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I

KURZFASSUNG

Die vorliegende Arbeit beschäftigt sich mit der Simulation des Delaminationsprozesses

in Laminaten aus faserverstärkten Polymeren, d.h. dem Versagen des Interfaces zwischen

zwei Schichten. Der Delaminationsvorgang wird dazu als ein Prozess betrachtet, der in

zwei Schritten abläuft: 1. Bildung einer Anfangsdelamination im intakten Interface und 2.

Wachstum vorhandener Delaminationen. Ziel dieser Arbeit ist es, numerisch effiziente und

robuste Methoden für die Vorhersage der Bildung von Anfangsdelaminationen und für die

Vorhersage von Delaminationswachstum zu entwickeln und an Beispielen zu testen.

Für die Vorhersage der Bildung einer Anfangsdelamination wird eine Methode entwickelt,

welche auf der Kombination eines Spannungskriteriums mit Prinzipien der linear elastis-

chen Bruchmechanik beruht. Überbeanspruchte Bereiche im Interface werden mit einem

Spannungskriterium vorhergesagt, und es wird angenommen, dass sich in diesen Bereichen

Anfangsdelaminationen bilden. Der Beginn des Wachstums dieser Anfangsdelamination

wird mit Hilfe linear elastischer Bruchmechanik berechnet. Diese Methode erlaubt es, die

kritische Größe und Lage einer Anfangsdelamination vorherzusagen sowie die Traglast der

Struktur zu bestimmen. Des weiteren können die Sensitivität der Traglast bezüglich Un-

genauigkeiten und Änderungen in den Materialeigenschaften untersucht werden.

Für die Vorhersage des Wachstums von Delaminationen mit geraden Fronten wird eine

semi–analytische Methode vorgeschlagen. Diese Methode basiert auf der Annahme, dass

die bei Delaminationswachstum freigesetzte Energie aus der Änderung der Struktursteifig-

keit berechnet werden kann. Zu diesem Zweck wird mit Hilfe der Finiten Elemente Meth-
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ode die Struktursteifigkeit als Funktion der Delaminationsgröße bestimmt. Mit der semi–

analytischen Methode können allgemeine Kombinationen von Verschiebungs– und Kraft-

randbedingungen behandelt werden. Des weiteren können Beanspruchungen, welche durch

Änderung der Temperatur oder durch Änderung der Feuchtigkeit im Laminat entstehen,

berücksichtigt werden. Die vorgeschlagene Methode erlaubt es, sowohl quasi–statische

Beanspruchungen als auch zyklische Beanspruchungen zu analysieren.

Um das Wachstum von Delaminationen mit gekrümmten Fronten vorherzusagen, wurde

ein Kriterium entwickelt, welches die Energiebilanz entlang der gesamten Delaminations-

front beurteilt. Einige vereinfachende Annahmen bezüglich der Form der Delaminations-

front sind hier nötig. Das vorgeschlagene Kriterium beinhaltet allerdings ein Methode

zur Abschätzung der Qualität dieser Annahmen und eine Anleitung zur systematischen

Verbesserung derselben.

Zur Verifikation der Vorhersagen wird die Bildung von Anfangsdelaminationen und De-

laminationswachstum in einem gekrümmten Laminat mit den vorgeschlagenen Methoden

untersucht. Die Vorhersagen werden mit Ergebnissen von experimentellen Tests, welche

am Polymer Competence Center Leoben GmbH (PCCL, Leoben, Österreich) durchgeführt

wurden, verglichen. Die Probekörper für die Tests wurden von der FACC AG (Ried i. I.,

Österreich) hergestellt. Es werden Laminate ohne Anfangsdelamination und Laminate mit

einer Anfangsdelamination von definierter Lage und Größe numerisch untersucht und mit

den Experimenten verglichen. In beiden Fällen wird eine relativ gute Übereinstimmung

zwischen Experiment und Vorhersage erzielt.
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ABSTRACT

The present thesis is concerned with the computational simulation of delamination in fiber

reinforced polymer laminates. The delamination process, from the pristine structure to

the formation of large delaminated regions, is considered as a two–step process. In the

first step an initial delamination emerges in an intact interface and in the second step

the delamination grows. The objective of this work is to develop numerically efficient and

robust tools for predicting the emergence and growth of delaminations. To demonstrate the

application and the capability of the proposed approaches several examples are analyzed.

For the prediction of emergence of delaminations a combination of a strength criterion with

an energy release rate criterion is developed. A stress based failure criterion is employed

to predict overloaded interface regions and initial delaminations are assumed to emerge

there. The propagation of delaminations is analyzed using linear elastic fracture mechan-

ics. The strength/energy approach allows to predict the critical size and position of an

initial delamination as well as the load carring capacity of the structure. Furthermore, the

sensitivity of the predicted load carring capacity with respect to changes and uncertainties

in the material properties is determined.

For the prediction of consecutive growth of delaminations with straight fronts a computa-

tionally efficient semi–analytical approach is implemented. It uses the fact that the energy

released at delamination growth is proportional to the increase of the structural compliance

caused by an increase of the delaminated area. The structural compliance is determined as

a function of the delaminated area by an automated procedure employing the finite element
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method. The semi–analytical approach can handle arbitrary combinations of mechanical,

temperature, and moisture loads. A Griffith type growth criterion is used to predict con-

secutive growth caused by quasi–static loads. The stability of the growth process as well as

the non–linear structural response are predicted. For the analysis of delamination growth

caused by cyclic loading a Paris type growth law is employed.

For simulation of delaminations with curved fronts a total delamination front criterion is

developed. Growth along the entire delamination front is assumed to take place if the

growth criterion is satisfied. A set of smooth and continuous delamination fronts is de-

fined and growth is predicted by selecting that shape for which the load required to caused

delamination growth is smallest. For computation of the delamination growth load an au-

tomated finite element method is employed. A criterion is developed that allows to check

whether or not the assumed shape of the delamination front is a good approximation. This

criterion can also guide the way towards improvement of the shape.

For verification of the developed approaches emergence of delaminations and growth of

existing delaminations in an L–shaped laminate is predicted numerically and compared to

results from experimental tests. The test are performed at the Polymer Competence Center

Leoben GmbH (PCCL, Leoben, Austria). The test specimens are produced by FACC AG

(Ried i. I., Austria). Test specimens without initial delaminations and test specimens with

defined initial delaminations are studied. For both test series reasonably good agreement

between the numerical predictions and the experimental results is obtained.



V

Acknowledgements

I wish to express my sincere gratitude to my advisor Univ.Doz. Dr. H.E. Pettermann for

his invaluable assistance in preparing this work and his advice in many constructive discus-

sions. I also thank Univ.Prof. Dr. O. Kolednik for acting as co–advisor for this thesis, his

comments are very much appreciated. Special thanks go to O.Univ.Prof. Dr. F.G. Rammer-

storfer, Univ.Prof. Dr. P.K. Zysset, Ao.Univ.Prof. Dr. H.J. Böhm, as well as all members
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Chapter 1

Introduction

1.1 Fiber Reinforced Polymer Laminates

Fiber Reinforced Polymer (FRP) laminates have become increasingly important over the

past years due to their great potential for weight saving. They are successfully used in many

structural applications where high stiffness, high strength, and low weight are required,

such as spacecraft, aircraft, ship hulls, sports equipment, etc. A prominent example of

increasing use of FRP laminates is the Airbus A380. In this modern aircraft interior

components, fairings, as well as structural parts such as elevators, wings, or spoilers are

made of FRP laminates [44]. In total more than 20% of the total structural weight is

contributed by parts made of this material. For the next generation of aircrafts, like the

Airbus A350XWB or the Boeing Dreamliner 787, more than 50% of the total structural

weight will be contributed by FRP laminates.

In order to fully exploit the advantages of FRP laminates accurate and reliable methods

are required to predict their response to service loads. The objective of this thesis is to

improve and develop modeling tools that are adequate for the computational simulation of

emergence and growth of delaminations in load carring aircraft structures made from FRP
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laminates.

What are FRP Laminates?

An FRP is a composite material with a matrix–inclusion type topology made of two con-

stituents, i.e. one of the constituents is topologically connected, the matrix, while the other

is distributed in the matrix, the inclusions. The inclusions considered here are continuous

fibers which can be unidirectional, woven, knitted, or braided. Typical fiber materials

used in aircraft structures are carbon, glass, and aramid. These fibers have diameters of

some micrometers and possess high stiffness and high strength in longitudinal direction.

As matrix materials typically polymers (e.g. epoxy, polyester, or phenolic resins) are used

for aircraft structures. These polymers show a rather brittle failure behavior and good

adhesive properties [68]. Compared to the fibers the polymer matrix possess low stiffness

and low strength.

Thin plies of FRP with a thickness of some hundred micrometers are formed. In the present

work unidirectionally reinforced plies, called tapes, and plies reinforced in two directions

by woven fibers, called fabrics, are considered. Tapes can be considered as transversely

isotropic materials for which the plane perpendicular to the fibers is a plane of material

isotropy. They have high stiffness and strength in fiber direction and low stiffness and

strength in direction perpendicular to the fibers and in shear loading. Fabrics can be

considered as orthotropic materials for which the ply–midplane is one plane of material

symmetry. They have high stiffness and strength in both reinforcement directions. Several

tapes or fabrics are grouped together to create a laminate, its stiffness and strength is

controlled by the number, the material, and the orientation of the plies. Hence, one can

tailor the mechanical properties of such multi– directional laminates.

Conventional laminates have a layered structure without any reinforcement in thickness

direction. Hence, they possess low resistance against failure in the interface between the
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plies. To circumvent this problem special techniques for reinforcement in thickness may be

used, such as stitching, tufting, Z–pinning, or 3D braiding.

Where are FRP Laminates used?

FRP laminates are used wherever light weight paired with requirements of high load carry-

ing capacity and high stiffness is an issue, i.e in applications where the strength–to–weight

ratio and stiffness–to–weight ratio are important. In this respect, FRP laminates are

superior to other engineering materials, such as steel, aluminum, or titanium. Another ad-

vantage of FRP laminates is the possibility of creating structures with tailored mechanical

properties to meet specific design needs. On the one hand, one can select fiber and matrix

materials to design ply properties, on the other hand one can select the ply number and

orientation to tailor the laminate properties. FRP laminates are used to create thin or

thick monolithic structures as well as sandwich structures, where typically a honeycomb

core is embedded between face sheets made of FRP laminates. Traditional fields where

FRP laminates have been used for years are aeronautics and astronautics. Nowadays they

are also used for maritime vessels, road vehicles, wind turbines, fast rotating shafts, golf

clubs, tennis rackets, frames for bikes, etc.

How do FRP Laminates fail?

Due to the layered structure of conventional FRP laminates two principle failure mecha-

nisms are distinguished, failure of the ply and failure of the interface between plies. The

microstructure of the plies allows to classify ply failure as failure of the fibers, the ma-

trix, or the interface between fiber and matrix. The latter two are summarized as matrix

dominated failure and occur in a plane parallel to the fibers. The failure behavior of a uni-

directionally reinforced ply depends on the loading. If the ply is loaded by normal stresses

in fiber direction or in a direction transverse to the fibers it fails in a brittle manner. A ply
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loaded by in–plane shear stresses shows considerable plastic deformation before it fails.

Failure of one ply within a laminate does not necessarily mean that the entire laminate

fails. The stresses might be redistributed and carried by the remaining plies. Hence, one

has to distinguish between the point at which the first ply within a laminate fails, called

First Ply Failure (FPF), and the failure of the entire laminate (i.e. failure of all plies),

called ultimate failure.

Failure of the interface between plies is referred to as delamination. It is caused by over-

loading of the interface due to out–of–plane stresses attributed to, e.g. transverse loading,

free edge effects, ply drop off, local load introduction, or impact loads. Delamination can

be considered as a special case of matrix dominated failure as it is a failure of the matrix

with a fracture plane parallel to the ply. The interface between the plies is typically weaker

than the ply itself, consequently, delaminations will typically grow along the interface.

Sometimes delamination is defined as the failure of primary bonds while debonding is

defined as the failure of secondary bonds. Primary bonds are formed between the plies

during production of the laminate, while secondary bonds are created by glueing compo-

nents together (e.g. sublaminates, face sheet and core, etc.). As the failure mechanisms for

delamination and debonding are the same, debonding is considered as a form of delamina-

tion in this work.

1.2 Scope of the Present Work

The objective of the present work is the development of numerically efficient tools for the

simulation of delamination in FRP laminates. The delamination process from the perfect,

flaw free structure, up to final failure of the structure is considered as a two step process. In

the first step an initial delamination is formed at an interface between plies, called emer-

gence of delaminations. In the second step the delamination size increases, called growth of

delaminations. The maximum load reached during the entire delamination process is called

the load carrying capacity of the structure. Concerning step one the load at which initial
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delaminations emerge and the position of the initial delamination will be predicted. Con-

cerning step two the load at which delamination growth starts, the stability of the growth,

the non–linear structural response, and the load carring capacity are predicted. For both

steps numerically efficient approaches are proposed which allow for a systematic and gen-

eral understanding of the delamination problem under consideration. For verification of

the proposed methods a comparison between numerical predictions and experimental re-

sults is done. All experimental tests were carried out by the Polymer Competence Center

Leoben GmbH (PCCL, Austria), the specimens used for testing were produced by FACC

AG (Ried, Austria).

For all FEM computations the general purpose finite element program package ABAQUS/-

Standard/V6.6 (ABAQUS Inc., Pawtucket, RI, USA) is used. For automated preprocess-

ing of FEM models and for automated reading and preparation of results of the FEM

analyses Python 2.4 and the ABAQUS scripting interface are employed. For data process-

ing MATLAB R2007b (The MarthWork Inc.) is used.

The approaches proposed within this thesis are based on the principles of linear elastic

fracture mechanics. These principles are summarized in Chapter 2 and their applicability

to delamination problems is discussed. In Chapter 3 a combination of a strength crite-

rion with Linear Elastic Fracture Mechanics (LEFM) is proposed for the simulation of

emergence of delaminations. In Chapter 4 a semi–analytical approach for the prediction

of delamination growth in structures loaded by quasi–static and cyclic loads is presented.

Only delaminations with straight fronts can be handled by the proposed semi–analytical

approach. A criterion for the prediction of growth of delaminations with curved fronts

is presented in Chapter 5. In Chapter 6 emergence and growth of delaminations in an

L–shaped laminate is investigated with the proposed methods and tested experimentally.

The test specimens were produced by FACC AG and the experimental testing was done

at the PCCL.
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1.3 Literature Review

The increase in use of FRP laminates in the past years has been accompanied by intensive

research concerning the prediction of their failure behavior. In the following the literature

most relevant for prediction of emergence and growth of delaminations is summarized.

One of the critical failure modes in FRP laminates is delamination, as it can change

significantly the structural stiffness and the load carrying capacity of components. An

overview of delamination and its effects is given in [22, 49], delamination related stability

problems are discussed in [10].

For the prediction of the onset of interface damage, which can be considered as the onset

of the formation of a delamination, methods based on the interface strength have been

developed [22, 11, 41]. The normal and shear tractions acting on the interface are computed

and assessed by a strength criterion. In laminated composites quadratic strength criteria

are used successfully for this purpose [11, 27]. A general, strength based FPF criterion was

developed by Puck [52, 65]. In this criterion delamination is considered as a special case of

matrix dominated failure. A strength based analysis of delaminations emerging from free

edges is presented in [50].

For the prediction of delamination growth fracture mechanics can be applied. It is a widely

used assumption that conventional FRP laminates show brittle fracture behavior if they

are loaded in a out–of–plane direction. Consequently, local material non–linearities in the

vicinity of the delamination front are neglected and LEFM is used [30]. For the prediction

of delamination growth stress intensity factors [32] or energy release rates [23] can be used.

The latter are commonly used for FRP laminates, as they can be directly determined by

experimental testing. Within the framework of the Finite Element Method (FEM) several

methods for the computation of energy release rates have been developed, such as the

J–integral [58], the Virtual Crack Extension Technique [28], Crack Tip Elements [17], and

the Virtual Crack Closure Technique (VCCT) [62, 55, 35]. The VCCT is used successfully

for the simulation of consecutive delamination growth in–plane problems loaded by quasi–
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static [36] and cyclic loads [67]. A numerical more efficient semi–analytical approach is

employed for the prediction of delamination growth in–plane problems loaded by quasi–

static loads [78, 77] or by combinations of quasi–static and cyclic loads [79, 80, 81]. For

the simulation of consecutive growth of delaminations with curved fronts moving mesh

techniques [38, 85, 86] or methods that take some assumptions concerning the shape of the

delamination front [82] can be used.

Strength criteria can be applied to predict the onset of interface damage, but, that does

not necessarily mean that a delamination is formed. LEFM, on the other hand, can be

used to predict the propagation of delaminations, but, an initial delamination must exist.

Methods that combine strength criteria with LEFM have been proposed for the prediction

of the formation of initial delaminations [72, 83, 84, 77].

An alternative approach for the prediction of delamination growth is to take into account

the non–linear interface behavior at the delamination tip and to introduce a cohesive zone

[19, 8]. Based on this idea, Cohesive Zone Elements (CZE) have been developed within

the FEM [3, 14]. Due to their formulation CZE can be used to predict the formation of

an initial delamination as well as to predict propagation of delaminations. CZE have been

used successfully for the analysis of quasi–static [75, 18] and cyclic [74] loads. However,

they are numerically expensive and the achievement of convergence can be a tricky task

[75].

Another approach successfully used for the simulation of delamination is to consider de-

lamination as a special case of ply damage. In [40] an extended ply damage model is

proposed which can be used for the simulation of emergence of delaminations as well as

for the simulation of consecutive delamination growth.
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Chapter 2

Fracture Mechanics

For the prediction of delamination growth in an interface between plies of FRP laminates

linear elastic fracture mechanics as well as elastic–plastic fracture mechanics are employed

successfully, most widely used are the VCCT and CZE. The principles of LEFM and the

formulation of the VCCT are summarized in the following, including remarks concerning

their application to delamination problems. Bimaterial problems are also discussed briefly,

as delaminations between plies with different orientation have to be considered as cracks in

a bimaterial interface. Furthermore, elastic–plastic fracture mechanics is briefly reviewed

and the principal idea of CZE is discussed. For a more detailed discussion of linear elastic

and elastic–plastic fracture mechanics see e.g. [6, 24, 26]. FEM based methods for solving

fracture mechanics problems are discussed in detail in e.g. [39].

2.1 Linear Elastic Fracture Mechanics

A crack in an isotropic linear elastic material with Young’s modulus, E, and shear modulus,

G, is considered. The crack is described by the two crack surfaces and is bordered by the

crack front. The crack surfaces are assumed to be traction free and parallel to each other.
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The crack area, A, is defined by the projection of the crack surfaces to a reference plane.

Three different relative displacements of the crack surfaces with respect to each other are

distinguished which leads to the definition of the basic fracture modes, shown in Fig. 2.1.

The opening mode, for which the crack surfaces move in a direction normal to the crack

plane (mode I), the sliding mode or in–plane shear mode, for which the crack surfaces slide

in a direction perpendicular to the crack front (mode II), and the tearing or anti–plane

shear mode, for which the crack surfaces slide in a direction parallel to the crack front

(mode III). For mode I the displacements are symmetric with respect to the crack plane,

for mode II and mode III they are antisymmetric.

2.1.1 Stress Intensity Factor

The two–dimensional problem of an infinite body made of a homogeneous and isotropic

material containing a plane crack with straight crack fronts is considered. The crack

possesses total length 2a and a polar coordinate system (r, θ) is centered at the crack

tip, see Fig. 2.2. Note, that an interior crack of finite length within an infinite body is

investigated. Hence, the crack does not interact with the applied boundary conditions.

Plane models of the structure are investigated and plane strain assumptions and plane

stress assumptions are considered.

It was shown in [69] that for such problems the stress field can be written by a series

Figure 2.1: Definition of the fracture modes, opening mode I, sliding mode II, tearing mode
III; Definition is based on the displacements of the crack surface relative to each other.
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representation of the stress tensor,

σij(r, θ) =
1√
2πr

[
KIf

I
ij(θ) +KIIf

II
ij (θ) +KIIIf

III
ij (θ)

]
+ (O) for i, j = x, y, z , (2.1)

where KI, KII, and KIII are the stress intensity factors. They correspond to the three

modes of crack surface displacements discussed in Fig. 2.1. (O) are terms of higher order

with respect to the radial coordinate and their influence vanishes as the radial coordinate

approaches zero. The stress field close to the crack tip is dominated by the singular term

in Eq. (2.1). f I
ij , f

II
ij , and f III

ij are functions of the angle θ which, for instance, are derived

following the complex stress function approach developed by Westergaard [76].

The displacement field is given by,

ui(r, θ) =
1

2G

√
r

2π

[
KIg

I
i(θ) +KIIg

II
i (θ) +KIIIg

III
i (θ)

]
+ (O) for i = x, y, z , (2.2)

where (O) are terms of higher order with respect to the radial coordinate. Their influence

vanishes as the radial coordinate approaches zero and the displacement field close to the

crack tip is dominated by the square root term in Eq. (2.2). gI
i , g

II
i , and gIII

i are functions

of the angle θ which, for instance, are derived following the Westergaard approach.

Equation (2.1) shows the typical 1/
√
r singularity of the stresses at the crack tip. Equation

Figure 2.2: Infinite wide body of isotropic material containing a plane crack of total length
2a.
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(2.2) shows that the displacements of the crack surfaces are dominated by a
√
r term which

leads to parabolic crack opening close to the crack tip.

Mode I and Mode II Loading

The stress and displacement fields at the crack tip are now derived for the case of an

infinite body loaded at the boundary by uniform normal stresses, σ∞
yy, and uniform shear

stresses, σ∞
xy = σ∞

yx . Solving the complex stress functions for these boundary conditions

yields equations for the stress and displacement fields [24]. The stresses ahead of the crack

tip along the x–axis (i.e. θ = 0) are given as,





σyy

σxy





=
1√
2πr





KI

KII





, (2.3)

where the stress intensity factors are defined as,

KI = σ∞
yy

√
πa ,

KII = σ∞
xy

√
πa . (2.4)

The displacement of the upper crack surface (i.e. θ = +π) and the lower crack surface

(i.e. θ = −π) read, 



ux

uy





= ±κ + 1

2G

√
r

2π





KII

KI





, (2.5)

where ux is the displacement of the crack surface in x–direction, uy is the displacement

in y–direction, and κ is an elastic parameter, which depends on the boundary conditions
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applied in z–direction. It is defined as,

κ = 3 − 4ν for plane strain ,

κ = 3−ν
1+ν

for plane stress ,

(2.6)

where ν is the Poisson’s ratio.

Mode III Loading

The body shown in Fig. 2.2 is now loaded at the boundary by some uniform shear stresses,

σ∞
zy = σ∞

yz . These stresses will lead to displacements uz perpendicular to the xy–plane while

the displacements in x–direction and y–direction will remain zero. The stresses ahead of

the crack tip along the x–axis (i.e. θ = 0) read [24],

σyz =
1√
2πr

KIII , (2.7)

and the mode III stress intensity factor is defined as,

KIII = σ∞
yz

√
πa . (2.8)

The displacements of the upper and the lower crack surface (i.e. θ = ±π) read,

uz = ±4KIII

G

√
r

2π
. (2.9)

The above equations describe the stress and displacement fields for a crack in a homo-

geneous isotropic material. A delamination between plies of the same orientation can be

considered as a crack within a homogeneous orthotropic material, where the xz–plane is a

plane of material symmetry. The stress and displacement fields for such cracks are derived

from the solutions for isotropic materials by multiplying the normal stresses, σyy, and the

displacements in y–direction, uy, by a factor that is a function of the elastic properties of
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the material. The shear stresses, σxy and σyz, and the displacements in x– and z–direction

remain unchanged, see [45] for details.

Critical Stress Intensity Factor

According to Irwin [32] a crack loaded in pure mode I, mode II, or mode III will grow if

the stress intensity factor reaches some critical value. Consider for example a crack loaded

in pure mode I, it will grow if,

KI > KIc , (2.10)

whereKIc is the critical stress intensity factor for pure mode I loading. It can be determined

in experimental testing. Equivalent criteria and critical stress intensity factors can be given

for pure mode II and pure mode III loading. For the case of mixed mode loading, i.e. loading

by some combination of mode I, mode II, and mode III, the crack growth criterion can be

written in the general form,

f (KI, KII, KIII, KIc, KIIc, KIIIc) > 1 . (2.11)

In order to take the mode interaction at the crack tip into account various functions, f ,

have been developed, see e.g. [24].

Next the question in which direction a crack will grow is discussed. In the case of pure

mode I loading the plane crack shown in Fig. 2.2 will grow in x–direction and will remain

planar. In case of a combination of mode I and mode II loading the crack growth direction

will deviate from the x–direction, i.e. the crack will kink. Kinking of a crack loaded in mode

III is rarely treated in the literature and is not considered here. Several criteria have been

proposed to predict the angle by which the crack will kink [24]. All such criteria predict that

crack kinking is driven by the ratio of mode I to mode II loading. The interfaces between

the plies of FRP laminates are typically considered to possess a smaller critical energy

release rate than the ply itself as they are not reinforced by any fiber. For unidirectionally
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reinforced laminates where the delamination front is orthogonal to the fiber direction the

delamination is assumed to grow along the interface and does not kink, irrespective of the

fracture mode. The fibers used for reinforcement of the plies would bridge the delamination

if it is growing into one of the plies. Different behavior might be obtained in the case of

a delamination front that is parallel to the fibers of a unidirectionally reinforced ply. In

this case the delamination can grow into the ply without any fiber bridging. Such cases

are discussed in Chapter 6.

2.1.2 Energy Release Rate

Griffith [23] was the first who considered the equilibrium of the energy released at crack

growth and the energy required to create new crack surface for the prediction of crack

propagation. The energy released per unit area if the crack is extended by an area ∂A is

called energy release rate and reads,

G = −∂ (Πint + Πext)

∂A
, (2.12)

where Πint is the elastic potential and Πext is the potential of external forces. Note that the

potential of external forces decreases by the work performed by these forces, i.e. ∂Πext =

−∂Wext, see [39, 24].

The energy release rate can be computed from the stress intensity factors as shown in

the following. Crack growth leads to the formation of new traction free crack surfaces.

The energy released during crack growth is equal to the work required to close the crack

again, i.e. to bring the relative displacement of the newly formed crack surfaces to zero.

Following Irwin’s crack closure integral [33], the work required to close the crack can be

computed by the stresses ahead of the new crack tip and the relative displacement of the

crack surfaces with respect to each other. For planar structures of unit thickness and pure
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mode I loading, the work required to close the crack over a length of ∆a is given as,

∆W =
1

2

∫ ∆a

0

σyy(x)
(
u+
y (∆a− x) − u−y (∆a− x)

)
dx

=
κ+ 1

4πG

∫ ∆a

0

KI(a)√
x
KI(a + ∆a)

√
∆a− x dx . (2.13)

For structures containing a through–the–width crack with straight front the crack area is

equal to the crack length, i.e.∆A = ∆a, and the energy release rate reads,

GI = lim
∆a→0

∆W

∆a

=
κ+ 1

4πG
K2

I (a) lim
∆a→0

1

∆a

∫ ∆a

0

√
∆a− x

x
dx

︸ ︷︷ ︸
π
2

. (2.14)

Equivalent equations can be derived for pure mode II and pure mode III loading by consid-

ering the corresponding shear stresses and displacements. The energy release rates read,

GI =
κ+ 1

8G
K2

I ,

GII =
κ+ 1

8G
K2

II ,

GIII =
1

2G
K2

III . (2.15)

This means that for linear elastic materials the concept of stress intensity factors developed

by Irwin and the concept of energy release rates developed by Griffith are equivalent.

For the prediction of delamination growth, however, the concept of energy release rates

is commonly used since energy release rates can be more easily derived from results of

experimental tests [49].
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Crack Growth and Crack Growth Stability

According to Griffith a crack will grow if the energy released at crack growth is equal to

or greater than the energy required to create new crack area. For pure mode I loading the

growth condition reads,

GI > GIc , (2.16)

where GIc is the critical energy release rate for pure mode I loading. Equivalent criteria

and critical energy release rates, GIIc, and GIIIc, can be defined for pure mode II and pure

mode III loading, respectively. Some remarks concerning experimental testing of critical

energy release rates of FRP laminates are given at end of this subsection.

For the case of a crack loaded by combination of mode I, mode II, and mode III, the growth

criterion can be written in the general form,

g (GI,GII,GIII,GIc,GIIc,GIIIc) > 1 . (2.17)

In order to take into account the mode interaction at the delamination front, various

functions, g, have been developed, see [35, 73] for an overview. For the materials considered

in the present work a quadratic interaction criterion is suitable and the growth condition

is given as, ( GI

GIc

)2

+

( GII

GIIc

)2

+

( GIII

GIIIc

)2

> 1 . (2.18)

For the definition of equilibrium growth condition and its stability it is favorable to for-

mulate the growth criterion in terms of the total energy release rate,

G = GI + GII + GIII . (2.19)

Then the growth condition reads,

G > Gc , (2.20)
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where Gc is the critical energy release rate for the actual loading. It is a function of the

critical energy release rates for pure mode I, mode II, and mode III loading as well as the

actual mode mix situation. Considering the quadratic interaction criterion, Eq. (2.18), the

critical energy release rate is defined by,

( G
Gc

)2

=

( GI

GIc

)2

+

( GII

GIIc

)2

+

( GIII

GIIIc

)2

. (2.21)

Substituting Eq.(2.12) in Eq. (2.20) yields the growth condition in terms of the potentials,

∂ (Πint + Πext)

∂a
+ Gc





> 0 no growth

= 0 equilibrium growth

< 0 non–equilibrium growth

. (2.22)

Equilibrium growth takes place if all energy released is required to create new delaminated

area. If more energy is released during delamination growth than required the structure

is not in static equilibrium and non–equilibrium delamination growth, accompanied by

dynamic effects, takes place. Such non–equilibrium states are always unstable.

The condition for stability of equilibrium growth (i.e. a small increase in the applied load

leads to limited increase of the delaminated area) reads,

∂2 (Πint + Πext)

∂a2
+
∂Gc

∂a
> 0 . (2.23)

Note that if the mode mix changes during delamination growth also the critical energy

release rate changes (i.e. ∂Gc

∂a
6= 0). If the left hand side of Eq. (2.23) is smaller than zero

growth is unstable. In case that the left hand side of Eq. (2.23) is zero, derivatives of higher

order have to be considered to determine the stability of the equilibrium state [9].

For FRP laminates critical energy release rates can be determined by experimental test-

ing, though this may be quite difficult. Test procedures are evaluated and standardized by
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ASTM and other national and international standards organizations [48, 12]. For experi-

mental testing of critical mode I energy release rates the Double Cantilever Beam (DCB)

test is widely used for FRP laminates [16]. For experimental determination of critical mode

II energy release rates of FRP laminates, End Notched Flexure (ENF) specimens are used.

They can be loaded in three or four point bending mode, see [64]. A critical review of the

ENF test, including a discussion of the influence of friction effects is given in [47]. There is

no accepted test for determining the mode III critical energy release rate. To circumvent

this problem it is assumed that the critical energy release rate for mode III and mode II

are equal, i.e. GIIIc = GIIc [49].

It is shown in [5] that for some FRP the critical energy release rate depends on the ori-

entation of the delamination front with respect to the fibers in the plies adjacent to the

delamination. In the present work such effects are not taken into account and it is as-

sumed that the critical energy release rates depend neither on the fiber orientation nor on

the delamination length.

2.1.3 Bimaterial Problems

Delaminations between plies with different orientations have to be considered as cracks

in a bimaterial interface. Such problems are discussed in detail e.g. in [71, 24, 39]. An

example of a crack at the interface between two homogeneous, isotropic materials A and

B with elastic mechanical properties EA, GA and EB, GB is shown in Fig. 2.3. The normal

and shear stresses ahead of the crack tip along the x–axis (i.e. θ = 0) can be written as

[24],

σyy + iσxy =
K

(2l)iǫ

riǫ

√
2πr

, (2.24)

where K = K1 + iK2 is the complex stress intensity factor with the real part K1 and the

complex part K2. l is a reference length that corresponds to the crack size (e.g. the crack

length). In the following half of the total crack length is used as reference length, i.e. l = a.
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ǫ is the so called bimaterial parameter

ǫ =
1

2π
ln
GBκA +GA

GAκB +GB

, (2.25)

where κ is computed for material A and material B, respectively, by Eq. (2.6). If the

structure is loaded at the boundary by uniform normal stresses, σ∞
yy , and uniform shear

stresses, σ∞
xy = σ∞

yx the complex stress intensity factor reads [24]

K = (σ∞
xx + iσ∞

xy)
√
πa(1 + 2iǫ) . (2.26)

Equations (2.24) and (2.26) show that the normal and shear stresses at the interface ahead

of the crack tip are inherently related to each other and no separation into mode I and

mode II loading is possible. Hence, no loading state exists for which the entire interface is

loaded by normal stresses or by shear stresses only. Note that the stress intensity factors

K1 and K2 do not correspond to the stress intensity factors KI and KII defined for a crack

in a homogeneous isotropic material. For cracks in a homogeneous material the bimaterial

parameter is zero and Eqs. (2.24) and (2.26) reduce to Eqs. (2.3) and (2.4), respectively.

The relative opening and sliding displacements of the crack surfaces with respect to each

Figure 2.3: Crack at the interface between two homogeneous, isotropic materials with
mechanical properties EA, GA and EB, GB .
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other are given as

(
u+
y − u−y

)
+ i

(
u+
x − u−x

)
=

K

(2a)iǫ
riǫ

√
r

2π

cA + cB
2 (1 + 2iǫ) cosh πǫ

, (2.27)

where the constants cA and cB are defined as,

cj =
1 + κj
Gj

for j = A,B . (2.28)

The relative crack opening
(
u+
y − u−y

)
defined in Eq. (2.27) oscillates as the radial coordi-

nate approaches zero, and crack fronts are predicted to overlap. As this is physically not

possible, contact between the crack surfaces takes place. However, linear elastic fracture

mechanics is based on the assumption of traction free crack surfaces and can only be used

to predict the stress and displacement field outside the region where contact takes place.

For practical material combinations and loading by uniform normal and shear stresses, it

can be shown that the size of the zone where the oscillatory terms play a role is some orders

of magnitude smaller than the crack length [59, 24]. As a consequence the zone where the

oscillatory terms play a role is negligibly small.

Loading by some uniform shear stresses, σ∞
yz = σ∞

zy (i.e.mode III loading), leads to the

same stress and displacement fields as presented for the crack in an isotropic material [71].

The stress and the displacement fields at the crack tip are defined in a unique manner by

a modified stress intensity factor K̃ = (K1 +iK2)(2a)
−iǫ. Note that the the modified stress

intensity factor depends on the reference length a. Considering the magnitude, |K|, and

the argument, ψ, of the complex stress intensity factor,

|K| =
√
K2

1 +K2
2 , tanψ =

K2

K1

, (2.29)

the modified stress intensity factor is defined as [24, 39],

K̃ =
|K|eiψ
(2a)iǫ

. (2.30)
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For the prediction of crack growth, a criterion in the form K̃ > K̃c might be formulated.

However, the definition of K̃c is difficult. For the case of two different crack lengths (i.e. two

different reference lengths a and a∗) the stresses at the interface are equal if,

|K∗|eiψ∗

(2a∗)iǫ
=

|K|eiψ
(2a)iǫ

. (2.31)

This is equivalent to the requirement that,

|K∗| = |K| , ψ∗ = ψ − ǫ ln
a

a∗
. (2.32)

Hence, different crack lengths require different values of the argument of the complex

stress intensity factors. This makes the transfer from experimentally determined data to

structures with different geometry complicated. A pragmatic solution to this problem was

proposed by Rice [59]. For most material combinations of practical relevance the bimaterial

parameter is very small. Consequentely, the zone where the oscillatory terms play a role

is small and the stress field is dominated by the singular term only. Using the phase

angle that corresponds to a fixed reference length l̂ (e.g. the initial crack length, the ply

thickness), instead of the phase angle that corresponds to the actual crack length, one can

write,

KI + iKII ≈ K̃2l̂ iǫ . (2.33)

This means that the stress state that exists at a distance l̂ ahead of the crack tip is used to

describe the stress field and the real and the complex parts of the stress intensity factor can

be interpreted as the mode I and mode II stress intensity factors of a crack in an isotropic

material.

The total energy released at crack growth can be computed by means of the crack closure

integral defined in Eq. (2.13) and is given as [24],

G =
(cA + cB)(K2

1 +K2
2 )

16 cosh2(πǫ)
. (2.34)
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Due to the oscillatory nature of the stress and displacement fields no crack closure integrals

for mode I or mode II exist and the mode I and mode II energy release rates cannot be

computed. Hence, conventional linear elastic fracture mechanics does not allow to define

a mode I and a mode II energy release rate for bimaterial problems only the total energy

release rate can be computed.

A delamination between plies with different fiber orientations can be considered as a crack

between two different homogeneous orthotropic materials. The stresses and displacements

at the tip of a crack in such an interface can be derived from the results for a crack between

two isotropic materials and a bimaterial parameter [45]. The latter is a function of the

difference in elastic properties of the materials; the corresponding equations are given in

[71, 45]. The results show that the oscillatory nature of the stresses and displacements

remains.

2.1.4 Virtual Crack Closure Technique

Within the FEM several methods exist to compute energy release rates. One of the most

successfully used is the VCCT, which is briefly reviewed in the following. For a detailed

discussion see [35].

If a crack is advanced by a length ∆a, the energy released is assumed to be equal to the

work required to close the crack over the same distance (Eq.(2.13)). Within the FEM the

work to close a crack is computed easily from the relative distance which the nodes need

to be moved to close the crack and the corresponding nodal forces, see Fig. 2.4. For planar

elements with four nodes and linear shape functions the work required to close the crack

over a length of ∆a, which is equal to the element length, is computed as,

∆W =
1

2
(Fx∆ux + Fy∆uy) , (2.35)
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where Fx and Fy are the nodal forces computed for the closed crack and ∆ux and ∆uy are

the relative nodal displacements computed for the open crack. Hence, two analyses are

required, one for a crack length of a and one for a crack length of a+ ∆a.

It is assumed now that crack growth is self similar, i.e. the shape of the crack does not

change during crack growth (i.e. no crack kinking takes place) and the increment in crack

length, ∆a, is small compared to the total crack length, a. Consequently, the stress state at

the crack tip does not alter significantly during crack growth. For a crack in an isotropic

material the stresses in Irwin’s crack closure integral, Eq.(2.13), can be substituted by

functions of the nodal forces and the relative crack surface displacements can be substituted

by functions of the nodal displacements [56]. The equation obtained allows to compute

the energy release rate for pure mode I loading. For configurations of unit thickness it is

given as,

GI = lim
∆a→0

1

2∆a
(Fy, j ∆uy, i) . (2.36)

Fy, j is the force at node j in y–direction and uy, i is the relative nodal displacement in y–

direction between nodes i ′′ and i ′, see Fig. 2.5. The limit indicates that the element length

at the crack tip needs to be small. For sufficiently small element lengths the limit can be

dropped [56]. If, as an approximation, the forces at the crack tip and the displacements

behind the crack tip are used, only one analysis is required. Equation (2.36) was proposed

Figure 2.4: Work required to close the crack computed from the nodal forces and nodal
displacements.
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first in [62] based on some heuristic arguments. Their validity has been proven in [56]

and equivalent equations for elements of higher order and quarter point elements have

been derived [56]. If the elements ahead and behind the crack tip have different lengths a

correction factor is required [35].

Consideration of the nodal forces and relative nodal displacements in x–, y–, and z–

directions allows the computation of the energy release rate for mode I, mode II, and mode

III,

GI =
1

2∆a
(Fy, j∆uy, i) ,

GII =
1

2∆a
(Fx, j∆ux, i) ,

GIII =
1

2∆a
(Fz, j∆uz, i) . (2.37)

The z–direction is defined by the local direction of the crack front and the y–direction is

defined to be perpendicular to the crack plane, see Fig.2.6.

A mesh that is locally orthogonal to the delamination front is required to allow for a proper

definition of the relative displacements of the nodes behind the delamination front in x– and

z–directions. Care has to be taken if the delamination front is not smooth. At kinks and

corners it is not possible to define the local z–direction in a unique manner. Consequently

Figure 2.5: Definition of forces and displacements used for computation of energy release
rates within the Virtual Crack Closure Technique.
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the mode II and mode III energy release rates cannot be defined. A pragmatic solution of

this problem is to model such corners as fillets and to use a mesh that is fine enough to

allow for a smooth delamination front along the fillet [35].

A delamination located between plies oriented in the same direction can be considered

as a crack in a homogeneous orthotropic material (see Section 2.1.1). The energy release

rates can be computed by Eq. (2.37). A delamination located between plies with different

orientation can be considered as a crack at the interface between two different orthotropic

solids. For such bimaterial problems an oscillatory singularity is predicted at the delami-

nation front as discussed in detail in the previous section. Due to the oscillatory field only

the total energy release rate is defined and can be computed by means of the VCCT [35].

If one tries to compute mode I and mode II energy release rates by means of the VCCT

the computed values start to oscillate if the size of the elements at the crack tip becomes

too small (i.e. if the element size becomes smaller than the zone where the oscillatory terms

play a role).

Several approaches have been proposed to circumvent this problem. The first one is the

introduction of an artificial, thin, homogeneous, and isotropic layer that is assumed to exist

between the plies [56]. Consequently, delamination propagation occurs in a homogeneous,

isotropic material and the problem of oscillatory singularities does not exist. Another ap-

Figure 2.6: Definition of the local orientation of the delamination front used within the
Virtual Crack Closure Technique; Nodes and faces defining the crack surfaces and the crack
front shown only.
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proach is to take into account the contact of the crack surfaces, which is predicted for the

region close to the crack tip [29]. Very fine meshes and appropriate contact conditions at

the crack surfaces are applied and the predicted stress field does not show any oscillations.

Hence, the computed mode I and mode II energy release rates converge to asymptotically

constant values as the size of the elements at the crack tip decreases. To summarize, it

can be said that assuming a homogeneous layer or taking into account the contact of the

crack surfaces allows to compute the mode I and mode II energy release rates for bimaterial

problems The results obtained by both approaches are similar [35], but, very fine meshes

are required.

A more convenient and numerically more efficient way to compute mode I and mode II

energy release rates is the usage of an element size that is small enough to resolve the local

deformation at the crack tip but large enough to avoid oscillatory results [70, 56, 31]. A

reasonable lower limit for the element size is a length equal to five to ten times the fiber

diameter. For smaller elements the assumption of a homogeneous orthotropic material is

no longer valid and the local distribution of fibers has to be taken into account. The ply

thickness is a reasonable upper limit of the element size in thickness direction. Larger

elements would require to represent more than one ply by one element, i.e. to smear the

properties of different plies over one element. Numerical studies have shown that the vari-

ations in the computed mode I and mode II energy release rate between these upper and

lower bounds are typically small and their accuracy proves acceptable for practical applica-

tion [35]. To minimize innaccuracies the same mesh size should be used for the evaluation

of experimental tests and for the prediction of delamination growth in structural problems.

FEM Implementation

A VCCT tool is provided by ABAQUS, it is based on the ABAQUS contact capability [1].

The tool is capable of computing the mode I, mode II, and mode III energy release rates

at nodes at the crack front, of evaluating the energy release rates by means of a growth
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criterion, and of propagating the crack if indicated.

The crack path needs to be defined in advance and the regions adjacent to the crack path

are meshed separately, so that the elements on both sides of the crack path do not have

any nodes in common. In the region of the crack path that is yet uncracked the degrees of

freedom of the nodes of the elements adjacent to the crack path are coupled by kinematic

conditions. For conventional continuum elements the translational degrees of freedom are

coupled. For shell elements the question arises if the translational and the rotational de-

grees of freedom should be coupled. Numerical investigations showed that coupling only

the translational degrees of freedom yields more accurate results [57]. Note, that for the

definition of coupling conditions the shell thickness has to be taken into account properly,

i.e. the displacements of the faces of the shell elements need to be coupled.

At nodes where the growth criterion is met the delamination propagates. To aid conver-

gence the kinematic coupling conditions are replaced by coupling forces, and the coupling

forces are incrementally reduced to zero.

The VCCT tool provided by ABAQUS can only be used in combination with linear el-

ements and no correction is applied if the element size ahead and behind the crack tip

is different or if the mesh is locally not orthogonal to the delamination front (i.e. if such

meshes are used the computed energy release rates are inaccurate).

2.2 Elastic–Plastic Fracture Mechanics

The use of linear elastic fracture mechanics leads to the prediction of infinite stresses at the

crack tip. However, most materials of practical relevance yield and a plastic zone is formed

at the crack tip. Local yielding at the crack tip was first taken into account by Dugdale [19].

He considered a plastic zone ahead of the crack tip in an elastic, ideally plastic material

and assumed that the effective crack is longer than its nominal length. The plastic zone

is assumed to be thin compared to its length, hence, the model is also called strip yield

model. A similar model has been proposed by Barenblatt [8], who defined the traction
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acting on the plastic zone as function of the separation of the crack surfaces. This function

is called traction–separation law or cohesive law. Cohesive laws are frequently used in

the simulation of growth of a crack along a predefined paths in homogeneous materials as

well as in bimaterial problems. Needlemann [46] used cohesive laws to describe the failure

of interfaces. He considered cohesive zone models particularly attractive when interfacial

strengths are relatively low compared to the strength of the adjoining material.

2.2.1 Cohesive Zone Elements

Based on the work of Dugdale and Barenblatt, Cohesive Zone Elements have been devel-

oped within the framework of the FEM [14, 13, 4]. The proposed constitutive equations

for the interface are phenomenological mechanical relations between the tractions at the

interface and the separation of the interface. With increasing interfacial separation the

tractions acting on the interface reach a maximum, decrease, and vanish when complete

decohesion occurs. Commonly used for the simulation of delamination are piecewise linear

traction separation relations as shown in Fig. 2.7. The initial response is defined by the

initial stiffness, E. The onset of damage is defined by a critical interface traction, tc, or

by a critical separation distance of the interface, δc. Further increase of the separation

Figure 2.7: Bilinear traction separation law to describe the interface behavior of Cohesive
Zone Elements.
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leads to damage evolution, the tractions and the stiffness decrease linearly up to com-

plete separation of the crack surfaces. The energy required to separate the crack surfaces

(i.e. the area underneath the traction–separation curve) is equal to the the critical energy

release rate, Gc. Such piecewise linear laws can be defined for mode I, mode II, and mode

III loading by considering the normal and shear tractions acting on the interface and the

corresponding separations. In order to distinguish the mode II and the mode III shear

tractions the local orientation of the delamination front must be known. To simplify this

problem the total shear traction is commonly considered instead of the separate mode II

and mode III components. Hence, two traction–separation laws are defined, one for the

normal traction and one for the shear traction. If the interface is loaded by a combination

of normal and shear traction some interaction criteria are required for the prediction of

damage onset and damage evolution, see e.g. [14].

For the simulation of crack growth using CZE a mesh is required that is fine enough to

adequately represent the process zone. A detailed discussion concerning the mesh size

including some guideline for choosing an appropriate one is given in [75]. Small load in-

crements are required to capture damage evolution and the associated stress redistribution

adequately. Due to their formulation CZE can be used to simulate the onset of interface

damage, i.e. the formation of a first flaw at an interface, as well as crack propagation along

a predefined path.

Planar CZE with four nodes and three–dimensional CZE with eight nodes are provided

by ABAQUS. Both elements use linear shape functions and a finite initial thickness. The

initial stiffness of these elements is defined by their thickness and their Young’s modulus

and shear modulus. For the prediction of the onset and evolution of damage various criteria

are available. For the case of mixed mode loading it is assumed that the mode mix does

not change in the considered element during damage evolution, i.e. the ratio between the

normal and shear separation is assumed to be constant as long as the considered element

belongs to the process zone.
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Chapter 3

Emergence of Delaminations

The delamination process from the perfect, i.e. flawless structure up to final failure of the

structure is considered as a two step process. In the first step an initial delamination

emerges at the intact interface and in the second step the delamination grows. Strength

criteria can be applied to predict the onset of interface damage, which can be considered

as the onset of formation of a delamination, but cannot directly be applied to predict open

initial delaminations. LEFM, on the other hand, can be used to predict the propagation of

delaminations, provided an initial delamination exists. In the present chapter an approach

for the prediction of emergence of delaminations is presented that combines these methods

and bridges the gap between them.

The proposed approach allows to predict emergence of delaminations in a numerically

efficient and robust manner. Delaminations emerging inside a structure can be handled

as well as delaminations emerging from free edges, where stress singularities are present

theoretically. A linear FEM analysis of the pristine structure is conducted and regions of

overloaded interface regions are predicted with the Puck FPF criterion. Within such re-

gions, delamination initiation is assumed to occur and initial delaminations are introduced.

The onset of propagation of these initial delaminations is predicted using the Griffith crite-

rion which is evaluated by means of the VCCT within linear FEM analyses. The smallest
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delamination size which fullfills the initiation criterion and the propagation criterion is the

critical initial delamination. The load at which this delamination emerges is called delam-

ination load. These findings allow for a conservative estimate of the load carrying capacity

of the structure. In addition, the sensitivity of the load carrying capacity with respect to

changes in the interface properties (i.e. strength and critical energy release rate) can be

assessed. Once the size of the critical initial delamination and the delamination load are

determined, the entire delamination process and the corresponding non–linear structural

response can be predicted by a non–linear FEM analysis.

Two examples are investigated in Section 3.3, delamination inside a curved laminate and

delamination emerging from a stress singularity at a corner in a Double–Lap–Shear (DLS)

test specimen. For verification of the proposed approach CZE are used. All FEM analyses

are carried out by means of the FEM program ABAQUS.

3.1 Strength/Energy Approach

In the following, an approach is presented which combines a strength criterion that predicts

delamination initiation and an energy criterion that predicts the onset of delamination

propagation. Here, the Puck FPF criterion and the VCCT are employed for this purpose.

However, it should be noted that any strength criterion can be used which is suitable for

predicting interface failure. In [72], for example, a quadratic strength criterion is used for

the prediction of the failure of the interface between two plies. For predicting delamination

propagation any fracture criterion suitable for this purpose can be used.

3.1.1 Puck First Ply Failure Criterion

The Puck FPF criterion is a local failure criterion for triaxial stress states for FRP lam-

inates. In the following a brief description of this criterion is given, for a more detailed
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discussion see [54, 52, 63]. A general introduction concerning failure criteria for FRP lam-

inates is given in [66].

The Puck FPF criterion evaluates the stresses at the ply level and is suitable for plies made

of unidirectional continuous fiber reinforced polymers. The criterion allows to distinguish

between fiber failure and several modes of matrix dominated failure. For the prediction of

fiber failure a maximum stress criterion is utilized. For the prediction of matrix dominated

failure, Mohr’s fracture hypothesis for brittle materials is used which states that fracture

occurs in the plane with the lowest resistance against the tractions acting on that plane.

Depending on the predicted orientation of the fracture plane, different modes of matrix

dominated failure are distinguished. Delamination is considered as that matrix dominated

failure mode, for which the fracture plane is oriented parallel to the ply.

The Puck FPF criterion was implemented into ABAQUS as a post processing tool [63, 65].

It evaluates the stresses in each Gauss point of each element and predicts the spatial dis-

tribution of the load factor and the corresponding failure mode (i.e. fiber failure, matrix

failure, and delamination). The load factor is defined as the scalar value by which the

stress tensor needs to be multiplied to reach the failure stress state. Therefore, a load

factor being smaller than unity indicates that the failure load has been exceeded. The

Puck FPF criterion allows to find out whether or not delamination is the critical failure

mode for the considered problem.

3.1.2 Analysis Procedure

In the following the analysis procedure for the prediction of emergence of delaminations

is presented. As result of this procedure conservative estimates of the delamination load

and the load carrying capacity of the structure is obtained. The procedure is based on

the assumption that an initial delamination is formed at the lowest load for which the de-

lamination initiation and the delamination propagation criteria are fullfilled. The critical

initial delamination which fullfills both criteria is defined by the intersection of two curves
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in a load–delamination size diagram, one curve that defines delamination initiation and

one curve that defines delamination propagation. The way these curves are computed is

discussed in detail in the following.

A linear FEM analysis of the flaw free structure loaded by a mechanical load is performed

and the stresses are evaluated using the Puck FPF criterion. From this analysis the spatial

distributions of the load factor and the corresponding failure modes are obtained. The

FPF load of the structure is computed by scaling the applied load by the load factor at the

location most prone for failure. Note that only these cases are considered here, for which

the failure mode at the failure critical location is predicted to be delamination. The applied

load is scaled incrementally beyond the FPF load, leading to the prediction of a region

where the stresses exceed the strength of the interface. Initial delaminations with the sizes

of the overloaded interfacial region are assumed to form there. Considering various load

levels above the FPF load allows to derive a relation between the applied load and the size

of the initial delamination. The size of the delamination can be defined by its length or

by the square root of the delaminated area. This relation is called delamination initiation

curve; generic examples are shown in Fig. 3.1 (bold solid lines). Of course, the curves show

Figure 3.1: Generic examples of delamination initiation curves and delamination propaga-
tion curves.
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that the higher the load is, the larger is the size of the predicted initial delamination. The

entire delamination initiation curve can be derived by scaling the results of one single linear

FEM analysis.

Care has to be taken if an overloaded region is predicted at a free edge or a sharp notch.

Theoretically, stress singularities are present at such locations and the stresses computed

with conventional FEM depend on the mesh size. For the prediction of the overloaded

region the FEM mesh size has to be chosen sufficiently fine to ensure that the stresses at

the distal edge of the predicted overloaded region are well represented.

To determine which size of initial delamination is critical the VCCT is used. From the

results of the delamination initiation a series of initial delaminations of different sizes is

selected, introduced into the FEM model, and for each delamination the load required to

cause delamination propagation is computed. The relation between the size of the ini-

tial delamination and the load required to propagate it is called delamination propagation

curve, Fig. 3.1 (thick dashed lines). The slope of this curve provides information about

the stability of delamination growth. If the slope is positive an increase in the delami-

nation size leads to an increase in the load required to cause delamination propagation,

i.e. the load needs to be increased continuously to cause further delamination growth. This

growth process is stable and it is entirely controlled by the applied load. If the slope of

the delamination propagation curve is negative the growth process is unstable and not

controlled by the applied load. The generic delamination propagation curve in Fig. 3.1,

(left, dashed line) predicts stable growth for small delaminations and unstable growth for

large delaminations. The delamination propagation curve in Fig. 3.1, (right, dashed line)

predicts unstable growth for all delamination sizes.

The intersection of the delamination initiation curve and the delamination propagation

curve defines the initial delamination size. For this size the load required to fullfill the ini-

tiation and the propagation criteria is smallest. Hence, this delamination is called critical

initial delamination, the load at which such a delamination emerges is called delamination

load.

The load carrying capacity of the structure is equal to or greater than the delamination
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load, depending on the stability of delamination growth. In Fig. 3.1 (left) growth is stable

for the predicted delamination load, which means that the load has to be increased in order

to cause delamination growth. Thus, the load carrying capacity is higher than the delam-

ination load. In Fig. 3.1, (right) growth is predicted to be unstable. The critical initial

delamination will grow without any further load increase as soon as it emerges and the

load carrying capacity is equal to the delamination load. As a consequence, a conservative

estimate of the load carrying capacity of the structure is obtained from the critical initial

delamination (for further discussion see 3.3.1).

The proposed strength/energy approach allows to determine the size and the position of

the critical initial delamination as well as load at which delaminations emerge. Based on

these results the non–linear structural response caused by the delamination process can

predicted in a non–linear analysis. An FEM model with bonded surface conditions at the

location of the critical initial delamination is set up and loaded up to the delamination

load. Then the critical initial delamination is introduced by removing the bonding condi-

tions, and delamination growth is simulated using the delamination propagation capability

of the VCCT–tool provided by ABAQUS.

Several assumptions are made to derive the delamination initiation curve from the FEM

data which are summarized in the following. First, for the FPF analysis the stresses at the

Gauss points of the continuum elements are assessed instead of the stresses at the interface.

However, the interface tractions are continuous and the respective stress components at the

Gauss points are similar to the stress components at the interface provided that the stress

gradients are small. Second, for the prediction of the delamination initiation curve, the load

is increased beyond the FPF load without considering non–linear interface behavior. Third,

initial delaminations are introduced at locations for which the load factor is predicted to

be smaller than one. It is assumed that sufficient energy is available for the formation of

these initial delaminations (i.e. no energy criterion is employed to check this assumption).
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3.1.3 Sensitivity of the Predictions

The proposed strength/energy approach allows to study the sensitivity of the predicted

structural response with respect to a change of the interface properties. This allows to

evaluate the effects of uncertainties in interface properties on the predicted results. An

increase of the interface strength increases the load required to cause delamination initi-

ation and shifts the delamination initiation curve upwards (Fig. 3.1, thin solid lines). An

increase of the critical energy release rate increases the load required to cause delamination

propagation and shifts the delamination propagation curve upwards (Fig. 3.1, thin dashed

lines). In the generic example shown in Fig. 3.1 (left) an increase in the critical energy

release rate affects the delamination load much more than an increase in the interface

strength. The load carrying capacity is reached during the delamination growth process

and is determined by the critical energy release rate, but not by the interface strength.

Only changes of the critical energy release rate affect the load carrying capacity, whereas

changes in the interface strength hardly affect the behavior. In the generic example shown

in Fig. 3.1 (right) the load carrying capacity is equal to the delamination load and it is a

little more sensitive to a change in the interface strength than to a change in the critical

energy release rate.

3.2 Comparison to Cohesive Zone Elements

For verification of the proposed strength/energy approach CZE with linear shape functions

provided by ABAQUS are used. The non–linear constitutive behavior of the CZE is defined

by a piecewise linear traction–separation law, see Fig. 2.7. These elements are used within

a non–linear FEM analysis for simulation of emergence and growth of delaminations. For

the prediction of damage onset in the CZE a quadratic stress criterion is used, see [1]. For

the prediction of damage evolution the quadratic energy criterion given by Eq. (2.18) is

utilized.
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The same material properties used within the proposed strength energy approach are now

used to define the non–linear constitutive behavior of the CZE. Hence, the maximum

tractions of the CZE are equal to the interface strength (the same strength values are con-

sidered in the Puck criterion) and the energy release rate of the CZE is equal to the critical

energy release rate of the interface (the same rates are used for prediction of delamination

propagation by means of the VCCT).

3.3 Examples

3.3.1 Curved Laminate

The first example considered is an L–shaped structure made from a laminated composite.

Details concerning the geometry are shown in Fig. 3.2, all dimensions are given in mm.

The laminate consists of 15 plies of a unidirectional carbon fiber reinforced epoxy resin.

The plies are oriented in alternating 0◦ and 90◦ orientations, where the angle is measured

from the xy–plane (Fig. 3.2). The first and the last ply are oriented in 0◦–direction. The

displacements in x– and y–direction are fixed along the lower leg. The displacements are

coupled at the upper end of the left leg of the structure and a load (displacement or force)

in x–direction is applied. Material and interface properties are taken from the literature

[42], see Table 3.1. The Young’s modulus and the normal strength of such unidirectional

carbon fiber reinforced epoxy resin can be determined by uniaxial testing of single plies.

To determine the shear modulus and the shear strength of such a material laminates with

a +45◦/-45◦layup are tested in a uniaxial manner. Test procedures to determine such

properties are evaluated and standardized by ASTM and other national and international

standards organizations. An overview about methods to test mechanical properties of FRP

is given in [2]. Methods for determining critical energy release rates are briefly discussed

in 2.1.2.
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The material data is defined with respect to the local material coordinate system (l is the

fiber direction, q is the in–plane direction normal to the fibers and n is the out–of–ply

direction). Rll is the strength in fiber direction, Rqq is the in–plane strength normal to

the fiber direction, and Rlq is the in–plane shear strength. Strength values for tensile and

compressive loading are given. plq and pqn are parameters required for the definition of

the failure surface. Estimates for physically realistic values of these parameters for carbon

fiber reinforced epoxy resins are taken from [53]. fweak is called weakening factor for the

interface strength and it is defined as the ratio of the normal strength of the interface

between the plies and the in–plane normal strength of the plies in direction transverse to

the fibers. The weakening factor is used within the Puck criterion to consider the fact that

the interface strength might be smaller than strength of the ply in transverse direction.

Hence, the weakening factor allows to compute estimates of the interface strength values

from given ply strength values, see [52] for details.

The structure has a considerable length in z–direction, so that generalized plane strain

Figure 3.2: Geometry and boundary conditions of the curved, laminated structure.
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Table 3.1: Material and interface properties of plies made of a unidirectional carbon fiber
reinforced epoxy layerT300/976, data taken from [42] (∗ following Puck’s guidelines for
carbon fiber materials [53]).

Elastic constants

El Eq = En Glq = Gln νlq = νln νqn

139.3GPa 9.72GPa 5.59GPa 0.29 0.40

Coefficients of thermal expansion

αll αqq = αnn

0.41 10−6 K−1 36.0 10−6 K−1

Strength

Rll Rqq Rlq plq pqn fweak

tension 1517MPa 45MPa 107MPa 0.35 ∗ 0.27 ∗ 0.9 ∗

compression 1593MPa 253MPa 107MPa 0.3 ∗ 0.27 ∗ 0.9 ∗

Critical energy release rates

GIc GIIc

193 J/m2 455 J/m2

conditions are assumed. The structure is modeled using plane strain continuum elements

with linear shape functions. Each ply is represented by three elements over the ply thickness

and all element aspect ratios are close to unity.

Displacement Controlled Loading

A unit displacement is prescribed and a linear FEM analysis is conducted. The resulting

ply stresses are evaluated by means of the Puck criterion. In Fig. 3.3 the predicted spatial

distributions of the load factor (left) and the failure mode (right) are shown, indicating
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that the critical location is at the interface between ply five and ply six in the curved part

of the laminate. Due to the curvature of the structure high normal stresses in out–of–ply

direction are present in this region. The corresponding failure mode is delamination.

The delamination initiation curve is determined as described in Section 3.1.2. The re-

sult is shown in Fig. 3.4 (top, solid line) in a displacement–delamination length diagram.

The delamination initiation curve shows that for applied displacement loads smaller than

0.31mm no initial delamination is predicted. Above this load, a small increase in the ap-

plied displacement load leads to a considerable increase in the size of the predicted initial

delamination. The delamination propagation curve is determined as described in Section

3.1.2, the result is shown in Fig. 3.4 (top, dashed line). The curve has a negative slope,

indicating that delamination growth is unstable for all delamination sizes. The intersection

of the delamination initiation and the delamination propagation curve yields the delami-

nation load (0.315mm) and the size of the critical initial delamination (0.86mm). Since

delamination growth is predicted to be unstable, the load carrying capacity is equal to the

delamination load.

From the strength/energy approach the size and the location of the critical initial delami-

Figure 3.3: Puck FPF predictions of the curved, laminated structure loaded by a unit
displacement; load factor (left), failure mode (right).
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nation, as well as the delamination load, are known. Based on these results the non–linear

structural response caused by the delamination process is predicted by a non–linear FEM

analysis, Fig. 3.4 (bottom, solid line). The perfect structure is loaded and in point 1 the

FPF load is reached for the first time in a small region. In point 2, the delamination

load predicted above is reached and the critical initial delamination is introduced into the

model, while keeping the applied displacement load constant. This leads to a change of the

structural stiffness and to a reduction of the reaction force, point 3. Beyond point 3, still

Figure 3.4: Predicted emergence and growth of delaminations in the curved, laminated
structure loaded in displacement controlled manner; delamination initiation curve and de-
lamination propagation curve (top), structural responses predicted by the strength/energy
approach and by CZE (bottom).
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maintaining the same displacement load, unstable delamination growth takes place which

leads to a considerable increase in the size of the delamination. In point 4, delamination

growth changes from unstable to stable, hence, the prescribed displacement has to be in-

creased to cause further delamination growth. Between points 3 and 4 unstable growth

accompanied by dynamic effects takes place. These effects, however, are not considered in

the present analysis. Unstable delamination growth is discussed in detail in Chapter 4.

Finally, the sensitivity of the predicted delamination load with respect to changes of the in-

terface properties is discussed, following the argumentation presented in Section 3.1.3. An

increase of the interface strength shifts the delamination initiation curve in Fig. 3.4 (top)

to the right. An increase of the critical energy release rate shifts the delamination prop-

agation curve in the same direction. The slopes of these curves at their intersection show

that the predicted delamination load is much more sensitive to a change in the interface

strength than to a change in the critical energy release rate.

The assumption that the critical initial delamination provides conservative estimates of

the load carrying capacity is discussed in the following for displacement controlled loading

conditions. The same non–linear FEM analysis procedure as discussed in Fig. 3.4 is followed

for this purpose, but different sizes of initial delaminations are considered now. The non–

linear structural response caused by the delamination process is predicted for various sizes

of initial delaminations, see Fig. 3.5 (left). Comparison of the results will show that the

predicted critical size of the initial delamination leads indeed to conservative estimates of

the load carring capacity. The structure is loaded above the FPF load and an overloaded

region is predicted by the Puck FPF criterion (dots). An initial delamination is assumed

and introduced, while keeping the applied displacement load constant (stars). Growth of

the initial delaminations is simulated using the VCCT. For small initial delaminations a

load increase is required in order to start delamination growth (diamonds); large initial

delaminations grow as soon as they are introduced.

Taking all the predicted responses together, an envelope can be formed. Displacement

loads within this envelope do not cause delamination. To emphasize this, two sizes of initial
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delaminations, one that is smaller and one that is larger than the critical one are considered

in detail, see Fig. 3.5 (left). The small initial delamination is initiated at a load level below

the delamination load, but propagation is retarded and only starts at a load level above

the delamination load. Thus, the delamination load and the load carrying capacity would

be higher than the one predicted for the critical initial delamination. The large initial

delamination initiates at a load level above the delamination load and propagates as soon

as it is introduced. Again, the delamination load would be higher than the one predicted

in the case of the critical initial delamination. Thus, the critical initial delamination

provides conservative estimates of the delamination load and the load carrying capacity of

the structure.

Figure 3.5: Predicted structural response of the curved, laminated structure for several sizes
of initial delaminations; the critical initial delamination provides conservative estimates of
the load carrying capacity; displacement controlled loading (left), force controlled loading
(right).
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Verification of the Results

For verification of the structural response predicted by the strength/energy approach, an

alternative modeling technique is employed within the FEM framework. CZE are placed

in each interface of the laminated structure, the non–linear constitutive behavior of these

elements is discussed in Section 3.2. The thickness of the interface elements is 1µm, the to-

tal thickness of the structure remains unchanged. The piecewise linear traction–separation

law of the CZE, shown for mode I loading in Fig. 2.7, is described according to the material

data of the UD–layer presented in Table 3.1. The initial Young’s modulus of the CZE is

assumed to be equal to the Young’s modulus of the UD–layer in out–of–ply direction. Their

shear modulus is equal to the out–of–ply shear modulus Gqn. The critical normal interface

tractions of the CZE is equal to the tensile normal strength of the plies in direction normal

to the fibers, Rqq, times the weakening factor. The critical shear interface tractions is equal

to the shear strength of the plies, Rlq, times the weakening factor, fweak.

A non–linear FEM analysis is conducted and the resulting structural response is shown

in Fig. 3.4 (bottom, dashed line). Comparing the results obtained from the CZE to the

results predicted by the strength/energy approach shows reasonably good agreement con-

cerning the size as well as the location of the initial delamination, the delamination load,

the stability delamination growth process, and the load carrying capacity of the structure.

It is noted that the application of CZE requires a fine spatial discretization at the delam-

ination tip in order to represent the cohesive zone adequately. Furthermore, small load

increments are required to capture the damage process in the CZE. For the present exam-

ple the usage of CZE requires about ten times the computational time compared to the

proposed strength/energy approach.
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Force Controlled Loading

Loading of the curved laminate, Fig. 3.2, by a concentrated force is considered in the fol-

lowing. In Fig. 3.6 (left), the delamination initiation and delamination propagation curves

are shown for this load case in a force–delamination length diagram. Note that these curves

can be obtained from the results for displacement controlled loading by considering the

reaction force at the load introduction point in place of the displacement. The slope of the

delamination propagation curve shows that growth is unstable for all sizes of delaminations

considered. The intersection of the curves defines the length of the critical initial delam-

ination (0.825mm) and the delamination load (25.1N/mm) which is equal to the load

carrying capacity of the structure. The size of the critical initial delamination is slightly

smaller in force controlled loading than in displacement controlled loading. This can be

explained by the fact that the structural stiffness decreases with increasing delamination

size and thus the delamination propagation curve changes slightly. In Fig. 3.6 (right), the

non–linear structural response is shown. Up to the delamination load, the structural re-

Figure 3.6: Predicted emergence and growth of delaminations in the curved, laminated
structure loaded in force controlled manner; delamination initiation curve and delamination
propagation curve (left), structural response (right).
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sponse is linear. Beyond this load unstable delamination growth takes place.

The fact that the intersection of the delamination initiation and the delamination prop-

agation curve defines a critical initial delamination is cross checked in Fig. 3.5 (right) for

force controlled loading. The non–linear structural response is predicted for a set of initial

delaminations with different sizes. The responses form an envelope and forces below this

envelope do not cause delamination. So the critical initial delamination again provides

conservative estimates of the load carrying capacity of the structure.

3.3.2 Double–Lap–Shear Test Specimen

As second example, a Double–Lap–Shear (DLS) test specimen is analyzed. The DLS test

was introduced in [20] for the experimental determination of the interlaminar shear strength

of laminated composites. A discussion of the DLS test including a comparison of numerical

and experimental results is given in [51].

The structure analyzed here is made of 20 plies of a unidirectional carbon fiber reinforced

epoxy resin, all plies are oriented in the longitudinal direction of the specimen. Material

and interface properties are presented in Table 3.1. Details concerning the geometry of

the DLS specimen are shown in Fig. 3.7, the corners of the notch are modeled as perfectly

sharp. On the right hand side the displacements in x–direction are coupled and a load

in this direction is applied. Due to the symmetry with respect to geometry, loading, and

material, only the upper half of the structure is modeled. The structure has a considerable

width, so that plane strain conditions are considered. It is modeled using plane strain

continuum elements with linear shape functions. Overall, each ply is represented by four

elements through the ply thickness, except for the region near the corner of the notch of

the specimen where 64 elements per ply thickness are used. All element aspect ratios are

close to unity.
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Displacement Controlled Loading

A linear FEM analysis of the specimen loaded by a unit displacement load is conducted.

Within this analysis the stresses are computed and evaluated by means of the Puck FPF

criterion. The sharp corners at the notch lead to the theoretical prediction of stress sin-

gularities and it should be noted that the stress fields close to such corners cannot be

represented adequately by conventional FEM. However, the results for the elements close

to the notch are not relevant in the present approach. The predicted distribution of the

load factor and the failure mode are shown in Fig. 3.8 indicating that emergence of delam-

inations at the corner is the expected failure mode. The delamination initiation curve is

shown in Fig. 3.9 (top, solid line). Even for small loads an initial delamination is predicted

due to the stress singularity. If the latter were fully resolved the delamination initiation

curve would pass through the origin. The delamination propagation curve, Fig. 3.9 (top,

dashed line), shows a non–monotonous behavior; growth is stable for small delaminations

and unstable for larger ones. This behavior is attributed to the fact that for small ini-

tial delaminations the stress field caused by the corner is dominant, whereas for larger

initial delaminations the stress field caused by the delamination dominates. The size of

the critical initial delamination is 0.3mm and the applied displacement load giving rise to

delamination is 0.0205mm. Growth of the critical initial delamination is predicted to be

Figure 3.7: Geometry and boundary conditions of a Double–Lap–Shear test specimen.
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stable at first and changes to unstable growth when the delamination reaches a length of

0.45mm. The corresponding displacement load which is equal to the load carrying capac-

ity is 0.021mm. It should be noted that the difference between the delamination load and

the load carrying capacity is very small and would not be distinguishable in experimental

tests.

The structural response of the DLS test specimen caused by the delamination process is

shown in Fig. 3.9 (bottom). The specimen is loaded in displacement controlled manner and

in point 1 FPF is predicted for the first material point. Due to the stress singularity at

the corner the predicted FPF load is mesh dependent, which is not relevant for the present

approach. In point 2, the delamination load is reached and the critical initial delamination

is introduced into the FEM model. Keeping the prescribed delamination load constant, the

introduction of the initial delamination leads to a decrease of the structural stiffness and

causes a decrease of the reaction force, point 3. At this point, the VCCT tool is activated

and the displacement can be increased further because stable delamination growth takes

place. As the load carrying capacity is reached, point 4, the growth behavior changes to

unstable, and the delamination size increases considerably, point 5. At point 5 final failure

takes place and the structure breaks apart.

Figure 3.8: Puck FPF predictions of the DLS test specimen loaded in displacement con-
trolled manner; load factor (top), failure mode (bottom).
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An increase in one of the interface properties (i.e. strength or critical energy release rate)

shifts the delamination initiation or the delamination propagation curve in Fig. 3.9 (top) to

the right. The slopes of these curves at their intersection show that the predicted delami-

nation load is more sensitive to a change in the critical energy release rate than to a change

in the interface strength. The load carrying capacity of the structure is reached during

delamination growth and depends solely on the critical energy release rate. Although the

DLS test was designed to determine the interface strength of laminated composites, the

load carrying capacity of the DLS test specimen considered here is mainly determined by

the critical energy release rate of the interface.

Force Controlled Loading

In Fig. 3.10 (left), the delamination initiation and the delamination propagation curves for

force controlled loading are shown. The size of the critical initial delamination is 0.28mm

and is smaller than the critical initial delamination in displacement controlled loading. The

delamination load is 215N/mm. Delamination growth is predicted to be unstable for the

critical initial delamination Therefore, the load carrying capacity of the structure is equal

to the delamination load.

The non–linear structural response of the DLS test specimen for force controlled loading

is shown in Fig. 3.10 (right). A linear response is found before the delamination load is

reached, then the initial delamination is introduced and unstable growth takes place.

Verification of the Results

For verification of the predictions a non–linear FEM analysis employing CZE is carried

out. CZE are placed at interface that starts at the corner. The thickness of the CZE is

1µm, the total thickness of the structure remains unchanged. For definition of the non–

linear constitutive behavior of the CZE the material data presented in Table 3.1 is used,
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see Section 3.3.1 for details. The result of the analysis show that the mode mix within

each CZE changes considerably during damage evolution. However, the CZE available

in ABAQUS are based on the assumption that the mode mix does not change in the

considered element during damage evolution, i.e. the ratio between the normal and shear

separation is assumed to be constant as long as the considered element belongs to the

process zone (see discussion in Section 2.2.1). As a consequence delamination in the DLS

test specimen cannot be simulated satisfactorily with the CZE available in ABAQUS.

Figure 3.9: Predicted delamination growth in a DLS test specimen loaded in displace-
ment controlled manner; delamination initiation curve and delamination propagation curve
(top), structural response (bottom).
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3.4 Summary

A strength/energy approach for the prediction of emergence of delaminations in laminated

composite components is proposed. The approach can handle delaminations emerging in-

side a structure as well as delaminations emerging from free edges where stress singularities

are present. The Puck FPF criterion is utilized to evaluate delamination initiation and

delamination propagation is evaluated using the VCCT. The combination of an initiation

criterion and a propagation criterion provides conservative estimates of the size and the

location of the critical initial delamination, the delamination load, and the load carrying

capacity of the structure. Furthermore, the stability of the growth process and the sensi-

tivity of the load carrying capacity with respect to changes of interface properties can be

assessed. Once the critical initial delamination and the delamination load are found with

the proposed strength/energy approach the non–linear structural response caused by the

delamination process is predicted using non–linear FEM.

Two examples are investigated, emergence of delaminations inside a curved laminate and

Figure 3.10: Predicted delamination growth in a DLS test specimen loaded in force con-
trolled manner; delamination initiation curve and delamination propagation curve (left),
structural response (right).
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emergence of delaminations at a sharp corner in a DLS test specimen. For verification

of the predicted delamination and the predicted non–linear structural response, CZE are

utilized. For the curved laminate it is found that both methods predict the same structural

response but the proposed strength/energy approach is numerically much more efficient

and robust than the use of CZE. For the DLS test specimen delamination cannot be sim-

ulated satisfactorily with the CZE available in ABAQUS due to some implementation

details.
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Chapter 4

Growth of Delaminations with

Straight Fronts

Within the framework of FEM several methods for the prediction of delamination growth in

FRP laminates have been developed. Frequently used are VCCT and CZE. However, every

particular size and position of delaminations of interest have to be investigated separately

in a non–linear FEM analysis. This is numerically expensive and only specific information

about the particular size and position of the delamination considered in the FEM analysis

is obtained. Furthermore, numerical problems arise if unstable delamination growth takes

place.

To overcome these shortcomings a computationally efficient semi–analytical approach for

the prediction of delamination growth is proposed. It provides a complete picture of

a delamination problem in a given structure and offers systematic understanding of the

influence of size and position of a delamination on the growth, on the stability of the growth

process, and on the structural response. Within the proposed approach the energy release

rate is computed from the decrease of the potential energy of a structure effectuated by an

increase of the delaminated area. The potential energy is derived from the applied loads
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and the structural stiffness. The latter is computed in the present study by means of the

FEM but any other suitable numerical method can be used for this purpose. Structures

loaded by arbitrary combinations of concentrated or distributed forces, forces of inertia,

displacements, temperature, and moisture loads can be handled. Load cases where all

loads vary with the same frequency can be treated as well as load cases where some or all

load components are constant.

In order to show the application and the capabilities of the proposed approach delamination

in a curved laminate and delamination in a T–joint are investigated in detail.

4.1 Semi–Analytical Approach

In the following, a semi–analytical approach for the prediction of delamination growth in

structures loaded by quasi–static or cyclic loads is presented. First, equations are derived

that allow to compute the energy release rate for general load cases. Second, a Griffith–type

growth criterion is employed to predict the load required to cause quasi–static equilibrium

delamination growth as well as the stability of the growth process and the structural

response. Third, a Paris–type growth law is presented to predict delamination growth in

structures loaded by cyclic loads.

4.1.1 Energy Release Rate

The proposed semi–analytical approach can handle arbitrary combinations of mechanical,

temperature, and moisture loads. In the following three load cases are discussed in detail,

i.e. loading by a homogeneous temperature change and concentrated forces, loading by a

homogeneous temperature change and prescribed displacements, as well as loading by a

homogeneous temperature change, a concentrated force, and a prescribed displacement.
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Loading by Concentrated Forces

In Fig. 4.1 (left) a generic example of a structure loaded by a homogeneous temperature

change, two orthogonal, concentrated forces and a moment is shown. The total displace-

ment of the load introduction point is the sum of the elastic displacements, uel, and thermal

displacements, uth, and reads,




u1

u2

u3




=




C11 C12 C13

C12 C22 C23

C13 C23 C33







F1

F2

F3




︸ ︷︷ ︸
uel

+




α1

α2

α3




∆T

︸ ︷︷ ︸
uth

, (4.1)

where u = [u1, u2, u3]
T is the displacement vector of the load introduction point.

F = [F1, F2, F3]
T is the force vector acting at that point and C is the structural com-

pliance. α = [α1, α2, α3]
T is the vector of coefficients of thermal deformation of the

load introduction point caused by a homogeneous temperature change of 1K. ∆T is the

homogeneous temperature change with respect to the stress free state. The indices 1 and

2 refer to the components of the vectors in 1– and 2– direction, 3 refers to the rotational

Figure 4.1: Laminated composites with through–the–width delaminations loaded by a
homogeneous temperature change, prescribed displacements, and concentrated forces; de-
laminations described by one (left) or two (right) delamination coordinates; definition of
the rotation angle ϕ (right).
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component, respectively.

In the linear elastic range the strain energy of a structure is equal to the work performed

by the mechanical loads acting on the structure plus the strain energy caused by a homo-

geneous temperature change. The latter is caused by stacking together differently oriented

plies with orthotropic thermal expansion behavior. In the present load case the work

performed by the mechanical loads is equal to one half of the force acting on the load in-

troduction point times the elastic displacement of the load introduction point. The latter

is given in Eq.(4.1) and the strain energy reads,

Πint =
1

2

(
FT C F + γ ∆T 2

)
, (4.2)

where γ is a measure for the strain energy of the structure caused by a homogeneous

temperature change of 1K with respect to the stress free state.

For computing energy release rates by means of Eq. (2.12), the change of the potential

of external forces caused by an increase of delaminated area is required. The change of

the potential of external forces is defined as the negative work performed by the external

forces. For the present load case it is computed from the forces applied at the loading

point and the change of the total displacement of the loading point and reads,

∂Πext = −∂Wext = − FT ∂u . (4.3)

Integration of Eq. (4.3) for constant forces and consideration of the definition of the total

displacement of the loading point given in Eq. (4.1) yields an expression for the potential

of external forces,

Πext = −FT (C F + α ∆T ) + c . (4.4)

The constant, c, is not defined. However, only the change of the potential of external forces

is relevant for computation of energy release rates. By substitution of Eqs. (4.2) and (4.4)
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into Eq. (2.12) an expression for the energy release rate is obtained as,

G =
1

2

(
FT∂C

∂A
F

)
+ FT∂α

∂A
∆T − 1

2

(
∂γ

∂A
∆T 2

)
. (4.5)

The delaminated area, A, can be described by some delamination front coordinates ai.

For problems with through–the–width delaminations with straight delamination fronts

(i.e. problems that can be investigated by two–dimensional FEM models) the delaminated

area is entirely described by a limited number of delamination front coordinates. In Fig. 4.1

two generic examples of structures with through–the–width delaminations are shown where

one (left) and two (right) delamination coordinates are required to describe the delamina-

tion entirely. In structures with constant width the increase in delaminated area can be

expressed by the increase in the delamination coordinates. In the present study structures

of unit width are considered and the energy released is computed at each delamination

front as,

Gi =
1

2

(
FT∂C

∂ai
F

)
+ FT ∂α

∂ai
∆T − 1

2

(
∂γ

∂ai
∆T 2

)
. (4.6)

The proposed semi–analytical approach can be used for three–dimensional problems with

curved delamination fronts, but some approximations concerning the shape of the de-

lamination are required, to limit the number of delamination coordinates. Note that no

information about the local distribution of the energy release rate along the delamination

front is obtained in such cases.

The above equations are based on the assumption that the compliance is load independent.

In the case of closed delaminations this assumption is violated as friction may occur and

contact states may change. However, many delamination problems of practical relevance

have open delaminations and can be treated with the proposed semi–analytical approach.
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Loading by Prescribed Displacements

In a structure loaded by a homogeneous temperature change and a total prescribed dis-

placement the reaction force at the load introduction point is computed from the structural

stiffness and the elastic displacement of the load introduction point. The latter is computed

by means of the first term of Eq. (4.1) and the reaction force reads,

F = K (u − α ∆T ) , (4.7)

where the structural stiffness is defined as, K = C−1. The strain energy of the structure is

computed from the reaction force at the load introduction point, the elastic displacement of

the load introduction point, and the strain energy caused by a homogeneous temperature

change and reads,

Πint =
1

2

(
FTuel + γ ∆T 2

)
. (4.8)

Substitution of Eq. (4.7) in Eq. (4.8) yields an expression for the strain energy,

Πint =
1

2

(
uT K u + α

T K α ∆T 2 − 2uT K α ∆T + γ ∆T 2
)

. (4.9)

The potential of external forces is zero in case of displacement controlled loading [21].

By substitution of Eq. (4.9) in Eq. (2.12) an equation for the computation of the energy

released at delamination growth along delamination coordinate ai is obtained,

Gi = −1

2

(
(u − α∆T )T

(
∂K

∂ai
(u − α∆T ) − 2K

∂α

∂ai
∆T

)
+
∂γ

∂ai
∆T 2

)
. (4.10)

Loading by Forces and Displacements

If the structure is loaded by concentrated forces as well as prescribed displacements some

modifications of the above equations are required. This will be shown for an example with

a homogeneous temperature change, a prescribed displacement in 1–direction, a force in
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2–direction, and a zero moment in 3–direction, see Fig. 4.1 (right). The strain energy of

the structure is computed from the forces acting on the load introduction point, the elastic

displacement of the load introduction point, and the strain energy caused by a temperature

change and reads,

Πint =
1

2

(
uel,1 F1 + uel,2 F2 + γ∆T 2

)
. (4.11)

The force in 1–direction and the elastic displacement in 2–direction are derived in Eq.(4.1)

as function of u1 and F2 and the strain energy is computed as,

Πint =
1

2

{
(u1 − α1 ∆T )

u1 − C12 F2 − α1 ∆T

C11

+

+

(
C12 u1 − C2

12 F2

C11

+ C22 F2

)
F2 + γ ∆T 2

}
. (4.12)

For the present load case only the force in 2–direction contributes to the potential of

external forces and the work performed by this force during delamination growth is given

as,

∂Πext = − F2 ∂u2 . (4.13)

The total displacement of the load introduction point in 2–direction is computed by means

of Eq. (4.1) and the potential of external forces reads,

Πext = −F2

(
C12 u1 − C2

12 F2 − C12 α1 ∆T

C11

+ C22 F2 + α2 ∆T

)
. (4.14)

The potential energy of the structure is computed by summation of Eqs.(4.12) and (4.14).

To simplify notation this sum is written as,

Πint + Πext =
1

2
PTCgenP , (4.15)
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where P = [u1, F2, ∆T ]T is a generalized load vector and Cgen is a generalized compliance,

defined for the present load case as,

Cgen =




1
C11

−C12

C11
− α1

C11

−C12

C11

C2
12

C11
− C22

3 C12 α1

2 C11
− α2

− α1

C11

3 C12 α1

2 C11
− α2

α2
1

C11
+ γ




. (4.16)

Finally, the energy released at delamination growth along delamination coordinate ai is

computed as,

Gi = −1

2
PT ∂Cgen

∂ai
P . (4.17)

Equivalent equations can be derived for all admissible combinations of displacements,

forces, and temperature loads.

Loading in Arbitrary Directions

Equation (4.17) allows to compute energy release rates for structures loaded by vertical and

horizontal forces and displacements as shown in Fig. 4.1 (left). In order to handle arbitrary

loading directions an appropriate rotation transformation, T, is introduced. The angle,

ϕ, by which the local 12 load coordinate system is rotated with respect to the global xy

coordinate system is defined in Fig. 4.1 (right). The displacement vector, the force vector,

the vector of coefficients of thermal deformation, and the compliance written in terms of

the rotated coordinate system read

ũ = Tu F̃ = TF α̃ = Tα C̃ = TCT−1 . (4.18)

Substitution of α by α̃ and C by C̃ in Eq. (4.16) yields an expression for the computa-

tion of the generalized compliance, C̃gen, in terms of the rotated coordinate system. The

generalized load vector in the rotated coordinate system reads P̃ = [ũ1, F̃2, ∆T ]T and the
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energy release rate at each delamination front can be computed by means of Eq. (4.17).

Mode Mix

From Eq. (4.17) the total energy release rates at each delamination front is computed. For

conventional fiber reinforced polymers, however, the critical energy release rate depends

on the actual mode mix and, thus, for planar problems the individual mode I and mode II

energy release rates, GI and GII, respectively, are relevant. Therefore, a mode mix variable

is introduced, which allows to split the total energy release rate at each delamination front

into its mode I and mode II contributions as,

GI, i = (1 −mi) Gi ,

GII, i = mi Gi . (4.19)

The mode mix, mi, depends on the geometry considered and is a quadratic function with

respect to the applied load. Previous analyses [79] have shown that for conventional fiber

reinforced polymers the temperature load hardly affects the mode mix. Hence, the influence

of the temperature load is not considered here and the mode mix can be computed at each

delamination front as,

mi =
FT Mi F

Gi
, (4.20)

where Mi is named mode contribution. It is a symmetric matrix and its evaluation is

discussed in the next section. In case of displacement controlled loading or combinations

of force and displacement loads, the force acting at the load introduction point has to be

computed by means of Eq. (4.1) before Eq. (4.20) can be applied. An equivalent formulation

for the mode mix together with a verification is given in [37].
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Numerical Evaluation

So far, equations for the computation of energy release rates and their mode I and mode

II contributions have been presented. In order to perform these computations the compli-

ance, the coefficients of thermal deformation, the strain energy caused by a homogeneous

temperature change, and the mode contribution at each delamination front need to be de-

fined as functions of the delamination coordinates. In general cases analytical solutions for

these functions cannot be given, so that a numerical procedure is required. In the present

study the FEM package ABAQUS is employed for this purpose.

The space of delamination coordinates is discretized in a way that allows to describe allsizes

and positions of delaminations of interest. An FEM model parameterized in the delami-

nation coordinates is set up and a set of linearly independent load cases with temperature

changes, ∆T , and concentrated forces, F, is defined. For each delamination (i.e. for each

combination of delamination coordinates) an FEM model is generated and the total dis-

placement, u, of the load introduction point and the strain energy, Πint, are computed for

all load cases within a linear analysis. From the results the stiffness, C, and the coefficients

of thermal deformation, α, are evaluated by means of Eq. (4.1), the strain energy caused

by a temperature change, γ, is evaluated by means of Eq. (4.2). For the computation of

the mode contributions, Mi, the VCCT is utilized. The total energy release rate, its mode

II component, and the mode mix are computed for each delamination front for a set of

load cases and the mode contribution is derived according to Eq. (4.20).

An alternative way for the computation of the mode contributions, which does not require a

special tool, is mode–wise delamination closing. Kinematic coupling conditions are defined

for the translational degrees of freedom at the nodes behind the delamination tip, which

allow to constrain the relative displacements between them. The strain energy of the

structure is computed for four different sets of coupling conditions, shown in Fig. 4.2, and
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the mode mix can be computed in an approximative manner as,

mi =
1

2

(ΠII − Πopen) + (Πclosed − ΠI)

Πclosed − Πopen

, (4.21)

where Πopen is the strain energy of the structure for an open delamination front where no

coupling conditions are applied. ΠI and ΠII are the strain energies obtained if the rela-

tive mode I or mode II displacements between the nodes behind the delamination tip are

constrained, respectively. Πclosed is the strain energy obtained if both displacements are

constrained. Constraining of the relative mode I displacements causes also a change of

the relative mode II displacements and vice versa. Hence, mode wise delamination closing

allows only to compute the mode mix in an approximative manner.

This procedure is utilized at each delamination front to compute the mode mix for sev-

eral linearly independent load cases. From the results the mode contributions, Mi, are

computed by means of Eq. (4.20).

The generation of the FEM models, the FEM analyses, and the computation of the compli-

ance, the coefficient of thermal deformation, the strain caused by the temperature load, as

well as the mode contributions as functions of the delamination coordinates are conducted

within a fully automated procedure. The results of the procedure allow for a pointwise de-

Figure 4.2: Mode–wise delamination closing for computation of the actual mode mix.
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scription of the functions. Therefore, the difference quotients are computed instead of the

derivatives (i.e. ∂C
∂ai

⇒ ∆C

∆ai
). Due to this approximation incremental delamination growth

is treated, the size of the increment is equal to the incrementation in the delamination

coordinates ai chosen for discretization of the parameter space.

The compliance is a monotonic and continuous function with respect to the delamination

coordinates. Their discretization has to be chosen sufficiently fine to allow for a proper

approximation of the compliance as well as its first and second derivatives. Visual inspec-

tion of the functions’ graphs shows whether or not the approximation is satisfactory in the

entire range of delamination coordinates. If not, a finer discretization has to be used at

positions where the approximation is not sufficient.

The functions derived allow for computation of energy release rates only for discrete values

of the delamination coordinates. For intermediate delamination coordinates the energy

release rates are approximated by interpolation. This way energy release rates for delami-

nations described by any coordinate can be computed.

All the data generated by the automated procedure is stored in a database. Hence, en-

ergy release rates can be computed immediately by postprocessing of existing data for

all delaminations in the considered space of delamination coordinates for all load cases

discussed.

4.1.2 Quasi–Static Loading

According to Griffith a crack will grow if the energy released at delamination growth is equal

to or greater than the energy required to create new delaminated area, called critical energy

release rate. Using a quadratic criterion, Eq. (2.21), and the mode mix variable defined for

planar problems in Eq. (4.19), the critical energy release rate, Gc, i, at delamination front

ai reads, (
1

Gc, i

)2

=

(
1 −mi

GIc

)2

+

(
mi

GIIc

)2

. (4.22)
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Equations for the prediction of equilibrium delamination growth and the growth stability

for each delamination front are obtained by substituting of a by ai and Gc by Gc, i in

Eqs. (2.22) and (2.23). Note that Eq. (2.23) is valid only if equilibrium growth at a single

delamination front takes place. The stability condition, for the case that the equilibrium

growth condition, Eq. (2.22), is fullfilled for more than one delamination front, is discussed

in [9]. These stability conditions can be summarized by the intuitive result that equilibrium

delamination growth is stable if an increase in the applied load is required to increase the

size of the delamination.

For structures loaded by concentrated forces, the force, Feq, i, required to cause equilibrium

growth along delamination front ai is derived by substitution of Eq. (4.6) into Eq. (2.22)

and reads,

−1

2
(Feq, i)

T ∂C

∂ai
Feq, i − (Feq, i)

T ∂α

∂ai
∆T +

1

2

∂γ

∂ai
∆T 2 + Gc, i = 0 . (4.23)

For loading by prescribed displacements, the displacement, ueq, i, required to cause equi-

librium growth along delamination front ai is derived by substitution of Eq. (4.10) into

Eq. (2.22) and reads,

1

2

(
(ueq, i − α∆T )T

(
∂K

∂ai
(ueq, i − α∆T ) − 2K

∂α

∂ai
∆T

))
+

1

2

(
∂γ

∂ai
∆T 2

)
+ Gc, i = 0 .

(4.24)

For structures loaded by a combination of a displacement and a force, the generalized

equilibrium load, Peq, i, is derived for each delamination front from Eqs. (4.17) and (2.22)

as,

−1

2
(Peq, i)

T ∂ Cgen

∂ai
Peq, i + Gc, i = 0 . (4.25)

Delaminations will grow first at the highest loaded delamination front, leading to a change

of the corresponding delamination coordinate. For the grown delamination, again, the load

required to propagate it by one increment and the change in the corresponding delamination

coordinates is predicted. Repeating these considerations allows a pointwise description of
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the delamination growth process and the corresponding structural response.

4.1.3 Cyclic Loading

For the prediction of incremental delamination growth caused by cyclic loads Paris–type

growth laws have been proposed [25, 61, 15]. Incremental delamination growth, ∆acyc, is

determined by the maximum and minimum energy release rate that occurs during each

load cycle. In the follwing the growth law developed in [15] is considered where the growth

per load cycle is defined as,

∆acyc = gI

Eq GIc

R2
qq

A gI
I A

gII
II

[
U

(GI, max

GIc

+
GII, max

GIIc

)]bI gI+bII gII
+

+gII

Eq GIIc

R2
lq

A gI
I A

gII
II

[
U

(GI, max

GIc

+
GII, max

GIIc

)]bI gI+bII gII
,

gj =

Gj, max

Gj, c

GI, max

GIc
+

GII, max

GIIc

for j = I, II . (4.26)

Here, Eq is the Young’s modulus of the ply in transverse direction, Rqq is the ply transverse

tensile strength, Rlq is the in–plane shear strength, Gmin, Gmax are the minimum and max-

imum energy release rates, and GI, min, GI, max, GII, min, GII, max are their mode I and mode

II contributions. U is a function of Gmin

Gmax
,

GI, max

GIc
, and

GII, max

GIIc
the form of which depends on

whether or not there is shear reversal at the delamination front during each load cycle. In

the absence of shear reversal one set of shear cracks is formed ahead of the delamination

tip and all cracks are aligned in the same direction. For this case U is defined as,

U =

(
1 − Gmin

Gmax

) [
1 +

Gmin

Gmax

(
1 −

(GI, max

GIc

+
GII, max

GIIc

))]uI gI+uII gII

. (4.27)

If there is shear reversal, i.e. the mode II shear stresses ahead the of the delamination

tip change their sign during the load cycle, two sets of shear cracks with perpendicular
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directions are formed ahead of the crack tip and U reads,

U =
Gmin

Gmax

+

(GI, max

GIc

+
GII, max

GIIc

) (
1 − Gmin

Gmax

)gII

. (4.28)

The parameters AI, AII, bI, bII, uI, and uII depend on the actual material and have to be

determined by cyclic testing (for details see [15]).

Load cases where all loads vary with the same frequency can be treated as well as load

cases where some load components are constant. In the case that all load components

have the same phasing the minimum and the maximum mode I and mode II energy release

rates at each delamination front are directly computed by Eqs.(4.17) and (4.19) from the

minimum and the maximum loads that occur during one load cycle. In case that the

load components have different phasing some additional procedure is required to find the

minimum and the maximum energy release rate during each load cycle. Such cases are not

considered here.

The computed maximum and minimum energy release rates serve as input for Eqs. (4.26)

- (4.28) and incremental growth, ∆acyc, i, at each delamination front is obtained. For the

delamination increased in size, again the maximum and the minimum energy release rate

are computed. Repeating these considerations allows for a cycle by cycle analysis of the

growth process.

In problems with very high numbers of load cycles, however, a cycle by cycle analysis might

be computationally very expensive. In such problems a cycle jump strategy can be used.

The incremental growth ∆acyc, i is computed for a block of load cycles in an approximate

manner by linear scaling of the incremental growth predicted for one load cycle. This way

a ”block by block” analysis can be performed.
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Table 4.1: Material parameters for cyclic delamination growth in a transversely isotropic
carbon/epoxy UD–layer, T300/976, data taken from [15].

AI AII bI bII uI uII

0.16 0.13 18.0 5.3 -2.0 4.0

4.2 Examples

Two structures, a curved laminate and a T–joint, made of plies of a unidirectional carbon

fiber reinforced epoxy resin are analyzed. The elastic properties of the material and the

critical energy release rates are taken from [42] and are summarized in Table 3.1, material

data concerning cyclic delamination growth is taken from [15] and summarized in Table 4.1.

The geometry, the boundary conditions, and the layup of the curved laminate is shown

in Figs. 4.3. The orientation of the plies is defined with respect to the xy–plane. Both

structures analyzed are assumed to have a considerable width in z–direction and free edge

effects are not considered, so that generalized plane strain conditions are utilized. Loading

by homogeneous temperature changes superimposed with prescribed displacements and

concentrated forces is analyzed. The local load coordinates system (12–system) is rotated

with respect to the global coordinate system (xy–system) by the angle ϕ. For each structure

an FEM model parameterized in ai is set up using generalized plane strain elements with

linear shape functions and full integration.

4.2.1 Curved Laminate

For the curved laminate growth of delaminations located at the interface between plies

five and six, counting from the inside to the outside of the structure, is analyzed. The

delamination has two delamination fronts. Accordingly, it can grow in two directions in-

dependently and is entirely described by two delamination coordinates, a1, a2, see Fig. 4.3.

The coordinates are chosen in a way which allows to describe all delaminations of interest
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with two positive values. Note that a decrease in a1 or a2 is equal to an increase of the

delaminated area (i.e. ∂A
∂a1

< 0), hence, ∂ai has to be replaced by −∂a1 or −∂a2 in all

equations in Section 4.1.

For the FEM computations each ply is represented by three elements over the ply thickness

and all element aspect ratios are close to unity. Sixty discrete values of each delamination

coordinate in the range of 1.0mm to 9.0mm are chosen and all admissible combinations are

analyzed within a fully automated procedure. Admissible are all combinations of delami-

nation coordinates for which the sum of the coordinates (i.e. a1 + a2) is smaller than the

total length of the considered interface. In total 1900 delamination configurations are ana-

lyzed. The length of the delaminations described by the selected delamination coordinates

varies between 0.15mm and 10.2mm. The results allow for a pointwise description of the

stiffness, the coefficient of thermal deformation, the strain energy caused by a temperature

change, and the mode contributions as functions of the delamination coordinates.

Figure 4.3: Curved laminate with through–the–width delamination between ply five and
ply six; definition of the delamination coordinates, a1 and a2, as well as the applied load.
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Quasi–Static Loading

Equilibrium delamination growth can now be predicted for any load case by postprocessing

the data generated in the automated FEM procedure. First, equilibrium growth and its

stability are computed for all delaminations in the considered range of coordinates. Second,

the structural response is shown for selected delaminations.

In the following two load cases are investigated which allow for comparison of the growth

process and its stability under force and displacement controlled loading. At the load

introduction point a force or a displacement with variable magnitude by constant direction

ϕ = 206◦ is prescribed, in the orthogonal direction a zero force load is defined. These

loads are superimposed by a constant homogeneous temperature change of ∆T= -75K.

For the displacement load case the generalized load vector defined in Eq. (4.15) reads

P = [u1, 0, −75 K]T. The force load case reads ∆T= -75K, F = [F1, 0, 0]T.

The magnitude of the displacement and the magnitude of the force required to cause equi-

librium growth are computed for all delaminations in the considered range of coordinates by

applying Eqs. (4.23) and Eq. (4.25). Stability of the equilibrium states is derived according

to Eq. (2.23). The results are presented in Fig. 4.4 (left) in terms of the delamination coor-

dinates. Note that delaminations of the same length but different position lie on straight

lines with a slope of minus one. All coordinate combinations in the white region describe

delaminations which will grow in a stable manner in force and displacement controlled

loading. Delaminations described by coordinates in the light gray region will grow stably

in the displacement load case, but unstably in the force load case. The dark gray region

finally contains all coordinates that describe delaminations which will grow in an unstable

manner in both load cases (force and displacement controlled). These findings show that

growth stability depends on the loading conditions as well as on the delamination size and

its position.

In Fig. 4.4 (left) three starting delaminations are selected, one from each of the three sta-

bility regions. For these starting delaminations progressive equilibrium growth is predicted
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for both load cases and, of course, the results are identical. The black dots in Fig. 4.4 (left)

show the growth process in terms of the change in the delamination coordinates. Delami-

nation (A) grows first in direction a2, then in direction a1, and finally in both directions.

Delamination (B) and (C) grow first in direction a1 and direction a2, respectively, and then

in both directions. The figure shows that all three starting delaminations converge to the

same final delamination.

In Fig. 4.4 (right) the structural response is plotted in terms of the force in 1–direction,

F1, and the displacement of the load introduction point in 1–direction, u1. Note that

the curves do not start at the origin due to the constant temperature load applied. For

the small starting delamination (A) the predicted structural response is linear until the

growth load is reached (0.44mm or 31.9N), followed by unstable equilibrium delamination

growth. The equilibrium load decreases as the delamination size increases, leading to a

pronounced snap–back behavior of the structure. As soon as a certain delamination size is

Figure 4.4: Predictions for the curved laminate loaded by a constant homogeneous tem-
perature change superimposed by a quasi–static force or displacement load; stability of
the growth process expressed in terms of the delamination coordinates (left); structural
response for three selected delaminations (right).
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reached growth becomes stable and a load increase is required to propagate the delamina-

tion further. Note that such force–displacement curves can only be realized theoretically,

in structural experiments unstable delamination growth, including dynamic effects, would

take place, as indicated by the dashed lines for monotonously increasing displacement and

force loads. For delamination (B) the predicted structural response shows that growth is

stable under displacement controlled loading but would be unstable under force controlled

loading. These findings correspond to the predicted stability shown in Fig. 4.4. For the

third starting delamination (C) delamination growth is predicted to start at a load of about

0.2mm or 11.3N and growth is stable for force and displacement controlled loading.

Next, the most detrimental position of a delamination of some given size but undeter-

mined location is analyzed. The most detrimental position is the one for which the load

required to propagate the delamination is smallest. The force and the displacement load

cases discussed above are considered. The equilibrium growth loads for all delamination

configurations are computed and for each delamination size the minimum load is taken.

The results are shown in Fig. 4.5 in terms of the delamination size and the minimum force

and the minimum displacement required to propagate the delamination. The difference

among these curves is caused by the fact that the compliance of the structure depends on

the size and the position of the delamination. For small delaminations the results show that

the smaller the delamination is the higher is the load required to propagate it. This trend

is reversed for large delaminations. Here the load required to propagate the delamination

increases with increasing delamination size. These finding coincides with the predicted

snap–back behavior, Fig. 4.4 (right), where for small delaminations the equilibrium growth

load decreases whereas for large delaminations the growth load increases for increasing

delamination size.

As an example a delamination of length 2.0mm is selected and the load required to prop-

agate it, if it lies in its most detrimental position, is predicted to be 0.215mm or 14.2N,

respectively. These findings allow a fast and easy interpretation of the results of non–

destructive testing procedures. Assuming that a delamination smaller than the resolution
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of the inspection method exists somewhere in the interface, the minimum load carrying

capacity of the structure can be assessed directly from Fig. 4.5.

Cyclic Loading

In the following incremental delamination growth in the curved structure caused by a

cyclic load is analyzed. The applied load is similar to the force load case discussed before.

Now the magnitude of the force is cycled between F1= 1N and F1= 8N, its direction

(ϕ = 206◦) and the temperature change (∆T = −75K) are kept as before. As example

a starting delamination with a length of 3mm (a1= 3.1mm, a2= 3.3mm) is considered

and incremental delamination growth is predicted by postprocessing of the data generated

within the fully automated FEM procedure.

The results, Fig. 4.6, show that at about 5000 load cycles considerable growth in direction

a1 starts. At about 107 load cycles also some growth in direction a2 can be observed. Note

that this example was chosen to show the capabilities of the semi–analytical approach, the

Figure 4.5: Predictions for the curved laminate loaded by a constant homogeneous temper-
ature change superimposed by a quasi–static force or displacement load; minimum force
and displacement load required to propagate delaminations of certain size at their most
detrimental position.
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material data was not verified for such high numbers of load cycles.

Finally, the most detrimental position of delaminations under cyclic loading is analyzed.

The most detrimental position of a delamination of some given size is the one for which the

predicted final delamination size is largest. The cyclic load discussed before is applied. For

all delamination configurations incremental growth is predicted and the final delamination

lengths are computed for various numbers of load cycles. From the results the maximum

final length is selected for each initial delamination size.

In Fig. 4.7 the results are shown in terms of the initial delamination length and the final

delamination length for different numbers of load cycles. The shape of the predicted

curves is due to the fact that delaminations in the curvature of the structure grow fast

and delaminations in the straight parts of the structure grow slow. The results show that

for about 100 load cycles hardly any growth takes place, the final delamination length is

almost identical to the size of the starting delamination. For 104 load cycles considerable

Figure 4.6: Predicted incremental delamination growth for the curved laminate loaded by
a constant homogeneous temperature change superimposed by a cyclic force.
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growth is observed for delaminations larger than 2.5mm.

These findings allow now to predict the maximum allowable number of load cycles. As

an example it is assumed that the inspection method applied can detect delaminations

larger than 3mm (i.e. initial delaminations of 3mm might exist anywhere in the interface)

and that the maximum allowable delamination length is 5mm. Figure 4.7 shows that

the maximum allowable size is reached after about 104 load cycles, hence, at least all 104

load cycles an inspection is required. This way the selection of inspection intervals can be

assisted.

Figure 4.7: Predictions for the curved laminate loaded by a constant homogeneous tem-
perature change superimposed by a cyclic force; maximum final delamination length for
delaminations of certain size at their most detrimental position after N load cycles.
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4.2.2 T–Joint

Delaminations emerging from the cavity in the center of the T–joint (Fig. 4.8), which is

not filled with resin are analyzed. The T–joint is composed of two flanges and a flat plate.

The delaminations can grow independently in three directions, so that three delamination

coordinates a1, a2, and a3 are required to describe the delamination. An FEM model of the

T–joint is set up where each ply is represented by two elements over the ply thickness and

all element aspect ratios are close to unity. For each delamination coordinate, a1 and a2, 19

discrete values in the range of 0.0mm to 9.0mm and 17 discrete values of the delamination

coordinate a3 in the range of 0.0mm to 8.5mm are chosen, i.e. in total 6137 delamination

Figure 4.8: T–joint with through–the–width delamination; definition of the delamination
coordinates, a1, a2, and a3 and the applied load.
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configurations are analyzed.

Quasi–Static Loading

Two quasi–static load cases are selected which allow for a comparison of the stability of the

growth process under force and displacement controlled loading. Loading in vertical direc-

tion by a prescribed displacement, u2, and loading in vertical direction by a concentrated

force, F2, is analyzed. The load coordinate system is oriented in direction of the global

coordinate system (ϕ = 0◦). Both loads are superimposed by a homogeneous temperature

change ∆T = −75 K.

For each delamination the load required to cause equilibrium delamination growth and its

stability are computed for both load cases. The predicted stability of the growth process is

shown in Fig. 4.9. The considered load cases are symmetric with respect to the yz–plane,

Figure 4.9: Predictions for the T–joint loaded by a constant homogeneous temperature
change superimposed by a quasi–static force or displacement load; stability of the growth
process expressed in terms of the delamination coordinates (left); structural response
(right).
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hence the results are symmetric, i.e. a1 = a2, and the stability of the growth process is

plotted in terms of two coordinates, a1 and a3. Delamination described by coordinates

in the dark–gray region will grow in an unstable way under force and displacement con-

trolled loading, delaminations described by coordinates in the light–gray region will grow

in an unstable way under force controlled loading but stably under displacement controlled

loading. All delaminations described by coordinates combinations in the white region will

grow in a stable manner irrespective of the load type (force or displacement).

The cavity in the center of the T–joint is selected as starting delamination and equilibrium

growth is predicted for force and displacement controlled loading and, of course, the results

are identical. The growth process in terms of the change in the delamination coordinates

is plotted as a dotted line in Fig. 4.9 (left). It shows that the delamination will grow first

in direction a3, followed by simultaneous growth along a1 and a2. The structural response

caused by equilibrium growth is shown in Fig. 4.9 (right). The structural response is linear

until the delamination growth load is reached (u1= 0.11mm or F2= 37.5N), followed by

stable growth where the applied load has to be increased in order to propagate the delam-

ination. At a load level of about 0.23mm or 49.7N unstable growth in direction a1 and

a2 starts, which again changes to stable growth as soon as a certain delamination size is

reached.

Cyclic Loading

Finally the T–joint is loaded by a cyclic load and incremental growth of the delamination

emerging from the cavity is analyzed. The load coordinate system is rotated by an angle

ϕ = 80◦ and a displacement in 1–direction and a zero force in 2–direction are applied. The

prescribed displacement is cycled between 0.05mm and 0.13mm. This load is superim-

posed by a constant and homogeneous temperature change of ∆T = −75 K.

Incremental delamination growth is predicted and the result, Fig. 4.10, shows that the

growth rate is different at each delamination front and considerably changes as the delam-
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ination advances. Due to the fact that the considered cyclic load is not symmetric the

growth rate is higher in direction a2 than a1.

4.3 Summary

A computationally efficient semi–analytical approach for prediction of delamination growth

in laminated composites loaded by combinations of displacements, forces, temperature

loads, and moisture loads is proposed. Load cases where all loads vary with the same

frequency can be treated as well as cases where some loads are constant. Based on the

principles of linear elastic fracture mechanics analytical equations for the computation of

the energy released at delamination growth and its mode I and mode II components are

derived. The coefficients of these equations are determined within a numerical procedure,

Figure 4.10: Predicted incremental delamination growth for the T–joint loaded by a con-
stant homogeneous temperature change superimposed by a cyclic displacement load.
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in the thesis the FEM is used for this purpose. The equations derived are combined with

the Griffith criterion to handle quasi–static loads and equilibrium delamination growth, the

stability of the growth process, and the non–linear structural response caused by progressive

delamination growth are predicted. For the analysis of structures loaded by cyclic loads

or by combinations of cyclic and constant loads a Paris–type growth law is employed and

incremental delamination growth is predicted. Furthermore, the most detrimental position

of a delamination of given size but unknown location is determined. This permits for fast

interpretation of results from non–destructive testing.

The proposed approach offers a complete picture of delamination problems, and provides a

systematic and general understanding of the influence of size and position of a delamination

on the load carring capacity, the stability of the growth process, the structural response,

as well as on the cyclic growth rate.

In order to show the application and the capability of the proposed approach, delamination

growth in an L–shaped laminate and in a T–joint is analyzed in detail. The results show

that for both structures the stability of the growth process depends on the delamination

size and that in case of quasi–static loading a pronounced structural snap back behavior

is found.
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Chapter 5

Growth of Delaminations with

Curved Fronts

In the previous chapter, a semi–analytical approach for the prediction of growth of through–

the–width delaminations with straight delamination fronts was presented. Growth of such

through–the–with delaminations can be predicted by means of two–dimensional models

using plane strain or plane stress assumption. Hence, the delamination front reduces to a

point and questions concerning the shape of the delamination front do not arise. In the

following, growth of delaminations with curved fronts is studied. The investigation of such

problems, generally, requires three–dimensional models.

Within the FEM the VCCT can be used to compute energy release rates along curved

delamination fronts. For this purpose meshes that allow for a smooth approximation of

the delamination front are desired. Furthermore, the mesh needs to be locally orthogonal

to the delamination front and the size of the elements ahead and behind the front should

be approximately the same. However, the VCCT is not well suited for the simulation of

consecutive growth of such delaminations. Following the principles of the VCCT a delam-

ination will grow by an increment equal to the element length at nodes where the growth
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criterion is met. As the growth condition is, typically, not fullfilled along the entire delam-

ination front a front with kinks is obtained and growth is no longer self similar. At such

kinks the energy release cannot be computed properly by means of the VCCT since the

local orientation of the delamination front is not defined there. For a detailed discussion

of the limitations of the VCCT see Chapter 2 and [35, 39].

To overcome this problem, moving mesh techniques have been proposed [60, 85, 86]. The

growth criterion is evaluated by means of the VCCT and all nodes at the delamination front

for which the growth criterion is satisfied are moved by a certain distance in direction of

the bonded region. The new nodal coordinates are used to create a new, orthogonal mesh

with a smooth delamination front and the analysis is repeated. These moving mesh tech-

niques are numerically expensive, as the distance the delamination front advances needs

to be small compared to the total delamination size. Furthermore, the achievement of

convergence is tricky if unstable delamination growth takes place.

An alternative way for the simulation of consecutive delamination growth within the FEM

is the usage of CZE. These elements can handle curved delamination fronts. Their use,

however, is numerically expensive, as very fine meshes and small load increments are re-

quired to adequately represent the fracture process zone and the damage evolution within

each element (see Chapter 2).

In the following a numerically efficient approach, employing the FEM and the VCCT, for

the prediction of consecutive growth of delaminations with curved fronts is presented. Pos-

sible shapes of the delamination front are predefined and a delamination growth criterion

for the entire delamination front is formulated. The proposed method ensures smooth

delamination fronts during the entire growth process.
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5.1 Total Delamination Front Criterion

According to Griffith a delamination will grow if the energy released is equal to or greater

than the energy required to create new delaminated area, see Eq.(2.20). In FEM analy-

ses employing the conventional VCCT this criterion is evaluated at each node along the

delamination front and at nodes where it is satisfied growth is predicted to occur. In the

proposed method growth along the entire front is considered instead of predicting growth

at individual points. Possible shapes of the new, advanced delamination front are chosen

to be continuous, smooth, and geometrically compatible with respect to the current de-

lamination front. Details concerning the way the shapes are selected including a quality

check are discussed in the next sections.

In Fig. 5.1 (left) a generic example of a current delamination front with three geometrically

compatible, advanced delamination fronts is shown. The delamination will grow from its

current front to any of the advanced fronts, if

λ2

∑N

i=1 GiAi∑N

i=1 Gc, i Ai
= 1 , (5.1)

Figure 5.1: Advanced delamination fronts geometrically compatible with the current de-
lamination front; area associated to node i for delamination progress (left); delamination
shapes described by two (center) and three (right) delamination coordinates.
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where Gi is the energy release rate at node i. It is computed together with the mode I,

mode II, and mode III components for all nodes along the delamination front by means

of the VCCT within a linear FEM analysis for a prescribed loading scenario. N is the

total number of nodes along the delamination front. Ai is the area associated to each node

for delamination progress, which is defined by the current and the advanced delamination

front, see Fig. 5.1 for an example. Note that Ai depends on the shape of the advanced

delamination front. λ is the load factor by which the magnitude of the prescribed loading

scenario has to be increased to propagate the delamination from the current delamination

front to the advanced front. The load factor is computed for each advanced delamination

front individually. Due to the fact that the energy release rate is a quadratic function of

the applied load the square of the load factor is used in Eq. (5.1). Gc, i is the critical energy

release rate at node i, which depends on the critical energy release rate for pure mode

I, mode II, and mode III loading as well as on the actual mode mix. Here a quadratic

criterion is used to take the mode interaction into account and the critical energy release

rate at node i is defined following Eq. (2.21).

The proposed approach is based on the assumption that the structural compliance is inde-

pendent of the load. Hence, the energy release rate is a quadratic function of the applied

load. In the case of closed delaminations this assumption is violated as friction may occur

and contact states may change. However, many delamination problems of practical rele-

vance have open delaminations and can be treated with the proposed total delamination

front criterion.

5.1.1 Numerical Evaluation

For simulation of consecutive delamination growth it is assumed that the shape of the

delamination front is described by a number of delamination coordinates ai. In Fig. 5.1

two generic examples are shown; circular delamination fronts (middle) described by two

delamination coordinates (the radius, a1, and the center of the circle, a2) and elliptical
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delamination fronts (right) described by three delamination coordinates (the major axis,

a1, minor axis, a2, and the center of the ellipse, a3). Advanced delamination fronts are

obtained by proper variation of the delamination coordinates. Note that the delamination

size can never decrease. As a consequence all points of the advanced delamination front

needs to be at or ahead of the position of the current delamination front. All advanced

delamination fronts that fullfill this requirement are geometrically compatible with respect

to the current one.

For the prediction of consecutive delamination growth a suitable number of delamination

front coordinates has to be chosen to describe the shape of the delamination front. Dis-

crecte values of these delamination coordinates are then selected in a range that allows to

describe all delaminations of interest. All combinations of these coordinates describe pos-

sible shapes of the delamination front. Consecutive growth is now predicted by selecting

one shape after the other out of all predefined shapes.

For the computation of the energy release rate an FEM model parametrized in the de-

lamination coordinates is set up using the FEM package ABAQUS. Discrete values of the

delamination coordinates are chosen, and for each feasible combination of delamination

coordinates an FEM model is generated. The meshes of these models allow for a smooth

approximation of the delamination front and are locally orthogonal to the delamination

front. The structural stiffness and the energy release rates as well as its mode I, mode

II, and mode III components at all nodes along the delamination front are computed for

all shapes within a series of linear analyses. The generation of the FEM models and all

computations are done within a fully automated procedure and the results are stored in

a database. Hence, all delamination fronts described by the choosen delamination coordi-

nates are analyzed and consecutive delamination growth is predicted by postprocessing of

existing data, using the data processing capability of MATLAB.

For a given current delamination Eq. (5.1) is applied for all geometrically compatible ad-

vanced delamination fronts analyzed. From the results the advanced front for which the

load factor is smallest is chosen as the new delamination front. The force and the displace-

ment required to propagate the delamination are computed from the load applied in the
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prescribed loading scenario, the load factor, and the structural stiffness. Repeating these

computations allows to predict incremental delamination growth and the corresponding

structural response. The size of the incrementation in delamination size is set by the

incrementation chosen for discretization of the delamination coordinates.

5.1.2 Quality Check of the Delamination Front

The proposed approach allows to predict consecutive delamination growth for a prescribed

loading scenario by selecting delamination fronts out of a set of predefined ones. Hence,

the shape of the delamination front is not a result. However, by considering various shapes

one which is well suited for describing the delamination front can be found, as shown in

the following.

In Eq. (5.1) only the global energy balance at delamination growth is considered. Locally

the energy release rate may be greater or smaller than the critical energy release rate.

However, the ratio between energy release rate and critical energy release rate at each

node, called energy ratio in the following, provides information whether or not the assumed

shape allows for a satisfying approximation of the delamination front. First, the energy

ratios are normalized by their mean value and plotted along the delamination front for

visual inspection. In sections where the normalized energy ratio is greater than unity,

delamination growth is underpredicted. In sections where the normalized energy ratio is

smaller than unity, delamination growth is overpredicted. A proper description of the

shape of the delamination front is found if the normalized energy ratios are equal to unity,

or close to unity, along the entire delamination front.

Second, the standard deviation of the normalized energy ratios,

s =
N

∑N

i=1
Gi

Gc, i

√√√√ 1

N

N∑

i=1

( Gi
Gc, i

− 1

)2

, (5.2)
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is defined and used to compare individual shapes of the delamination front. The smaller

the standard deviation is the better is the description of the shape of the delaminated

front. A proper description of the delamination front is found if the standard deviation is

close to zero.

5.2 Examples

Consecutive delamination growth is analyzed in a laminated plate and in a curved laminate,

both made of plies of a carbon fiber reinforced epoxy resin. Material data and interface

properties are taken from [15, 42] and are summarized in Table 3.1. For the considered

material no reliable experimental data for the critical energy release rate for mode III is

available. Hence, it is assumed that the critical energy release rate for mode III and mode

II are equal (i.e.GIIIc = GIIc).

5.2.1 Laminated Plate

Details concerning geometry and loading of the laminated plate are shown in Fig. 5.2. A

[+45◦10/ − 45◦10] layup is considered, the ply thickness is 0.1mm and the orientation of

the plies is measured with respect to the x–direction. The structure contains a circular

delamination at the midplane of the laminate with a radius of 20mm centered at one corner

of the plate. The upper sublaminate is loaded at this corner by a prescribed displacement

in z–direction, the lower sublaminate is fixed in z–direction at this corner. Appropriate

boundary conditions are applied to prohibit rigid body motions but without applying

constraints otherwise.

For the FEM computation each sublaminate is modeled using four–noded Krichhoff shell

elements with full integration, the element length is about 1mm. In the region which is

not yet delaminated the translational degrees of freedom between the nodes of the two
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sublaminates are coupled. Kinematic coupling conditions are applied which enforce the

translational displacements of the corresponding surfaces of the sublaminates in the yet

not delaminated area to be equal. The rotational degrees of freedom are not coupled as

discussed in Chapter 2. Note that such models do not allow to analyze free edge effects.

Shape of the Delamination Front

Various functions for the shape of the delamination front are considered and compared to

find out which one is best suited to describing the advanced delamination fronts.

The structure and the considered loading scenario considered (Fig. 5.2) are symmetric with

respect to the +45◦ line. Thus, all advanced delaminations have to be symmetric and only

symmetric shapes need to be considered. Four shapes are selected for investigation, see

Fig. 5.3, i.e. a straight line, a quarter circle centered at the corner of the plate, and a offset

Figure 5.2: Delamination in a laminated plate; definition of geometry, layup, and loading.
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circle as well as an ellipse centered somewhere on the symmetry line. The first two shapes

are entirely described by one delamination coordinate, the offset circle is described by two

delamination coordinates, and for description of the ellipse three delamination coordinates

are required.

All four shapes are assumed to pass through the same point at the symmetry line (black

star in Fig. 5.3). For the shapes described by one parameter (i.e. the quarter circle and the

straight line) the delamination is already entirely defined by this point. For each shape

an FEM model with a mesh locally orthogonal to the delamination front is set up and

the energy ratios are computed for all nodes along the delamination front within a linear

analysis.

For the shapes described by more than one parameter (i.e. the offset circle and the ellipse)

Figure 5.3: Delaminations in the laminated plate loaded by a vertical displacement load;
definition of the delamination coordinates; predicted normalized energy ratios and their
standard deviations.
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discrete values of the delamination coordinates are selected. All combinations of these

coordinates which describe shapes that pass through the specified point are investigated.

From the results the ones with the smallest standard deviation of the normalized energy

ratios are selected.

In Fig. 5.3 the normalized energy ratios are plotted for all nodes along the delamination

front for each of the four shapes. For comparison a ratio of unity is plotted as dashed line.

It should be noted that the energy ratios computed at the nodes at the free edges might

be questionable, e.g. due to free edge effects. For the quarter circle (left, top) the results

show that the normalized energy ratio is greater than unity at sections close to the free

edges and smaller than unity at sections in the middle of the plate. Based on this graph

one could guess that a less curved shape might allow for a better description of the delam-

ination front. For the straight line (right, top) the results show the opposite tendencies,

the normalized energy ratio is higher than unity in sections close to the middle and smaller

than unity in sections close to the free edge. Hence, one could guess that a shape between

a straight line and a quarter circle might be a good description of the delamination front.

For the offset circle (left, bottom) as well as for the ellipse (right, bottom) the normalized

energy ratios are close to unity along the entire delamination front. Hence, the offset circle

and the ellipse allow for a proper description of the shape of the delamination front in the

given configuration.

Comparison of the standard deviation of the normalized energy ratios for all four shapes

shows that the more delamination coordinates (i.e.more free variables) are used the better

is the description of the shape of the delamination front. However, the numerical effort for

evaluating all feasible combinations of delamination coordinates increases enormously if

the number of delamination coordinates is increased. In Fig. 5.4 the four shapes discussed

are plotted. A comparison between the offset circle and the ellipse shows only marginal

improvement of the standard deviation of the normalized energy ratios. Therefore, circu-

lar delamination fronts described by two delamination coordinates are considered in the

following for the analysis of consecutive delamination growth. Note that the shape best

suited for describing the delamination front may change during delamination growth.
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Consecutive Delamination Growth

Consecutive growth of the circular starting delamination with a radius of 20mm centered

at the corner as shown in Fig. 5.2 is now predicted. Based on the results derived in the

previous section it is assumed that during the entire growth process the shape of the delam-

ination is described by a circle centered somewhere on the symmetry line. For numerical

evaluation 50 discrete values of delamination coordinate a1 (Fig. 5.3 left bottom) in the

range between 20mm and 126mm and 80 discrete values of delamination coordinate a2 in

the range between 20mm and 178mm are selected. All combinations of these coordinates

which allow to describe a circle centered at the symmetry line are analyzed in an auto-

mated procedure. Note that the selected delamination coordinates describe shapes of the

delamination front with positive and negative curvature.

Consecutive growth is now predicted by postprocessing of the data generated. In Fig. 5.5

the starting delamination (dark gray region), some intermediate delaminations (dashed

lines), and the final delamination (gray region) are shown together with the standard devi-

ation of the normalized energy ratios computed for each delamination front. Comparison

of the shapes of the delamination fronts shows that their curvature is negative in the begin-

ning but changes to positive values as the delamination advances. The standard deviations

of the normalized energy release rates are small for all delaminations predicted. Hence, it

Figure 5.4: Comparison of the delamination shapes used to describe the delamination front
in the laminated plate.
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can be concluded that the delamination is properly described by the chosen delamination

shape (i.e. the offset circle). The variation in the standard deviation might be caused by

the incrementation chosen to discretize the delamination coordinates. Concerning the frac-

ture mode the analysis shows that at sections close to the symmetry line growth is mode

I dominated, while at sections close to the free edge growth is dominated by mode II and

mode III loading.

The predicted structural response is shown in Fig. 5.6 in terms of the prescribed displace-

ment and the reaction force at the loading point. The initial response is linear elastic and

at a load of about 4.8mm or 42N delamination growth starts. Further increase of the

prescribed displacement leads to stable delamination growth up to the point where the

delamination front connects the lateral corners of the plate. Somewhat beyond this point

delamination growth becomes unstable and the prescribed displacement required to cause

Figure 5.5: Predicted consecutive delamination growth in the laminated plate subject
to a vertical displacement load; starting delamination (dark gray region), intermediate
delamination fronts (dashed lines), final delamination (gray region); Standard deviation of
the normalized energy release rates, s, is given for each front.
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equilibrium delamination growth decreases as the size of the delamination increases. As

soon as a certain delamination size is reached growth becomes stable again for displace-

ment controlled loading. At the final point of the force–displacement curve only a small

not yet delaminated area remains and the analysis is stopped.

Comparison to other approaches

In the following consecutive growth of the circular starting delamination (Fig. 5.2) is pre-

dicted using the semi–analytical approach discussed in Chapter 4, an FEM model employ-

ing standard VCCT, and an FEM model employing CZE. The results are compared to the

predictions obtained by the proposed total delamination front criterion.

Figure 5.6: Predicted structural response of the plate subject to a vertical displacement
load.
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Semi–Analytical Approach The semi–analytical approach presented in the Chapter

4 can be used to predict the total energy released for delaminations with curved fronts

with some restrictions, i.e. no information about the local distribution of the energy release

rates, the mode mix, and the quality of the predefined shapes of the delamination front is

obtained. Nevertheless, the semi–analytical approach is used in the following for prediction

of consecutive growth of delamination with curved fronts to gain some understanding of

the advantages and disadvantages of the proposed methods.

As the mode mix cannot be determined for the current problem with the semi–analytical

approach some assumptions need to be made. At first, it is assumed that delamination

growth under pure mode I conditions takes place along the entire delamination front.

Hence, for the considered material the critical energy release rate takes its smallest possible

value and the predicted delamination growth loads are conservative estimates of the load

carrying capacity of the plate. Alternatively, it is assumed that the delamination grows in

pure mode II conditions, so that the critical energy release rate takes its greatest possible

value and an upper estimate of the load carring capacity is obtained.

The compliance for the prescribed loading scenario and its derivatives are directly derived

as functions of the delamination coordinates from the numerical data computed for the total

delamination front criterion. The load factors required to cause delamination propagation

with respect to delamination coordinates a1 and a2, respectively, are computed by means

of Eq. (4.10). Starting from the circular starting delamination incremental delamination

growth is predicted. For the pure mode I assumption the predicted delamination growth

load is smaller than the one predicted by the total delamination front criterion, for the

pure mode II assumption the growth load is greater than the one predicted by the total

delamination front criterion, see Fig. 5.8. This results are in good agreement with the fact

that in the analysis employing the total delamination front criterion the fracture mode mix

is shown to be in average right in between mode I and mode II.
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Virtual Crack Closure Technique The delamination propagation capability of the

VCCT–tool provided by ABAQUS is used to simulate consecutive delamination growth.

As discussed in the introduction some of the principles of the VCCT formulation are vio-

lated if consecutive growth of delaminations with curved fronts is simulated. Accordingly

the results are questionable and need to be interpreted with care.

A similar FEM model as disscuced before is used, now a simple tiling mesh with an element

length of 1mm is employed. The bonded nodes are chosen in a way that a zig–zag ap-

proximation of the smooth starting delamination front is obtained, shown in Fig. 5.7 (left).

Hence, the approximation of the delamination front is not smooth and the mesh is not or-

thogonal to the delamination front. Consecutive delamination growth is simulated within

a non–linear FEM analysis and the predicted structural response is shown in Fig. 5.8 in

terms of the displacement of the loading point and the reaction force at the loading point.

Comparison with the proposed total delamination front criterion shows that a smaller de-

lamination growth load is predicted. This is caused by the zig–zag approximation of the

smooth delamination front. For nodes that lie behind the smooth front a much greater

energy release rate is computed than for the nodes that lie ahead of this front. Hence,

Figure 5.7: Zig–zag approximation of the delamination front for the laminated plate; start-
ing delaminations (light gray region) and some advanced delaminations (dark gray region)
predicted by Virtual Crack Closure Technique (left) or cohesive zone elements (right) used;
shapes predicted by the proposed total delamination front criterion (dashed line).
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delamination growth is always predicted to take place at the nodes behind the smooth

front and the growth load predicted is smaller than the growth load predicted with a mesh

that allows for a smooth representation of the delamination front.

In Fig. 5.7 (left) intermediate delamination fronts predicted by standard VCCT (dark gray

region) and by the proposed approach (dashed line) are shown together with the circular

starting delamination. Comparison shows that almost the same intermediate shape of the

delamination front is predicted.

Cohesive Zone Elements An alternative approach for the prediction of consecutive

delamination growth within the FEM is the usage of CZE. An FEM model similar to the one

Figure 5.8: Predicted structural response of the plate subject to a vertical displacement
load; various methods applied.
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used for the proposed total delamination front criterion is employed. As discussed in [75] a

fine mesh is required that represents the damage zone adequately. Here an element length

of 0.25mm is used. To keep the numerical effort for the FEM analysis within reasonable

limits the plate is loaded only up to a total displacement of 8mm. Hence, the delamination

will propagate by some 10mm and it is sufficient to study a plate with a reduced size of

40mm times 40mm. In the bonded region CZE with a thickness of 0.02mm are defined to

connect the sublaminates and, again, the circular starting delamination is represented in

an approximative manner by a zig–zag line, see Fig. 5.7 (right). The stiffness of the CZE as

well as the damage onset and the damage evolution law are defined as discussed in Section

3.

Delamination growth is simulated within a non–linear FEM analysis and the corresponding

structural response is shown in Fig. 5.8. The predictions show that delamination growth

starts at about 45N. Investigating the damage evolution in selected elements in detail

shows that the mode mix in the CZE changes during damage evolution from mode II

dominated to mode I dominated. However, the CZE available in ABAQUS do not take

such changes into account and hence the total energy required to separate the sublaminates

is not computed correctly. This might be the reason why the delamination growth load

predicted by the model employing CZE is higher than the load computed with the proposed

approach.

Comparison of predicted shapes of some intermediate delamination front in Fig. 5.7 (right)

shows that the shape predicted by the proposed approach (dashed line) is slightly more

curved than the shape predicted by the model employing CZE (dark gray region).

5.2.2 Curved Laminate

Growth of a delamination in a curved laminate is investigated by employing the proposed

total delamination front criterion. Details concerning geometry, loading, and layup of the

laminate are shown in Fig. 5.9. The orientation of the plies is given with respect to the xy–
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plane. A delamination in the midplane of the layup is considered, i.e. the delamination is

located between two 0◦ plies and the laminate is split into two sublaminates with a thickness

of 1.05mm each. The structure is loaded on both legs with a prescribed displacement of

1mm in positive and negative x–direction, respectively. Hexahedral continuum elements

with linear shape functions and full integration are used. Each ply is represented by two

elements over the ply thickness and all element aspect ratios are close to unity. The

Figure 5.9: Delamination in a curved laminate; definition of geometry, layup, and load-
ing (top); elliptical shape of the delamination front plotted with respect to the unfolded
reference plane (bottom).
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geometry, the layup, and the loading are symmetric with respect to the yz–plane, thus,

only one half of the structure has to be modeled.

To simplify the definition of the shape of the delamination front and the presentation of

the results the unfolded symmetry plane is used as reference plane, see Fig. 5.9 (bottom).

Within this reference plane the shape of the delamination front is assumed to be described

by an ellipse centered at the edge. Hence, two delamination coordinates are required to

describe the delamination. In the following the magnitude of the major axis, a1, and the

minor axis, a2, are used for this purpose.

Consecutive Delamination Growth

An FEM model parametrized in the delamination coordinates is set up and 29 discrete val-

ues of delamination coordinate a1 in the range between 1mm and 200mm and 10 discrete

values of delamination coordinate a2 in the range between 1mm and 9mm are chosen.

For each combination of delamination coordinates an FEM model, with a mesh locally

orthogonal to the delamination front, is generated and the structural compliance as well

as the energy release rates at each node along the delamination front are computed within

a series of linear analyses.

A circular starting delamination with a diameter of 1mm is considered and consecutive de-

lamination growth is predicted. In Fig. 5.10 the starting delamination (dark gray region),

some intermediate delamination fronts (dashed lines), and the final delamination (gray

region) are shown for the curved laminate (top) and for the unfolded reference plane (bot-

tom). For reasons of clarity only a limited number of intermediate delamination fronts is

shown in the curved laminate. The results show that the delamination first grows in a1 and

a2 direction and a through–the–width delamination is formed. Further growth is taking

place mainly in a2 direction and the delamination fronts straightens out. The prediction

is stopped as the delamination coordinate a2 reaches a value of 9mm. Consideration of

greater values of the coordinate would result in delaminations that interact with the applied
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boundary conditions. The corresponding structural response is shown together with some

intermediate delaminations in Fig. 5.11. The predicted response is linear up to the point

where the delamination growth load is reached (5.8mm or 495N), followed by unstable

equilibrium growth. The delamination load decreases as the delamination size increases,

leading to a pronounced snap–back behavior of the structure. As soon as a through–the–

width delamination is formed growth becomes stable and a load increase is required to

propagate the delamination. Concerning the critical energy release rate, the results show

that in the beginning growth is mode I dominated but as soon as a through–the–width

Figure 5.10: Predicted consecutive delamination growth for the curved laminate subject
to a horizontal displacement load; starting delamination (dark gray region), intermediate
delamination fronts (dashed lines), final delamination (gray region).



CHAPTER 5. GROWTH OF DELAMINATIONS WITH CURVED FRONTS 101

delamination is formed growth is mode II dominated.

Quality Check of the Delamination Front

The next question to be answered is whether or not an ellipse centered at the free edge

allows for a proper description of the shape of the delamination fronts. In Fig. 5.12 the nor-

malized energy ratios are plotted along the delamination front for selected delaminations.

For comparison a ratio of unity is plotted as dashed line. Visual inspection of the results for

the circular starting delamination, Fig. 5.12 (top, left), shows that the normalized energy

ratio is close to unity along the entire front. The standard deviation of the normalized

energy ratio is small (s= 0.036). In Fig. 5.12 (top, right) the delamination front is shown

Figure 5.11: Predicted structural response for the curved laminate subject to a horizontal
displacement load.
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for a state just before a through–the–width delamination is formed. Here the normalized

energy ratio is greater than unity at sections where the delamination meets the free edge

and smaller than unity at the top. However, the standard deviation of the normalized

energy ratios is quite small (s=0.106). The distribution of the normalized energy ratios

suggests that the description of the shape improves, if the center of the ellipse is moved in

negative 2–direction. Similar results are found for the through–the–width delamination,

as shown in Fig. 5.12 (bottom, left). The results for a delamination front close to the final

delamination (Fig. 5.12, bottom, right) show that the normalized energy ratio is close to

unity along the entire front. To summarize these findings, it can be said that an ellipse

centered at the edge allows for a proper definition of the shape of the delamination front

during the entire growth process for the geometry studied in this section.

Figure 5.12: Predicted consecutive delamination growth in the curved laminate subject to
a horizontal displacement load; normalized energy ratios and their standard deviations for
selected delamination fronts.
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5.3 Summary

A total delamination front criterion for the prediction of consecutive growth of delam-

inations with curved fronts is proposed. Growth along the entire delamination front is

assumed to take place if the total energy released is equal to the total energy required

to create new delaminated area. Possible shapes of the advanced delamination fronts are

predefined and are prescribed by a number of delamination coordinates. They are assumed

to be continuous, smooth, and geometrically compatible with respect to the current de-

lamination. For computation of the growth load all shapes are analyzed within a fully

automated procedure employing the FEM. From all geometrically compatible shapes the

one for which the growth load is smallest is selected and incremental delamination growth

and the corresponding structural response are predicted. A “quality check” is developed to

assess whether or not an assumed shape of the delamination front is a good approximation.

This check allows to compare individual shapes and to improve them systematically. The

proposed total delamination front criterion allows to handle stable and unstable equilibrium

growth in a numerically efficient manner and provides systematic and general understand-

ing of delamination problems.

Delamination growth in a laminated plate and in a curved laminate are analyzed success-

fully. The delamination in the plate grows stably in the first part and in an unstable way in

the second part of the loading scenario. Comparison to results obtained by other methods

shows that the proposed approach is more accurate and computationally more efficient.

The results show that for the prediction of the delamination growth load it is essential to

take the fracture mode mix into account. For the curved laminate structural snap–back

behavior is found.
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Chapter 6

Computational and Experimental

Investigation

Emergence and growth of delaminations in an L–shaped FRP laminate loaded by quasi–

static loads is predicted computationally. The predictions are compared to results of ex-

perimental tests performed at the Polymer Competence Center Leoben GmbH (PCCL,

Austria). The specimens used for testing were produced by FACC AG (Ried, Austria).

To avoid the problem of interacting failure modes during experimental testing a specific

test setup is proposed that enforces load states for which delamination is the dominant

failure mechanism. First, emergence of delaminations in flawless specimens is predicted

and tested experimentally. Second, test specimens with initial delaminations of defined size

and location are considered and delamination growth and its stability are investigated.

For the prediction of emergence of delaminations the strength/energy approach presented

in Chapter 3 is employed. Delamination growth is predicted using the semi–analytical

approach presented in Chapter 4.
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Table 6.1: Material and interface data of plies made of Cycom R© 977–2–35%–12KHTA–
134–300 ; data provided by FACC AG (∗ Estimates following similar materials; ∗∗ following
Puck’s guidelines for carbon fiber materials [53]).

Elastic constants

El Eq = En Glq = Gln νlq = νln νqn

133GPa 9GPa 4.4GPa 0.35 ∗ 0.2857 ∗

Strength

Rll Rqq Rlq plq pqn fweak

tension 2104MPa 82MPa 103MPa 0.35 ∗∗ 0.27 ∗∗ 0.86

compression 1407MPa 249MPa 103MPa 0.3 ∗∗ 0.27 ∗∗ 0.86

Critical energy release rates

GIc GIIc

133.1 J/m2 458.8 J/m2

6.1 Test and Specimen Design

Delamination in an L–shaped structure build up by plies made of Cycom R© 977–2–35%–

12KHTA–134–300, which is a unidirectional carbon fiber reinforced epoxy resin with a

resin volume content of 35% and a weigth of 134 g

m2 , is investigated. The thickness of the

plies is 0.125mm. Their mechanical properties are provided by FACC AG and are given

in Table 6.1. For definition of the material parameters see Section 3.3.

The test specimens are produced by FACC AG. For the production an available hard

tool is used, so that the outer radius and the length of the legs of the specimen are

fixed. Only 0◦ and 90◦ plies are used and the prediction of emergence of delaminations is

simplified by grouping together a number of plies with the same orientation. These groups

of plies can be assumed to act like a single ply, so that the number of interfaces where

delamination might occur is reduced. Various layups, i.e. ply numbers and ply orientations,
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are analyzed using the proposed strength/energy approach. Based on the results obtained,

a symmetric [03/903/03/903/03]s layup with a total thickness of 3.75mm is selected for the

test specimens, i.e. three plies of the same orientation are grouped together and in total 30

plies are used. For this layup delamination is the predicted dominant failure mode and no

matrix or fiber failure is expected to occur. The dimensions of the proposed test specimen

and the loading device are shown in Fig. 6.1. The ply orientations are measured with

respect to the xy–plane. Similar test specimens were investigated in [43, 34] and are used

in a standard ASTM procedure [7] for determining the interlaminar out–of–plane strength

of plies of FRP.

For the production of the specimens a steel tool is used on the outside and a soft tool

(vaccum bag) is used on the inside of the specimens. The prepregs are placed between

Figure 6.1: Test design of the L–shaped curved laminate with a [03/903/03/903/03]s layup;
clamped in a loading device and a loading block glued on (dimensions in mm).
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these tools and are cured in an autoclave process. This way an L-shaped structure is

created which is some 300mm long. This structure is then cut into ten test specimens

with a width of 30mm each. In Fig. 6.1 the specimen is shown together with the proposed

loading device. The specimen is clamped in the loading device at the vertical leg; on the

horizontal leg a steel loading block is glued to the specimen and a displacement load in

vertical direction is applied. For the specimens with initial delaminations a through–the–

width non–adhesive Teflon strip is placed between plies nine and ten. The size and the

position of the strip are selected based on the results predicted by the semi–analytical

approach, see Section 6.4.1.

Some problems occurred during the production of the test specimens; the soft tool on the

inside could not hold the prepregs in place, so that the laminate shows a crimped surface

and its thickness is not constant. Varying fiber volume fractions and material properties

cannot be excluded. Nevertheless, it is not expected that the qualitative structural behavior

is affected.

6.2 Experimental Procedure

The production of the loading device and all experimental tests are done at the Polymer

Competence Center Leoben GmbH (PCCL, Austria). The experimental test setup is shown

in Fig. 6.2. The loading device with the specimen (see Fig. 6.2 (left)) is introduced into the

wedge–screw grips of a Zwick Z250 universal tensile–compression testing machine (Zwick

GmbH & Co. KG, Ulm, Germany) and the machine force and displacement are measured.

All tests were performed at a cross-head speed of 2 mm/min in a laboratory environment

of 23◦C and 50% relative humidity. In addition, to determine the local strain distribution,

optical full-field strain measurements are performed using the 3D image correlation pho-

togrammetry system ARAMIS (GOM, Braunschweig, Germany), see Fig. 6.2 (right). For

this purpose a stochastic dot pattern is applied on the surface of all specimens by using an
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aerosol spray. Prior to testing the system was calibrated with special calibration plates to

correct distortions of the lenses and to calibrate the position of the camera.

6.3 Crack Kinking

The semi–analytical approach proposed is based on the assumption that the delamination

grows along the interface between two plies. This is true for delaminations between two

0◦ plies where the delamination front is normal to the fiber orientation. In this case the

fibers would bridge the delamination if it grew into one of the plies. In the case of delam-

inations between 0◦ and 90◦ plies, where the delamination front is oriented parallel to the

fibers of the 90◦ ply, the delamination can grow into the 90◦ ply without any fiber bridging.

The question whether such delaminations grow along the interface or grow into the 90◦ ply

is discussed in the following.

For the prediction of kinking of a crack in an isotropic material various criteria have been

developed, see e.g. [24]. For mixed mode cracks where the mode I loading is dominant

Figure 6.2: Test specimen and loading device (left); experimental test set up (right).
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all these criteria lead to the prediction that the crack will kink by an angle ϕ which is

proportional to the negative ratio of the mode II stress intensity factor and the mode I

stress intensity factor. For a definition of the kink angle ϕ see Fig. 6.3. The mode I stress

intensity factor is always positive, so the sign of the kinking angle is solely determined

by the sign of the mode II stress intensity factor. The latter is proportional to the shear

stresses ahead of the crack tip along the ϕ = 0 line, so that the sign of the kinking angle

is determined by the sign of the shear stresses ahead of the crack tip. If the shear stresses

are positive the crack will kink with a negative angle, if the stresses are negative the crack

will kink with a positive angle.

The preceding considerations are valid for cracks in an isotropic material with constant

fracture toughness and cannot be directly applied to an interface crack. However, an

approximative prediction of the kinking tendency of interface cracks can be done following

[24]. It is assumed that the interface and the ply have the same fracture toughness and

that the delamination has already grown a bit into the 90◦ ply, see Fig. 6.3. The tip of the

delamination front can now be considered to be located within a homogeneous material

and the kinking criteria for homogeneous materials can be applied. If the kinking angle is

predicted to be negative the delamination will grow towards the 90◦/0◦ interface. As it will

not grow into the 0◦ ply it will grow along the interface. If the kinking angle is predicted

to be positive the delamination will grow into the 90◦ ply and maybe reach its opposite

Figure 6.3: Prediction of the direction of crack growth; definition of the kinking angle ϕ.
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interface.

It should be noted that the proposed procedure allows only for a rough estimate of the

direction in which a delamination tends to kink. For a more detailed analysis of delam-

ination kinking failure mechanisms on the length scale of the fiber diameter need to be

considered and the local distribution of the fibers has to be taken into account.

6.4 Results

6.4.1 Computational Predictions

Free edge effects are not expected to influence the overall structural response. Thus, a

two–dimensional generalized plane strain FEM model of the test specimen is set up. Each

ply is represented by three linear elements over the ply thickness and all element aspect

ratios are close to unity. Previous analyses [81] of similar curved laminates have shown

that residual stresses from the curing process hardly affect the delamination process. Such

stresses are, therefore, not considered here. The loading and the boundary conditions are

shown in Fig. 6.4. At the clamped part of the vertical leg the displacements in horizontal

and vertical directions are fixed. In the region to which the loading block is glued a rigid

coupling with the loading point is defined. The part of the steel loading device that is in

contact with the specimen is also modeled and frictionless contact is modeled.

Emergence of Delaminations

Emergence of delaminations is predicted using the strength–energy approach discussed in

detail in Chapter 3. A displacement of 2.4mm in vertical direction is applied and a ge-

ometrically non–linear FEM analysis is conducted. Concerning the contact between the

test specimen and the steel loading device the results show that the contact zone is very
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small and hardly changes during loading. In all further FEM analyses the displacement in

x–direction in the contact zone is, therefore, fixed and contact between the specimen and

the loading device is approximated this way.

The stresses computed within the FEM analysis are evaluated with the Puck FPF cri-

terion. The predicted load factor and failure mode are presented in Fig. 6.4, showing a

critically loaded region at the interface between plies nine and ten, counting from the inner

to the outer radius ([03/903/03/||/903/06/903/03/903/03] where || indicates the overloaded

interface). The expected failure mode is delamination, so that in the pristine structure an

initial delamination is assumed to form there.

By increasing the applied displacement beyond the FPF load the size of the assumed initial

delamination is increased as shown in Fig. 6.5 (top, delamination initiation curve). Onset

of growth of initial delaminations of various sizes is analyzed using the VCCT, yielding

the delamination propagation curve Fig. 6.5 (top). The intersection of these curves defines

Figure 6.4: Predicted load factor and failure mode in the L–shaped laminate.
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the critical initial delamination (0.6mm) and the load at which this delamination emerges

(u= 2.36mm).

Knowing the size and the location of the critical initial delamination as well as the de-

lamination load the non–linear structural response caused by the delamination process can

be predicted within a non–linear FEM analysis, Fig. 6.5 (bottom). The pristine structure

is loaded and in point 1 the predicted delamination load is reached. The critical initial

delamination is introduced, while keeping the applied displacement constant. This leads

to a change of the structural stiffness and to a reduction of the reaction force, point 2. Be-

yond point 2, still maintaining the same displacement load, unstable delamination growth

takes place which leads to a considerable increase of the delaminated area. In point 3

Figure 6.5: Predicted delamination process in the L–shaped laminate; delamination initi-
ation curve and delamination propagation curve (top), structural response (bottom).
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delamination growth changes from unstable to stable. Hence, the prescribed displacement

has to be increased to cause further delamination growth.

Between point 2 and point 3 unstable delamination growth takes place. Such growth might

accompanied by dynamic effects, but they are not considered in the present analysis and

the predicted structural response beyond point 3 is, therefore, only an approximation. In

point 4 a load factor smaller than unity is predicted in the outer part of the curved section

and the analysis is stopped. Delamination is predicted to occur there and the proposed

strength/energy approach can be used, of course, to predict the emergence of a second

delamination.

Growth of Existing Delaminations

So far, emergence of delaminations in an initially flawless structure was discussed, now

the structural response of specimens with initial through–the–width delaminations is pre-

dicted using the semi–analytical approach presented in Chapter 4. Specimens with an

initial delamination in the interface between plies nine and ten are considered; this inter-

face is chosen as it is the critical one in the flawless case. The FEM model described above

is parametrized in the delamination coordinates and the compliance as well as the mode

mix are computed for the entire parameter field of delamination coordinates. Based on the

data generated equilibrium delamination growth and its stability is predicted. Three initial

delaminations are selected as examples and for each one the structural response is shown

in terms of the force–displacement curve in Fig. 6.6. The delaminations are placed within

the interface at their most detrimental positions, i.e. positions where the load required to

propagate the delamination is smallest. For the small initial delamination with a length

of 1mm the structural response is linear until the delamination growth load (u= 1.75mm)

is reached. Then unstable equilibrium delamination growth takes place, the equilibrium

load decreases as the delamination size increases. As soon as a certain delamination size

is reached growth becomes stable and a load increase is required to propagate the delami-
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nation further. Such pronounced snap back behavior can only be realized theoretically, in

displacement–controlled experiments unstable delamination growth would take place as in-

dicated by the thin dashed line. For the intermediate initial delamination (3mm) growth is

stable under displacement controlled loading but would be unstable under force controlled

loading. For the large delamination (5mm) growth is stable for all loading conditions.

Crack Kinking

Kinking of the 3mm initial delamination is investigated. In Fig. 6.7 the shear stresses which

are relevant for delamination kinking, i.e.σln of the 0◦ ply and σqn of the 90◦ ply, are shown.

At the top delamination front the shear stresses are negative, thus the delamination will

kink with a positive angle and grow into the 90◦ ply. At the bottom delamination front the

shear stresses are positive and the delamination will kink with a negative angle and grow

again into the 90◦ ply. These predictions are based on criteria for kinking of a crack in an

Figure 6.6: Predicted structural response caused by equilibrium delamination growth in
the L–shaped laminate; three sizes of initial delaminations considered.
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isotropic material. Furthermore, it is assumed that the critical energy release rate of the

ply and the interface are the same and that the delamination front is parallel to the fibers

of the 90◦ ply.

Note, that delamination kinking is not considered in the strength/energy approach and

in the semi–analytical approach. These approaches are based on the assumption that the

delamination will grow along the interface.

6.4.2 Experimental Testing

Based on the computational predictions two sets of test specimens are selected for experi-

mental testing. First, test specimens without initial delaminations are tested and unstable

delamination growth as predicted in Fig. 6.5 (bottom) is expected to occur. Second, test

specimens with an initial delamination are tested. An initial delamination length of 3mm,

centered in the curvature of the specimen, is selected and a structural response similar to

the predictions in Fig. 6.6 (intermediate initial delamination) is expected to occur.

Figure 6.7: Predicted delamination growth direction for a 3mm initial delamination in the
L–shaped laminate.
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Three specimens without initial delamination are tested; a picture of one of the specimens

is shown together with the measured force–displacement (machine displacement) curves in

Fig. 6.8. At first the structural response is approximately linear. At a force level of about

670N an initial delamination is formed and unstable delamination growth starts, which

changes to stable growth as soon as a certain delamination size is reached. The scatter in

the measured data can be explained by two main reasons. On the one hand, there is some

geometrical variation and the thickness of the laminate varies within each specimen and

among the specimens (variation of the thickness shown for one specimen in Fig. 6.8). On

the other hand, some problems when clamping the specimens occur due to the wedge form

of the vertical leg of the specimen. Some slipping of the specimen in the loading device

takes place during the entire loading process and at an applied displacement load of about

3.7mm specimen #1 and specimen #2 slip out of the loading device. In Fig. 6.9 (right) the

maximum principal in–plane strains measured at the free surface of the specimen with the

digital image correlation system are shown for specimen #1 for an applied displacement

load of about 2.5mm. The picture shows that the strains are highest in the curvature of

Figure 6.8: Measured and predicted structural response for L–shaped laminates without
initial delaminations.
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the laminate. At this location an initial delamination is formed at higher loads.

In the second run three specimens with a 3mm wide Teflon strip inserted between plies

nine and ten are tested. The Teflon strip is assumed not to be bonded to the adjacent

plies and, hence, forms a flaw between the plies that acts like an initial delamination.

The relevant force–displacement curves are shown in Fig. 6.10 togeher with a picture of

one of the specimens. This picture shows that the specimens with initial delaminations

posses an almost constant laminate thickness, especially in the region where the specimen

is clamped in the loading device. As a consequence, for most of the specimens with initial

delamination hardly any problems occurred when clamping. Detailed analysis of the results

obtained by the image correlation photogrammetry system shows that in specimen #4 and

#5 the Teflon strip inserted between the plies acts like an open initial delamination which

propagated at a force of about 280N in a stable manner. The non–linearity in specimen

#4 at lower loads may have been caused by slipping of the specimen in the loading device.

For specimen #5 and #6 no such clamping problems occurred. In specimen #6 the force

increases up to 350N, then unstable delamination growth takes place followed by stable

growth. For this specimen the analysis of the results obtained by the image correlation

photogrammetry system shows that the Teflon strip does not act as an open delamination.

The Teflon strip is sticking on the adjacent plies and holds them together.

Figure 6.9: Computed (left)and measured (right) maximum in–plane strains for the L–
shaped laminate at load level of about 2.36mm.
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In Fig. 6.11 (left) a picture of specimen #5 at an applied displacement load of about 2mm is

shown. The picture illustrates that kinking of the delamination takes place. Starting from

the initial delamination the delamination grows across the 90◦ plies and then grows along

its opposite 0◦/90◦ interface (i.e. the interface between ply 12 and 13). The delaminations

in specimen #4 and #6 kinked the same way. In Fig. 6.11 (right) the final state of specimen

#5 is shown, corresponding to an applied displacement load of about 7mm. The picture

shows further delaminations in the curvature of the laminate which were formed at higher

loads.

6.4.3 Comparison

The measured force–displacement curves shown in Figs. 6.8 and 6.10 are now compared to

the computational predictions (dashed lines). For the specimens without initial delamina-

tions (Fig. 6.8) differences concerning the predicted and the measured initial stiffnesses are

observed. As such differences cannot be observed for test specimens with initial delamina-

Figure 6.10: Measured and predicted structural response of L–shaped laminates with 3mm
initial delaminations.
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tions (Fig. 6.10) it is assumed that they are partly caused by the non–constant thickness of

specimen #1, #2, and #3 and the problems that occurred when clamping these specimens

in the loading device. Detailed investigation of the results of the image correlation pho-

togrammetry system shows further that the loading device deformed slightly at high loads.

Hence, the measured machine displacement is higher than the predicted displacement and

the initial stiffness is overestimated in the predictions. Concerning the delamination growth

load and the growth stability the results agree reasonably good; an initial delamination is

formed at the predicted load and grows in an unstable way in the first part and in a stable

way in the second part.

For the specimens with initial delaminations (Fig. 6.10) the predicted and the measured

initial stiffnesses are in good agreement. For specimen #5 also the prediction and the

measured delamination growth load and the growth stability agree well. For specimen #4

some additional non–linearity is observed, for specimen #6 a load higher than the predicted

one is required to cause delamination propagation. However, the qualitative structural re-

sponse agrees well for all three specimens.

Comparing the delaminations in Figs. 6.7 and 6.11 (left) shows that the delamination has

kinked in the roughly predicted direction. Note, that delamination kinking is not consid-

Figure 6.11: Observed delamination in an L–shaped specimen with a 3mm initial delami-
nation; delamination at a load level of 2mm (left) and at a load level of 7mm (right).



CHAPTER 6. COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION 120

ered in the strength/energy approach and in the semi–analytical approach. Consequently,

the predictions shown in Figs. 6.8 and 6.10 are based on the assumption that the delam-

ination is growing strictly along the interface. The final configuration, Fig. 6.11 (right),

reveals that additional delaminations are formed in the outer part of the laminate, which

is in agreement with the predictions of the strength/energy approach, Fig. 6.5 (point 4).

The maximum principal in–plane strains measured at the free surface, Fig. 6.9 (right),

coincide with the strains computed by the generalized plane strain FEM model, Fig. 6.9

(left). In both cases high strains are found in the curvature of the laminate and low strains

are found in the region close to the point where the specimen is in contact with the steel

loading device. Note that the computed values correspond to the strain state inside the

specimen remote from the free edge. However, the considered principal strains are almost

the same inside the structure and at the free surface.

6.5 Summary

Numerically efficient methods for the prediction of emergence and growth of delaminations

are employed to analyze emergence and growth of delaminations in a curved laminate made

of plies of a unidirectional carbon fiber reinforced epoxy resin. Based on the computational

predictions a test design is developed and two sets of specimens are produced by FACC AG

and tested experimentally at the Polymer Competence Center Leoben GmbH. First, test

specimens without any initial delaminations are tested and emergence of delaminations

in the curvature of the specimens is found. For these specimens differences concerning

the predicted and the measured initial stiffnesses are observed which can be explained by

the non–constant laminate thickness of these specimens. The measured and the predicted

delamination growth load and the growth stability agree reasonably good. Second, test

specimens with an initial delamination of 3mm length are tested and stable delamination

growth is observed. For these specimens the delamination behavior and the measured

force–displacement curve agree well with the computational predictions. The experimental
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results show further that delamination kinking takes place, such effects are not considered

in the proposed approaches.
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Chapter 7

Summary

Numerically efficient and robust approaches for prediction of emergence and consecutive

growth of delaminations in structures made of FRP laminates are developed. For verifica-

tion of the predictions a comparison with results from experimental testing is carried out.

For prediction of emergence of delaminations a strength/energy approach is proposed. This

approach bridges the gap between strength criteria and linear elastic fracture mechanics

in a way that yields conservative results. It allows to predict critical initial delaminations

and the load carring capacity of a structure. Delaminations emerging in the curvature

of an L–shaped laminate and delaminations emerging from a sharp notch of a DLS test

specimen are predicted successfully. For both examples it turns out that the predicted load

carring capacity is more sensitive to changes in the interface strength than to changes in

the critical energy release rate of the interface. Part of these predictions are verified by

non–linear FEM analyses employing CZE.

For prediction of consecutive growth of delaminations with straight fronts a semi–analytical

approach is proposed. This approach can handle arbitrary combinations of mechanical, dis-

placement, temperature, and moisture loads. Quasi–static load cases can be treated as well

as as load cases where some load components are constant and some load components are

cyclic. The semi–analytical approach offers systematic understanding of the influence of
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size and position of a delamination on the structural response. Furthermore, it allows to

predict the most detrimental position of delaminations of given size but unknown location.

Hence, it can be used for a fast interpretation of the results from non–destructive testing.

Two examples, an L–shaped laminate and a T–joint, are investigated in detail. For the L–

shaped laminate a pronounced structural snap–back behavior is found and for the T–joint

a structural snap–through behavior is predicted.

For prediction of consecutive growth of delaminations with curved fronts a total delamina-

tion front criterion is proposed. The delamination is assumed to advance from its current

shape to a predefined advanced shape. Growth of a delamination in a laminated plate and

growth of a delamination at the free edge of an L–shaped laminate are investigated. For

the plate delamination growth is predicted to be stable and for the L–shaped laminate a

pronounced structural snap–back behavior is found. Comparison of these findings to re-

sults obtained by other methods shows that the total delamination front criterion is more

accurate and numerically more efficient. Furthermore, it turns out that it is essential to

take the actual fracture mode mix into account.

For verification of the predictions, emergence and consecutive growth of delaminations in

an L–shaped laminate is predicted by the proposed approaches and tested experimentally

at the Polymer Competence Center Leoben GmbH (PCCL, Austria). The specimens tested

are produced by FACC AG (Ried, Austria). Test specimens without initial delaminations

and test specimens with initial delaminations, created by a Teflon strip, are investigated

and good agreement among the predicted and the measured delamination growth load and

the growth stability is obtained.
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