plotted as ω/4.93 vs. (5/4)Rπ4ω−2F (ω) for which ω is given in Kelvin.

vibrations which couple to the electron system, thereby enabling BCS-type
superconductivity. The phonon part of the specific heat of BaPtSi3 is well
described by a simple Debye-function with a Debye temperature θD= 369 K
together with two Einstein modes ωEL1=43.4 K with a width of 5.3 K in the
frequency regions 40 K < ω < 46 K and ωEL2= 123.3 K with a width of
37.7 K in the frequency regions 104 K < ω < 142 K. For BaPtSi3 the width
of contributions is significantly larger than for BaPt5Si12 (see also Table 6.2).

The reconstruction of the phonon density of states in the case of BaPt5Si12
is plotted in figure 6.3(b). The essential parameters of the model used to
construct the spectral function F (ω) (solid lines, right axis), are θD = 305 K,
ωEL1 = 50.2 with width of 12.1 K and ωEL2 = 108.2 with a width of 24.8 K.
The parameters of least squares fits are summarised in Table 6.2.
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Figure 6.4: (a) The temperature dependent entropy ΔS(T ) by integration
of ΔC/T according to the data. (b) The free energy difference ΔF (T ) of
BaPtSi3. The dashed lines are extrapolations from the normal- and super-
conducting states, respectively. Inset; ΔCp/T (T = Tc) obtained from ΔCp[
= Cp(H = 0) − Cp(H = 0.1 T )] data.

6.5 Determination superconducting and nor-

mal state properties

The thermodynamic critical field Hc(T ) is calculated from the free energy dif-
ference between the superconducting and normal state: ΔF (T ) = Fn − Fs =

μ0H
2
c (T )/2 =

∫ T

Tc

∫ T ′

Tc

Cs−Cn

T ′ dT ′′dT (Fig.6.4b). The difference curves is dis-
played in inset of Fig.6.4b. Cs is obtained from the zero field specific
heat measurement and Cn is taken from the normal state specific heat by
Cn = γT + βT 3, respectively. The superconducting gap Δ(0) of BaPtSi3 can
be estimated from the modified BCS expression (Eqn. 4.7). T < Tc/2 CeS

data are used to estimate the superconducting gap Δ(0). Adjusting Eqn.
4.7 to CeS(T ) = Cp(T ) − Cph(T ) reveals Δ = 0.34(1) meV (= 3.96 K).
The ratio Δ(0)/kBTc ≈ 1.72 is in good agreement with the BCS value
ΔBCS(0) = 1.76kBTc. Results are displayed in Fig. 6.5a in a semi-logarithmic
plot of the normalized electronic specific heat CeS/γTc versus Tc/T . CeS van-
ishes almost exponentially at low temperatures. For comparison, the temper-
ature dependence according to BCS theory with ΔBCS(0)/kBTc = 1.76 is in-
cluded as dashed line. The application of a magnetic field suppresses Tc with
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Figure 6.5: (a) The normalized electronic specific heat CeS of BaPtSi3 plotted
as semi-logarithmic Ces/γTc as a function of the inverse reduced tempera-
ture Tc/T . The exponential temperature dependence according to BCS (with
ΔBCS(0)/kBTc = 1.76 and 1.72), are shown by dashed-dotted lines, respec-
tively. (b) Temperature dependent upper critical field of BaPtSi3 as deduced
from resistivity measurements. The initial slope of μ0Hc2(T ) is about -0.03
T/K. The dashed-dotted line corresponds to μ0Hc2 derived in terms of the
model of Werthamer et al.[165], revealing μ0H

′
c2= -0.033 T/K.

an initial slope of about ∂(μ0Hc2)/∂T ≡ μ0H
′
c2= -0.033 T/K from specific

heat data, extrapolating to an upper critical field at T = 0 well below 0.1 T.
The strong upturn of experimental Hc2 data from resistivity measurement
refers to some deviation from standard WHH-type behaviour of the upper
critical field. The initial slope of the upper critical field μ0H

′
c2 ≈ -0.1 T/K,

yielding slightly larger values deduced from resistivity data than those from
specific heat, which may be attributed to pinning and surface effects. An esti-
mation of μ0Hc2(0) using the WHH-model yields μ0Hc2(0) = 0.69TcH

′
c2(Tc)=

0.052 T, a value significantly smaller than that obtained from resistivity data
(0.144 T). To explain this, the behaviour near the surfaces must be considered,
since real superconductors are finite in size [96]. De Gennes and Saint-James
[195] showed that superconductivity can nucleate at an interface in a parallel
field Hc3, larger by a factor of 2.77 than Hc2, yielding Hc3= 0.144 T. In case
of BaPtSi3 our conclusion is that in a magnetic field parallel to the surface,
superconductivity will nucleate in a surface layer of sample at a field more as
double higher than at which nucleation occurs in the volume of the material.
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property BaPtSi3 BaPt5Si12
crystal structure tetragonal
space group I 4mm
lattice parameter a @300 K [nm] a= 0.44080(3)

c= 1.0022(4)
Tc [K] 2.3
γ [mJ/molK2] 5.7 8.1(1)
θD [K] 370 305
ΔCp(T = Tc) 15.7
ΔCp/γnTc 1.2
μ0Hc2 [mT] 52
μ0Hc(0) [mT] 16.7
μ0Hc(0)calc. [mT] 17.5
BCS: Δ(0) [meV] 0.34
upper critical field μ0Hc2(0) [mT] 52
slope of μ0Hc2, μ0H

′
c2 [T/K] -0.033

μ0H
′
c2(calc.) [T/K] (clean) -0.055

(dirty) -0.052
thermod. critical field μ0Hc [mT] 16.7
λep 0.5
α 0.0172
λso 10
θD [K] 370 305
ωE1 [K] 43.4 50.2
ΔωE1 [K] 5.3 12.1
ωE2 [K] 123.3 108.2
ΔωE2 [K] 37.7 24.8

Table 6.2: The characteristic parameters of BaPtSi3 in the superconducting
and normal state and BaPt5Si12.

Fig. 6.5b displays the temperature dependent upper critical field μ0Hc2 of
BaPtSi3 as deduced from both resistivity and specific heat data Cp(T,H) and
the thermodynamic critical field. An extrapolation T → 0 reveals μ0Hc(0) ≈
16.7 mT, close to theoretical value of the thermodynamic critical field, which
follows from γT 2

c = 0.168μ0H
2
c , thus μ0Hc(0, theor) = 17.5 mT. The up-

per critical field can be estimated with the WHH-model [165] (see appendix
A.3.1), μ0Hc2(0) = 0.69μ0TcH

′
c2|Tc ≈ 0.052 T (dashed-dotted line in Fig.

6.5b). Two parameters determine the WHH-model [165], the Pauli paramag-
netic α = (3e2�γρ0)/(2mπ

2k2
B)= 0.0172 as well as the spin-orbit scattering

λso ≈10. A similar value of α follows from α = 5.3 · 10−1
(

−dHc2(T )
dT

)
|T=Tc
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parameter 0.1 T 0.05 T 0.02 T

μ0H
′
c(calc.) [T/K] -0.011 -0.016 -0.025

effective Fermi surface Ss [m−2] 2.17 ×1020 2.17 ×1020 2.17 ×1020

Fermi velocity vF [m/s] 95935 135732 214611
mean free path ltr [nm] 87 87 87
mean free path ltr [nm] ([116]) 95 95 95
coherence length ξ0 [nm] (BCS Eq.) 57 81 128
coherence length ξ0 [nm] 57 81 128
penetration depth λL(T → 0) [nm] 243 172 109
G.L. parameter κGL 4.04 2.02 0.81
κ (from Eqn.1.53) 4.24 2.12 0.84
ltr/ξ0 1.5 1.07 0.7
SC in the dirty limit dirty limit dirty limit

Table 6.3: Comparison of the determined parameters characterizing the su-
perconducting and normal state of BaPtSi3 for upper critical field μ0Hc2(0)
= 0.02, 0.05 and 0.1 T.

= 0.0174. Here μ0H
′
c2 given in T/K. Results of this model are displayed in

Fig. 6.5b as dashed-dotted line. Orbital pair breaking is the most relevant
mechanism in the low field limit and therefore determines μ0H

′
c2. The Maki

parameter α = 0.0172 of BaPtSi3 corresponds with a dominating orbital pair
breaking, almost excluding Pauli limiting. In the framework of BCS supercon-
ductivity, we estimate in the following section a number of parameters from
an analysis of superconducting and normal state properties [111] assuming a
spherical Fermi surface and incorporating clean and dirty limit terms.

Starting parameters are γ = 0.0057(1) J/molK2, the slope of the upper
critical field μ0H

′
c2= -0.033 T/K and ρ0 = 6 μΩcm. The effective Fermi

surface area Ss as shown by Orlando et al.[111] yields Ss = 1.169×1020 [m−2]
in the clean case. The mean free path ltr was obtained from two independent
relations. Combining the Fermi surface with Sommerfeld value γ yields the
Fermi velocity vF ≈ 95935 m/s and in the context of the residual resistivity, ρ0

= 6 μΩcm, a mean free path ltr ≈ 95 nm can be derived. A second expression
originates from the well known formula [197] ρ = 3π2�

e2k2
F ltr

, assuming a three-

dimensional system with a spherical Fermi surface [198, 199]. This results in
ltr= 87 nm, which is slightly smaller than the mean free path computed from
the model of Ref.[116]. Here, we used the conversion �a0/e

2= 0.022 mΩcm
and the Bohr radius a0 = 0.529 Å, the Fermi wave vector kF =

√
2π/a′, where

a′ = a 3
√

2 is the lattice parameter in the cubic unit cell.

The low temperature extrapolations of the thermodynamic critical field
Hc(T ) and the upper critical field μ0Hc2(0) allows evaluation of the Ginzburg
Landau parameter κGL(0) ≡ λGL(0)/ξGL(0) = Hc2/[

√
2Hc(0)]. Starting with
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Hc2(0)=0.1 T reveals the ratio of the penetration depth λGL(0) to the co-
herence length ξGL(0), κGL(0) = 4.24. The absolute value of the penetration
depth λ(0) can be evaluated via the isotropic Ginzburg-Landau-Abrikosov-
Gor’kov theory (Eqn. 1.52), resulting λGL(0) ≈ 243 nm. The coherence
length ξ0 for T→ 0 was obtained from the BCS equation (Eqn.1.57), ξ0=
57 nm, and from the well known formula μ0Hc2 = Φ0/(2πμ0ξ

2) ≈ 57 nm,
respectively, in excellent agreement with the former.

Results of evaluations for Hc2(0)=0.05 T, 0.02 T are given in Table 6.5
and are compared with the upper critical field Hc2(0)=0.1 T.

The parameters κ, ξ(0) and λL(0), evaluated from the upper and the
thermodynamic critical field, excellently agree with model calculations based
on the free electron model. ltr/ξ ≈ 1 allows to classify BaPtSi3 as a dirty
limit superconductor, while κ ≈ 4.27 indicates a type II superconducting
behaviour.



Chapter 7

Structure and Physical
Properties of M2Pd14+xB5−y,
M= Th, Ce, Pr, Nd, Sm, Eu,
Gd

7.1 Introduction

Our search for novel compounds also focused on a yet unknown series of
borides, i.e. M2Pd14+xB5−y (M= Th, Ce, Pr, Nd, Sm, Eu, Gd). In the course
of the present study, it turned out that besides the well known perovskite
phases REPd3B1−x [204, 205] (RE is one of the light rare earth elements) novel
and hitherto unknown compounds were found to exist near the composition
REPd7B2.5 for all light rare earth elements from La to Gd. Furthermore the
investigation was extended to include the actinoid elements Th and U. The
present study characterizes the crystal structure, thermodynamic, electric
and magnetic behaviour and elucidate ground states and phase transitions
appearing in this series.

7.2 Crystal structures of {Nd, Th}2Pd14.9B4.9.

Crystal structure of Nd2Pd14.9B4.9. Systematic extinctions, besides those
for a body-centered unit cell, (hk0) for h=2n+1 and k=2n+1, (hk�) for
2h+�=4n+1, (00�) for �=4n+1, are compatible with the highest possible
symmetry for the tetragonal space group type I41/amd. Determination of
the atom arrangement in this space group type (origin at center) was suc-
cessful employing direct methods prompting one Nd- and four Pd-sites in the
asymmetric unit. Two boron sites were located from a difference Fourier
synthesis. This structure model refined to a residual value RF 2 = 0.12

141
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Figure 7.1: Crystal structure of Nd2Pd14B5 in a three-dimensional view along
the [010]-axis

adopting anisotropic thermal displacement factors for the metal atoms but
isotropic temperature factors for the borons, resulting in the chemical formula
Nd2Pd14B5. Standardization of the structure model with program Structure
Tidy [152] revealed at this stage identity with the structure type of Y2Pd14B5

[206]. Due to the rather high residual densities of 85 e−/Å3 left in (0, 1
4
,

0.3989), the refinement at that stage was highly unsatisfactory. Therefore
firstly occupancies of all metal sites were refined but did not reveal any sig-
nificant deviations from full occupation. Inserting an additional Pd-atom
(Pd5) into the site (0, 1

4
, 0.3989) reduced the residual density as well as the

residual value to RF 2 = 0.12, however, at the expense of unacceptably high
ATD

′
s for Pd5 and unacceptably short distances among Pd5-atoms and be-

tween Pd5- and B2-atoms in the 4b-site (0, 1
4
, 3

8
) (dB2−Pd5 = 0.0438 nm,

dPd5−Pd5 = 0.0875 nm). Furthermore the residual density of 24e−/Å3 shifted
to (0, 1

4
, 0.4680). Relieving the occupancy of Pd5 to 45% and compensating

the residual peak at (0,1
4
, 0.4680) by releasing the constraint on zB2 for the

B2-atoms at an occupancy of ∼ 42%, finally rendered normal ATD
′
s for all

atoms and reduced the total residual density below 2e−/Å3. As both the Pd5
as well as the B2 site, however, are only partially occupied (about 50% occu-
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Figure 7.2: (a) Lattice parameters variation vs. light rare earth; (b) volume
and c/a ratio of M2Pd14B5

pancy in each site), a complicated defect structure arises in which only one
Wyckoff position (either Pd5 or B2) per unit cell is half filled. It should be
emphasized here, that neither Pd5-atoms nor B2-atoms with z fixed at (0,1

4
,3
8
)

supply a satisfying solution (RF 2∼ 0.050; residual densities ≥ 10e−/Å3). It
shall be noted that the final structure in all its details is closely related to the
Sc4Ni29Si10-type [207].

Results of the structure determination show a final R-value as low as
0.02, thus confirm the structure model. The chemical formula turns out
to be Nd2Pd14.9B4.9. The crystal structure is presented in Fig. 7.1a in a
three-dimensional view along the [010]-axis. As one of the typical structural
units for metal rich borides, B1-atoms are found in deformed Archimedian
antiprisms capped on one side by an additional Pd-atom (Pd5-atoms) (Fig.
7.1c) whereas B2-atoms (defect site) are in a coordination unit formed by two
trigonal prisms face-connected on a common quadratic base and formed by
seven palladium atoms Fig. 7.1b. Each rare earth atom is surrounded by 6
palladium atoms and 6 neighboring palladium atoms at a larger distance of
0.30326 nm (Fig. 7.1d). Interatomic distances generally agree well with the
metallic radii of pure elements.

Crystal structure of Th2Pd15B5. Determination of the crystal struc-
ture of Th2Pd15B5 revealed essentially the same atom arrangement as found
for Nd2Pd14.9B4.9. Small differences concern Pd5 atoms which for the Th-
compound occupy the 4d position with a slight defect. Results of the structure
determination show a final R-value as low as 0.026, thus confirm the struc-
ture model. Whilst no indications were found for formation of an isostruc-
tural compound U2Pd14B5, X-ray intensities and unit cell dimensions of the
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Figure 7.3: X-ray diffraction pattern of Ce2Pd14B5. The solid line derives
from the Rietveld refinement. Yobs.-Ycalc. is the intensity difference between
experimental data and Rietveld calculations.

thorium analog compare well with the Nd2Pd14.9B4.9 structure implying struc-
tural analogy and suggesting similar size of Nd and Th atoms. The measured
composition (from EMPA, in at.%), Th9.3Pd68.1B22.5, is fully consistent with
the formula Th2Pd14.9B4.9 (in at.% Th9.2Pd68.3B22.5). Crystallographic results
of Nd2Pd15B5 and Th2Pd15B5 are collected in Table 7.1.

7.3 Isotypic compounds M2Pd14B5

Indexing of the X-ray powder patterns of M2Pd14B5 alloys for M = Ce, Pr,
Nd, Sm, Eu, Gd in all cases was complete and prompted a tetragonal unit
cell close to that established for Nd2Pd14.9B4.9. Analysis of the X-ray inten-
sities, systematic extinctions, and size of unit cells suggest isotypism with
the structure of Nd2Pd14.9B4.9 (Sc4Ni29B10-type). Rietveld refinements with
residual values generally below RF =0.07 confirmed this isotypism. A small
but significant scatter in the lattice parameters (Fig. 7.2a) may indicate the
existence of limited homogeneity regions. In Fig. 7.2b, volume vs. rare earth,
indicates a 3+ ground state for Ce to Sm. The monotonic decrease of both
a and c parameters with rising ordinal number of the rare earths complies
with a shrinking unit cell volume i.e the lanthanide contraction. The minor
increase of the c/a ratio throughout the stability range of the Nd2Pd14.9B4.9

structure type yields only a small increase of the lattice anisotropy. Different
from the light rare earth analogs, the Eu-containing compound exhibits a
strong positive deviation from the unit cell volume variation vs. the rare
earths i.e. a valance state close to divalent. Typical final observed, calcu-
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Parameter / compound Nd2Pd14B5 Th2Pd14B5

Crystal size 27x54x41 μm3 50x54x90 μm3

a; c [nm] a=0.85776(3); c=1.66278(4) a=0.86102(2); c=1.66019(5)
Data collection MoKα, 2Θ range (◦) 2 ≤ 2Θ ≤ 72.6 2 ≤ 2Θ ≤ 72.6
Total number of frames 70 sec/frame; 242 frames; 7 sets 50 sec/frame; 222 frames; 7 sets
Reflections in refinement 793 ≥ 4σ(Fo) of 823 763 ≥ 4σ(Fo) of 827
Number of variables 40 38
RF2 = Σ | F 2

o − F 2
c | /Σ | F 2

o | 0.020 0.026
wR2 0.058 0.062
Rint 0.062 0.069
GOF 1.227 1.081
Secondary extinction (Zachariasen) 0.00043(1) 0.00026(2)

Atom parameters

Nd or Th in 8e (0, 1
4
,z); z 0.10022(3) 0.09804(2)

occ. 1.0 1.0
U11, U22, U33[102(nm)2] 0.0110(2), 0.0099(1), 0.062(2) 0.0128(2), 0.0099(1), 0.066(2)

Pd1 in 8d (0,0, 1
2
) - -

occ. 1.0 1.0
U11, U22, U33[102(nm)2] 0.0160(2), 0.0131(1), 0.107(2) 0.0168(3), 0.0149(3), 0.0130(3)
Pd2 in 16h (0,y,z); y,z 0.02537(5); 0.23640(3) 0.02978(7); 0.23706(3)
occ. 1.0 1.0
U11, U22, U33[102(nm)2] 0.0139(2), 0.0086(2), 0.0084(2) 0.0203(2), 0.0104(2), 0.0093(2)
Pd3 in 16h (0,y,z); y,z 0.58884(5); 0.06585(2) 0.58831(6); 0.06605(3)
occ. 1.0 1.0
U11, U22, U33[102(nm)2] 0.0098(2), 0.0078(2), 0.0053(2) 0.0148(2), 0.0094(2), 0.0064(2)

Pd4 in 16g (x,x+ 1
4
, 7

8
); x 0.28179(4) 0.28409(5)

occ. 1.0 1.0
U11, U22, U33[102(nm)2] 0.0130(2), 0.0119(2), 0.0096(3) 0.0221(2), 0.0135(2), 0.0110(3)

Pd5 in 8e (0, 1
4
,z); z 0.35465(9) Pd5 in 4b (0, 1

4
, 3
8
)

occ. 0.45(1) 0.830(4)
Uiso[102(nm)2] 0.0146(4) 0.036(2)

B1 in 8e (0, 1
4
,z); z 0.2827(15) 0.2851(35)

occ. 0.43(1) 0.170(4)
Uiso[102(nm)2] 0.017(6) 0.006(6)
B2 in 16f (x,0,0); x 0.1992(7) 0.2009(11)
occ. 1.0 1.0
Uiso[102(nm)2] 0.011(1) 0.016(1)

Residual density in e−/Å
3
; max; min 1.78; -2.10 4.12; -4.14

Table 7.1: X-Ray Single Crystal Data for Nd2Pd14.9B4.9, and Th2Pd14.9B4.9 ;
(structure type related to Sc4Pd29B10-type, Space Group I41/amd; No. 141)
standardized with program Structure Tidy [152], standard deviations gener-
ally < 0.0005 nm.

lated, and difference X-ray powder diffraction patterns for the Ce2Pd14B5 is
shown in Fig. 7.3. A full profile Rietveld refinement performed on powder
x-ray diffraction data of all alloys, however, cannot differentiate between the
two slightly different atom arrangements in the Nd and Th cases. Therefore
for all RE-homologs the structure model of Nd2Pd14.9B4.9 was applied. The
only minor differences between the observed (Yobs.) and the calculated inten-
sity (Ycalc.) confirm the structure as well as the sample quality (see Fig. 7.3).
Attempts to synthesize the corresponding La-containing compound in single
phase condition failed, particularly due to the rather small temperature win-
dow of existence for this compound. Inspection by EMPA of an as-cast sam-
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Figure 7.4: Temperature dependent electrical resistivity of M2Pd14B5 as ρ in
a normalized representation.

ple with nominal composition La2Pd14.9B4.9 revealed a two-phase structure,
which from Rietveld refinements confirmed the minor phase La2Pd14.9B4.9

to comply with the tetragonal structure model of Nd2Pd14.9B4.9 at a residual
value of RF = 0.037. On annealing, however, the tetragonal phase disappears,
yielding a single main phase (also seen in cast condition), which was indexed
with a monoclinic X-ray powder spectrum. The detailed elucidation of the
latter structure, La3Pd25−xB8−y (x=1.75, y=0.07; space group P21/c with
a =1.17567(2) nm, b=1.05757(2) nm, c=1.60664(3) nm, β =102.1788(10)
deg, RF 2 = 0.03), is the subject of discussion in Ref. [208]. In lack of
the La-compound and in order to isolate the magnetic part of the physical
properties we used as an isotypic nonmagnetic analog the newly discovered
Lu2Pd14+xB5−y (with the structure type of Nd2Pd14.9B4.9) [209].

7.4 Electrical resistivity

Physical properties of ternary M2Pd14+xB5−y, M=(Th, La, Ce,Pr, Nd, Sm,
Eu, Gd), were investigated by means of temperature dependent resistivity,
susceptibility and heat capacity measurements. The electrical resistivity, ρ,
of M2Pd14+xB5−y, in general, is characterized by small RRR values originated
by defects inherent to the crystal structure. The temperature dependent elec-
trical resistivity ρ(T) of M2Pd14B5 is shown in Fig. 7.4 in a normalized rep-
resentation for temperatures above 4.2 K. Low temperature ρ(T ) data of the
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Figure 7.5: Temperature dependent electrical resistivity ρ of (a) Ce2Pd14B5,
(b) Nd2Pd14B5 at various applied magnetic fields up to 12 T.

compounds based on Ce, Nd, Sm, Eu and Gd exhibit a minimum in the vicin-
ity of 20 K followed by an increase towards lower temperatures. Although a
nonmagnetic origin like variable range hopping is conceivable due to statisti-
cal disorder of atoms within the crystal structure, a magnetic source is more
likely, since magnetic fields of the order of several Tesla completely suppress
the anomalies indicated above. This behaviour is shown in figures 7.4, 7.5
and 7.6. Note that ρ decreases monotonically with temperature without any
other feature down to about 17 K. This establishes that all these compounds
behave similar to simple metals. Low temperature ρ(T) data of the com-
pounds based on Ce, Nd, Sm and Eu exhibit a minimum in the vicinity of
10 K followed by increase towards lower temperatures. Such minimum has
been seen in many antiferromagnetic metals [210]. The room temperature
resistivities are 197, 66, 147, 120, 142 and 136 μΩ cm for the Ce, Pr, Nd, Sm,
Eu, Gd-based samples, respectively.

The temperature dependent electrical resistivity for various values of ex-
ternal magnetic fields up to 12 T is displayed in Figs. 7.5 - 7.6. As is shown
in Fig. 7.5a the resistivity of Ce2Pd14B5 decreases up to 10 K and rises again
with decreasing temperature. It should be noted that this feature is similarly
observed for Nd2Pd14B5 (Fig. 7.5b).

The temperature dependent electrical resistivity of Sm2Pd14B5 in external
magnetic fields up to 12 T is shown in inset of Fig. 7.6a. For temperature
below 10 K the resistivity firstly decreases with fields, but above 8 T the
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Figure 7.6: Temperature dependent electrical resistivity ρ of (a) Eu2Pd14B5

Inset: Electrical resistivity ρ(T ) of Sm2Pd14B5. (b) Gd2Pd14B5 at various
applied magnetic fields up to 12 T.

trend is inverted yielding higher resistivity value for 12 T at about 0.5 K.
The temperature dependent electrical resistivity of Eu2Pd14B5 in external
magnetic fields up to 12 T is shown in Fig. 7.6a. The application of external
fields is responsible for the suppression of the minimum. In case of Eu2Pd14B5

magnetic order appears at about 6 K, but is suppressed by magnetic fields
above 12 T.

Gd2Pd14B5 exhibits a negative slope of ρ(T ) below about 15 K, and a
maximum at 6 K (see Fig. 7.6b). A rapid decrease of the resistivity below
that maximum results from the onset of long range magnetic order, in fine
agreement with magnetisation and heat capacity results (see below). The
application of external fields causes an overall decrease of the electrical resis-
tivity as well as a shift of the resistivity anomaly to higher temperatures.

7.5 Magnetoresistance

The magnetoresistance ρ(B)/ρ(0) of Pr2Pd14B5 and Nd2Pd14B5 as function
of external magnetic fields up to 12 T for various temperatures between 0.5 K
and 25 K is shown in Fig. 7.7. ρ(B)/ρ(0) of Pr2Pd14B5 exhibits a negative
magnetoresistance between 0.5 K and 25 K for fields from 4 T up to 12 T
(compare inset of Fig. 7.7a). The temperature dependent electrical resis-
tivity for various of external magnetic fields up to 12 T is displayed in the
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Figure 7.7: (a) Isothermal magnetoresistance Δρ/ρ of Pr2Pd14B5. The in-
set shows the field dependence of ρ(T ). (b) reduced isothermal resistivities
ρ(B)/ρ(0) of Nd2Pd14B5.

inset of Fig. 7.7a. In case of Nd2Pd14B5, ρ(B)/ρ(0) is mainly negative for
temperatures below 8 K and for all fields up to 12 T, but above about 12 K
ρ(B)/ρ(0) is positive for all fields up to 12 T (see Fig. 7.7b).

The magnetoresistance ρ(B)/ρ(0) of Sm2Pd14B5 and Eu2Pd14B5 are plot-
ted in Fig. 7.8 as functions of the magnetic field μ0H. Sm2Pd14B5 (Fig. 7.8a)
shows a negative magnetoresistance below 8 K, but changes sign above 8 K
for fields up to 12 T. Figure 7.8b display the magnetoresistance ρ(B)/ρ(0) of
Eu2Pd14B5. A negative magnetoresistance is found between 2 K and 25 K for
all fields up to 12 T; its magnitude decreases with increasing temperature.
Such a behaviour is reminiscent of a single impurity Kondo system.

7.6 Specific heat

The experimental specific heat data for M2Pd14B5 are summarised in Figs.
7.9 and 7.10, where the measured heat capacities Cp are plotted up to 140 K.
Lu2Pd14B5 is used as reference compound. The solid line in inset of Fig. 7.10a
denotes the results of a least-squares fit to the experimental data below 5 K,
according to Cp = γT + βT 3, yielding a Sommerfeld value γ= 19 mJ/mol K2

and β= 0.00177 J/mol K4 (inset in Fig. 7.10a), revealing θLT
D = 284 K.

A common procedure to approximate the overall heat capacity of metallic
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Figure 7.8: Isothermal magnetoresistance ρ(B)/ρ(0) of (a) Sm2Pd14B5, (b)
Eu2Pd14B5.

compounds usually assumes a Debye spectrum. In the present case, how-
ever, the simple Debye model did not yield convincing agreement with the
experimental data, whereas adding three Einstein functions leads to accurate
fitting results for the overall temperature range [93]. In order to explore the
vibrational properties in more detail, we subtracted the electronic contribu-
tion from the specific heat and adopted a model consisting of a combination
of one Debye- and three Einstein functions:

Cph(T ) =
9R

ω3
D

∫ ωD

0

ω2
(

ω
2T

)2
sinh2

(
ω
2T

) dω +
∑

i=1,2,3

ciR

(
θEi

2T

)2
sinh2

(
θEi

2T

) . (7.1)

Here ωD is the Debye temperature, c1 + c2 + c3 = 3n− 3, the number of
optical branches of the dispersion relation and θEi are the respective Einstein
temperatures. It should be noted that the Debye temperature ωD according
to Eqn. 7.1 is determined only by the acoustic modes, whereas θLT

D eval-
uated from low temperature specific heat data according to Eqn. 1.37 is
some averaged value over acoustic and optical branches of the phonon dis-
persion, contributing in a particular manner to the low temperature specific
heat. Considering 21 atoms per formula unit, the phonon dispersion rela-
tion of {Lu,Gd}2Pd14B5 consists of 3 acoustic and 60 optical branches. The
parameters ci are then evaluated in the way that they weight the respective
fractions of {Lu,Gd}, Pd and B to one formula unit. Thus

∑
ci = 60, since
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Figure 7.9: (a) Temperature dependent specific heat Cp of M2Pd14B5 plotted
as Cp vs. T . (b) Least-squares fit to Cp of Lu2Pd14B5 and Gd2Pd14B5 in
terms of Eqn. 7.1. The solid line is a least squares fits of the experimental
data using the model described in the text with three additional Einstein
frequencies (Debye temperature θD = 107 K for Lu2Pd14B5 and θD = 109 K
for Gd2Pd14B5.

the 3 acoustic modes are assumed to be accounted for by the Debye con-
tribution. The first part of equation 7.1 represents the Debye contribution
and the second part accounts for three additional Einstein temperatures with
weights assumed to be c1 = 6, c2 = 40 and c3 = 14. Using these weights
(6:40:14 in accordance with the compositional ratio among {Lu,Gd}, Pd and
B) for Einstein temperatures allows a reasonable parametrisation of the whole
temperature range up to 150 K. Due to the presence of magnetic contribu-
tion in Gd compound phonon specific heat was cut off below 10 K. Only for
the Lu compound phonon specific heat could be adjusted directly from 2 K,
featuring no upturn originating from magnetic contributions. This procedure
provides a satisfactory description of the temperature dependent specific heat
data shown as solid lines in Fig. 7.9b. Least squares fit of the experimen-
tal data (solid line in Fig. 7.9b) for Lu2Pd14B5 reveals excellent agreement
with a Debye temperature θD = 107 K, Einstein temperatures θE1 = 66 K,
θE2 = 178 K and θE3 = 507 K. For Gd2Pd14B5 a least squares fit of the exper-
imental data reveals fine agreement with a Debye temperature θD = 109 K
and Einstein temperatures θE1 = 77 K, θE2 = 184 K and θE3 = 552 K (solid
line in Fig. 7.9b). It should be noted that in order to compare the Debye
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Figure 7.10: (a) Temperature dependent specific heat Cp of Lu2Pd14B5 (the
unfilled symbols represent an extrapolation to zero) and Gd2Pd14B5 plotted
as Cp vs. T. The inset shows the low temperature specific heat of Lu2Pd14B5

plotted as Cp/T vs. T 2. The solid line represents a fit according to the
expression Cp/T = γ + βT 2 (see text).(b) Magnetic contribution for the
specific heat Cmag(T ) of Gd2Pd14B5 plotted as Cmag vs. T (filled circles) .
The solid line denotes ΔCmag in terms of the molecular field theory and the
dashed line represents the magnetic entropy Smag(right axis).

temperature from fit by Eqn. 7.1 with low temperature θLT
D , the former has to

be multiplied with the factor 3
√
n = 2.75, where n (the number of atoms per

formula unit) is 21 in this case. This result is comparable with results derived
from the model of Junod et. al. [91, 92] in case of Lu2Pd14B5 (θD=288 K,
ωEL1 = 52.5 K, width: 2.3 K, ωEL2 = 94 K, width: 3.6 K). The low lying
phonon branches are in good agreement with each other. The reconstruction
of the phonon density of states of Lu2Pd14B5 is shown in inset of Fig. 7.9b.

The difference in the total heat capacities of Gd2Pd14B5 and Lu2Pd14B5

results in the magnetic contributions. ΔC of Gd2Pd14B5, shown in Fig. 7.10b.
The entropy of a system is connected to the specific heat by

Sm =

∫ T

0

cm(T ′)
T ′ dT ′, (7.2)

allowing to derive Smag(T ) of Gd2Pd14B5 released at Tord (Fig. 7.10b, solid
line). The entropy saturates already at ∼ 10 K, revealing 37.5 J/mol K.
This value is slightly higher than the theoretical value expected for magnetic
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Gd3+ with J= 7/2. Taking into account 2 Gd atoms, Smag = 2 × Rln(8) =
34.57 J/mol K. In the molecular-field approach the specific heat jump at the
magnetic ordering temperature follows from [211]

ΔCmag(Tmag) = 5R
J(J + 1)

2J2 + 2J + 1
. (7.3)

Within this model, the specific heat jump is of second-order and directly cor-
related to the total angular momentum. The jump of ΔCp at about 6 K
is approximately 21.5 J/mol K. In the scope of the molecular field model
ΔC(Tmag) = 38.7 J/mol K for J = 7/2 (compare Eqn. 7.3). Deviations
from the theoretical value may be attributed to short range magnetic corre-
lations above Tmag, which transfer a part of the entropy Smag associated with
magnetic ordering to higher temperatures as well as the broadening of the
anomaly below Tmag.

Heat capacity measurements suggest that the compounds based on Ce,
Nd and Sm order magnetically below 2 K, while both Pr and Eu seem not
to exhibit a magnetically ordered ground state (see Fig. 7.9a). The total
angular momentum J = 4 of the Pr ion in the context of crystalline electric
field effects of the tetragonal crystal structure of Pr2Pd14B5 can create a non-
magnetic ground state due to singlet formation or due to the presence of a
non-magnetic doublet.

The absence of long range magnetic order in the Eu based compound
would be the result of a valency of the Eu ion which significantly deviates
from the 2+ state. Note that Eu in the 2+ state would behave like Gd and
as a consequence, ordering should occur around the value deduced for the
isomorphous Gd2Pd14B5. The intermediate electronic configuration of the Eu
ion in Eu2Pd14B5 results in a significantly enhanced electronic contribution
to the specific heat, attaining about 0.8 J/mol K2 for T → 0. A hump-like
structure in the heat capacity of Pr2Pd14B5 around 4 K may refer to a low
lying CEF level above the nonmagnetic ground state (see Fig. 7.9a).

7.7 Magnetic properties

Figure 7.11a displays the isothermal magnetisation M of RE2Pd14B5 as a
function of externally applied fields μ0H at 2 K. The isothermal magnetisation
measurements were performed in fields ranging from 0.01 T to 6 T. The inverse
of the temperature dependent magnetic susceptibility, χ(T )−1, of RE2Pd14B5

is shown in Fig. 7.11b for an applied magnetic field of 1 T. With the exception
of Sm and Eu, all compounds exhibit Curie–Weiss behaviour above 50 K. The
susceptibility data can be accounted for applying the modified Curie–Weiss
law,
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Figure 7.11: (a) Isothermal magnetisation M vs. magnetic field μ0H of
RE2Pd14B5 at 2 K. (b) Temperature dependent inverse magnetic suscepti-
bility 1/χ of RE2Pd14B5 in a magnetic field of 1 T.

χ = χ0 +
C

T − θp
(7.4)

with the paramagnetic Curie temperature θp, the temperature-independent
susceptibility χ0 and the Curie constant C. Least squares fits according to
Eqn. 7.4 were performed in the temperature range 50 K< T < 300 K. Results
of least squares fits are summarised in Table 7.2. The effective moments
observed vary from 0.9μB to ∼ 7.8μB and the paramagnetic Curie temperature
between -150 K for Eu to 12 K for the Sm compound. With the exception of
Eu, the effective moments μeff are close to theoretical values associated with
the 3+ state of a particular rare earth ion, thereby inferring stable magnetic
moments as well as reasonably small crystal field splitting. The temperature
independent susceptibility χ0 for most of these compounds is found between
10−3 and 10−5 emu/mol, however Sm and Eu compounds reveal much larger
χ0 values.

For Ce2Pd14B5 and Pr2Pd14B5 the trends of χ−1 are linear and follow the
Curie Weiss law above 50 K, indicating a simple paramagnetic state. The
positive paramagnetic Curie temperature θp = 2.6 K of Pr2Pd14B5 can be
related to ferromagnetic interactions, while a negative value of θp refers to
antiferromagnetic interactions.

The temperature dependence of 1/χ of Sm2Pd14B5 distinctly differs from
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lattice parameters Tmag μexp
eff μtheo

eff θp

a, c [nm] [K] [μB/RE] [μB/RE3+] [K]
La2Pd14B5 0.8612(1); 1.6643(3)
Ce2Pd14B5 0.8591(4); 1.6620(9) 2.38 2.54 -3.12
Pr2Pd14B5 0.8582(2); 1.6600(1) 3.7 3.58 2.6
Nd2Pd14B5 0.8577(1); 1.6628(1) 3.58 3.62 -0.9
Sm2Pd14B5 0.8516(1); 1.6589(4) 0.92 0.84 2.9
Eu2Pd14B5 0.8562(7); 1.6605(1) 5.86 7.94 for Eu2+ -87
Gd2Pd14B5 0.8497(4); 1.6614(8) 6 7.8 7.94 8
Lu2Pd14B5 0.84237(1); 1.65824(4)
Th2Pd14B5 0.86102(2); 1.66019(5)

Table 7.2: Lattice parameters and magnetic transition temperatures Tmag,
effective magnetic moments μeff and paramagnetic Curie temperatures θp of
RE2Pd14B5.

that of the other compounds is a characteristic of Sm intermetallics for two
reasons. It arises from the rather small g-value (2

7
) of Sm3+ as well as from

ground state (6H5/2) and the first excited multiplet (6H7/2) being separated
only by about 1500 K. In order to fully account for the experimentally ob-
served temperature dependencies of Sm containing compounds, the first ex-
cited multiplet in combination with crystal electric field effects within both
multiplets has to be considered [212, 213]. A review of magnetic properties
of binary Sm compounds can be found in [214]. To quantitively account for
T > 50 K, a least squares fit according to the modified Eqn. 7.4 was applied,
revealing χ0= 7.4×10−4 emu/mol as a temperature independent Pauli-like
susceptibility, the Curie constant C= 0.079 yields an effective moments μeff

= 0.92 μB/Sm and θp= 2.9 K, respectively. The effective magnetic moment
is close to the theoretical value associated with the Sm3+ state.

The inverse magnetic susceptibility of Eu2Pd14B5 follows a Curie–Weiss
law in the temperature region above 50 K. The effective magnetic moment
μeff/Eu-ion was extracted from a least squares fit within the non-linear region
(T <100 K). The obtained value μeff = 5.86 μB/Eu is significantly smaller
than that of the free Eu2+ ground state (μtheor

eff = 7.94 μB). The respective
paramagnetic Curie temperature θp=-87 K refers to antiferromagnetic corre-
lations of the Eu2+ moments. This finding is furthermore corroborated by
results (μeff= 6.67 μB/Eu and θp = -125 K derived from the least squares
fits according to the modified Eqn. 7.4 from the high temperature region
(T >100 K). The inverse magnetic susceptibility χ−1(T ) at a magnetic field
of μ0H = 1 T for Gd2Pd14B5 above about 50 K can be reasonably well de-
scribed by the modified Curie-Weiss law. Least squares fits to the data of
Gd2Pd14B5 indicate that the effective magnetic moment, μeff= 7.8 is slightly



156 Chapter 7: Structure & Physical Properties of M2Pd14+xB5−y . . .

μ0H [T]
0 1 2 3 4 5 6

M
 [μ

B/
G

d]

0

1

2

3

4

5

6

7

3K
5K
7K
9K
12K
14K
20K
25K

(b)

μ0H [T]
0 1 2 3 4 5

M
 [μ

B/
Eu

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3K
5K
7K
9K
14K
20K
25K

Eu2Pd14B5

Gd2Pd14B5(a)

Figure 7.12: Isothermal magnetisation M as a function of the magnetic field
μ0H of (a) Eu2Pd14B5 and (b) Gd2Pd14B5 at various temperatures.

H/M [T/μB]
0.0 0.2 0.4 0.6

M
2 [(μ

B/
f.u

.)2 ]

0

1

2

3

4

5

6

2K
4K
6K
10K
20K

(a) Eu2Pd14B5

H/M [T/μB]
0.0 0.2 0.4 0.6 0.8 1.0

M
2 [(μ

B/
f.u

.)2 ]

0

50

100

150

200

2K
4 K
6 K
10 K
20 K

Gd2Pd14B5(b)

Figure 7.13: Arrott plots of (a) Eu2Pd14B5 and (b) Gd2Pd14B5.

below that of the free Gd3+ ion (μeff = 7.94 μB). Also, the saturation mag-
netisation is only slightly smaller than the theoretically expected value of gJJ
= 7 μB/Gd (see figures 7.11a and 7.12b). Results of isothermal magnetisa-
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tion measurements for Eu2Pd14B5 and Gd2Pd14B5 are displayed in Fig. 7.12
as a function of external field. A non-saturating magnetisation is observed
in case of Eu2Pd14B5 (Fig. 7.12a). The magnetisation reaches about 2.1
μB/f.u. at the maximum field of 6 T. The experimentally deduced figure,
1.04 μB per Eu2+ ion is far below the theoretical saturation magnetisation
of 7 μB arising from divalent Eu. The magnetisation of Gd2Pd14B5 increases
to larger values than those of the other compounds at 2 K, approaching a
value of M=6.7 μB/Gd3+ at 6 Tesla (see Fig. 7.11a). The magnetisation of
Sm2Pd14B5 exhibits the lowest values at 2 K, increasing to M=0.34 μB/Sm3+

at 6 T (see Fig. 7.12b). Arrott plots of Eu2Pd14B5 and Gd2Pd14B5 are shown
in Fig. 7.13. These plots indicate that Gd2Pd14B5 orders magnetically below
7 K (Fig. 7.13b), whereas above 7 K a simple paramagnetic state occurs.
Eu2Pd14B5 does not shows typical signs of long range magnetic order (Fig.
7.13a).



Summary

The ternary Ce–Pt–Si system have been investigated and phase relations have
been established for the isothermal section at 800◦C based on X-ray powder
diffraction, metallography, scanning electron microscopy (SEM) and electron
probe microanalysis (EPMA) techniques. Results of XRD and EPMA anal-
ysis obtained from all measurements were used in the construction of the
isothermal cross-section of the Ce-Pt-Si phase diagram at 800◦C. The inter-
action of Ce, Pt and Si leads to the formation of at least 19 ternary stable
phases. X-ray diffraction and electron probe methods lead to the specula-
tion that ternary-phases with unknown crystal structures may exist in this
area. Atom order in the crystal structures of τ18-Ce5(Pt,Si)4 (space group
Pnma), τ3 - Ce2Pt7Si4 (space group Pnma) and τ10 - CePtSi2 (space group
Cmcm) was determined by direct methods from X-ray single crystal stud-
ies and found to be isotypic with the Sm5Ge4-type, the Ce2Pt7Ge4 - type
and the CeNiSi2-type, respectively. Rietveld refinements established atom
arrangement in the structures of τ16-Ce3Pt5Si (space group Imma) and τ17 -
Ce3PtSi3 (space group Immm). Phase equilibria in Ce-Pt-Si are characterized
by the absence of cerium solubility in the various platinum silicides. Mutual
solubility among cerium silicides and cerium platinides, however, are signif-
icant whereby random substitution of the almost equally sized atom species
platinum and silicon is also reflected in extended homogeneous regions at
constant Ce-content such as for τ13 - Ce(PtxSi1−x)2 or τ6 - Ce2Pt3+xSi5−x.

Superconducting {Sr,Ba,Th}Pt4Ge12 are the first skutterudites where the
framework in the structure is entirely built by Ge-atoms. DFT calculations
proved that X=(Ba,Sr) guest atoms strongly stabilize the compounds. Most
strikingly, the calculated DOS around EF is composed of hybridized Ge 4p-
like and Pt 5d-like states, and it has a sharp peak with its maximum very
close to EF . The influence of the guest atoms (Ba or Sr) on superconductivity,
however, may be ruled out due to the fact that (i) the Ba- or Sr-like DOS
around EF is negligible and (ii) the DOS around EF for the hypothetical
X-free Pt4Ge12 framework is very similar to the one of XPt4Ge12 (X = Sr,
Ba and Th). Hence, superconductivity appears to be an intrinsic property
of the Pt-Ge cage-forming structure. This conclusion is in line with the
slightly smaller value of Tc observed in SrPt4Ge12, in marked contrast to
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the isotope effect, where lighter masses would originate larger SC transition
temperatures. Low temperature resistivity studies of EuPt4Ge12 evidence
magnetic ordering at Tm ≈ 1.7 K. Electropositive elements Ca (in part) or Eu
(complete) stabilize the new compounds as well. A maximum filling grade of
about 20 % of Ca is possible in Ba1−xCaxPt4Ge12, yielding a superconducting
ground state below Tc= 5.2 K. A comparison with BaPt4Ge12 shows that Tc

is only weakly influenced by the Ba/Ca substitution. The unimportance of
scattering on non-magnetic impurities clearly refers to a conventional type of
superconductivity, in line with results from our specific heat studies.

{Th,U}Pt4Ge12 are further representatives of skutterudites with a
[Pt4Ge12] sublattice. Resistivity, magnetic susceptibility and specific
heat measurements indicate a phonon-mediated superconducting state in
ThPt4Ge12 below Tc = 4.75 K. Superconducting properties of ThPt4Ge12

have been analyzed in detail (μ0Hc2(0) = 0.21 T, ξ0 = 4 × 10−8 m,
λ(0) = 1.2 × 10−7 m), characterizing ThPt4Ge12 as a type II superconductor
UPt4Ge12 is dominated by spin fluctuations at low temperatures, preventing
magnetic order and SC. DFT calculations proved the hybridization between
Ge 4p-like and Pt 5d -like states in an energy region around the Fermi level,
dominating the DOS at E = EF . Consequently, SC arises primarily from the
electronic [Pt4Ge12] sublattice states, while Th (and U) plays a key role to
electronically stabilize these skutterudites.

Physical properties of Ba8PdxGe46−x−y�y, such as charge carrier density
and transport quantities were found to be heavily influenced by Ge/Pd-
substitution in the clathrate framework: the system changes from a bad metal
for lower Pd content to a clear activation-type behaviour for the largest Pd
concentration. This gradual change is originated by the combined effect of
both the substitution of Ge/Pd and by the vanishing of vacancies. Ther-
mopower indicates that the majority charge carriers are electrons, but the
density of these carriers decrease by almost one order of magnitude when
proceeding from a Pd content x = 2 to x = 3.8. The observation that the
sample with x = 2 has a larger overall resistivity than that with x = 2.9, al-
though the charge carrier density is already reduced, is then associated with
an improved mobility of the charge carriers in the latter case as a consequence
of a reduced number of vacancies. The efficiency of scattering on such vacan-
cies is evidenced also from the thermal conductivity study. The substitution
of Ge by Cd in Ba8CdxGe43−5x/8�3−3x/8, also allows a variation of the charge
carrier density, hence of transport quantities. Particularly, such systems may
be driven towards a metal to insulator transition, as obvious from the temper-
ature dependent resistivity of Ba8CdxGe43−5x/8�3−3x/8 for 2.4 ≤ x ≤ 7.6. We
have developed a model density of states, characterized by a narrow gap of
the DOS right above the Fermi energy, which allows to qualitatively tracing
various details of the temperature dependent electrical resistivity.
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S(T ) basically defines the figure of merit ZT = S2/(ρλ), which repre-
sent the thermoelectric performance of a certain material. Using the com-
pound with the highest Seebeck coefficient, i.e., x = 3.8 reveals ZT (300 K) =
0.045 for Ba8Pd3.8Ge42.3 and ZT (300 K) = 0.0042 in case of Ba8Cd7.6Ge38.4,
respectively. Physical properties of Ba8ZnxGe46−x compounds were found
to be heavily influenced by Ge/Zn-substitution in the clathrate framework:
the system is driven towards a metal to insulator transition, as found from
temperature dependent resistivity measurement of Ba8ZnxGe46−x−y�y for 2.1
≤ x ≤ 7.7. Besides the charge carrier density, also the carrier mobility likely
changes throughout the series, being much higher for the nominal xZn= 7.7
system; consequently, the overall resistivity is even below that of the system
with nominal xZn= 5.7. Such a behaviour can possibly be correlated to the
vanishing of the voids in the crystal structure. For Ba8Zn7.7Ge38.3 a figure
of merit ZT = S2/(ρλ) ≈ 0.035 is derived at room temperature from the
present experimental data. Applications are possible, if the thermoelectric
figure of merit surpasses a value of ZT = 1 as realized in Bi2Te3 with ZT (300
K) ≈ 0.7 [190, 215]. Fine-tuning of the charge carrier concentration is in
progress to drive this class of materials to even more promising values of the
thermoelectric efficiency.

Phase relations at 900◦C, crystal chemistry, electrical and thermal
transport measurements have also been studied for the clathrate systems
Ba8{Pd,Pt}xSi46−x. Structural investigations for both systems at 300, 200
and 100 K define cubic primitive symmetry with the space group type Pm3̄n
consistent with clathrate type I. Studies of transport properties evidence elec-
trons as the majority charge carriers except for Ba8Pt2.8Si43.2. Owing to an
enlarged density of these carriers, overall S(T ) values remain within some
tens of μV/K. The smaller masses of Ba8{Pd,Pt}xSi46−x in comparison to
Ba8{Pd,Pt}xGe46−x are the cause for the larger thermal conductivity ob-
served in both former series. Nevertheless, increasing point defect scattering
due to the statistical Pd/Si substitution depletes λph to values close-by the
theoretical lower limit.

A novel compound, BaPtSi3, has been characterized from X-ray data and
prompted a tetragonal unit cell, space group I4mm (No. 107), isotypic with
BaNiSn3-Type. BaPtSi3 exhibits type-II superconductivity at low tempera-
tures below 2.3 K. Based on magnetization, electrical resistivity and specific
heat data the compound was characterized as a dirty-limit weak-coupling su-
perconductor with Tc=2.3 K with an upper critical field at T = 0 below 0.2
Tesla, dominated for orbital pair breaking.

The crystal structure of novel ternary compounds, M2Pd14+xB5−y (M =
Th, Ce, Pr, Nd, Sm, Eu, Gd), was determined from X-ray single crystal
data for Nd2Pd14B5 and Th2Pd14B5 and found to be closely related to the
structure type of Sc4Ni29Si10 with tetragonal unit cell and space group type



I41/amd. All rare earth homologues were characterized by Rietveld analyses
and found to be isotypic with the Nd2Pd14B5 type. The electrical resistivity,
ρ, of M2Pd14+xB5−y, in general, is characterized by small RRR values origi-
nated by defects inherent to the present crystal structure. Low temperature
ρ(T ) data of the compounds exhibit a minimum in the vicinity of 20 K fol-
lowed by an increase towards lower temperatures. Although a nonmagnetic
origin like variable range hopping is conceivable due to statistical disorder of
the crystal structure, a magnetic origin is more more likely, since magnetic
fields of the order of several Tesla completely suppress the above indicated
anomalies. A hump-like structure in the heat capacity of Pr2Pd14B5 around
4 K may refer to a low lying CEF level above the nonmagnetic ground state.
Heat capacity studies at low temperatures indicate clear long range magnetic
order in Gd based compound below 6 K. Heat capacity measurements suggest
that the compounds based on Ce, Nd and Sm order magnetically below 2 K,
while Pr seem not to exhibit a magnetically ordered state. The absence of
long range magnetic order in Eu2Pd14B5 would be a result of a valency of the
Eu ion which significantly deviates from the 2+ state.
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Appendix A

User defined functions

The least squares fits to the data were carried out using the program Table-
Curve distributed by SYSTAT. The user defined functions (udf ’s) for electri-
cal resistivity ρ(T ), specific heat Cp(T ) are listed.

A.1 Electrical resistivity

A.1.1 Woodard and Cody model

In order to analyses the electrical resistivity ρ(T ) measurements in temper-
ature ranges between 4 K and room temperature were used the theoretical
and empirical formulas as fit functions. Some materials are characterized by
a metallic behaviour, however the overall features are different. Based on De-
bye Model, the resistivity of metals/compounds due to the electron-phonon
scattering is scaled by a specific Debye temperature θD that effectively divides
temperature range into different regions. The corresponding electron-phonon
scattering resistivity is given by Eqn. 1.4 [75]. However good metals deviate
from a metallic temperature dependence of resistivity. The significantly de-
viation from such a common shape of metallic resistivity curves described by
the empirical formula of Woodard and Cody [155]

ρ(T ) = ρ0 + ρ1T + ρ2 exp(−T0/T ), (A.1)

where T0 is the characteristic temperature. Equation A.1 yields a strong
curvature at low temperatures and accounts for some tendency towards sat-
uration in the high temperature limit.

User defined function:

#F1 = EXP(-#A3/X)
Y = #A0 + #A1*X + #A2*#F1

’exponential (−T0/T ) term
’#A0; residual resistivity
’ρ(T ) = ρ0 + ρ1(T ) + ρ2e

(T0/T )
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A.1.2 parallel resistor model

The normal-state resistivity could be explained by a modified ”parallel resis-
tor” model [216, 217, 218, 219]. In the parallel resistor model the expression
of ρ(T ) is given by

ρ(T ) =

(
1

ρ0 + ρph
+

1

ρmax

)−1

. (A.2)

where ρ0 is the residual resistivity, ρph is the resistivity due to phonon-electron
scattering similar to s-d scattering in transition metal alloys, and ρmax is the
saturation resistivity, which is independent of the temperature. The satura-
tion resistivity is interpreted as a lower limit to the electron mean free path.
When the mean free path is short, the momentum dependence of the scatter-
ing can be ignored, and the resistivity is simply proportional to a weighted
integral over the phonon density. In this approximation, one can write simple
expression for the weighted phonon distribution:

ρph(T ) = α

[
E1 − E2

kB
+ T ln

eE2/kBT − 1

eE1/kBT − 1

]
, (A.3)

where α and kB are the fitting coefficient and Boltzmann’s constant, respec-
tively. Equation A.3 is derived by assuming that a thermal phonon with a
flat energy distribution between E1 and E2 contributes to the scattering of
the conduction electrons and that the resistivity satisfies the Bose–Einstein
statistics. Therefore, this formula allows us to estimate the energy distribu-
tion of the thermal phonon that gives rise to ρph(T ). The experimentally
obtained ρ(T ) values can be fitted with a curve by using Eqn. A.2 and A.3.

User defined function:

#F1=1.381*10∧(-23)
#F2=EXP((#D/X)-1)
#F3=EXP((#E/X)-1)
#F4=(#D-#E)
#F5=LN(EXP(#E/X)-1)-LN(EXP(#D/X)-1)
#F6=#C*(#F4+X*#F5)
Y=(1/(#A+#F6)+(1/#B))∧(-1)

’Boltzmann’s constant kB

’eE1/kBT − 1
’eE2/kBT − 1
’(E1-E2)

’ρph(T )
’ρ(T )

Here #A is the residual resistivity, #B , the saturation resistivity and #C is
the fitting coefficient.
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A.1.3 Ferromagnetic case

In general, the resistivity due to electron-magnon scattering from an arbitrary
type of boson excitation (magnon or phonon) can be written as [220]

ρB(T ) =
mπN(0)

ne2

∫ 2kF

0

k3

k2
F

dk

∫
dΩ�k

4π

∣∣g�k

∣∣2 �ω�k

kBT

4sinh2(
�ω�k

2kBT
)
, (A.4)

where n = k2
F/3π

2 is the number density of the charge carriers, N(0)=
mkF/2�

2π2 is the density of states per spin at the Fermi level, 2kF repre-
sents the maximum wave-vector transfer, g�k is the electron-magnon coupling,
kB is the Boltzmann constant and �ω�k is the boson energy. In the case of an
anisotropic ferromagnetic (FM) materials, there is a gap Δ in the magnon
spectrum, and the energy dispersion relation of the magnon can be expressed
by �ω�k = Δ + C0k

2, where C0 is the spin-wave stiffness. It should be noted

that electron-magnon coupling
∣∣g�k

∣∣2 for ferromagnetic system is independent

of 	k [221]. In the limit of �ω�k/2kBT � 1, the leading term of electron-
magnon resistivity in the anisotropic ferromagnetic material ρFM [222] below
the transition temperature can be written as

ρFM(T ) = BTΔ

(
1 +

2T

Δ

)
e−Δ/T . (A.5)

Here B is the constant related to the spin disorder.

User defined function:

#F1 = 2*(X/#C)
Y = #A + #B*X*#C*(1+2*#F1)*EXP(-#C/X)

’#A is residual resistivity ρ0

’#B spin disorder constant
’#C is energy gap
’Y ; total resistivity ρFM(T )

A.1.4 Antiferromagnetic case

In the case of an antiferromagnetic (AFM) system, the electron-magnon cou-

pling
∣∣g�k

∣∣2 ∝ k and the energy dispersion relation [223] is �ω�k =
√

Δ2 +Dk2.
By using this information the resistivity is derived as:

ρAFM(T ) =
C

T

∫ ∞

0

k4
√

Δ2 +Dk2

sinh2
(√

Δ2 +Dk2/2T
)dk, (A.6)

where C is constant. Using the change of variable, y =
√

Δ2 + Dk2/2T, one
can approximate sinh2y ≈ e2y in the small temperature limit T � Δ, and
find

ρAFM(T ) = CT 5

∫ x

y

y2(y2 − y2
0)

3/2e−2ydy, (A.7)



165

where y0 = Δ/2T . This integral can be calculated if it use another change of
variable y = y0cosh(x). The limit of the integral then is from 0 to xc, where
xc is the solution of -2y0cosh(xc)+2y0= -1, and Eqn. A.8 becomes

ρAFM(T ) ≈ CT 5y5
0e

−2y0

∫ xc

0

cosh2x · sinh2xdx. (A.8)

Thus, the leading term of the resistivity in the antiferromagnetic case is given
by

ρAFM(T ) = CΔ5e−Δ/T

[
1

5

(
T

Δ

)5

+

(
T

Δ

)4

+
5

3

(
T

Δ

)3
]
. (A.9)

In the gapless limitΔ → 0, its obtains ρ ∼ T 2 and ∼ T 5 from Eqn.A.9 for the
ferromagnetic (FM) case and the antiferromagnetic (AFM) case, respectively.
Thus, the resistivity is given as

ρ = ρFL + ρFM,AFM . (A.10)

where ρFL ≈ ρ0 + AT 2 is simple Fermi-liquid behavior.

User defined function:

#F1 =(X/#C)
Y =#A + #B*#C5*EXP(-#C/X)*[(1/5)*(#F1)5

+(#F1)4+(5/3)*(#F1)3]

’#A is residual resistivity ρ0

’#B spin disorder constant
’#C is energy gap
’Y ; total resistivity ρAFM(T )

A.2 Phonon specific heat

As already discussed in the previous chapters, deviations from the simple
Debye model indicate a rather complicated phonon spectrum. The spectrum
is supposed to be composed of background vibrations originating from the
cage-like structure represented by a Debye spectrum and, additionally, from
the rattling modes of the loosely bound electropositive filler-atoms in case
clathrate and skutterudite systems. In order to qualitatively and quantita-
tively describe the lattice dynamics, we have adapted a model which incorpo-
rates some fine-structure in the phonon density of states [91, 92]. The latter is
represented by a spectral function F (ω), allowing to express the heat capacity
as:

Cph(T ) = 3R

∫ ∞

0

F (ω)

(
ω
2T

)2
sinh2

(
ω
2T

) dω, (A.11)

with ω the phonon frequency and R the gas constant. The most common
assumptions on F (ω) are: F (ω) = δ(ω) and F (ω) ∼ ω2 up to a cut-off
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frequency ωD, corresponding to the well known Einstein and Debye model,
respectively. Junod et al. [91] demonstrated that certain functionals of the
phonon specific heat take the form of convolutions of the phonon spectrum.
In particular, (5/4)Rπ4CphT

3 is an image of the spectrum ω−2F (ω) for ω =
4.93 · T , where ω is expressed in kelvin. Based on these considerations we
have constructed an elementary phonon spectrum and have carried out least
squares fits to the data.

User defined function:

#F1=3*8*X^3*$ ^4/sinh($)^2
#F2=#A/(2*X)
#F5=#F/(2*X)
#F6=#G/(2*X)
#F7=#B/(2*X)
#F8=#C/(2*X)
G=8.314
#F9=3/(#D*#F^3+(#D+#H)*(#G^3-#F^3)+
+#D*(#B^3-#G^3)+(#D+#E)*(#C^3-#B^3)+
+#D*(#A^3-#C^3))
Y=#I*#F9*G*(#D*AI(1,0.0001,#F5)+
+(#D+#H)*AI(1,#F5,#F6)+#D*AI(1,#F6,#F7)+
+(#D+#E)*AI(1,#F7,#F8)+#D*AI(1,#F8,#F2))/X^3

’θD Debye temperature [K]
’ω1/2T
’ω2/2T
’ω3/2T
’ω4/2T
’gas constant R
’normalization factor N

’Cp(T )/T 3

A.2.1 spin fluctuation systems

If one system refers to distinct deviations from a Fermi liquid ground state
due to strong spin fluctuations, which are evident also from a large value
of the Sommerfeld constant γ (see 4.1.5 in UPt4Ge12 skutterudite case γ
= 156 mJ/molK2 ). Moreover, classical spin fluctuation systems like YCo2

exhibit at elevated temperatures a tendency towards saturation, which can
also be conceived for UPt4Ge12. We attempted to fit the low temperature
data of with the simple ansatz,

Cp(T ) = γT + βT 3 + δT 3 ln(T/T ∗), (A.12)

where the latter term accounts for spin fluctuations.

User defined function:
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#A
#B
#C
#D
Y =#A*X + #B*X3 + #C*X3*(ln(X/#D)

’#A is Sommerfeld constant γ
’#B is β
’#C is δ
’#D is characteristic temperature T ∗

’Y ; Cp(T )

A.3 Determination of some SC- and Normal-

state parameters

Superconductivity in general only occurs in a phase space spanned by three
key parameters, i.e, the critical temperature Tc, the critical current Ic and
the critical magnetic field Hc(T ) which are specific for each material. As dis-
cussed in chapter 1 an from the critical field slops near Tc several important
superconducting and normal-state parameters can be estimated. In order to
determination the superconducting and normal state parameters like pene-
tration depth λep in [nm], Maki parameter α, Fermi surface Ss, upper critical
field μ0Hc2 in [T], slope of upper critical field H ′

c2 in [T/K], Ginzburg-Landau
parameter κGL, transformation of electronic specific heat coefficient γ from
[J/mol K2] in [erg/cm3K2] and in [J/m3K2] are used the MATHEMATICA
software in this work to perform different model calculations.

calculations and solutions:

Input: unit cell Volume; number of formula units per unit cell;

γexp; ρ0; Tc; Hc2(0); B′
c2;

fields in green: specific sample properties;

calculates the Maki parameter α; transforms specific heat from J/molK2 to
erg/(cm3K2), electron-phonon coupling constant λep from McMillan formula.
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phi0 = 2.07*10−15;

kb = 1.3806*10−16;

hbar = 1.055*10−27;

m0 = 9.109*10−34;

mu0 = 4*Pi*10−7;

echarge = 4.80*10−10;

na = 6.022*1023;

v = 6.34*10−28;

num = 2;

xx = 1/(v*na/num)

gammaex = 0.035;

gamma = gammaex * xx

gammaerg = 10*gammaex * xx

rho0 = 3*10−6

tc = 4.76 ;

hc2’ = -0.067 ;

rl = 1.05;

hc2 = 0.21;

End Input

Fluxoid Φ0

Boltzmann’s constant kB, in [erg/K]

Planck’s constant � /2π, in [ergs]

free electron mass m0 in g

permeability μ0

electronic charge in [esu]

Avogadro constant

volume of unit cell of a specific sample in m3

number of formula units per unit cell

experimental Sommerfeld coefficient in [J/molK2]

transformation of γ from J/molK2 −→ J/m3K2

transformation of γ from J/molK2 −→ erg/(cm3K2)

residual resistivity input in Ω cm

SC transition temperature in [K]

slope of upper critical field in [T/K]

lrl between 1(dirty limit) and 1.18 (clean limit)

upper critical field Hc2(0) in Tesla

Determination of slope of upper critical field Bc2’ Eqn.1.66;

hc2’=rl((1.18*10−35*gamma2*tc/ss2+4490*gamma*rho0))

hc2theo’ = 4490 *gamma*rho0

ss = (rl*1.18*1035*gamma2*tc/(hc2’))(1/2)

ssfull = (1.18*1035*gamma2*tc/(hc2’/rl -(4490*gamma*rho0)))(1/2)

in dirty case

Fermi surface, clean case

Fermi surface, total case

Calculation of the Maki parameter α

alpha = 3 * echarge2 * hbar * gammaerg * rho0/(2 * m0 * Pi2 * kb)

Calculation of λep based on McMillan Formula;

input: Debye temperature, Coulomb repulsion strength;

output: electron-phonon enhancement λep
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theta = 260;

mustar = 0.13;

tc = 4.76;

tc=theta/1.45*Exp[(-1.04*(1+lambda)/(lambda-mustar*(1+0.62*lambda)))],lambda]

Debye temperature θD

μ∗

SC transition temperature in [K]

calculation of κ based on Gor’kov-Goodman relation;

input: residual resistivity, κ0; Hc2(0,theo); Hc(0);

output: κGL(0)

r0 = 3;

kappa0 = 1.9;

kappa = kappa0 + 0.0237*Sqrt[gamma]*r0

r00 = 3*10−6;

kappa0 = 1.9;

kappa = kappa0 + 7.5*103*Sqrt[gammaerg]*r00

Hc2= 0.21;

Hc = 0.050;

kappaGL = Hc2/(Sqrt[2]*Hc)

residual resistivity input in Ωcm
κ0

κ from Gor’kov-Goodman relation

residual resistivity input in μΩcm
κ0

κ from Gor’kov-Goodman relation

upper critical field in Tesla

thermodynamic critical field Hc(0) in [T]

Ginzburg-Landau parameter κGL(0)

A.3.1 Determination of the upper critical field of dirty
limit type II SC in term WHH model.

Input: lambdaso & Maki-parameter α; Tc in [K]; dHc2/dT in [T/K]

Output: Data are calculated and plotted in reduced units as Tesla vs. Kelvin.

Input of the experimental data:

Measurement = OpenRead[”c:\\Mathematica \\temp \\hc2-cp.txt”];
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q := Round[(t - n + in)/in];

n=0.0001;

m=0.9999;

in=0.01;

tc=4.76;

dhc2=-0.067;

lambdaso=15;

alpha=0.016;

Start temperature

End temperature

increment of t

superconducting transition temperature

initial slope of the upper critical field

lambdaso

Maki parameter

x := ((lambdaso/4)∧2-4*h∧2*alpha∧2/Pi∧4)∧(1/2)

y := 2*h/Pi∧2

magn=Re[h/.Table[FindRoot[Log[t]==PolyGamma[1/2]-0.5*(1+lambdaso/4/x)*PolyGamma

[1/2+(y+lambdaso/4-x)/t]-1/2*(1-lambdaso/4/x)*PolyGamma[1/2+(y+lambdaso/4+x)/t],h,0.5],

t,n,m,in]]

Output: plotting as Tesla vs. Kelvin

habs=N[Table[t*tc,magn[[q]]*(-dhc2)*tc,t,n,m,in]];

save and export calculated data

result = OpenWrite[”c:\\Mathematica\\temp\\test.txt”, FormatType → OutputForm];

Write[result, TableForm[habs]];
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M. Bat́ko, I. Bat́ková, E. Royanian, A. Prokofiev, E. Bauer.

• 13th Czech and Slovak Conference on Magnetism - CSMAG’07, Kosice,
Slovakia; 09.07.2007 - 12.07.2007

Magnetic behaviour in Ce(Ag,Ni)Sb2 system

A. Galatanu, B. Popescu, A. Birsan, E. Royanian, H. Kaldarar, R. Lackner, H.
Michor, G. Hilscher, E. Bauer.

• 6th European Conference on Thermoelectrics, Paris, France July 2 - 4,
2008

181



182 BIBLIOGRAPHY

Thermoelectric properties of MPt4Ge12 (M=Sr,Ba,Eu)
E. Royanian, A. Valade, E. Bauer, X. Chen, R. Podloucky, A. Grytsiv, N.
Melnychenko-Koblyuk, P. Rogl.

• International Conference on ”New Quantum Phenomena in Skutterudite
and Related Systems”, Centennial Hall, Kobe University, Japan Septem-
ber 26-30, 2007
Formation, Structure and Physical Properties of M2Pd14+xB5−y Compounds,
M=(Th, Ce, Pr, Nd, Sm, Eu, Gd)
E. Royanian, E. Bauer, H. Kaldarar, H. Michor, M. Reissner, P. Rogl, A. Pereira-
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