
Diplomarbeit

zum Thema

Multivariate, Interactive
Visualization in R

ausgeführt am
Institut für Statistik und Wahrscheinlichkeitstheorie

der Technischen Universität Wien

unter der Anleitung von
O.Univ.-Prof. Dipl.-Ing. Dr.techn. Rudolf Dutter

durch

Gschwandtner Moritz
Matrikelnr.: 0125439

Wenhartgasse 34/21, 1210 Wien

Wien, am 15. 3. 2009 Moritz Gschwandtner

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



2



Abstract

This thesis introduces two programs called “Spin & Brush” and “Multivariate Graph-
ics”, the purpose of which is the visualization of multivariate data. Since the pro-
grams are included in an R package called mvgraph , the thesis also deals with the
issue of building R packages which interface C/C++ code. To make the installation
of mvgraph as easy as possible, there is a section about it at the end of the thesis.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Spin & Brush 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Algebraic Operations . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 A New Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Starting the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Variable Selection Dialog . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Item Selection Dialog . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Brush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.5 Identify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.6 Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Memory Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 DAS+R Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Multivariate Graphics 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 The Kola Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Starting the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Multivariate Icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.4 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.5 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1



CONTENTS

3.4.6 Castles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Memory Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 DAS+R Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Building R Packages 40
4.1 Package Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Interfacing C/C++ Code . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 The .C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Building a Shared Library . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Loading the Library . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Installing the Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Installation Instructions 52
5.1 Package Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Installation on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Installing Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Makevars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.4 Installing mvgraph . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Installation on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.1 Installing Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Installing Unix Tools . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.3 Setting the PATH Environment Variable . . . . . . . . . . . . . 60
5.3.4 Makevars.win . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.5 Installing mvgraph . . . . . . . . . . . . . . . . . . . . . . . . . 60

A FAQ 62
A.1 When running R CMD check mvgraph ... . . . . . . . . . . . . . . . . . 62

A.1.1 I get the warning “ * checking if this is a source package ...
WARNING: Subdirectory ’mvgraph/src’ contains object files” . 62

A.1.2 I get the message “ * checking for working pdflatex ...sh: pdfla-
tex: not found NO” . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.1.3 I get the error “ * checking package dependencies ... ERROR:
Packages required but not available: StatDA” . . . . . . . . . . 62

A.1.4 I get the error “ * checking whether package ’mvgraph’ can be
installed ... ERROR: Installation failed. See ’[..]/00install.out’
for details.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1.5 I get the error “ * checking whether the package can be loaded
... ERROR” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1.6 I get the error “The command ’sh’ is either wrongly spelled or
could not be found.” . . . . . . . . . . . . . . . . . . . . . . . . 64

2



CONTENTS

A.1.7 I get the error “The command ’perl’ is either wrongly spelled
or could not be found”. . . . . . . . . . . . . . . . . . . . . . . . 64

A.1.8 I get the error “The command ’R’ is either wrongly spelled or
could not be found”. . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 When running R CMD INSTALL mvgraph ... . . . . . . . . . . . . . . 64
A.2.1 I get an error. What can I do? . . . . . . . . . . . . . . . . . . . 64
A.2.2 Everything works fine, but when I try loading mvgraph in R I

get an error. What’s wrong? . . . . . . . . . . . . . . . . . . . . 64
A.3 Spin & Brush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3.1 Why isn’t it possible to choose more than three variables in the
“Spin & Brush” variable selection dialog? . . . . . . . . . . . . . 65

A.3.2 Why is the OK button in the “Spin & Brush” variable selection
dialog disabled? . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3.3 In the “Spin & Brush” item selection dialog the items aren’t
displayed correctly. What could be the problem? . . . . . . . . 65

A.3.4 Why is the rotation of data points so slow? . . . . . . . . . . . . 65
A.3.5 Why is it that, if I run “Spin & Brush” twice or more times,

some items appear colored? . . . . . . . . . . . . . . . . . . . . 65
A.3.6 May I change the three selected variables, when “Spin & Brush”

is already running? . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3.7 May I change the selected item type, when “Spin & Brush” is

already running? . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.4 Multivariate Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.4.1 What are the X and Y coordinate combo boxes for? . . . . . . . 66
A.4.2 When pressing the OK button of the “Multivariate Graphics”

dialog, nothing happens. What’s wrong? . . . . . . . . . . . . . 66
A.4.3 Why is it that, if I run “Multivariate Graphics” twice or more

times, some variables are already selected? . . . . . . . . . . . . 66
A.4.4 Why is the legend always placed in the upper right corner of

the window? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B R Help Files 67
B.1 Spin & Brush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2 Multivariate Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

C R Scripts 69
C.1 Figure 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.2 Figures 3.3 - 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 72

3



List of Figures

1.1 DASplusR Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 OpenGLs Coordinate System . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Spin & Brush - Variable Selection Dialog . . . . . . . . . . . . . . . . . 16
2.3 Spin & Brush - Item Selection Dialog . . . . . . . . . . . . . . . . . . . 17
2.4 Spin & Brush - Rotation Mode . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Spin & Brush - Brush Mode . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Spin & Brush - Info Mode . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Spin & Brush - Identify Mode . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Spin & Brush - Zoom In . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9 Spin & Brush - DASplusR Integration . . . . . . . . . . . . . . . . . . 25

3.1 The Kola Project Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Multivariate Graphics Dialog . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Multivariate Graphics: Stars . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Multivariate Graphics: Segments . . . . . . . . . . . . . . . . . . . . . 32
3.5 Multivariate Graphics: Boxes . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Multivariate Graphics: Polygons . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Multivariate Graphics: Trees . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 Multivariate Graphics: Castles . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 Multivariate Graphics - DASplusR Integration . . . . . . . . . . . . . . 39

5.1 Installation - Package Dependencies . . . . . . . . . . . . . . . . . . . . 53
5.2 Installing Qt on Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Installing Qt on Windows . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Qt’s installation directory . . . . . . . . . . . . . . . . . . . . . . . . . 59

4



Conventions

This thesis contains not only many commands that can be executed on a command
line interface, but also output generated by these commands as well as contents of
files. To increase the readability we followed the following conventions:

Filenames, commands and package names which appear in the text are printed in
verbatim style. Important commands which we wanted to emphasize are displayed
in a green border:

This is an important command.

While R commands always start with a > (like on the R command line interface),
commands that have to be executed on a Windows/Linux terminal always start with
a $ (like on the Linux bash shell).

Output created when executing commands is always printed in a red border:

This is computer output.

The contents of files are printed in a blue border:

This is the contents of a file.

5



6



Chapter 1

Introduction

Wide fields of statistics deal with visualization of multivariate data. Primary objective
is the exploration of data structures as a first step in a statistical analysis process.
The next steps often involve statistical methods which have to be chosen carefully,
since different methods may lead to different results. Visual exploration does not only
give a first summary of the data but may often be a useful help in making the decision
which statistical methods to use.

This thesis introduces two R programs called “Spin & Brush” and “Multivariate
Graphics”. The first is a three-dimensional data viewing program which offers the
possibility to rotate and zoom. Data points can be clustered by using different colors
and are identified by name or selection. The second was made for datasets which
include geographical coordinates. Data points are drawn as “multivariate icons” on
a geographical background map (the locations of the icons are specified by their co-
ordinates) which makes it possible to show the values of many variables at a time.
Several multivariate icons such as stars, trees or castles are provided. A more detailed
description of the programs can be found in the following sections.

Since the programs are written in C/C++ and are included in an R package
called mvgraph, we will also give a short introduction about how to build an R pack-
age which interfaces C/C++ code. The main part of “Spin & Brush” is written
in OpenGL, an API for highly optimized graphical applications. A section about
OpenGL is also included in the thesis. Furthermore both programs use some Qt (see
http://trolltech.com/) libraries which makes the installation of the package more dif-
ficult than an installation of a package which interfaces standard C code. Therefore
we include a section dealing with installation details.

Furthermore there is a “Frequently Asked Questions” part at the end of the thesis,
the main objective of which is troubleshooting.

7

http://trolltech.com/


1.1 Motivation

Figure 1.1: DASplusR Interface.

1.1 Motivation

O.Univ. Prof. Rudolf Dutter is currently working on an R package called DASplusR, a
user interface, which facilitates the work with R for users who prefer mouse-clicking to
the command line interface concept of R. Among many other useful programs “Spin
& Brush” and “Multivariate Graphics” are also included in the UI of DASplusR.

Although DASplusR is an easy and comfortable way to access “Spin & Brush”
and “Multivariate Graphics”, the package mvgraph does not depend on DASplusR.
Thus it is recommended but not necessary to use DASplusR.

For further information on DASplusR visit Prof. Dutters homepage at

http://www.statistik.tuwien.ac.at/StatDA/DASplusR/

8

http://www.statistik.tuwien.ac.at/StatDA/DASplusR/


Chapter 2

Spin & Brush

2.1 Introduction

Spin & Brush is an open source tool for visualization of three-dimensional data. The
heart of the program is written in OpenGL, the rest is written in C++ and uses
some Qt libraries (for further information on Qt visit http://trolltech.com/). Spin
& Brush is included in the R package ”mvgraph” and can be accessed by installing
R (http://www.r-project.org/) and the package itself. If you encounter installation
problems see Chapter 5.

2.2 Mathematical Background

2.2.1 Algebraic Operations

As mentioned before, main parts of “Spin & Brush” are written in OpenGL (Open
Graphics Library) which is a cross-platform API for writing applications using 2D and
3D graphics. OpenGL is highly optimized for matrix operations such as translations
or rotations which makes it very fast and powerful. Many modern computer and video
games are written in OpenGL.

Rendering objects in OpenGL is restricted to so-called primitive objects like points,
lines, triangles and squares. Everything else has to be constructed by combining these
primitives (a cube is a combination of six squares, a sphere is a combination of many
lines, and so on. Fortunately there are extensions to OpenGLs standard functions like
GLU which facilitate things a little bit).

When rendering an object like a single point in OpenGL there are two ways of
positioning it at the right place. The first is using global coordinates for every object
which can be very cumbersome in the long run. The preferable way is manipulating
the coordinate system first (which means, for example, translating the system) and
then rendering the object at the origin. This second approach has many advantages
over the first one: Consider a situation where the programmer wants to render 100

9

http://trolltech.com/
http://www.r-project.org/


2.2 Mathematical Background

spheres at different positions. When using the second way it is sufficient to write
a single routine which renders a sphere at the origin and translating the coordinate
system between the function calls. This piece of code is much more reusable and
elegant than providing global coordinates for every sphere.

Since this is a main concept of OpenGL, it may help to give a short example to
make things clearer. Suppose we want to draw two circles - the first one positioned
at (1, 1), the second one at (-2, 2) - in a two-dimensional space. The whole procedure
consists of six steps and is illustrated in Figure 2.1:

• Translating the coordinate system by (1, 1)

• Drawing a circle at the new origin

• Resetting the coordinate system to its original position

• Translating the coordinate system by (-2, 2)

• Drawing a circle at the new origin

• Resetting the coordinate system to its original position

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Starting position

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Translate system by (1, 1)

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Drawing circle at new origin

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Resetting coordinate system

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Translating system by (−2, 2) and drawing at new origin

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Resetting coordinate system

●

Figure 2.1: Example of OpenGL’s concept of manipulating the coordinate system and
drawing objects at the origin.

As one can see, OpenGL has much in common with algebraic and geometric operations
like translations, scalings and rotations. Let us therefore take a closer look at these

10



2.2 Mathematical Background

three main algebraic operations in R3. In the following sections all matrices are given
in the standard basis notation.

Translations The translation ζa, a ∈ R3 is defined by

ζa : R3 → R3 : x 7→ x + a

Except for the trivial translation ζ0, translations are affine but not linear, since

ζa(0) = 0 + a = a 6= 0 a 6= 0

Thus a translation in R3 cannot be specified by a 3 × 3 matrix, which is not
good as far as computation speed is concerned. We will return to this issue
later.

Scalings The scaling σα, α ∈ R is defined by

σα : R3 → R3 : x 7→ α.x

This is already a specific scaling since all coordinates are multiplied by the same
value. A more general version is the following:

σα,β,γ : R3 → R3 :

x1

x2

x3

 7→

α.x1

β.x2

γ.x3


Here different dimensions are multiplied by different values. It is evident that
σα = σα,α,α. Scalings are linear functions and can therefore be specified by a
matrix. The scale matrix Σα,β,γ is given by

Σα,β,γ =

α 0 0
0 β 0
0 0 γ


and scaling is done by a simple matrix-vector multiplication

Σα,β,γ.x =

α 0 0
0 β 0
0 0 γ

 .

x1

x2

x3

 =

α.x1

β.x2

γ.x3


Rotations Rotations in R3 can be characterized by a rotation axis and a rotation

angle ϕ. Since rotations are linear they can be specified by a rotation matrix
Γϕ, which could look like this:

Γϕ =

1 0 0
0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ

 0 ≤ ϕ ≤ π

11



2.2 Mathematical Background

In this case the X-axis is the rotation axis and the rotation angle is ϕ; both can
easily be obtained from the rotation matrix Γϕ. Of course the rotation axis is
not restricted to one of the three coordinate system axes but can be any axis
defined by a straight line through the origin. In the general case the rotation
matrix may look more complex but it can be shown that every rotation matrix
is of the given (simple) form when an adequate basis is chosen.

Note that the order of the operations is important, since it makes a difference if
a scaling is done before a rotation or the other way round. This is also reflected
by the fact that matrix multiplications are not commutative.

2.2.2 A New Dimension

When OpenGL performs one of the described operations, it internally calculates ma-
trix products. This is done in the following way: Every point (x, y, z)> that is rendered
is plotted at position M.(x, y, z)> where M is the socalled modelview matrix. When
OpenGL is started, the modelview matrix is initialized to the identity matrix, which
means that each point is rendered at its actual coordinates. For example: When a
rotation is done, the modelview matrix is first multiplied by a rotation matrix and all
points are rendered again. A great advantage of this approach is that the modelview
matrix can be “saved” at each state and then be loaded again when it is needed. This
corresponds to the “resetting of the coordinate system” which was described in the
example.

We still face the problem that translations are not linear and can therefore not
be specified by a translation matrix. This problem is solved by OpenGL with a little
trick. Let us first take a look at the following function:

ρ : R3 → R4 : x 7→ (x, 1)>

where x is a vector in R3 (for example ρ((1, 2, 3)>) = (1, 2, 3, 1)>, ... ). As we are now
operating in R4, we are able to specify a translation ζa by a vector a = (x0, y0, z0)

>

with the following 4 × 4 translation matrix Ga

Ga =


1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 1


which leads to the matrix vector multiplication

1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 1

 .


x
y
z
1

 =


x + x0

y + y0

z + y0

1



12



2.3 Starting the Program

Suppose the linear function represented by the translation matrix is named ga, it is
evident that

ga(ρ(x)) = ρ(ζa(x)) ∀x ∈ R3

which is exactly what we want. The basis of this technique is the following theorem:

Theorem 2.2.1 Let α : R3 → R3 be an affine function. Then there is exactly one
linear function g : R3 × R → R3 × R which satisfies

g((x, 1)>) = (α(x), 1)> ∀x ∈ R3

This is already a special version of the theorem which fits our conditions. A more
general version (which includes semi-affine and semi-linear functions) is described in
Havlicek (2003b).

In words the theorem allows us to embed our three dimensional space into a four
dimensional space and get rid of matrix multiplication issues without running into
trouble. Scalings σα,β,γ and rotations γϕ remain so to say untouched as they are linear
and their corresponding matrices simply become

Σα,β,γ =


α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 1


and

Γϕ =


1 0 0 0
0 cos ϕ − sin ϕ 0
0 sin ϕ cos ϕ 0
0 0 0 1


when taking the matrices from our previous examples.

2.3 Starting the Program

If the installation of R and the package mvgraph was successful, we will get the
following output when typing

> library(mvgraph) # loads the package

> ?spin # displays help file

on the R command line:

13



2.3 Starting the Program

spin package:mvgraph R Documentation

Spin and Brush

Description:

Visualize 3d data

Usage:

spin(x, y=0, z=0, groups=NULL)

Arguments:

x: Matrix or data.frame containing data. When x is

one-dimensional, y and z have to be supplied.

y: Optional vector argument, when x is a vector

z: Optional vector argument, when x is a vector

groups: Group factor; has to be between 0 and 6

Details:

Spin and Brush is a three-dimensional data viewing

program which offers the possibility to rotate and

zoom. Data points can be clustered by using different

colors and identified by name or selection.

Value:

spin returns a data.frame consisting of the

three-dimensional data and an additional group factor

depending on the brushed data points.

Examples:

#data(swiss)

#spin(swiss)

There are three possible ways to start the program “Spin & Brush”. First of all (and
this is also the recommended approach) the input argument x may be a data.frame
with at least three columns, and arguments y and z are omitted. When using the R

14



2.3 Starting the Program

command data() on an existing dataset, R usually creates a data.frame object in the
current workspace. Thus this first approach can easily be tested by typing

> data(swiss) # loads the dataset

> spin(swiss) # starts the program

on the R command line (the dataset swiss is available on every R installation). If
everything went fine, the variable selection dialog should appear (see Figure 2.2).

The second is pretty much the same as the first one with the only exception that
the input argument x is a matrix with at least three columns. This can be achieved,
for instance, by typing the following R commands:

> a <- rnorm(100) # creates a vector

> b <- rnorm(100) # creates a vector

> c <- rnorm(100) # creates a vector

> myMatrix <- cbind(a, b, c) # creates a matrix

> spin(myMatrix) # starts the program

The last possibility to start “Spin & Brush” is to use three vectors of the same length
as input arguments x, y, z. This is done, for example, by creating the vectors a, b and
c in the same manner as before and then typing

> spin(a, b, c)

When scanning the helpfile of “Spin & Brush” we see a fourth possible input argument
called groups having the default value NULL. When a default value is given, it is not
necessary to input the argument. For more information on the argument groups see
Subsection 2.4.3.

2.3.1 Variable Selection Dialog

Each of the three ways will lead to the variable selection dialog, the point where the
three variables to be visualized are chosen. How many variables appear in the left list

15



2.4 Functionality

Figure 2.2: Spin & Brush’s Variable Selection Dialog.

depends on the input arguments. To choose a variable simply select it by clicking it
in the left list and then clicking the >> button. The variable name will move to the
right list then, which means that the selection was successful. In the same way an
already selected variable can be removed by clicking on it in the right list and then
clicking the << button. The variable name will appear in the left list again, which
means that it was successfully deselected.

Since “Spin & Brush” is a visualization tool for three dimensions, three variables
have to be selected to enable the OK button, which leads to the

2.3.2 Item Selection Dialog

“Spin & Brush” provides six different symbols for visualizing data points, three sphere
objects (a small one called dot and two bigger ones), two oktahedron objects and a
cross object. One can select an item by clicking on the corresponding widget which
results in a zoomed view with a dark background.

When using a dataset with many data points it is recommended to choose the cross
object, since it is least computation intensive, while the octahedron and the sphere
objects are more complex and should only be chosen when using small datasets.

After selecting an item and clicking the OK button the main program starts.

2.4 Functionality

The main window of the program consists of different parts. In the middle of the
window there is the so-called view window where the data points are displayed. On
the left there are some buttons that offer users the possibility to interact with the view

16



2.4 Functionality

Figure 2.3: Spin & Brush’s Item Selection Dialog.

17



2.4 Functionality

Figure 2.4: Spin & Brush’s Rotation Mode.

window. On the right there are the zoom slider and the corresponding zoom buttons.
Finally, at the bottom of the window there are a statusbar where status messages are
displayed and the exit button which closes the window and returns control to the R
interface. “Spin & Brush” provides six functions that offer the possibility to interact
with the displayed scene. The following sections describe the different functions in
detail.

2.4.1 Rotate

When the rotate button is checked the program is in rotation mode, which means that
the user can rotate the scene by clicking the view window and dragging the mouse
while pressing a mouse button. Different rotation behaviour is obtained depending
on whether the left or the right mouse button is pressed. This offers the possibility
to explore the data from different points of view.

When the program is in rotation mode the rotation window is visible where the
user can enable auto-rotation by checking the corresponding checkbox (see Figure
2.4). The rotation speed of the auto-rotation can be specified with the speed slider.
Note that rotating big scenes is computation intensive; therefore high speed rotations
are not possible on some systems.

18



2.4 Functionality

Figure 2.5: Spin & Brush’s Brush Mode.

2.4.2 Move

Pressing the move button when the program is, say, in rotation mode will automat-
ically deselect the rotate button and set the program in motion mode. The reason
for this is that activating both rotation and motion mode at the same time is not
possible. Dragging the mouse over the scene while the motion mode is active will
result in moving the scene in the dragging direction. Thus, together with the rotation
and zoom functionality, the scene can be viewed from all possible points of view.

2.4.3 Brush

Brushing is one of the main functions of the program. When the brush mode is active
the brushing window, which is divided into two areas, is visible (see Figure 2.5). On
the left side there are six group buttons with corresponding colors which can be chosen
by clicking one of the color buttons. To set a group active one can either select one
of the radio buttons or one of the color buttons.

On the right side there is a list with different cursor icons, any one of which can
be selected. Then moving the mouse over the view window will transform the cursor
icon into the selected one from the list. Now data points can be “brushed” by clicking
them with the left mouse button. Their color will turn into the chosen color from the
menu and internally the data point now is linked to the corresponding group. This
can be undone by rightclicking the point, which turns its color into black again.

Brushing enables the user to cluster data points together. When exiting the pro-
gram, R will return a factor variable which corresponds to the groups. Data points
which have not been brushed get a value of 0, while brushed data points get a value

19



2.4 Functionality

equal to the group number. This feature makes it possible to further process the data
using the factor variable (e.g. plot by groups, etc.).

A grouping variable with values between 0 and 6 may also be used as the described
input argument groups. When the program is started with such a grouping variable,
data points are grouped by default and displayed in the corresponding colors. A good
example for using a grouping variable as input is the following:

# load data

> data(iris)

# create index vectors

> s <- iris$Species == "setosa"

> ve <- iris$Species == "versicolor"

> vi <- iris$Species == "virginica"

# initialize and set grouping variable

> g <- rep(0, length(s))

> g[s] <- 1

> g[ve] <- 2

> g[vi] <- 3

# convert to factor

> g <- as.factor(g)

# start the program

> spin(iris, groups = g)

2.4.4 Info

Since data points are not labelled, it will often be desirable to identify them. This can
be achieved in two ways of which the first is called info mode. Clicking a data point
in the view window while the program is in info mode will open a dialog window with
information about the clicked data point, containing name and coordinate values.
When the clicked area of the view window contains several points, information about
all of them is provided by the info dialog.

20



2.4 Functionality

Figure 2.6: Spin & Brush’s Info Mode gives detailed information to the user.

21



2.5 Memory Function

Figure 2.7: Spin & Brush’s Identify Mode allows identification of data points by labels.

2.4.5 Identify

Data points can also be identified by name, which is done by activating the identify
mode. This makes a window visible which contains a list of the data points labels.
Selecting a label from the list will result in the blinking of the corresponding data
point (see Figure 2.7).

Note that (string) labels are only available when the input argument of the program
is a data.frame. Otherwise data points will be labelled with numbers.

2.4.6 Zoom

In addition to rotation and motion modes “Spin & Brush” also offers zooming func-
tionality which extends the possibilities of viewing data. Zooming can be achieved
by using the mouse wheel over the view window, pressing one of the zoom buttons or
dragging the zoom slider on the right side of the window.

2.5 Memory Function

It is often desirable to reproduce results after exiting the program without doing things
like brushing or choosing variables over and over again. To facilitate things, “Spin &
Brush” provides a memory function which “remembers” the following settings when
restarting the program with an already used dataset.

22



2.5 Memory Function

Figure 2.8: Zooming into a scene.

23



2.5 Memory Function

Variables: Especially in the case of big datasets it can be cumbersome to select and
search for the same three variables again and again.

Groups: Brushed groups are remembered by the memory function.

Colors: The chosen colors of the groups are saved.

Saving these settings is achieved by creating an R list object dataset_sb in an en-
vironment called .SSenv after exiting the program. For example: When using the
dataset swiss, an object called swiss_sb is created, which can be viewed by typing

> get("swiss_sb", env=.SSenv)

The output may look somewhat like this:

$groups

[1] 2 2 2 2 2 2 1 1 0 2 1 1 1 1 1 1 2 0 0 1 1 1 1 1 1 1 1

[28] 1 2 1 1 1 1 1 1 1 1 1 2 0 2 0 2 2 0 1 0

Levels: 0 1 2

$selected

[1] TRUE TRUE TRUE FALSE FALSE FALSE

$colors

[1] 255 0 0 0 0 255 0 255 0 0 255 255 255 0

[15] 255 255 255 0

When running the program, it first looks for a memory object that corresponds to the
dataset and then uses the saved settings if there is such an object.

Note that the memory function cannot save two different settings for the same
dataset. A workaround for this problem would be to copy the dataset to another
object with a different name. Then also the names of the created memory objects
differ and nothing is overwritten.

When the input argument groups is specified, the group settings in the memory
object are overwritten.

24



2.6 DAS+R Integration

Figure 2.9: Spin & Brush - DASplusR Integration.

2.6 DAS+R Integration

As mentioned before, “Spin & Brush” is also included in the DAS+R interface which
can be started by installing and loading the package DASplusR. The program can
then be accessed via the menus “Advanced” / “Spin & Brush”.

When starting “Spin & Brush” in DAS+R using the menus, there is no possibility
to define input arguments. Thus always the current active dateset, which can be
specified in DAS+R, is used.

25



Chapter 3

Multivariate Graphics

3.1 Introduction

Multivariate Graphics is an easy and comfortable way to display multivariate data
which usually is linked to geographical coordinates. Multivariate icons such as stars,
segments, boxes, etc. (see Section 3.4) are drawn at the coordinate locations, whereas
size and style of the icons are determined by a subset of variables. While standard
map plots can handle only one variable, up to 10-15 variables can be displayed when
using Multivariate Graphics. This is a great advantage as it is often desirable and
useful to compare variables when looking for correlated structures.

A disadvantage of this approach is the size of the icons which often makes it
necessary to select a subset of observations to get a clearer plot. In order to get
good-looking icons it is also necessary to scale variables to [0, 1], since the ranges of
chosen variables may differ a lot (this is done automatically by the program). Often
it is convenient to plot a background map together with multivariate icons to get an
impression of the geographical area corresponding to the data.

A good example of data linked to geographical coordinates is the Kola Project
which is described in the next section.

3.2 The Kola Project

The Kola Project is an environmental investigation project in Arctic Europe (see
Figure 3.1), which was initiated in 1992. For five years over 600 soil samples were taken
covering an area of 188.000 km2. The result is an eco-geochemical atlas containing
regional distribution maps for more than 50 chemical elements in several soil layers.

Primary aims (taken from http://www.ngu.no/Kola/aims.html) of the project
were

• mapping the extent of contamination by inorganic elements

• mapping the content of radionuclides

26

http://www.ngu.no/Kola/aims.html


3.3 Starting the Program

• investigating the process of trace element cycling

• establishing a soil sample bank for future investigations

The datasets are available in an R package called StatDA which can be downloaded
from CRAN (http://cran.r-project.org/). In the following sections datasets from the
Kola Project are used for examples and images.

3.3 Starting the Program

If the installation of mvgraph and StatDA was successful, we can start the program
by simply typing

> library(mvgraph) # loads the package

> library(StatDA) # loads the package

> data(moss) # loads data from the

# Kola Project

> multiGraph(moss) # starts the program

on the R command line interface, since multiGraph() takes a data.frame as argument.
The dialog window in Figure 3.2 should appear: At the top of the window there is a
so-called tabwidget where the type of the multivariate icon can be chosen by clicking
on the corresponding tab. On every tab there is a small preview of the icon in order
to get an impression of the style.

Under the tabwidget there are two drop-down boxes where the coordinate variables
can be selected. Note that selecting data variables not intended to be coordinates often
leads to weird results.

Below there are two list boxes for data variable selection, which works in the same
way as “Spin & Brush’s” Variable Selection Dialog (see Section 2.3.1). A variable
being in the right list means that it is selected, while one in the left list means that
it is currently not selected.

Finally there are two additional options: “Display Labels” and “Add to existing
plot”. Checking the first will add labels (corresponding to the labels in the used
dataset) to the symbols. Enabling the second option will cause the program to draw
the results in the current graphics device of R (if there is any).

3.4 Multivariate Icons

In the following subsections the multivariate icons are described and an example
picture is given. The example is done using the same data over and over again by

27

http://cran.r-project.org/


3.4 Multivariate Icons

Figure 3.1: The Kola Project Area.

28



3.4 Multivariate Icons

Figure 3.2: Multivariate Graphics Dialog.

29



3.4 Multivariate Icons

executing the following code once

> library(mvgraph) # loads the package

> library(StatDA) # loads the package

> data(moss) # loads data from the

# Kola Project

> data(kola.background) # loads background map

> myData <- moss[1:40,] # takes subset

and starting the program several times with

> plot(moss$XCOO,moss$YCOO, frame.plot=FALSE,xaxt="n",

yaxt="n",xlab="",ylab="",type="n")

> plotbg(map.col=c("gray","gray","gray","gray"),add.plot=T)

> multiGraph(myData)

each time selecting another icon.

3.4.1 Stars

Stars represent multivariate data by the length of their jags. Note that there are three
different types of stars:

Simple stars are stars as a child would draw them consisting of jags only.

Bordered stars have an additional border around the jags.

Diamonds consist of the border only.

3.4.2 Segments

Segments look like pie charts, but every segment has the same interior angle, and the
length of the radii differs. With the stars it is the length of their jags; with segments
it is the length of their radii that describes the multivariate data. An advantage over
the stars and all the other icons are the colors, which make it a bit easier to identify
data correlation. Note that more than eight variables cannot be displayed by stars or
segments.

30



3.4 Multivariate Icons

1
2

3

4

5

67

8

9

10

11

12

13

14
15

16

17
18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Bi

CoCu
Na

Ni
Rb Sr

Figure 3.3: Multivariate Graphics: Stars.

31



3.4 Multivariate Icons

1
2

3

4

5

67

8

9

10

11

12

13

14
15

16

17
18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Bi
CoCu

Na

Ni Rb
Sr

Figure 3.4: Multivariate Graphics: Segments.

32



3.4 Multivariate Icons

1

23

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Rb

Sr

Bi Co Cu Ni

Na

Figure 3.5: Multivariate Graphics: Boxes.

3.4.3 Boxes

Boxes are capable of displaying up to 15 variables at the same time and are therefore
often used when a wide range of variables has to be displayed. The multivariate data
is represented by the length, depth or height of a single box.

3.4.4 Polygons

The name “polygons” comes from their appearance which is similar to that of function
graphs. The data variables are the values on the abscissa and the corresponding
function values represent the data. It is recommended not to use more than five
variables.

33



3.4 Multivariate Icons

1
2

3

4

5

67

8

9

10

11

12

13

14
15

16

17
18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Bi Co Cu Na Ni Rb Sr

Figure 3.6: Multivariate Graphics: Polygons.

34



3.4 Multivariate Icons

Rb Sr

Ni

Co Cu

Bi

Na

Figure 3.7: Multivariate Graphics: Trees.

3.4.5 Trees

Trees are nice looking icons which represent multivariate data by the length of their
branches. Trees can easily display up to eight variables at a time.

3.4.6 Castles

Castles do not need much space and can therefore handle many variables. The data
values are represented by the length of the rectangles.

35



3.4 Multivariate Icons

RbSr

Ni

CoCu
Bi

Na

Figure 3.8: Multivariate Graphics: Castles.

36



3.5 Memory Function

3.5 Memory Function

Similar to “Spin & Brush” also “Multivariate Graphics” provides a memory function
which facilitates work when repeating things. After once running the program, an
R list object dataset_mg in an environment called .SSenv (the same as in “Spin &
Brush”) is saved, where dataset is the name of the used dataset (for example running
multiGraph(moss) creates an object called moss_mg). When running the program
with the same dataset again, the following things are stored in memory:

• Multivariate icon type

• Coordinate variables

• Data variables

• Label option

• Add to existing plot option

If there is a memory object moss_mg, it can be viewed by typing

> get("moss_mg", env=.SSenv)

which creates an output like this:

$index

[1] 1

$selected

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[9] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

[21] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

[33] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

[45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

$xC

[1] 2

$yC

[1] 3

37



3.6 DAS+R Integration

$simple

[1] TRUE

$bordered

[1] FALSE

$diamonds

[1] FALSE

$add

[1] FALSE

$labels

[1] FALSE

Note again that the memory function cannot save two different settings for the same
dataset. A workaround for this problem would be to copy the dataset to another
object with a different name. Then also the names of the created memory objects
differ and nothing is overwritten.

3.6 DAS+R Integration

“Multivariate Graphics” is also included in the DAS+R interface and can be accessed
over the menus “Advanced” / “Multivariate Graphics”. Since no input arguments
can be defined, the program is started using the current active dataset.

An advantage of the DAS+R approach is the support of geographical data, which
may be provided by the DASData class. When using a DASData dataset and starting
the program, it will automatically recognise the coordinate variables, if they have
been specified once, and select them by default.

38



3.6 DAS+R Integration

Figure 3.9: Multivariate Graphics - DASplusR Integration.

39



Chapter 4

Building R Packages

Building R packages is not as complicated as many users may think. R packages are a
great way to extend the functionality of R and even include code from other languages
like C or C++. Since mvgraph interfaces C++ code, let us take a closer look at this
issue.

4.1 Package Structure

Few rules have to be considered when building up an R package. We will not go into
detail since this is done by the manual Team (2008b), which can be downloaded from

http://cran.r-project.org/doc/manuals/R-exts.pdf,

but we will shortly explain how to build up a “minimal” package that interfaces C
code. A minimal R package consists of a directory having the name of the package.
This directory itself contains the following subdirectories:

R: The R folder contains R code, i.e. every R function which is intended to be accessed
via the R command line interface after installing the package. It is not necessary
to put every function in a single file; however, it is important to ensure that the
files can be loaded into R via source() . For more information, type

> ?source

on the R command line. Files in the R folder are recommended to have the
extension .R or .r .

40

http://cran.r-project.org/doc/manuals/R-exts.pdf


4.1 Package Structure

man: Every function provided in the R folder has to be documented in a .Rd file
which has to be put in the man folder; “man” stands for “manual”. .Rd files
have to follow a special syntax that is described in detail in Team (2008b). A
typical .Rd file would look like this:

\name{a name}

\alias{an alias}

\title{a title}

\description{

a description

}

\usage{

function usage

}

\arguments{

input arguments

}

\examples{

some good examples

}

\keyword{some keywords}

When installing an R package, .Rd files are compiled by LaTeX which is the
reason of the special syntax.

src: The src subdirectory is the most important when interfacing code from other
languages, since it contains the source and header files for compiled code. When
interfacing C/C++ code, it is recommended to use .c/.cpp as file extensions
for the source files and .h for the header files. Furthermore, the src folder
optionally contains the Makevars file, which contains preprocessor directives for
the C/C++ compiler. This is described in detail in Chapter 5.

In addition, the package directory has to contain the so-called DESCRIPTION file, which
provides general information about the package (version, maintainer, dependencies,
etc.). The mvgraph DESCRIPTION file looks like this:

Package: mvgraph

Version: 1.0

41



4.2 Interfacing C/C++ Code

Type: Package

Title: Multivariate, Interactive Visualization

Date: 2008-11-17

Author: Moritz Gschwandtner

Maintainer: Moritz Gschwandtner

<moritz.gschwandtner@chello.at>

Depends: StatDA

Description: This package offers different possibilities to

visualize multivariate data

License: GPL (>= 3)

There are some more optional subdirectories and files that may be included in the
package directory; they are described in detail in Team (2008b).

4.2 Interfacing C/C++ Code

Interfacing C/C++ code from R can be done via the three interfaces .C, .Call or
.External. In this section we will take a look at the .C interface, since we used it for
the package mvgraph. Although the other interfaces are a bit more functional, the .C

interface is slightly easier to handle and often suffices.

4.2.1 The .C Interface

The .C interface makes it possible to access C/C++ functions from within R. Suppose
we have written a C/C++ function called foo (note that C++ functions to be accessed
have to be included in an extern "C" {} statement). The next step is to compile it
to a shared library object which can be loaded into R. If everything goes well, the
function can then be accessed from R by typing

> .C("foo", ...)

where ’...’ are additional arguments corresponding to the C function parameters. It
is important to know that all parameters of the C function have to be pointers, which
means that all arguments are passed to the function by reference. Another important
point is that every C function to be accessed via .C has to be of return type void,
but all arguments passed to the function are returned to R when the execution of the
function has finished. Up to 65 arguments can be passed using the .C interface, be

42



4.2 Interfacing C/C++ Code

altered by the function and returned afterwards. A disadvantage of .C is that only
basic R data types like integer, logical, double, or character can be passed.
When it is necessary to pass more complex R objects like lists, data.frames, etc. to
a C function, it is recommended to use .Call or .External. Note that e.g. a list
may always be split up into its list entries, which is often a good workaround for this
problem. The mapping between the mentioned R and C datatypes is the following:

R datatype C/C++ datatype
integer int*

logical int*

double double*

character char**

This means that when for example passing a logical R object as argument to .C

the corresponding parameter in the C function has to be of type int*.

4.2.2 Building a Shared Library

When we want R to access C Code via .C, we have to provide the code as a shared
library which is typically a .so file on Linux and a .dll file on Windows. This is
done by the R CMD SHLIB command. Suppose we have written a C source file called
foo.c following all the rules we have discussed so far, we can compile it by typing

$ R CMD SHLIB foo.c

at a terminal which will create a shared library called foo.so. The name of the
resulting library can be passed as additional parameter to R CMD SHLIB by using the
-o directive. Typing

$ R CMD SHLIB -o mylib foo.c

will therefore create a file mylib.so. It is also possible to compile several source files
into a single library, which is achieved by typing

43



4.2 Interfacing C/C++ Code

$ R CMD SHLIB -o mylib foo1.c foo2.c foo3.c

Note that this process of building a shared library is done automatically when in-
stalling a source package via R CMD INSTALL. All source code provided in the src

folder will be compiled to a shared object having the same name as the package.
It is often the case that one wants to interface C code which links against some

other libraries. Then compiling will not work without providing information as to
which libraries are needed and where these libraries can be found. This is typically
done by the C preprocessor directives -l and -L. Since R CMD INSTALL does not take
such flags as arguments, they have to be provided somewhere else. The right place
for this is the Makevars file, which should be in the same directory as the source files
(this is also the reason of putting Makevars in the src folder when building a whole
package). All preprocessor directives known to the C/C++ compiler may be specified
in the Makevars file, for example -I, -L, -l, -Wall, etc. When compiling via R CMD

SHLIB works, there is a good chance that Makevars has been set up correctly. For
further information on Makevars see Chapter 5.

4.2.3 Loading the Library

After compiling the source files, the resulting shared library has to be loaded into the
R workspace. Suppose our file is named mylib.so: Then this can be achieved by
typing

> dyn.load("mylib.so")

on the R command line. If R returns without warnings, the loading process was
successful and the compiled C functions should now be accessible via .C. Whether an
object is loaded or not can be tested by

> is.loaded("mylib.so")

which is sometimes useful. When providing a whole R package which interfaces C
code, one usually wants the shared object (which was created by R CMD INSTALL)

44



4.3 Installing the Package

to be loaded automatically when loading the package via library(). This can be
achieved by writing a so-called .First.lib function, which is called automatically by
R when the package is loaded. Since this is an R function, it should be placed in a
file in the R folder (typically this file is named zzz.R). The .First.lib function of
mvgraph looks like this:

.First.lib <- function(lib, pkg) {

library.dynam("mvgraph", pkg, lib)

}

Note that library.dynam() is nearly the same as dyn.load().

4.3 Installing the Package

The last step in the procedure is installing the package. Suppose the package folder is
named mypackage. It is convenient first to check whether it is ready for installation
by running

$ R CMD check mypackage

This performs several routine checks on the package (for example checking for a work-
ing LaTeX environment, checking the correct syntax, etc.) and gives information if
something is wrong. If the check returns without error messages, the package can be
installed via

$ R CMD INSTALL mypackage

and should be loadable by calling library(mypackage) in R. Another useful com-
mand in this context is R CMD build which builds a portable .tar.gz file.

45



4.4 An Example

4.4 An Example

To make things clearer, we will give a step-by-step example of now to build a simple
R package which interfaces C code. This is only of demonstrative purpose and may
be used as a template. For this section we assume that Linux and R are installed as
well as the C compiler gcc.

The first step is to create a package structure as described in Section 4.1. This
can easily be done by executing the commands

$ mkdir usefulpackage

$ cd usefulpackage

$ mkdir R

$ mkdir man

$ mkdir src

at a terminal. Of course, the name usefulpackage can be replaced by any other
name.

Now it is time to write a C function which performs a simple multiplication of two
integers. It is clear that this could be done in R by simply using the * operator, but
as mentioned, this is only a simple example. We change to our src directory

$ cd src

open an editor and create the following file mult.c:

#include <stdlib.h>

// function declaration

void mult(int* a, int* b, int* ab);

// function definition

void mult(int* a, int* b, int* ab) {

*ab = (*a)*(*b);

46



4.4 An Example

}

Since the C functions to be interfaced by R have no return type, we have to provide
a variable which holds the result of the computation as parameter (in this case this
is the variable ab). Note that all parameters of the function are pointers.

We now need a corresponding R function which interfaces the C function and has
to be put in the R folder.

$ cd ../R

Again we open an editor and create a file called mult.R:

mult <- function(x, y) {

# check input:

if(is.null(x) || is.null(y))

stop("Two input arguments have to be given!")

# call to C function mult:

result <- .C("mult", as.integer(x), as.integer(y),

as.integer(0), PACKAGE="usefulpackage")

# return third argument of the C function mult:

result[[3]]

}

Note how the call to the C function is done: The first argument is the name of the
function followed by all the arguments needed by the C function. The as.integer

calls ensure that a correct data type conversion between R and C is done. Since the
third parameter ab holds the result of the multiplication and is altered within the C
function, we can simply input a 0. The optional PACKAGE argument specifies where
to look for the symbol mult. The three parameters a, b and ab of the C function are

47



4.4 An Example

returned as a list object; we save it in a variable result and return only the third
element, which actually is our product.

As mentioned earlier, when running R CMD INSTALL, all source code will later be
compiled to a shared object called usefulpackage.so. We want this shared object to
be loaded automatically when our package is loaded via library(usefulpackage);
so we create a R function .First.lib and put it in a file called zzz.R:

.First.lib <- function(lib, pkg) {

library.dynam("usefulpackage", pkg, lib)

}

The next step is to write a documentation file for our function mult.R. We change to
the man directory

$ cd ../man

and create a file mult.Rd which should look somewhat like this

\name{mult}

\alias{mult}

\title{A Simple Multiplication}

\description{

Multiplication of two Integers

}

\usage{

mult(x, y)

}

\arguments{

\item{x}{An Integer}

\item{y}{An Integer}

}

\examples{

mult(2, 5)

48



4.4 An Example

}

\keyword{file}

The only thing that’s left for a simple R package is the DESCRIPTION file, which has
to be put in the package directory

$ cd ..

and could look like this:

Package: usefulpackage

Version: 1.0

Type: Package

Title: A Useful Package

Date: 2009-03-01

Author: Somebody

Maintainer: Somebody <some@body.at>

Description: This package provides some useful things.

License: GPL (>= 3)

That’s it. Now it is time to check our package for possible errors, so we run

$ cd ..

$ R CMD check usefulpackage

and get the following output (on other systems the output may differ slightly):

* checking for working pdflatex ... OK

* using log directory

49



4.4 An Example

’/home/moritz/Dokumente/usefulpackage.Rcheck’

* using R version 2.7.1 (2008-06-23)

* using session charset: UTF-8

* checking for file ’usefulpackage/DESCRIPTION’ ... OK

* checking extension type ... Package

* this is package ’usefulpackage’ version ’1.0’

* checking package dependencies ... OK

* checking if this is a source package ... OK

* checking whether package ’usefulpackage’ can be

installed ... OK

* checking package directory ... OK

* checking for portable file names ... OK

* checking for sufficient/correct file permissions ... OK

* checking DESCRIPTION meta-information ... OK

* checking top-level files ... OK

* checking index information ... OK

* checking package subdirectories ... OK

* checking R files for non-ASCII characters ... OK

* checking R files for syntax errors ... OK

* checking whether the package can be loaded ... OK

* checking whether the package can be loaded with stated

dependencies ... OK

* checking for unstated dependencies in R code ... OK

* checking S3 generic/method consistency ... OK

* checking replacement functions ... OK

* checking foreign function calls ... OK

* checking R code for possible problems ... OK

* checking Rd files ... OK

* checking Rd cross-references ... OK

* checking for missing documentation entries ... OK

* checking for code/documentation mismatches ... OK

* checking Rd \usage sections ... OK

* checking line endings in C/C++/Fortran

sources/headers ... OK

* checking line endings in Makefiles ... OK

* checking for portable use of $BLAS_LIBS ... OK

* creating usefulpackage-Ex.R ... OK

* checking examples ... OK

* creating usefulpackage-manual.tex ... OK

* checking usefulpackage-manual.tex using pdflatex ... OK

50



4.4 An Example

Since there are no errors reported, we can install our package by typing

$ R CMD INSTALL usefulpackage

The last step is to start R and try out our multiplication

$ R

> library(usefulpackage)

> mult(-3, 4)

[1] -12

51



Chapter 5

Installation Instructions

As mentioned, mvgraph is an R package that interfaces C/C++ code which links
against Qt libraries (for further information on Qt visit http://trolltech.com/). In
order to make the package work properly, it is necessary to install Qt as well as the
GNU C and C++ compilers gcc and g++ on your system. In this chapter we assume
that R and the compilers are already installed. I will give a step by step tutorial on
how to install the package.

5.1 Package Dependencies

The package mvgraph depends on the package StatDA which in turn depends on several
other packages like akima, car, cluster, ... The first step is to install all of these
dependencies which will be done automatically when installing StatDA. This can be
achieved by simply typing

> install.packages("StatDA")

on the R command line. A mirror list will appear asking you for a location near
you. After selecting a mirrow, download and installation starts. If you don’t have an
internet connection you will have to get the packages from somewhere else and install
them manually. For more information on installing R packages see Team (2008b).
The package dependencies are shown in Figure 5.1.

52

http://trolltech.com/


5.1 Package Dependencies

   

StatDA

DASplusR

mvgraph

akima

car

cluster

Depends

Dep
en

ds

Depends

Depends

Depends

Depends

.

.

.

.

Figure 5.1: Installation - Package Dependencies.

53



5.2 Installation on Linux

5.2 Installation on Linux

5.2.1 Installing Qt

Installing Qt is the next step in the installation process. There are two ways this can
be done:

• Installation of Qt with a package manager

• Installation of Qts sources

Although the first way is much faster and also easier, many Linux users prefer the
second approach since it is more flexible. I will describe both of them.

Most Linux distributions such as Ubuntu or SUSE have package managers which
make installation of new software fast and easy. On Ubuntu, the package manager is
called synaptic and can be started with the command

$ sudo synaptic

Since we want to install new packages, we need to be superuser and therefore use the
sudo command. The synaptic package manager allows us to search for strings. Search
for qt and make sure that the following packages are installed,

libqt4-dev

libqt4-gui (libqtgui4)

libqt4-core (libqtcore4)

libqt4-opengl

libqt4-opengl-dev

which can be done by selecting the checkboxes in the first column (if they are not
selected yet!). The result should be similar to Figure 5.2. The procedure on other
Linux distributions is the same as above except that the package managers have
different names (for example the manager on SUSE can be found in YAST).

The second way to install Qt is to install it from source. Visit http://trolltech.com/
and download the newest version of Qts sources (at the moment this is version 4.5)
for Linux. Unpack the archive, open a shell and change to the unpacked directory.
The following commands will install Qt on your system:

$ ./configure

$ make

$ make install

54

http://trolltech.com/


5.2 Installation on Linux

Figure 5.2: Installing Qt on Ubuntu.

55



5.2 Installation on Linux

Each of the commands will take some time; the whole installation may take up to
two hours or more, even on fast systems. Thus it is recommended to install Qt with
a package manager.

5.2.2 Configure

If pkg-config is installed on your system, we recommend you to make use of the
configure file included in the package directory. The configure script tries to detect
the locations of your Qt library and include files. It is called automatically by R CMD

INSTALL and creates a Makevars file which is adapted to your system.
We recommend you to skip the next section and to go ahead with Section 5.2.4.

If this approach does not work, you may want to remove the configure file from
the package directory (otherwise the configure skript will always try to create a new
Makevars file when running R CMD INSTALL mvgraph) and go ahead with Section 5.2.3.

5.2.3 Makevars

We need to find out where the Qt libraries and header files were installed to, since
we want to adapt the Makevars file in the src folder of the mvgraph package. If you
installed Qt with a package manager there is a good chance that Qts libraries were
installed to

/usr/lib

and the include files to

/usr/include/qt4

Note that these paths may differ from system to system depending on your linux
distribution and other settings. If you installed Qt from source, the files can most
likely be found in

/usr/local/Trolltech/Qt-4.3.4/lib

and

/usr/local/Trolltech/Qt-4.3.4/include

where 4.3.4 is to be replaced with the correct version number.
A way to find the correct paths is to search for typical Qt files like qlabel.h (which

is a header file and should lead to the correct include path) or libQtCore.so (which
is a library and should lead to the correct library path). Make sure that you have
found the correct paths, change to your mvgraph/src directory and open Makevars

which should look like this:

56



5.2 Installation on Linux

DEFINES = -DQT_NO_DEBUG -DQT_GUI_LIB -DQT_CORE_LIB -DQT_SHARED

-DQT_OPENGL_LIB

PKG_CPPFLAGS = -I/usr/share/qt4/mkspecs/linux-g++

-I/usr/include/qt4/QtCore

-I/usr/include/qt4/QtGui

-I/usr/include/qt4 -I/usr/include/qt4/QtOpenGL

-I.

PKG_CFLAGS = -pipe -W -D_REENTRANT $(DEFINES)

PKG_CXXFLAGS = -pipe -W -D_REENTRANT $(DEFINES)

PKG_LIBS = $(SUBLIBS) -L/usr/lib -lQtGui -lQtCore -lpthread

-lQtOpenGL -lGLU

Replace every occurrence of /usr/include/qt4 with the correct include path and
/usr/lib (which actually occurs just once) with the correct library path.

5.2.4 Installing mvgraph

We can now change to mvgraphs parent directory and run

$ R CMD check mvgraph

which performs some routine checks on the package. If there is an error concerning
the line

* checking whether package ’mvgraph’ can be installed ...

it is most likely that the paths in the Makevars file are wrong. Or else, there could be
a problem with the C/C++ compilers gcc and g++. When running R CMD check, a
directory mvgraph.Rcheck is created containing a file called 00install.out. Instal-
lation problems are logged and saved to this file. If no problems are encountered, we
can install the package by typing

57



5.3 Installation on Windows

$ R CMD INSTALL mvgraph

Congratulations!

5.3 Installation on Windows

Installing R packages on Windows is slightly more complicated, since some programs
that are standard components on every modern Linux distribution have to be installed
first. This includes MinGW (which stands for “Minimalist GNU for Windows and
contains the compilers gcc and g++), Perl and optionally LaTeX and the HTML
Workshop, which are both needed for compiling documentation files. Furthermore
some Unix tools have to be installed in order to make things work. Another issue
that always plays a role when installing R source packages on Windows is setting the
PATH system variable correctly, so all programs can be found during the installation
routine.

In this section we assume that R is already installed in C:\R-2.8.2 and Perl is
installed in C:\Perl. The next step is installing Qt.

5.3.1 Installing Qt

Visit http://trolltech.com/ and download the newest version of Qts open source in-
staller for windows. Trolltech offers a package which includes Qt and MinGW. This file
is typically called qt-win-opensource-version-mingw.exe, where version stands
for the current version number. After downloading and executing the file, installation
starts (see Figure 5.3). The installer will guide you through the installation pro-
cess. You should remember the locations where Qt and MinGW are installed, since
these paths are important when setting the PATH environment variable and adapt-
ing the Makevars.win file. From now on we assume that Qt has been installed to
C:\Qt\4.4.3 (see Figure 5.4) and MinGW to C:\MinGW.

5.3.2 Installing Unix Tools

Since R CMD check makes use of commands like sh, it is necessary to provide these
programs on windows. There are several projects for this purpose, but we recommend
to visit http://unxutils.sourceforge.net/ and download the newest version. From now
on we assume that the utilities are installed in C:\Unxutils.

58

http://trolltech.com/
http://unxutils.sourceforge.net/


5.3 Installation on Windows

Figure 5.3: Installing Qt on Windows.

Figure 5.4: Setting Qt’s installation directory.

59



5.3 Installation on Windows

5.3.3 Setting the PATH Environment Variable

In order to have Windows find all programs needed for the installation of R source
packages, one has to adapt the PATH environment variable: Add the following entries
to the PATH variable:

C:\Qt\4.4.3\bin;

C:\MinGW\bin;

C:\Perl\bin;

C:\R-2.8.1\bin;

C:\Unxutils;

Note that these paths are only assumptions we make in this chapter and may differ
from system to system. It is therefore necessary to discover the correct locations of
the programs listed above, and replace the paths accordingly. In the same manner,
paths to the LaTeX and the HTML Workshop directories have to be added.

5.3.4 Makevars.win

When installing mvgraph on Windows, the Makevars.win file takes precedence over
the Makevars file used on Linux. As on Linux, the file has to be adapted to your system
so the Qt and OpenGL libraries can be linked successfully. If the path assumptions
we have made so far are correct, your Makevars.win file should look like this:

DEFINES = -DQT_NO_DEBUG -DQT_GUI_LIB -DQT_CORE_LIB

-DQT_SHARED -DQT_OPENGL_LIB

PKG_CPPFLAGS = -I’C:\Qt\4.4.3\include’

-I’C:\Qt\4.4.3\include\QtCore’

-I’C:\Qt\4.4.3\include\QtGui’

-I’C:\Qt\4.4.3\include\QtOpenGL’

PKG_CFLAGS = -pipe -W -D_REENTRANT $(DEFINES)

PKG_CXXFLAGS = -pipe -W -D_REENTRANT $(DEFINES)

PKG_LIBS = $(SUBLIBS) -L’C:\Qt\4.4.3\lib’ -L’C:\MinGW\lib’

-lQtGui4 -lQtCore4 -lQtOpenGL4 -lglu32 -lopengl32

Note again that these paths have to be adapted to your system.

5.3.5 Installing mvgraph

We can now change to the mvgraphs parent directory and run

60



5.3 Installation on Windows

$ R CMD check mvgraph

If no error messages are issued, the package is ready for installation, which is achieved
by

$ R CMD INSTALL mvgraph

Congratulations!

61



Appendix A

FAQ

This section is mainly focused on troubleshooting as far as the installation of mvgraph
and the usage of “Spin & Brush” and “Multivariate Graphics” are concerned. By the
way: Although this is the FAQ part, not all of the following points are questions.

A.1 When running R CMD check mvgraph ...

A.1.1 I get the warning “ * checking if this is a source package
... WARNING: Subdirectory ’mvgraph/src’ contains
object files”

This warning occurs when the sources of mvgraph have already been compiled (for
examply by R CMD check) and can be ignored.

A.1.2 I get the message “ * checking for working pdflatex
...sh: pdflatex: not found NO”

This warning occurs when LaTeX is not installed or cannot be found. Install LaTeX
(on Linux this can be done via package manager, on Windows visit http://miktex.org/
and download the newest version) and/or check, if the LaTeX/bin directory is added
to the PATH environment variable. The warning will not cause the installation of
mvgraph to fail, but due to it, no manual for mvgraph might be created.

A.1.3 I get the error “ * checking package dependencies ...
ERROR: Packages required but not available: StatDA”

Since mvgraph depends on the R package StatDA, it is necessary to install StatDA
first. Try typing

> install.packages("StatDA")

62

http://miktex.org/


A.1 When running R CMD check mvgraph ...

on the R command line interface. This will only work, if an internet connection is
available.

A.1.4 I get the error “ * checking whether package ’mvgraph’
can be installed ... ERROR: Installation failed. See
’[..]/00install.out’ for details.”

Different reasons may lead to this error message. Thus it is recommended to scan
00install.out for troubleshooting. We will list some of the possible reasons:

/bin/bash: gcc/g++: command not found: If 00install.out contains this or
a similar message, there is a problem with your C/C++ compiler. On Windows,
check if MinGW is installed and the MinGW/bin directory is added to the
PATH environment variable. On Linux, try (re-)installing gcc/g++ via a package
manager.

QTimer: No such file or directory: QTimer is only an example. If this or a sim-
ilar message appears, there is something wrong with the include path, since the
Qt include files cannot be found. If Qt is not installed, see Chapter 5 for installa-
tion instructions. If it is, most likely the include path in the mvgraph\src\Makevars
file is wrong. How to set up the Makevars file correctly is also explained in Chap-
ter 5 and its subsections.

/usr/bin/ld: cannot find -lQtCore: If this error occurs, the Qt libraries cannot
be found by the compiler. Check if Qt is installed (see Chapter 5) and if
Makevars is set up correctly.

A.1.5 I get the error “ * checking whether the package can
be loaded ... ERROR”

This error will most likely occur if there is a problem with the library path in the
Makevars file. In this case, the C/C++ compiler doesn’t link against the Qt libraries,
and a message like this appears:

Error in dyn.load(file, DLLpath = DLLpath, ...) :

unable to load shared library ’[..]/mvgraph.so’:

[..]/mvgraph.so: undefined symbol: _ZNK7QDialog10metaObjectEv

Error in library(mvgraph) : .First.lib failed for ’mvgraph’

Execution halted.

On Windows a new window may open saying “The application could not be started,
because QtCore4.dll could not be found. Reinstalling the application could possibly
solve the problem.”

Check if Qt is installed (see Chapter 5) and if Makevars is set up correctly. On
Windows, check if the Qt/bin directory is added to the PATH environment variable.

63



A.2 When running R CMD INSTALL mvgraph ...

A.1.6 I get the error “The command ’sh’ is either wrongly
spelled or could not be found.”

It is improbable that something is misspelled. More likely on Windows this may
happen, if Unix utilities like sh are not installed or can not be found. See Chapter
5.3.2 for installation instructions and make sure that the directory containing sh.exe

is included in the PATH environment variable.

A.1.7 I get the error “The command ’perl’ is either wrongly
spelled or could not be found”.

On Windows this may happen, if perl is not installed or cannot be found. See Chapter
5 for installation instructions and make sure that the perl/bin directory is included
in the PATH environment variable.

A.1.8 I get the error “The command ’R’ is either wrongly
spelled or could not be found”.

On Windows this may happen, if R is not installed or cannot be found. Visit http://www.r-
project.org/, download and install the newest R version and add the R/bin directory
to the PATH environment variable.

A.2 When running R CMD INSTALL mvgraph ...

A.2.1 I get an error. What can I do?

R CMD INSTALL mvgraph corresponds 1:1 to the line

* checking whether the package ’mvgraph’ can be installed ...

when running R CMD check mvgraph, so also the error messages correspond. See
Section A.1.4 for troubleshooting.

A.2.2 Everything works fine, but when I try loading mvgraph
in R I get an error. What’s wrong?

It is possible that installing the package succeeds but loading fails. Most likely there
is a linker problem. Try running R CMD check mvgraph and see Section A.1 for further
details.

64

http://www.r-project.org/
http://www.r-project.org/


A.3 Spin & Brush

A.3 Spin & Brush

A.3.1 Why isn’t it possible to choose more than three vari-
ables in the “Spin & Brush” variable selection dialog?

Since “Spin & Brush” is inteded to visualize three-dimensional data, only the selection
of exactly three variables will work.

A.3.2 Why is the OK button in the “Spin & Brush” variable
selection dialog disabled?

This happens, if fewer than three variables are selected. You have to select exactly
three.

A.3.3 In the “Spin & Brush” item selection dialog the items
aren’t displayed correctly. What could be the prob-
lem?

There is most likely a problem with your graphics card or OpenGL. Check if your
graphics card supports OpenGL or try installing newer graphic drivers.

A.3.4 Why is the rotation of data points so slow?

This may happen if many data points are plotted. It is recommended not to use more
than 10000 data points. Another possible reason of this problem: an old computer
system.

A.3.5 Why is it that, if I run “Spin & Brush” twice or more
times, some items appear colored?

This is the effect of the memory function. If you run “Spin & Brush” once, R will
remember your settings including the colors and use these settings the next time you
start “Spin & Brush” with the same dataset.

A.3.6 May I change the three selected variables, when “Spin
& Brush” is already running?

No, you have to restart “Spin & Brush” and select the variables you want.

65



A.4 Multivariate Graphics

A.3.7 May I change the selected item type, when “Spin &
Brush” is already running?

Yes, this is possible. Click the “Change Item Type” button on the left hand side of
the window and select the item you want.

A.4 Multivariate Graphics

A.4.1 What are the X and Y coordinate combo boxes for?

“Multivariate Graphics” is intended to display multivariate data which are linked to
geographical coordinates. If a dataset contains coordinates they should be selected in
the corresponding combo boxes.

A.4.2 When pressing the OK button of the “Multivariate
Graphics” dialog, nothing happens. What’s wrong?

Did you select variables? You have to select them by clicking the >> button.

A.4.3 Why is it that, if I run “Multivariate Graphics” twice
or more times, some variables are already selected?

This is the effect of the memory function. If you run “Multivariate Graphics” once,
R will remember your settings including the selected variables and use these settings
the next time you start “Multivariate Graphics” with the same dataset.

A.4.4 Why is the legend always placed in the upper right
corner of the window?

“Multivariate Graphics” was optimized for visualizing datasets from the KOLA Project
(see Section 3.2). As one can see in the figures in Chapter 3, the choice of the upper
right corner is convenient.

66



Appendix B

R Help Files

B.1 Spin & Brush

Description

Visualize 3d data

Usage

spin(x, y=0, z=0, groups=NULL)

Arguments

x Matrix or data.frame containing data. When x is

one-dimensional, y and z have to be supplied.

y Optional vector argument, when x is a vector

z Optional vector argument, when x is a vector

groups Group factor; has to be between 0 and 6

Details

Spin and Brush is a three-dimensional data viewing

program which offers the possibility to rotate and

zoom. Data points can be clustered by using different

colors and identified by name or selection.

Value

spin returns a data.frame consisting of the

three-dimensional data and an additional group factor

depending on the brushed data points.

Examples

#data(swiss)

#spin(swiss)

67



B.2 Multivariate Graphics

B.2 Multivariate Graphics

Description

Draw multivariate Graphics

Usage

multiGraph(x)

Arguments

x Matrix or data.frame

Details

Multivariate Graphics was made for datasets which

include geographical coordinates. Data points are

drawn as "multivariate items" on a geographical

background map (the locations of the items are

specified by their coordinates) which makes it

possible to show the values of many variables at a

time. Several multivariate items such as stars,

trees or castles are provided.

Value

If multiGraph is started via DASplusR, a string,

representing the command, is returned.

Examples

#data(swiss)

#multiGraph(swiss)

68



Appendix C

R Scripts

C.1 Figure 2.1

par(mfrow=c(2,3))

plot(0, 0, type="n", xlab="Starting position", ylab="",

xlim=c(-3,3), ylim=c(-3,3))

abline(h=0)

abline(v=0)

plot(0, 0, type="n", xlab="Translate system by (1, 1)", ylab="",

xlim=c(-3,3), ylim=c(-3,3))

abline(h=0, col="grey")

abline(v=0, col="grey")

abline(h=1)

abline(v=1)

plot(1, 1, xlab="Drawing circle at new origin", ylab="",

xlim=c(-3,3), ylim=c(-3,3))

abline(h=1)

abline(v=1)

plot(1, 1, xlab="Resetting coordinate system", ylab="",

xlim=c(-3,3), ylim=c(-3,3))

abline(h=0)

abline(v=0)

plot(-2, 2, xlab="Translating system by (-2, 2) and drawing

at new origin", ylab="", xlim=c(-3,3), ylim=c(-3,3))

points(1, 1)

69



C.1 Figure 2.1

abline(h=0, col="grey")

abline(v=0, col="grey")

abline(v=-2)

abline(h=2)

plot(-2, 2, xlab="Resetting coordinate system", ylab="",

xlim=c(-3,3), ylim=c(-3,3))

points(1, 1)

abline(h=0)

abline(v=0)

70



C.2 Figures 3.3 - 3.8

C.2 Figures 3.3 - 3.8

require(mvgraph)

require(StatDA)

data(kola.background)

data(moss)

myData <- moss[1:40,]

pdf("stars.pdf")

plot(moss$XCOO,moss$YCOO, frame.plot=FALSE,

xaxt="n",yaxt="n",xlab="",ylab="",type="n")

plotbg(map.col=c("gray","gray","gray","gray"),add.plot=T)

multiGraph(myData)

dev.off()

pdf("segments.pdf")

plot(moss$XCOO,moss$YCOO, frame.plot=FALSE,

xaxt="n",yaxt="n",xlab="",ylab="",type="n")

plotbg(map.col=c("gray","gray","gray","gray"),add.plot=T)

multiGraph(myData)

dev.off()

pdf("boxes.pdf")

plot(moss$XCOO,moss$YCOO, frame.plot=FALSE,

xaxt="n",yaxt="n",xlab="",ylab="",type="n")

plotbg(map.col=c("gray","gray","gray","gray"),add.plot=T)

multiGraph(myData)

dev.off()

pdf("polys.pdf")

plot(moss$XCOO,moss$YCOO, frame.plot=FALSE,

xaxt="n",yaxt="n",xlab="",ylab="",type="n")

plotbg(map.col=c("gray","gray","gray","gray"),add.plot=T)

multiGraph(myData)

dev.off()

pdf("trees.pdf")

plot(moss$XCOO,moss$YCOO, frame.plot=FALSE,

xaxt="n",yaxt="n",xlab="",ylab="",type="n")

plotbg(map.col=c("gray","gray","gray","gray"),add.plot=T)

multiGraph(myData)

dev.off()

71



C.2 Figures 3.3 - 3.8

pdf("castles.pdf")

plot(moss$XCOO,moss$YCOO, frame.plot=FALSE,

xaxt="n",yaxt="n",xlab="",ylab="",type="n")

plotbg(map.col=c("gray","gray","gray","gray"),add.plot=T)

multiGraph(myData)

dev.off()

72



Bibliography

Jasmin Blanchette and Mark Summerfield. C++ GUI Programmierung mit Qt 4: Die
offizielle Einfuehrung. Addison-Wesley, 2008a.

Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with Qt4 (Pren-
tice Hall Open Source Software Development). Prentice-Hall, 2008b.

Olaf Borkner-Delcarlo. GUI-Programmierung mit Qt. Hanser, 2002.

Diane Cook and Deborah Swayne. Interactive and Dynamic Graphics for Data Anal-
ysis. Springer, 2007.

Michael J. Crawley. The R Book. Wiley & Sons, 2007.

Michael J. Crawley. Statistics: An Introduction Using R. Wiley & Sons, 2005.

Peter Dalgaard. Introductory Statistics with R. Springer, 2008.

Matthias K. Dalheimer and Jesper Pedersen et al. Practical Qt. Dpunkt, 2004.

Brian S. Everitt and Hothorn Torsten. A Handbook of Statistical Analyses Using R.
Crc Pr Inc, 2006.

Alan Ezust and Paul Ezust. An Introduction to Design Patterns in C++ with Qt 4.
Prentice-Hall, 2006.

Hans Havlicek. Lineare Algebra 1, 2003a.

Hans Havlicek. Lineare Algebra 2, 2003b.

Friedrich Leisch. Tutorial on creating R packages. 2008.

John Maindonald and John Braun. Data Analysis and Graphics Using R: An Example-
based Approach. Cambridge University Press, 2006.

Paul Martz. OpenGL Distilled. Addison-Wesley Longman, 2006.

Daniel Molkentin. The Book of Qt 4: The Art of Building Qt Applications. No Starch
Press, 2007.

73



BIBLIOGRAPHY

Paul Murrell. R Graphics. Chapman & Hall, 2005.

Dieter Orlamuender and Wilfried Mascolus. Computergrafik und OpenGL: Eine sys-
tematische Einfuehrung. Hanser, 2004.

Clemens Reimann, Peter Filzmoser, R. G. Garrett, and Rudolf Dutter. Statistical
Data Analysis Explained. Applied Environmental Statistics with R. Wiley, 2008.

Dave Shreiner. OpenGL Reference Manual: The Official Reference Document to
OpenGL, Version 1.4. Addison-Wesley Longman, 2004.

Dave Shreiner, Mason Woo, and Jackie Neider. OpenGL Library. Boxed Set. Addison-
Wesley Longman, 2006.

Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 2. Addison-Wesley Long-
man, 2007.

Bjarne Stroustrup. The C++ Programming Language: Special Edition. Addison-
Wesley Longman, 2000.

R Development Core Team. R Data Import/Export, 2008a.

R Development Core Team. Writing R Extensions, 2008b.

R Development Core Team. R Installation and Administration, 2008c.

R Development Core Team. R Internals, 2008d.

R Development Core Team. An Introduction to R, 2008e.

R Development Core Team. The R Language Definition, 2008f.

R Development Core Team. The R Reference Index, 2008g.

Juergen Wolf. C von A bis Z. Galileo Press, 2006a.

Juergen Wolf. C++ von A bis Z: Das umfassende Handbuch. Galileo Press, 2006b.

Juergen Wolf. Qt 4 - GUI-Entwicklung mit C++: Das umfassende Handbuch. Galileo
Press, 2007.

Richard S. Wright and Michael R. Sweet. OpenGL Super Bible. Sams, 2004.

74


	List of Figures
	Conventions
	Introduction
	Motivation

	Spin & Brush
	Introduction
	Mathematical Background
	Algebraic Operations
	A New Dimension

	Starting the Program
	Variable Selection Dialog
	Item Selection Dialog

	Functionality
	Rotate
	Move
	Brush
	Info
	Identify
	Zoom

	Memory Function
	DAS+R Integration

	Multivariate Graphics
	Introduction
	The Kola Project
	Starting the Program
	Multivariate Icons
	Stars
	Segments
	Boxes
	Polygons
	Trees
	Castles

	Memory Function
	DAS+R Integration

	Building R Packages
	Package Structure
	Interfacing C/C++ Code
	The .C Interface
	Building a Shared Library
	Loading the Library

	Installing the Package
	An Example

	Installation Instructions
	Package Dependencies
	Installation on Linux
	Installing Qt
	Configure
	Makevars
	Installing mvgraph

	Installation on Windows
	Installing Qt
	Installing Unix Tools
	Setting the PATH Environment Variable
	Makevars.win
	Installing mvgraph


	FAQ
	When running R CMD check mvgraph ...
	I get the warning `` * checking if this is a source package ... WARNING: Subdirectory 'mvgraph/src' contains object files"
	I get the message `` * checking for working pdflatex ...sh: pdflatex: not found NO"
	I get the error `` * checking package dependencies ... ERROR: Packages required but not available: StatDA"
	I get the error `` * checking whether package 'mvgraph' can be installed ... ERROR: Installation failed. See '[..]/00install.out' for details."
	I get the error `` * checking whether the package can be loaded ... ERROR"
	I get the error ``The command 'sh' is either wrongly spelled or could not be found."
	I get the error ``The command 'perl' is either wrongly spelled or could not be found".
	I get the error ``The command 'R' is either wrongly spelled or could not be found".

	When running R CMD INSTALL mvgraph ...
	I get an error. What can I do?
	Everything works fine, but when I try loading mvgraph in R I get an error. What's wrong?

	Spin & Brush
	Why isn't it possible to choose more than three variables in the ``Spin & Brush" variable selection dialog?
	Why is the OK button in the ``Spin & Brush" variable selection dialog disabled?
	In the ``Spin & Brush" item selection dialog the items aren't displayed correctly. What could be the problem?
	Why is the rotation of data points so slow?
	Why is it that, if I run ``Spin & Brush" twice or more times, some items appear colored?
	May I change the three selected variables, when ``Spin & Brush" is already running?
	May I change the selected item type, when ``Spin & Brush" is already running?

	Multivariate Graphics
	What are the X and Y coordinate combo boxes for?
	When pressing the OK button of the ``Multivariate Graphics" dialog, nothing happens. What's wrong?
	Why is it that, if I run ``Multivariate Graphics" twice or more times, some variables are already selected?
	Why is the legend always placed in the upper right corner of the window?


	R Help Files
	Spin & Brush
	Multivariate Graphics

	R Scripts
	Figure 2.1
	Figures 3.3 - 3.8

	Bibliography

