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Abstract 

Nucleation is the initial stage of a first-order phase transition, such as vapor-liquid 

condensation, crystallization and precipitation, when the system evolves from the 

thermodynamic metastable state into a stable state. In metallic systems, the nucleation 

process determines the kinetics of new phase formation, and strongly influences the 

evolution of intermediate products during phase transition. The nucleation mechanism 

has drawn the academic attention for years, but there are still many questions remaining 

unsolved. The well-known Classical Nucleation Theory (CNT) captures the essence of 

nucleation, but the macroscopic description of the very small critical nucleus also calls 

into question in real applications. 

In this work, the atomistic Monte Carlo simulation technique combined with 

enhanced sampling methods is used to investigate the nucleation mechanism in binary 

metallic systems. Profound insights into microscopic aspects of the nucleation 

mechanism are provided and compared with the concepts from CNT, such as the cluster 

description, interfacial energy, nucleation energy barrier and driving force. The 

enhanced sampling methods provide a plausible way to bridge the gap between 

continuum modelling and atomic simulations, which enables the validation of classical 

theories or other non-classical continuum modelling by computational experiments in 

atomic dimension.  

Additionally, a novel and efficient way, the Reweighted Partial Path (RPP) method, 

is developed and proposed to compute free energy profiles for diffusive processes in 

single Transition Interface Sampling (TIS) or Forward Flux Sampling (FFS) 

simulations. The method employs a partial path reweighting strategy, based on the 

memory loss assumption for diffusive systems, to derive the equilibrium distribution of 

states along a chosen order parameter from TIS or FFS trajectories. No additional 

calculations, such as, reverse TIS or Umbrella Sampling are required. 
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Abbreviations 

BC  Bennett-Chandler (method) 

bcc body-centered cubic 

CNT Classical Nucleation Theory 

FFS Forward Flux Sampling 

fcc face-centered cubic 

LCE Local Chemical Environment (potential) 

MC  Monte Carlo 

PPTIS Partial Path Transition Interface Sampling 

RPP Reweighted Partial Path 

TST Transition State Theory 

TPS Transition Path Sampling 

TIS Transition Interface Sampling 

US Umbrella Sampling 

VC-SGC Variance-Constrained Semi-Grand-Canonical  

WHAM Weighted Histogram Analysis Method 
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1 Introduction  

Nucleation is an important process in science and technology, which represents 

the initial stage of first-order phase transitions, such as crystallization in a liquid, vapor 

condensation and precipitation in supersaturated solid solution, as the system is 

evolving from a metastable state into a stable state. This transition often occurs as the 

intensive condition, like temperature or pressure, is changed such that the system is 

brought out of equilibrium. When the perturbation is not strong enough to trigger the 

spinodal decomposition, the system stays in a metastable state, and the transition 

proceeds involving of the system to overcome an energy barrier, as illustrated in Figure 

1.1, to form the stable new phase. The nanoscopic nuclei of a new phase are firstly 

formed from random density fluctuations in the metastable state. Due to the energy 

barrier, most of the nuclei will disappear again in a short time and only a rare amount 

of them reach the critical size and further grow into the thermodynamic favorable state. 

  

 

Figure 1.1 Illustration of the nucleation free energy as a function of the nucleus size. 

  

The essence of the nucleation mechanism is well described in the framework 

known as the Classical Nucleation Theory (CNT), which was developed more than a 
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century ago and has been successfully applied in various different systems with proper 

modifications. Despite the huge success of CNT, a major problem remains insofar that 

CNT is based on the continuum thermodynamic treatment, where the critical clusters 

of a new phase are assumed to have the same properties as the corresponding bulk 

material, while, in practice, the critical clusters often only contain tens of atoms or 

molecules and, hence, do not fulfill the macroscopic description in continuum 

modelling. Since nucleation is a non-equilibrium process, the validation of classical 

theories and other non-classical continuum-based methods are extremely difficult in 

both experimental and theoretical aspects. 

In recent years, atomic simulations are frequently used in the studies of various 

nucleation scenarios with the huge potential for providing unique insight into 

microscopic aspects of nucleation. However, since nucleation is a rare event, i.e., the 

waiting time before a transition occurring can be many orders of magnitude longer than 

the time required for the transition event itself. This separation of time scale makes it 

impractical to study nucleation processes with sufficient statistics using conventional 

brute-force simulations on current computers.  

Rare event problems can be tackled with trajectory-based sampling techniques that 

focus on the segments of time evolution where the reaction of interest happens. In the 

last decade, a series of trajectory-based sampling techniques, also known as Rare Event 

Sampling methods, have been designed for the investigation of non-equilibrium 

transitions with stochastic nature. These methods provide efficient means to grasp large 

information about transition pathways, which enables more sophisticated analysis of 

complex nucleation transitions compared with conventional simulations.  

The main purpose of Rare Event Sampling methods is to reveal the transition 

mechanism and determine rate constants for the process. To analyze equilibrium 

properties, such as, the reaction free energy, usually, additional calculations are 

necessary. This can be done by either employing a biased sampling technique, such as, 

Umbrella Sampling (US) or performing an additional path simulation for the reverse 

transition. Both choices require additional, usually significant, amount of computation 

time to obtain an accurate estimation of the transition free energy. Under certain 
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circumstances, e.g., in diffusive processes, free energies can also be extracted directly 

from path sampling simulations. In these cases, the rate constant as well as the free 

energy profile can be simultaneously calculated in one simulation. 

So far, the main applications of Rare Event Sampling methods are to investigate 

the activated transitions in soft matters, e.g., biochemical switches, protein unfolding, 

and liquid-solid transition in water. However, these methods are barely used in the study 

of solid-solid transitions in metallic systems. Setting up a framework to implement Rare 

Event Sampling methods in such scenarios will be informative and inspiring for future 

researches in this area. It is performed in the present work. 
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2 Objectives  

This thesis comprises of a comprehensive study of nucleation transitions in a 

binary metallic system through atomic simulations combined with enhanced sampling 

methods. The main tasks are:  

 

(i) Setting up a framework for atomistic simulation of the nucleation process 

using the lattice Monte Carlo method and advanced Rare Event Sampling 

techniques; 

(ii) Providing thorough understanding of the nucleation process from a 

microscopic point of view, including the quantitative analysis of the nuclei 

evolution in size, chemical composition and geometrical shape;  

(iii) Evaluating important features of nucleation, such as, nucleation rates, 

critical cluster size and energy barriers, using the enhanced sampling 

methods;  

(iv) Validating some basic concepts in classical theories; 

(v) Proposing an efficient strategy to calculate the free energy profile directly 

from the nucleation trajectories in sampling simulations. 
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3 State of the art 

This section gives a brief introduction to the methodologies used in this work, 

including the Classical Nucleation Theory, Monte Carlo approaches, Rare Event 

Sampling methods, Umbrella Sampling technique and Variance-Constrained Semi-

Grand-Canonical (VC-SGC) ensemble. 

3.1 Classical nucleation theory 

In classical nucleation theory [1–8], the microscopic nucleus of a new phase is 

assumed to have the same properties as the new phase in bulk state. The important 

properties, such as, the chemical potential and composition are evaluated using a 

thermodynamic continuum treatment, so that one only needs the extensive parameters 

of the new-phase nuclei, such as volume and mass, as the order parameters to 

quantitatively describe the progress of nucleation. Generally, the work of formation of 

a secondary-phase nucleus is expressed as a volume free energy contribution combined 

with the interfacial free energy:  

vol surfG G G         (3-1)               

where Gvol is the free energy contribution from the volume of the new phase, and Gvol 

is the surface energy from the interface formed between the old and new phases as 

illustrated in Figure 3.1. 

 
Figure 3.1 (a) The graph displaying a nucleus of new phase formed in the old phase, where a surface is 
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formed between the old and new phases; (b) The free energy of nucleation as a function of the number 

of atoms in a nucleus, along with the energy terms from nucleus volume and surface. 

 

Classical theory uses a capillarity approximation to describe the particle of new 

phase, which is assumed to be a sphere with radius r, and the surface between two 

phases is a sharp interface with thickness approximately equaling to 0. Defining m
volG

as the volume free energy—the energy change by forming an unit volume of new phase 

from the old phase without considering the interface between two phases, and  as the 

interfacial energy per unit area of nuclei/parent interface, one can rewrite the equation 

(3-1) as 

3
m 2
vol

4π 4π
3
rG G r          (3-2).     

For a nucleus to arrive at a stable overcritical size, an energy barrier with the height 

G* must be overcome, typically by thermal activation. In CNT, the critical quantities 

for the energy barrier, G*, and the radius, r*, are straightforwardly obtained from the 

extremum values calculus as 

 
3

*
2m

vol

16
3

rG
G


 


     (3-3) 

and  

*
m
vol

2r
G


 


     (3-4). 

Both quantities, volume free energy change and interfacial energy, can 

straightforwardly be evaluated from computational thermodynamics as, for instance, 

described in the CALPHAD method [9]. 

In the capillarity approximation,  takes the value from interfacial energy of a 

planar interface between the bulk of a nucleus and parent phase, which is independent 

of the nucleus size. This approximation is strongly disputed since the interfacial energy 

between nuclei and parent phase is a size-dependent value. Tolman et.al. [10] have 

proposed that the interfacial energy between a droplet with radius r and supersaturated 
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vapor follows the form as  plan 1 r    , where plan  is the planar interfacial 

energy of a flat droplet/vapor interface and δ is called the Tolman length. Although 

there are still arguments on the form of Tolman length, it is acknowledged that the 

interfacial energy for small particle formed during nucleation is size-dependent. Apart 

from Tolman’s equation, there are also other forms available on the size-dependent 

interfacial energy, which consider the correction for the high-order expansion 

component in the Tolman theory. For nucleation in solid solutions, a size dependent 

GBB model [11,12] has been proposed to evaluate the interfacial energy for small 

particles by including a correction for missing broken bond due to the curvature of 

particle compared with a flat interface. In the mentioned models, the definition of 

precipitate/matrix (or droplet/vapor) interface is based on an equimolar rule for 

homogeneous nucleation to conserve the thermodynamic consistency. However, this 

macroscopic assumption is not always plausible to the nano-sized critical clusters 

observed in a nucleation process in solid solution. 

The review articles of McDonald [5,6] and Feder et al. [7] provide a general picture 

of the classical nucleation theories from a series of works by Volmer-Weber [1], 

Becker-Döring [2], Zeldovich [4] and Frenkel [3]. In classical theories, the nucleation 

kinetics is driven by the change of nucleus size due to attaching or releasing monomeric 

molecular or atom, whereas the size change contributed from clusters, such as dimers 

and triples, is negligible. Therefore, the master equation of nucleation can be written as 

,
1, 1 1, 1 , ,( ) ( )n t

n t n n t n n t n n t n

N
N k N k N k N k

t
   

   


   


    (3-5) 

where Nn,t is the number density of nuclei consisting of n molecules. ( )
nk    is the 

corresponding frequency of attaching (detaching) a nearby monomer to these nuclei. 

When the system reaches equilibrium, the transition rate from n-atom (or molecule) 

clusters to n+1-atom clusters equals to the reverse rate, i.e. 

0 0
1 1n n n nN k N k 
         (3-6) 

where 0
nN  is the number density of n-atom clusters at equilibrium.  
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Accordingly, 0
nN  is related to the nucleation free energy G(n) as 

 0
norm Bexp ( )nN N G n k T  , where Nnorm is the normalization factor as 

0
norm 1 nN N dn


  . Considering equation (3-6), one can rearrange equation (3-5) as 

, 1, , , 1,0 0
1 10 0 0 0

1 1

,0
0

( ) ( )n t n t n t n t n t
n n n n

n n n n

n t
n n

n

N N N N N
N k N k

t N N N N

N
N k

n n N

  
 

 




   



   
        

    (3-7). 

According to equation (3-7), the flux of clusters on the n-size coordinate, i.e. the 

change of total number of clusters per unit time in unit volume, also known as the 

nucleation rate, is written as  

,0
0

n t
n n

n

N
J N k

n N
  

     
     (3-8). 

In steady-state condition, ,0
s 0 constn t

n n
n

N
J N k

n N
  

     
. Accordingly, the 

nucleation rate is obtained as [6,7] 

*
*

s
B

exp GJ NZ
k T


 

  
 

     (3-9) 

where N is the number of potential nucleation sites, Z is the Zeldovich factor, * is the 

atomic attachment rate, n is the number of atoms in the cluster and G* is the free 

energy barrier at the critical cluster size n*. The Zeldovich factor Z is related to the 

curvature of the free energy barrier at the critical size, 
'' *

B

( )
2
G nZ

k T


  . 

In classical theories, a continuums-mechanical expression for the atomic 

attachment rate has been suggested by Svoboda et al. [13] for spherical precipitates in 

multi-component system as 

*  4 (r*)2

a4W
(cki  c0i )2

c0i D0ii1

n

å









1

     (3-10) 

where r* is the radius of the critical cluster, a is the nearest-neighbor atomic distance, 

W is the molar volume, cki are the concentrations of element i in the precipitate with 
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index k, c0i are the concentrations in the matrix, and D0i is the tracer diffusivity of 

element i in the matrix.  

3.2 Monte Carlo simulation 

The modern Monte Carlo method [14] can be dated back to the 1940s, when people 

started to use random numbers to examine physical problems in a stochastic manner. 

Simple strategies in early Monte Carlo methods are derived to provide means to 

estimate answers to analytically intractable problems. In old times, a main difficulty of 

implication of the Monte Carlo method is the limitation of computing efficiency. With 

modern computation power dramatically increasing, simple Monte Carlo strategies are 

more frequently used to investigate complex problems in physics, such as the ferro-

magnetic transition, radiative decay and precipitation. The basic algorithm of Monte 

Carlo is very simple. The master equation in Monte Carlo method to simulate the 

canonical system evolution is  

 ( ) ( ) ( )n
n n m m m n

n m

P t P t W P t W
t  




  

 å      (3-11) 

where Pn(t) is the probability of the system in state n at time t, and Wnm is the transition 

rate of the system from state n to state m. According to statistical physics, the probability 

Pn(t), following the Boltzmann distribution, can be expressed as 

Bexp( / )( ) n
n

E k TP t 



     (3-12) 

where En is the energy of the system at state n and   is the partition function. The 

dominator in equation (3-12) is difficult to determine, but one can calculate the 

probability Pn(t) based on the probability of previous states as a Markovian chain. 

Therefore, the dominator   is automatically cancelled, and only the energy difference 

between states, i.e. E=EnEm, is needed in the calculation of a state probability.  

In equilibrium, Pn(t)/t = 0, hence the right side of equation (3-11) also equals 0, 

i.e. ( ) ( ) 0n n m m m nP t W P t W   . The transition rates satisfying this equilibrium balance 

are acceptable in simulations.  
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Accordingly, a Metropolis form of the transition rate from state mn is defined 

as 

 
1

o B
1

o

exp( / )    when  0 
                              when  0m n

E k T E
W

E






 

    
 

     (3-13) 

where o is the time required for an MC trial attempt. Usually, o is referred as time unit 

of MC steps. The Metropolis Monte Carlo algorithm for equilibration in a typical 

flipping Ising system can be described as follows: 

(1) Choose an initial state; 

(2) Choose a site i; 

(3) Calculate the energy difference if the sign at site i is turned over; 

(4) The acceptance probability of this flip-over attempt is 

 Bmin exp( / ),1P E k T  ;  

(5) Generate a random number a in [0, 1]. If a<P, this trial step is accepted and the 

sign at site i is turned over. Otherwise, this trial is rejected; 

(6) Go to (3) until equilibration.    

3.3 Rare event sampling methods 

Activated processes dominated by rare events, including chemical reactions, 

crystal nucleation and biochemical switching, play important roles in many areas of 

science and technology. In principle, atomistic simulation techniques, such as, Monte 

Carlo and molecular dynamics simulations can be used to study the kinetics and 

mechanism of these processes. Due to the presence of high activation barriers, however, 

the waiting times for activated events can be many orders of magnitude longer than the 

time required for the transition event itself. This separation of time scale makes it 

impractical to study activated processes with sufficient statistics using conventional 

brute-force simulation on current computers. Rare event problems can be tackled with 

trajectory-based sampling techniques that focus on the segments of the time evolution 

where the reaction of interest happens. For instance, in the Transition Path Sampling 

(TPS) method [15][16][17][18][19], rare transition pathways are generated by carrying 

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

11 
 

out a Monte Carlo simulation in trajectory space while maintaining reactivity at each 

instant of the simulation. Based on the TPS framework, van Erp et al. [20] introduced 

the Transition Interface Sampling (TIS) method for the efficient calculation of reaction 

rate constants, in which one considers ensembles of trajectories crossing a series of 

interfaces between reactants and products. Following similar ideas, Allen et al. [21,22] 

proposed the Forward Flux Sampling (FFS) algorithm, which is also applicable to non-

equilibrium systems where detailed balance is violated. In contrast to TIS, in FFS, 

pathways are generated in a ratchet-like manner only in forward direction, which can 

slow down the sampling of trajectory space.  

In this chapter, a brief review of rare event methods is given, including the Bennet-

Chandler method (TST-BC), Transition Path Sampling (TIS), Transition Interface 

Sampling (TIS) and Forward Flux Sampling (FFS). Even though only FFS is used in 

the Monte Carlo simulations for solid-solid nucleation (see section 4), reviewing the 

other methods can help the readers to comprehend the theoretical basis of the FFS 

method and provide necessary background information for the subsequent discussion 

of the RPP-FFS method in section 6. 

3.3.1 Bennett-Chandler method (TST-BC) 

The Bennett-Chandler method [23,24], also known as the reactive flux method, is 

proposed to calculate the reaction rate constant based on the Transition State Theory 

(TST) [23]. Consider a reversible transition between two stable phases, A and B, in a 

high dimensional system specified by the vector x in phase space, as shown in Figure 

3.2(a). The transition is characterized by an order parameter (x). In TST, the phase 

space is partitioned by a surface with (x)= * into two adjacent regions, i.e. A' and B' 

in Figure 3.2(a), which contain the actual stable states A and B, respectively. As shown 

in Figure 3.2(b), * is the critical point where the maximum of transition energy barrier 

lies on -coordinate. In Transition State Theory, the actual stable A and B states are 

replaced with the two adjacent phase regions A' and B', so that the system can only be 

in two states – either A' or B'. Once the system leaves A', it enters B', and vice versa. 

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

12 
 

Based on this assumption, the rate constant for reaction AB can be calculated from 

the mean residue time of the system in state A' as: 

 
 

*

*

*
BTST

AB mr
AB

B

exp ( )1
2 'exp ( ')

W k T
k

t d W k T
 



 

 





 




    (3-14) 

where 
* 




  is the average velocity to cross the diving surface λ* and W(λ) is the 

reversible work needed to move the system from state A to λ. The TST rate constant is 

derived from the mean residue time, mr
ABt , which measures the average time the system 

spends in A' state in equilibrium.  

 

 
Figure 3.2 (a) In the phase space of a bi-stable system, the regions of two stable states A and B are marked 

by the grey areas. In TST, the surface with λ(x)= λ* (displayed as the thick black curve) separates the 

phase space into two adjacent regions A′ (λ(x)< λ*) and B′ (λ(x)> λ*), which contain the actual stable 

states A and B, respectively. The thin arrow lines indicate the trajectories in transitions between A and B. 

(b) The projection of phase space in (a) on the coordinate of order parameter λ. F(λ) is the free energy, 

where λ* is the critical point and the diving surface in (a) is at λ= λ*(the dashed line).   

 

However, for non-equilibrium reactions, equation (3-14) overestimates the rate 

constant by assuming that the trajectories will only cross the surface (x)= * once and 

there is no recursive behavior of the system to re-cross the dividing surface from B'. 

For example, under TST assumptions, the upper trajectory in Figure 3.2(a), which 

crosses the dividing surface but do not reach B, is falsely considered as a transition. 
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While the other trajectory being considered to have positively crossed the surface twice, 

it only positively crosses the dividing surface once starting from state A. In order to 

avoid these problems, Bennett and Chandler[23,24] provide a correction to the rate 

constant expression in TST (equation (3-14)). 

In Bennett and Chandler (BC) method [23,24], a correlation function C(t) is 

defined as  

  A 0 B

A 0

( ) ( )
( )

( )
th h

C t
h


x x

x
     (3-15) 

where xt is the configuration of the system at time t. hA(B)(xt) is a characteristic function, 

which equals 1 for xt in region A' (B') and 0 elsewhere (Figure 3.3 (a)).  

 

 
Figure 3.3 (a) In the TST-BC methods, the characteristic function of phase point x, hA(x), equals to 1 

when x is in the region A' (lines with solid dots), and hA(x)=0 otherwise (lines with empty squares). (b) 

Illustration of the correlation function C(t) and its derivative ( )C t . 

 

The BC method keeps the TST treatment of dividing the phase space into two 

adjacent regions to replace the actual stable states, hence, the system is either in state A 

or B, and there is no middle ground. In this case, the characteristic functions hA(xt) and 

hB(xt) are related as hA(xt)=1 hA(B)(xt). The rate constant is calculated as the derivative 

of C(t): 

TST
AB AB( ) ( ) ( )k t C t t k       (3-16) 

where ( )t  is called reactive flux or positive flux with value less than unity and TST
ABk  

https://www.tuwien.at/bibliothek
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is the rate constant defined by Transition State Theory, i.e. equation (3-14). AB( )k t  in 

equation (3-16), also known as TST-BC rate constant, is based on the mean first passage 

time of crossing the surface (x)= * from A. As shown in Figure 3.3(b), ABk  equals 

to TST
ABk  at t=0, and then ABk  varies with time until the system reaches the steady-state 

region. The plateau with t[trans, stable] in the lower picture in Figure 3.3(b) 

corresponds to the steady-state rate constant, which is commonly referred as “reaction 

rate constant”. In the present work, the rate constant ABk  refers to the value of AB ( )k t  

at the plateau.  

When computing the reaction rate constant with TST-BC method (equation 

(3-16)), one needs to firstly evaluate the critical value * from the free energy profile 

F(), since the definition of characteristic functions, hA(x) and hB(x), are dependent on 

*. Usually, F() is calculated with the Umbrella Sampling technique. Then, a massive 

number of trajectories are starting from *, and the reactive flux ( )t  is determined 

as the fraction of trajectories ending in the product states. Since the expression of TST
ABk  

uses the Boltzmann distribution as equilibrium, the TST-BC rate expression is not 

suitable for non-equilibrium cases. Meanwhile, the TST-BC method assumes that the 

critical point * must exist on the chosen order parameter, therefore this method is very 

sensitive to the choice of order parameter. A poor  can lead to significant error in the 

estimation of ABk . 

3.3.2 Transition Path Sampling (TPS) 

TPS [15,17–19] is a sampling method to investigate the non-equilibrium 

transitions by exploring the transition trajectory space with a Monte Carlo strategy. 

Unlike TST and TST-BC methods, TPS does not require the pre-knowledge of a free 

energy profile and the precise location of *. TPS is also insensitive to the choice of 

order parameter, and a  which properly distinguishes the reactant and product states is 

adequate in the application of TPS. 

https://www.tuwien.at/bibliothek
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A trajectory or path, 0{ , , , , }t


    x x x x , consists of a discrete sequence of 

phase points or snapshots xt indexed by time t, where  is the total duration or length of 

the path. The probability of observing a particular trajectory x is given by 

     (3-17) 

where r(x0) is the equilibrium probability density of x0, for instance, in the canonical 

ensemble, and p(xt xt+t) is the Markovian probability of transitioning from xt to xt+t 

in the time interval t. To study the reaction from state A to B, TPS directly samples 

the Transition Path Ensemble (TPE) using a Monte Carlo scheme. The details of 

sampling strategy in TPS can be found in Ref. [18,19]. Once the TPE is obtained, based 

on the correlation function in equation (3-16), the rate constant is calculated as  

B AB
AB

B ' AB

( )
( ) ( ')

( )
t

t

h
k C t C t

h
 

x
x


      (3-18) 

where the subscript AB indicates the average over trajectories starting from A and 

ending in B. Equation (3-18) enables the calculation of ( ')C t  from an arbitrary time 

with t′[0, t] in the plateau of C(t) as 
B
max

B
min

A( ') ( , ')C t d P t



        (3-19) 

where B
max  and B

min  define the region of B as  B B
max min: ( )    x B x . The 

calculation of ( ')C t  involves the integration over states with small probabilities, so 

normally one needs to combine the path sampling with a biased sampling method, such 

as, Umbrella Sampling, to get an accurate estimation of ( ')C t . 

In TPS, one does not need to divide the phase space like in TST and TST-BC 

methods. The characteristic functions hA(B)(xt) use the definitions of the actual stable 

state A and B as shown in Figure 3.4. Also, one does not need to have an accurate *, 

and the pre-evaluation of free energy profile is omittable. 
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Figure 3.4 In TPS, there is no need to partition the phase space like in TST-BC methods. The stable A 

and B states keep their original definition and represent the reactant and product states, respectively. A 

phase point x can be categorized to A or B state, or neither of them. Accordingly, the characteristic 

functions hA(B)(x) are different from the ones in TST-BC methods. For example, the trajectory visits A 

from ab and ef, where the phase points give hA(x)=1 and hB(x)=0. To the phase points from cd, 

hA(x)=0 and hB(x)=1. As to the remaining phase points on the trajectory, hA(x)=0 and hB(x)=0. 

3.3.3 Transition Interface Sampling (TIS) 

The TIS method [25] is a modification of TPS to improve the computation 

efficiency by constraining the searching of trajectories in adjacently separated transition 

phase regions. In TIS [20], the region between states A and B is partitioned by a series 

of M+1 non-overlapping interfaces defined by corresponding values {i}i=0…M of the 

order parameter as shown in Figure 3.5 (a). The interfaces are selected such that the 

first and the last interface coincide with the boundaries of regions A and B, respectively, 

0=A and M=B. Trajectories are categorized into ensembles based on the interfaces 

they cross. To describe the crossing order of a trajectory through two interfaces i and j 

(i  j), the two-fold characteristic functions are introduced as: 

hi , j
b (x)  1    if  ti

b (x) < t j
b (x)

0    otherwise





hi , j
f (x)  1    if  ti

f (x) < t j
f (x)

0    otherwise







     (3-20) 

where ti
b(x) and ti

f (x)  are the time durations tracing backward and forward, 

https://www.tuwien.at/bibliothek
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respectively, from phase point x until the trajectory crosses interface i for the first time. 

Hence, hi , j
b (x) 1 means that, before visiting x, the trajectory first crossed j and then 

i without having revisited j. On the other hand, hi , j
f (x) 1 indicates that the trajectory 

presently visits x and will continue to reach i before j. Note that these characteristic 

functions depend both on the phase space point x as well as on the particular trajectory 

going through x. When the system is ergodic, both interfaces i and j will be crossed in 

finite time, hence hi , j
b (x)h j ,i

b (x)= hi , j
f (x)h j ,i

f (x)= 1.  

Next, one can use 0,( ) ( )b
Mhx xAh  and  ,0( ) ( )b

Mhx xBh  to define the TIS 

overall states A and B. According to this definition, a point x is assigned to overall 

state A if region A is reached before B when the trajectory through x is followed 

backwards in time (see Figure 3.5(a)). Hence, overall states A and B consist of points 

x located on trajectories coming from A and B, respectively.  

 

 
Figure 3.5 (a) In TIS, a set of interfaces with λ(x)={ λ0, λ1, , λM}are defined in phase space and the 

boundary of A(B) is set to overlapped with λ0(M). The overall TIS state A and B are history-dependent 

overall states for trajectories. After a trajectory reaches state A, the trajectory is in state A until it hits 

state B. Then, the trajectory is in state B until it reaches state A again. (b) When calculating the initial 

flux using brute-force simulations, one needs to count the number of effective positive crossings of the 

first interface. The black dots indicate the points of effective crossing of a trajectory in the cases λ0λ1 

(the main diagram) and λ0=λ1 (the inset diagram). 
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Similarly, one can write the correlation function in equation (3-15) using the TIS 

overall stable states as 

 0

0

( ) ( )
( )

( )
th h

C t
h


x x

x
A B

A

     (3-21), 

and the reaction rate kAB also satisfies AB ( )k C t  . The reaction rate in TST-BC theory, 

as shown in Figure 3.3(b), displayed a plateau in t[trans, stable], while the one 

calculated from equation (3-21) remain constant from 0 to stable with the same value as 

the rate constant at the plateau given by TST-BC and TPS methods.    

Based on the characteristic function, the general crossing function is defined as 

yi , j (x t )  h j ,i
b (xt )q(i  (xt ))q((x tt )i )    (3-22) 

where q is the Heaviside step-function and t is the time step. For the phase point xt 

visited by a trajectory at time t, yi , j (x t )  will equal 1 only if the trajectory comes 

directly from j and immediately crosses i in the next time step of length t. For 

convenience, an effective crossing function is defined as  

Yi , j
l ,m(x t )  h j ,i

b (x t )q (i (xt ))q ((x tt )i )hl ,m
f (xt )

             yi , j (x t )hl ,m
f (x t )

    (3-23). 

When Yi , j
l ,m(x t )=1, the trajectory, which crosses i at xt directly from j, will visit l earlier 

than m, otherwise Yi , j
m,l (x t ) =0. Clearly, Yi , j

m,l (x t )Yi , j
l ,m(x t ) yi , j (x t ) . The crossing 

functions defined in equations (3-22) and (3-23) are to characterize the trajectories 

according to the interfaces they cross in a time sequence. When taking equation (3-22) 

to the extreme, t0, one can get the velocity of crossing interface i at time t in a 

trajectory coming directly from j before recrossing i, 

fi , j (x t )  lim
t0

1
t
yi , j (x t )      (3-24) 

where ,i jf  is also called the effective flux from j to i. Accordingly, the reaction rate of 

transition AB can be written as the effective flux from interface 0 to M, i.e. 
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AB ,0 A  Mk hf      (3-25), 

and the reverse reaction rate as BA 0, BMk hf .  

The flux ,0jf  can be considered as the effective flux on a given interface i 

(0<i<j) continuing to cross j before coming back to 0, i.e. 

,0 ,0 ,0  f
j i jhf f      (3-26). 

Therefore, ,0Mf  can be rewritten as the product of fraction like the Markovian chain: 

1,0 ,0
,0 1,0 ,0 1,0

1,0

1,0 2,0 2,0 3,0 1,0 ,0
1,0

1,0 2,0 1,0

1

1,0 i 1,0
1 ,0

f
Mf

M M

f f f
M M

M

M
f

i i

h
h

h h h

h f

f
f f f

f

f f f
f

f f f

f










 



 

     (3-27) 

where ( )
w

g x  is the weighted average for an observable g(x) and a weight function  

w(x), defined as ( ) ( )
( )

( )w

g w
g

w


x x
x

x
. For convenience, one can define a conditional 

crossing probability P(l
m

j
i )  as 

, ,
,

, ,
( )

f
i j l mm i f

l j m l
i j i j

h
P h f

f

f
       (3-28). 

P(l
m

j
i )  describes the probability that a path having crossed interface i from j will 

continue to reach interface m before l. Combining equations (3-25) to (3-28) , the rate 

constant can be written as 

1
1

AB 1,0 A 0 0
1

( ) 
M

i i

i
k h Pf






       (3-29). 

Here, 1,0 A A,0hf   is the initial flux coming from A state to enter the buffer 

region. In TIS, the initial flux can be calculated from a brute-force simulation starting 

from A state as A,0  N0 ttot , where N0 is the positive crossing number as illustrated 
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in Figure 3.5(b), and ttot is the total time the system remains in state A during the 

simulation.  

3.3.4 Forward Flux Sampling (FFS) 

The Forward Flux Sampling method [21] is built on the same theoretical basis as 

TIS, but it employs a different sampling strategy designed to obtain the transition paths 

in a highly activated process. In the FFS method, one considers a typically high-

dimensional phase space. Each point in this space represents a microscopic state of the 

system specified by the multi-dimensional coordinate X. Regions A and B are two 

stable (metastable) states defined in terms of an order parameter (X), such that the 

system is in state A if (X) < 0, and in state B if (X) > m. A series of non-overlapping 

interfaces {i}i=1…m-1 is defined between states A and B as illustrated in Figure 3.6.  

In FFS, one first performs brute-force simulations starting in state A. Every time 

a trajectory forward-crosses 0, the respective system configuration is stored and the 

simulation is restarted until N0 configurations are collected. The average number of 

crossings through interface 0 out of state A per unit time is denoted as initial flux 

A,0  N0 ttot , where ttot is the total time the system remains in state A during the 

simulation. 

 

Figure 3.6 Schematic of a phase region between stable states A and B, which is sectioned into a series of 

non-overlapping interfaces   0, 1, , i i m
  . 
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In the next step, the collected configurations on 0 serve as starting points of 

trajectories, which are followed until the trajectory either crosses 1 or returns back to 

state A. A total of M0 trajectories are “fired” from 0 to generate a set of configurations 

on 1, which are used to start new trajectories and to repeat the process for the next 

interface. From each interface i, Mi trajectories are fired and harvested that either reach 

the next interface i+1 or return to state A. The probability that a trajectory, which has 

crossed i coming from state A, continues to cross i+1 before returning to state A is 

defined as the crossing probability 1( | ) s
i i i iP N M   . Here, s

iN  is the number of 

trajectories that successfully cross i+1 from i. The whole procedure is terminated 

when at least one trajectory reaches state B, and the transition rate constant kAB can be 

obtained from 

kAB A,0 P(i1 | i )
i0

m1

      (3-30). 

3.4 Other enhanced sampling methods 

3.4.1 Umbrella Sampling 

Umbrella Sampling [26][27] is a commonly used strategy to obtain the free energy 

profile along a chosen physical coordinate by performing a series of simulations under 

a biased potential to constrain the system inside local regions in configuration space. 

For example, when exploring the equilibrium distribution of a bi-stable system on 

a given order parameter  using the brute-force simulation, one can find the simulation 

being trapped in the two stable states and the high energy region exhibits very poor 

statistics, i.e. little information is displayed on the histogram of  around this region as 

shown in Figure 3.7(a). To investigate the properties around the poor statistics region, 

e.g. around   in Figure 3.7(b), one can pose an umbrella potential  2
( )

2
U      

in simulations such that the area around   is frequently visited and a histogram with 

enhanced distribution around this area can be obtained.  
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Figure 3.7 (a) The upper diagram is the free energy of a bi-stable system on -coordinate. The lower 
picture shows the equilibrium histogram of  of the system, where the high energy region, marked by the 
grey area, shows very poor statistics according to the histogram. (b) Posing a biased potential 

 2
( )

2
U      (the red curve) in Umbrella Sampling, one can obtain better statistics in the histogram 

around  .  

 

In order to reveal the distribution of  in region [0, M], one needs to choose a set 

of biased potentials  2
( )

2i iU     with different i , i=1, 2, , S, in the region 

of interest, as shown in Figure 3.8. With each Ui, an independent simulation is 

performed to obtain the enhanced histogram around i , which is denoted as histi(). 

After all the histograms from S simulations are obtained, one can derive the unbiased  

distribution of  with the Weighted Histogram Analysis Method (WHAM).  

 

 
Figure 3.8 (a) The biased potentials Ui are displayed as colored curves in four independent simulations 
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with different i . (b) The histogram of  obtained in each i-th simulation is displayed in the bar chart 

with the same color of the respective biased potential.  
 

According to probability theory, the expected probability of observing  in the i-

th simulation, ri (), fulfills the following equation, 

( ) ( ) ( )i i if cr   r       (3-31) 

where r () is the unbiased probability of , which is connected to the free energy by 

B( ) ln ( )F k T r   . The factor ci() is related to the bias potential by 

 B( ) exp ( )i ic U k T   , and fi is a normalized factor defined as
0

1 ( ) ( )
M

i if c


 

 r 


 å . 

The probability of observing a given histogram histi() can be derived from the 

multinomial distribution as 

   

 
 

0

0

( )!
( ); ( ) ( )

( ) !

M
i

M

histi
i i i i

i

N
P hist

hist





 

 

 r  r 
 



 


    (3-32)  

where Ni is the total observation made in i-th simulation, i.e. 
0

( )
M

i iN hist


 




 å . 

Accordingly, the overall likelihood to observe the set of histograms 

{ histi() }i=1…S in S independent simulations is given as  

    
1

( ) ; ( ) ( ); ( )
S

i i i i
i

P hist P hist r   r 


     (3-33).  

Taking the logarithm of both sides of equation (3-35) leads to 

    ln ( ) ; ( ) ( ) constiP hist A r  r        (3-34)  

where  
01

( ) ( ) ln ( )
MS

i i
i

A N f M


 

r   r 
 

  å å  with 
1

( ) ( )
S

i
i

M hist 


å . Now, the 

maximum likelihood observation of {histi()}i=1…S corresponds to the minimum of 

 ( )A r  . At the minimum of  ( )A r  , the derivative of  ( )A r   on each 

individual r () should be zero, i.e.  ( ) ( ) 0A r  r    . Considering that fi is 

dependent on r (), the equilibrium probability of  can be written as  
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( )( )
( )i i i

i

M
N f c

r 



å

     (3-35). 

Equations (3-31) and (3-35) are known as the coupled nonlinear WHAM 

(Weighted Histogram Analysis Method) [26][28] equations, which can be solved 

iteratively for fi and r (n) until self-consistency is achieved.  

3.4.2 Variance-Constrained Semi-Grand-Canonical (VC-SGC) 

ensemble 

The variance-constrained ensembles [29,30] are proposed to study the multiphase 

regions of phase diagrams by enabling thermodynamic integration across phase 

boundaries and computation of the free energy on composition inside the miscibility 

gap. In the VC-SGC ensemble, the canonical free energy as a function of concentration 

can be calculated by integrating the energy derivatives over the whole concentration 

range, from which one can extract the interphase surface energy as a function of 

temperature and orientation.  

The VC-SGC ensemble method [29,30] is analogous to Umbrella Sampling, where 

a harmonic external potential UV
b  2 NA  NA  2  is applied to control the 

fluctuation of total concentration in a semi-grand canonical ensemble of a binary AB 

system. Here,  is a force constant to restrain the total number of element A, i.e. NA, 

around a given NA . Denoting the total number of atoms in the system as N, the 

constrained concentration c  is defined as Ac N N . Additionally, a thermodynamic 

variable f is defined as f  2NA  2Nc . The external potential b
VU  is then 

rewritten as the function of concentration, 

UV
b  (Ncf / 2 )2     (3-36) 

where c is the instant concentration of A observed in the simulation, i.e. c=NA/N. 

Accordingly, the partition function of a VC-SGC ensemble can be expressed as  
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1 b
V C V0

( , , ) exp{ [ ( , ) ]}Z N F c N U dcf          (3-37) 

where C ( , )F c N  is the free energy in the canonical ensemble with total number of N 

atoms and concentration c. The integrand in equation (3-37) describes the probability 

distribution of concentration c in the entire VC-SGC ensemble, which peaks at the 

average concentration c
V

. Therefore, the derivative of this integrand on 

concentration at V
c c  equals zero, giving the relation between f and C ( , )F c N  as 

f  2N c
V
 N 1FC / c( c

V
, N )      (3-38). 

In the right side of equation (3-38), the derivative of canonical free energy, 

FC / c( c
V

, N ) , is an unbiased observable, which can be used to reconstruct the free 

energy as C C V0
( , ) / ( , )

c
F c N F c c N dc   .  

For an immiscible binary A-B system with two stable phases  and , as illustrated 

in Figure 3.9, the curve of free energy derivative reveals several different stages of 

equilibrium as the total concentration c varies from 0 to 1. Apart from the two single-

phase stages with homogeneous  or  phases, there are five co-existing patterns of  

and  in equilibrium at different c: (I) the sphere-like precipitate of  phase in  phase; 

(II) the cylindrical precipitates of  phase in  phase; (III) slabs of  and  phases 

contacting by planar interfaces; (IV) the cylindrical precipitates of  phase in  phase; 

(V) the sphere-like precipitates of  phase in  phase. Without considering other effects, 

such as, the elastic or magnetic fields, the excess free energy, xc ( )F c , at a given 

concentration c can be calculated as, xc C A B( ) ( ) (1 )F c F c c N c N      , where A 

and B are the chemical potentials of elements A and B in equilibrated  and  phases 

in the thermodynamic limit. 
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Figure 3.9 The free energy derivative as a function of concentration c in a phase-separating A-B system. 
The snapshots are taken from the equilibrated configurations at different regions of concentration, where 
the red and green spheres represent elements A and B, respectively.  and  are the single-phase regions. 
I to V are five different stages of co-existing  and  phases as c is increasing: (I) the sphere-like nucleus 
of  phase in  phase; (II) the cylindric precipitate of  phase in  phase; (III) slabs of  and  phases 
separated by planar interfaces; (IV) the cylindrical precipitate of  phase in  phase; (V) the sphere-like 
nucleus of  phase in  phase. In stage I, the system at concentration c decomposes into the -phase 
precipitate with concentration c' and  phase with concentration c".   
 

The planar /  interfacial energy can be directly calculated from xc ( )F c  in 

the slab region of  and  phases, i.e. region III, as, 

plan xc ( ) /F c S        (3-39) 

where c is a concentration in region III, and S denotes the surface area of planar 

interfaces between the slabs of  and  phases. To the curved interface between sphere-

like  precipitates and the  parent phase, i.e. stage I in Figure 3.9, the interfacial energy 

sph  is calculated as  

sph s sph( ) / ( ")F c S N       (3-40) 

where s ( )F c  is the excess free energy from the curved interface in the sphere-like 

precipitate region and sph ( ")S N  is the surface area of  precipitate with N" atoms. At 

a given concentration c in stage I, the system decomposes into  and  phases with the 

same chemical potentials (free energy derivatives), as illustrated in Figure 3.9, therefore 

the corresponding  and  phases have concentrations c' and c", respectively. 
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Considering mass conservation, the number of atoms in  precipitates N" is calculated 

as 
'"
' "

c cN N
c c





     (3-41) 

where ' "N N N   and N' is the number of atoms in the  phase.  

Therefore, the excess free energy from the curved interface at c, s ( )F c , can be 

expressed as  

s xc xc xc
' "( ) ( ) ( ') ( ")N NF c F c F c F c

N N
         (3-42). 

In practice, the Monte Carlo simulation in the VC-SGC ensemble follows the 

standard metropolis algorithm to evaluate the average concentration c
V

 under the 

constrained potential b
VU . The MC trial step is performed as 

(1) Select a random particle; 

(2) Flip the type of the particle: AB or BA; 

(3) Calculate the concentration change after the flipping c , and the energy 

difference as E [Ncf / 2 ]2 ; 

(4) The acceptance probability of this trial is  

P  min 1,exp E [Ncf / 2 ]2

kBT

















ü
ý


þ
    (3-43). 

Generate a random number a between 0 and 1. Accept the trial if a<P, otherwise 

reject it.   
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4 Simulation 

This section introduces the details of implementing the Monte Carlo approach and 

Forward Flux Sampling method in the study of nucleation kinetics in dilute Fe-Cu 

alloys. In the evaluation of the nucleation free energy, the procedures of Umbrella 

Sampling are listed, along with the details of the newly proposed Reweighted Partial 

Path method. This section also illustrates the computation of the coherent -Fe/Cu 

interfacial energy using the VC-SGC ensemble method. 

4.1 Monte Carlo simulations in dilute Fe-Cu alloys 

The nucleation dynamics simulation for Cu precipitation in dilute bcc Fe alloys is 

performed with the Rigid Lattice Monte Carlo (LMC) scheme implemented in the 

software MatCalc [31]. A bcc lattice of 303030 unit cells is used with periodic 

boundary condition in Forward Flux Sampling to calculate nucleation rates. The system 

energy E is described using a Local Chemical Environment (LCE) potential and the 

atomic diffusion is simulated through the vacancy exchange mechanism.  

In the LMC framework, the acceptance probability for a vacancy exchange with a 

nearest neighbor atom is given by 

P  exp  E
kBT









     (4-1) 

where E represents the total energy difference between the initial state and the state 

after the exchange event. If E < 0, P = 1.  

In this work, the LMC simulations are used to study the nucleation process in Fe-

1%Cu and Fe-1.5%Cu alloys at temperatures from 450~600 C. 

4.1.1 Atomic diffusion 

Atomic diffusivity of Fe and Cu atoms in the rigid lattice is described by the 

vacancy exchange mechanism, where atoms can only exchange their site with a vacancy 
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in the nearest neighbor position. The real time is coupled to a Monte Carlo step (MCS) 

by defining the average time increment corresponding to one vacancy jump [32] as 

t  a2xVa,MC

6DA
 k      (4-2) 

where a is the nearest neighbor distance in bcc-Fe (2.468 Å), DA is the macroscopic 

diffusion coefficient of the jumping atom A in bcc-Fe, xVa,MC is the vacancy site fraction 

in the simulation box and k is a correction for the diffusion correlation effect in the 

vacancy exchange mechanism (0.727 for bcc lattice [33]). In the present MC 

simulations, exactly one vacancy is placed in the 303030 bcc lattice, hence the 

vacancy site fraction xVa,MC=1/54000. Here, the tracer diffusion coefficient (e.g. DCu, is 

1.5 m2·s-1 [34], and DFe is 7.4 m2·s-1 [35] in bcc_Fe at 500 °C ) is used to couple the 

MC step with real time. 

4.1.2 Local Chemical Environment potential (LCE) 

The LMC steps are governed by an atomic interaction energy formulated in the 

Local Chemical Environment (LCE) framework expressed in reference to a particular 

center atom [32]. The energy of the system is calculated as the sum of all pair-wise 

bond energies extending from each atom up to the second nearest neighbors, 

2
( ) ( )
AB AB

1

1
2

i i

i
E n 



 åå      (4-3) 

where nAB
(i )  and AB

(i )  are the number of AB bonds and the corresponding bond energy 

in the 𝑖-th nearest neighbor shell. AB
(i )  cAAB

A(i )  cAAB
B(i) , where cA and cB are the 

atomic fractions of A and B in the local environment and AB
A(i)

 (AB
B(i )) is the AB bond 

energy in a pure A and B environment, respectively. The bond energy of the i-th nearest 

neighbor shell, ( )
CuFe

i , is approximately dependent on (1)
CuFe as CuFe

(i )  (ri / r1)6CuFe
(1) , 

where r1 and ri are the first and i-th nearest neighbor distances, respectively. The 

summation includes all the possible combinations of bonds for A and B, representing 
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the atomic species Cu and Fe, as well as Va, representing the substitutional vacancy. 

The LCE potential is a very flexible and robust energy model, whose parameters can 

be calibrated with various methodologies, such as experimental measurements, first 

principle calculations, or thermodynamic assessment. The details of this potential can 

be found in Ref. [32].  

Using this setting of LCE potential, the solubility limits of Cu in bcc-Fe ( xCu
bcc_Fe ) 

and Fe in bcc-Cu ( xFe
bcc_Cu ) are calculated from slab-diffusion LMC simulations[36]. As 

demonstrated in Figure 4.1, the blocks of pure Cu (red) and pure Fe (green) are initially 

placed adjacent to each other. Then, the LMC simulation starts to run until equilibration. 

In the slab-diffusion simulations, a 2020200 bcc lattice is used in LMC and initially 

each pure block takes up 2020100 unit cells in the manner illustrated in Figure 4.1.  

 

 
Figure 4.1 Illustration of procedures in slab-diffusion LMC simulations [36]. Initially, the blocks of pure 

Cu (red) and pure Fe (green) are placed adjacent to each other, then the LMC simulation starts to run 

until equilibration. The concentration of Cu (xCu) at each layer is measured at equilibrium, and the grey 

areas in the middle of each block are used to determine the solubility limit of Cu in bcc_Fe and Fe in 
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bcc_Cu, respectively.  

Firstly, 5000 MC sweeps are carried out to equilibrate the system, and then another 

5000 MC sweeps for the computation of the solubility limits. One MC sweep equals to 

N Monte Carlo steps, with N denoting the total number of atoms in simulations. The 

concentration of Cu (xCu) at each layer is measured at each equilibrium sweep, and the 

average of xCu in the middle of each block over all the equilibrium sweeps is used to 

determine the solubility limits of Fe in bcc_Cu and Cu in bcc_Fe, respectively. 

Since the tracer diffusion coefficient is used to couple the MC step with real time, 

there is no need to additionally define interactions for atom and vacancy, i.e. ( )
CuVa

i  and 

( )
FeVa

i  are set to zero. The vacancy-vacancy interaction is also neglected, because only 

one vacancy is placed in the simulation sample.  

4.2 Forward Flux Sampling (FFS) for Cu nucleation 

pathways 

4.2.1 Order parameter  

A cluster formed during simulation is recognized as a group of solute atoms 

connected with each other within the nearest neighbor distance. The size of a cluster is 

defined as the total number of solute atoms on this network, as shown in Figure 4.2 (a). 

Clearly, the smallest cluster is a dimer (two Cu atoms next to each other within the 

nearest neighbor distance), and a Cu atom without any other Cu atom in its nearest 

neighbor shell is regarded as a solute atom in the matrix. This cluster detection 

recognizes all the clusters formed during nucleation including both, unstable pre-critical 

as well as stable post-critical ones, to provide a sound evaluation of the cluster size 

distribution. 

In the present work, the order parameter describing the nucleation process is taken 

as the size of the largest cluster/precipitate in the simulation box. In classical theories, 

since nucleation is assumed to happen independently among clusters, the dynamic 
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description of a single-cluster nucleation is used to represent the nucleation process of 

the whole system on an average basis [37]. Therefore, the cluster size in CNT only 

refers to individual precipitates, which are not necessarily the “largest” ones. However, 

in the Monte Carlo simulations, one can observe several of precipitates with different 

sizes simultaneously forming and dissolving in the matrix. Using the size of the largest 

clusters as order parameter represents a simple but efficient way to characterize the 

nucleation stage in atomic simulations. 

 

Figure 4.2 (a) A 2-D illustration for cluster detection — a cluster is recognized as a group of Cu atoms 

(red spheres) connected within the nearest neighbor distance. (b) The nucleation free energy as a function 

of the size of the largest cluster in the system coincides with the CNT free energy (solid curve) except 

from the random distribution region (dashed curve). 

 

The setting of interfaces for FFS is also important to the evaluation of nucleation 

rates. As illustrated in Figure 4.2(b), the formation of the largest cluster (dashed circle) 

is accompanied by the clustering of many other smaller nuclei. Before reaching 

supercritical size, all these clusters are highly unstable. For each supersaturated case, 

FFS trajectories start from a randomly distributed state and end when the system has 

either formed a large and stable cluster or returns back to random state. A sound 

sampling of possible transition states relies on the set of properly defined interfaces, 

especially the first and last ones, which denote the boundaries of the random state and 

post-critical state, respectively. Due to natural statistical fluctuations of the system in 

the random state, the free energy as a function of the size of the largest cluster has a 

(a)

 

 (b) 

 n 
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local minimum in the region of small clusters, as illustrated by the dashed curve in 

Figure 4.2(b). Therefore, it is important to choose the value of 0 to be slightly larger 

than the local minimum to ensure that all transitions are starting from a stable or, at 

least, metastable phase. The last interface should be set at a size, which is large enough 

to make sure that the stable cluster will not return to the initial state once the nucleation 

event is completed. The details of interface setting, {i}, in FFS are listed in Table 4-1. 

 
Table 4-1 The setting of FFS interface {i} for Fe-1%Cu and Fe-1.5%Cu alloys. For all the samplings, 
0 is set to be 0=1. 

Fe-1%Cu Fe-1.5%Cu 

T/C 1 2 i T/C 1 2 i 

450 5 10 {15+5(i-3)}i=3,4 500 7 10 {15+5(i-3)}i=3,4 

500 5 7 {10+5(i-3)}i=3, 4, …, 7 550 7 10 {15+5(i-3)}i=3, 4, 5 

550 5 7 {10+5(i-3)}i=3, 4, …, 9 600 7 10 {10+5(i-3)}i=3, 4, …, 8 

600 5 7 {10+5(i-3)}i=3, 4, …, 14 650 7 10 {10+5(i-3)}i=3, 4, …, 12 

4.2.2 FFS procedures 

For a single nucleation event, the random (initial) state without large clusters is 

treated as reactant (state A) and the post-critical state, where sufficiently large and 

stable clusters have formed, is treated as product (state B). Generally, when using the 

largest cluster size n as order parameter, (x)=n, the nucleation trajectory is a time-

dependent function of cluster size as n(t). In simulations, a trajectory is stored by 

recording the size of largest cluster after every MC sweep. The forward crossing of a 

given interface i at time t is identified when n(t)  i and n(t-t)  i. Here, t is the 

time durance of an MC sweep, while the backward crossing is defined as n(t) ≤ i and 

n(t-t) > i.  

The interfaces {i}i=0…m are a group of increasing values acting as milestones to 

determine the time to store the configurations in which the largest cluster first-time 

reaches or exceeds a given size i . The reaction rate coefficient for a nucleation event 

expressed by equation (3-30) can be considered as the frequency of forming one stable 
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large cluster from the random solution, which is treated as a product of the frequency 

with which the largest cluster in the system attempts to grow over the small size of 0, 

i.e. the initial flux A,0 , and the conditional probability of a cluster in size 0 to grow 

to a large post-critical cluster (n>m) before dissolving, i.e. the crossing probability

P(m |0 )  P(i1 | i )
i0

m1

 . Therefore, 1/kAB is equivalent to the average time that the 

system needs to form one stable post-critical precipitate from the random state. 

Accordingly, denoting the volume of the MC simulation box by V, the nucleation rate 

is calculated as [20]  

J  kAB /V      (4-4). 

In this work, the direct FFS algorithm is implemented to investigate the nucleation 

trajectories in the Fe-Cu system, which proceeds as follows: 

(1) Calculation of the initial flux A,0 .  

The MC simulation starts from the metastable state with randomly mixed Fe and 

Cu atoms. The trajectory of this simulation is recorded at every MC sweep. Once the 

trajectory forwardly crosses the first interface 0 (0=1), the configuration is stored 

and the simulation continues. When NA,0=1000 configurations are obtained, the 

simulation stops and the initial flux is calculated as MC
A,0 A,0 A,0N t   , where MC

A,0t is 

the total time the trajectory spends in [0, 0]. In some cases, when the simulation has 

gone to the final stable state before NA,0 configurations are accumulated, one can restart 

the simulation from the metastable random state and continue counting the forward 

crossing until obtaining NA,0 configurations.  

(2) Evaluation of 1( | )i iP   .  

(i) Randomly pick up a configuration from the set of NA,0 configurations gathered 

in step (1) and run MC simulation from this configuration. The simulation stops 

when it forwardly crosses the next interface 2 or when it backward crosses 

interface 1. In the former case, the configuration as the simulation hits 2 is 

stored and counted as a successful trail from 1 to 2. 
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(ii) Repeat the step (i), until N1=640 successful trajectories from 1 to 2 are 

obtained. The conditional crossing probability 2 1( | )P    is computed as 

2 1 1 1( | )P N M   , where M1 is the total number of trails running from 1. 

(iii) Following the manner of steps (i) and (ii), it is continued to sample the 

successful trails from i to i+1 with the starting configurations obtained in the 

successful trails from i-1 to i. The conditional crossing probability 1( | )i iP    

is computed as 1( | )i i i iP N M   , where Mi is the total number of trails 

starting from i. 

(iv) Repeat step (iii) until finishing the sampling from m-1 to m. Then the reaction 

constant is calculated as 
1

AB A,0 1
1

( | )
m

i i
i

k P  





  .    

4.3 Nucleation free energy evaluation  

4.3.1 Umbrella Sampling  

In the Umbrella Sampling simulations, the size of largest cluster n is chosen as 

simulation coordinate, or order parameter, and a set of windows is defined for the 

sampling with the bias energy given by  2

2i iU n n
  , where in  is the restrained 

value of the i-th simulation and  is a spring constant. In the present Umbrella Sampling, 

a set of windows is defined with restrained values of { in } ={3, 5, 7, … , 65} and a 

spring constant of  = 37.5meV/atom2 for all the samplings.   

Therefore, there are 32 simulations to perform in an Umbrella Sampling run. In 

each i-th simulation, the standard MC procedure is employed as described in section 

4.1, except that the size of the largest cluster n is tracked for every MC step. The energy 

difference for each MC step is calculated as LCE iE E U    , where LCEE is the 

energy difference stemming from the LCE potential only and iU  is the difference in 

umbrella potential after the trial steps. In every simulation, 10000 MC sweeps are firstly 
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run for equilibration, and then the value of n is recorded every iteration for 50000 MC 

sweeps to compute the histogram histi(n). For the purpose of demonstration, the 

histograms obtained in window simulations with in =5, 11, 15 and 21 are displayed in 

Figure 4.3. 

 

Figure 4.3 The histograms of n in the Umbrella Sampling with a biased potential  2

2
U n n

   with 

=37.5 meV/atom2 and n=5, 11, 15, 21, respectively. The curves are the trendlines of histograms.  

 

After finishing all the 32 simulations and obtaining all the histograms 

{histi(n)}i=1…32, one can use the WHAM (Weighted Histogram Analysis Method) 

algorithm [27,38] to evaluate the unbiased probability distribution r (n) as 

( )( )
( )i i i

i

M nn
N f c n

r 
å

     (4-5) 

where M(n) is the accumulated number of n-sized particles combining all the 

histograms, and Ni is the total number of samples in the i-th window simulation. In this 

work, Ni = 50000. In WHAM, r (n) and fi, where 
65

3
1 ( ) ( )i i

n
f c n nr



 å , are iteratively 
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solved. First, one needs to make a rough guess for {r (n)}n=3…65, which is denoted as 

old ( )nr . Then, fi for i=1…32 are calculated as 
65

old

3
1 ( ) ( )i i

n
f c n nr



 å , which are put in 

equation (4-5) to compute a new set of r (n), denoted as new ( )nr . Assign new ( )nr  to 

old ( )nr  and repeat the procedure until errors between new ( )nr  and old ( )nr  are 

acceptable, then the self-consistent solution to equation (4-5) is achieved. 

It is emphasized that r (n), solved by WHAM, denotes the equilibrium probability 

of finding the system in a state with size of the largest cluster equal to n, which is clearly 

different from the equilibrium probability, f (n), defined on a single cluster model in 

classical theories. Nevertheless, r (n) and f (n) will overlap for large n, when only one 

cluster of that size is observed in the Umbrella Sampling simulations [39]. Accordingly, 

the CNT-type/single-cluster free energy, G(n), can be calculated as 

G(n) / kBT 
 ln f (n) n  npatch

 ln r(n)C n  npatch






    (4-6). 

npatch is the point where the two free energy curves are patched up and C is an adjustable 

coefficient to make the free energy continuous at the patching point. For small values 

of n, n≤ npatch, the probability f (n) approximately equals to the stationary size 

distribution established when nucleation takes place [40], which is calculated directly 

in a conventional, or brute-force, MC simulation without bias potential.  

4.3.2 Reweighted Partial Path (RPP) method 

In the present thesis, a novel Reweighted Partial Path (RPP) method to compute 

free energy profiles directly using the trajectories obtained in FFS simulations is 

developed and implemented. This method is very efficient, and no additional 

calculations, such as, reverse FFS or Umbrella Sampling are required. This new RPP 

method is inspired by the Partial-Path Transition Interface Sampling (PPTIS) method 

introduced by Moroni et al. [41,42]. For diffusive processes, free energy profiles can 

be easily determined in PPTIS together with the rate constant without the requirement 
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of additional calculations. The basic concept of PPTIS is very similar to other TIS 

methods, except that PPTIS utilizes a memory-loss assumption to extrapolate the long-

range effective crossing flux from local partial path ensembles. The memory-loss 

assumption acts as a medium to connect the properties of long-range transition paths 

with the partial paths on every interface. Bearing this idea in mind, once a system obeys 

the memory-loss assumption, it is theoretically possible to use transition paths, sampled 

by a standard TIS algorithm (without sampling the reverse transition), to reconstruct 

the partial path ensembles and hence to evaluate free energy profiles. However, due to 

the unique sampling strategy of PPTIS, its free energy evaluation algorithm, called the 

loop-boundary method, cannot be directly implemented within other TIS approaches. 

Therefore, a novel approach -- Reweighted Partial Path (RPP) method is proposed in 

this work so that one can determine free energy profiles using the trajectory information 

from a single TIS/FFS calculation.  

For an ergodic system, the equilibrium distribution is also preserved in trajectory 

space such that the equilibrium average of an observable g(x) can be calculated as an 

average over trajectories, 

0
( ) ( )  ( )tg dt g

   x x x xPD      (4-7). 

In the derivations that follow, the weighted average for an observable g(x) is used, 

and a weight function w(x) is defined as ( ) ( )
( )

( )w

g w
g

w


x x
x

x
.  

For a system evolving diffusively with high-friction character, it is reasonable to 

assume that the memory of trajectories is lost over some time and distance in phase 

space along the -axis. If the transition interfaces, {i}i=1…M-1, between states A and B 

are properly set such that the memory of trajectories only persists between adjacent 

interfaces, the average of an observable g(xt), when the trajectories cross interface i 

coming from a faraway interface, approximately equals the average over the trajectories 

coming from the adjacent interface [41],   

g(x t ) yi ,i±q
» g(x t ) yi ,i±1

     (4-8) 

where q is a given integer. As a matter of fact, the exact expression of memory loss  
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defined in PPTIS[41] is g(x t ) fi,i±q
» g(x t ) fi ,i±1

, where fi , j (x t )  lim
t0

1
t
yi , j (x t )  

equals the velocity of crossing interface i at time t in a trajectory coming directly from 

j before recrossing i. In practice, t is given as a small but fixed time step in simulation 

instead of carrying out the limit t  0 , and hence the definition of memory loss in 

PPTIS is equivalent to that expressed by equation (4-8). 

Since the memory loss should be also obeyed for paths coming from the same 

stable state, equation (4-8) can be extended as  

g(x t ) yi,A
» g(x t ) yi,i1|A

g(x t ) yi,B
» g(x t ) yi,i1|B









     (4-9) 

where 
,( ) , ( ) A(B)

|A(B)
( ) , ( ) , A(B)

,

( )( ) ( ) ( )
( )

( ) ( )
t i i qt i i q

t
i i q i i q

i i q

gg
g y

yy

y y
±±

± ±
±

 
xx x x

x
x x

A B A B

A B A B

h h

h h
. Here, 

...
A(B)

is an averaging over the paths coming from one of the stable regions A(B) and 

ending in either A or B. Since A B|A |B
, 1 , 1

, 1 , 1 , 1
( ) ( ) ( )t t t

i i i i
i i i i i i

g g gy y y ± ±

± ± ±
 x x x , 

where A(B) ( ) , ,
, 1 ( ) i i q i i q

i i y y± ±
±  xA Bh  and A B

, 1 , 1 1i i i i ± ±  , combined with 

equation (4-8) and (4-9), one can easily get the relation   

|A |B, 1 , 1 , 1
( ) ( ) ( )t t ti i i i i i

g g gy y y± ± ±
» »x x x     (4-10). 

Equation (4-10) indicates that average properties observed in trajectories, which cross 

 i from i±1 in paths coming from A, are approximately equal to the averages observed 

in paths coming from B. The crossing probability P(l
m

j
i ) , which describes a path 

having crossed interface i from j and which will continue to reach interface m before l, 

is expressed using the crossing functions as 
,

, ,,
,

, , ,
( )

fm l
i j l mi jm i f

l j m l
i j i j i j

h
P h y

y

y y

Y
        (4-11). 

In PPTIS [41], the one-interface crossing probabilities are defined as pi
±  P(i1

i1
i1
i ) ,  
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pi
  P(i1

i1
i1
i ) , 1

1 1( )i i
i i iP 

 p  and pi


 P(i1

i1
i1
i ) . According to the memory loss 

assumption, , , ,A B| |, 1 , 1 , 1
( ) ( ) ( )f f f

m l t m l t m l t
i i i i i i

h h hy y y± ± ±
» »x x x . Hence, the one-

interface crossing probability can be rewritten as 

A(B) A(B)

, 1 , 1 , 1 , 1A(B) A(B)

A(B) A(B)

, 1 , 1 , 1 , 1A(B) A(B)

        

        

i ii i
i i

i i i i i i i i

ii ii
i i

i i i i i i i i

y y y y

y y y y

± ± 
± 

   

   

 



Y YY Y
 »  »

YY YY
 »  »




p p

p p

    (4-12) 

where Yi
Q  with , , ,Q ±   is a short notation for Yi

±  Yi ,i1
i1,i1 , 

Yi
  Yi ,i1

i1,i1 , Yi
  Yi ,i1

i1,i1  and 1, 1
, 1

i i
i i i

 
Y  Y . In unbiased ensembles, 

the transition paths originate from basin A or B, and end in A or B after visiting the 

transition region. If a trajectory reaches interface i from i-1, it will continue to cross the 

adjacent interfaces (i+1 or i-1) until it leaves the transition region and reaches A or B. 

Considering the continuity of trajectories, the average crossing of i from i-1, , 1i iy   
(see Figure 4.4(a)) equals the average effective crossing of i-1 from both i and i-2, e.g. 

yi ,i1  Yi1
±  Yi1

 . Similarly, the effective crossing of interface i-1 from i also 

obeys the continuity relation as illustrated in Figure 4.4(b), so that 

1,i i i iy 
  Y  Y .  

 

Figure 4.4 Illustration of the continuity relation for (a) the effective crossing of interface i from i-1, and 

(b) the effective crossing of interface i-1 from i. 
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Bearing in mind that 1, 1 1i i i iy   


 Y  Y  and , 1i i i iy ± 

  Y  Y , the 

continuity relation can be written as  

1 1

1 1

i i i i

i i i i

± ±
 


 




 Y  Y  Y  Y

Y  Y  Y  Y

 

 
     (4-13). 

When denoting 1 1i i i iJ ± ±
  Y  Y  Y  Y  , according to equation (4-12), 

equation (4-13) can be rewritten as 

1
1

1 0i
i i

i i i

J
±

 


Y  Y   


p
p p p

     (4-14). 

The continuity relation should also be obeyed by the trajectories exclusively 

coming from state A(B) and ending in either A or B, as 

1 A(B)A(B) A(B)
1

1 0i
i i

i i i

J
±

 


Y  Y   


p
p p p

, with A(B) A(B) A(B)i iJ ± Y  Y . Now, let’s 

only consider the trajectories coming from state A and ending in either A or B. 

According to the boundary conditions, 1 A
0M Y  , the relation between the effective 

crossing Yi
Q

A
 and Yi

Q  is derived by solving equation(4-14) for every interface 

(see Appendix B),  

11
AAA

1 1
AAA

     and    

ii
i ii i

i i i
i i i i

i

UU J

U U J

± ±


  

±

 
 

 Y   Y Y   Y 
 
 
 Y   Y Y   Y 
  

 

AA

A A

hh

h h
p
p

  (4-15) 

where U i  P(M
0

0
i ) 1 P(0

M
0
i )  and JA  Y0

±

A
1U1  . Ui denotes the decaying 

probability from interface i in the transition from A to B, which corresponds to the 

probability that a trajectory, coming from A, returns to A before reaching B after it 

crossed interface i. Equation (4-15) indicates that, under the memory loss assumption, 

the average effective crossing of interface i from adjacent interfaces,
 

Yi
Q , is 

connected with weighted average in the paths coming from A, Yi
Q

A
, by the decaying 

probability in transition A to B. Similar relations between Yi
Q

B
and Yi

Q  can also 
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be derived with boundary conditions Y1
±

B
 0 , by solving the equation (4-14) for 

every interface.  

When a trajectory effectively crosses the interface i from i-1 or i+1, a partial path 

is recognized as the continuous path segment remaining between i-1 and i+1. For 

example, in Figure 4.5(b), when the trajectory crosses i-1 at point b coming from i-2 

and leaves the interface region by crossing i at point e, it is considered as an effective 

crossing of i-1 represented as Yi1
± (b) 1. The path segment from ae is recognized 

as a partial path on i-1 with the crossing type denoted by ±. As illustrated in Figure 

4.5(a), there are four types of partial paths on interface i, denoted by , , ,Q ±  , 

with each one corresponding to an effective crossing of interface i.  

 
Figure 4.5 (a) Four types of partial paths corresponding to four effective crossings at interface i; (b) A 

trajectory effectively crosses interface i-1 and then i at points b and e, respectively. According to the 

definition, the partial path generated on i-1 is the segment ae and the partial path generated on i is dh; 

(c) A partial path on interface i is divided into three parts: two boundary segments (solid lines) and a loop 

segment (dashed line). (d) The boundary path segment between i-1 and i is shared by partial paths on 
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interfaces i-1 and i. To avoid double counting, in the histogram of , where (i-1, i), the phase points 

falling on  are treated as being visited by the partial paths on interface i-1 and the loop of partial paths 

on i. This is equivalent to using the loop of partial paths in i-1 and the partial paths on i to calculate the 

histogram of . 

 

In unbiased ensembles, partial paths can be generated by breaking up the 

trajectories into path segments based on the effective crossing of every interface. 

Accordingly, one partial path is coupled with one effective crossing, hence the unbiased 

number density of partial paths on interface i with type Q is equal to the average 

effective crossing Yi
Q  in trajectory space. For the partial paths generated from 

trajectories exclusively coming from A (B), the number density of partial paths on i 

equals Yi
Q

A(B)
. 

Similar to the loop-boundary method [42] in PPTIS, the partial paths on i are 

divided into three parts: two boundary segments and a loop part (illustrated in Figure 

4.5(c)). The loop part is defined as the segment between the first crossing point and the 

last crossing point of the middle interface marked by the dashed line in Figure 4.5(c). 

The boundary parts are defined as the segments from the path boundary point to the last 

and first crossing point of interface i, marked by the solid lines in Figure 4.5(c). When 

a trajectory consecutively crosses two adjacent interfaces, there is an overlapping part 

between the partial paths generated by the trajectory on the two interfaces. For instance, 

the path segment de is shared by partial paths ae and dh, when the trajectory 

crosses interface i-1 and i in a row. In the meantime, de is a boundary segment 

between interface i-1 and i for partial paths ae and dh. Therefore, to avoid double 

counting, the histogram of phase points from a trajectory in a small bin [-, +] 

with (i-1 , i) (see Figure 4.5(d)) can be calculated by the histogram from partial 

paths on interface i-1 combined with the histogram of  in the loop part of partial paths 

on interface i as 
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  1 1
, , ,

( ) ( ) ( )t i i i iP L    



Q Q Q Q
 

Q± 

  Y  Yåx


    (4-16)            

where Pi1
Q () is the average histogram of  in the partial path of type Q on interface 

i-1, and Li
Q()  is the average histogram of  from the loop on the partial path of type 

Q on interface i. This is equivalent to calculating the histogram of  from the partial 

paths on i and the loop of partial paths on i-1, as 

  1 1
, , ,

( ) ( ) ( )t i i i iL P    



Q Q Q Q
 

Q± 

  Y  Yåx


. 

When a trajectory effectively crosses interface i at phase point xt, the histogram of 

 in the partial path is calculated asri
Q()  dt '   (xt ' ) ttQ

b

ttQ
f

 , where tQ
f  and 

tQ
b are the times when the trajectory first crosses interface i+1 (i-1) forward and 

backward from xt, respectively. For Q  in ± ,  ,  and 
 , tQ

f ,tQ
b  is taken as 

ti1
f ,ti1

b  , ti1
f ,ti1

b  , ti1
f ,ti1

b and ti1
f ,ti1

b   , respectively. Accordingly, the 

average density of  in the partial path Q  having crossed i is defined as 

Pi
Q ()  ri

Q()
Yi

Q
. Similarly, the density of  in the loop part (illustrated as dashed 

line in Figure 4.5 (c)) of partial paths having crossed i can also be calculated as 

Li
Q()  li

Q ()
Yi

Q
, with li

Q()  dt '   (x t ') ttQ
b

ttQ
f

 l i (x t ' ) . Here, li(xt’) is a 

characteristic function [42], where li(xt’)=1 if xt’ is on the loop of the partial path, 

otherwise li(xt’)=0. According to the memory loss assumption, ri
Q

Yi
Q
» ri

Q

Yi
Q|A(B)  

and li
Q

Yi
Q
» li

Q

Yi
Q|A(B)

, therefore  

  1A A |A |A
, , ,

1 1A A
, , ,

( )

                          ( ) ( )

i i
t i i i i

i i i i

l

P L

   r

 

Q Q






Q Q Q Q
 Y Y

Q± 

Q Q Q Q
 

Q± 

  Y  Y

» Y  Y

å

å

x




A

  (4-17).            

Combining eqs. (12), (13) and (14), the equilibrium histogram of  is written as 
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 (x t )  
 (x t ) 

A
Ci ()J A

U i

 hA
    (4-18)            

where 1
1 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )i i i
i i i i i i i i i i

i i

C P P L L L L      
 

±  ± ±   
 ±




 

     


p p p
p p p

p p
. In 

equation (4-18),  (x t ) 
A

 is the unbiased histogram of  in the ensemble with 

paths coming from A and ending either in A or B. This path ensemble can be obtained 

in a single TIS calculation for the transition AB by assigning an unbiased path weight 

 to each TIS trajectory, x , using a reweighting strategy, e.g. the reweighted 

path ensemble method [43]. The partial paths on each interface can be generated by 

breaking up TIS trajectories based on the type of effective crossing. The average of 

effective crossings is determined as , where ni
Q(x )  

describes how many times the trajectory x  effectively crosses interface i with type 

Q. With the memory loss assumption, pi
Q , Pi

Q  and Li
Q can also be evaluated in a 

single TIS calculation for transition AB, and, hence, one can obtain the equilibrium 

histogram of , i.e.  (x t )  , by equation (4-18).  

In PPTIS, the partial paths are sampled from every transition interface in an 

unbiased manner — the trajectories are shot from the phase points on interface i forward 

and backward until they hit the adjacent interface i-1 or i+1. The averaged histogram 

Pi
Q  and Li

Q  can be directly measured from the partial path gathered on interface i. 

When calculating the equilibrium histogram of ,  (x t )  , using the loop-

boundary method, the average weights of partial paths on adjacent interfaces, e.g. 

Yi1
Q  and Yi

Q  in equation (4-16), are reweighted according to the histogram of 

the commonly shared boundary path segment between interfaces. Therefore, in PPTIS, 

there is no need to derive the relation of Yi
Q  and Yi

Q

A(B)
 in the calculation of 

the equilibrium histogram of . However, due to the unique sampling strategy in PPTIS, 

this loop-boundary method cannot be directly used in a general TIS calculation.  For 
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a TIS single transition, i.e. AB or BA, one can evaluate the average histogram Pi
Q  

and Li
Q  from partial paths generated by breaking up TIS trajectories, but the weights 

(or the effective crossing) of partial paths on each interface are Yi
Q

A(B)
 instead of 

Yi
Q . To evaluate the equilibrium histogram of , in the RPP method, the relation of 

Yi
Q  and Yi

Q

A(B)
(see equation(4-15)) is derived to implement the loop-boundary 

method in the general TIS calculation for a single transition (see equation(4-18)).  

To the transitions known to be diffusive, both PPTIS and TIS+RPP can be used to 

simultaneously evaluate the transition rate constant and energy profile. As to a 

transition, which is not certain to be diffusive, one can first do TIS to calculate the 

reaction rate constant, and then use RPP to reconstruct the energy profile and validate 

the memory loss assumption afterwards. If the validation is failed, i.e. RPP result is not 

reliable, one can still do a reverse TIS or Umbrella Sampling simulation to re-evaluate 

the energy profile. Since RPP does not require additional sampling, the computational 

cost for the energy profile is negligible.  

Now let us consider an extreme case where the phase space is projected on a 

discrete order parameter i, each i representing a state. The transition consists of the 

systems consecutive jumps from one state to another adjacent state. If complete 

memory loss is assumed, i.e. the frequency of jumping from state i to i±1 only depends 

on state i, then i i
p p  and pi



 pi

± . Still considering {i} as transition interfaces, 

there is only one phase point xt, as (xt)= i, on each partial path on interface i, i.e. 

Pi
Q (i ) ((x t ),i ) . This phase point can be categorized to either boundary segment 

or loop segment of the partial path, while, in both cases, Ci(i) equals to 0. Therefore, 

in the complete memory loss assumption, equation(4-18) can be rewritten as  

 (x t )i    (x t )i 
A

U i . A similar model for the complete memory loss 

assumption can be found in the works of White [44] and Kashchiev [40] for 

homogeneous nucleation through random attachment and detachment of monomers. 

Here, the same conclusion is reached, namely that the equilibrium number density of 
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clusters of size i equals its stationary number density in a nucleation reaction divided 

by the decaying probability of clusters of size i dissolving to monomers instead of 

growing into a post-critical cluster. 

4.4 Interfacial energy calculation in the VC-SGC ensemble 

In the Variance-Constrained Semi-Grand-Canonical (VC-SGC) ensemble, a 

simulation box with 101010 bcc unit cells, i.e. N=2000 atoms, is used. The free 

energy derivative FC / c  is evaluated according to equation (3-38) with N = 10eV 

per atom , and c from -0.1 to 1.1 by interval c =0.005. Here, c refers to the total 

concentration of Cu atoms in the system. At each c , the mean concentration of Cu, 

V
c , is computed by averaging the total concentration of Cu over 20,000 MC sweeps. 

For illustration, the free energy evaluated by VC-SGC in the bcc Fe-Cu system at 600C 

is displayed in Figure 4.6. 

 
Figure 4.6 The VC-SGC calculated (a) free energy derivative and (b) excess free energy as a function of 

Cu content in the alloy. The small frame in (b) is the free energy evaluated by integrating the energy 

derivative plotted in (a) along the c-axis. The yellow shade in every picture indicates the spherical 
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precipitate region. In (a) and (b), 1
C /N F c    and 1

XCN F   are measured in eV/atom. 

 

The free energy derivative, 1
C /N F c   , in the bcc Fe-Cu system at 600C is 

plotted in Figure 4.6(a). The curve of 1
C /N F c    reveals 5 forms of configurations 

with co-existing bcc Cu and bcc Fe phases, where the sphere-like Cu precipitation stage 

is marked by the yellow shadow in Figure 4.6 from around c = 0.03 to 0.13. The other 

4 forms of phase separation are Cu cylindered pillar in Fe matrix (c = 0.2 to 0.3), Cu/Fe 

slabs (c = 0.36 to 0.64), Fe cylindered pillar in Cu matrix (c = 0.7 to 0.8) and sphere-

like Fe precipitate in Cu matrix (c = 0.84 to 0.95). The single-phase regions with Cu 

solution in Fe and Fe solution in Cu appear at c = 0 to 0.02 and c = 0.98 to 1, respectively. 

By integrating the energy derivative FC / c  along the concentration variable, 

one can obtain the canonical free energy FC as displayed in the small frame of Figure 

4.6(b). The bcc Cu-Fe system is slightly asymmetrical, and the solubility limit of Cu in 

bcc_Fe is around 0.2% at 600C. The common tangent line for the free energy, FC, is 

marked by the dashed line in Figure 4.6(b) The chemical potentials, Cu and Fe, in the 

thermodynamic limit can be measured accordingly. As mentioned, the yellow shadow 

marked area is the Cu precipitation region, where only one spherical Cu precipitate is 

formed and immersed in the dilute bcc Fe matrix. At a given concentration, c, as shown 

in Figure 4.6(a), the system decomposes into a Cu precipitate with concentration c" and 

bcc Fe parent phase with concentration c'. At both, 500 and 600C, the concentration 

of Cu precipitate formed in the shadowed area is almost 1, i.e. pure Cu precipitate with 

c"»1, and the corresponding excess free energy at c"»1 is close to 0. In the meantime, 

the concentration of bcc Fe phase in the sphere-like precipitate region, c', is descending 

from 0.33% to 0.16% at 500C and from 0.78% to 0.44% at 600C (see Figure 4.7), 

with the total concentration, c , increasing. Since c"»1 and c">>c', the number of atoms 

in the Cu precipitate, N", can be approximately calculated as " ( ')N c c N  , where N 

is the total number of atoms in the system. Therefore, the excess free energy from the 
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curved interface, Fs, can also be expressed as s xc xc( ) ( ) (1 ') ( ')F c F c c c F c       , 

based on equation (3-42).  

 

Figure 4.7 The free energy derivative on the Fe-rich side in bcc Fe-Cu system at (a) 500C and (b) 600C. 

The shadow marks the sphere-like precipitate region in each picture, where bcc-Cu nuclei with about 60 

to 300 atoms are in equilibrium with -Fe containing (a) 0.33~0.16%Cu and (b) 0.78~0.44%Cu at 500 

and 600C, respectively. In (a) and (b), 1
C /N F c    is measured in eV/atom.   

 

Using the spherical assumption, the surface area in the precipitation stage can be 

approximately expressed as  2 32 3 ( ')S An A N c c   . Here, n is the number of 

atoms in the Cu precipitate, i.e. n=N". A is the geometry factor of a sphere, 

2 1 3
0(36 )A V , where V0 as the unit volume of an atom in dilute -Fe. Therefore, the 

curved interfacial energy at the sphere-like precipitate region is calculated as 

 
s

sph 2 3
( )

( ')
F c

A N c c
 




. sph is measured in the shadowed precipitation regions at 500 

and 600C, as shown in Figure 4.7, where Cu precipitates contain about 60 to 300 atoms 

at both temperatures.   
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5 Results 

In this section, the nucleation kinetics of coherent Cu particles in dilute Fe-Cu 

alloys is analyzed based on the results from Monte Carlo simulations and enhanced 

samplings. Firstly, the Local Chemical Environment (LCE) potential is assessed and 

validated with the thermodynamic database. Then, the nucleation free energy for a 

single cluster as a function of its size is reconstructed from Umbrella Sampling (US). 

A fast evaluation of the energy profile by the Reweighted Partial Path (RPP) method 

with the trajectories from Forward Flux Sampling (FFS) is also demonstrated and 

compared with the results from US. The nucleation rate of Cu precipitates in the 

primary stage is calculated from FFS simulations at various temperatures. Additional 

nucleation quantities, such as the atomic attachment frequency and the Zeldovich factor, 

are also evaluated and compared with predictions of Classical Nucleation Theory 

(CNT). The configurations with the largest clusters in critical size are collected from 

FFS and US to perform the analysis of size, shape and concentration profiles as the 

major properties of critical clusters. Finally, the -Fe/Cu interfacial energy in 

nucleation is evaluated from the nucleation free energy and the Variance-Constrained 

Semi-Grand-Canonical (VC-SGC) ensemble method.  

5.1 Assessment of LCE potential 

For a binary system, i.e., the Fe-Cu system in this work, the two independent 

parameters in the Local Chemical Environment (LCE) potentials are the first neighbor 

bond energies Cu(1)
CuFe  and Fe(1)

CuFe , which indicate the energy of the Cu-Fe bond in the 

pure Cu and pure Fe environment, respectively. Considering the dilute solubility limits 

of Cu in bcc_Fe ( bcc_Fe
Cux )and Fe in bcc_Cu ( xFe

bcc_Cu ), one can assume that  

 
 

bcc_Fe
Cu Fe Cu B

bcc_Cu
Fe Cu Fe B

exp

exp

x E k T

x E k T




 » 


»       (5-1)            
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where Fe CuE   ( Cu FeE  ) is the energy difference to flip the type of atom to Cu (Fe) 

in pure bcc iron (cooper). Analogically to the definition of local bond energy in the LCE 

potential, the two energy differences can be written as  

 

bcc_Fe Cu(1) bcc_Fe Fe(1)
Fe Cu Cu CuFe Fe CuFe

bcc_Cu Cu(1) bcc_Cu Fe(1)
Cu Fe Cu CuFe Fe CuFe

E w w
E w w

 

 




  

        (5-2)     

where bcc_Fe(bcc_Cu)
Cu(Fe)w  is the average weight of local composition around the Cu(Fe) atom 

in bcc_Fe(bcc_Cu). In dilute cases, the local chemical environment of Cu in bcc_Fe is 

reciprocally similar to that of Fe in bcc_Cu. Therefore, it is reasonable to assume that  

bcc_Fe bcc_Cu
Fe Cuw w»  and bcc_Fe bcc_Cu

Cu Few w»      (5-3).    

Combining equations (5-1), (5-2) and (5-3), one can achieve simple linear 

dependencies between { bcc_Fe
Cux , xFe

bcc_Cu } and { Cu(1)
CuFe , Fe(1)

CuFe } as  

   
   

bcc_Fe bcc_Cu Cu(1) Fe(1)
B Cu Fe CuFe CuFe

bcc_Fe bcc_Cu Cu(1) Fe(1)
B Cu Fe CuFe CuFe

ln ln ' '

ln ln " "

k T x x w O

k T x x w O

 

 

    


   
    (5-4)    

where bcc_Cu bcc_Cu
Fe Cu'w w w   and  bcc_Cu bcc_Cu

Fe Cu" 2w w w  . 'O and "O  account for 

the small errors from the dilute assumptions. Different pairs of { Cu(1)
CuFe ,  Fe(1)

CuFe } are tried 

in the slab-diffusion LMC simulations to evaluate the corresponding solubilities { bcc_Fe
Cux , 

xFe
bcc_Cu }, and the results are plotted in Figure 5.1. At each temperature, evident linear 

dependencies are exhibited between bcc_Fe bcc_Cu
Cu Feln lnx x  and Cu(1) Fe(1)

CuFe CuFe   , 

bcc_Fe bcc_Cu
Cu Feln lnx x  and Cu(1) Fe(1)

CuFe CuFe   , from which one can achieve good fittings for 

'w , "w , 'O and "O  (see Table 5-1) . 

Based on the fitted parameters in equation (5-4), the values of Cu (1)
CuFe  and Fe (1)

C uFe  

are calculated using the real solubility limits bcc_Fe
Cux  and xFe

bcc_Cu  from CALPHAD 

assessments. Table 5-2 lists interaction energy of Fe-Cu on the first neighbor shell, 

Cu (1)
CuFe  and Fe (1)

C uFe , at different temperatures from 450 ~ 700 °C. For validation, these 
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values are used to evaluate the solubility limits in the slab-diffusion simulations, which 

give good agreement with the CALPHAD assessments [28,31,32]. 

 

 
Figure 5.1 In the slab-diffusion test for solubility of Cu in bcc_Fe, linear dependencies are found between 

(a) bcc_Fe bcc_Cu
Cu Feln lnx x   and Cu(1) Fe(1)

CuFe CuFe   , (b) bcc_Fe bcc_Cu
Cu Feln lnx x   and Cu(1) Fe(1)

CuFe CuFe   . Both 

Cu(1)
CuFe  and Fe(1)

CuFe are measured in meV. 

 

 

Table 5-1 The fitted values of 'w , "w , 'O and "O  from the results of slab-diffusion simulations 
plotted in Figure 5.1. 

T/C 450 500 550 600 650 700 

B'w k T  0.0769 0.0712 0.0667 0.0631 0.06 0.0554 

B'O k T  0 0.0002 0 0 0 0 

B"w k T  -0.1718 -0.1631 -0.153 -0.1482 -0.1403 -0.1363 

B"O k T  0.3304 0.5181 0.5047 0.8288 0.8321 1.1037 
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Table 5-2 Values of Cu (1)
CuFe  and Fe (1)

C uFe  used in this work and the corresponding solubility limits of 

Cu in bcc-Fe ( bcc_Fe
Cux ) and Fe in bcc-Cu ( xFe

bcc_Cu ) reproduced by the LCE potential in the slab-diffusion 

LMC simulations [30]. Values of solubility limits from thermodynamic (TD) assessment [28,31,32] are 

listed for comparison. 

T /°C 
CuFe

Cu(1)  

/meV 

CuFe
Fe(1)  

/meV 

LMC  TD-assessment 

bcc_Fe
Cux at.% xFe

bcc_Cu at.%  xCu
bcc_Fe at.% xFe

bcc_Cu at.% 

450 48.8 45.2 0.039 0.033  0.042 0.032 
500 47.5 44.8 0.080 0.062  0.077 0.063 
550 46.3 44.5 0.126 0.115  0.131 0.116 
600 45.1 44.0 0.210 0.198  0.212 0.199 
650 44.1 43.6 0.333 0.322  0.329 0.320 
700 43.1 43.0 0.494 0.497  0.494 0.490 

5.2 Nucleation free energy in Fe-Cu alloys 

5.2.1 Evaluations by Umbrella Sampling 

The free energy F(n) for cluster formation in an Fe-1%Cu alloy at 600°C (solid 

curve in Figure 5.2) is calculated by F (n)  kBT lnr(n) , with r (n) obtained using 

equation (4-5) applied to the Umbrella Sampling results. One can clearly observe a wide 

and comparably flat free energy barrier with the critical size, corresponding to the top 

of the barrier at around n=38. The local minimum at n=5 comes from the fact that the 

free energy F(n) is a function of the largest cluster size, and due to the thermal 

fluctuations in random state, F(n) sharply increases as n approaches 0. The position of 

the local minimum depends on the degree of supersaturation and the size of the MC 

simulation box [39]. The brute-force simulation is performed to evaluate the 

equilibrium number density, f (n), for small clusters. ln f (n) is depicted by the dashed 

curve in Figure 5.2. According to equation (4-6), the CNT-type/single-cluster free 

energy G(n) is reconstructed by merging the two curves at the patching point n=10 
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with the same gradient (illustrated by the dotted line in Figure 5.2). To avoid ambiguity, 

the term nucleation free energy refers to G(n) in this work. 

 
Figure 5.2 Free energy of cluster formation in an Fe-1%Cu alloy at 600°C obtained from Umbrella 

Sampling (solid curve) and from brute-force simulation (dashed curve). The single-cluster free energy, 

G, is obtained by patching up the two curves at the point n=10 (indicated by the dashed line) in this 

case. The dotted line represents the gradient of the free energy at the patching point. 

 

The nucleation free energy is systematically calculated for Fe_1%Cu and 

Fe_1.5%Cu alloys in the temperature range from 450 to 650 °C. For Fe_1%Cu (Figure 

5.3(a)), the critical cluster size n* increases from around 10 to 38 atoms when the 

temperature rises from 450 to 600 °C, with the free energy barrier height gradually 

climbing from 12 to 22 kBT. In the case of Fe_1.5%Cu (in Figure 5.3(b)) aging in a 

higher temperature range from 500 to 650 °C, the critical cluster size increases from 10 

to 30 atoms with the barrier height rising from 10 to 18 kBT. A similar prediction follows 

from first-principles calculation [46], where the critical cluster size is calculated to be 

12 with an activation barrier of 0.63 eV (9.5 kBT) for nucleation in Fe_1.4%Cu alloy at 

500°C. In both alloys, the free energy barrier becomes lower, but sharper, when the 

annealing temperature decreases. The free energy curves are also found to be well fitted 

in the classical form as G(n) = an + bn2/3 + c, where a is the volume contribution, b is 

the interfacial energy term and c is a normalization constant. Assuming that the clusters 

are spheres, the precipitate/matrix interfacial energy is evaluated to be approximately 

0.28~0.30 Jm-2 for dilute Fe-Cu alloys, in accordance with values of 0.27~0.34 Jm-2 
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obtained from the generalized nearest neighbor broken bond (GBB) model [11] with 

size correction for small clusters [12]. 

 

Figure 5.3 Nucleation free energies of Fe-1%Cu (a) and Fe-1.5%Cu (b) alloys between 450 °C and 

650 °C obtained with the Umbrella Sampling technique. 

5.2.2 Evaluations by the RPP method 

For comparison, the nucleation free energy at 600 C in an Fe-1%Cu alloy is 

calculated directly from FFS trajectories using the Reweighted Partial Path (RPP) 

method as developed in the present thesis. The details of the RPP simulation procedure 

and results are presented in this chapter, the theoretical basis has been described in 

chapter 4.3.2. 

To use the RPP method, one first needs to restore the TIS-style trajectories from 

the ones obtained by FFS. In the transition of AB, FFS generates trajectories starting 

from the boundary of basin A in a ratchet-like manner through interfaces. When a 

trajectory first reaches interface i at phase point xt before returning to A, xt is stored as 

the starting points in the search of trajectories crossing the next interface i+1. It is noted 

that the trajectory, which successfully reaches the next interface instead of returning to 
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region A, is not a complete path but will be continued by firing off trajectories at the 

next interface until finally region A or B is reached. Patching up the fired-off 

trajectories on every interface from FFS, one can obtain the ensemble with paths 

exclusively coming from A and ending in A or B, i.e. {x}A . The unbiased probability 

of a path x  in {x}A can be estimated as [22][47] 

    (5-5).    

As to other TIS methods, Rogal et al. [43] proposed a reweighting strategy to 

calculate the path probability in unbiased ensembles, based on the weighting factors 

from the Weighted Histogram Analysis Method (WHAM) [27] in the procedure of 

patching up the crossing probabilities of trajectories in every interface ensemble.  

After the weighting procedure, the average of effective crossings on each interface 

can be calculated as AA
( ) ( )i in Q QY å x xP , where ni

Q(x )  describes how many 

times the trajectory x effectively crosses interface i with crossing type Q. According 

to the memory loss assumption, the one-interface crossing probability is estimated by 

equation (4-12) from the effective crossing in ensemble {x}A . The result is plotted in 

Figure 5.4. In this work, 0 and 1 are set to be overlapping. Once a trajectory reaches 

1 from 2, it will end in state A. In this case, 1,2 1A A
y  Y , therefore 1 1p  and 

p1
  0  according to equation (4-12). In the meantime, since all the trajectories in 

{x}A will end when they reach state B, there is no effective crossing of M-1 from M, 

i.e. 1, A
0M My   . Therefore, the value of one-interface crossing probabilities at M-

1=13, 13
p  and 13


p , cannot be evaluated in the FFS calculation for the forward 

transition. 
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Figure 5.4 One-interface crossing probabilities calculated from the reweighted FFS trajectories for every 

interface.   

 

The one-interface crossing probability, i
Qp , is an average probability of the first-

time crossing and re-crossing interface i from the adjacent interface. The implicit 

message of the memory loss assumption is that, when the trajectories presently crossing 

i do not have the memory in the phase region beyond the adjacent interface, there is no 

difference between the first crossing and re-crossing probabilities. Based on the 

memory loss assumption, Moroni et al. [41] derived the connection between the 

crossing probabilities P i
 ( P i

 ), where 1
0 0P ( )i

i P   and 0 1P ( )i
i i iP  , and one-

interface crossing probability i
Qp  as  

1 1 1 1

1 1 1 1 1 1

P PP   ,      P
P P

i i i i
i i

i i i i i i

±  
    

±   ±  
     

» »
 

p p
p p p p

    (5-6).    

Equation (5-6) is an implicit expression of P i
 ( P i

 ), which requires the 

information of i
Qp  and Pi1

 ( Pi1
 ) for every interface and then iteratively solves for 

the value of the crossing probability from 1P  ( 1P  ) to PM
 ( PM

 ). For convenience, 

equation (5-6) can be rewritten in a separate form for P i
  and P i

  simply as the 

function of one-interface crossing probability (see Appendix A) as  
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  (5-7).    

Equations (5-6) and (5-7) are the expressions for the crossing probability under the 

condition that the memory-loss assumption is valid in the system. Therefore, one can 

do a quick check for the memory loss assumption in the target system by comparing the 

result of crossing probability, P i
 , from the FFS calculation and equations (5-6) and 

(5-7). Figure 5.5 plots the crossing probabilities, P i
  and P i

 , evaluated from the 

one-interface crossing probability by equation (5-7), compared with the crossing 

probability, P i
 , measured in the FFS calculation (red squares in Figure 5.5). The good 

agreement indicates that the one-interface crossing probability is approximately the 

same in the first crossing and re-crossing of each interface, which is an evidence for 

long-range memory loss. If a large discrepancy were observed in the predictions for 

P i


 by FFS and equation (5-7), the system would apparently not be memoryless and 

the RPP method would produce an incorrect equilibrium distribution of states on the 

chosen order parameter. 

 
Figure 5.5 Crossing probability calculated from one-interface crossing probabilities by equation (5-7), 

compared with the crossing probability from the FFS algorithm 

The average distribution of  in the partial path, Pi
Q() , and the loop of the 

partial path, Li
Q() , is calculated at the same time with the effective crossing. Once the 
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phase point xt of an effective crossing is located on a trajectory, the histograms of , 

ri
Q (xt ,) and li

Q (xt ,) , can be determined by tracing along the trajectory from xt 

forwardly and backwardly until the trajectory reaches the adjacent interface. The 

average density of  in the partial path and the loop is calculated by 

A

A

( ) ( , )
( ) i t

i
i

P
 r 


Q

Q
Q


Y

å x xP
 and A

A

( ) ( , )
( ) i t

i
i

l
L

 


Q
Q

Q


Y
å x xP

. Since no trajectories 

cross M-1 from M in {x}A , 1( )MP 
  and 1( )ML 

  are unknown for [M-2, M]. 

Therefore, according to equation (4-18), the equilibrium distribution of the order 

parameter, (x)  , is only derived for [0, M-2] in the RPP method. The free 

energy, F(), is evaluated from the equilibrium distribution by 

F ()  kBT ln (x)  c , where c is a constant from normalization.  

The free energy calculated by RPP from FFS trajectories is plotted on Figure 5.6 

by the red circles, compared with the results of standard Umbrella Sampling (US) [27] 

shown as blue solid line.  

 

Figure 5.6 Free energy of nucleation as a function of largest cluster size calculated by the Reweighted 

Partial Path (RPP) method (red circles) compared with the one from Umbrella Sampling (US).  

 

In the transition phase region, [8, 55], the RPP method gives a very close 

prediction of free energy compared with US. A broad and high activation barrier is 
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provided by both methods with the highest point showing around  = 35. Since the FFS 

algorithm only collects those trajectories visiting the transition region, the trajectories 

that linger in the stable region are not included for the estimation of the equilibrium 

distribution in the RPP method. This is the reason for the discrepancy between the RRP 

and US results in the area close to region A. To correct the discrepancy, one can 

evaluate the distribution of  from brute-force simulations around region A, and then 

patch up the free energy with the predictions from the RPP method. 

5.3 FFS trajectories and nucleation rates 

5.3.1 Nucleation rates from FFS calculations  

The nucleation trajectories in Fe_1%Cu and Fe_1.5%Cu alloys at 450 to 650 °C 

are generated using MC dynamics and harvested by Forward Flux Sampling (FFS) [21]. 

The conditional crossing probability P(i |0) on every interface i is plotted in Figure 

5.7 (Fe_1%Cu) and Figure 5.8 (Fe_1.5%Cu). In all FFS simulations, the boundary of 

the metastable state 0, i.e., the largest cluster size appearing in the random metastable 

state, is set to be equal to 1, therefore, P(1 |0)=1. According to the definition, P(i 

|0) represents the conditional probability of the largest cluster to grow from size 0 into 

a cluster with size over i before dissolving to n<0. This probability is always 

decreasing as i approaches the boundary of stable state, m, but finally converges to 

P(m |0). The convergence is a natural result from the fact that larger clusters are more 

likely to grow instead of shrinking. As a cluster reaches size m, the chance for the 

cluster to dissolve is nearly 0, therefore, one can consider the cluster as stabilized. 

Taking the example of nucleation in Fe-1%Cu at 600 C, as illustrated in Figure 5.9, 

the conditional crossing probability P( |i) for [i+1, i] indicates the probability of 

a cluster with size i to grow to  before decaying to 0. As i getting close to m, P( 

|i) is approaching to 1. At i=13, P(i+1 |i)»1, indicating that the largest cluster is 

stabilized as its size reaches size 14=65.   
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Figure 5.7 The conditional crossing probability P(i |0) observed in FFS for Fe-1%Cu alloy at (a) 450 
C, (b) 500 C, (c) 550 C and (d) 600 C.   
 
 

 

Figure 5.8 The conditional crossing probability P(i |0) observed in FFS for Fe-1.5%Cu alloy at (a) 500 
C, (b) 550 C, (c) 600 C and (d) 650 C. 
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Figure 5.9 The crossing probability of P(|i) for [i, i+1] from FFS sampling of nucleation in 

Fe_1%Cu alloy at 600 C. The interfaces i with i=1~14 are marked by the vertical grey lines.  

 

Here, m and P(m |0) are closely connected to the supersaturated state. At high 

supersaturation, m is comparably smaller and P(m |0) is significantly higher than in 

under low supersaturation circumstances (see Table 5-3). For example, a cluster with 

size over 20 atoms can be considered as stable in Fe-1%Cu alloy at 450 C, whereas 

the cluster with 40 atoms still has significant probability for dissolving in the same alloy 

at 600 C. The initial flux A,0 is mainly dependent on the atomic diffusivity, which is 

dramatically boosted as temperature increases (see Table 5-3).   

 
Table 5-3 The settings of the first interface 0 and the last interface m in FFS samplings, along with the 
values of initial flux A,0 , conditional crossing probability P(m|0) and the reaction rate constant kAB. 

 T / °C 0 m A,0 / s-1 P(m|0) kAB / s-1 

XCu=1.0% 450 8 20 3.02·10-5 6.93·10-2 2.10·10-6 
500 7 30 1.21·10-3 7.08·10-3 8.56·10-6 
550 5 40 5.07·10-2 2.09·10-4 1.06·10-5 
600 5 65 0.53 6.44·10-7 3.42·10-7 

XCu=1.5% 500 9 20 1.32·10-3 0.13 1.68·10-4 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.0

0.5

1.0



142
P(
|
 i

)
1 43 65 7 8 131211109
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550 9 30 2.80·10-2 3.35·10-2 9.40·10-4 
600 7 40 0.85 2.60·10-3 2.20·10-3 
650 7 55 7.84 1.88·10-5 1.48·10-4 

 

Nucleation rates calculated from equations (3-30) and (4-4) are plotted in Figure 

5.10 as solid lines. The nucleation rates of Cu precipitates between 450°C to 650°C are 

in the range of 1017~ 1020 m-3s-1 in the Fe-1%Cu alloy and 1020~ 1022 m-3s-1 in the Fe-

1.5%Cu alloy. For both alloys, nucleation rates do not significantly increase at higher 

supersaturation and decreasing temperature, but rather decline by one order of 

magnitude due to the increasingly sluggish diffusion of substitutional elements. The 

maximum nucleation rates are observed at around 550°C in Fe-1%Cu and around 

600°C in Fe-1.5%Cu, in good agreement with the isothermal time-temperature-

precipitation (TTP) diagram reported by Perez et.al [48], where the fastest nucleation 

is observed at 600 ~ 650°C in Fe_1.2%Cu. It is worth noting that the nucleation rate 

obtained from FFS corresponds to the steady state nucleation rate defined in CNT, thus, 

transient nucleation effects, which are manifested in the incubation time [49], are not 

taken into account in this work.  

 
Figure 5.10 Nucleation rates obtained by FFS (full markers) and CNT (open markers) for Fe-1%Cu and 

Fe-1.5%Cu at temperatures between 450°C and 650°C. The trend lines are the Bézier curves generated 

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

64 
 

from each group of data points. 

 

Unfortunately, there is not much quantitative information on nucleation rates 

available for the present Fe-Cu system, neither from atomistic simulations nor from 

experimental work. On one hand, experimental measurements for nucleation rates 

require accurate detection of the Cu particles (radius smaller than 0.5 nm) formed in the 

earliest stages of precipitation, which is almost impossible with present experimental 

techniques. On the other hand, the steady-state nucleation stage is inherently difficult 

to be observed in conventional atomistic simulations, especially under high-

supersaturated conditions. In the work carried out by Soisson and Martin [50], with an 

estimated critical cluster size derived from the steady-state cluster distribution, the 

nucleation rates for Fe-Cu alloys are only reported for rather high temperatures 

(1000K~1500K) calculated from brute-force Monte Carlo simulations.  

In continuum precipitation models, the nucleation rate is a pre-determined 

parameter controlling the evolution of the number density of precipitates during the 

process until coarsening of clusters begins. In the work of Stechauner and Kozeschnik 

[51], simulations of Cu-precipitation in ferrite are carried out using the KWN model 

[52,53] (implemented in the software package MatCalc [31]), with the nucleation rates 

of Cu precipitates calculated in a CNT framework at every time interval during the 

simulation. In their work, the steady nucleation rates at the primary stage are found to 

be in the order of 1020~ 1023 m-3s-1 in the Fe-1.4%Cu alloy **at 450 to 650°C, with the 

highest value, around 81022 m-3s-1, occurring between 600 ~ 650°C. Guo et.al. 

[54], using a similar model in the study of precipitation kinetics in an Fe-Cu-X ternary 

alloys, report values of 1.11021 m-3s-1 for the nucleation rate of Cu-rich particles at 

800K [54]. 

 
** the data was not published, but reproduced with the same MatCalc script from ref. [51] 
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5.3.2 Comparison with brute-force MC simulations 

The evaluation of nucleation rates from brute-force MC simulations is based on 

the connection between the time-dependent nucleation rate Jn,t and the number density 

of clusters as [49,55] 

Jn,t  Nn ,tkn
  Nn1,tkn1

  N t ( n)
t

     (5-8).    

At a given time t, Nn,t denotes the number density of clusters containing n atoms, 

and Nt (>n) denotes the number density of clusters with more than n atoms. kn
/  is the 

transition frequency for clusters with n atoms to attach (+) / detach (-) a monomer, 

which is assumed to be a time-independent value during nucleation. Jn,t is variant with 

time in the beginning of nucleation. After a short period (incubation time), the steady 

size distribution will be established, i.e. Nn,t /t = 0, such that Jn,t  becomes a constant 

value and Nt (>n) starts to linearly increase in time with a rate of Jn,t . The constant Jn,t, 

known as the steady-state nucleation rate, is the nucleation rate evaluated in FFS by 

equation (4-4). Here, the steady-state nucleation rate is denoted as Js. 

To validate the FFS methods, brute-force Monte Carlo simulations are performed 

to analyze the steady-state nucleation rate of Cu clusters in Fe-1%Cu alloy at 500°C. 

The same LCE potential and diffusion coefficients are used as that in FFS calculation, 

but the size of the MC sample is increased to 100100100 unit cells (28.528.528.5 

nm3) to ensure sufficient statistics to evaluate the time derivative of Nt (>n). The system 

is first equilibrated at 1200°C and then quenched to 500°C. The measurement of Nt (>n) 

begins right after the quenching. The threshold value n in the number density of clusters 

Nt (>n) is set as the critical clusters size with n=15. In fact, the choice of threshold value 

n does not affect the value of the nucleation rate when steady-state condition is 

established [49]. The values of n in a range of 10~50 atoms give similar estimations for 

Js in this case. 

The brute-force simulation is repeated for 100 times to gain an accurate estimation 

of Nt (>15) in Fe-1%Cu alloy at 500°C. The averaged Nt (>15) at each time t is displayed 

in Figure 5.11 along with its Mean Square Root Deviation (MSRD) illustrated as error 
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bars. According to Figure 5.11(a), the linearly increasing region of Nt (>15) starts within 

a short period of time after quenching. The averaged steady-state nucleation rate is 

around 1.681019 m-3s-1 with a deviation of ±0.301019 m-3s-1 indicated by the dotted 

lines. Compared with the nucleation rate from FFS, 1.411019 m-3s-1, the evaluation 

from brute-force MC is slightly higher. This is because brute-force simulations utilize 

a larger MC sample, which could have more concentration fluctuations in local area 

and result in a slightly higher Js compared to the one evaluated in a smaller sample in 

FFS. 

 

Figure 5.11 (a) The number of clusters with size larger than 15, Nt(>15) , as a function of time evaluated 

by averaging over 100 brute-force simulations in Fe-1%Cu alloy at 500°C. The error bars illustrate the 

root mean square error. The steady-state nucleation rate evaluated from the linearly increasing region is 

around 1.681019 m-3s-1 with a deviation of ±0.31019 m-3s-1 indicated by the dotted lines. (b) The 

steady-state nucleation rate in Fe-1%Cu alloy at 500°C evaluated by Nt(>15) averaging over 1 to 100 

brute-force simulations. 

 

To test the sensitivity of estimations of Js on the number of repeated simulations, 

Js from Nt(>15) in each individual brute-force simulation is calculated as well as the 

average over multiple simulations (see Figure 5.11(b)). The steady-state nucleation rate 

evaluated by one simulation diverges from 0.91019 m-3s-1 to 2.41019 m-3s-1, and as 

averaging over more repeated simulations, the deviation of J becomes smaller and 

converges around 1.681019 m-3s-1 with 100 repeated simulation. According to Figure 

5.11(b), an averaged Nt(>15) from over 20 repeated simulations in an MC sample of 
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100100100 unit bcc cell gives a reasonable estimation of the nucleation rate in the 

Fe-1%Cu alloy at 500°C.  

Generally, to reduce the stochastic error in evaluation of nucleation rates, the 

brute-force method needs to either enlarge the MC sampling size or increase the 

repeated times of simulations. Compared with the brute-force method, FFS has much 

higher efficiency for the computation of reaction rate coefficient, especially in the cases 

with high transition barriers [56]. In this work, FFS harvests about 600 successful 

nucleation trajectories for calculation of Js in Fe-1%Cu alloy at 500°C, and the total 

CPU time is about 50 hours on a single core. Supposing that one stable post-critical 

cluster formed in brute-force simulation stands for one successful nucleation trajectory, 

one needs to repeat the simulation for 20 times to harvest 600 trajectories, and the 

corresponding CPU time is about 80 hours on a single core. For a low supersaturated 

case, such as in Fe-1%Cu alloy at 600°C, FFS spends 680 hours on a single core to 

harvest 600 successful trajectories, while using the brute-force method, one may not be 

able to observe nucleation in a feasible CPU time at all. Theoretically, the CPU time 

for brute-force simulation exponentially increases with the height of the transition 

barrier [56], based on the CPU time for Fe-1%Cu alloy at 500°C, the brute-force method 

is estimated to spend 650000 hours on a single core to harvest 600 successful nucleation 

trajectories. 

5.4 Comparison with CNT 

In Classical Nucleation Theory (CNT), the nucleation rate is expressed as [57][58] 

J  NZ* exp  G(n*)
kBT









, where N is the number of potential nucleation sites, Z is the 

Zeldovich factor, * is the atomic attachment rate, n is the number of atoms in the cluster 

and G(n*) is the free energy barrier at the critical cluster size n*. The Zeldovich factor, 

Z, is related to the curvature of the free energy barrier at the critical size, 
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'' *

B

( )
2
G nZ

k T


  . Here, '' *( )G n , n* and Z can be directly evaluated from the free 

energy curve G(n) as obtained in the previous sections.  

In classical theory, the nucleation free energy G(n) is expressed as  

G(n) = Gnucl n +  n2/3      (5-9)    

where Gnucl is the volume energy contribution, also known as the chemical driving 

force.  is the interfacial energy term, given by the product of a geometry factor A and 

the specific interfacial energy , i.e. =A . The nucleation free energy evaluated in US 

fits very well in this classical form, and the corresponding values of Gnucl and  

obtained from the fitting are listed in Table 5-4.  

Based on the regular solution model for binary systems, the nucleation driving 

force in a supersaturated solid solution can be expressed as[57]   

Gnucl  (1 ye )kBT ln 1 xe

1 x0









 yekBT ln xe

x0









(x0  x e )   (5-10)    

where xe and ye is the equilibrated concentration of solute element in matrix phase and 

precipitation phase at temperature T, respectively.  is the interaction parameter for a 

binary A-B system given by  zL(AA BB  2AB) / 2, where ij is the bond energy 

and zL is the number of nearest neighbors (coordination number). x0 is the concentration 

of solute element in the matrix during nucleation, where a maximum value of Gnucl is 

provided. In a dilute solution, the concentration of solute solution xs << 1, x0 » xs. When 

xe <<1, equation (5-10) can be approximately rewritten as 

e
nucl B lnG y k T S       (5-11)    

where S is the degree of supersaturation given as S = xs/xe. Here, xs is the initial Cu 

concentration in the alloy and xe
 is the equilibrium Cu solubility at temperature T.  

Fig.6 displays the relation of driving force, Gnucl, and supersaturation, S, for 

nucleation in Fe-1%Cu and Fe-1.5%Cu alloys at 450 to 650 °C. According to Table 5-2, 

the equilibrium bcc_Cu phase is almost pure Cu at temperature from 450 to 650 °C, i.e. 

ye=1, therefore, the relation of Gnucl and S suggested by eq.(11) is nucl B lnG k T S   

(illustrated by the solid line in Figure 5.12). However, this tendency is not obeyed and 
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a non-linear relation is displayed between Gnucl and lnS. At high supersaturation, the 

nucleation driving force is much weaker than the one predicted by equation (5-11). 

With lnS decreasing, the discrepancy is getting smaller and Gnucl starts approaching to 

the value of –kBTlnS. Equation (5-11) is derived with the assumption that the clusters 

formed during nucleation inherit the properties of the equilibrium precipitation phase. 

The trend line of Gnucl in Figure 5.12 indicates that the Cu clusters formed during 

nucleation are all in metastable state and energetically unfavorable compared to the 

equilibrium precipitation phase. 

 

Table 5-4 The driving force Gnucl and interfacial energy term  evaluated by fitting the nucleation free 

energy from US to classical form. S is the supersaturated degree. 

 T / °C lnS Gnucl /kBT 
per Atom 

 /kBT 
per Atom2/3 

XCu=1.0 450 3.23 -2.05 6.91 
500 2.52 -1.75 6.45 
550 2.07 -1.49 6.19 
600 1.56 -1.13 5.74 

XCu=1.5 500 2.93 -1.91 6.48 
550 2.48 -1.68 6.16 
600 1.96 -1.48 5.89 
650 1.51 -1.15 5.42 

 

 

Figure 5.12 The nucleation driving force, Gnucl, as a function of lnS. The solid line illustrates the 
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equation e
nucl B lnG y k T S  , with the Cu concentration in precipitates ye =1. The dashed line marks 

the trend of Gnucl considering that Gnucl will vanish in the case without supersaturation. 

 

The interfacial energy, , does not show evident connection with the degree of 

supersaturation (see Table 5-4) At different temperatures, the value of  slightly 

changes in a range between 4.9~5.210-4 Jmol-2/3. The geometry factor, A, is a unit 

transfer as A=a/n2/3, where a is the matrix/precipitate interfacial area and n is the number 

of atoms in the precipitate. Supposing the precipitates are spheres and Vm is the effective 

volume of an atom, the geometry factor is calculated as A=(4)1/3(3Vm)2/3. When using 

this spherical approximation, the specific interfacial energy, , is estimated to be in a 

range of 0.28~0.30 Jm-2 during Cu nucleation in dilute Fe-Cu alloys at 450~600°C. 

However, this is only a rough estimation, since the shape of Cu clusters during 

nucleation is much more complex than simple spheres and the geometry factor needs 

to be carefully evaluated in this case. 

The atomic attachment rate, *, describing the frequency at which monomers are 

attaching to a critical cluster during nucleation [8], is evaluated from FFS trajectories 

by 

* 
P n(t t)  n(t) n(t)  n* 

t
     (5-12)    

where P n(t t)  n(t) n(t)  n*   is the mean probability for a cluster at n* to absorb 

one atom at the next time slice in each trajectory and t is the average time interval that 

the system resides between adjacent slices. Since the attachment and detachment 

frequencies approximately have the same value on the top of the energy barrier, the 

critical attachment rate can be also determined from the mean square displacement of 

cluster size [59] in a short time t, as  
*

2*

( )

1 ( ) ( )
2 n t n

n t t n t
t




  


. 

In Figure 5.13, the values of * from FFS trajectories (equation (5-12)) are 

compared to the values obtained from CNT (equation (3-10)). Evidently, good 

agreement is achieved. In FFS, Cu nuclei are observed to change their size mainly by 

attachment or detachment of monomers in dilute alloys, while the contribution from 
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small clusters (e.g. dimers or triplets) is rarely detected during nucleation. This 

phenomenon is in agreement with the classical description for atomic attachment 

expressed by equation (3-10). However, small systematic deviations are observed 

particularly at lower temperatures. This effect can probably be attributed to the non-

spherical shape of very small critical clusters, which one can observe in the analysis of 

the critical nucleus shape. Figure 5.17 shows some snapshots of small clusters with less 

than 30 atoms observed in FFS. In order to characterize the geometry of nuclei, the 

clusters are fitted to ideal ellipsoids and an anisotropy factor, , is defined as the ratio 

between the longest and shortest radius of the ellipsoid ( =1 for a sphere). In this work, 

the critical clusters in the size between 10 ~ 30 atoms are commonly observed in a non-

spherical shape with average anisotropy factors ranging from 2.0 to 3.5. 

 

Figure 5.13 Atomic attachment rate, *, evaluated according to Svoboda et al. [13] compared with the 

prediction of equation (5-12). 

Table 5-5 summarizes the values of CNT-type parameters as evaluated from the 

free energy profiles and the FFS nucleation trajectories. The CNT nucleation rate 

calculated using equation (3-9) is plotted on Figure 5.10 to compare with FFS 

predictions. It is not surprising that the two methods give almost the same prediction 

on nucleation rates in this work, since the free energy used in equation (3-9) is a direct 

reflection of the equilibrium properties of the atomic system, and the kinetics of cluster 

growth is also quite “classical” in dilute Fe-Cu alloys based on the above discussion.  
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Table 5-5 Number n* of atoms in the critical cluster, Zeldovich factor Z, nucleation barrier G(n*)/kBT 

and atomic attachment rate, *, as evaluated from FFS trajectories for alloys with Cu contents of 1 at-% 

and 1.5 at-%. The nucleation rates, J, are calculated according to CNT (equation (3-9)). 

 T / °C n* Z G(n*)/kBT * /s-1 J /m-3s-1 

XCu=1.0% 450 12 0.10 12.07 6.32·10-5 3.06·1018 
500 15 0.08 13.13 1.07·10-3 1.44·1019 
550 22 0.06 16.04 4.24·10-2 2.40·1019 
600 38 0.06 21.91 0.56 8.39·1017 

XCu=1.5% 500 11 0.09 10.94 2.01·10-3 2.87·1020 
550 15 0.08 12.33 4.81·10-2 1.42·1021 
600 20 0.07 13.78 0.59 3.49·1021 
650 30 0.05 17.90 6.07 3.95·1020 

5.5 Chemical composition and shape of critical Cu-clusters 

5.5.1 Concentration profiles across the precipitate/matrix interface 

The concentration profiles across the precipitate/matrix interfaces are analyzed for 

clusters of critical size at different temperatures. In the evaluation, the center atom is 

defined as the one atom residing closest to the geometric center of the cluster, i.e. the 

center of a fitted ellipsoid. The concentration profile is then calculated from the center 

up to the 20th neighbor shell as illustrated in Figure 5.14(a). The Cu concentration in 

the ith shell is determined as ( ) ( ) ( )
Cu tot

i i ic n n , where ( )
Cu
in  and ( )

tot
in  are the number of Cu 

atoms and total number of atoms in the ith shell, respectively.   

The concentration profiles, averaged over 500 configurations of critical clusters 

with the same size, are shown in Figure 5.14 (b). In the Fe-1%Cu alloy, the critical 

nucleus at 500°C contains approximately 10% Fe in the center, with the Fe amount 

significantly increasing to approximately 50% in the first neighbor shell. At a 

temperature of 600°C, the Cu concentration increases to almost 100% in the center of 

the critical clusters. A similar observation of for the concentration profile of critical 

clusters is reported by Nagano and Enomoto [60] based on a study of cluster growth 
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with the Cahn-Hilliard theory for dilute Fe-Cu alloys. According to their calculations, 

the Cu content at the center of critical clusters is around 85% at 400°C in the 

Fe_1.5%Cu alloy and almost 100% when the temperature is increased to 550°C. The 

average concentration of Cu clusters was evaluated by Kozeschnik and Stechauner [51] 

based on the minimum G(n*) concept [61]. In their work, the critical clusters in Fe-

1%Cu is estimated to contain 70% Cu at 500°C and gradually increase to almost 100% 

at 650°C.   

 

Figure 5.14 (a) Illustration of the procedure for finding the geometric center of an irregular cluster and 

of the evaluation of the composition profile from the center atom to neighbor shells; (b) Concentration 

profile of critical clusters in Fe-1%Cu alloy at 450°C, 500°C, 550°C and 600 °C, where the corresponding 

critical sizes are 12, 15, 22 and 38 atoms, respectively. 

 

In the present analysis, there is no meaning to do further speculation on absolute 

numbers of the chemical composition of critical clusters because the actual value of this 

quantity is very sensitive to the choice of criterion defining the matrix/precipitate 

interface. Still, the concentration profiles of critical clusters indicate that the clusters 

formed first in dilute alloys are not always pure Cu clusters, and a substantial amount 

of Fe atoms can reside within Cu clusters at low temperature. At 600°C, the critical 

clusters maintain a high Cu content above 90% from the center up to the 2nd neighbor 

shell. At a temperature of 450°C, a large amount of Fe infiltrates into the core of the 

clusters and significantly reduces the Cu content around the center of the clusters. For 
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small clusters with less than 20 atoms, no strict “core” region can be defined any more, 

since these small clusters are composed of only 2~3 layers of solute atoms, and almost 

every atom in the clusters is partially “exposed” to the matrix. 

 

Figure 5.15 Concentration profiles of clusters in a 1.5%Cu alloy at 500°C (a) and in an 1%Cu alloy at 

600°C (b) when aging from the critical state for different times. 

 

To analyze the concentration profiles of clusters during super-critical growth, for 

each temperature and chemical composition of the alloys, a group of configurations at 

“critical states”, i.e. the states with the largest cluster of critical size, are taken from the 

nucleation trajectories in FFS and a brute-force simulation is performed for these 

configurations until the system forms a large stable cluster or decays back to the random 

state. Those simulations, which successfully form a stable supercritical cluster are 

stored and used to calculate the concentration profile of the largest clusters at different 

times. Figure 5.15 summarizes the evolution of concentration profiles in the clusters in 

a weakly supersaturated case (in Fe-1%Cu at 600°C) and strongly supersaturated case 

(in Fe-1.5%Cu at 500°C). At high temperature, the size of Cu clusters steadily increases 

without significant change in the chemical environment around it (Figure 5.15(b)). At 

low temperature, the clusters first tend to increase the Cu content to almost 100% until 

they finally start growing (Figure 5.15(a)). This Cu-enrichment of clusters during 

nucleation at lower temperatures was recently confirmed by the Differential Scanning 
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Calorimetry (DSC) experiment of 15-5 PH steel in continuous aging at 300 to 500°C 

[62][63]. However, according to Figure 5.15(a), the enrichment of Cu content in 

clusters happens very fast. The clusters with over 20% Fe are mainly found to be in 

small size with radius less than 0.5 nm, and when growing over more than 0.8nm, they 

are almost pure Cu clusters. This observation is inconsistent with the recent APT results 

[64][65][66], where 50%~70% Fe are found in large precipitates with radius 1~1.5nm.  

5.5.2 Shape analysis of early-stage Cu-clusters 

The geometry factor, A, determines the interface area/volume ratio of clusters 

during nucleation. This factor is often derived from basic geometrical bodies such as 

sphere and rod-like shapes in numerical models [67–71]. In the Fe-Cu system, the 

spherical (or near-spherical) assumption for large coherent and semi-coherent clusters 

with radius 1~2nm during coarsening and before transforming into the rod-like fcc 

precipitate [72][73], is justified by the experimental observations [66,69,74]. But for 

small Cu nuclei, both, the exact chemical composition and the geometrical properties, 

are still uncertain. Figure 5.16 illustrates the shape analysis of a nano-sized Cu cluster 

(about 100 atoms) discovered in simulation, whose shape is clearly not a sphere. 

  

 
Figure 5.16 Illustration of extracting the shape information of the largest cluster in the simulation. (a) A 
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nano-sized cluster with around 100 Cu atoms is highlighted in a snapshot of simulation. The red spheres 

represent the Cu atoms and the green ones represent the Fe atoms. (b) The cluster is identified as a 

network of Cu atoms connected with each other with the nearest neighbor bonds. The gizmo on the left 

indicates the x-y-z coordinate of the simulation box. (c) The atoms are found within the best-fitted 

ellipsoid based on the network of Cu atoms. (d) The best-fitted ellipsoid is displayed with the arrow lines 

indicating the three radii of the ellipsoid. 

 

In order to quantify the geometry factor of small and irregular clusters, a best-fitted 

ellipsoid approximation is introduced to characterize the shape of the small clusters 

during nucleation. By definition, the largest cluster is firstly characterized as the 

network formed by Cu atoms connected with the nearest neighbor bond. Then the Cu 

network is used as “skeleton” to find the best-fitted ellipsoid to quantitatively describe 

the shape information of the cluster, which is also illustrated in Figure 5.16(c) and (d). 

The best-fitted ellipsoid is calculated from the inertia tensor[75] of the Cu 

“skeleton”, which is defined as 
2 2

2 2

1 2 2

i i i i i in

i i i i i i
i

i i i i i i

y z x y x z
x y x z y z
x z y z x y

       
 

       
       

åT     (5-13)    

where (xi, yi, zi) is the position of the i-th atom in an n-sized cluster and (xi, yi, zi) 

is the displacement of this atom to the geometrical center of the cluster, i.e. 

  
i i

i i

i i

x x x
y y y
z z z

  
  
  

, with 
1

1
n

i
i

x n x


 å , 
1

1
n

i
i

y n y


 å  and 
1

1
n

i
i

z n z


 å . 

Diagonalizing T , one can obtain 

  

1
1

2

3

0 0
0 0  
0 0

I
Q Q I

I



 
   
 
 

T      (5-14)    

where I1, I2 and I3 are the principal inertia of moments (eigen values) on the principle 

axes (eigen vectors) q1, q2 and q3, with Q= (q1, q2, q3) and I1> I2 >I3.   
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According to the relation between principal inertia of moments and corresponding 

radii in an ellipsoid with equal mass density, the radius of a best-fitted ellipsoid for a 

given cluster is determined by solving the following equations:  
2 2

1 1 2
2 2

2 1 3
2 2

3 2 3

1/ 5 ( )
1/ 5 ( )
1/ 5 ( )

I m r r
I m r r
I m r r

  


 
  

     (5-15)    

where r1, r2 and r3 (r1r2r3) denote the radii of the ellipsoid and m is the mass density 

of the cluster. Here, m is set to be 1, so that the volume of the ellipsoid found by equation 

(5-15) is conserved to ellip 1 2 34 3mV r r r m n  . The directions of radii r1, r2 and r3 are 

lying on the corresponding vectors q1, q2 and q3 (see Figure 5.17). 

To demonstrate the anisotropy of cluster shape, an anisotropy factor is defined as 

 = r1/r3. For a sphere-like cluster, the anisotropy factor approximately equals to 1. With 

the shape of clusters getting more irregular, the degree of anisotropy, , is also 

increasing. For some extreme cases, such as plate-like clusters, where all the Cu atoms 

are placed on one plane (see Figure 5.18), the anisotropy factor =. 

(a) (b)

  

Figure 5.17 (a) Illustration of the best-fitted ellipsoid for a 17-atom cluster; (b) Snapshots of clusters with 

size n < 30 obtained from Umbrella Sampling. 

 

In this work, the shape analysis is carried out to compute the radii of clusters in 

different size ranges with n=5~100 from configurations collected in Umbrella Sampling 

in Fe-1%Cu alloy at 500 and 600C. To gain better statistics, 50000 configurations of 

clusters for each size are collected and used to calculate the averaged value of the radii. 

Since the biased potential in Umbrella Sampling only constrains the number of atoms 
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in a cluster, the geometrical arrangement of Cu atoms is not affected by the biased 

potential.  

The snapshots of clusters observed during Umbrella Sampling are plotted with 

their corresponding best-fitted ellipsoids in Figure 5.19 to Figure 5.23, with cluster sizes 

from n=5100 and anisotropy factors from =1.011.0. From these snapshots, clusters 

with =1.01.5 are observed in a sphere-like shape, and clusters with =1.55.0 are 

more like ellipsoids, while clusters with >5.0 are revealed in a needle-like shape. Small 

clusters with less than 50 atoms are observed to exhibit a more irregular shape. In the 

ultra-fine clusters, with n<15, some clusters appear in a plate-like form with =, as 

illustrated in Figure 5.18. The chance to form such plate-like clusters is not high, but 

once observed, the majoraty of them are found to place the Cu atoms on the [1 1 0] 

plane.    

 
Figure 5.18 The plate-like early-stage clusters on [ 1 1 0] plane with (a) 5 atoms, (b) 6 atoms, (c) 7 atoms, 
(d) 8 atoms, (e) 10 atoms and (f) 12 atoms. 
 

 
Figure 5.19 Small clusters (number of atoms<10) with anisotropy factor (a) =3.0, (b) =6.0, (c) =8.1 
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and (d) =8.2. 
 

 
Figure 5.20 Small clusters with number of atoms around 15 with anisotropy factor (a) =1.0, (b) =2.5, 
(c) =4.0, (d) =11.5, (e) =6.0 and (f) =8.5.  
 

 
Figure 5.21 Small clusters with number of atoms around 20 with anisotropy factor (a) =1.0, (b) =2.5, 
(c) =3.5 and (d) =5.0. 
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Figure 5.22 Clusters with number of atoms around 35 with anisotropy factor (a) =1.0, (b) =2.0, (c) 
=3.0 and (d) =4.5. 
 

 
Figure 5.23 Stable clusters with number of atoms around 60 with anisotropy factor (a) =1.0, (b) =2.0 
and (c) =3.0; stable clusters with number of atoms around 100 with anisotropy factor (d) =1.0, (e) 
=2.0 and (f) =2.5. 
 

The anisotropy factor averaging over configurations with the largest cluster size 

as n is plotted in Figure 5.24(a). For small clusters within 20 atoms, the longest radius 

r1 is about 2~4 times longer than the shortest radius r3, and this anisotropic tendency is 

getting weaker for larger clusters. When critical clusters have sizes over 100 atoms, the 

ratio r1/r3 is gradually converging to 1. The temperature seems to have almost no 
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influence on the anisotropy factor of clusters during nucleation, e.g. the ratio r1/r3 of 

clusters observed at 600C is only slightly higher than that at 500C for clusters of the 

same size. 

 
Figure 5.24 (a) The average anisotropy factor, i.e. ratio between the longest radius, r1, and the shortest 

one, r3, from the fitted ellipsoid of clusters of size n. (b) The geometry factor is calculated from the shape 

of Cu clusters during nucleation as a function of the cluster size. The straight lines indicate the values of 

(a) anisotropy factor and (b) geometry factor of a perfect sphere. 

 

For each cluster, the precipitate/matrix interfacial area can be approximately 

calculated as the fitting ellipsoid surface area as 

S  4 (r1  r2 )1.6  (r2  r3)1.6  (r3  r1)
1.6

3
1.6      (5-16).    

Therefore, the geometry factor for an n-atom cluster can be calculated by  

A S
n2/3      (5-17).    

The average geometry factor of clusters of size n is displayed in Figure 5.24(b). 

The line in Figure 5.24(b) indicates the value of geometry factor in a perfect sphere, i.e. 
Asphere  (36V0

2 )1 3 , where V0 is the unit volume of an atom in the bcc lattice. Compared 

with the spherical cluster, Cu clusters have higher geometry factors during nucleation. 

For clusters of critical size at 500C, i.e. n*=15, A is averagely 12% higher than that of 
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a sphere. When the critical cluster size increases to around n*=38 at 600C, the average 

geometry factor is still slightly higher, about 6%, than that of a sphere.  

To gain a further understanding of the irregularity of clusters shape, the probability 

distribution of the anisotropy factor of n-size clusters, r(n,), is calculated as 

( , ) ( ) ( | )n n nr  r r       (5-18)    

where r(n) is the un-biased probability distribution of n, as evaluated in Umbrella 

Sampling. r(| n) is the normalized probability distribution of  in all n-sized clusters 

observed in US, as ( | ) 1d nr   . Since the biased potential used in US only 

constrains the size of clusters, the geometry features of clusters are not influenced in 

the sampling. Therefore, equation (5-18) can give a reasonable estimation of r(n,) 

without performing the complex multi-dimension Umbrella Samplings. Considering 

that the free energy F(n,) is proportional to -lnr(n,), i.e. F(n,) -lnr(n,), the 

contours of -lnr(n,) evaluated from the results of Umbrella Sampling for Fe-1%Cu 

alloy at 500 C and 600 C are plotted in Figure 5.25(a) and Figure 5.25(b), respectively.      

 

Figure 5.25 The contours for the equilibrated distribution of anisotropy factor of n-sized cluster at (a) 

500 C and (b) 600 C. The dot line in each picture marks the average anisotropy factor <(n)>. The 
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dashed-line rectangle indicates the saddle point area of the probability distribution.  

 

In the contours, the distribution of  significantly diverges in small clusters with 

n<15, indicating that small clusters possess geometrical features in a random and 

chaotic manner. One can observe small clusters in high and low anisotropy factor 

almost with similar probability, and their shape does not resemble any macroscopic 

geometries, such as spheres, cubes or cylinders. As clusters become larger, the 

distribution starts to converge towards a lower spread of anisotropy factors. In both 

cases, most of the critical-size clusters, i.e. n*=15 at 500C and n*=38 at 600C, have 

anisotropy factors in the range of =1.5~2.5, which is circled out by the dashed 

rectangles in Figure 5.25(a) and (b) for both cases. For super-critical clusters, n>30 at 

500C and n>60 at 600C, the value of  is around 1.5. 

Additionally, the distribution probability of the direction of the shortest axis r3 at 

a given cluster size n, r(n, norm(r3)), is calculated in a similar fashion as 

( , norm( )) ( ) (norm( ) | )n n nr r r3 3r r . The function norm(r3) gives the unit vector of 

r3, which is orthogonal to the plane with the densest mass inertia. As illustrated in 

Figure 5.26(a), the unit/normalized vectors form a sphere with radius r=1 in space, 

while, through the symmetric operations in a bcc lattice, all unit vectors in space are 

equivalently moved in the red area with three corners representing the unit vector of 

directions <100>, <110> and <111>.  

 
Figure 5.26 (a) The sphere formed by the unit vectors in 3D space. Considering the symmetrical 
operations in the bcc lattice, one only needs the vectors falling in the red area to uniquely define the 
vector space. (b) Projection of the vector sphere into the y-z plane. 
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In this work, r(n, norm(r3)) with n= 5, 10, 15, 35 and 50 are calculated from the 

clusters observed in Umbrella Sampling for Fe-1%Cu alloy at 600C. In Figure 5.27, 

r(n, norm(r3)) is plotted as contours projected from the unit vector sphere onto the y-z 

plane in the form illustrated in Figure 5.26(b). The contours are rescaled as fractions to 

the largest value of r(n, norm(r3)) in each n, with the highest fraction, i.e. 1, being 

marked by blue and the lowest fraction by white. Accordingly, the contour with more 

blue area indicates that the direction of r3 is evenly distributed in vector space, i.e. there 

is no orientation preference for the plane with the densest mass inertia in clusters. In 

Figure 5.27(a), the distribution of the norm vector of r3 strongly peaks on direction 

<110> for clusters in size n=5. With clusters getting larger, the distribution of r3 

direction starts smearing in vector space. In clusters with n=35 and 50, as illustrated in 

Figure 5.27(d) and (e), norm(r3) is almost evenly distributed in the vector space. This 

observation reveals an interesting fact that, in the beginning of Cu cluster formation, 

the ultra-fine nuclei may have a preference to arrange the Cu atoms on the [1 1 0] plane 

of the bcc lattice, while the preference soon vanishes as clusters grow into larger size. 

The ultra-fine nuclei, with limited patterns to form the networks of Cu atoms, are prone 

to be affected by the crystallographic properties of the bcc lattice, which result in the 

preferred [1 1 0] plane for Cu nuclei in the beginning of clusters formation. 

 

Figure 5.27 The probability distribution of directions of r3, r(n, norm(r3)), with sizes n=5, 10, 15, 35 and 

50 measured in the Umbrella Sampling of Fe-1%Cu alloy at 600C. Here, the contours of r(n, norm(r3)) 
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is rescaled as the fraction to the largest value of r(n, norm(r3)).  

 

5.6 Analysis of α-Fe/Cu interfacial energy 

The α-Fe/Cu interfacial energy can be obtained by fitting the nucleation free 

energy computed from Umbrella Sampling (US) to the Classical Nucleation Theory 

(CNT) framework expressed by equation (5-9), where the fitted parameters are listed 

in Table 5-4. Figure 5.28 displays the fitted equation (5-9) (solid curve) and the free 

energy obtained by US (red dots) in Fe-1%Cu alloy at 500C and 600C. At 500C, the 

volume energy, Gnucl, is evaluated to be -11.24 kJmol-1 and the excess energy 

coefficient, A , is 1.34 J m-2, while, at 600C, Gnucl is -8.20 kJmol-1 and A  is 

1.35 Jm-2. The unit of A  is transformed from Jmol-2/3 to Jm-2 considering that, on 

average, 1 mol of bcc-Fe has a volume of 6.9710-6 m3 with a lattice constant of -Fe 

as 2.85Å [76].  

 

Figure 5.28 Nucleation free energy in Fe_1%Cu at (a) 500C and (b) 600C as evaluated by Umbrella 

Sampling (red dots). The solid curve is a fitting from equation (5-9). 

 

It is emphasized that the surface energy term in equation (5-9), An2 3 , does not 

include the change of supersaturation, i.e. the non-negligible reduction of Cu-content 

in the matrix during precipitation at constant temperature. Accordingly, when the Cu 

content in the matrix starts to decrease as the number of atoms in the cluster, n, exceeds 
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100 atoms, the fitting parameters (Gnucl and A ) are no longer consistent with 

n=0~100. To focus on the interfacial energy during nucleation, fitting of equation (5-9) 

is valid only within n=0~100 with the Cu-content of the matrix remaining around 0.9% 

at both 500 and 600 C.  

Based on the free energy and geometry factors from Umbrella Sampling, the Cu-

precipitate/-Fe interfacial energy  as a function of cluster size n is calculated for 

nucleation processes in Fe-1%Cu at 500 and 600 C. The results are plotted in Figure 

5.29. 

 
Figure 5.29 Cu-precipitate/-Fe interfacial energy evaluated by US and VC-SCG ensemble in Cu 

precipitation at (a) 500C and (b) 600C. 

 

At 500 and 600 C, the effective interface energy  has rather similar values at the 

same size n (see open circles on Figure 5.29), which gradually increase from 0.24eV to 

0.28eV as the cluster size increases from n=10 to 100 atoms. These values are 

significantly lower than the values obtained from experimental determination of 

interfacial energies (about 0.56eV) for spherical Cu-precipitates in an Fe-1.5%Cu alloy 

in coarsening experiments at 500C [69]. Despite the limitations in computational 

modelling, the discrepancy of predictions from US and experiment is reasonable 

considering that  is measured for two different stages in precipitation, i.e., in the 

nucleation stage (present analysis) and during late-stage coarsening (experiments). In 

the coarsening stage, the interfaces between Cu-precipitates and Fe-matrix become 
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incoherent, which is an additional factor for differences between interfacial energies 

calculated in the nucleation stage, where interfaces are presumably coherent, and 

precipitates in the coarsening stage. 

For comparison, a different method, the VC-SGC (Variance-Constrained Semi-

Grand-Canonical) ensemble method [29][30], is employed to evaluate the interfacial 

energy for spherical Cu-precipitates in dilute Fe-Cu alloys. The predictions of Cu-

precipitate/-Fe interfacial energy by the VC-SGC ensemble are plotted in Figure 5.30 

with open squares (500C) and triangles (600C) for clusters with 50 to 350 atoms.  

 

Figure 5.30 The geometry-corrected interface energy evaluated in this work is compared with the 

interface energy of equilibrated Cu clusters by the VC-SGC method and the overall predictions from the 

size-dependent GBB method [12]. 

 

In the VC-SGC ensemble,  is calculated to range between 0.25~0.34 Jm-2 at 500 

C, and, on average, higher than this at 600 C with 0.24~0.31 Jm-2. At both 

temperatures,  gradually increases with cluster size with approximately n1/3, which 

is consistent with the Tolman-length effect [12,77][78] to interfacial energy on 

microscopic scale. As the cluster grows over 300 atoms,  converges to the interfacial 

energy of a planar Cu-precipitate/-Fe interface, which is 0.38 Jm-2 at 500 C and 0.34 

Jm-2 at 600 C evaluated in the VC-SGS ensemble.  

0 50 100 150 200 250 300 350
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The interfacial energy, , is also compared with the size dependent GBB model, 

where  is computed from the planer interfacial energy plan as 

plan( ) ( )r r        (5-19).  

In the GBB model, the clusters are assumed to be spherical and r in (5-19) denotes the 

radius of the sphere. (r) is the correction factor depending on r as 
2

1 1
2

1

( ) 1 0.5455 0.0892 0.0542lnr rrr
r r r


 

    
 

    (5-20)  

where r1 is the nearest neighbor distance in bcc-Fe. In Figure 5.30,  is plotted as a 

function of n, which is coupled with r as V0n=4/3 r3. 

The Cu/-Fe interfacial energy has similar values in nucleation evaluated by 

Umbrella Sampling at both 500 and 600C, whereas in the VC-SCG ensemble,  is on 

average lower at 600C compared to its value at 500C. Even though the clusters 

observed in US are much smaller, the trend of  is not consistent with predictions from 

the VC-SCG ensemble on the overlapping region (n=50~100). This inconsistency is 

caused by a different Cu concentration in -Fe during simulations in US and the VC-

SCG ensemble. In the VC-SCG ensemble, Cu concentration in -Fe is a little higher 

than the solubility limit of Cu at the respective temperature, around 0.16~0.33% at 

500C and 0.44~0.78% at 600C, hence, the concentration gradient on Cu/-Fe 

interface is higher at lower temperature, resulting an averagely higher interfacial energy. 

However, in Umbrella Sampling, even the simulations are performed at different 

temperatures, Cu concentration in -Fe is almost constantly keeping around 0.8~0.9%. 

Considering that the geometry properties are not affected by temperature, it is 

reasonable for  to have the similar values in Umbrella Samplings at different 

temperatures. The result indicates that the Cu/-Fe interfacial free energy is not only 

dependent on the shape and size of precipitate (curvature change of interface), but also 

strongly related to the precipitate/matrix concentration discrepancy at the interface 

(concentration gradient). In the equilibrated co-existing Cu precipitate/-Fe state (VC-

SGC ensemble), the temperature indirectly influences the interfacial energy by altering 

the concentration gradient at the Cu/-Fe interface. However, in the nucleation 
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transition (US method), temperature has little effect on the Cu/-Fe interfacial energy, 

since the concentration of -Fe parent phase is not evidently changing in the steady-

state condition. But the temperature determines the degree of supersaturation, and, 

hence, it has a strong influence on the driving force in the nucleation free energy.  

Another interesting observation is a contradicting trend of geometry factor and 

interfacial energy with cluster size during nucleation. The anisotropy in the shape of 

nuclei indicates that, even in homogeneous nucleation, small clusters exhibit a certain 

degree of anisotropy during growth due to the heterogeneity of crystallographic lattice 

on a microscopic level. However, this does not mean that the classical continuous 

models are incorrect for nucleation processes with small critical nuclei. The nucleation 

free energy curves in Fe-Cu system obey the form of classical nucleation theory very 

well, because the system evolution follows the path where the excess free energy is a 

minimum on the coordinate of cluster size, n. Therefore, even though the geometry 

factor and interface energy, , vary with size, n, the excess free energy coefficient, A, 

remains at an approximately constant value during the nucleation process before 

depletion happens. The excess free energy coefficient is also found to be almost 

constant, similar to the product of compressibility and surface tension in ideal gases 

during condensation [79]. 
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6 Discussion 

6.1 Role of statistical sampling methods 

Conventional atomic-scale simulations, such as Monte Carlo methods [32][50], 

are widely used in studies of nucleation kinetics in diffusion-driven solid-solid phase 

transitions. In literature, various Monte Carlo algorithms have been proposed and 

successfully implemented in software to investigate the diffusion kinetics [80], cluster 

mobility [81] and vacancy-cluster interactions [82] in the Fe-Cu system. However, 

additional statistical sampling is necessary to provide an accurate quantitative analysis 

of the nucleation process with brute-force Monte Carlo simulations.  

Considering the computational effort, Monte Carlo simulations are usually carried 

out in small-size samples with the order of a few tens of nanometers and only for short 

times. This, however, makes it likely to cause insufficient statistics in the simulation 

and lead to an inaccurate estimation of the number density of clusters, especially in 

weakly supersaturated cases [83]. For example, in chapter 5.3.2, the nucleation rate in 

Fe-1%Cu at 500C is evaluated from the brute-force MC simulation using a comparably 

large simulation box with 100100100 bcc unit cells. Even though it is a moderately 

supersaturated case, the results show significant discrepancies between the repeated 

simulations. Compared with the brute-force MC simulation, the trajectory-based 

sampling methods, such as FFS and TIS, are much more efficient. The average 

computation cost of brute-force MC simulation to obtain a successful nucleation 

trajectory is logarithmically increasing with the free energy barrier of the nucleation 

transition, whereas the average time cost of FFS and TIS is linearly growing with the 

height of the energy barrier. Consequently, it is impractical to use brute-force 

simulations to study the nucleation transitions in weakly supersaturated cases.  

In the evaluation of the nucleation free energy, Umbrella Sampling has also been 

implemented in the MatCalc software [31] and utilized for the purpose of providing 

sufficient statistics in quantitative analysis. From a statistical point of view, the 

nucleation free energy is corresponding to the equilibrated size distribution of clusters 
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in a certain supersaturated condition. This distribution will not be established in reality, 

since, during nucleation, there is always a net forward transition from small clusters to 

large stable ones until the phase separation is finally completed. When focusing on one 

cluster, the size distribution is equivalent to the probability of finding the cluster in a 

given size n on its own nucleation trajectory, which is proportional to the total time the 

cluster spends on size n during nucleation. However, due to the presence of a nucleation 

barrier, the chance to observe a cluster around its critical size n* is extremely rare 

compared to it in other size, which results in large statistical errors in estimation of 

probability around n*. In order to solve this problem, Umbrella Sampling uses a biased 

potential to enhance the samplings of size distribution around a given size range, so that 

one can obtain enough statistics of size distributions even around the critical size n*. 

Then, the free energy profile is derived from the biased local size distribution through 

the Weighted Histogram Analysis Methods [26,38]. Additionally, both FFS and 

Umbrella Sampling procedures gain a large amount of transition trajectories and 

configurations of clusters in critical size, which enable further investigation of 

transition mechanism and clusters evolution with statistical foundation. 

6.2 The early-stage clusters in Fe-Cu alloys 

The Fe-Cu binary system is a well-studied model system in precipitation-

hardening ferritic alloys, where Cu precipitates play an important role in materials 

strengthening. It is commonly acknowledged that, in thermally-aged dilute Fe-Cu 

alloys, copper precipitates undergo a BCC-9R-FCC transition during the precipitation 

process [84][85][86]. The chemical composition of these bcc precipitates, however, is 

still unclear. In recent Atom Probe (3DAP) investigations [64][65][66], the bcc Cu-rich 

precipitates are assumed to contain about 50% Fe atoms, while the results from small-

angle neutron scattering (SANS) [74] indicate a significantly higher Cu content of more 

than 70%. Schober et al. [66] attribute this discrepancy to the assumption of non-

magnetic Cu precipitates in SANS experiments and the insensitivity to very small 
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clusters of only sub-nanometer radius in 3DAP techniques. Unfortunately, no direct 

explanation for why the bcc precipitates contain such high Fe content is provided.  

In this work, through analyzing the nucleation trajectories from FFS, the Cu cluster 

in critical size are found to contain more than 20% Fe for cases of high supersaturation. 

In disagreement to the experimental observation, the enrichment of Cu in critical 

clusters is observed only prior to their growth in size. The clusters become pure Cu as 

the critical nuclei grow into the super-critical clusters, while, according to 3DAP 

observations, super-critical Cu cluster with radius 1 nm ~ 1.5 nm (number of atoms 400 

~ 1000) still contain significant amount of Fe, around 40%-60%. So far, there is no 

convincing explanation for the high Fe content in bcc Cu clusters with radius over 1 nm. 

The nano-sized scale investigations from first principles calculations [87], Monte Carlo 

[80–82], Molecular Dynamics simulations [88] and Phase Field modeling [83] all 

predict pure bcc Cu clusters in the super-critical stage. In the work of Stechauner and 

Kozeschnik [89], the Inner Particle Diffusion Factor (IPDF) is used to explain the high 

amount of Fe in super-critical clusters. If IPDF is small, i.e. the diffusivities of elements 

inside bcc Cu clusters are assumed to be sluggish, the increase of Cu content in clusters 

is simultaneously happening with the clusters’ growth. Therefore, one can observe a 

large amount of Fe in super-critical clusters in the simulation. However, the diffusivity 

inside the clusters is not assessable, i.e. IPDF is unable to obtained, since bcc Cu is 

thermodynamic unstable structure. 

With respect to atomistic simulations, it is emphasized that the key simulation 

ingredient, i.e., the Fe-Cu interactions in metastable bcc Cu, are still lacking or, at least, 

uncertain, which can give another possible explanation for the high Fe amount in super-

critical clusters Since bcc Cu is a mechanically unstable structure, the atomic 

interactions of Fe-Cu, Fe-Va and Cu-Va in bcc Cu is very difficult to obtain. In the first 

principles calculations, the bcc-Cu supercell directly transforms to fcc lattice with 

structural relaxation at 0 K. So far, the author has not found any literature addressing 

the atomic interactions in bcc Cu. However, the super-critical bcc Cu clusters with 

radius 1 nm ~ 1.5 nm, observed by 3DAP, contain more than 400 atoms, where the Fe 

atoms in clusters actually stay in a local bcc Cu environment. It is possible that the 
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super-critical bcc Cu clusters are subject to a strong strain field to transform from bcc 

structure to fcc. Before this structural transformation begins, certain amount of Fe in 

clusters could compensate that strain energy and stabilize the coherent bcc clusters. 

When clusters grow larger and start to transform into fcc structure, Fe in the clusters 

then begins to diffuse into the matrix to form the pure Cu fcc precipitates. Yet, this 

needs to be confirmed by further investigations.  

The critical sizes of Cu clusters observed from energy profiles ranges from 

n*=12~40 in dilute Fe-Cu alloys at 450~650C. In contrast to the general understanding 

of clusters shape in homogeneous nucleation, the shape of Cu clusters with n<50 show 

an evident geometrical anisotropy. The degree of cluster anisotropy is strongly 

dependent on the cluster size, where smaller clusters have a higher degree of shape 

anisotropy on average. In homogeneous nucleation, the coherent nuclei are intuitively 

considered to be isotropic in shape, i.e. spherical. This assumption is reasonable, when 

the nucleus is large enough to form a distinguishable bulk, which is approximately to 

be seemed as consecutive. However, for ultra-fine nuclei, e.g. Cu clusters with n<60, 

there are no clear bulk and surface regions to be recognized, since a nucleus is actually 

tens of atoms placed next to each other on the bcc lattice. The crystal structure of the 

lattice itself influences the arrangement of atoms in an ultra-fine cluster. For example, 

the bcc Cu clusters with n=5~15 have a preference to align along the <1 1 0> plane. 

The influence from lattice pattern will degenerate as the clusters grow. This preference 

vanishes in clusters with n>25. The shape anisotropy of near-critical clusters in Fe-Cu 

alloys increases the contact area between nuclei and parent phase, which can lead to a 

higher atomic attachment rate and weaker nucleation driving force compared with the 

predictions from their corresponding CNT-type expressions. 

6.3 Controversial definition for interphase surface 

The interfacial energy plays a very important role in the simulation of the early 

stage of phase transitions in supersaturated solid solutions. This energy term controls 

the nucleation and growth of the second-phase precipitates and strongly influences the 
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coarsening kinetics as well as physical properties of the precipitates [67–69][90]. The 

evaluation of interfacial energy is difficult. The planar interfacial energy of two co-

existing phases can be theoretically computed from the Cahn-Hilliard theory [70][71], 

provided that the interfacial energy gradient is known or calculated by the Generalized 

Nearest-Neighbor Broken-Bond (GBB) model [11][12] with energy parameters derived 

from the EAM (Embedded Atom Method) potential or thermodynamic databases. 

Alternatively, first principles methods [91] and statistical approaches with atomic 

simulation [29][30] also provide ways to compute coherent interfacial energies in 

various alloy systems. The curved interface, which is characteristic for nucleation 

transitions, is more complicated. A practical way is to derive the curved interfacial 

energy from the energy of a planar interface and apply an appropriate curvature 

correction. In continuum models, this correction is mainly based on the Tolman length 

equation [10]. For the broken bond models, the curvature correction is deduced from 

the reduced number of effective broken bonds across the curved interface [12]. Despite 

the dispute on the Tolman length equation, these approaches are still questionable in 

the application to the nanoscale small nuclei in nucleation transitions.  

All models for the curved interfacial energy rely on a reasonable definition of the 

clusters where the bulk of new and old phases are distinguishably separated by the 

interface between them. Usually, a nucleus is treated as a sphere of bulk surrounded by 

the EDS (Equi-molar Defined Surface) [92] to preserve the total mass of the system. 

However, this description of nucleus is hardly satisfied by the critical-size clusters 

observed in the nucleation processes in Fe-Cu alloys. The critical-size clusters with less 

than 50 Cu atoms are actually groups of atoms connected with each other with nearest 

neighbor bonds. They show strong irregularity in the geometrical arrangement of atoms 

and almost every atom in the clusters is somehow in contact with the bcc-Fe phase. 

There is no “bulk” to be recognized in these early-stage Cu nuclei, which could be 

explaining the high amount of Fe discovered in Cu clusters during nucleation. In my 

opinion, the “interface” between a nucleus and its parent phase is formed before the 

“bulk” emerging as the result of density fluctuations in the nucleation process. However, 

it is a rather complex endeavor to characterize the interface. In this work, the clusters 
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observed in simulations are simply defined as ellipsoids with similar geometrical 

features, which are in contact with the parent phase by a sharp interface. The best-fitted 

ellipsoid is not the only way to describe the early-stage clusters. It is of utmost 

importance to emphasize that the geometrical factor, as well as the interfacial free 

energy, will change with a different characterization of clusters and definition of 

interface.  

 

6.4 Pros and cons of RPP method 

In this work, a Reweighted Partial Path Method (RPP) is developed and introduced 

to evaluate the free energy profile of diffusive processes using trajectory information 

from a single TIS or FFS calculation. The main steps in the RPP method are 

summarized as follows: (i) after the rate calculation for the transition AB is finished, 

the unbiased path probability  of every trajectory is calculated, e.g. using eq. 

(16) for FFS and the reweighted path ensemble method [43] for TIS; (ii) the partial 

paths are generated by breaking up the trajectories into path segments according to the 

effective crossing points on every interface; (iii) the decaying probability Ui, the one-

interface crossing probability pi
Q  and the density of partial path Pi

Q()  ( Li
Q()) are 

calculated from partial paths on interface i. (iv) the equilibrium distribution of the order 

parameter, i.e.  (x t )  , is evaluated based on the quantities computed in the 

previous steps according to eq. (15). In Appendix C, some simpler examples to illustrate 

the RPP procedures in detail are also provided.  

In principle, RPP is a related form of the loop-boundary method [42], which is 

proposed in PPTIS (Partial Path Transition Interface Sampling) [93,94] to derive the 

equilibrium state distribution from partial path ensembles. In the loop-boundary method, 

the equilibrium histogram of  with (i-1, i) is evaluated from the partial paths on 

interfaces i and i-1. PPTIS measures partial paths by performing the shooting algorithm 

on every interface, while RPP generates partial path from TIS trajectories and reweights 
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them based on the memory loss assumption. Therefore, similar to PPTIS, the validation 

of the memory loss assumption is also necessary for the RPP method. In this work, the 

validation is performed by comparing the first crossing probability of each interface 

measured in TIS with the one reconstructed from the one-interface crossing probability 

pi
Q  in RPP. Since pi

Q  contains the re-crossing information of interface i from all the 

other interfaces, the consistency in the results from this comparison indicates that the 

loss of memory is actually an effect in the behavior of trajectories, and vice versa. 

Except the validation of memory loss assumption proposed in this paper, there are other 

ways to detect the memory effect in a system, see Refs. [41] and [95]. The MFPT-FFS 

method proposed by Thapar et al. [96] is also built on a memory loss assumption to 

evaluate the free energy profile, but employing a different approach—using the Mean 

First Passage Time (MFPT) estimated from FFS trajectories to solve the stationary 

Fokker-Plank equation. When using the MFPT-FFS method, the system must be 

Markovian (memoryless), while RPP allows the system to have a short-range non-

Markovian (memory) effect within adjacent interfaces. For a Markovian system, 

TIS/FFS-RPP and MFPT-FFS will give the same result in free energy evaluation.  

The RPP method is very suitable for the study of rare events, such as nucleation 

processes, where the kinetics in the forward transition is of particular interest but the 

equilibrium calculation involving the reverse transition or Umbrella Sampling is time-

consuming. However, one must be aware that RPP only uses “half” of the information 

in trajectory space, and the sampling weight of phase points is decreasing with 

interfaces getting farther away from the initial state. To make sure that RPP is accurate 

in the whole transition region, in the beginning, the TIS algorithm should collect enough 

trajectories on every interface, which will re-cross the interfaces behind the present one. 

In some cases, when the final state is much more energetically favorable than the initial 

state and when it is difficult to sample the re-crossing trajectories on interfaces close to 

the B region, then the RPP prediction for the energy profile may be incorrect for the 

area close to the B region. Still, the estimation of energy profile is reliable for the barrier 
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height looking from the side of the initial state. This is also a reason why application of 

the RPP method to processes with only one important transition are recommended.  

Other issues regarding the order parameter and interface setting are similar to TIS 

[20] and PPTIS [41]. The order parameter should be a “proper” one, since the TIS 

algorithm is more sensitive to the choice of order parameter compared to TPS. As to 

the interface setting, the memory loss effect between interfaces is weakened as the 

interfaces get closer to each other according to Ref. [41]. Therefore, it is advised to 

avoid a dense setting of interfaces in the transition region for the TIS calculation.  

The purpose of the RPP method is to provide a means for a quick estimation of the 

free energy profile. If one wishes to obtain a thorough understanding of the system for 

the density of states, average committer and other thermodynamic observables, one 

should employ a more sophisticated approach, such as the reweighted path ensemble 

[43], generalized replica exchange method (gREM) and its extensions [97][98]. 

In summary, RPP is an efficient method to evaluate the free energy profile on a 

given order parameter in TIS/FFS simulations. The advantage of RPP is that it only 

needs the trajectories from one calculation of TIS/FFS and does not require any 

additional samplings, i.e. no abundant extra computational cost. Therefore, the 

combined TIS/FFS-RPP method can simultaneously calculate the reaction rate constant 

and free energy profile in a transition. Still, there are limitations. The RPP method can 

only be used in the Markovian system or a system with short-range memory (non-

Markovian) effect, so a check for long-range memory effect is necessary. The RPP 

method is also sensitive to the choice of order parameter. Normally, the order parameter 

should be a “proper” one. If the TIS/FFS uses a poor order parameter, the RPP method 

will give incorrect predictions of the free energy profile. 
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7 Summary 

This thesis presents a comprehensive methodology to study the equilibrium and 

kinetic properties of early-stage precipitation in Fe-Cu system by implementing 

statistical sampling techniques to Monte Carlo simulations. The nucleation free energy 

as a function of cluster size is first evaluated by Umbrella Sampling for two 

concentrations at different temperatures. With Forward Flux Sampling, a large number 

of nucleation trajectories are generated and used to analyze the nucleation kinetics of 

Cu clusters. These simulation results are compared to predictions from Classical 

Nucleation Theory and good agreement is observed. The chemical composition of Cu 

nuclei is also investigated, showing that the first formed Cu clusters in dilute Fe-Cu 

alloys aged at low temperatures can contain a substantial amount of Fe atoms. During 

aging, the clusters first enrich in Cu content from inside the precipitate, and only 

afterwards growth of the particles commences. In contrast, when aged at a higher 

temperature, the clusters formed are almost pure Cu particles from the beginning and 

remain so throughout the subsequent precipitate growth stages. Analysis of the clusters 

shape shows that the clusters become increasingly non-spherical with decreasing cluster 

size and increasing supersaturation. 

Additionally, a novel approach, the Reweighted Partial Path (RPP) method, is 

proposed and implemented to efficiently evaluate the energy profile in diffusive 

processes in a single computation of Transition Interface Sampling or Forward Flux 

Sampling. The RPP method assumes a loss of memory in the trajectories, which allows 

a reweighting strategy to calculate the average weights of partial paths on each 

transition interface. This method is successfully implemented in the calculation of 

nucleation free energy of Cu precipitates in Fe-Cu solid solution. The RPP-evaluated 

free energy profile shows a good agreement with Umbrella Sampling results. The 

accuracy and robustness of the RPP method are also discussed in this thesis. It is 

emphasized that the RPP method might fail in cases where the history of the trajectories 
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has a significant influence on the properties of the current state. Therefore, a validation 

of the memory-loss assumption must be performed in the assessment of RPP results.  
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Appendix  

Appendix A:  

The decaying probability that a trajectory, which crossed interface i from A, will 

return to A before continuing to cross B is defined as U i  P(M
0

0
i ) 1 P(0

M
0
i ) . 

According to the memory loss assumption, the following relations hold approximately 

for any positive integer q>0 [41], 

1

1 1 1 1

1 1 1 1

( ) ( )

( ) ( )( )

( ) ( )( )

l i l i
m i q m i

i q i i q i
i i i i i i

i q i i q i
i i i i i i

P P

P P

P P

± ±

  ±
   

  
   




»

»

» 

p p

p p
                               (A1)

 

Using the approximation in equation (A1), the following relation in decaying 

probability is derived as  

 
 

1 10 1 0
0 0 0 00 01

0 0 1 1
1 0 0 0 0 0 0

0 0
1 0 1 1

1 0 1 1 0 1
0 0 0 0 0 2
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( ) ( )
              

( ) ( ) ( ) ( )
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

    
   
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(A2) 

Since 1 2 1

1 2 1

P ...
P ...

i i

i i

 ± ± ±





   

p p p
p p p

[41], equation (A2) is rewritten as 1 1

1 1

i i i i

i i i i

U U
U U


 

 ±
 






p p
p p

. This 

relation can be expanded from Ui+1 to U1 as 

          
(A3) 

Summing up equation (A3) from 1 to i, we have  

 
1

1 2 1
2 2 1

2 1 2

i
i i

i
m i

U U U U



 ± ±



   å
  


p p p p
p p p                          

(A4) 

Since UM  P(M
0

0
M )  0 , U2 is solved by equation (A4) as 
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(A5) 

Through combination of equations (A4) and (A5), we derive an expression for the 

decaying probability for a given i as 

                 
(A6) 

According to the definition, the decaying probability at interface i can be rewritten 

as  

U i  P(M
0

0
i ) 1 P(0

M
0
i ) 11U1

Pi


                          (A7) 

Since U2 U1

U1 1


P(M
0

0
2 ) P(M

0
0
1 )

P(M
0

0
1 )1


P(0

M
0
2 )P(2

0
0
1 )

P(0
M

0
1 )


p1


p1
±

, equation (A3) is rewritten as 

                             
(A8)

 

Combining equations (A7) and (A8), we can derive the expression for Pi
  as 

11
1 2 11

1 1 2

1P
1

i
m m

i
mi m

U
U


 

± ± ±


 
     

å
  


p p p p
p p p                           

(A9) 

Since 1 2 1

1 2 1

P ...
P ...

i i

i i

 ± ± ±





   

p p p
p p p

[41], Pi
  is also derived from equation (A9)

 

                              
(A10) 
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Appendix B: 

Since the equilibrium distribution is preserved in trajectory space, there should be 

no net probability flux passing through the phase points on a given interface i. In this 

case, the average effective crossing on i from i+1 equals to the effective crossing from 

i-1, i.e. yi ,i1  yi ,i1 . Combining with eq. (10), one can get 0i iJ ± Y  Y  . 

Therefore, the continuity relation by equation (4-14) at equilibrium is reduced to 

1
1

0i
i i

i

±




Y  Y  


p
p

. Hence,  

1 2
0

1 2 1

...
...

i
i

i

± ± ±



Y  Y 
  

p p p
p p p

                                   (B1) 

In the unbiased path ensemble {x}A
, there are no trajectories coming from region 

B, hence JA 0 and 1 A
0M Y  . Based on continuity relation, one can write down 

the following equations in {x}A
for every interface from 1 to M-1: 

1
1 A 0A A

1 1

1 AA A
1

1
2 AA

1 2

1

1 0

0

i
i i

i i i

M
M

M M

J

J

J

±

 

±

 


±



 


Y   Y




 Y  Y  



 Y  


 

 









p
p p

p
p p p

p
p p

                         

(B2) 

In equation (B2), we have M-1 unknowns, including  A 1... 2i i M 
Y   and JA, in M-

1 equations. According to Cramer rule in linear algebra, the solution of equation (B2) 

is 

11 1
1 2 1 2 1 1 2 1

0A A
2 11 2 1 1 2 1 2

11
1 2 11

A 0 A
21 1 2

... 1
...

1

M M
i m m m m

i
m m ii m m

M
m m

m m

J

± ± ±   
 

 ± ±  ± ±
  

± 


  ± ±


  
 Y  Y   
  


 
 Y  

 

å å

å

     
 

  

  


 
 




p p p p p p p p p p p
p p p p p p p p p

p p p pp
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   (B3) 
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Since 0 0,1 AA
yY   and 0 1,0y±Y  , hence 

01,0 0. 0,10 1
1 0

1,0 1,0 0

( )
f
M

M

hh h
U P

y y
y y ±

Y
   

Y


AA A . Since 0 A 1

0

U
±

Y


Y



Ah
and 

0 0
±Y  Y , combining with eq.(B1), (A6) and (4-12), the effective crossing of 

interface i in {x}A
is connected with its equilibrium average by 

 

11
AAA

1 1
AAA

     and    

ii
i ii i

i i i
i i i i

i

UU J

U U J

± ±


  

±

 
 

 Y   Y Y   Y 
 
 
 Y   Y Y   Y 
  

 

AA

A A

hh

h h
p
p

 

11
A 0 0 0 0A A

1

1 ( )MUJ P
U

±
 Y   Y                                (B4) 
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Appendix C: 

In this appendix, FFS-RPP method is applied in 3 examples: a single particle 

moving in a one-dimensional double-well potential with overdamped Langevin 

dynamics (Example 1) and Langevin dynamics with inertia (Example 2), and the single 

particle moving in a two-dimensional double-well potential with overdamped Langevin 

dynamics (Example 3).  

 

Example 1:  

In this example, we apply the FFS-RPP method in one particle moving with 

Langevin dynamics in a one-dimensional double-well potential, 

                             (C1) 

where x(t) is the position of particle at time t, γ is a constant friction, f(x) is the force at 

x, and m is the mass of particle, which is set to 1 for convenience. η(t) is the Gaussian 

noise satisfying η(t)=0 and η(t) η(0)=2kBTγδ(t), where δ(t) is the delta function, kB 

is the Boltzmann constant and T is the temperature. We consider a potential  

4 2
B( ) 5 ( 2 1)V x k T x x                                 (C2), 

hence ( ) ( ) /f x V x x  . Clearly, the two stable points in this system are located at 

(±1, 0), and the saddle point is at (0, 0) with a barrier height of 5kBT.  

As the initial example, we consider an overdamped Langevin dynamics and the 

numerical integration of equation (C1) uses the following scheme 

B

( )( ) ( ) 2Df xx t t x t t t D t
k T

        g                   (C3) 

where t is the time increasement, D is the diffusion coefficient defined as D=kBT/γ, 

and g is a random number generated from the normal distribution q(0,1). In 

simulations, kBT=0.1, and γ=104. x is discretized with a unit of x0=0.01, and trajectories 

are stored every t0=4, with time increasement t=0.05 t0. The stable states A and B are 

defined around (−1, 0) and (1, 0), respectively. To study the transition AB, the order 

parameter is chosen as λ=x, and FFS simulation is carried out with 12 interfaces 
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{λi}i=0…11 and 1000 configurations on the boundary of A state. For convenience, λ0 is 

set to be overlapped with λ1, as λ0=λ1=−0.8, and λ11=0.8. The details of FFS calculation 

is listed in Table C1. 

 
Table C1 Interfaces and number of trajectories on each interface in FFS in Example 1. Mi trajectories are 

firing off from interface i and, among them, Ni trajectories reach i+1 before returning to i. 1
0 0( )i iP   is 

the crossing probability, which is calculated as P(0
i1

0
i )  N i M i . 

i λi Mi Ni Mi  Ni P(0
i1

0
i )  

1 -0.8 15183 1000 14183 6.59E-02 

2 -0.7 8000 2808 5192 3.51E-01 

3 -0.6 8000 1499 6501 1.87E-01 

4 -0.4 8000 2118 5882 2.65E-01 

5 -0.2 8000 3247 4753 4.06E-01 

6 0 8000 5117 2883 6.40E-01 

7 0.2 8000 6770 1230 8.46E-01 

8 0.4 8000 7697 303 9.62E-01 

9 0.6 8000 7953 47 9.94E-01 

10 0.7 8000 7977 23 9.97E-01 

  

After the FFS calculation for the transition AB is finished, we use the RPP 

method to evaluate the equilibrium distribution of λ,  (x t )   , from the 

trajectories obtained in FFS. The RPP procedures are as follows: 

1. Calculation of A ( )xP , 
Ai

QY and pi
Q  

The first thing to do is to do calculate −− the unbiased path probability of 

every trajectory in the ensemble with all paths starting from stable A state and ending 

in either A or B states. This probability can be easily calculated as (Equation (16) in the 

manuscript) 
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           (C4) 

Then we locate the points when trajectories effectively crossing every interface and 

find out the crossing type Q, i.e. Q in ±,  =, +
+  and ฀. The average of effective 

crossings on interface i, 
Ai

QY , can be calculated as AA
( ) ( )i in Q QY å x xP , 

where ni
Q(x )  describes how many times the trajectory x effectively crosses 

interface i with crossing type Q. The average effective crossing, 
Ai

QY , in Example 

1 is listed in Table C2.  

 

Table C2 the effective crossing on interfaces i, 
Ai

QY , with + in ,  =,  and +Q ±  . 

i 
Ai

±Y  
Ai

Y  
A

i


Y  

AiY  

1 6.59E-02 9.34E-01 0 6.56E-02 

2 2.31E-02 4.27E-02 9.69E-03 2.29E-02 

3 4.58E-03 2.82E-02 5.90E-04 4.34E-03 

4 1.19E-03 3.98E-03 2.51E-04 9.48E-04 

5 4.89E-04 9.50E-04 1.13E-04 2.49E-04 

6 3.16E-04 2.86E-04 6.35E-05 7.61E-05 

7 2.64E-04 1.16E-04 4.84E-05 2.34E-05 

8 2.52E-04 6.04E-05 3.85E-05 1.14E-05 

9 2.54E-04 3.59E-05 8.95E-05 1.39E-05 

10 2.40E-04 1.03E-04 0 0 

 

Under the assumption of memory loss, the partial crossing probability i
Qp  at i 

can be calculated from 
Ai

QY  as (Equation (9) in the manuscript) as 
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A A

A A A A

            i i
i i

i i i i

±
±

±  


Y Y
 

Y  Y Y  Y





p p          (C5) 

with 1i i
 ± p p  and 1i i


   p p . The values of pi

Q  is displayed in Fig. C1(a). 

When the memory loss assumption is valid, the crossing probability Pi
  in FFS, 

defined as 

Pi
  P(0

i
0
1 )= P(0

i1
0
i )

j1

i1

                                 (C6) 

should be the same as the ones calculated from partial crossing probability in RPP as 
11

1 2 1

1 1 2

P
i

m m
i

m m


 

± ± ±


 
  
 
å

  


p p p p
p p p

                              (C7). 

In Fig. C1(b), Pi
  with i=1…11 by equation (C6) (FFS) and equation (C7) (RPP) 

are compared, and the excellent agreement indicate that there is no memory effect 

between interfaces.  

 

Fig. C1 (a) the partial crossing probability on each interface. (b) the crossing probability 1
0 0P ( )i

i P 

evaluated from partial crossing probabilities in RPP (equation (C7)), compared the ones from FFS 

(equation (C6)). 

2. Calculation of ( )iP Q  and ( )iL Q  

Then,we need to compute the average density of λ in the partial paths, ( )iP Q , 

and the average density of λ in the loop segment of partial path, ( )iL Q , on every 
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interface. When a trajectory effectively crossed interface i at phase point xt, the 

histogram of  in the partial path is calculated as ri
Q ()  dt '   (xt ' ) ttQ

b

ttQ
f

 , where 

tQ
f  and tQ

b are the times when the trajectory first crosses interface i+1 (i1) forward 

and backward from xt, respectively. For Q in ± ,  , and 
 , tQ

f ,tQ
b is taken as 

ti1
f ,ti1

b  , ti1
f ,ti1

b  , ti1
f ,ti1

b and ti1
f ,ti1

b   , respectively. In step 1, we have 

located the effective crossing points on i for every trajectory. At each effective crossing 

point, xt, one can obtain a histogram of , ( )ir Q . Accordingly, the average density 

of  in the partial path Q having crossed i is calculated as Pi
Q()  ri

Q()
Yi

Q . For 

illustration, ( )iP Q  on interface i=6 is plotted in Fig. C2(a).  

 

Fig. C2 (a) the average density of λ in the partial path on interface i=6; (b) the average density of λ in the 

segments of partial path on interface i=6, where '
iB Q  and ''

iB Q  are the density of λ on the boundary 
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segments before and after the crossing point xt, respectively, and iLQ  is the density of λ on the loop 

segment, with + in ,  =,  and +Q ±  . 

 

The density of  on the loop segment of partial paths is calculated in a similar way 

as Li
Q()  li

Q ()
Yi

Q , with li
Q()  dt '   (x t ') ttQ

b

ttQ
f

 l i (x t ' ) . When xt is on the 

loop segment of partial path, ( ) 1i tl x , otherwise, ( ) 0i tl x . ( )iL Q  on i=6 is 

plotted on Fig. C2(b) along with the average density of  on the boundary segment 

before crossing point xt , '
iB Q , and the average density of  on the boundary segment 

after crossing point xt , "
iB Q . Clearly, ' "( ) ( ) ( ) ( )i i i iP B B L   Q Q Q Q   . 

3. Calculation of  (x t )   

The final step is to use Equation (15) in the manuscript to calculate the equilibrium 

distribution of  as 

 (x t )  
 (x t ) 

A
 J ACi ()

U i

             (C8) 

where 1
1 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )i i i
i i i i i i i i i i

i i

C P P L L L L      
 

±  ± ±   
 ±




 

     


p p p
p p p

p p
.  

Ci() is calculated based on the Pi
Q() , Li

Q()  and pi
Q  we have obtained in 

previous steps.  Decaying probability Ui is defined as 
1

0 1
0 0 0( ) 1 ( )

M
i j j

i M
j i

U P P






   , 

and 1
A 0 0 0A

( )MJ P± Y . Since the interface i=0 and i=1 are overlapped, 0 A
±Y =1, 

and
1

1 1
A 0 0 0 0

1
( ) ( )

M
M i i

i

J P P






  . Therefore, using the crossing probabilities listed in 

Table C1, Ui and JA can be easily obtained.  (x t ) 
A

 is the stationary 

distribution of  in transition AB, which is calculated as 

   '
'

AA 0
( ) ( ) ( )t t

dt
        x x xP . In Fig. C3(a),  (x t ) 

A
 and 

JACi() are plotted as a function of . 
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Fig. C3 (a)  
A

δ ( )t x , as the steady stationary distribution of λ transition from AB, is plotted 

with the values of JACi(λ). (b) the free energy F(λ) is evaluated by RPP method from FFS trajectories and 

compared with V(λ) from equation (C2). 

 

Using equation (C8), now one can obtain  (x t )  , and accordingly the free 

energy on λ as F()  kBT ln  (x t )    c , where c is a constant. The free 

energy F(λ) evaluated by RPP method reveals excellent agreement with V(λ) by 

equation (C2) in Fig. C3(b).  

 

Example 2 

In this example, we still consider the one particle moving in the one-dimensional 

double-well potential, i.e. V(x) in equation (C2), using Langevin dynamics with inertia. 

The numerical iteration for inertia dynamics follows a leap-frog impulsive Langevin 

integrator [99] as: 
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   

B

( )' ,
2 2

' (2 )
2

' ,
2 2

'
2 2

t t f xv t v t t
m

t k Tv v t ,
m

t vx t t x t v t t

t tv t v t v

  

           
   

       
 

              
           

   

g
              (C9) 

where 1 te     , ( ) ( ) /f x V x x  , and g is a random number generated from 

normal distribution q(0,1). In this example, we consider two cases with γ=10, and γ= 

2. The rest parameters in equation (C9) are the same in the two cases as kBT=0.1, 

x0=0.01, t0=0.01, and t=t0/20.  

Like example 1, the two stable states A and B are set to be around x = −1.0 and x 

= 1.0, and the order parameter for transition AB is set as λ= x in FFS. We also set 12 

interfaces {λi}i=0…11 from −0.8 to 0.8, with λ0 =−0.8, λ11=0.8, and λ0=λ1 for simplicity, 

and 1000 configurations on λ0 to start FFS. The details of FFS calculations are listed in 

Table C2 for the case with γ=10, and in Table C3 for the case with γ=2.  

 
Table C2 Interfaces, number of trajectories and the crossing probability on each interface in FFS for γ=10 
in Example 2.  

i λi Mi Ni Mi  Ni 1
0 0( | )i iP   

1 -0.8 5000 1565 3435 3.13E-01 

2 -0.7 5000 2065 2935 4.13E-01 

3 -0.6 5000 1024 3976 2.05E-01 

4 -0.4 5000 1422 3578 2.84E-01 

5 -0.2 5000 2259 2741 4.52E-01 

6 0 5000 3443 1557 6.89E-01 

7 0.2 5000 4436 564 8.87E-01 

8 0.4 5000 4847 153 9.69E-01 

9 0.6 5000 4981 19 9.96E-01 
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10 0.7 5000 4990 10 9.98E-01 

 
Table C3 Interfaces, number of trajectories and the crossing probability on each interface in FFS for γ=2 
in Example 2.  

i λi Mi Ni Mi  Ni 1
0 0( | )i iP   

1 -0.8 5000 2523 2477 5.05E-01 

2 -0.7 5000 2376 2624 4.75E-01 

3 -0.6 5000 1121 3879 2.24E-01 

4 -0.4 5000 1576 3424 3.15E-01 

5 -0.2 5000 2659 2341 5.32E-01 

6 0 5000 4129 871 8.26E-01 

7 0.2 5000 4859 141 9.72E-01 

8 0.4 5000 4983 17 9.97E-01 

9 0.6 5000 4996 4 9.99E-01 

10 0.7 10252 10251 1 1.00E+00 

 

Following the RPP procedure in example 1, the free energy as a function of λ, F(λ), 

is evaluated in both cases. To compare the effect from inertia, the correlation function, 

( ) (0)
(0) (0)

v t v
v v

, is calculated and displayed in Fig. C4(b) and Fig. C6(b). When γ=10, the 

correlation of velocity decays to neglectable as t>30t0 (see Fig. C4(b)), while the 

average length of partial path segments (see Fig. C4(a)) is around 50t0 to 150t0, 

suggesting that there is no strong correlation of velocity between partial paths in 

adjacent interfaces. In the case with γ=2, the average length of partial path segments 

(see Fig. C6(a)) is around 10t0 to 80t0, but the velocity is strongly correlated within 

t=100t0 (see Fig. C6(b)), indicating that the correlation of partial path between interfaces 

is non-negligible in this case. However, since the dynamics in both cases is still 

Markovian, the condition for using RPP method is satisfied. The values of Pi
  by FFS 

and RPP agree very well with each other in both cases (see Fig. C5 for γ=10 and Fig. 
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C7 for γ=2), as well as the free energy F(λ) by RPP and V(λ). In γ=2, F(λ) is not 

continuous in the side near state B, because of the bad statistics from the short partial 

path on interfaces near state B. Despite of that, F(λ) is in overall agreeable with V(λ) 

and reveals the correct barrier of V(λ) looking from state A.    

 
Fig. C4 In example 2 with γ=10, (a) the average path length of partial path segments. For interface i, 

boundary refers to the boundary segment in region [λi, λi+1], and loop refers to the loop segment on 

interface i. (b) the correlation function of velocity. 

 

 
Fig. C5 In Example 2 with γ=10, (a) the crossing probability evaluated from RPP method compared with 

the one from FFS. (b) the free energy evaluated from RPP compared with V(λ) in equation (C2). 
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Fig. C6 In Example 2 with γ=2, (a) the average path length of partial path segments. For interface i, 

boundary refers to the boundary segment in region [λi, λi+1], and loop refers to the loop segment on 

interface i. (b) the correlation function of velocity. 

 

 
Fig. C7 In Example 2 with γ=2, (a) the crossing probability evaluated from RPP method compared with 

the one from FFS. (b) the free energy evaluated from RPP compared with V(λ) in equation (C2). 

 

Example 3 

In this example, the one-particle system is in a two-dimensional potential [100]as  

    2 22
B( , ) 4 1V x y k T x x y                      (C10) 

where the two stable points are at (−1, −1) and (1, 1), and the saddle point is at (0, 0) 

with an energy barrier of 4kBT as plotted on Fig.C8.  
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Fig. C8 the contour of the two-dimensional potential V(x,y) in equation (C10). The white solid line 

marked the direction of order parameter,   2x y   , and the grey dashed lines are the interfaces 

defined by λ= −1.2, 0 and 1.2 in the phase space. 

 

In this example, we use the overdamped Langevin dynamics to simulation the 

moving of the particle under V(x, y), where the particle’s position is denoted as r=(x, y). 

The trajectories are advanced as  

B

B

( , )( ) ( ) 2

( , )
( ) ( ) 2

x
x

y
y

Df x yx t t x t t D t
k T

Df x y
y t t y t t D t

k T

      

      

g

g
              (C11) 

where gx and gy are two uncorrelated Gaussian random number generated from the s 

distribution q(0,1). fx and fy are the forces defined as ( , ) ( , ) /xf x y V x y x    and 

( , ) ( , ) /yf x y V x y y    , respectively. D is the diffusion coefficient defined as 

D=kBT/γ. In simulations, kBT=0.1, and γ=104. x and y are discretized with a unit of 0.01, 
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and trajectories are stored every t0=4, with time increasement t =0.05t0. The stable 

states A and B are defined around the point (−1, −1) and (1, 1), respectively. To study 

the transition AB in FFS, the order parameter is chosen as   2x y   , and 16 

interfaces {λi}i=0…15 are set along λ from −1.2 to 1.2. λ0 is set to be overlapped with λ1 

as λ0=λ1=−1.2, and λ15=1.2. FFS starts with 1000 configurations on λ0. The details of 

FFS in example 3 are listed in Table C4. 

 
Table C4. Interfaces, number of trajectories and the crossing probability on each interface in FFS for 
Example 3. 

i λi Mi Ni Mi  Ni 1
0 0( | )i iP   

1 -1.2 10970 1000 9970 9.12E-02 

2 -1.1 8000 3575 4425 4.47E-01 

3 -1 8000 2880 5120 3.60E-01 

4 -0.8 8000 3551 4449 4.44E-01 

5 -0.6 8000 3689 4311 4.61E-01 

6 -0.4 8000 3944 4056 4.93E-01 

7 -0.2 8000 4406 3594 5.51E-01 

8 0 8000 5382 2618 6.73E-01 

9 0.2 8000 6482 1518 8.10E-01 

10 0.4 8000 7305 695 9.13E-01 

11 0.6 8000 7727 273 9.66E-01 

12 0.8 8000 7853 147 9.82E-01 

13 1 8000 7968 32 9.96E-01 

14 1.1 8000 7952 48 9.94E-01 

 

Following the RPP procedure in example 1, the free energy F(λ) as a function of 

  2x y    is evaluated for λ [−1.2, 1.1]. In Fig. C9(b), F(λ) by RPP is compared 

with the free energy calculated from Umbrella Sampling (US). The choice of order 
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parameter   2x y    is a straightforward but non-optimized one, but the free 

energy by RPP is overall consistent with the results from US with a slightly higher 

barrier. The crossing probability Pi
  calculated in RPP is the same as the ones 

evaluated from FFS (see Fig. C9(a)). The criterion of comparing Pi
  form RPP and 

FFS is not able to tell whether the order parameter is a good or poor one. 

 

 
Fig.C9 In Example 3, (a) the crossing probability evaluated from RPP method compared with the one 

from FFS. (b) the free energy evaluated from RPP compared with the free energy evaluated withUmbrella 

Sampling (US). 
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Rigid-lattice Monte Carlo study of nucleation kinetics in dilute bcc Fe-

Cu alloys using statistical sampling techniques  

Lin Qin1, a *, Alice Redermeier1, b, Christoph Dellago2, e, Ernst 

Kozeschnik1, c, Carina Karner2,d  
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Keywords: Nucleation Kinetics, Rare Event Sampling, Monte Carlo simulation 

Abstract 

The chemical composition and nucleation kinetics of Cu precipitates in thermally 
aged bcc Fe-Cu alloys is investigated with statistical sampling techniques combined 
with Monte Carlo simulation. The analysis of nucleation dynamics is performed by a 
rigid-lattice Monte Carlo algorithm based on the vacancy-exchange mechanism. At 
elevated aging temperatures from 450 to 650°C, the critical cluster size and the 
corresponding nucleation barrier are evaluated using an Umbrella Sampling technique. 
The nucleation rate of Cu precipitates is calculated on basis of nucleation trajectories 
harvested by Forward Flux Sampling (FFS). The fastest nucleation in dilute bcc Fe-Cu 
alloys is predicted to occur at 550 ~ 600°C, which is in good agreement with 
experimental findings. The critical Cu clusters at 450 to 650°C are found to contain 10 
~ 40 atoms with an increasing nucleation energy barrier from 10 to 23 kBT. For small 
clusters with less than 30 atoms, a significant shape anisotropy is observed during 
nucleation. Special emphasis is placed on the Cu concentration profiles of critical nuclei, 
where we observe that the first formed Cu clusters contain a substantial amount of iron 
at lower annealing temperatures. However, the Cu content of the clusters increases 
rapidly to almost unity during aging. Growth of the clusters follows mostly after the 
nucleus has substantially enriched in Cu content. 

1. Introduction 

The Fe-Cu binary system is a well-studied model system in precipitation-hardening 
ferritic alloys, where Cu precipitates play an important role in materials strengthening. 
It is commonly acknowledged that, in thermally-aged binary Fe-1-30%Cu alloys, 
copper precipitates undergo a BCC-9R-FCC transition during the precipitation process 
[1][2][3]. The chemical composition of these bcc precipitates, however, is still unclear. 
In recent Atom Probe (3DAP) investigations [4][5][6], the bcc Cu-rich precipitates are 
assumed to contain about 50% Fe atoms, while the results from small-angle neutron 
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scattering (SANS) [7] indicate a significantly higher Cu content of more than 70%. 
Schober et al. [6] attribute this discrepancy to the assumption of non-magnetic Cu 
precipitates in SANS experiments and the insensitivity to very small clusters of only 
sub-nanometer radius in 3DAP techniques. Unfortunately, no direct explanation for 
why the bcc precipitates contain such high Fe content is provided.  

The properties of the bcc precipitates are directly linked to the nucleation behavior 
that occurs in the early stages of Cu precipitation, which is hard to detect with present 
experimental measuring techniques [8] since this process involves ultra-fine nuclei and 
transient barrier crossing motions [9]. In theoretical descriptions of precipitation, such 
as the Kampman and Wagner (KWN model [10]) and Cahn-Hilliard based approaches 
[11][12][13], the nucleation kinetics is described by the growth of critical clusters with 
pre-defined particle size, chemical composition and number of density from Classical 
Nucleation Theory (CNT) [14][15][16][17]. However, the nucleation rate predicted by 
CNT is very sensitive to the choice of input parameter values, e.g., precipitate/matrix 
interfacial energy and atomistic attachment frequencies. These quantities are not 
straightforwardly obtained from experimental data or theoretic calculations. 

An alternative way to study nucleation kinetics is provided by the Monte Carlo 
method [18][19][20][21][22][23], which allows for a detailed tracking of the formation 
trajectories of Cu particles during the whole precipitation process. In the literature, 
various Monte Carlo algorithms have been proposed and successfully implemented in 
software to investigate the diffusion kinetics [18], cluster mobility [23] and vacancy-
cluster interactions [20] in the Fe-Cu system. However, the microscopic properties of 
critical or pre-critical clusters are not specifically addressed in these studies. One issue 
with this technique is that, considering the computational effort, Monte Carlo 
simulations are usually carried out in small-size samples with the order of a few tens of 
nanometers and only for short times, which are likely to cause insufficient statistics in 
the simulation and lead to an inaccurate estimation of the number density of clusters, 
especially in weakly supersaturated cases [22]. 

To address this issue, we study the nucleation kinetics of coherent Cu particles in 
dilute Fe-Cu alloys by applying enhanced statistical sampling techniques to Monte 
Carlo simulations. An Umbrella Sampling strategy [24][25] is employed to evaluate the 
equilibrium distribution of early-stage clusters and to reconstruct the nucleation free 
energy for single cluster as a function of its size [26]. The nucleation kinetics is 
investigated with a Forward Flux Sampling (FFS) technique [27] by harvesting 
trajectories of cluster formation and calculating the nucleation rates of Cu precipitates 
in the primary stage. Additional nucleation quantities, such as the atomic attachment 
frequency and the Zeldovich factor, are also evaluated and compared with predictions 
of CNT. Finally, the configurations with the largest clusters in critical size are collected 
from nucleation trajectories to perform the analysis of size, shape and concentration 
profiles as the major properties of critical clusters. 

2. Methodology  

2.1. Rigid-lattice Monte Carlo Simulation 
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The nucleation dynamics simulation for Cu precipitation in dilute bcc Fe alloys is 
performed with the Rigid Lattice Monte Carlo (LMC) scheme implemented in the 
software MatCalc [28]. A bcc lattice of 303030 unit cells is used with periodic 
boundary condition. Atomic diffusivity is described by the vacancy exchange 
mechanism and real time is coupled to a Monte Carlo step (MCS) by defining the 

average time increment corresponding one vacancy jump [21] as 
2

Va,MC

A6
a x

t k
D

   , 

where a is the nearest neighbor distance in bcc-Fe (2.468 Å), DA is the macroscopic 

diffusion coefficient of the jumping atom A in bcc-Fe, xVa,MC is the vacancy site fraction 
in the simulation box and k is a correction for the diffusion correlation effect in the 
vacancy exchange mechanism (0.727 for bcc lattice [29]).  

The LMC steps are governed by an atomic interaction energy formulated in the Local 
Chemical Environment (LCE) framework expressed in reference to a particular center 
atom [21]. The energy of the system is calculated as the sum of all pair-wise bond 
energies extending from each atom up to the second nearest neighbors, 

2
( ) ( )
AB AB

1

1
2

i i

i
E n 



 åå                                            (1) 

where ( )
AB
in  and ( )

AB
i  are the number of AB bonds and the corresponding bond energy 

in the 𝑖-th nearest neighbor shell. ( ) A( ) B( )
AB A AB A AB

i i i c  c   , where cA and cB are the 

atomic fractions of A and B in the local environment and A( )
AB

i  ( B( )
AB

i ) is the AB bond 

energy in a pure A and B environment, respectively. The summation includes all the 
possible combinations of bonds for A and B, representing the atomic species Cu and 
Fe, as well as Va, representing the substitutional vacancy. The LCE potential is a very 
flexible and robust energy model, whose parameters can be calibrated with various 
methodologies, such as experimental measurements, first principle calculations, or 
thermodynamic assessment. The details of this potential can be found in Ref. [21].  

In the LMC framework, the acceptance probability for a vacancy exchange with a 
nearest neighbor atom is given by 

P  exp  E
kBT









                                             (2) 

where E represents the total energy difference between the initial state and the state 
after the exchange event. If E < 0, P = 1.  

Table 1 lists interaction energy of Fe-Cu on the first neighbor shell, CuFe
Cu(1)  and CuFe

Fe(1) , 

at different temperatures from 450 ~ 700°C.  For other neighbor shells, 

CuFe
(i)  (ri / r1)6CuFe

(1) , where r1 and ri are the first and i-th nearest neighbor distances, 
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respectively. Using this setting of LCE potential, the solubility limits of Cu in bcc-Fe 

( xCu
bcc_Fe ) and Fe in bcc-Cu ( xFe

bcc_Cu ) are calculated from the slab-diffusion LMC 

simulations[30], and the values are validated by thermodynamic assessment based on 
the Calphad approach [28,31,32] (see Table 1). Since we use the tracer diffusion 
coefficient (e.g. DCu, is 1.5 m2·s-1 [33], and DFe is 7.4 m2·s-1 [34] in bcc_Fe at 500°C ) 
to couple the MC step with real time, there is no need to additionally define interactions 

for atom and vacancy, i.e. CuVa
(i )  and FeVa

(i )  are set to zero. The vacancy-vacancy 

interaction is also neglected, because only one vacancy is placed in the simulation 
sample.  

 

Table 1. Values of 
Fe(1)
CuFe  and 

Cu(1)
CuFe  used in this work and the corresponding solubility 

limits of Cu in bcc-Fe (
bcc_Fe
Cux  ) and Fe in bcc-Cu (

bcc_Cu
Fex  ) reproduced by the LCE 

potential in the slab-diffusion LMC simulations [30].  Values of solubility limits from 
thermodynamic (TD) assessment [28,31,32] are listed for comparison. 

T /°C 
Cu(1)
CuFe

/meV 

Fe(1)
CuFe  

/meV 

LMC  TD-assessment 

bcc_Fe
Cux at.% 

bcc_Cu
Fex at.% 

 bcc_Fe
Cux at.% 

bcc_Cu
Fex  at.% 

450 48.8 45.2 0.039 0.033  0.042 0.032 
500 47.5 44.8 0.080 0.062  0.077 0.063 
550 46.3 44.5 0.126 0.115  0.131 0.116 
600 45.1 44.0 0.210 0.198  0.212 0.199 
650 44.1 43.6 0.333 0.322  0.329 0.320 
700 43.1 43.0 0.494 0.497  0.494 0.490 

 

2.2 Microscopic cluster description and order parameter 
A cluster formed during simulation is recognized as a group of solute atoms 

connected with each other within the nearest neighbor distance. The size of a cluster is 
defined as the total number of solute atoms on this network. Clearly, the smallest cluster 
is a dimer (two Cu atoms next to each other within the nearest neighbor distance), and 
a Cu atom without any other Cu atom in its nearest neighbor shell is regarded as a solute 
atom in the matrix. This cluster detection recognizes all the clusters formed during 
nucleation including both, unstable pre-critical as well as stable post-critical ones, to 
provide a sound evaluation of the cluster size distribution. 

In the present work, the order parameter describing the nucleation process is taken 
as the size of the largest cluster/precipitate in the simulation box. In classical theories, 
since nucleation is assumed to happen independently among clusters, the dynamic 
description of a single-cluster nucleation is used to represent the nucleation process of 
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the whole system on an average basis [9]. Therefore, the cluster size in CNT only refers 
to individual precipitates, which are not necessarily the “largest” ones. However, in our 
Monte Carlo simulation, we observe several of precipitates with different sizes 
simultaneously forming and dissolving in the matrix. Using the size of the largest 
clusters as order parameter represents a simple but efficient way to characterize the 
nucleation stage in atomic simulations.  

2.3 Umbrella Sampling  
From statistic point of view, the nucleation free energy is corresponding to the 

equilibrated size distribution of clusters in a certain supersaturated condition. This 
distribution will not be established in reality, since, during nucleation, there is always 
a net forward transition from small clusters to large stable ones until the phase 
separation completed. When focusing on one cluster, the equilibrium size distribution 
is equivalent to the probability of finding the cluster in a given size n on its own 
nucleation trajectory, which is proportional to the total time the cluster spends on size 
n during nucleation. However, due to the presence of nucleation barrier, the chance to 
observe a cluster around critical size n* is extremely rare compared to it in other size, 
which results in large statistical errors in estimation of equilibrium probability around 
n*. To solve the problem, we implement the Umbrella Sampling technique [24][25] in 
the evaluation of nucleation free energy in this work.  

Umbrella Sampling [24][25] is a commonly used strategy to obtain the free energy 
profile along a chosen physical coordinate by performing a series of simulations under 
a biased potential to constrain the system inside local regions in configuration space. In 
our Umbrella Sampling simulations we choose the size of largest cluster n as this 
coordinate, or order parameter, and a set of windows is defined for the sampling with 

the bias energy given by U i 

2

nni 2 , where ni is the restrained value of the i-th 

window and  is a spring constant. According to probability theory, the number density 
observed in the i-th window sampling, ri (n), fulfills the following equation, 

 ri (n)  fici (n)r(n)                                          (3) 

where r (n) is the unbiased equilibrium probability of a particle of size n, which is 

connected to the free energy by F(n)  kBT lnr(n) . The factor ci(n) is related to the 

bias potential by  B( ) exp ( )i ic n U n k T  , and fi is a normalized factor defined as

fi 1 ci (n)r(n)
i1

n

å .  

Based on the maximum likelihood theory, the equilibrium probability of n can be 
written as  
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r(n)  M (n)
Ni f ici (n)

i
å                                            (4) 

where M(n) is the accumulated number of n-sized particles combining all the window 
samplings, and Ni is the total number of samples in the i-th window sampling. Equations 
(3) and (4) are known as the coupled nonlinear WHAM (Weighted Histogram Analysis 
Method) [24][35] equations, which can be solved iteratively for fi and r (n) until self-
consistency is achieved.  

It is stressed that r (n), solved by WHAM, denotes the equilibrium probability of 
finding the system with size of the largest cluster equaling to n, which is clearly 
different from the equilibrium probability, f (n), defined on a single cluster model in 
classical theories. Nevertheless, r (n) and f (n) will overlap for large n, when only one 
cluster of that size is observed in the Umbrella Sampling simulations [26]. Accordingly, 
the CNT-type/single-cluster free energy, G(n), can be calculated as 
 

G(n) / kBT 
ln f (n) n  npatch

lnr(n)C n  npatch






                        (5) 

where npatch is the point where the two free energy curves are patched up and C is an 
adjustable coefficient to make the free energy continuous at the patching point. For 
small values of n, n≤ npatch, the probability f (n) approximately equals to the stationary 
size distribution established when nucleation takes place [36], which is calculated by 
directly in a conventional, or brute-force, MC simulation without bias potential.  

2.3. Forward Flux Sampling (FFS) 
The Forward Flux Sampling (FFS) technique, as originally proposed by Allen et al. 

[27] to calculate the rate constant for rare reactions in complex biochemical switches, 
is utilized to study the nucleation rate of Cu precipitates.  

In the FFS method one considers a typically high-dimensional phase space. Each 
point in this space represents a microscopic state of the system specified by the multi-
dimensional coordinate X. Regions A and B are two stable (metastable) states defined 
in terms of an order parameter (X), such that the system is in state A if (X) < 0, and 
in state B if (X) > m. A series of non-overlapping interfaces {i}i=1…m-1 is defined 
between states A and B as illustrated in Fig.1. In FFS one first performs brute-force 
simulations starting in state A. Every time a trajectory forward-crosses 0, the 
respective system configuration is stored, and the simulation is restarted until N0 
configurations are collected. The average number of crossings through interface 0 out 

of state A per unit time is denoted as initial flux A,0  N0 ttot , where ttot is the total 

time the system remains in state A during the simulation.  
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Fig. 1 Schematic of a phase region between stable states A and B, which is sectioned 

into a series of non-overlapping interfaces   1 1i i n
 

.  

 
In the next step, the collected configurations on 0 serve as starting points of 

trajectories which are followed until the trajectory either crosses 1 or returns back to 
state A. A total of M0 trajectories are “fired” from 0 to generate a set of configurations 
on 1, which are used to start new trajectories and repeat the process for the next 
interface. From each interface i, Mi trajectories are fired and harvested that either reach 
the next interface i+1 or return to state A. The probability that a trajectory, which has 
crossed i coming from state A, continues to cross i+1 before returning to state A is 

defined as the crossing probability P(i1 |i )  Ni
s M i

. Here,  is the number of 

trajectories that successfully cross i+1 from i. The whole procedure is terminated 
when at least one trajectory reaches state B, and the transition rate constant kAB can be 
obtained from [13] 

kAB A,0 P(i1 |i )
i0

m1

                                        (6) 

For a single nucleation event, the random (initial) state without large clusters is 
treated as reactant (state A) and the post-critical state, where sufficiently large and 
stable clusters have formed, is treated as product (state B). Generally, when using the 
largest cluster size n as order parameter, (X)=n, the nucleation trajectory is a time-
dependent function of cluster size as n(t). The forward crossing of a given interface i 

at time t is defined as n(t) > i, while the backward crossing is defined as n(t) ≤ i. The 
interfaces {i}i=0…m are a group of increasing values acting as milestones to determine 
the time to store the configurations in which the largest cluster first-time reaches or 
exceeds a given size i . The reaction rate coefficient for a nucleation event expressed 
by eq. (6) can be considered as the frequency of forming one stable large cluster from 
the random solution, which is treated as a product of the frequency the largest cluster 

in the system attempting to grows over the a small size of 0, i.e. the initial flux A,0 , 

and the conditional probability of a cluster in size 0 grows to a large post-critical cluster 

N i
s
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(n>m) before dissolving, i.e. the crossing probability P(m | 0 )  P(i1 | i )
i0

m1

 . 

Therefore, 1/kAB is equivalent to the average time that the system needs to form one 
stable post-critical precipitate from the random state. Accordingly, denoting the volume 
of the MC simulation box by V, the nucleation rate is calculated as [37]  

AB /J k V                                                  (7) 

3. Results and Discussion 

3.1 Nucleation free energy 

In the present Umbrella Sampling, a set of windows is defined with restrained values 
of {ni} ={2, 4, 6, … , 60} and a spring constant of 0.23 kBT for all the samplings. The 
size of the largest cluster is tracked for every MC step, and after 5000 MC sweeps for 
equilibration, the value of  is recorded every iteration for 20000 MC sweeps in each 
window. 

The free energy F(n) for cluster formation in a Fe-1%Cu alloy at 600°C (solid curve 

in Fig. 2) is calculated by F(n)  kBT lnr(n) , with r (n) obtained using eqs. (3) and (4) 

applied to the umbrella sampling results. One can clearly observe a wide and 
comparably flat free energy barrier with the critical size, corresponding to the top of the 
barrier at around n=38. The local minimum at n=5 comes from the fact that the free 
energy F(n) is a function of the largest cluster size, and due to the thermal fluctuations 
in random state, F(n) sharply increases as n approaches 0. The position of the local 
minimum depends on the degree of supersaturation and the size of MC simulation box 
[26]. The brute-force simulation is performed to evaluate the equilibrium number 
density, f (n), for small clusters. ln f (n) is depicted by the dashed curve in Fig. 2. 
According to eq. (5), the CNT-type/single-cluster free energy G(n) is reconstructed 
by merging the two curves at the patching point n=10 with the same gradient (illustrated 
by dotted line in Fig.2). To avoid ambiguity, the term nucleation free energy refers to 
G(n) in this work. 

n
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Fig. 2 Free energy of cluster formation in a Fe-1%Cu alloy at 600°C obtained from 
Umbrella Sampling (solid curve) and from brute-force simulation (dashed curve). The 
single-cluster free energy G is obtained by patching up the two curves at the point 
n=10 (indicated by the dashed line) in this case. The dotted line represents the gradient 
of the free energy at the patching point.  

 
The nucleation free energy is systematically calculated for Fe_1%Cu and 

Fe_1.5%Cu alloys in the temperature range from 450 to 650 °C. For Fe_1%Cu (Fig. 
3a), the critical cluster size n* increases from around 10 to 38 when the temperature 
rises from 450 to 600 °C, with the free energy barrier height gradually climbing from 
12 to 22 kBT. In the case of Fe_1.5%Cu (in Fig. 3b), aging in a higher temperature range 
from 500 to 650 °C, the critical cluster size increases from 10 to 30 atoms with the 
barrier height rising from 10 to 18 kBT. A similar prediction follows from first-principles 
calculation [38], where the critical cluster size is calculated to be 12 with an activation 
barrier of 0.63 eV (9.5 kBT) for nucleation in Fe_1.4%Cu alloy at 500°C. In both alloys, 
the free energy barrier becomes lower, but sharper, when the annealing temperature 
decreases. The free energy curves are also found to be well fitted in the classical form 
as G(n) = an + bn2/3 + c, where a is the volume contribution, b is the interfacial energy 
term and c is a normalization constant. Assuming that the clusters are spheres, the 
precipitate/matrix interfacial energy is evaluated to be approximately 0.28~0.30 Jm-2, 
is roughly estimated for dilute Fe-Cu alloys, in consistency with 0.27~0.34 Jm-2 
obtained for the generalized nearest neighbor broken bond (GNNBB) model [39] with 
size correction for small clusters [40]. 
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Fig. 3 Nucleation free energies of Fe-1%Cu (a) and Fe-1.5%Cu (b) alloys between 
450°C and 650 °C obtained with the Umbrella Sampling technique. 

 

3.2 FFS trajectories and nucleation rates 

The nucleation trajectories in Fe_1%Cu and Fe_1.5%Cu alloys at 450 to 650°C are 
generated using MC dynamics and harvested by Forward Flux Sampling [27]. 
Nucleation rates calculated from eqs. (6) and (7) are plotted in Fig. 4 as solid lines. The 
nucleation rates of Cu precipitates between 450°C to 650°C are in the range of 1017~ 
1020 m-3s-1 in the Fe-1%Cu alloy and 1020~ 1022 m-3s-1 in the Fe-1.5%Cu alloy. For both 
alloys, nucleation rates do not significantly increase at higher supersaturation and 
decreasing temperature, but rather decline by one order of magnitude due to the 
increasingly sluggish diffusion of substitutional elements. The maximum nucleation 
rates are observed at around 550°C in Fe-1%Cu and around 600°C in Fe-1.5%Cu, in 
good agreement with the isothermal time-temperature-precipitation (TTP) diagram 
reported by Perez et.al [41], where the fastest nucleation is observed at  600 ~ 650°C 
in Fe_1.2%Cu. It is worth noting that the nucleation rate obtained from FFS 
corresponds to the steady state nucleation rate defined in CNT, thus, transient nucleation 
effects, which are manifested in the incubation time [42], are not taken into account in 
this work.  
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Fig. 4 Nucleation rates obtained by FFS (full markers) and CNT (open markers) for Fe-
1%Cu and Fe-1.5%Cu at temperatures between 450°C and 650°C. The trend lines are 
the Bézier curves generated from each group of data points. 

 

Unfortunately, there is not much quantitative information on nucleation rates 
available for the present Fe-Cu system, neither from atomistic simulations nor from 
experimental work. On one hand, experimental measurements for nucleation rates 
require accurate detection of the Cu particles (radius smaller than 0.5nm) formed in the 
earliest stages of precipitation, which is almost impossible with present experimental 
techniques. On the other hand, the steady-state nucleation stage is inherently difficult 
to be observed in conventional atomistic simulations, especially under high-
supersaturated conditions. In the work carried out by Soisson and Martin [19], with an 
estimated critical cluster size derived from the steady-state cluster distribution, the 
nucleation rates for Fe-Cu alloys are only reported for rather high temperatures 
(1000K~1500K) calculated from brute-force Monte Carlo simulations.  

In continuum precipitation models, the nucleation rate is a pre-determined parameter 
controlling the evolution of the number density of precipitates during the process until 
coarsening of clusters begins. In the work of Stechauner and Kozeschnik [17], 
simulations of Cu-precipitation in ferrite are carried out using the KWN model [10,43] 
(implemented in the software package MatCalc [28]), with the nucleation rates of Cu 
precipitates calculated in a CNT framework at every time interval during the simulation. 
In their work, the steady nucleation rates at the primary stage are found to be in the 
order of 1020~ 1023 m-3s-1 in the Fe-1.4%Cu alloy **at 450 to 650°C, with the highest 
value, around 81022 m-3s-1, occurring between 600 ~ 650°C. Guo et.al. [13], using a 

 
** the data was not published, but reproduced with the same MatCalc script from ref. [17] 
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similar model in the study of precipitation kinetics in an Fe-Cu-X ternary alloys, report 
values of 1.11021 m-3s-1 for the nucleation rate of Cu-rich particles at 800K [13]. 

 

3.3 Comparison with the brutal-force MC simulation 

The evaluation of nucleation rate from the brutal-force MC simulations is based 
on the connection between time-dependent nucleation rate Jn,t and number density of 
clusters as [42,44] 

Jn,t  Nn ,tkn
  Nn1,tkn1

  N t ( n)
t

                           (8) 

At a given time t, Nn,t denotes the number density of clusters containing n atoms, 

and Nt (>n) denotes the number density of clusters with more than n atoms. /
nk    is the 

transition frequency for clusters with n atoms to attach (+) / detach (-) a monomer, 
which is assumed to be a time-independent value during nucleation. Jn,t is variant with 
time in the beginning of nucleation. After a short period (incubation time), the steady 
size distribution will be established, i.e. Nn,t /t = 0, such that Jn,t becomes a constant 
value and Nt (>n) starts to linearly increase in time with a rate of Jn,t . The constant Jn,t, 
known as the steady-state nucleation rate, is the nucleation rate evaluated in FFS by 
eq.(7). Here, we denote the steady-state nucleation rate as Js. 

To validate the FFS methods, we perform the brutal-force Monte Carlo simulations 
to analyze the steady-state nucleation rate of Cu clusters in Fe-1%Cu alloy at 500°C. 
The same LCE potential and diffusion coefficients are used as that in FFS calculation, 
but the size of MC sample is increased to 100100100 unit cells (28.528.528.5 nm3) 
to ensure sufficient statistics to evaluate the time derivative of Nt (>n).  The system is 
first equilibrated at 1200°C and then quenched to 500°C. The measurement of Nt (>n) 
begins right after the quenching. The thread value n in for the number density of clusters 
Nt (>n) is set as the critical clusters size as n=15. In fact, the choice of thread value n 
does not affect the value of nucleation rate when steady-state condition is established 
[42]. The values of n in a range of 10~50 atoms give similar estimations for Js in this 
case. 

The brutal-force simulation is repeated for 100 times to gain an accurate estimation 
of Nt (>15) in Fe-1%Cu alloy at 500°C. The averaged Nt (>15) at each time t is displayed 
in Fig. 5(a) along with its Mean Square Root Deviation (MSRD) illustrated as error 
bars. According to Fig.5 (a), the linearly increasing region of Nt (>15) is beginning in a 
short period of time after quenching. The averaged steady-state nucleation rate is 
around 1.681019 m-3s-1 with a deviation of ±0.301019 m-3s-1 indicated by the dotted 
lines. Compared with the nucleation rate from FFS, 1.411019 m-3s-1, the evaluation 
from brutal-force method is slightly higher. This is because brutal-force simulations 
utilize a larger MC sample, which could have more concentration fluctuations in local 
area and result in a slightly higher Js than the one evaluated in a smaller sample in FFS. 
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Fig. 5 (a) the number of clusters with size larger than 15, Nt(>15) ,as a function of time 
evaluated by averaging over 100 brutal-force simulations in Fe-1%Cu alloy at 500°C. 
The error bars illustrate the root mean square error. The steady-state nucleation rate 
evaluated from the linearly increasing region is around 1.681019 m-3s-1 with a 
deviation of ±0.31019 m-3s-1 indicated by the dotted lines. (b) The steady-state 
nucleation rate in Fe-1%Cu alloy at 500°C evaluated by Nt(>15) averaging over 1 to 
100 brutal-force simulations.  

 
To test sensitivity of estimation Js on the number of repeated simulations, we 

calculated Js from Nt(>15) in each individual brutal-force simulation as well as 
averaging over multiple simulations (see Fig. 5(b)). The steady-state nucleation rate 
evaluated by one simulation diverges from 0.91019 m-3s-1 to 2.41019 m-3s-1, and as 
averaging over more repeated simulations, the deviation of J becomes smaller and 
converges around 1.681019 m-3s-1 with 100 repeated simulation. According to Fig. 
5(b), an averaged Nt(>15) from over 20 repeated simulations in a MC sample of 
100100100 unit bcc cell gives a reasonable estimation of nucleation rate in Fe-1%Cu 
alloy at 500°C. Generally, to reduce the stochastic error in evaluation of nucleation rate, 
brutal-force method needs to either enlarge the MC sampling size or increase the 
repeated times of simulations. Compared with the brutal-force method, FFS has much 
higher computation efficiency reaction rate coefficient especially in the cases with high 
transition barriers [45]. In this work, FFS harvest about 600 successful nucleation 
trajectories for calculation of Js in Fe-1%Cu alloy at 500°C, and the total CPU time is 
about 50 hours on a single core. Supposing that one stable post-critical cluster formed 
in brutal-force simulation stands for one successful nucleation trajectory, we need to 
repeat the simulation for 20 times to harvest 600 trajectories, and the corresponding 
CPU time is about 80 hours on a single core.  For a low supersaturated case, such as 
in Fe-1%Cu alloy at 600°C, FFS spends 680 hours on a single core to harvest 600 
successful trajectories, while using brutal-force method, we are not able to observe 
nucleation in a feasible CPU time. Theoretically, the CPU time for brutal-force 
simulation exponentially increases with transition barrier[45], based on the CPU time 
for Fe-1%Cu alloy at 500°C, the brutal-force method is estimated to spend 650000 
hours on a single core to harvest 600 successful nucleation trajectories. 
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3.4 Comparison with CNT 

In Classical Nucleation Theory (CNT), the nucleation rate is expressed as [46][47]  
 

*
*

B

( )exp G nJ NZ
k T


 

  
 

                                      (9) 

where N is the number of potential nucleation sites, Z is the Zeldovich factor, * is the 
atomic attachment rate, n is the number of atoms in the cluster and G(n*) is the free 
energy barrier at the critical cluster size n*. The Zeldovich factor Z is related to the 

curvature of the free energy barrier at the critical size, 
'' *

B

( )
2
G nZ

k T


  . Here, G(n*), 

n* and Z can be directly evaluated from the free energy curve G(n) as obtained in the 
previous sections. In classical theories, the nucleation free energy G(n) is expressed 
as G(n) = Gnucl n +  n2/3, where Gnucl is volume energy contribution, also known 
as the driving force.  is interfacial energy term, given by the product of geometry 
factor A and the interfacial energy , i.e. =A . The nucleation free energy evaluated 
in US fits very well in this classical form, and the corresponding values of Gnucl and 
 obtained from the fitting are listed in Table 2.  

Based on the regular solution model for binary system, the nucleation driving force 
in a supersaturated solid solution can be expressed as [46]   

Gnucl  (1 ye )kBT ln 1 xe

1 x0









 yekBT ln xe

x0









(x0  x e )           (10) 

where xe and ye is the equilibrated concentration of solute element in matrix phase and 
precipitation phase at temperature T, respectively.  is the interaction parameter for a 

binary A-B system given by  zL(AA BB  2AB) / 2, where ij is the bond energy 

and zL is the number of nearest neighbors. x0 is the concentration of solute element in 
matrix during nucleation where a maximum value of Gnucl is provided. In a dilute 
solution—the concentration of solute solution xs << 1, x0 » xs. When xe <<1, eq. (10) 
can be approximately rewritten as 

e
nucl B lnG y k T S                                           (11) 

where S is the supersaturated degree given as S = xs/xe. Here, xs is the initial Cu 
concentration in the alloy and xe

 is the equilibrium Cu solubility at temperature T. Fig.6 
displays the relation of driving force Gnucl and supersaturated degree S for nucleation 
in Fe-1%Cu and Fe-1.5%Cu alloys in 450 to 650 °C. According to Table 1, the 
equilibrium bcc_Cu phase are almost pure Cu at temperature from 450 to 650 °C, i.e. 

ye=1, therefore relation of Gnucl and S suggested by eq.(11) is Gnucl  kBT ln S  

(illustrated by the solid line in Fig. 6). However, this tendency is not obeyed, and a non-
linear relation is displayed between Gnucl and lnS. At high supersaturation, the 
nucleation driving force is much weaker than the one predicted by eq.(11). As lnS 
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decreasing, the discrepancy is getting smaller, and Gnucl starts approaching to the value 
of –kBTlnS. Eq. (11) is derived with the assumption that the clusters formed during 
nucleation inherit the properties of equilibrium precipitation phase. The trend line of 
Gnucl in Fig.6 indicates that the Cu clusters formed during nucleation are all in 
metastable state and energetic unfavorable compared with the equilibrium precipitation 
phase. 
 

Table 2. The driving force Gnucl and interfacial energy term  evaluated by fitting the 
nucleation free energy from US to classical form. S is the supersaturated degree. 
 

 T / °C lnS Gnucl /kBT  
per Atom 

 /kBT  
per Atom2/3 

XCu=1.0% 450 3.23 -2.05 6.91 

 
500 2.52 -1.75 6.45 

 
550 2.07 -1.49 6.19 

 
600 1.56 -1.13 5.74 

XCu=1.5% 500 2.93 -1.91 6.48 

 
550 2.48 -1.68 6.16 

 
600 1.96 -1.48 5.89 

 
650 1.51 -1.15 5.42 

 
 

 
Fig. 6 The nucleation driving force Gnucl as a function of lnS. The solid line illustrates 

the equation Gnucl  yekBT ln S , with the Cu concentration in precipitates ye
 =1. The 

dashed line marks the trend of Gnucl considering that Gnucl will vanish in the case 
without supersaturation.  
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The interfacial energy term  does not show evident connection with the 
supersaturated degree (see Table 2), and at different temperatures, the value of  
slightly changes in a range between 4.9~5.210-4 Jmol-2/3. The geometry factor A is a 
unit transfer as A=a/n2/3, where a is the matrix/precipitate interfacial area and n is the 
number of atoms in the precipitate. Supposing the precipitates are spheres and Vm is the 
effective volume of an atom, the geometry factor is calculated as A=(4)1/3(3Vm)2/3. 
When using this spherical approximation, the interfacial energy  is estimated in a range 
of 0.28~0.30 Jm-2 during Cu nucleation in dilute Fe-Cu alloys at 450~600°C. However, 
this is only a roughly estimation, since the shape of Cu clusters during nucleation is 
much complex than spheres, and the geometry factor needs to be carefully evaluated in 
this case. 

The atomic attachment rate, *, describing the frequency at which monomers are 
attaching to a critical cluster during nucleation [48], is evaluated from FFS trajectories 
by 

* 
P n(t t)  n(t) n(t)  n* 

t
                              (12) 

where P n(t t)  n(t) n(t)  n*   is the mean probability for a cluster at n* to absorb 

one atom at the next time slice in each trajectory, and t is the average time interval 
that the system remains between adjacent slices.  Since the attachment and detachment 
frequencies approximately have the same value on the top of energy barrier, the critical 
attachment rate can be also determined from the mean square displacement of cluster 

size[49] in a short time t, as *  1
2t

n(t t) n(t) 2

n( t )n*
. 

In classical theories, a continuums-mechanical expression has been suggested by 
Svoboda et al. [16] for spherical precipitates in multi-component system as 

*  4 (r*)2

a4W
(cki  c0i )2

c0i D0ii1

n

å









1

                                 (13) 

where r* is the radius of the critical cluster,  is the nearest-neighbor atomic distance, 

W is the molar volume, cki are the concentrations of element i in the precipitate with 

index k, c0i are the concentrations in the matrix, and D0i is the tracer diffusivity of 

element i in the matrix.  
In Fig. 7, the values of * from FFS trajectories (Eq.(12)) are compared to the values 

obtained from CNT (Eq.(13)). Evidently, good agreement is achieved. In FFS, Cu 
nuclei are observed to change their size mainly by attachment or detachment of 
monomers in dilute alloys, while the contribution from small clusters (e.g. dimers or 
triplets) is rarely detected during nucleation. This phenomenon is in agreement with the 
classical description for atomic attachment expressed by eq. (13). However, small 
systematic deviations are observed particularly at lower temperatures. This effect can 

a
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probably be attributed to the non-spherical shape of very small critical clusters, which 
we observe in the analysis of the critical nucleus shape. Fig. 8 shows some snapshots 
of small clusters with less than 30 atoms observed in FFS. In order to characterize the 
geometry of nuclei, the clusters are fitted to ideal ellipsoids and an anisotropy factor  
is defined as the ratio between the longest and shortest radius of the ellipsoid ( =1 for 
a sphere). In this work, the critical clusters in the size between 10 ~ 30 atoms are 
commonly observed in a non-spherical shape with average anisotropy factors ranging 
from 2.0 to 3.5. 

 
Fig. 7 Atomic attachment rate, *, evaluated according to Svoboda et al. [16] compared 
with the prediction of Eq.(9). 

 

 
 

Fig. 8 Snapshots of small clusters with number of atoms n=10, 16, 21 and 26, and the 
best-fitted ellipsoid. Here,  denotes the anisotropy factor of the cluster, which is 
calculated as the ratio of the longest to the shortest radius of the ellipsoid. 

 
Table 3 summarizes the values of CNT-type parameters as evaluated from the US 

free energy curve and the FFS nucleation trajectories. The CNT nucleation rate 
calculated using eq. (9) is plotted on Fig. 4 to compare with FFS predictions. It is not 

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

142 
 

surprising that the two methods give almost the same prediction on nucleation rates in 
this work, since the free energy used in eq. (9) is a direct reflection of the equilibrium 
properties of the atomic system, and the kinetics of cluster growth is also quite 
“classical” in dilute Fe-Cu alloys based on the above discussion. 

 
Table 3. Number n*of atoms in the critical cluster, Zeldovich factor Z, nucleation barrier 
G(n*)/kBT and atomic attachment rate * as evaluated from FFS trajectories for alloys 
with Cu contents of 1 at-% and 1.5 at-%. The nucleation rates J are calculated according 
to CNT (Eq. (9)). 
 

 T / °C n* Z G(n*)/kBT * /s-1 J /m-3s-1 

XCu=1.0% 450 12 0.10 12.07 6.32·10-5 3.06·1018 

 
500 15 0.08 13.13 1.07·10-3 1.44·1019 

 
550 22 0.06 16.04 4.24·10-2 2.40·1019 

 
600 38 0.06 21.91 0.56 8.39·1017 

XCu=1.5% 500 11 0.09 10.94 2.01·10-3 2.87·1020 

 
550 15 0.08 12.33 4.81·10-2 1.42·1021 

 
600 20 0.07 13.78 0.59 3.49·1021 

 
650 30 0.05 17.90 6.07 3.95·1020 

 

3.4 Concentration profiles across precipitate/matrix interface 

Finally, in this section, the concentration profiles across the precipitate/matrix 
interfaces are analyzed for clusters of critical size at different temperatures. In the 
evaluation, the center atom is defined as the one atom residing closest to the geometric 
center of the cluster, i.e. the center of fitted ellipsoid. The concentration profile is then 
calculated from the center up to the 20th neighbor shell as illustrated in Fig. 9(a). The 

Cu concentration in the ith shell is determined as , where  and 

are the number of Cu atoms and total number of atoms in the ith shell, respectively.   
 

c(i )  nCu
(i ) / ntot

(i ) nCu
(i ) ntot

(i )
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Fig. 9 (a) Illustration of the procedure for finding the geometric center of an irregular 
cluster and of the evaluation of the composition profile from the center atom to neighbor 
shells; (b) Concentration profile of critical clusters in Fe-1%Cu alloy at 450°C, 500°C, 
550°C and 600 °C, where the corresponding critical sizes are 12, 15, 22 and 38 atoms, 
respectively. 

 

The concentration profiles, averaged over 500 configurations of critical clusters with 
the same size, are shown in Fig. 9(b). In the Fe-1%Cu alloys, the critical nucleus at 
500°C contains approximately 10% Fe in the center, with the Fe amount significantly 
increasing to approximately 50% in the first neighbor shell. At a temperature of 600°C, 
the Cu concentration increases to almost 100% in the center of the critical clusters. A 
similar observation of for the concentration profile of critical clusters is reported by 
Nagano and Enomoto [14] based on a study of cluster growth with the Cahn-Hilliard 
theory for dilute Fe-Cu alloys. According to their calculations, the Cu content at the 
center of critical clusters is around 85% at 400°C in Fe_1.5% alloy, and almost 100% 
when the temperature is increased to 550°C. The average concentration of Cu clusters 
was evaluated by Kozeschnik and Stechauner [17] based on the minimum G(n*) 
concept [15]. In their work, the critical clusters in Fe-1%Cu is estimated to contain 70% 
Cu at 500°C and gradually increase to almost 100% at 650°C.   

In the present analysis, we do not further speculate on absolute numbers of the 
chemical composition of critical clusters because the actual value of this quantity is 
very sensitive to the choice of criterion defining the matrix/precipitate interface. Still, 
the concentration profiles of critical clusters indicate that the clusters formed first in 
dilute alloys are not always pure Cu clusters, and a substantial amount of Fe atoms can 
reside within Cu clusters at low temperature. At 600°C, the critical clusters maintain a 
high Cu content above 90% from the center up to the 2nd neighbor shell. At a 
temperature of 450°C, a large amount of Fe infiltrates into the core of the clusters and 
significantly reduces the Cu content around the center of the clusters. For small clusters 
with less than 20 atoms, no strict “core” region can be defined any more, since these 
small clusters are composed of only 2-3 layers of solute atoms, and almost every atom 
in the clusters is partially “exposed” to the matrix. 
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Fig. 10 Concentration profiles of clusters in a 1.5%Cu alloy at 500°C (a) and in a 1%Cu 
alloy at 600°C (b) when aging from the critical state for different times. 

 

To analyze the concentration profiles of clusters during super-critical growth, for 
each temperature and chemical composition of the alloys, a group of configurations at 
“critical states”, i.e. the states with the largest cluster of critical size, are taken from the 
nucleation trajectories in FFS and a brute-force simulation is performed for these 
configurations until the system forms a large stable cluster or decays back to the random 
state. Those simulations, which successfully form a stable supercritical cluster are 
stored and used to calculate the concentration profile of the largest clusters at different 
times. Figure 10 summarizes the evolution of concentration profiles in the clusters in a 
weakly supersaturated case (in Fe-1%Cu at 600°C) and strongly supersaturated case (in 
Fe-1.5%Cu at 500°C). At high temperature, the size of Cu clusters steadily increases 
without significant change in the chemical environment around it (Fig. 10 (b)). At low 
temperature, the clusters first tend to increase the Cu content to almost 100% until they 
finally start growing (Fig. 10(a)). This Cu-enrichment of clusters during nucleation at 
lower temperatures was recently confirmed by the Differential Scanning Calorimetry 
(DSC) experiment of 15-5 PH steel in continuous aging at 300 to 500°C [50][51]. 
However, according to Fig.10 (a), the enrichment of Cu content in clusters happens very 
fast. The clusters with over 20% Fe are mainly found to be in small size with radius less 
than 0.5 nm, and when growing over than 0.8nm, they are almost pure Cu clusters. This 
observation is inconsistent with the recent APT results [4][5][6], where 50%~70% Fe 
are found in large precipitate with radius 1~1.5 nm.  

4. Conclusion 

In the present work, we introduce a methodology to study the equilibrium and kinetic 
properties of early-stage precipitation in Fe-Cu system by implementing statistical 
sampling techniques to Monte Carlo simulations. The nucleation free energy as a 
function of cluster size is first evaluated by Umbrella Sampling for two concentrations 
at different temperatures. With Forward Flux Sampling, a large number of nucleation 

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

145 
 

trajectories are generated and used to analyze the form, which the nucleation kinetics 
of Cu clusters. These simulation results are compared to predictions from Classical 
Nucleation Theory and good agreement is observed. The chemical composition of Cu 
nuclei is also investigated, showing that the first formed Cu clusters in dilute Fe-Cu 
alloys aged at low temperatures can contain a substantial amount of Fe atoms. During 
aging, the clusters first enrich in Cu content from inside the precipitate, and only 
afterwards growth of the particles commences. In contrast, when aged at a higher 
temperature, the clusters formed are almost pure Cu particles from the beginning and 
remain so throughout the subsequent precipitate growth stages. Analysis of the shape 
of critical clusters shows that the clusters become increasingly non-spherical with 
decreasing cluster size and increasing supersaturation. 
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Abstract 

We propose a Reweighted Partial Path (RPP) method to compute free energy profiles 
for diffusive processes in single Transition Interface Sampling (TIS) or Forward Flux 
Sampling (FFS) simulations. The method employs a partial path reweighting strategy, 
based on the memory loss assumption for diffusive systems, to derive the equilibrium 
distribution of states along a chosen order parameter from TIS or FFS trajectories. No 
additional calculations such as reverse TIS or Umbrella Sampling are required. The 
application of the RPP method is demonstrated by calculating the nucleation free energy 
of early-stage Cu precipitates in a dilute Fe-Cu alloy. 

1.Introduction 

Activated processes dominated by rare events, including chemical reactions, crystal 
nucleation and biochemical switching, play important roles in many areas of science 
and technology. In principle, molecular simulation techniques such as Monte Carlo and 
molecular dynamics simulations can be used to study the kinetics and mechanism of 
these processes. Due to the presence of high activation barriers, however, the waiting 
times for activated events can be many orders of magnitude longer than the time 
required for the transition event itself. This separation of time scale makes it impractical 
to study activate processes with sufficient statistics using conventional brute-force 
simulation on current computers.  

Rare event problems can be tackled with trajectory-based sampling techniques that 
focus on the segments of the time evolution where the reaction of interest happens. For 
instance, in the transition path sampling (TPS) method [1][2][3][4][5] rare transition 
pathways are generated by carrying out a Monte Carlo simulation in trajectory space 
while maintaining reactivity at each instant of the simulation. Based on the TPS 
framework, van Erp et al. [6] introduced the Transition Interface Sampling (TIS) 
method for the efficient calculation of reaction rate constants, in which one considers 
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ensembles of trajectories crossing a series of interfaces between reactants and products. 
Following similar ideas, Allen et al. [7,8] proposed the Forward Flux Sampling (FFS) 
algorithm, which is also applicable to non-equilibrium systems where detailed balance 
is violated. In contrast to TIS, in FFS pathways are generated in a ratchet-like manner 
only in forward direction, which can slow down the sampling of trajectory space.  

The main purpose of trajectory-based simulation methods is to reveal the transition 
mechanism and determine rate constant. To analyze equilibrium properties such as the 
reaction free energy, usually additional calculations are necessary. This can be done 
either employing a biased sampling technique such as Umbrella Sampling (US) [13] or 
performing an additional path simulation for the reverse transition [14,15]. Under 
certain circumstances, however, also free energies can be extracted directly from path 
sampling simulations. In particular, in the Partial-Path Transition Interface Sampling 
(PPTIS) method introduced by Moroni et al. [9,10] for diffusive processes, free energy 
profiles can be easily determined together with the rate constant without requiring 
additional calculations. The basic concept of PPTIS is very similar to other TIS methods, 
except that PPTIS utilizes a memory-loss assumption to extrapolate the long-range 
effective crossing flux from local partial path ensembles. The memory-loss assumption 
acts as a medium to connect the properties of long-range transition paths with the partial 
paths on every interface. Bearing this idea in mind, once a system obeys the memory-
loss assumption, it is theoretically possible to use transition paths, sampled by a 
standard TIS algorithm (without sampling the reverse transition), to reconstruct the 
partial path ensembles and hence to evaluate free energy profiles. However, due to the 
unique sampling strategy of PPTIS, its free energy evaluation algorithm, called the 
loop-boundary method, cannot be directly implemented within other TIS approaches. 
In the present work, we propose a Reweighted Partial Path (RPP) method that addresses 
this problem and makes it possible to determine free energy profiles using the trajectory 
information from a single TIS calculation. Like PPTIS, the reweighting strategy of RPP 
assumes that the dynamics loses memory quickly enough such that crossings of 
subsequent interfaces are uncorrelated with each other. The RPP method can also be 
applied to calculate free energy profiles from trajectories sampled with FFS. 

The remainder of this article is organized as follows. In section 2.1 we first introduce 
the memory loss assumption of PPTIS. Then, in section 2.2, we explain the theory 
behind the Reweighted Partial Path method. We prove that, under the memory loss 
assumption, the equilibrium histogram of the order parameter can be derived from 
trajectories sampled with TIS or FFS for a single transition. In section 3, we illustrate 
the RPP method in combination with FFS by determining the nucleation free energy of 
Cu clusters in dilute bcc Fe. In this example, the memory loss assumption is validated 
and the RPP prediction is in a good agreement with the free energy evaluated with 
Umbrella Sampling. Finally, a brief summary of the RPP method is given in section 4. 
We also discuss the difference between the PPTIS and the RPP method and review 
some technical details that are useful for implementing the RPP method.   

2.Theory  
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2.1 Memory loss assumption in PPTIS 
Consider a reversible transition between two stable phases, A and B, in a high 

dimensional system specified by the vector x in phase space. Regions A and B are 
defined in terms of an order parameter (x), such that the system is in state A if (x) < 

A, and in state B if (x) > B. A trajectory or path, x {x0 ,  ,x t ,  ,x}, consists of 

a discrete sequence of phase points or snapshots xt indexed by time t, where  is the 
total duration or length of the path. The probability of observing a particular trajectory 

x is given by , where r(x0) is the equilibrium probability 

density of x0, for instance in the canonical ensemble, and p(xt xt+t) is the Markovian 

probability of transitioning from xt to xt+t in the time interval t. For an ergodic system, 

the equilibrium distribution is also preserved in trajectory space such that the 
equilibrium average of an observable g(x) can be calculated as an average over 
trajectories, 

.                              (1) 

In the derivations that follow we will also make use of the weighted average for an 

observable g(x) and a weight function w(x), defined as g(x)
w


g(x)w(x)
w(x)

.  

In TIS [6], the region between states A and B is partitioned by a series of M+1 non-
overlapping interfaces defined by corresponding values {i}i=0…M of the order 
parameter. The interfaces are selected such that the first and the last interface coincide 
with the boundaries of region A and B, respectively, 0=A and M=B. Trajectories 
are categorized into ensembles based on the interfaces they cross. To describe the 
crossing order of a trajectory through two interfaces i and j (i  j), the two-fold 
characteristic functions are introduced as: 

hi , j
b (x)  1    if  ti

b(x) < t j
b (x)

0    otherwise





hi , j
f (x)  1    if  ti

f (x) < t j
f (x)

0    otherwise







                                  (2) 

where ti
b (x)  and ti

f (x)  are the time durations tracing backward and forward, 

respectively, from phase point x until the trajectory crosses interface i for the first time. 

Hence, hi , j
b (x) 1 means that, before visiting x, the trajectory first crossed j and then i 

without having revisited j. On the other hand, hi , j
f (x) 1 indicates that the trajectory 

presently visits x and will continue to reach i before j. Note that these characteristic 
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functions depend both on the phase space point x as well as on the particular trajectory 
going through x. When the system is ergodic, both interfaces i and j will be crossed in 

finite time, hence hi , j
b (x)h j ,i

b (x)= hi , j
f (x)h j ,i

f (x)= 1. Next, we use 0,( ) ( )b
Mhx xAh  

and  ,0( ) ( )b
Mhx xBh  to define the TIS overall states A and B. According to this 

definition, a point x is assigned to overall state A if region A is  reached before B 

when the trajectory through x is followed backwards in time. Hence,  overall states A 

and B consist of points x located on trajectories coming from A and B, respectively.  

Based on the characteristic function, the general crossing function is defined as 

yi , j (x t )  h j ,i
b (xt )q(i  (xt ))q((x tt )i )                      (3) 

where q is the Heaviside step-function and t is the time step. For the phase point xt 

visited by a trajectory at time t, yi , j (x t )  will equal 1 only if the trajectory comes 

directly from j and immediately crosses i in the next time step of length t. For 
convenience, an effective crossing function is defined as  

Yi , j
l ,m (x t )  h j ,i

b (xt )q (i (xt ))q ((x tt )i )hl ,m
f (x t )

             yi , j (x t )hl ,m
f (x t )

                (4) 

When Yi , j
l ,m(x t )=1, the trajectory, which crosses i at xt directly from j, will visit l earlier 

than m, otherwise Yi , j
m,l (x t )=0. Clearly, Yi , j

m,l (x t )Yi , j
l ,m (x t ) yi , j (x t ) . 

For a system evolving diffusively with high-friction character, it is reasonable to 
assume that the memory of trajectories is lost over a certain time and, hence, some 
distance in phase space along the -axis. If the transition interfaces, {i}i=1…M-1, 
between states A and B are properly set such that the memory of trajectories only 
persists between adjacent interfaces, the average of an observable g(xt) when the 
trajectories cross interface i coming from a faraway interface approximately equals the 
average over the trajectories coming from the adjacent interface [9],   

g(x t ) yi ,i±q
» g(x t ) yi,i±1

                                    (5)
 

where q is a given integer. As a matter of fact, the exact expression of memory loss 

defined in PPTIS[9] is g(x t ) fi,i±q
» g(x t ) fi,i±1

, where fi , j (x t )  lim
t0

1
t
yi , j (x t )  

equals the velocity of crossing interface i at time t in a trajectory coming directly from 
j before recrossing i. In practice, t is given as a small but fixed time step in simulation 
instead of carrying out the limit t  0 , and hence the definition of memory loss in 
PPTIS is equivalent to that expressed by eq. (5). 
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Since the memory loss should be also obeyed for paths coming from the same stable 
state, eq. (5) can be extended as  

g(xt ) yi,A
» g(x t ) yi ,i1|A

g(xt ) yi,B
» g(xt ) yi ,i1|B









                                   (6) 

where 
,( ) , ( ) A(B)

|A(B)
( ) , ( ) , A(B)

,

( )( ) ( ) ( )
( )

( ) ( )
t i i qt i i q

t
i i q i i q

i i q

gg
g y

yy

y y
±±

± ±
±

 
xx x x

x
x x

A B A B

A B A B

h h

h h
. Here, 

...
A(B)

is an averaging over the paths coming from one of the stable regions A(B) and 

ending in either A or B. Since g(x t ) yi ,i±1
A

i,i±1 g(x t ) yi,i±1|A
B

i,i±1 g(x t ) yi,i±1|B
, 

where A(B) ( ) , ,
, 1 ( ) i i q i i q

i i y y± ±
±  xA Bh  and A

i ,i±1 B
i ,i±1 1, combined with eqs. (5) 

and (6), one can easily get the relation   
g(x t ) yi ,i±1

» g(xt ) yi ,i±1|A
» g(x t ) yi ,i±1|B

                       (7) 

Equation (7) indicates that average properties observed in trajectories, which crossed i 

from i±1 in paths coming from A, are approximately equal to the averages observed 

in paths coming from B.  

The crossing probability P(l
m

j
i ) , which describes a path having crossed interface i 

from j and which will continue to reach interface m before l, is expressed using the 
crossing functions as 

P(l
m

j
i ) 

Yi , j
m,l

yi , j


yi , jhl ,m

f

yi , j

 hm,l
f

yi, j
                           (8). 

In PPTIS [9], the one-interface crossing probabilities are defined as pi
±  P(i1

i1
i1
i ) , 

pi
  P(i1

i1
i1
i ) , 1

1 1( )i i
i i iP 

 p  and pi


 P(i1

i1
i1
i ) . According to the memory loss 

assumption, hm,l
f (x t ) yi,i±1

» hm,l
f (x t ) yi,i±1|A

» hm,l
f (x t ) yi,i±1|B

. Hence, the one-

interface crossing probability can be rewritten as 

A(B) A(B)

, 1 , 1 , 1 , 1A(B) A(B)

A(B) A(B)

, 1 , 1 , 1 , 1A(B) A(B)

        

        

i ii i
i i

i i i i i i i i

ii ii
i i

i i i i i i i i

y y y y

y y y y

± ± 
± 

   

   

 



Y YY Y
 »  »

YY YY
 »  »




p p

p p

             (9) 
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where Yi
Q  with , , ,Q   ±   is a short notation for Yi

±  Yi ,i1
i1,i1 , 

Yi
  Yi ,i1

i1,i1 , Yi
  Yi ,i1

i1,i1  and 1, 1
, 1

i i
i i i

 
Y  Y . 

2.2 Reweighted Partial Path Method 

2.2.1 Reweighted effective crossing  
In unbiased ensembles, the transition paths originate from basin A or B, and end in 

A or B after visiting the transition region. Supposing a trajectory reaches interface i 
from i-1, it will continue to cross the adjacent interfaces (i+1 or i-1) until it leaves the 
transition region and reaches A or B. Considering the continuity of trajectories, the 

average crossing of i from i-1, yi ,i1  
(see Fig.1(a)), equals the average effective 

crossing of i-1 from both i and i-2, e.g. yi ,i1  Yi1
±  Yi1

 . Similarly, the effective 

crossing of interface i-1 from i also obeys the continuity relation as illustrated in Fig.1(b) 

so that 1,i i i iy 
  Y  Y . Bearing in mind that 1, 1 1i i i iy   


 Y  Y  and 

yi ,i1  Yi
±  Yi

 , the continuity relation can be written as  

1 1

1 1

i i i i

i i i i

± ±
 


 




 Y  Y  Y  Y

Y  Y  Y  Y

 

 
                               (10). 

If we denote 1 1i i i iJ ± ±
  Y  Y  Y  Y  , according to eq. (9), eq. (10) can be 

rewritten as 

1
1

1 0i
i i

i i i

J
±

 


Y  Y   


p
p p p

                               (11)            

 

 
Fig. 1 Illustration of the continuity relation for (a) the effective crossing of interface i 
from i-1, and (b) the effective crossing of interface i-1 from i. 
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The continuity relation should also be obeyed by the trajectories exclusively coming 
from state A(B) and ending in either A or B, as 

1 A(B)A(B) A(B)
1

1 0i
i i

i i i

J
±

 


Y  Y   


p
p p p

, with A(B) A(B) A(B)i iJ ± Y  Y . Now, 

let’s only consider the trajectories coming from state A and ending in either A or B. 

According to the boundary conditions, 1 A
0M Y  , the relation between the 

effective crossing Yi
Q

A
 and Yi

Q  is derived by solving eq. (11) for every 

interface (see Appendix B),  

11
AAA

1 1
AAA

     and    

ii
i ii i

i i i
i i i i

i

UU J

U U J

± ±


  

±

 
 

 Y   Y Y   Y 
 
 
 Y   Y Y   Y 
  

 

AA

A A

hh

h h
p
p

     

(12) 

where U i  P(M
0

0
i ) 1 P(0

M
0
i )  and JA  Y0

±

A
1U1  . Ui denotes the decaying 

probability from interface i in the transition from A to B, which corresponds to the 
probability that a trajectory, coming from A, returns to A before reaching B after it 
crossed interface i. Equation (12) indicates that, under the memory loss assumption, the 

average effective crossing of interface i from adjacent interfaces,
 
Yi

Q , is connected 

with weighted average in the paths coming from A, Yi
Q

A
, by the decaying 

probability in transition A to B. Similar relations between Yi
Q

B
and Yi

Q  can also 

be derived with boundary conditions Y1
±

B
 0 , by solving the equation (11) for 

every interface.  

2.2.2 Equilibrium histogram of  from reweighted partial paths 
When a trajectory effectively crossed the interface i from i-1 or i+1, a partial path is 

recognized as the continuous path segment remaining between i-1 and i+1. For example, 
in Fig. 2(b) when the trajectory crosses i-1 at point b coming from i-2 and leaves the 
interface region by crossing i at point e, it is considered as an effective crossing of i-1 

represented as Yi1
± (b) 1. The path segment from ae is recognized as a partial path 

on i-1 with the crossing type denoted by ± . As illustrated in Fig. 2(a), there are four 

types of partial paths on interface i, denoted by , , ,Q   ±  , with each one 

corresponding to an effective crossing of interface i. In unbiased ensembles, partial 
paths can be generated by breaking up the trajectories into path segments based on the 
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effective crossing of every interface. Accordingly, one partial path is coupled with one 
effective crossing, hence the unbiased number density of partial paths on interface i 

with type Q is equal to the average effective crossing Yi
Q  in trajectory space. For 

the partial paths generated from trajectories exclusively coming from A (B), the number 
density of partial paths on i equals Yi

Q

A(B)
.  

 
Fig. 2 (a) Four types of partial paths corresponding to four effective crossings at 
interface i; (b) A trajectory effectively crosses interface i-1 and then i at points b and e, 
respectively. According to the definition, the partial path generated on i-1 is the segment 
ae and the partial path generated on i is dh; (c) A partial path on interface i is 
divided into three parts: two boundary segments (solid lines) and a loop segment 
(dashed line). (d) The boundary path segment between i-1 and i is shared by partial 
paths on interface i-1 and i. To avoid double counting the histogram of , where (i-

1, i), the phase points falling on  are treated as being visited by the partial paths on 
interface i-1 and the loop of partial paths on i. This is equivalent to using the loop of 
partial paths in i-1 and the partial paths on i to calculate the histogram of .  

 
Similar to the loop-boundary method [10] in PPTIS, the partial paths on i are divided 

into three parts: two boundary segments and a loop part (illustrated in Fig. 2(c)). The 
loop part is defined as the segment between the first crossing point and the last crossing 
point of the middle interface marked by the dashed line in Fig. 2(c). The boundary parts 
are defined as the segments from the path boundary point to the last and first crossing 
point of interface i, marked by the solid lines in Fig. 2(c). When a trajectory 
consecutively crossed two adjacent interfaces, there is an overlapping part between the 
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partial paths generated by the trajectory on the two interfaces. For instance, the path 
segment de is shared by partial paths ae and dh, when the trajectory crossed 
interface i-1 and i in a row. In the meantime, de is a boundary segment between 
interface i-1 and i for partial paths ae and dh. Therefore, to avoid double counting, 
the histogram of phase points from a trajectory in a small bin [-, +] with (i-

1, i) (see Fig. 2(d)) can be calculated by the histogram from partial paths on interface 
i-1 combined with the histogram of  in the loop part of partial paths on interface i as 

  1 1
, , ,

( ) ( ) ( )t i i i iP L    



Q Q Q Q
 

Q± 

  Y  Yåx


                   

(13) 

where Pi1
Q () is the average histogram of  in the partial path of type Q on interface 

i-1, and  Li
Q ()  is the average histogram of  from the loop on the partial path of type 

Q on interface i. This is equivalent to calculating the histogram of  from the partial 
paths on i and the loop of partial paths on i-1, as 

  1 1
, , ,

( ) ( ) ( )t i i i iL P    



Q Q Q Q
 

Q± 

  Y  Yåx


. 

When a trajectory effectively crossed interface i at phase point xt, the histogram of 

 in the partial path is calculated asri
Q ()  dt '   (xt ' ) ttQ

b

ttQ
f

 , where tQ
f  and 

tQ
b are the times when the trajectory first crosses interface i+1 (i-1) forward and 

backward from xt, respectively. For Q  in ± ,  ,  and 
 , tQ

f ,tQ
b  is taken as 

ti1
f ,ti1

b  , ti1
f ,ti1

b  , ti1
f ,ti1

b  and ti1
f ,ti1

b   , respectively. Accordingly, the 

average density of  in the partial path Q  having crossed i is defined as 

Pi
Q()  ri

Q()
Yi

Q
. Similarly, the density of  in the loop part (illustrated as dashed 

line in Fig.2 (c)) of partial path having crossed i can be also calculated as 

Li
Q()  li

Q ()
Yi

Q
, with li

Q()  dt '   (x t ' ) ttQ
b

ttQ
f

 l i (x t ') . Here, li(xt’) is a 

characteristic function [10], where li(xt’)=1 if xt’ is on the loop of the partial path, 

otherwise li(xt’)=0.  According to the memory loss assumption, ri
Q

Yi
Q
» ri

Q

Yi
Q|A(B)  

and li
Q

Yi
Q
» li

Q

Yi
Q|A(B)

, therefore 
 

  1A A |A A |A
, , ,

1 1A A
, , ,

( )

                          ( ) ( )

i i
t i i i i

i i i i

l

P L

   r

 

Q Q






Q Q Q Q
 Y Y

Q± 

Q Q Q Q
 

Q± 

  Y  Y

» Y  Y

å

å

x




        (14). 

Combining eqs. (12), (13) and (14), the equilibrium histogram of  is written as 
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 
  AA

( ) ( )
( ) t i

t
i

C J
U

   
  

 
  

x
x Ah                (15) 

where 1
1 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )i i i
i i i i i i i i i i

i i

C P P L L L L      
 

±  ± ±   
 ±




 

     


p p p
p p p

p p
. 

In eq. (15),  (x t )  
A

 is the unbiased histogram of  in the ensemble with paths 

coming from A and ending either in A or B. This path ensemble can be obtained in a 
single TIS calculation for the transition AB by assigning an unbiased path weight 

 to each TIS trajectory, x , using a reweighting strategy, e.g. the reweighted 

path ensemble method [14]. The partial paths on each interface can be generated by 
breaking up TIS trajectories based on the type of effective crossing, and the average of 

effective crossings are determined as , where ni
Q(x )  

describes how many times the trajectory x  effectively crosses interface i with type Q. 

With the memory loss assumption, pi
Q , Pi

Q  and Li
Q can also be evaluated in a single 

TIS calculation for transition AB, and hence one can obtain the equilibrium 

histogram of , i.e.  (x t )  , by eq.(15).  

In PPTIS, the partial paths are sampled from every transition interface in an unbiased 
manner — the trajectories are shot from the phase points on interface i forward and 

backward until they hit the adjacent interface i-1 or i+1. The averaged histogram Pi
Q  

and Li
Q  can be directly measured from the partial path gathered on interface i. When 

calculating the equilibrium histogram of ,  (x t )  , using the loop-boundary 

method, the average weights of partial paths on adjacent interfaces, e.g. Yi1
Q  and 

Yi
Q  in eq. (13), are reweighted according to the histogram of the commonly shared 

boundary path segment between interfaces. Therefore, in PPTIS, there is no need to 

derive the relation of Yi
Q  and Yi

Q

A(B)
 in the calculation of equilibrium 

histogram of . However, due to the unique sampling strategy in PPTIS, this loop-
boundary method cannot be directly used in a general TIS calculation.  For a TIS 

single transition, i.e. AB or BA, one can evaluate the average histogram Pi
Q  and 

Li
Q  from partial paths generated by breaking up TIS trajectories, but the weights (or 
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the effective crossing) of partial paths on each interface are Yi
Q

A(B)
 instead of 

Yi
Q . To evaluate the equilibrium histogram of , in RPP method, we derive the 

relation of Yi
Q  and Yi

Q

A(B)
(see eq.(12)) and implement the loop-boundary 

method in the general TIS calculation for a single transition (see eq. (15)).  
To the transitions known to be diffusive, both PPTIS and TIS+RPP can be used to 

simultaneously evaluate the transition rate constant and energy profile. As to a 
transition, which is not certain to be diffusive, one can first do TIS to calculate the 
reaction rate constant, and then use RPP to reconstruct the energy profile and validate 
the memory loss assumption afterwards (see example in section 3.3). If the validation 
is failed, i.e. RPP result is not reliable, one can still do a reverse TIS or Umbrella 
Sampling simulation to re-evaluate the energy profile. Since RPP does not require 
additional sampling, the computational cost for the energy profile is negligible.  

Now let us consider an extreme case where the phase space is projected on a discrete 
order parameter i, each i representing a state. The transition consists of the system’s 
consecutive jumps from one state to another adjacent state. If complete memory loss is 
assumed, i.e. the frequency of jumping from state i to i±1 only depends on state i, then 

i i
p p  and pi



 p i

± . Still considering {i} as transition interfaces, there is only one 

phase point xt, as (xt)= i, on each partial path on interface i, i.e. Pi
Q(i )  ((x t ),i ) . 

This phase point can be categorized to either boundary segment or loop segment of the 
partial path, while in both cases Ci(i) equals to 0. Therefore, in the complete memory 

loss assumption, eq. (15) can be rewritten as   (x t )i    (x t )i 
A

U i . 

A similar model for the complete memory loss assumption can be found in the work of 
White [16] and Kashchiev [17] for homogeneous nucleation through random 
attachment and detachment of monomers. Here, the same conclusion is reached, namely 
that the equilibrium number density of clusters of size i equals its stationary number 
density in a nucleation reaction divided by the decaying probability of clusters of size i 
dissolving to monomers instead of growing into a post-critical cluster. 

3. Simulation Results  

3.1 Model for Cu precipitate nucleation in a dilute Fe-Cu alloy 
FFS is a variant of the TIS method, which inherits the basic theory from TIS but 

employs a ratchet-like manner to generate trajectories through transition interfaces. In 
principle, the trajectories in FFS are TIS trajectories, which originate from one of the 
basins (A or B), cross interface i, and return to A or B. The evaluation of the unbiased 

path weight  is simple and straightforward [15] and our reweighting 

procedure can be easily applied to FFS-trajectories. As an example, we demonstrate 
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how to use the our RPP method to calculate the rate constant and free energy profile for 
homogeneous nucleation of copper clusters in a dilute Fe-Cu alloy from FFS-
trajectories.  

 The nucleation simulation is carried out using a Metropolis Monte Carlo algorithm 
on a rigid bcc lattice of 54000 atoms of a Fe-1%Cu alloy at 600C. A pairwise Local 
Chemical Environment (LCE) potential [18] is used to describe the system’s energy as

E  nXY
(i ) XY

(i )

X,Y
å

i1

2

å , where nXY
(i )  and XY

(i )  are the number of XY bonds and the 

corresponding bond energy in the 𝑖-th nearest neighbor shell (X and Y denote the 

atomic species). XY
(i )  cXXY

X(i )  cYXY
Y( i) , where cX  and cY  are the atomic fractions 

of X and Y in the local environment and XY
X(i )  (XY

Y(i ) ) is the XY bond energy in a pure 

X and Y environment, respectively. The summation runs over all the possible 
combinations of bonds in X and Y, representing the atomic species Cu and Fe, as well 
as vacancy. Here, one vacancy is placed on a substitutional site to trigger the atomic 
diffusion by exchanging the vacancy with a nearest neighbor atom.  

According to the Metropolis algorithm, the acceptance probability for the vacancy 

exchange is given by P  min  1, exp E / kBT 



 , where E represents the total 

energy difference between the initial state and the state after the exchange event. The 
Monte Carlo step (MCS) is coupled with real time by defining the average time 

increment from one vacancy jump [18] as t 
a2xVa,MC

DX

 k , where a is the nearest 

neighbor distance in bcc-Fe (2.468 Å), DX is the macroscopic diffusion coefficient of 
the jumping atom X in bcc-Fe, xVa,MC is the vacancy site fraction in the simulation box 
and k is a correction for the diffusion correlation effect in the vacancy exchange 
mechanism (0.727 for bcc lattice [19]).  

3.2 Computation of the rate constant with FFS 
To study the kinetics of the nucleation, we use the Forward Flux Sampling (FFS) 

[7][8] method to generate nucleation trajectories and evaluate the reaction rate constant 
of this event. The order parameter, , is chosen as the size of the largest clusters, and 
the cluster size is defined as the number of atoms contained in the cluster. The system 
is in a metastable random state when the size of the largest cluster is smaller than 5 
atoms, i.e. 0 = 5. And the stable post-critical cluster is considered to be formed when 
the largest cluster grows over 65 atoms, thus M = 65. Between the phase boundaries, 
we define 13 interfaces in the transition region for FFS, therefore M=14. Except for 2 
= 7, i = 5(i-1) for i = 3, …, 14. For convenience, the boundary of the random state is 
set to overlap with the first interface as 1 = 0 =5.  

The sampling procedure follows the standard FFS strategy described in Ref. [8], but 
the trajectories are stored in a TIS manner including the information after firing off the 
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trajectory from a phase point on the interface as well as the history inherited by this 

phase point. The crossing probability of interface i is calculated as P(0
i1

0
i )  N i M i , 

where Mi is the total number of trajectories fired off from interface i, and Ni is the 
number of trajectories which have reached interface i+1 before returning to region A. 

The reaction rate constant kAB is calculated as kAB A P(0
i1

0
i )

i1

M1

 , where A is the 

initial flux of the system leaving region A and entering the transition region from the 
first interface. In the FFS calculation for Cu nucleation, the probability 

P(0
B

0
1 )  P(0

i1
0
i )

i1

M1

 is estimated to be 6.4410-7, and the initial flux A is calculated to 

be 0.53s-1, yielding a rate constant for Cu nucleation of 3.4210-7 s-1. 

3.3 Computation of the free energy profile with the RPP method 
 In the transition of AB, FFS generates trajectories starting from the boundary of 

basin A in a ratchet-like manner through interfaces. When a trajectory first reaches 
interface i at phase point xt before returning to A, xt is stored as the starting points in 
the search of trajectories crossing the next interface i+1. It is noted that the trajectory, 
which successfully reaches the next interface instead of returning to region A, is not a 
complete path but will be continued by firing off trajectories at the next interface until 
finally region A or B is reached. Patching up the fired-off trajectories on every interface 
from FFS, one can obtain the ensemble with paths exclusively coming from A and 

ending in A or B, i.e. {x}A
. The unbiased probability of a path x  in {x}A

can be 

estimated as [8][15] 

                (16) 

As to other TIS methods, Rogal et al. [14] proposed a reweighting strategy to 
calculate the path probability in unbiased ensembles, based on the weighting factors 
from a Weighted Histogram Analysis Method (WHAM) [13] in the procedure of 
patching up the crossing probabilities of trajectories in every interface ensemble.  

After the weighting procedure, the average of effective crossings on each interface 

can be calculated as , where ni
Q(x )  describes how many 

times the trajectory x effectively crosses interface i with crossing type Q. According 

to the memory loss assumption, the one-interface crossing probability is estimated by 

eq. (9) from the effective crossing in ensemble {x}A
. The result is plotted in Fig. 3. 

In this work, 0 and 1 are set to be overlapping. Once a trajectory reached 1 from 2, 
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it will end in state A. In this case, y1,2 A
 Y1

฀

A
, therefore 1 1p  and p1

  0  

according to eq. (9).  In the meantime, since all the trajectories in {x}A
will end when 

they reach state B, there is no effective crossing of M-1 from M, i.e. yM1,M A
 0. 

Therefore, the value of one-interface crossing probabilities at M-1=13, 13
p  and p13

 , 

cannot be evaluated in the FFS calculation for the forward transition. 

 
Fig. 3 One-interface crossing probabilities calculated from the reweighted FFS 
trajectories for every interface.  

 

The one-interface crossing probability pi
Q  is an average probability of the first-

time crossing and re-crossing interface i from the adjacent interface. The implicit 
message of the memory loss assumption is that when the trajectories presently crossing 
i do not have the memory in the phase region beyond the adjacent interface, there is no 
difference between the first crossing and re-crossing probabilities. Based on the 
memory loss assumption, Moroni et al. [9] derived the connection between the crossing 

probabilities Pi
 ( Pi

 ), where Pi
  P(0

i
0
1 )  and Pi

  P(i
0

i
i1) , and one-interface 

crossing probability pi
Q  as  

Pi
 »

pi1
± Pi1



p i1
±  pi1

 Pi1


  ,      Pi
 »

pi1
฀Pi1



pi1
±  pi1

 Pi1
                          (17). 

Equation (17) is an implicit expression of Pi
 ( Pi

 ), which requires the information 

of pi
Q  and Pi1

 ( Pi1
 ) for every interface and then iteratively solves for the value of 
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the crossing probability from P1
 ( P1

 ) to PM
 ( PM

 ). For convenience, eq. (17) can be 

rewritten in a separate form for Pi
  and Pi

  simply as the function of one-interface 

crossing probability (see Appendix A) as  
1 1 11 1

1 2 1 1 2 1

1 1 11 2 1 2

P  ,      P
ii i

jm m m m
i i

m m jm m j

    
  

± ± ± ± ± ± ±
  

   
» »   
   
å å 

      
 

pp p p p p p p p
p p p p p p p

   (18). 

Equations (17) and (18) are the expressions of crossing probability under the 
condition that the memory-loss assumption is valid in the system. Therefore, we can do 
a quick check for the memory loss assumption in the target system by comparing the 

result of crossing probability Pi
  from the FFS calculation and eq. (17) or (18). Figure 

4 plots the crossing probabilities, Pi
  and Pi

 , evaluated from the one-interface 

crossing probability by eq. (18), compared with the crossing probability Pi
  measured 

in the FFS calculation (red squares in Fig. 4). The good agreement indicates that the 
one-interface crossing probability is approximately the same in the first crossing and 
re-crossing of each interface, which is an evidence for long-range memory loss. If a 

large discrepancy were observed in the predictions for Pi


 by FFS and eq. (18), the 

system would apparently not be memoryless and the RPP method would produce an 
incorrect equilibrium distribution of states on the chosen order parameter. 

 
Fig. 4 Crossing probability calculated from one-interface crossing probabilities by eq. 
(18), compared with the crossing probability from the FFS algorithm. 
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The average distribution of  in the partial path, Pi
Q() , and the loop of the partial 

path, Li
Q () , is calculated at the same time with the effective crossing. Once the phase 

point xt of an effective crossing is located on a trajectory, the histograms of , 

ri
Q (xt ,) and li

Q (xt ,) , can be determined by tracing along the trajectory from xt 

forwardly and backwardly until the trajectory reaches the adjacent interface. The 
average density of  in the partial path and the loop is calculated by 

 and . Since no trajectories 

cross M-1 from M in {x}A
, PM1

฀ () and LM1
฀ ()  are unknown for [M-2, M]. 

Therefore, according to eq. (15), the equilibrium distribution of the order parameter, 

(x)  , is only derived for [0, M-2] in the RPP method. The free energy, F(), 

is evaluated from the equilibrium distribution by F ()  kBT ln (x)  c , where 

c is a constant from normalization.  
The free energy calculated by RPP from FFS trajectories is plotted on Fig. 5 by the 

red circles, compared with the results of standard Umbrella Sampling (US) [13] shown 
as blue solid line. In the transition phase region, [8, 55], the RPP method gives a 
very close prediction of free energy compared with US. A broad and high activation 
barrier is provided by both methods with the highest point showing around  = 35. 
Since the FFS algorithm only collects those trajectories visiting the transition region, 
the trajectories that linger in stable region are not included for the estimation of 
equilibrium distribution in RPP method. This is the reason for the discrepancy between 
the RRP and US results in the area close to region A. To correct the discrepancy, one 
can evaluate the distribution of  from brute-force simulations around region A, and 
then patch up the free energy with the predictions from the RPP method.  
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Fig. 5 Free energy of nucleation as a function of largest cluster size calculated by the 
Reweighted Partial Path method (red circles) compared with the one from Umbrella 
Sampling.  

4. Discussion 

In this work, we introduced a Reweighted Partial Path Method to evaluate the free 
energy profile of diffusive processes using trajectory information from a single TIS or 
FFS calculation. The main steps in the RPP method are summarized as follows: (i) after 
the rate calculation for the transition AB is finished, the unbiased path probability 

 of every trajectory is calculated, e.g using eq. (16) for FFS and the reweighted 

path ensemble method [14] for TIS; (ii) the partial paths are generated by breaking up 
the trajectories into path segments according to the effective crossing points on every 

interface; (iii) the decaying probability Ui, the one-interface crossing probability pi
Q  

and the density of partial path Pi
Q()  ( Li

Q ()) are calculated from partial paths on 

interface i. (iv) the equilibrium distribution of the order parameter, i.e.  (x t )  , 

is evaluated based on the quantities computed in the previous steps according to eq. 
(15).  

In principle, RPP is a related form of the loop-boundary method [10], which is 
proposed in PPTIS to derive the equilibrium state distribution from partial path 
ensembles. In the loop-boundary method, the equilibrium histogram of  with (i-1, 
i) is evaluated from the partial paths on interface i and i-1. PPTIS measures partial 
paths by performing the shooting algorithm on every interface, while RPP generates 
partial path from TIS trajectories and reweights them based on the memory loss 
assumption. Therefore, similar to PPTIS, the validation of the memory loss assumption 
is also necessary for the RPP method. In this work, the validation is performed by 
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comparing the first crossing probability of each interface, measured in TIS with the one 

reconstructed from the one-interface crossing probability pi
Q  in RPP. Since pi

Q  

contains the re-crossing information of interface i from all the other interfaces, the 
consistency in the results from this comparison indicates that the loss of memory is 
actually an effect in the behavior of trajectories, and vice versa. There are other ways 
to check the memory loss assumption as outlined in Ref. [9]. 

The RPP method is very suitable for the study of rare events, such as nucleation 
processes, where the kinetics in the forward transition is of particular interest but the 
equilibrium calculation involving the reverse transition or Umbrella Sampling is time-
consuming. However, one must be aware that RPP only uses “half” of the information 
in trajectory space, and the sampling weight of phase points is decreasing with 
interfaces getting farther away from the initial state. To make sure that RPP is accurate 
in the whole transition region, in the beginning, the TIS algorithm should collect enough 
trajectories on every interface, which will re-cross the interfaces behind the present one. 
In some cases, when the final state is much more energetically favorable than the initial 
state and when it is difficult to sample the re-crossing trajectories on interfaces close to 
the B region, then the RPP prediction for the energy profile may be incorrect for the 
area close to the B region. Still, the estimation of energy profile is reliable for the barrier 
height looking from the side of the initial state. This is also a reason why we recommend 
application of the RPP method to processes with only one important transition. Other 
issues regarding the order parameter and interface setting are similar to TIS [6] and 
PPTIS [9]. The order parameter should be a “proper” one, since the TIS algorithm is 
more sensitive to the choice of order parameter compared to TPS. As to the interface 
setting, the sign of memory loss between interfaces is weakened as the interfaces get 
closer to each other according to Ref. [9]. Therefore, it is advised to avoid a dense 
setting of interfaces in the transition region for the TIS calculation.  

5. Conclusion  

We proposed a Reweighted Partial Path method to efficiently evaluate the 
equilibrium state distribution for diffusive processes with a high-friction character in a 
single computation of Transition Interface Sampling or Forward Flux Sampling. Our 
method assumes a loss of memory in the trajectories, which allows a reweighting 
strategy to calculate the average weights of partial paths on each transition interface. 
The reweighted partial paths are directly used in the loop-boundary algorithm to 
compute the equilibrium distribution of  in the transition region. This method is 
successfully implemented in the calculation of nucleation free energy of Cu precipitates 
in Fe-Cu solid solution. The RPP-evaluated free energy profile shows good agreement 
with Umbrella Sampling results. The accuracy and robustness of the RPP method are 
also discussed in this paper. It is emphasized that the RPP method might fail in cases 
where the history of the trajectories has a significant influence on the properties of the 
current state. Therefore, a validation of the memory-loss assumption must be performed 
in the assessment of RPP results.  
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Appendix A:  

The decaying probability that a trajectory, which crossed interface i from A, will 

return to A before continuing to cross B is defined as U i  P(M
0

0
i ) 1 P(0

M
0
i ) . 

According to the memory loss assumption, the following relations hold approximately 
for any positive integer q>0 [9], 

1

1 1 1 1

1 1 1 1

( ) ( )

( ) ( )( )

( ) ( )( )

l i l i
m i q m i

i q i i q i
i i i i i i

i q i i q i
i i i i i i

P P

P P

P P

± ±

  ±
   

  
   




»

»

» 

p p

p p
                                       (19)

 

Using the approximation in eq. (19), the following relation in decaying probability is derived as  

 
 

1 10 1 0
0 0 0 00 01

0 0 1 1
1 0 0 0 0 0 0

0 0
1 0 1 1

1 0 1 1 0 1
0 0 0 0 0 2

0
1 1

0

( ) ( ) 1( ) ( )

( ) ( ) ( ) ( ) 1

( ) ( )
              

( ) ( ) ( ) ( )

( )( )
              

(

M i i ii i
M Mi i

i i M i i i
i i M M

i i
i i i

i i i i i i
i i i

i
i i i i

i

P PP PU U
U U P P P P

P P

P P P P

P

P

 


 



  

   



 


 

  

 »

»
p p

1
1 0 1

1 1 10 1 1

P P ( )
P P ( )) ( )( )

i i i i
i i

i i i ii i i iP

  


    
   






p p
p pp p

               

(20) 

Since 1 2 1

1 2 1

P ...
P ...

i i

i i

 ± ± ±





   

p p p
p p p

[9], eq.(20) is rewritten as 1 1

1 1

i i i i

i i i i

U U
U U


 

 ±
 






p p
p p

. This relation 

can be expanded from Ui+1 to U1 as 

              
(21) 

Summing up eq. (21) from 1 to i, we have  

                                
(22) 

Since UM  P(M
0

0
M )  0 , U2 is solved by eq. (22) as 

                
(23) 

Through combination of eqs. (22) and (23), we derive an expression for the decaying 
probability for a given i as 
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(24) 

According to the definition, the decaying probability at interface i can be rewritten 
as  

U i  P(M
0

0
i ) 1 P(0

M
0
i ) 11U1

Pi


                           (25) 

Since U2 U1

U1 1


P(M
0

0
2 ) P(M

0
0
1 )

P(M
0

0
1 )1


P(0

M
0
2 )P(2

0
0
1 )

P(0
M

0
1 )


p1


p1
±

, eq. (21) is rewritten as 

                                
(26)

 

Combining eq.(25) and (26), we can derive the expression for Pi
  as 

                             
(27) 

Since 1 2 1

1 2 1

P ...
P ...

i i

i i

 ± ± ±





   

p p p
p p p

[9], Pi
  is also derived from eq.(27)

 

                             

(28) 

Appendix B: 

Since the equilibrium distribution is preserved in trajectory space, there should be 
no net probability flux passing through the phase points on a given interface i. In this 
case, the average effective crossing on i from i+1 equals to the effective crossing from 

i-1, i.e. , 1 , 1i i i i y y . Combining with eq. (10), one can get 0i iJ ± Y  Y  . 

Therefore, the continuity relation by eq. (11) at equilibrium is reduced to 

1
1

0i
i i

i

±




Y  Y  


p
p

. Hence,  

1 2
0

1 2 1

...
...

i
i

i

± ± ±



Y  Y 
  

p p p
p p p

                                     (29) 
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In the unbiased path ensemble {x}A
, there are no trajectories coming from region 

B, hence JA 0 and 1 A
0M Y  . Based on continuity relation, one can write down 

the following equations in {x}A
for every interface from 1 to M-1: 

1
1 A 0A A

1 1

1 AA A
1

1
2 AA

1 2

1

1 0

0

i
i i

i i i

M
M

M M

J

J

J

±

 

±

 


±



 


Y   Y




 Y  Y  



 Y  


 

 









p
p p

p
p p p

p
p p

                           

(30) 

In eq. (30), we have M-1 unknowns, including Yi
฀

A 
i1...M 2

 and JA, in M-1 

equations. According to Cramer rule in linear algebra, the solution of eq. (30) is 

      (31) 

Since 0 0,1 AA
yY   and Y0

±  y1,0 , hence 

01,0 0. 0,10 1
1 0

1,0 1,0 0

( )
f
M

M

hh h
U P

y y

y y ±

Y
   

Y


AA A . Since 0 A 1

0

U
±

Y


Y



Ah
and 

0 0
±Y  Y , combining with eq.(29), (24) and (9), the effective crossing of interface 

i in {x}A
is connected with its equilibrium average by 

 

11
AAA

1 1
AAA

     and    

ii
i ii i

i i i
i i i i

i

UU J

U U J

± ±


  

±

 
 

 Y   Y Y   Y 
 
 
 Y   Y Y   Y 
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11
A 0 0 0 0A A

1

1 ( )MUJ P
U
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 Y   Y                             (32) 
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Abstract 

In precipitation strengthened ferritic alloys, the Fe-Cu binary system is a well-
studied model system. Still, many unsettled questions remain about the early stages of 
bcc Cu precipitation, most of which refer to the shape and composition of the critical 
and post-critical nuclei. Since the critical nucleation states are hard to investigate by 
experimental methods, we propose a computational strategy to reconstruct precipitation 
pathways and identify the nucleation states making use of Monte Carlo simulations 
combined with Rare Event Sampling methods. The precipitation process is reproduced 
by Monte Carlo simulations with an energy description based on the Local Chemical 
Environment approach, applying efficient pair potentials, which are dependent on the 
chemical environment, and the Forward Flux Sampling technique. This method 
provides profound insight into the shape and composition of the early-stage precipitates 
and also the critical cluster size and shape in dependency of the temperature and 
supersaturation. 

Introduction 

The Fe-Cu binary system is a well-studied model system in precipitation 
strengthened ferritic alloys, where Cu precipitates play an important role in materials 
strengthening. High resolution electron microscopy studies have confirmed that, in 
thermally-aged binary Fe-1-30%Cu alloys, copper precipitates undergo a BCC-9R-
FCC transition during precipitation process [1][2]. But the composition of bcc cooper 
precipitates in the early precipitation stages is still a mystery. In recent Atom Probe 
(3DAP) investigations [3][4][5], the bcc Cu-rich precipitates are assumed to contain 
about 50% Fe atoms, while the results from small-angle neutron scattering (SANS) [6] 
infer a significantly higher cooper content of more than 70%. Schober et al. [5] attribute 
this discrepancy to the assumption of non-magnetic Cu precipitates in SANS 
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experiments and the insensitivity to very small clusters of only sub-nanometer radius in 
3DAP techniques. Unfortunately, no direct explanation for why the bcc precipitates 
contain such high Fe content is provided. Kozeschnik [7] studies this problem within 
the framework of classical nucleation theory (CNT). He points out that certain amount 
of Fe in critical precipitates can lower the nucleation barrier, and the composition 
corresponding to the minimum nucleation barrier is the “real” critical composition.  

Atomistic-scale approaches, such as Density Functional Theory (DFT) and Monte 
Carlo simulations, provide an alternative way to investigate the early-stage precipitation 
in Fe-Cu system. Although questions about binding energies, diffusion mechanism and 
cluster mobility are thoroughly discussed in former works [8][9][10], direct 
investigations of the critical states and nucleation rates are rarely addressed. In the 
present work, we propose a computational strategy to reconstruct precipitation 
pathways and identify critical nucleation states making use of Monte Carlo simulations 
combined with Rare Event Sampling methods.    

Methodology  

1. Forward Flux Sampling 
Forward Flux Sampling (FFS) is a typical rare event sampling method proposed by 

Allen et al. [11] to calculate the rate constant for nucleation events in, originally, 
complex biochemical switches. This method does not require prior knowledge of the 
phase-space density and can be implemented in any other stochastic dynamic scheme. 
According to the FFS formalism, the nucleation rate is expressed as [12] 

sJ k V                                                          (1) 

Where k is the transition rate constant for a nucleation event and V is the volume of the 
system. 

The order parameters used in forward flux sampling do not necessarily to be the 
reaction coordinate but must be adequate to distinguish different stages of the system 
in nucleation events. In this work, we choose the size of the biggest precipitate formed 
in the system, x, as order parameters representing the particular stage in the nucleation 
process. In this way, the transition rate constant in FFS can be written as 

 0 0|nk P x x                                                    (2) 

where x0 and xn are two interfaces used to characterize the initial (supersaturated) state 

and the final (post-critical) state, respectively.  0|nP x x  is the probability of a 

nucleation event to reach the final state on the condition that the nucleation path starts 

from the supersaturated state (x<x0) and crosses the first interface x0. 0  is the initial 

flux through the first interface x0, which equals to the inverse of average time for a 
system to initiate nucleation (incubation time is not included in the flux). 

Normally, x0 is set to a small non-zero value, considering the fluctuation of cluster 
size in the supersaturated state, whereas x0 needs to be sufficiently large to represent a 
cluster size when the growth stage begins.  
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To improve the sampling efficiency, a series of non-overlapped interfaces {xi} are 

introduced between x0 and xn. The crossing probability,  1 |i iP x x , is defined as the 

probability that the system of cluster size xi grows into cluster size xi+1, before shrinking 

back to the supersaturated state. In this way,  0|nP x x  can be expressed as a product 

of crossing probabilities of the sequence of interfaces between [x0, xn] with 

     1
0 10

| |n
n i ii

P x x P x x


                                          (3) 

The detailed procedure for sampling the crossing probability is described in Allen’s 
previous work [11][13].  

 
2. Growth Probability 

In nucleation events, a given x-sized cluster can grow and reach a sufficiently large 
supercritical size with a certain probability. If the cluster size is a well-defined order 
parameter for a nucleation process, we can analogously describe the probability that the 
system in cluster size x grows into the supercritical state before decaying to the 

supersaturated state by the Growth Probability  xP . Accordingly, the growth 

probability can be expressed as the crossing probability in FFS 

   |nx P x xP                                                  (4) 

where x[xi, xi+1] and xn is a sufficiently large cluster size. 
If 𝑥 is considered as an additional interface (sub-interface) between [xi, xi+1], the 

crossing probability  1 |i iP x x  can be written as      1 1| | |i i i iP x x P x x P x x   , 

where  | iP x x  is the sub-crossing probability of x in the path ensemble of interface 

xi [14]. Therefore, 

     
   

 
   

0
1 1

0

1
10

1
10

|
( ) | |

| |

|

| |

n
n i i

i i

n
j jj

i
i j jj

P x x
x P x x P x x

P x x P x x

P x x

P x x P x x

 








  








P

                      (5) 

A general expression for the growth probability of an x-sized cluster to subsequently 
growing into a supercritical precipitate before shrinking to supersaturated state is 
derived by ter Horst et al. [15] as 

 *1( ) 1 erf ( )
2

x x x    P                                         (6) 
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with the error function   2

0
erf 2

x xx e dx   , x* is the critical nucleation size, and 

 " *

B2
G x

Z
k T

 


  , where Z is the Zeldovich factor. By fitting the growth 

probability from FFS to equation 6, the critical size of the nucleus and the Zeldovich 
factor can be estimated. A similar way of estimating this factor can also be found in the 
mean first passage time method [16], which is not applied in the present work. 

Simulation details 

The forward flux sampling procedure for obtaining nucleation rates is performed 
with the fixed lattice Monte Carlo method implemented in the software MatCalc [17]. 
A bcc simulation box of 505050 unit cells is used with periodic boundary conditions 
for all simulations. Atomic diffusivity is described by the vacancy exchange mechanism 
and the real time is coupled to Monte Carlo Step (MCS) by defining the time increment 

from one vacancy jump as 
2

Va,MC

A

a x
t k

D
   , where a is the nearest neighbor distance 

in bcc-Fe (2.485 angstrom), DA is the diffusion coefficient of the jumping atom A in 
bcc-Fe, xVa,MC is the vacancy site fraction in the simulation box (1/250000) and k is a 
correction for diffusion correlation effect in the vacancy exchange mechanism. The MC 
simulations apply the Metropolis algorithm and are governed by an atomic interaction 
energy depending on the Local Chemical Environment of the center atom [10].  

The order parameter to characterize the nucleation stages is the size of largest 
precipitate in simulation box. Identification of clusters is based on the local 
concentration of Cu within the nearest neighboring shell — a site with local Cu 
concentration greater than 5/9 will be considered as belonging to a cluster. Under this 
strict condition for cluster detection, only the core of clusters will be measured and the 
fluctuation of cluster size in the supersaturated state is small. Therefore, we set the first 
interface x0 in the range of cluster size of 35, and the last interface xn in the range of 
cluster sizes of 3050, for sampling under different predefined nucleation conditions, 
i.e. supersaturation. Internal interfaces are set by linear intervals of 5, to avoid 
unnecessary size fluctuations in MC simulations. In fact, the interface setting will not 
influence the sampling result for nucleation rate as long as the two important boundary 
interfaces are properly defined [14]. In each interface sampling, FFS harvest at least 
300 paths connecting to the next interface and the total number of paths harvested is 
more than 500. The initial flux is sampled by collecting 300 trajectories that positively 
cross x0 before reaching the final state.  

Results 

1. Nucleation rates  
For comparison, the nucleation rates for Cu-precipitation are evaluated by FFS and 

a classical nucleation theory continuum model (MatCalc) [18] for an Fe-1%Cu alloy 
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aged at 400C, 450C, 500C and 550C and an Fe-1.5%Cu alloy aged at 450C, 500C, 
550C and 600C (Fig. 1). It is worth noting that the nucleation rate obtained from FFS 
is the steady nucleation rate, since the sampling starts from the boundary condition of 
supersaturated state and, thus, the incubation time is not taken into account. In classical 
nucleation theory, the steady nucleation rate is calculated by

 * *expJ NZv G x RT    , where N is the number of potential nucleation sites, Z is 

the Zeldovich factor, v* is the atomic attachment rate, R is the gas constant and G(x*) 
is the energy barrier at critical size x*.  

 
Fig. 1 Comparison of nucleation rates obtained by FFS and the continuum model for 
Fe-1%Cu and Fe-1.5%Cu at temperatures between 400 and 650C.  

As a consequence of calibrating the pair-interaction energies on the same energy 
data as in the continuums simulation, see ref. [10], even though based on different 
methodologies, FFS and continuum model give very similar predictions of the 
nucleation rates. At low temperatures (< 450C,) and high superstation, the crossing 

probability  0|nP x x  is very high (around 10-2) due to a low nucleation barrier, but 

the low diffusivity of the system limits the flux through first interface and restricts 
nucleation events happening per unit time. However, when temperature goes over 

600C, the initial flux 0  increases significantly, but this contribution to the 

nucleation rate is offset as the crossing probability drops to around 10-5 in the mean 
time. The maximum nucleation rate emerges around 500C for Fe-1%Cu and 600C 
for Fe-1.5%Cu. 
 
2. Zeldovich factor and critical size 
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In classic nucleation theory, the Zeldovich factor is defined as the curvature of the 

energy barrier at the critical point, 
'' *

B

( )
2
G nZ

k T


  , while in the growth probability, 

Z describes the increasing trend of the growth probability with cluster size according to 
equation 6. In the Fe-1%Cu alloy (Fig.2), a rapid increase of the growth probability at 
400C corresponds to a Z factor of 0.28, and a slow increase at 550C indicates a Z 
factor of 0.07. Generally, smaller values in Z correspond to a broader and smoother 
nucleation barrier, which indicate frequent recurrent behavior and longer time for 
precipitates to grow into a supercritical size. In a nucleation process, once a precipitate 
grows over the critical size but not sufficiently large, it still has a certain probability to 
shrink back into a pre-critical state. This recurrent behavior is more frequently observed 
in sampling nucleation pathways at higher temperature. 

The evaluation of the Zeldovich factor and the critical size for Fe-1%Cu and Fe-
1.5%Cu alloys are summarized in Fig.3. The two parameters are also evaluated by the 
continuum model based on a mean-field model and spherical precipitate shape [7]. The 
critical size observed in the continuum model is larger than that from FFS because the 
majority of critical precipitates observed in sampling are approximately ellipsoidal with 
a higher surface-to-volume ratio compared to a perfect sphere. The average chemical 
composition of the critical precipitates is about 0.9 in Cu, which is not surprising, since 
we use a very strict condition for Cu precipitate detection and only cores of precipitates 
(Cu >0.8) will be considered. A similar algorithm with cluster erosion process in APT 
is also used to analyze the critical state of Fe-1%Cu at 500C, where critical precipitates 
reveal an average composition of Cu in the range of 0.50.7 with very irregular shapes. 

 

 
Fig. 2 Growth Probability of precipitates in Fe-1%Cu alloy at different temperatures, 
where dots are calculated probabilities from FFS and lines are fitting curves to the error  
function.  
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Fig. 3 Critical size of precipitates in Fe-1%Cu (a) and Fe-1.5%Cu (b) alloys aging at 
different temperatures obtained with FFS (solid line) and classical nucleation theory 
(dashed line). 

Summary 

In this work, we proposed a computational strategy combining Forward Flux 
Sampling and Monte Carlo simulation to investigate nucleation in the Fe-Cu system. 
This method successfully predicts nucleation rates of bcc early-stage cooper 
precipitates in Fe-1%Cu and Fe-1.5%Cu alloys and identifies the respective critical 
state on each nucleation pathway. Other kinetic measures of relevant quantities, such 
as Zeldovich factor and critical size, are also investigated in this work. 

This work was supported by the Austrian Science Fund (FWF): F4113 SFB ViCoM, 
and part of the computation was done on the Vienna Scientific Cluster (VSC). 
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