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Time-Predictable Java Chip-Multiprocessor

Embedded systems are frequently used in real-time applications. Such ap-
plications must undergo timing analysis to ensure the timing constraints are
met and the mission succeeds. Static worst-case execution time (WCET)
analysis yields safe and precise upper bounds of tasks for a given hardware
platform. It is preferred to measurement-based analysis methods because it
guarantees to consider all possible execution times.

The purpose of this thesis is to design a novel chip-multiprocessor (CMP)
solution for the development of Java real-time applications. This chip-
multiprocessor system consists of a global physical memory accessible to all
processors. A memory arbiter resolves concurrent access of multiple CPUs
to the main memory. This architecture enables simple communication by
accessing shared data objects. This thesis investigates if a shared memory
multiprocessor can serve as a hardware platform for real-time applications.
The great challenge is that tasks running on different CPUs of a CMP in-
fluence each others’ execution times when accessing memory. Therefore, the
system’s arbiter must limit these interdependencies to be able to analyze
WCETs of individual tasks. An adaptation of a static WCET tool for use
with the multiprocessor architecture shall permit straightforward WCET
analysis results.

In this study, the proposed CMP design is implemented using field-program-
mable gate array technology. Three different arbitration policies are devel-
oped: a fixed priority, a fair-based, and a time-sliced arbiter. Timing anal-
ysis approaches are carried out for the specified memory arbiters. Various
CMP configurations with varying number of CPUs are evaluated, analyzed,
and compared with respect to their real-time and average-case performance.
Different benchmarks are used for executing programs on real hardware.

Results of this study have revealed that only the time-sliced memory arbi-
tration scheme allows a calculation of viable WCET bounds of Java appli-
cations. A comparison of different CMP configurations shows that dynamic
arbitration mechanisms are less predictable in the temporal domain but show
better average-case program performance. The principal conclusion of this
research demonstrates that timing analysis is possible for homogeneous mul-
tiprocessor systems with a shared memory.
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Echtzeit Java Chip-Multiprozessor

Eingebettete Systeme werden häufig für sicherheitskritische Anwendungen
verwendet. Solche Anwendungen erfordern eine Analyse des zeitlichen Ver-
haltens, um die zeitlichen Anforderungen garantieren und ein Fehlverhal-
ten mit dramatischen Konsequenzen verhindern zu können. Die statische
Worst-Case Execution Time (WCET) Analyse bestimmt sichere und präzise
Grenzen für Programmausführungszeiten auf einer vorgegebenen Hardware-
Plattform. Sie wird einer messbasierten Analyse vorgezogen, weil alle mög-
licherweise auftretenden Ausführungszeiten berücksichtigt werden.

Zweck dieser Dissertation ist die Entwicklung einer innovativen Chip-Multi-
prozessor (CMP) Lösung, für die Entwicklung von Echtzeitanwendungen
mittels Java. Dieses symmetrische Multiprozessorsystem besteht aus meh-
reren CPUs und einem globalen Hauptspeicher. Ein Arbiter löst Speicherzu-
griffskonflikte zwischen mehreren Prozessoren auf. Die Kommunikation zwi-
schen unterschiedlichen Prozessoren wird unter Verwendung von gemeinsam
genutzter Variablen sichergestellt. Die Dissertation untersucht, ob ein sym-
metrischer Multiprozessor (SMP) als Plattform für Echtzeitanwendungen
eingesetzt werden kann. Die große Herausforderung ist, dass sich die Aus-
führungszeiten der Tasks gegenseitig durch den gemeinsamen Speicherzugriff
beeinflussen. Deshalb muss ein Arbiter diese gegenseitigen Beeinträchtigun-
gen beschränken, um maximale Ausführungszeiten von individuellen Tasks
analysieren zu können. Die Adaptierung eines bestehenden Analysetools für
die Verwendung mit SMPs soll eine einfache Laufzeitbestimmung ermögli-
chen.

Ein Teil dieser Forschungsarbeit war die Implementierung des CMPs in der
FPGA Technologie. Drei verschiedene Arbitertypen wurden entwickelt: ein
Arbiter mit fixer Priorität, ein fairer Arbiter und ein Arbiter der die ge-
meinsame Speicherbandbreite in Zeitschlitze unterteilt. Das Zeitanalysekon-
zept wird individuell für jeden Arbiter ausführlich präsentiert. Verschiedene
CMP-Konfigurationen mit unterschiedlicher Prozessoranzahl werden evalu-
iert, analysiert und in Bezug auf ihr Echtzeitverhalten bzw. auf ihre Rechen-
leistung verglichen. Dazu werden Benchmarks am Prototyp ausgeführt.

Die Dissertationsergebnisse bestätigen, dass nur der Arbiter mit dem Zeit-
schlitzverfahren eine Berechnung von brauchbaren, maximalen Ausführungs-
zeiten zulässt. Der Vergleich von verschiedenen CMP-Konfigurationen zeigt,
dass dynamische Arbitrieralgorithmen im Zeitbereich weniger vorhersagbar
sind, jedoch größeres Leistungspotenzial besitzen. Diese Dissertation beweist,
dass eine statische Zeitanalyse für einen SMP möglich ist.
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1
Introduction

This thesis introduces a Time-Predictable Java Chip-Multiprocessor. It is
a homogeneous chip-multiprocessor based on a Java processor core, an im-
plementation of a Java Virtual Machine in hardware. It features a high-
performance embedded system for Java real-time applications. This chapter
describes the motivation for this project. Furthermore, an overview of the
project’s major contributions to the field and an outline of the thesis are
given.

1.1 Motivation

Today embedded systems are omnipresent in modern society and play an
important role in our lives. According to [2], it has been estimated that 99%
of all processors aim at the embedded systems market. Turley [16] states
that only about 2% of microprocessors are used for personal computers.
Embedded devices include household appliances like dish washers or coffee
machines, consumer electronic devices like MP3-players or digital cameras.
Telecommunication applications like personal digital assistants, cell phones,
or networking appliances like switches or routers are further examples. The
automotive industry is another key driver of the embedded system market.
Today, every car contains from about 40 up to 70 electrical control units
[3, 10]. All these applications represent only a random selection of the highest
growing segment in the computing market.

1



Chapter 1

1.1.1 Real-Time Embedded Systems

Real-time embedded systems are embedded systems with timing require-
ments. An accurate definition of a real-time computer system can be found
in [7] p. 2:

A real-time computer system is a computer system in which the
correctness of the system behavior depends not only on the logical
results of the computations, but also on the physical instant at
which these results are produced.

A real-time computer system has to produce logically correct results within
a specified period of time. If a correct computation result is late, it will be
considered useless. In case of a hard real-time system, a late computation
may cause a critical system failure leading to disastrous consequences possi-
bly endangering human life. A soft real-time system can tolerate results that
occasionally miss their deadlines. The system still produces correct results
[2], but accompanied by an inferior service quality (e.g. flickering of a user
interface display).

Real-time embedded systems often have to handle concurrent tasks, such as
communication with various peripheral systems, computing values for a con-
trol loop, or responding to external events. A natural way to handle these
concurrent jobs is to split them up into individual tasks. A task is classified
a hard real-time task, if a missed deadline may result in a catastrophe [2].
Every hard real-time system contains at least one so-called hard real-time
task. Typical examples are embedded devices used in industries like auto-
motive and rail traffic, medicine, avionics, industrial automation, or nuclear
power plants.

Many embedded systems are used for applications that prioritize real-time
behavior over processing power. Such real-time systems must undergo a
timing analysis. Therefore, the worst-case execution time (WCET) of each
application task in the system has to be a known factor. Only if these upper
bounds are calculable can the task set be analyzed for schedulability on a
given processor.

1.1.2 Worst-Case Execution Time

The WCET is the amount of time a task eventually needs to execute under
worst-case conditions on a given processor. In [17], Wilhelm et al. define the
goal of WCET analysis concerning the upper bounds of execution time thus:

1. they have to be safe, and

2
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Measured execution times

time

BCET

Possible execution times

WCET

Distribution 
of time

0

Safe 
WCET 
bound

Unsafe 
WCET 
bound

Figure 1.1: Example of safe upper execution time bounds.

2. should be as tight as possible.

The calculated upper time bounds have to be safe in order to ensure hard
real-time behavior; otherwise, unpredictable system reactions could put the
mission at risk, leading to serious consequences. Moreover, the upper bounds
should be as tight as possible to keep the overestimation low in order to
conserve resources.

Figure 1.1 shows the variable execution times of a sample program. Possi-
ble execution times include the best-case execution time (BCET) and the
WCET. Additionally, measured execution times are shown. The goal of
WCET analysis is to find the WCET itself, or an upper bound that is safe
and as tight as possible. Unsafe WCET bounds are smaller estimates than
the WCET. All upper bounds larger than the WCET are safe. The larger
they are, the higher the overestimation of the WCET.

There are three different methods to estimate the WCET of a given task: by
measurement, static analysis, or a hybrid approach combining both methods.
A WCET analysis by measurement gauges the execution time of a program
code using various input data. The estimates are easy to obtain because
the analysis is performed on the actual hardware. Therefore, it is especially
useful if average-case performance is of interest. A large drawback of the
measurement-based method is that the measured WCET result does not
reliably confirm that the worst-case program path has been triggered [4], as
shown in Figure 1.1.

The objective of a static WCET analysis is to find the maximum execution
path and the WCET of a program. It provides a safe upper bound by ana-
lyzing the program before runtime, independent of any input values. Even
though this method requires an elaborate creation of a precise processor

3
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model, it is the only possibility to obtain a validated upper bound of the
application code. Therefore, this analysis method is especially suitable for
safety-critical systems.

A hybrid WCET analysis approach starts with a static analysis of the pro-
gram. The code is split into partitions. Execution times from these code
fragments are derived by measurement on real hardware. Finally, these ex-
ecution times are added to the static analysis model, which calculates the
WCET result. No processor model is needed like it is in the static analysis,
but safe WCET bounds cannot be guaranteed.

In summary, measurement and hybrid-based analysis can be sufficient for
soft real-time systems, but the author believes that static analysis should
become the conventional approach to modern hard real-time systems.

1.1.3 Chip-Multiprocessors

Modern applications demand ever-increasing processing power. They act as
main drivers for the semiconductor industry. For over 35 years, transistors
have been getting faster and clock frequency has adapted accordingly. Ad-
ditionally, the number of transistors on an integrated circuit at a given cost
doubles every 24 months, as described by Moore’s Law [9]. The availability of
more transistors facilitated an instruction-level parallelism (ILP) approach,
which was the primary processor design objective between the mid-1980s
and the start of the 21st century. According to [6], processor designers are
now reaching the limits of exploiting ILP efficiently. Unfortunately, semi-
conductor technology has also reached its apex in recent years because of
theoretical physical limits. As a result, the frequency, which used to increase
exponentially, has leveled off [8].

According to [6], chip-multiprocessors (CMP) are the future in performance
enhancement. The CMP technology integrates two or more processing units
and a sophisticated communication network into a single integrated circuit.
A major advantage of this approach is that any progress in processing power
would not be accompanied by an increase in hardware complexity of single
processors. Consequently, several processing units coexist on an integrated
circuit, utilizing billions of transistors efficiently. According to [18], CMPs
combine the significant demands of embedded systems: increased perfor-
mance, lower power consumption, and cost efficiency.

1.1.4 Java Technology

Traditionally, real-time applications have been designed using assembly lan-
guages. Due to hardware advancements and increasing program complex-
ity in embedded system design, a higher level of abstraction was needed.

4
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Subsequently, the C programming language was introduced. More recently,
embedded systems have been designed using the C++ programming lan-
guage, because of its object-oriented feature and several enhancements of C.
The increasing size and complexity of today’s applications make ever higher
demands on the design. The cost of debugging and maintaining the code
increases continuously. In summary, the productivity suffers from low-level
programming languages.

Java [5] has proven its success in the field of web, desktop and mobile appli-
cations. This high-level, object-oriented language has its advantages in the
ease of program reuse, robustness, security, and portability. Java does not
suffer the pitfalls of the C-based programming languages, e.g. the manual
allocation and deallocation of memory or the use of pointers. Originally,
the Java platform was not intended for use in real-time systems. The Real-
Time Specification for Java (RTSJ) [1], submitted in 1998 and approved in
2002 by the Java Community Process, defines how real-time behavior can
be achieved within the Java programming language. An update proposal
(JSR-282) improves the RTSJ and includes new enhancements. A further
specification for safety-critical Java (JSR-302) is expected soon. It will guar-
antee that Java-based applications can be certified under the safety-critical
development standard in aviation DO-178B level A [11] and other safety
critical standards for software.

A project called Java environment for parallel real-time development (JEOP-
ARD) [14] exemplifies the large interest in real-time Java for multicore sys-
tems. The consortium of this European Commission funded project, con-
sisting of ten academic and industrial partners, aims at the development of
an independent software interface for Java real-time multiprocessor systems.
This project uses the proposed processor architecture for the CMP platform
evaluation.

The advantages of Java compared to low-level programming languages can
be easily outlined from two points of view. From the manager’s point of
view, Java use shortens the system’s time to market, because of the pro-
grammer’s productivity increase. Additionally, Java developers are a dime
a dozen compared to experts developing systems consisting of microproces-
sors running real-time operating systems. That combination requires great
expertise in low-level embedded system programming. From the developer’s
point of view, Java is considered a simple and easy-to-use programming lan-
guage compared to C or C++. A large advantage is the automatic memory
allocation and garbage collection, which often introduces failures in C-type
programs. Large applications are much easier to develop, maintain, and de-
bug. Furthermore, its object-oriented programming model favors reusability.

The Java optimized processor (JOP) [12, 13] is an implementation of the
Java Virtual Machine (JVM) in hardware. JOP translates Java bytecodes
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CPU CPU CPU

Main Memory

System Bus

Figure 1.2: Shared memory multiprocessor.

into its own instruction set called microcode. These microcode instructions,
implemented in hardware, are executed by the stack architecture. This pro-
cessor has been designed from scratch to provide a time-predictable execution
environment for embedded real-time systems.

1.2 Problem Definition and Objectives

According to [6], two tightly linked major multiprocessor system models ex-
ist, the shared memory model and the distributed shared memory model. The
core of the shared memory model is a global physical memory accessible to all
processors. Multiple CPUs are connected to the memory via a system bus.
This architecture enables simple data communication by accessing shared
data objects of the common memory. A multiprocessor based on this model
is called a symmetric (shared-memory) multiprocessor (SMP), because all
processors have symmetric access to the shared memory (see Figure 1.2). It
offers uniform memory access times for all CPUs.

In contrast, the distributed shared memory model implements a physically
distributed memory system. It consists of multiple independent processing
nodes with local memory modules, which are connected by an interconnec-
tion network. Each CPU can access its own local memory very quickly,
but the time it takes to access a memory word located at a distant pro-
cessing node is much longer. Therefore, this model is called non-uniform
memory access (NUMA) architecture and is less appropriate for use in a
time-predictable CMP. This thesis investigates SMP architectures.

A fundamental problem in parallel SMP computing is the access of multiple
CPUs to the shared memory. A memory arbiter is needed to resolve con-
current access. For use in a time-predictable system, the realization of this
memory arbitration mechanism presents two closely related challenges:

6



Introduction

• Synchronization of memory access

• Timing analysis of memory access

The arbiter controls the memory access of multiple CPUs to the shared
memory. Naturally, if one CPU is accessing the memory, no other CPU
can access it simultaneously. They are forced to wait until the currently
accessing CPU has completed its memory transfer. In this case, a memory
arbiter resolves access conflicts by serializing the read and write operations
of the CPUs. The access order is determined by the implemented arbitration
algorithm.

In uniprocessor systems, only one processor accesses the memory and the
WCET of a memory access can be predicted if memory access latency is
predetermined by the memory technology used. However, tasks running
on a CMP on different CPUs influence each others’ execution times when
accessing a shared resource [15], e.g. a shared memory. Therefore, the in-
terdependencies between task execution times have to be removed. A well
designed arbitration algorithm is needed to limit the WCET of a task run-
ning on a CPU, even though tasks executing on other CPUs may also access
the main memory. Consequently, an analysis of WCET bounds is possible.

The objectives of this thesis can be summarized as follows:

• Design and implementation of a homogeneous chip-multiprocessor with
global shared memory

– based on Java technology
– with time-predictable execution times, if memory provides pre-

dictable latencies
– verified by a prototype implementation in field-programmable gate

array (FPGA) technology

• Adaptation of a WCET analysis tool tailored to the CMP

• Comparison and evaluation of different CMP configurations with re-
spect to

– real-time performance (WCET)
– average-case performance (average-case execution time - ACET)

1.3 Contributions

This thesis presents a novel Java chip-multiprocessor with a new WCET
analysis method that actually makes possible a timing analysis for homoge-
neous multiprocessor systems with a shared memory. The above mentioned
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challenges and objectives are addressed in this thesis. The major contribu-
tions are as follows:

• Time-Predictable Multiprocessor Design

The proposed Java chip-multiprocessor is designed for maximum time
predictability, where simple and accurate WCET analysis is more im-
portant than good average-case performance. Additionally, tight WCET
bounds have been a design goal. The CMP architecture is based on
multiple time-predictable Java processors and a shared memory. The
global physical memory, accessible to all processors, stores all instruc-
tions and data. A memory arbiter controls the memory access of mul-
tiple CPUs. Synchronization guarantees coordinated access to shared
objects among several processors. All components are interconnected
with a System-on-Chip (SoC) bus. This CMP operates without caching
shared data objects, therefore an identical data perspective is ensured
for all CPUs throughout the execution of an application. Consequently,
hardware demanding cache coherence mechanisms can be avoided. The
proposed multiprocessor is tailored to utilize the multi-threaded nature
of real-time applications.

• Memory Arbitration

A memory arbiter is responsible for controlling the memory access of
multiple CPUs to the shared memory. Naturally, if one CPU is ac-
cessing the memory, other CPUs must not do so at the same time.
They are forced to wait until the currently accessing CPU has com-
pleted its memory transfer. In this case, a memory arbiter resolves
access conflicts by serializing the read and write operations of different
CPUs.

In multiprocessor systems, tasks are running on different CPUs and
influence each others’ execution times when accessing a shared mem-
ory. Therefore, an arbitration algorithm is necessary, which is able to
limit the WCET of a task running on a CPU, even though tasks exe-
cuting on other CPUs may also access the main memory. A time-sliced
arbiter that divides the memory bandwidth among the CPUs avoids
interferences between task execution times. Consequently, an analysis
of tight WCETs is rendered possible.

• Prototype Implementation

A prototype implementation enables CMP architecture validation. Two
different hardware platforms have been used for evaluation purposes.
They use two different FPGA technologies and have different memory
bandwidth capacities. An integration of up to 8 cores could be verified
using several different benchmarks.
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One of this paper’s major contributions is the implementation of three
different arbitration policies: a fixed priority, a fair-based, and a time-
sliced arbiter. They provide a basis for the comparison of arbitration
policies with respect to WCET and average-case performance. Further-
more, several system components had to be designed and implemented,
e.g. a synchronization process, and a CMP boot-up sequence.

• Static WCET Analysis

Static WCET analysis finds the worst-case execution time of a given
program code for a specific processor model. Overestimation should
be kept to a minimum. In a CMP system, tasks running on different
CPUs shall not influence each others’ execution times when accessing
the shared memory. The WCET analysis is primarily dependent on
the memory arbiter. In this paper, a static timing analysis approach
of each arbitration policy is presented. Some of them turn out not
to be viable for hard real-time systems because of their unacceptable
WCET results. Only timing analysis using a time-sliced arbiter leads
to realistic and viable WCET bounds.

One contribution of this thesis is the enhancement of JOP’s WCET
analysis tool for use with multiprocessor systems. The tool can be
configured for analysis of different hardware platforms and system con-
figurations.

• Performance Comparison

An implementation of a soft multiprocessor core in an FPGA holds
several advantages: ease of rapid prototyping, high configuration and
simple verification potential of particular components. Different CMP
configurations are evaluated by varying the number of processors, their
instruction cache sizes, the memory bandwidth, and arbitration poli-
cies. In our experiments, their average-case performance is compared
by running different benchmarks on real hardware. Furthermore, CMP
versions are compared to a complex Java processor.

1.4 Thesis Outline

The next four chapters of the thesis present the published results of peer-
reviewed papers presented at international conferences. These papers appear
as individual chapters. Each paper consists of an abstract, an introduction,
a related work section, and the main research findings. Each article was
written as an individual publication, therefore, a few statements may appear
repetitive.
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Time Predictable CPU and DMA Shared Memory Access

Christof Pitter and Martin Schoeberl. Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL 2007). Amsterdam, Nether-
lands, August 2007, pages 317-322.

Chapter 2 describes the starting point of my research. This paper evaluates
two different timing analysis approaches of a system consisting of one CPU
and a direct memory access (DMA) controller. The first implementation of
a fixed priority arbiter is responsible for controlling the memory access of
both processing units. The DMA controller can be modeled to appear as
a hardware-based real-time task which accesses the memory with a regular
pattern. Therefore, its WCET is known and the task can be easily integrated
into the schedulability analysis. A novel WCET approach describes how
each memory access (an occurring read or write access) of the DMA task
can be included into the WCET of the application task. Consequently, the
application task’s WCET increases, but the DMA task can be omitted from
the schedulability analysis. Experiments showed that this new approach
leads to tighter response times and saves more processing resources for the
CPU. In summary, this paper shows that it is possible to analyze the timing
behavior of a system consisting of a CPU and a hardware task with a known
access pattern both accessing a shared memory.

Towards a Java Multiprocessor

Christof Pitter and Martin Schoeberl. Proceedings of the 5th International Work-
shop on Java Technologies for Real-Time and Embedded Systems (JTRES 2007).
Vienna, Austria, 2007, pages 144-151.

Chapter 3 introduces a novel Java multiprocessor architecture for embed-
ded systems. This paper explains why a shared memory model is preferred
to a distributed shared memory model for time-predictable multiprocessors.
The proposed CMP design consists of a number of Java optimized processor
(JOP) cores. Based on the work described in Chapter 2, several improve-
ments on the fixed priority arbiter ensure a solution for simultaneous access
of multiple CPUs to the shared main memory. Furthermore, the synchro-
nization of shared data objects is examined. Another interesting aspect of
a CMP system, the startup or boot-up, is described in detail. The first
FPGA prototype using multiple JOP cores verifies the correct concurrent
execution of application tasks. Finally, CMP versions made up of two/three
JOPs enable a performance comparison between a single JOP and the CMP
versions by running real applications on hardware. The resulting speed-ups
encouraged further investigation into the proposed CMP architecture.
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Performance Evaluation of a Java Chip-Multiprocessor

Christof Pitter and Martin Schoeberl. Proceedings of the International Symposium
on Industrial Embedded Systems (SIES 2008). Montpellier, France, June 2008,
pages 34-42.

Chapter 4 evaluates the Java CMP system with respect to average-case per-
formance. Different hardware configurations with varying instruction cache
sizes, number of processors, and memory bandwidth are compared. An im-
plementation of a fair-based arbiter guarantees fair memory access among the
CPUs. Experiments measure the performance by running three benchmarks
on two different FPGA platforms: an embedded industry application, a com-
putationally intensive matrix multiplication, and a synthetic benchmark that
continuously accesses a shared data structure. Compared to Chapter 3, one
of the prototype boards allows for an integration of up to eight CPUs. Per-
formance results show that a multiprocessor version of a simpler and smaller
architecture is more efficient (performance/die area) for parallel workloads
than a complex Java processor.

Time-Predictable Memory Arbitration for a Java Chip-Multi-
processor

Christof Pitter. Proceedings of the 6th International Workshop on Java Technolo-
gies for Real-Time and Embedded Systems (JTRES 2008). Santa Clara, California,
2008, pages 115-122.

Based on the findings of Chapter 2 and 3, this paper proposes a real-time
CMP system that allows WCET analysis of tasks running on a homogeneous
Java CMP. The core of this CMP is a time-sliced arbiter that divides the
memory access bandwidth into equal time slots, one for each CPU. Conse-
quently, WCETs of Java bytecodes can be analyzed depending on the size of
the time slot, number of CPUs in the system and memory access time. An
adapted WCET analysis tool for use with a CMP system can utilize these
results and generates temporal upper bounds for application tasks. A real-
world application task is used to compare analyzed results with measured
execution times.

Further Analysis and Evaluation

Chapter 6 is based on a submitted paper called A Real-Time Java Chip-
Multiprocessor. This chapter is dedicated to compare and evaluate CMPs
using implemented arbitration policies (fixed priority, fair-based, and a time-
sliced policy) with respect to their real-time and average-case performance.
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Various CMP configurations are evaluated using a larger application base
than described in previously presented chapters.

Conclusion and Outlook

Chapter 7 concludes this thesis by giving a systematic summary of the re-
search process. It recapitulates the main findings of the conducted experi-
ments. Additionally, it provides some further ideas for future research.
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Abstract

In this paper, we propose a first step towards a time predictable computer ar-
chitecture for single-chip multiprocessing (CMP). CMP is the actual trend in
server and desktop systems. CMP is even considered for embedded real-time
systems, where worst-case execution time (WCET) estimates are of primary
importance. We attack the problem of WCET analysis for several processing
units accessing a shared resource (the main memory) by support from the
hardware. In this paper, we combine a time predictable Java processor and
a direct memory access (DMA) unit with a regular access pattern (VGA
controller). We analyze and evaluate different arbitration schemes with re-
spect to schedulability analysis and WCET analysis. We also implement the
various combinations in an FPGA. An FPGA is the ideal platform to verify
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the different concepts and evaluate the results by running applications with
industrial background in real hardware.

2.1 Introduction

This paper presents a hard real-time system consisting of a hard real-time
application running on a time predictable Java Optimized Processor (JOP)
[10] and an additionally direct memory access (DMA) unit with a regular
access pattern. This unit is represented by a video graphics array (VGA)
controller. Both the CPU and the DMA unit share the main memory of the
system. Meeting the deadlines of the tasks of the real-time application is of
utmost importance. Therefore, the task set of the system requires a timing
validation by schedulability analysis.

A real-time computer system has to produce logical correct results within a
specified period of time. If a correct result of a computation is late, the result
is considered useless. Such real-time systems (RTS) or safety-critical systems
have to handle concurrent tasks, such as communication, calculating values
for a control loop, user interface and supervision in embedded systems. A
natural way to handle these concurrent jobs is to split them up into individual
tasks. Every hard real-time system contains at least one so-called hard real-
time task. A task is classified a hard real-time task when a missed deadline
may cause a critical failure of the system. Non safety-critical tasks in such a
system are soft real-time tasks. If a deadline is missed, the system will still
produce correct results [4] but with degraded service.

Safety-critical systems must be predictable in the time domain. It is of
utmost importance to be able to analyze the maximal time or WCET of the
task. If and only if these upper bounds can be calculated, the schedulability
analysis can be performed. They are necessary to test whether a task set
can be scheduled on the target system or not [8].

There exist two possibilities for modeling and implementing the RTS consist-
ing of the application running on the CPU and the DMA controller sharing
the main memory:

• DMA as soft real-time task

• DMA as hard real-time task

In the first approach, the task of the DMA controller is represented as a
soft real-time task. As a consequence, some interference (e.g. flickering on
the VGA display) may occur when the deadline of the DMA is violated.
Hence, the DMA task performs in a best-effort manner and can be excluded
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from schedulability tests. Increasing the buffer size in the DMA controller
can help to support a smooth communication between the shared memory
and the DMA controller. Nevertheless, this kind of a system is of minor
importance because hard RTSs are the target of this paper.

In the second attempt the DMA task as well as the hard real-time application
running on the CPU has to meet its deadline. As a consequence, the system
contains the application hard real-time tasks and the memory-streaming hard
real-time task that are executed simultaneously. Although a VGA display is
usually not accounted as a hard real-time task, it serves as a good example
demanding a constant amount of data within a known period of time. In the
future, the VGA will be replaced by another CPU.

The rest of the paper considers the second approach (hard RTS) and is
structured as follows. Section 2.2 presents the related work. In Section 2.3,
we explain the two basic options of analyzing the behavior of the RTS and
describe how schedulability tests are carried out. Section 2.4 describes the
JopVga system and the worst-case analysis results of several experiments. At
the end, it discusses the acquired outcome of the paper. Finally, Section 2.5
concludes the paper and gives guidelines for future work.

2.2 Related Work

In [2] Atanassov and Puschner describe the impact of dynamic RAM refresh
on the execution time of real-time tasks. The use of DRAM memory in RTSs
involves a major drawback because these memory cells have to be periodically
refreshed. During the refresh, no memory request can be processed. As
a consequence, the request is delayed and the execution time of the task
increases.

Many researchers in the real-time community have turned their attention
to timing-analysis tools described by Puschner and Burns [8]. The problem
is that the available results for uniprocessors are not applicable to modern
processor architectures [8, 12]. Multiprocessor systems consisting of shared
memories and busses are hard to predict. In addition, the WCET of each
individual task depends on the global system schedule.

Even though so much research has been done on multiprocessors, the tim-
ing analysis of the systems has been neglected. An example represents the
scalable, homogeneous multiprocessor system by Gaisler Research AB. It
consists of a centralized shared memory and up to four LEON processor
cores that are based on the SPARC V8 architecture [5]. This embedded sys-
tem is made available as a synthesizable VHDL model and therefore is well
suited for SoC designs. LEON is introduced for European space projects as
well as for military and demanding consumer applications. Nevertheless, no
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literature concerning WCET analysis regarding the multiprocessor has been
found.

Another example depicts the ARM11 MPCore [1]. It introduces a pre-
integrated symmetric multiprocessor consisting of up to four ARM11 mi-
croarchitecture processors. The 8-stage pipeline architecture, independent
data and instruction caches and a memory management unit for the shared
memory make a timing analysis difficult.

We believe that the impact of WCET of real-time tasks sharing a main
memory has not received enough coverage in literature yet. This paper is
a first step towards a time-predictable multiprocessor. Providing WCET
guarantees and reliable schedules for a multiprocessor system becomes a
great challenge.

2.3 CPU/DMA shared memory access

In Section 2.1, we presented two possibilities of integrating the DMA task
into the system. Either the DMA controller represents a soft real-time task
or it is considered a hard real-time task. This paper addresses the second
solution.

2.3.1 Implementation of the DMA hardware controller

The DMA controller accesses the shared memory to read or write data au-
tonomously of the CPU. The volume of the data transfer depends on the
I/O-device. Therefore, the application of the device defines the quantity of
memory requests within a fixed period of time. Two different options are
evaluated to implement the memory access scheme of the DMA controller
(see Figure 2.1):

1. The DMA controller accesses the shared memory in a blocked scheme.
This approach is used for a fast copy of large blocks of the main memory
to another device. Assume this task has the smallest period of all tasks
within the system. Hence using fixed-priority scheduling [7] it has the
highest priority. After the DMA task is completed, the other tasks of
the CPU get permission to access the shared memory depending on
their priority. This approach is a good representation of a multimedia
task, such as streaming data, performed via DMA.

2. The DMA controller accesses the memory in a timely spread scheme
denotes the other extreme. It generates a smaller period because all
memory requests are timely spread on the original period. The highest
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Figure 2.1: The blocked and the spread memory access scheme of the DMA
task.

priority of this task is required. If this task does not hold the highest
priority, the system will not function correctly because the DMA task
will starve when the CPU’s software tasks make extensive memory
requests.

2.3.2 Task vs. WCET based Analysis

There exist two possibilities to analyze the timing behavior of the RTS:

• DMA access represents an additional real-time task

• DMA access is included in the WCET analysis of each individual ap-
plication task

The first method considers the DMA task in the schedulability analysis.
Hence, all the tasks of the application running on the CPU and the DMA
task have to be considered. This simple task set consists of independent
periodic tasks with fixed priority. The DMA controller must have the highest
priority. The resulting task set can be used for schedulability tests to analyze
the timing behavior of the application running on the CPU.

The second approach models the RTS in a different way. The DMA con-
troller and the CPU are accessing shared memory. We are interested in
the WCET of the application in spite of the memory communication of the
DMA. Therefore, the blocking delay, caused by each possible read or write
access of the DMA controller, has to be added to the WCET estimations of
the real-time tasks running on the CPU. The results serve bounded WCET
estimates of each individual task. As a consequence, the WCET values for
the tasks increase, but the DMA task can be omitted from the schedulability
analysis.
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2.3.3 Schedulability Analysis

The major goal of this paper is the analysis of the timing behavior of the
RTS depending on the different options of the memory access of the DMA
controller.

Assume that the CPU of the system runs several real-time tasks that are
accessing the shared memory. Additionally the DMA controller requests
data of the main memory with a regular access pattern. Therefore, the
system consists of the DMA task and the tasks of the real-time application
running on the CPU. Using fixed-priority scheduling [7], the priorities of the
tasks are ordered rate monotonic. The smaller the period the higher is the
priority of the task. In order to ensure that all tasks can be completed within
their deadlines schedulability tests are carried out.

Utilization-based schedulability test

In [7] it has been shown that a simple schedulability test can be carried out
by taking the utilization of the several tasks into account. The utilization
is the result of dividing the computation time by the period of the task. If
Equation 2.1 holds then all tasks will meet their deadlines. Otherwise, the
task set may or may not fail at run-time. Ci denotes the computation time
of the task τi, Ti is the period of task τi and N stands for the number of the
tasks to schedule.

N∑
i=1

(Ci/Ti) ≤ N(21/N − 1) (2.1)

If the task set fails, the utilization-based schedulability test cannot guarantee
that all tasks will meet their deadlines. Nevertheless, the task set may not
fail at run-time.

Response time analysis

A more exact schedulability test by Joseph and Pandya is presented in [6].
The result of this response time analysis for a set of independent tasks pro-
vides a necessary and sufficient condition. If the result is positive the task
set will be schedulable at run-time. The task set will not be schedulable if
the test fails. The worst-case response time Ri of each individual task is cal-
culated and then compared with the task’s deadline or period respectively.
The equation for the response time is:

Ri = Ci +
∑

j∈hp(i)

dRi/Tje · Cj (2.2)
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The expression hp(i) denotes all tasks with a higher priority than the task
τi. The smallest Ri that solves Equation 2.2 is the worst-case response time
of τi. A recurrence relationship can be formed that allows the calculation of
the response time [3]:

wn+1
i = Ci +

∑
j∈hp(i)

dwn
i /Tje · Cj (2.3)

The solution is found when wn+1
i = wn

i . Then w
n
i represents Ri. If one task

i has a larger response time than its deadline (or period Ti) the task set
cannot be scheduled.

2.4 Evaluation

This section provides an overview of the JopVga system and the correspond-
ing sample application. Furthermore the timing behavior of the RTS is
analyzed. The results of the experiments and calculations are compared and
classified.

2.4.1 JopVga System

The JopVga system is the hardware used for our experiments. It consists of
a time-predictable processor called JOP [10], a VGA controller, an arbiter,
a memory interface and an SRAM memory. JOP, the VGA controller, the
memory arbiter and the memory interface are implemented on an Altera Cy-
clone FPGA. As illustrated in Figure 2.2 the external memory is connected
to the memory interface. This 1 MByte 32 Bit external SRAM device repre-
sents the shared memory of the JopVga system. A SoC bus, called SimpCon
[11], connects JOP and the VGA controller with the arbiter. The arbiter is
connected via SimpCon to the memory interface.

The arbiter is responsible for setting up the communication between the
shared memory and the VGA controller and JOP respectively. It schedules
the memory communication of both masters. The shared main memory of
the system is divided into two segments: 640 KByte are dedicated to JOP
and the remaining 384 KByte are used as frame buffer.

Both JOP and the VGA controller run at a clock frequency of 80 MHz,
resulting in a period of 12.5 ns. The SRAM-based shared memory has an
access time of 15 ns per 32 bit word. Hence every memory access needs at
least 2 cycles. At the moment the arbiter as well as the VGA controller
is not capable of using the pipelining approach of the memory access that
is introduced by the SimpCon interface [11]. Each memory request of JOP
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Figure 2.2: JopVga system.

takes 4 cycles and every VGA request takes 3 cycles. The bandwidth of the
memory (BWmem) calculates to:

BWmem = 4Byte/25ns = 160MByte/s (2.4)

The VGA controller uses a VGA resolution of 1024 · 768 pixels with each
pixel consisting of 4 bits. As a consequence the memory used for the VGA
display results in 384 KByte (1024 ·768 ·0.5 Byte). The horizontal frequency
is 60 kHz, which results in a horizontal period of about 17 µs per line and
17 ns per pixel. The vertical frequency is 75 Hz. Therefore the bandwidth
used by the VGA calculates to:

BWvga = (128 · 4Byte)/17ns = 30.12MByte/s (2.5)

Dividing BWvga by BWmem results in 18.83% of the memory bandwidth for
the VGA controller. JOP has a bandwidth of 80 MByte/s which results in
50% of the memory bandwidth available.

Application

In order to estimate the worst-case execution time of a RTS all real-time
tasks have to be taken into account. In the following the task set illustrated
in Table 2.1 represents the periods and the computation times of the system
under test. It consists of the VGA task τvga and two tasks running on JOP
τlift and τkfl. The priority of 3 depicts the highest prior task. This simple
task set illustrates an RTS that is further analyzed using schedulability tests.
The VGA task can be modeled as a periodic task with the highest priority
and a fixed runtime. The computation time Cvga is calculated by multiplying
128 memory accesses times 3 cycles. Using a clock frequency of 80 MHz
results in 4.8 µs. Tvga is predetermined by the horizontal period of 17 µs.

Two real-world examples with industrial background represent the two tasks
running on JOP. Lift is a lift controller used in an automation factory. Kfl is
one node of a distributed RTS to tilt the line over a train for easier loading
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Table 2.1: Task set.
τ T (µs) C (µs) Priority

τvga 17 4.8 3
τlift 500 162.7 2
τkfl 3000 782.2 1

and unloading of goods wagon. Both applications consist of a main loop
that is executed periodically. In our experiments we use both applications
to represent two independent real-time tasks. The WCET of these two tasks
are inferred from the WCET analysis tool [12]. In the second column of
Table 2.2 the WCET estimates of the two tasks are given in clock cycles.
Multiplying those estimates with the clock period result in τlift = 162.7 µs
and τkfl = 782.2 µs.

2.4.2 Analysis using the Task Approach

In this section the VGA controller represents another real-time task of the
system that is taken into account in the analysis of the timing behavior. Both
the blocked memory access scheme and the spread memory access scheme,
as described in Section 2.3.1, are evaluated.

Blocked

Using the values of Table 2.1 the utilization of each individual task is cal-
culated dividing the computation time Ci by the corresponding period Ti

resulting in Uvga = 28.24%, Ulift = 32.54% and Ukfl = 26.07%. Applying
the utilizations to Equation 2.1 results in an overall utilization of 86.85%.
The overall utilization may not be more than 3(21/3 − 1) = 78.00% because
three tasks are involved. The condition does not hold and consequently this
task set fails the utilization-based schedulability test. It cannot be guaran-
teed that all tasks meet their deadlines. Therefore, a response time analysis
is carried out next.

The response time Rvga is the same as the computation time because this
task has the highest priority.

Rvga = Cvga = 4.8µs (2.6)

The response time of the next lower prior task τlift, denoted as Rlift, is the
addition of the computation time Clift and the time of interference of all
higher prior tasks (in that case the interference of τvga).
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wn+1
lift = Clift + dwn

lift/Tvgae · Cvga (2.7)

The response time is calculated using the values from Table 2.1. The response
time of Rlift is found when wn+1

lift equals to wn
lift. It is 229.9 µs which is less

than Tlift. Finally, Rkfl has to be calculated. Rkfl is the addition of the
computation time Ckfl and the time of interference of the two higher priority
tasks τvga and τlift. The result of Rkfl is 1999.4 µs. All the response times are
smaller than their appropriate periods and hence the response time analysis
has a positive outcome. This response time calculation ensures that the
tasks will meet their deadlines because the successful analysis is sufficient
and necessary [4] even though the utilization-based schedulability test could
not be passed.

Spread

The VGA task accesses the memory in a timely spread scheme. The new
values for the period and the computation time of τvga are calculated by
dividing the original period Tvga = 17µs of Table 2.1 by the cycle time of
12.5ns. It results in 1360 cycles. We need 128 memory requests for each line
on the VGA. Hence Tvga = 10 cycles and Cvga = 3 cycles. The remaining
80 cycles are not used. Hence the values for the VGA task change to Tvga =
125 ns and Cvga = 37.5 ns.

Using these values for JOP’s tasks and the values for τlift and τkfl the
utilization-based schedulability test logically results in a similar overall uti-
lization of 88.61% as described in the previous section. A small divergence
between the results can be explained by the remaining 80 cycles that are not
used in this memory access scheme. Again, the utilization test is negative.

Therefore, the response time analysis is used. Rvga is equal to Cvga = 37.5
ns. Rlift calculates to 232.5 µs and Rkfl = 2279.6 µs. The positive result of
the response time analysis shows that the task set can be scheduled. As in
the utilization-based test, the remaining 80 cycles affect the results of Rlift

and Rkfl. Both response times are larger than in the blocked memory access
scheme. As a consequence, the spread memory access scheme is worse than
the blocked scheme.

2.4.3 Analysis using the WCET method

The second approach to include the DMA unit in the schedulability analysis
is to model the DMA access in the WCET values for memory access of the
software tasks. Each instruction that accesses memory has to include the
maximum delay due to a possible memory access by the DMA unit.
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Table 2.2: WCET estimates given in clock cycles.
App JOP only JOP with VGA Increase
Kfl 62573 83131 33%
Lift 13016 16118 24%

Table 2.3: Task set for the WCET method.
τ T (µs) C (µs) Priority

τlift 500 201.5 2
τkfl 3000 1039.1 1

Blocked

Using the blocked memory access scheme and the WCET method for analysis
is not a reasonable approach. One would have to account the delay of the
whole block of memory requests of the VGA to each memory access of JOP.
That results in a very conservative WCET for each memory access of JOP.
Hence, it is not further investigated.

Spread

The WCET analysis tool [12] can be parameterized with respect to the mem-
ory access time (the wait states for memory read, memory write, and the
cache load). The memory access from the VGA unit takes 2 cycles plus 1
cycle in the arbiter to switch between the two masters. Therefore, we add 3
cycles to the wait states.

Table 2.2 shows the WCET values in clock cycles for different applications
for the stand-alone processor and when adding the DMA device. We see an
increase of 24% to 33% of the WCET for the tasks.

These values are conservative as each memory access is modeled with the
maximum blocking time. For a single memory access (such as bytecode
getfield) this is the best we can do without further analysis of the instruc-
tion pattern. However, for cache loading we could include the access pattern
(in our example one access per 10 clock cycles) into the analysis of the cache
load time. Previously experiments showed that the load time for the method
cache produces most of the memory requests. Consequently, with inclusion
of the access pattern into the WCET analyzer tool, we can provide tighter
WCET values. This is a new approach to WCET analysis, as in all cur-
rent approaches the WCET analysis is independent from the schedulability
analysis. Schedulability analysis is usually the next step and assumes known
WCET values.
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Table 2.4: Comparison of the response times of the task approach with
blocked DMA (C1 and R1) and the WCET method with spread DMA access
(C2 and R2).

τ T (µs) C1 (µs) R1 (µs) C2 (µs) R2 (µs)

τvga 17 4.8 4.8 – –
τlift 500 162.7 229.9 201.5 201.5
τkfl 3000 782.2 1999.4 1039.1 1845.1

The computation time values of Table 2.3 are calculated by multiplying the
WCET estimates of τlift and τkfl from Table 2.2 with the clock period of
12.5 ns. The values for those two tasks are the basis for the schedulability
test. The utilization-based test results in 74.94%. Only two tasks are taken
into account and hence this result is less than 2(21/2 − 1) = 82.84%. Even
though this test is positive, we also investigate the response time analysis.

The response time analysis for the WCET estimates of the system with the
VGA results in tighter response times than in the analysis using the task
approach of Section 2.4.2. Rlift is the same as Clift = 201.5 µs and Rkfl

calculates to 1845.1 µs.

2.4.4 Discussion

Table 2.4 shows the results of the evaluation for both analyses: column 3 and
4 (C1 and R1) for the DMA task approach (showing the better solution with
blocked DMA mode) and column 5 and 6 (C2 and R2) for the DMA-WCET
approach. We can see that both τlift and τkfl have a higher WCET (C2)
in the DMA-WCET approach. As we do not have to include the VGA task
in the response time analysis, the response time R2 is less for both tasks
despite the fact that C2 is higher.

The result shows that the inclusion of the DMA access into the WCET anal-
ysis provides tighter worst-case response times than considering the DMA
as an additional task. The difference can be explained as follows: most in-
structions on JOP do not access the main memory; they use the internal
stack cache for data. The pipeline is filled from the instruction cache most
of the time. In the task approach, all instructions are blocked by the VGA
task. The WCET analysis is more exact as it delays only those instructions,
which do actually access the main memory and the cache load events.

To validate our calculations and measurements we run all mentioned task sets
on real hardware and the JopVga system respectively. No deadline violation
of any task could ever be observed when performing these experiments.
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Table 2.5: Comparison of the system performances in iterations/s.
App JOP only blocked VGA spread VGA

Kfl 12163 11562 11628
Lift 9643 9194 9356

2.4.5 Benchmarks

Although the solution is aimed at RTSs, i.e. a time predictable system, the
average case performance is still interesting. The system under test is the
JopVga system. The FPGA platform enables us to compare the performance
of the system with an enabled VGA controller versus one with a disabled
VGA controller. The results are achieved by running real applications in real
hardware. For our measurements, we use the embedded Java benchmark
suite JavaBenchEmbedded as described in [9]. The result is iterations per
second, which means a higher value illustrates a better performance. In
Table 2.5, the benchmark results are shown.

The Kfl application is slowed down just by 4.4% due to the memory con-
tention with the spread VGA memory access scheme. The WCET estimates
of the same task resulted in an increase of up to 33% (see Table 2.2). An-
other benchmark called Lift experiences an even smaller slowdown of 3.0%
due to the contention with the VGA task. The WCET estimates of the same
task resulted in an increase of 24%.

To recapitulate, although we use about one third of the memory bandwidth
for the DMA unit both applications suffer less than that one third in their
execution time. This result is a promising indication that the memory system
is not the bottleneck of the single CPU with the VGA. There is enough
headroom for further devices. The result is promising for our further plans
on a CMP version with several JOPs sharing a single memory.

2.5 Conclusion and Future Work

In this paper, we have analyzed a system with a processor and a DMA unit
with respect to WCET and schedulability. We have found two ways to model
the influence of the DMA unit to the application tasks: 1.) the DMA access
as an additional real-time task and 2.) include the DMA memory access in
the WCET analysis of the individual application tasks. We found that the
second approach results in a tighter estimation and enables more processing
resources for the application.

We will investigate the possibility to include a known memory access pattern
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into the WCET analysis of the cache loading to find tighter WCET estimates.
On a cache load, we can guarantee that only a maximum number of memory
loads can conflict with the DMA unit. The next step is the application of
our findings to a system with several CPUs – the CMP JOP system. In that
case, the memory access pattern is less predictable. Therefore, the shared
resource can only be modeled by the WCET approach.

Bibliography
[1] ARM. ARM11 MPCore Processor, technical reference manual. Available at:

http://www.arm.com, August 2006.

[2] Pavel Atanassov and Peter Puschner. Impact of dram refresh on the execution
time of real-time tasks. In Proc. IEEE International Workshop on Application
of Reliable Computing and Communication, pages 29–34, Dec. 2001.

[3] Neil C. Audsley, Alan Burns, Robert I. Davis, Ken Tindell, and Andy J.
Wellings. Fixed priority pre-emptive scheduling: An historical perspective.
Real-Time Systems, 8(2-3):173–198, 1995.

[4] Alan Burns and Andrew J. Wellings. Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. International com-
puter science series. Addison-Wesley, third edition, 2001. Revised edition of
Real-time systems and their programming languages, 1990.

[5] SPARC International Inc. The SPARC Architecture Manual: Version 8. Pren-
tice Hall, Englewood Cliffs, New Jersey 07632, 1992.

[6] Mathai Joseph and Paritosh K. Pandya. Finding response times in a real-time
system. Comput. J, 29(5):390–395, 1986.

[7] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[8] Peter Puschner and Alan Burns. A review of worst-case execution-time anal-
ysis. Journal of Real-Time Systems, 18(2/3):115–128, May 2000.

[9] Martin Schoeberl. Evaluation of a Java processor. In Tagungsband Austrochip
2005, pages 127–134, Vienna, Austria, October 2005.

[10] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time
Systems. PhD thesis, Vienna University of Technology, 2005.

[11] Martin Schoeberl. SimpCon - a simple and efficient SoC interconnect. Available
at: http://www.opencores.org/, 2007.

[12] Martin Schoeberl and Rasmus Pedersen. WCET analysis for a Java processor.
In JTRES ’06: Proceedings of the 4th international workshop on Java tech-
nologies for real-time and embedded systems, pages 202–211, New York, NY,
USA, 2006. ACM Press.

28



3
Towards a Java Multiprocessor

Christof Pitter and Martin Schoeberl
Institute of Computer Engineering,
Vienna University of Technology,

Austria

Proceedings of the 5th International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2007). Vienna, Austria, 2007,
pages 144-151.

Abstract

This paper describes the first steps towards a Java multiprocessor system
on a single chip for embedded systems. The chip multiprocessing (CMP)
system consists of a homogeneous set of processing elements and a shared
memory. Each processor core is based on the Java Optimized Processor
(JOP). A major challenge in CMP is the shared memory access of multiple
CPUs. The proposed memory arbiter resolves possible emerging conflicts
of parallel accesses to the shared memory using a fixed priority scheme.
Furthermore, the paper describes the boot-up of the CMP. We verify the
proposed CMP architecture by the implementation of the prototype called
JopCMP. JopCMP consists of multiple JOPs and a shared memory. Finally
yet importantly, the first implementation of the CMP composed of two/three
JOPs in an FPGA enables us to present a comparison of the performance
between a single-core JOP and the CMP version by running real applications.
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3.1 Introduction

Modern applications demand ever-increasing computation power. They act
as the main drivers for the semiconductor industry. For over 35 years, the
speed of transistors has become faster and the frequency of the clock rate ac-
cordingly. Additionally the number of transistors on an integrated circuit for
a given cost doubles every 24 months, as described by Moore’s Law [20]. The
availability of more transistors has been used by introducing the instruction-
level parallelism (ILP) approach, which was the primary processor design
objective between the mid-1980s and the start of the 21st century. Accord-
ing to [9], we are reaching the limits of exploiting ILP efficiently. Unfor-
tunately, semiconductor technology has also run across limitations in recent
years because of the theoretical limits informed by the theory of physics, e.g.,
electrical signals cannot travel faster than the speed of light. As a result,
the frequency that used to increase exponentially has leveled off [17].

To sustain the rapid growth of computation power new system architecture
advancements have to be made. According to [9] the future direction of
computer systems is chip multiprocessing (CMP). Such a system combines
two or more processing elements and a sophisticated communication network
on a single chip. A major advantage of this approach is that progress in
computation power does not come along with an increase of the hardware
complexity of the single processors. However, the shared components like
memory and I/O of a multiprocessor system produce new challenges that
have to be addressed.

Real-time programs are naturally multi-threaded and a good candidate for
on-chip multiprocessors with shared memory. The Java virtual machine
(JVM) thread model supports threads that share the main memory. There-
fore, a multiprocessor JVM in hardware is a viable option. The basis for the
CMP architecture has been set with the Java Optimized Processor (JOP)
[23, 24, 25]. JOP is the implementation of a JVM in hardware. The used
application model is described in [22, 28] and is based on the Ravenscar Ada
profile [7]. In order to generate a small and predictable processor, several
advanced and resource-consuming features (such as instruction folding or
branch prediction) were omitted from the design of JOP. The resulting low
resource usage of JOP makes it possible to integrate more than one processor
in a low-cost field programmable gate array (FPGA).

In this paper, we propose a CMP architecture consisting of a number of
JOPs and a shared memory. The shared memory is uniformly accessible
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by the homogeneous processing cores. An arbitration unit takes care of
conflicts due to parallel memory requests. Furthermore, we describe the
implementation of the caching and synchronization mechanisms. Addition-
ally we present JopCMP, the first prototype of the CMP with JOP cores.
JopCMP is composed of multiple JOP cores, integrated in an FPGA, and an
external memory. A novel memory arbiter controls the memory access of the
various JOPs to the shared memory. It resolves possible emerging conflicts
of parallel accesses to the shared memory. In comparison to existent mem-
ory arbiters of system-on-chip (SoC) busses (e.g. AMBA [3]), the proposed
arbitration process is performed in the same cycle as the request happens.
This increases the bandwidth and eases the time predictability of each mem-
ory access. Therefore, the implementation of the JopCMP represents a first
step towards a time predictable multiprocessor. The ultimate goal of our
research work is a multiprocessor for safety-critical applications. Moreover,
an acceptable performance compared with mainstream non real-time Java
systems is an objective.

The rest of the paper is structured as follows. Section 3.2 presents related
work. In Section 3.3, we describe the proposed CMP architecture and go
into details of the memory model and caching. Additionally the issue of syn-
chronization is examined. Section 3.4 describes the first implementation of
the JopCMP system, including the boot-up sequence and the shared mem-
ory access management of the CMP. Section 3.5 presents experiments with
the JopCMP prototype. We compare the performance of the CMP against
a single processor. Finally, Section 3.6 concludes the paper and provides
guidelines for future work.

3.2 Related Work

In this paper, we argue that the replication of a simple pipeline on a chip is
a more effective use of transistors than the implementation of super-scalar
architectures. The following two subsections are about the progress made in
CMP.

3.2.1 Mainstream Multiprocessors

Due to the power wall [9], the trend towards CMP can be seen in mainstream
processors. Currently, three quite different architectures are state-of-the-art:

1. Multi-core versions of super-scalar architectures (Intel/AMD)

2. Multi-core chip with simple RISC processors (Sun Niagara)
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3. The CELL architecture

Mainstream desktop processors from Intel and AMD include two or four
super-scalar, simultaneous multithreading processors, which are just replica-
tions of the original, complex cores. Sun took a completely different approach
with its Niagara T1 [15]. The T1 contains eight processor cores. Each core
consists of a simple six-stage, single-issue pipeline similar to the original
five-stage RISC pipeline. The additional pipeline stage adds fine-grained
multithreading. The first version of the chip contains just a single floating-
point unit that is shared by all eight processors. The design is targeted to
server workloads.

The Cell multiprocessor [10, 13, 14] is an example of a heterogeneous mul-
tiprocessor system. The Cell contains, besides a PowerPC microprocessor,
eight synergistic processors (SP). The bus is clocked at half of the proces-
sor speed (1.6 GHz). It is organized in four rings each 128 bit wide, two
in each direction. A maximum of three non-overlapping transfers on each
ring are possible. The SPs contain on-chip memory instead of a cache. All
memory management, e.g. transfer between SPs or between on-chip memory
and main memory, is under program control, which makes programming a
difficult task.

All of the above CMP architectures are optimized for average case perfor-
mance and not for worst-case execution time (WCET). The complex hard-
ware complicates the timing analysis. Our overall goal is a homogeneous
CMP design that is analyzable with respect to WCET. The paper presents
the first step towards this.

3.2.2 Embedded Multiprocessors

In the embedded system domain, two different CMP architectures are dis-
tinguished:

1. heterogeneous multiprocessors

2. homogeneous multiprocessors

Multiprocessors with a heterogeneous architecture combine a core CPU for
controlling and communication tasks and additional digital signaling pro-
cessing elements, interface processors or mobile multimedia processing units.
These units are connected together using multi-level buses or switches. Some
functional units may have their own individual memories along with shared
memory structures. They are often tailored for specific applications. Some
examples of heterogeneous multiprocessors include the Nomadik [1] from
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ST designed for mobile multimedia applications, the Nexperia PNX-8500 [8]
from Philips aimed at digital video entertainment systems, or the OMAP
family [19] from TI designed to support 2.5G and 3G wireless applications.

Gaisler Research AB designed and implemented a homogeneous multiproces-
sor system. It consists of a centralized shared memory and up to four LEON
processor cores that are based on the SPARC V8 architecture [11]. This
embedded system is available as a synthesizable VHDL model. Therefore, it
is well suited for SoC designs. We could not find any literature concerning
WCET analysis regarding the multiprocessor.

Another example is the ARM11 MPCore [4]. It introduces a pre-integrated
symmetric multiprocessor consisting of up to four ARM11 microarchitecture
processors. The 8-stage pipeline architecture, independent data and instruc-
tion caches, and a memory management unit for the shared memory make a
timing analysis difficult.

The two leaders of the FPGAmarket Altera and Xilinx both provide software
tools and intellectual property (IP) processors to design CMP systems [2,
5]. The Nios II CPUs depict the processing units of the multiprocessor
architecture from Altera. It is easy to create a CMP architecture using
the GUI interface of the System-on-a-programmable-chip (SOPC) builder, a
tool of the Altera Quartus II design suite. Nevertheless, the dependence on
specific IP cores is unavoidable when designing such a system.

In this paper, we concentrate on homogeneous multiprocessors consisting
of two or more similar CPUs sharing a main memory. Even though much
research has been done on multiprocessors, the timing analysis of the systems
has so far been disregarded.

3.3 CMP Architecture

According to [12, 30], two different possibilities of a tightly coupled mul-
tiprocessor system exist (see Figure 3.1). The core of the Shared Memory
Model is a global physical memory equally accessible to all processors. These
systems enable simple data sharing through a uniform mechanism of reading
and writing shared structures in the common memory. This multiprocessor
model is called symmetric (shared-memory) multiprocessor (SMP) because
all processors have symmetric access to the shared memory. This architec-
ture is known as UMA (uniform memory access).

In contrast, the Distributed Shared Memory Model implements a physically
distributed-memory system (often called a multicomputer). It consists of
multiple independent processing nodes with local memory modules, con-
nected by a general interconnection network like switches or meshes. Com-
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Figure 3.1: CMP Memory Models: a) Shared memory model, b) Distributed
shared memory model.

munication between processes residing on different nodes involves a message-
passing model that requires extensive additional data exchange. The mes-
sages have to take care of data distribution across the system and manage
the communication. This architecture is called non-uniform memory access
(NUMA) because the time for a memory access depends on the location of
the memory word.

For time-predictability, the NUMA architecture is less appropriate. Each
CPU can access its own local memory very fast but the time to access a
data word of another memory in the distributed system takes much longer.
Consequently, the memory access times can vary extensively. In the SMP
architecture, each memory request takes the same time independent of the
CPU. Additionally, no message-passing communication system that could
limit the bandwidth of the interconnection is needed. Therefore, the SMP
architecture is the best choice for analyzing tight bounds of a memory access.

3.3.1 JVM Memory Model

The JVM defines various runtime data areas that are used during the execu-
tion of a program [18]. Some of these data areas are shared between threads,
while others exist separately for each thread.

Stack: Each thread has a private stack area that is created at the same time
as the thread containing a frame with return information for a method,
a local variable area, and the operand stack. Local variables and the
operand stack are accessed as frequently as registers in a standard
processor. According to [23], a Java processor should provide some
caching mechanism of this data area.
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Heap: The heap is the data area where all objects and arrays are allocated.
The heap is shared among all threads. A garbage collector (GC) re-
claims storage for objects. The GC of the proposed CMP runs on a
designated processor.

Method area: The method area is shared among all threads. It contains
static class information such as field and method data, the code for
the methods and the constant pool. The constant pool is a per-class
table, containing various kinds of constants such as numeric values or
method and field references. The constant pool is similar to a symbol
table. Part of this area, the code for the methods, is very frequently
accessed (during instruction fetch) and therefore is a good candidate
for caching.

The specification of the JVM mandates that the heap and the method area
be shared among the threads. This memory model favors the shared global
memory model as the adequate solution for the multiprocessor using JOP
cores. One single shared address space is accessible from all processors.

3.3.2 CMP Cache Memory

Many SMP architectures support caching of private and shared data [9].
Since many memory requests can be served by the caches, the number of
accesses to the main memory decreases. Nevertheless, caching of shared data
may result in cache coherence problems in a multiprocessor environment.
Assume shared data are cached and each processor has a copy of a data
word in its own cache. If one processor changes the data word, the other
processor will not notice that the data word has become invalid. Hence, two
different CPUs could see different values in their caches of exactly the same
memory location. There exist cache coherence techniques, e.g. snooping
protocols or directory based mechanisms, to secure that no cache coherence
problems can arise. Nevertheless, these cache coherence mechanisms require
processing overhead and latencies.

In the JVM, each thread has its own JVM stack. The thread very often
accesses this memory area. Therefore, in a CMP system it is cached in a
so-called stack cache of the corresponding CPU. No cache conflicts can occur
because this data is private for each thread.

The method area of the JVM is shared among all the threads. Nevertheless,
it is cached in the method cache [23] of each CPU. This area is a read-only
area. Consequently, no cache coherence conflicts can occur.

The heap of the JVM is the memory region that is not cached, as data
cache WCET analysis is problematic. The heap contains all objects that are
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created by a running Java application. Therefore, the heap represents the
memory area used for communication between the multiple CPUs of a CMP.

To summarize, the CMP architecture operates without any cache coherence
mechanisms, as cache coherence conflicts are avoided by our CMP architec-
ture.

3.3.3 Synchronization

Synchronization is an essential part of a multiprocessor system with shared
memory. The CMP synchronization support has two important responsibil-
ities:

• Protect access to shared objects

• Avoid priority inversion

The first responsibility of synchronization is to protect access to shared ob-
jects. As already mentioned in Section 3.3.2, the heap inside the JVM con-
tains the objects that are shared between threads. If multiple threads need
to access the same objects or class variables concurrently, their access to the
data must be properly managed. Otherwise, the program will have unpre-
dictable behavior. Therefore, the JVM associates a lock with each object
and class. Only one thread can hold the lock at any time. When the thread
no longer needs the lock, it returns it to the JVM. If another thread has
requested the same lock, the JVM passes the lock to that thread. The tradi-
tional approach implementing such objects centers around the use of critical
sections: only one process operates on the object at a given time.

JOP, the implementation of the JVM in hardware, solves this problem by a
straightforward approach. Suppose several threads are executed depending
on the priority of each thread. If one thread accesses a shared object and
enters a so-called critical section, it will have to hold exclusive ownership.
Therefore, JOP provides two software constructs called monitorenter and
monitorexit. In hardware, the synchronization mechanism is implemented
by disabling and enabling interrupts at the entrance and exit of the monitor.
This simple form of synchronization disallows any context switches until the
thread leaves the critical section. Even though this is a viable option for
single processor systems, the price is high for this approach. Consequently,
the processor cannot interleave programs in different critical sections. This
may lead to a degradation of the execution performance. Therefore, a couple
of constructs to implement critical sections in hardware [29] exist, e.g. the
atomic Read-Modify-Write operation based on a test and set instruction.
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Especially in the CMP, the synchronization solution with deactivation and
activation of interrupts does not suffice. Mutual exclusion cannot be guar-
anteed because we cannot prevent other CPUs from running in parallel.
Threads of different processors may simultaneously access the shared object.
Therefore, a synchronization unit is essential for the CMP. If one processor
wants to access a shared object, it will have to request a lock. Either the
CPU receives the lock or the request is rejected because another CPU is using
the object. With the grant of the lock, the processor resides in the critical
section and cannot be interrupted. After the processor does not access the
shared object anymore, it will release the lock immediately. Another CPU,
which is waiting for the lock, will get the permission to access the memory
object. The first implementation will make only one global lock available for
the heap. Later we will investigate to use multiple locks. The access of each
object of the heap will be controlled by its corresponding lock. Though the
introduction of multiple locks will increase concurrency, it may induce the
risk of deadlock see [32]. A deadlock is a condition in which two or more
threads cannot advance because they request a lock that is held by another
thread.

The second responsibility of the CMP synchronization support is the avoid-
ance of priority inversion. If a low priority thread holds a shared resource, a
high priority thread cannot access the same resource. Consequently, the high
priority thread cannot interrupt the low priority thread until the low prior-
ity thread releases the lock. Assume one or more medium priority threads
preempt the low-priority task. Consequently, the high priority thread can
be delayed indefinitely, because the medium priority jobs will take prece-
dence over the low priority task and the high priority task as well. An
unbounded priority inversion and in fact no time predictability would be
the consequence. Solutions for priority inversion for single processor systems
include the priority ceiling protocol or the priority inheritance protocol [16].
The work of Wang et al. [31] presents two algorithms of priority inheritance
locks for multiprocessor real-time systems. If a low priority processor locks
a high priority processor, the low priority processor will inherit the highest
priority of the waiting processors. Hence, no medium priority processors get
the chance of interrupting the low priority processor and consequently lock
the high priority processor for an indefinite time. The time, the high priority
CPU has to wait is bounded.

Even though we know that hardware assisted transactional memory models
could be a promising approach for our multiprocessor, we concentrate on
memory locks for synchronization in this paper. Future work will investigate
the use of transactional memory for the CMP.

37



Chapter 3

Figure 3.2: Time predictable CMP architecture.

3.3.4 CMP using JOPs

The proposed chip multiprocessing system (see Figure 3.2) uses the SMP
architecture. It consists of a shared memory that is uniformly accessible
by a number of homogeneous processors. The JOP cores are connected
to the shared memory via a memory arbiter that is further explained in
Section 3.4.2. This arbiter has to control the memory access of the various
JOPs to the shared memory. It resolves possible emerging conflicts of parallel
accesses to the shared memory dependent on the priority of the CPU that
requested access. Each CPU is assigned a unique priority in the system.

Each core contains a local method and stack cache. Furthermore, the de-
picted CMP architecture shows a scheduling and synchronization unit. The
preemptive scheduler is assigned to distribute the real-time tasks among the
processors. Synchronization has the responsibility to coordinate access to
the shared objects by a mutual exclusion mechanism. Due to different prior-
ities of the multiple processors, a low priority processor shall not be able to
block a high priority processor indefinitely. Therefore, this priority inversion
problem is solved by using priority inheritance locks for shared objects.

On-chip IO devices, such as a controller for real-time Ethernet or a real-time
field bus, may be mapped to shared memory addresses and are connected
via the memory arbiter.
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3.4 Implementation

In the following section, we describe our implementation of a CMP system
based on JOP. Multiple cores are connected via a low-latency arbiter to a
shared main memory. We subsequently refer to the prototype as JopCMP.

3.4.1 JopCMP Boot-up Sequence

One interesting issue for a CMP system is the question how the startup or
boot-up is performed. Before we explain the CMP solution, we need an un-
derstanding of the boot-up sequence of JOP in an FPGA. On power-up, the
FPGA starts the configuration state machine to read the FPGA configura-
tion data either from a Flash or via a download cable (for development).
When the configuration has finished an internal reset is generated. After
that reset, microcode instructions are executed starting from address 0. At
this stage, we have not yet loaded any application program (Java bytecode).
The first sequence in microcode performs this task. The Java application
can be loaded from an external Flash or via a serial line (or USB port) from
a PC. The microcode assembly configured the mode. Consequently, the Java
application is loaded into the main memory. To simplify the startup code
we perform the rest of the startup in Java itself, even when some parts of
the JVM are not yet setup.

In the next step, a minimal stack frame is generated and the special method
Startup.boot() is invoked. From now on JOP runs in Java mode. The
method boot() performs the following steps:

• Send a greeting message to stdout

• Detect the size of the main memory

• Initialize the data structures for the garbage collector

• Initialize java.lang.System

• Print out JOP’s version number, detected clock speed, and memory
size

• Invoke the static class initializers in a predefined order

• Invoke the main method of the application class

The boot-up process is the same for all processors until the generation of
the internal reset and the execution of the first microcode instruction. From
that point on, we have to take care that only one processor performs the
initialization steps.
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All processors in the CMP are functionally identical. Only one processor
is designated to boot-up and initialize the whole system. Therefore, it is
necessary to distinguish between the different CPUs. We assign a unique
CPU identity number (CPU ID) to each processor. Only processor CPU0 is
designated to do all the boot-up and initialization work. The other CPUs
have to wait until CPU0 completes the boot-up and initialization sequence.
At the beginning of the booting sequence, CPU0 loads the Java application.
Meanwhile, all other processors are waiting for an initialization finished sig-
nal of CPU0. This busy wait is performed in microcode. When the other
CPUs are enabled, they will run the same sequence as CPU0. Therefore, the
initialization steps are guarded by a condition on the CPU ID.

In our current prototype, we let all additional CPUs also invoke the main
method of the application. This is a shortcut for a simple evaluation of
the system1. In a future version, the additional CPUs will invoke a system
method to be integrated into the normal scheduling system.

3.4.2 Memory Arbiter

The general structure of a system-on-a-chip (SoC) architecture combines
SoC modules with a data exchange interconnection. A CMP is formed of
several processors connected to a shared memory module. Some sort of SoC
interconnection has to enable data exchange between the SoC modules.

One major design decision regards the type of interconnection that is used.
Our system requires a fast, point-to-point connection between each CPU
and the memory. We still have to keep in mind that a parallel access to the
memory is not possible and would lead to a conflict. Therefore, some kind of
synchronization mechanism has to take care of this problem. Additionally,
each memory access should be as fast as possible and time predictable.

Communication on SoC is an active research area with focus on network-on-
chip (NoC) [6]. NoC is not the appropriate architecture for JopCMP. First,
the interconnection of JopCMP does not have to be a network because our
system consists of a couple of masters (JOP) and only one slave (shared
memory). The communication between the masters takes place using shared
memory and not packet oriented messages. Consequently, there is no use of a
network connecting all modules with each other. A NoC usually introduces
long latencies that cannot be tolerated for our memory system (we avoid
data caches to achieve better temporal predictability). Furthermore, the
network contentions within the routers may cause varying latencies [6] that
make WCET analysis more complex and conservative.

1In the main method we execute different applications based on the CPU ID.
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For the JopCMP the simple SoC interconnect (SimpCon) [26] is used to con-
nect the SoC modules. This synchronous on-chip interconnection is intended
for read and write transfers via point-to-point connections. The master starts
the transaction. The read or write request, as well as the address and data of
the slave, is valid for one cycle. If the slave needs the address or data longer
than a cycle, it has to store it in a register. Consequently, the master can
continue to execute its program until the result for a read is needed. The
slave informs the master by a signal called rdy_cnt when the requested data
will be available. In addition, this signal also serves as an early notification
of the completion of the data access. This mechanism allows the master
to send a new request before the former has been completed. This form of
pipelining permits fast data transfer.

SimpCon is well suited for on-chip point-to-point connections. Nevertheless,
the specification does not support synchronization of connecting multiple
masters to a shared slave. Therefore, we introduce a central arbiter. The
SimpCon interface can be used as interconnect between the masters and
the arbiter and the arbiter and the slave. In this case, the arbiter acts as
slave for each JOP and as master for the shared memory. The arbitration
and signal routing is completely transparent for the masters and the slaves.
No bus request (as e.g., in AMBA [3]) phase has to precede the actual bus
transfer. Without contention, the arbiter introduces zero cycle latency for a
transaction.

The arbiter is designed for the SimpCon interface. In the JopCMP archi-
tecture, it plays the important role of controlling the memory access of the
various CPUs to the shared memory. It resolves possible emerging conflicts of
parallel accesses to the shared memory. The implemented arbitration scheme
uses fixed priority. As already mentioned in Section 3.4.1, each CPU is as-
signed a unique ID. This CPU ID establishes the priority for each CPU. The
CPU with the lowest CPU ID has top priority. The memory arbiter dissolves
any simultaneous memory accesses by determining an order of precedence.

Zero cycle latency is the design objective of the memory arbiter. Assume
that two processors want to access the shared memory at the same clock
cycle. Consequently, the arbiter has to decide which CPU is granted the
request. This arbitration process is performed in the same cycle as the
request happens. Consequently, the time to access the memory is reduced
and the bandwidth increases extensively. Whether this form of zero cycle
arbitration would scale to a large number of processors is an open question
and the topic of future work.

In [21] two different approaches of analyzing the timing behavior are com-
pared with respect to schedulability analysis and WCET analysis. The sys-
tem consists of a direct memory access (DMA) and JOP, both accessing a
shared memory using the proposed arbiter. Pitter and Schoeberl treat the
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Figure 3.3: Dual-core JopCMP system.

DMA task as the top priority real-time task with a regular memory access
pattern. The outcome of this paper shows that this arbiter allows WCET
analysis by modeling the DMA memory access into the WCET values of the
tasks running on JOP. Each memory access is modeled with the maximum
blocking time: three cycles of the DMA unit. In the JopCMP system, the
DMA unit is replaced by another JOP. Therefore, the blocking times can
be much higher; for example, because of a cache load. We will investigate
different approaches to solve this problem in our future work in order to
provide a time predictable shared memory access scheme.

3.4.3 JopCMP Prototype

The first prototype of the proposed CMP consists of multiple JOPs [23], the
proposed memory arbiter, a memory interface and an SRAM memory. Both
CPUs, the memory arbiter and the memory interface are implemented on
an Altera Cyclone FPGA. SimpCon [26], the SoC bus, connects the JOPs
with the arbiter. The arbiter is connected via SimpCon to the memory
interface. As illustrated in Figure 3.3 the memory interface connects the
external memory to the FPGA. This 1 MByte, 32-bit external SRAM device
represents the shared memory of the JopCMP.

The dual-core JopCMP runs at a clock frequency of 80 MHz, resulting in a
period of 12.5 ns per cycle. The SRAM-based shared memory has an access
time of 15 ns per 32-bit word. Hence, every memory access needs a minimum
of 2 cycles.

The JopCMP system features a couple of different I/O interfaces, such as a
serial interface, a USB interface and several I/O pins of the FPGA board.
Usually, the application pretends either one CPU owns the exclusive access
of the I/O ports, or more processors share I/O interfaces. The benchmarks
used for prototyping our JopCMP do not require I/O access of all CPUs.
Consequently, the top priority JOP holds the sole access to the I/O world.

To summarize, the CPUs share the main memory but only one JOP is able to
communicate with external devices. Despite this, the possibility of sharing
the I/O can be implemented using an arbitration unit for the I/O access.
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Table 3.1: Benchmark results in iterations/s for a single-core JOP at different
clock frequencies.

App 75 MHz 80 MHz 100 MHz
Kfl 13768 14667 18347
Lift 12318 13138 16425

3.5 Experiments

In this section, we provide performance measurements obtained on real hard-
ware. The FPGA platform enables us to compare the performance between
a single-processor system and the JopCMP system composed of multiple
JOP cores. The measured results are achieved by running real applications
in real hardware. We use the embedded Java benchmark suite called Jav-
aBenchEmbedded, as described in [23], for our experiments.

We make use of two real-world examples with industrial background herein
after referred to as Lift and Kfl to represent two independent tasks. Lift
is a lift controller used in an automation factory. Kfl is one node of a
distributed real-time system to tilt the line over a train for easier loading
and unloading of goods wagons. Both applications consist of a main loop
that is executed periodically. Only one task executes on a single CPU at a
given time in our experiments. We measure the execution in iterations per
second, which means that a higher value implies a better performance.

The baseline for the comparison is the performance of a single-core. Table 3.1
shows the performance numbers at different clock frequencies for the single-
core.

3.5.1 Comparison at CMP Frequency

In the first experiments, we compare JopCMP versions with two and three
cores against a single-core at the same clock frequency. Those measurements
provide insights how limiting the memory bandwidth is.

We start with a comparison of the performance measurements of a dual-core
JopCMP against the performance of a traditional single-core JOP. Both
systems run at the same clock frequency of 80 MHz. Running only one
task on JOP results in 14667 iterations/s for Kfl. Task Lift achieves 13138
iterations/s (as shown in Table 3.1).

Table 3.2 shows the benchmark results running two tasks simultaneously on
a dual-core JopCMP system at a frequency of 80 MHz. First, we measured
the execution by running two Lift tasks, one on each CPU. The speedup of
the overall system is calculated by dividing the sum of the performance of
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Table 3.2: Benchmark results in iterations/s of a dual JopCMP system at a
clock frequency of 80 MHz.

Processor JOP0 JOP1 JOP0 JOP1 JOP0 JOP1
Appl. Lift Lift Kfl Lift Lift Kfl
Result 12951 12951 14435 12374 12574 14296

both tasks by the performance of the task running on the single processor.
This calculates to

Speedupdualcore =
12951 + 12951

13138
≈ 1.97. (3.1)

Each task running on a different CPU executes 12951 iterations/s. The result
indicates that the two tasks do not access the memory very often in parallel.
Otherwise, the memory contention would reflect a difference between the
results. Additionally, each result does not diverge greatly from the result of
the single processor. The outcome of the experiment is that the JopCMP is
1.97 times faster than the single JOP for Lift both running at 80 MHz.

In the next experiment, the high priority JOP0 executes the Kfl task and
JOP1 runs the task Lift. The results show that the task running on CPU0
is slowed down just by 1.6% comparing to the execution of the single task
on the single JOP. Furthermore, the low priority CPU1 executes the main
loop of Lift 12374 times per second. This task is slowed down by 5.8% due
to the memory contention with the second JOP.

We exchange the tasks between the CPUs for a further experiment. Task
Lift experiences a decrease of 4.3% and task Kfl decreases by 2.5%. The
results of Table 3.2 indicate that task Lift experiences a larger slowdown
than task Kfl, irrespective whether it is executed on CPU0 or on CPU1.

In conclusion, the processing performance greatly increases due to the use
of two JOPs in the JopCMP system. The comparison of the measurements
between the dual-core and the single JOP shows, that each single task in
the JopCMP system experiences only a small slowdown in performance as
measured by iterations per second. The cause is the access contention to the
shared memory.

The maximum frequency of the tri-core JopCMP is 75 MHz. Therefore, we
measure the speedup of the CMP system compared to JOP running at a clock
frequency of 75 MHz. The Lift achieves 12318 iterations/s on JOP. Table 3.3
depicts the results of the CMP. Equation 3.2 presents the calculation of the
speedup. Only 7% slowdown relative to the theoretical maximum speedup
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Table 3.3: Benchmark results in iterations/s of a tri-core JOP system at a
clock frequency of 75 MHz.

Processor JOP0 JOP1 JOP2
Appl. Lift Lift Lift
Result 11736 11538 11260

of 3 indicates either a large headroom in the memory interface or that the
benchmark is actually small enough to fit into the method cache.

Speeduptricore =
11736 + 11538 + 11260

12318
≈ 2.80. (3.2)

3.5.2 Comparison Against a Single Core

As we see in Table 3.4 the maximum clock frequency depends on the number
of cores. For a fair comparison of the full system speedup, we have to take the
reduced clock frequency for JopCMP into account. Therefore, we compare
the dual- and tri-core speedup against a single-core where all designs are
clocked at their maximum frequency.

Equation 3.3 shows that the real speedup of a dual-core version of JOP,
measured with the benchmark Lift, against a 100 MHz single-core is about
58%.

Speedupdualcore =
12951 + 12951

16425
≈ 1.58. (3.3)

In the last experiment, we compare the performance of JOP with a tri-
core JopCMP system both running at their maximum clock frequencies.
JOP executes the Lift 16425 iterations/s at a clock speed of 100 MHz (see
Table 3.1). Table 3.3 shows the benchmark results running the Lift task
simultaneously on a tri-core JopCMP at the maximum frequency of 75 MHz.
The speedup of the tri-core system calculates to

Speeduptricore =
11736 + 11538 + 11260

16425
≈ 2.10. (3.4)

Even though the CMP runs at a reduced clock frequency of 75 MHz, the
tri-core JopCMP provides a 2.1 times better overall performance compared
to the traditional single-core JOP at 100 MHz.
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Table 3.4: Comparison of resource consumption between JOP and the
JopCMP versions.

Processor Resources Memory fmax
(LC) (KB) (MHz)

JOP 2815 7.63 100
Dual-core 5540 15.62 80
Tri-core 8219 23.42 75

To recapitulate, the performance measurements provide a promising indica-
tion that the memory system is not the bottleneck of the JopCMP. It seems
that there is enough headroom for further devices. As future research, we
will evaluate if the single cycle arbitration is worth the reduced clock fre-
quency or if a pipeline stage that introduces an additional cycle latency is
a better solution. Furthermore, we will evaluate the influence of different
arbitration schemes on the WCET of the individual tasks.

3.5.3 Resource Consumption

Finally, Table 3.4 shows the resource consumptions and the maximum fre-
quencies of a typical version of JOP and the JopCMP versions implemented
in an Altera EP1C12 FPGA. We can see the differences in the resource con-
sumptions by looking at the two basic structures of an FPGA, Logic Cells
(LC) and embedded memory blocks. The dual-core consumes roughly twice
as much of LCs and memory blocks as JOP. Nevertheless, only 46% of LCs
and 52% of memory blocks of the low-cost Cyclone FPGA are used. It runs at
a clock frequency of 80 MHz. The tri-core JopCMP runs at a maximum clock
frequency of 75 MHz. It requires 68% of the total LCs and 78% of the total
memory blocks available on the FPGA. Therefore, this low-cost FPGA does
not provide enough space to integrate additional JOPs. In summary, the ex-
perimental results and the resource consumptions of the JopCMP prototype
are encouraging. We can observe a slight degradation of the maximum clock
frequency when using more and more JOP cores due to the increasing com-
binational logic of the arbiter. Nevertheless, we will further evaluate CMP
implementations with additional JOPs sharing a single memory in future
work.

3.6 Conclusion

In this paper, we introduced a CMP architecture consisting of a number of
JOP cores and a shared memory. We demonstrated the effectiveness of the
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architecture by the first prototype of a Java multiprocessor called JopCMP.
Correct executions of real application tasks verified the implementation with
multiple JOP cores. Experiments showed the correct functioning of the im-
plemented boot-up and the memory arbiter. Measurements made a compar-
ison between a single JOP and the JopCMP possible, and endorsed further
pursuit of the CMP approach. Future research will show how the CMP sys-
tem will behave when integrating more than three processing cores in an
FPGA.

We have to admit, that the lack of the implementation of a synchronization
mechanism prevents more advanced experiments; not any with objects (e.g.
producer-consumer problem), shared by multiple processors, could be carried
out. This implementation of the combined synchronization mechanism and
priority inversion avoidance defines our future work. Additionally, we will
investigate real-time multiprocessor scheduling for the proposed CMP.

Furthermore, we will integrate the maximum latency due to collisions on
the memory into the WCET tool [27] as we have done for the simpler case
of DMA devices [21]. We will investigate the influence on the WCET with
different arbitration schemes.
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Abstract

Chip multiprocessing design is an emerging trend for embedded systems.
In this paper, we introduce a Java multiprocessor system-on-chip called
JopCMP. It is a symmetric shared-memory multiprocessor and consists of
up to 8 Java Optimized Processor (JOP) cores, an arbitration control de-
vice, and a global shared memory. All components are interconnected with
a system-on-chip bus.

This paper focuses on the performance evaluation of different hardware con-
figurations of the multicore system. Therefore, we vary the instruction cache
sizes, the number of processors and the memory bandwidth. Within our ex-
periments, we measure the performance by running three benchmarks on
real hardware: an embedded application from industry, a computationally
intensive matrix multiplication and a synthetic benchmark that continuously
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accesses a shared data structure. Two different field-programmable gate ar-
rays are used for the presented experiments.

Our results illustrate the promises and limits of the proposed multiprocessor
architecture concerning synchronization, memory bandwidth and caching.
Furthermore, we compare the performance and size of JopCMP with a com-
plex Java processor.

4.1 Introduction

It is expected that chip-level multiprocessing (CMP) will be the future path
of performance enhancements [10]. CMP technology integrates two or more
processing units and a sophisticated communication network into a single
integrated circuit (IC). In actual desktop and server architectures, two trends
can be seen: (1) integration of two to four out-of-order super-scalar CPUs
(Intel/AMD) on a single die or (2) integration of 8 very simple in-order
RISC pipelines (Sun’s Niagara [16] and IBM’s CELL [15]). According to [27],
multiprocessing is also common in embedded systems as it combines the goals
of increasing performance, lower power consumption and cost effectiveness.

In this paper, we propose a CMP architecture composed of multiple Java
Optimized Processor (JOP) cores and a shared memory. The shared memory
is uniformly accessible by the homogeneous processing cores. A system-
on-chip (SoC) bus connects the devices of the system. A fairness-based
arbitration unit takes care of memory contention due to parallel memory
requests; it employs a fair scheduling strategy, which divides the memory
access bandwidth into equal shares. In contrast to existent memory arbiters
of SoC buses (e.g. AMBA [6] or Avalon [3]), the proposed arbitration process
is performed in the same cycle as the request happens. This feature increases
the memory bandwidth.

JopCMP synchronizes the access of multiple CPUs to shared data struc-
tures by a global lock. Due to the implementation of JopCMP in field-
programmable gate array (FPGA) technology, we are able to modify the
number of processing cores easily. Additionally, the size of the instruction
cache of each processor can be configured. Hence, we are able to analyze the
behavior of JopCMP in detail. We use three benchmarks with different work-
load characteristics. A real-world application from industry – a lift controller
in an automation factory – represents a medium computationally intensive,
fully parallelized application without any accesses to shared data structures.
A matrix multiplication benchmark represents a computationally intensive
algorithm. This benchmark offers good potential for parallelism with low
synchronization overheads. The third benchmark, parallel access to a hash
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table, represents a workload with a high conflict on a shared data structure.
It will stress our current solution for the multiprocessor synchronization. The
results of the experimental measurements illustrate the promises and limits
of the proposed multiprocessor solution.

The rest of the paper is structured as follows. Section 4.2 presents related
work and delivers an insight into JOP. In Section 4.3, we describe the pro-
posed CMP architecture and the interconnection network. Furthermore, the
memory controller and the synchronization unit of JopCMP are summarized
concisely. Section 4.4 presents the evaluation method (benchmarks and hard-
ware platforms) and the benchmark results. Finally, Section 4.5 concludes
the paper and provides guidelines for future work.

4.2 Related Work

The embedded system domain distinguishes between two multiprocessor ar-
chitectures: heterogeneous multiprocessors and homogeneous multiproces-
sors. Heterogeneous multiprocessors are often tailored to specific features
of the application. The architecture of the system usually combines a core
CPU for controlling and communicating tasks and additional processing de-
vices for specific functions, i.e. digital signal processing elements, interface
processors or mobile multimedia processing units.

This paper concentrates on homogenous multiprocessors. These systems
combine a number of identical CPU cores. In the following sections, we
describe three embedded multiprocessor solutions and their interconnection
systems that are available in FPGA technology. We also provide an overview
of JOP, the processor used in our multiprocessor solution.

4.2.1 LEON

Gaisler Research AB designed and implemented a homogeneous multipro-
cessor system called LEON3-FT-MP [9]. It consists of a centralized shared
memory and four LEON3-FT processor cores that are based on the SPARC
V8 instruction set architecture [14]. Each CPU consists of a 7-stage pipeline
with separate 16 KB data and instruction caches, a memory management
unit, a floating-point unit and hardware support for multiplication and divi-
sion. All the CPUs, additional I/O controllers and the memory controllers
are connected using two advanced high-performance buses (AHB) of the
AMBA specification [7]. One AHB runs at the CPUs’ frequency of 266 MHz
and connects the processors with the memory controller of the shared mem-
ory. Additionally the high-speed AHB communicates with the low-speed
AHB (running at 133 MHz) using an AHB/AHB bridge. The low-speed
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AHB connects all other peripheral devices with lower speed requirements to
the system. The bus frequencies reported in [9] are estimations of a 0.13µ
ASIC implementation. A prototype in a Xilinx Virtex-4 can run at 40 MHz.

According to the AMBA specification, a CPU defines the role of a master
because it initiates the transactions with other components (slaves). The
pipelined AHB bus can integrate up to 16 masters into an SoC. An arbiter
controls the shared system bus. AHB specifies all interface signals between
the masters and the arbiter and the arbiter and the slaves. Even though
the specification of the arbitration protocol of the AHB is well defined, no
priority strategies or arbitration algorithms are specified. The Leon imple-
mentation of the AHB arbiter uses fixed priorities. Our proposed JopCMP
system includes several different arbiters. For this evaluation, we use a fair
arbitration algorithm. Without a fairness-based arbiter, a system consisting
of more than 4 CPUs will not exploit its performance. The Leon multi-
core system supports two operating systems: eCos and RTEMS. Software is
developed in C/C++.

4.2.2 MicroBlaze

MicroBlaze [29] based CMPs can be designed with the Xilinx Embedded De-
velopment Kit (EDK). MicroBlaze is a 32-bit reduced instruction set com-
puter (RISC) optimized for FPGA implementation. The pipeline length of
the CPU can be configured to either 3 or 5 stages. It implements the Har-
vard architecture with separate instruction and data buses. The CPU can be
tailored to the application needs (i.e. peripheral controllers or cache sizes).

Memory and peripheral devices are connected via the on-chip peripheral bus
(OPB) [12]. OPB is part of the bus hierarchy called CoreConnect [11], an
open standard for SoC communication proposed by IBM. Xilinx provides
an OPB bus arbiter [13, 28] that can integrate up to 16 masters into the
system. The available arbitration algorithms include fixed priority (FP) or
least recently used (LRU). A full-featured GNU tool chain is available for
software development in C/C++.

4.2.3 NIOS II

Altera’s Nios II [4] and the System-on-a-Programmable Chip (SOPC) Builder
[5] support the design and implementation of CMPs in Altera’s FPGA tech-
nology. The Nios RISC architecture implements a 32-bit instruction set
similar to the MIPS instruction set architecture. The sizes of its instruction
and data caches are configurable. Nios II can be customized to meet the
application requirements: three different models from non-pipelined up to
a 6-stage pipeline. Examples of customizable features are a floating-point
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unit, memory controllers and different communication controllers. Avalon [1]
is the SoC bus used by the SOPC Builder. It connects the master and slave
components to the System Interconnect Fabric. This System Interconnect
Fabric encapsulates all connection details from the user. While the Avalon
specification can be used freely, the System Interconnect Fabric is Altera’s
property.

For multiprocessor systems, the System Interconnect Fabric integrates an
arbitration module [2]. In contrast to traditional shared bus architectures,
the interconnection allows multiple masters to access different slaves simul-
taneously. This eliminates the bottleneck of one shared bus if one master
may access a slave and another master wants to access a different slave in
parallel. For a multiprocessor system where two or more masters frequently
access one slave (the shared memory), the System Interconnect Fabric pro-
vides no advantage. If several masters request data from the same slave,
an arbiter will determine which master will gain access. All other masters
are forced to wait. The arbitration logic can be configured in the SOPC
Builder. The arbitration schemes include fairness-based shares, round-robin
scheduling, burst transfers, and minimum share value. The Nios II system
supports the uClinux operating system and the C/C++ GNU tool chain is
available.

4.2.4 Java Optimized Processor (JOP)

The Java optimized processor (JOP) [22, 23, 24] is an implementation of
the Java Virtual Machine (JVM) in hardware. JOP translates the Java
intermediate bytecodes to its own instruction set called microcode. These
microcode instructions, implemented in hardware, are executed by the stack
architecture. The CPU has a 4-stage pipeline.

Each thread has a local stack area. This thread private data is accessed
very often. Therefore, JOP caches this data in a so-called stack cache [21].
Additionally, a kind of instruction cache (called method cache [20]) limits
the memory access frequency and increases the processing power. Complete
methods, shared among all the threads, are cached there. According to the
JVM specification [17], the heap stores the shared data of the VM. All objects
that are created by a Java application are stored on the heap. Caching of
these objects is not implemented. A typical JOP configuration contains the
CPU core, the method and stack cache, a memory interface and several I/O
controllers.

JOP is designed for embedded real-time systems where the analysis of the
worst-case execution time (WCET) of all threads is possible. Hence, a couple
of typical architectural advancements, used to increase the average processing
power, have been omitted. Examples include branch prediction or out-of-
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order execution. Nevertheless, JOP shows good average performance and
lower logic resources consumption in comparison to other Java processors.
Therefore, our Java multiprocessor system is based on JOP.

4.2.5 Discussion

According to [8], the inter-core communication in CMPs offers more band-
width than traditional backplane buses used for building traditional SMPs.
Additionally, the latency of a transfer is much lower on an SoC bus. The
described multiprocessors are still using backplane style buses that are not
appropriate for a SoC interconnection. Furthermore, there is no use for a
complex bus hierarchy in our design. Our system consists of a couple of
CPUs connected to a single shared memory. Therefore, our choice of the
interconnection network is the simple SoC bus called SimpCon [25], which
is further described in Section 4.3.2. Moreover, we use a fairness-based ar-
bitration algorithm. To our knowledge, Leon’s IP library does not include a
fair arbiter. A disadvantage of Nios II based multiprocessor systems is that
data cache coherency is not supported. The data caches are disabled for a
multiprocessor system. In our proposed solution, we limit data caching to
the thread private JVM stack.

JOP is open source and freely available for academic research. Every single
part of the processor core can be customized and configured. JOP is technol-
ogy independent (like LEON) and has been ported to FPGAs from Altera,
Xilinx, and Actel. This property avoids a lock-in to a single FPGA vendor,
as it is the case for MicroBlaze and Nios.

4.3 Overview of JopCMP

According to [27], a multiprocessor system consists of 3 major subsystems:
processing elements, memory and an interconnection network. JopCMP im-
plements the symmetric (shared-memory) multiprocessor (SMP) model [10].
JOPs provide the basis of the homogeneous CMP as depicted in Figure 4.1.
These processing elements perform computations in parallel. Instructions
and data are stored in a single shared memory. The interconnection network
is responsible to connect multiple processors with the memory. An arbiter is
part of this network and controls the memory access to the shared memory.
An SoC bus is used to connect the processing cores to the arbiter, and the
arbiter to the shared memory. The arbiter acts as slave for each JOP and
as master for the memory controller. We are convinced that synchronization
of shared data is a further major subsystem of an SMP. It is responsible to
coordinate access to shared objects. Following sections describe the elements
in more detail.
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Figure 4.1: Overview of JopCMP.

4.3.1 Memory Hierarchy

JOP’s memory hierarchy with its caches (see Section 4.2.4) and the shared
memory architecture fit very well to each other. JOP does not support
caching of Java objects. Hence, cache coherency and consistency issues can-
not arise. The instruction cache is read-only and therefore not an issue. The
stack cache contains only thread local data and no cache coherency protocol
(e.g. snooping) is needed. Avoiding such a protocol in an FPGA saves re-
sources and does not impair the maximum clock frequency of the CMP. Our
multicore solution avoids cache coherency conflicts by design.

4.3.2 Interconnection Network

The selection of the interconnection network topology is a major design
decision of a multiprocessor architecture. We use a SoC bus with a central
arbitration unit.

Traditionally, a bus is a set of wires that connects multiple masters and
multiple slaves of a system on a printed circuit board. A master initiates
each communication. All communication channels between the interfaces
of the exchanging devices represent the so-called backplane bus. The bus
arbiter implements a certain priority algorithm that controls this shared
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bus. If multiple masters request access to the bus, the arbiter will allocate
the shared bus resource to one master. All other masters are forced to wait.
Consequently, multiple masters cannot concurrently drive the bus.

The simple SoC interconnect (SimpCon) [25] is used to connect SoC compo-
nents on a single IC. This synchronous on-chip interconnection is intended
for read and write transfers via point-to-point connections. Only a master
can initiate a transaction via a write or a read request. In comparison to
other commonly used SoC buses like Avalon [2], this specification does not
work like a backplane bus. The master’s driven control, address, and data
lines are only valid for a single clock cycle. A slave has to register any signals
(e.g., the address) that are needed for several clock cycles. Consequently, the
master can continue to execute its task until the data of an access is needed.
Furthermore, the slave can early inform the master (up to two cycles ahead)
when a bus transaction will finish. Therefore, pipelined memory accesses
and consequently fast data transfers are possible.

4.3.3 Fairness-based Arbiter

SimpCon is well suited for on-chip point-to-point connections. We introduce
a central arbiter to connect multiple masters (JOPs) to one slave (memory
controller). This arbitration device controls the memory access of multiple
CPUs to the shared memory. An adequate priority policy has to be imple-
mented to resolve competing memory requests of the CPU cores. If memory
request contention happens, only one master is granted access and all others
are forced to wait.

Usually, the arbitration policy of the arbiter depends on the application
needs. An example of a dynamic arbitration scheme depending on the CPU
priorities is described in [18]. Each CPU of the system is assigned a unique
priority. If memory access contention occurs, the CPU with the highest pri-
ority will be granted access. This arbitration policy can be used for real-time
systems where one CPU executes hard real-time1 tasks and the other ones
execute tasks with minor requirements regarding deadlines. Consequently,
the hard real-time CPU gets the highest priority of the system.

In this paper, we analyze the performance of a balanced CMP. Therefore,
an arbitration policy is implemented that guarantees fairness among the
CPUs accessing the shared memory. Furthermore, starvation of any CPUs
is prohibited. Each CPU in the system is assigned a unique CPU identity
(CPUID), starting from 0 up to the number of CPUs-1. Our fair arbitration
policy uses a wrapping counter. It changes the permission, which CPU is
allowed to access the memory. The value of the counter has the same range

1A hard real-time task has to deliver its results on time. A single miss of a deadline
may result in a disastrous accident.
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Figure 4.2: Memory access arbitration of the fairness-based arbiter.

as the CPU identities. At the time of completion of the prior memory access,
the counter is advanced. If the new counter value equals a requesting CPUID

and the memory is ready to execute a memory access, the memory access
will be processed and the current value of the counter will be halted until
completion of the data transmission. In the case that the CPU with CPUID

that equals the value of the counter does not want to access the memory, the
counter is immediately advanced.

Figure 4.2 shows an arbitration scenario of a 2-way CMP system with 2
cycles memory access time. The signals clk and counter are internal signals
of the arbiter. All other signals are either input or output signals of the
arbiter illustrated by the signal’s name. Furthermore, the subscripts indicate
whether the signals belong to a specific CPU (denoted by the CPUID) or
to the memory controller. Some SimpCon signals, i.e. the signals for write
access, are disregarded in Figure 4.2.

At the first clock cycle, both CPU0 and CPU1 want to perform a read
access to the shared memory simultaneously. CPU0 is immediately allowed
to perform the read access because the counter’s value equals to 0 and the
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memory is idle (rdy_cnt_inM equals to 0). Consequently, the read enable
signal of the memory (rd_outM ) is driven high and the memory address
(addr_outM ) is asserted. The read request of CPU1 is registered in the
arbiter. It has to wait until completion of the memory access of CPU0,
indicated by the value 0 of signal rdy_cnt_inM and by the received data on
data_inM and data_out0 accordingly. At completion of the memory access,
the counter is already incremented by one and the registered memory access
of CPU1 is processed. When the data is available, the counter already equals
to 0. Other than CPU1, CPU0 does not request a memory access and the
counter is advanced in the following cycle. CPU1’s access is not granted
because the counter value equals to 0 in the current clock cycle. In the next
cycle, the registered memory access of CPU1 is processed.

This arbitration algorithm implements a fair partitioning of the memory
bandwidth. The more CPUs are part of the system the higher is the proba-
bility that the counter matches the CPUID with a pending memory request
after a successful access. Therefore, a high workload will result in a satura-
tion of the memory bandwidth. In case of low contention between several
CPUs, this scheme wastes memory bandwidth (and performance) because
delays of memory access grants are introduced.

The arbiter performs the arbitration decision in the same cycle as the request
arrives. Therefore, we have a zero-cycle arbitration protocol. No additional
cycle is lost for arbitration and the memory access latency is not affected.
Zero-cycle arbitration latency is an advantage in comparison to existing ar-
biters like AMBA [7] and Avalon [2], which always use an extra cycle for
a so-called bus request phase. Consequently, each access takes more time.
This fairness-based arbiter is implemented at Register Transfer Level (RTL)
in VHDL. The arbitration process is primarily implemented in combinational
logic without considerably decreasing the clock frequency of the whole sys-
tem.

The arbiter is fully scalable with respect to the number of connected mas-
ters. Compared to existing arbiters like AMBA [7] or CoreConnect [13] the
maximum number of connected masters is not limited to 16. Hence, the
application determines the quantity of connected masters.

4.3.4 Memory Controller

The memory controller is the interconnection between the arbiter and the
shared memory. Controllers for different types of memory are available for
the SimpCon bus. The controller supports pipelined read and write com-
mands. Pipelining of SimpCon, the arbiter, and the memory controller allows
back-to-back reads from the memory. Furthermore, due to the definition of
the SimpCon interconnect, it is possible to use the registers in the IO cells
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of the FPGA for all latency-sensitive SRAM signals (address bus, data bus,
and control lines).

4.3.5 Synchronization

Shared memory SMP systems need a synchronization mechanism. The CPUs
exchange data by reading and writing shared data objects. In order to
ensure that a CPU has exclusive access to such an object, synchronization
is necessary.

Therefore, we introduced a synchronization unit in hardware that controls
one global lock. If one core wants to access a shared object, it will request
the lock using the synchronization interconnection depicted in Figure 4.1.
JOP will be granted access if no other processor of the system is holding the
lock. Otherwise, it must wait until the other processor completes accessing
the shared object.

The hardware lock allows fast implementation of the bytecodes monitorenter
and monitorexit that are used by the JVM for synchronization. For short
critical sections, this feature compensates for the less reactive behavior of a
single global lock. A side effect of a single lock is the avoidance of deadlock
by design. Further information on synchronization of JopCMP can be found
in [18].

4.4 Performance Evaluation

In this section, we evaluate the performance of our CMP architecture. We
present and compare the performance of our multicore depending on the
number of processors and the size of their instruction caches. The bench-
marks highlight that several processors working in parallel outperform a
uniprocessor that executes the same workload sequentially. Two different
hardware platforms set up the basis of the presented experiments. Further-
more, we include FPGA synthesis results and compare performance and size
of JopCMP with the complex Java processor picoJava [26].

4.4.1 Benchmarks

Using a multi-core system, application development is more complex because
the application code has to be spread out among different processors. We
evaluate the CMP with three different benchmarks:

• a real-world embedded application from industry (Lift),
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• a matrix multiplication (MMul) and

• an application that is operating on a hash table (HTable).

Our benchmark methodology is as follows: Lift and HTable are executed
several times (16384 and 256 respectively). This workload is distributed
evenly on the multiprocessor versions. The benchmark MMul performs auto-
matic distribution of the workload.

Lift Application

Lift is a real-world example with industrial background. This embedded
application is a lift controller used in an automation factory. Lift is part
of the embedded Java benchmark suite called JavaBenchEmbedded, as de-
scribed in [22]. In fact, the benchmark is written to measure uniprocessor
performance. Nevertheless, we use it for executing several Lift tasks on mul-
tiple CPUs concurrently. Consequently, this benchmark presents a medium
computational, fully parallelized application without any accesses to shared
data structures and synchronization needs.

Matrix Multiplication

The benchmark MMul is designed to give some idea about the performance
of a computationally intensive algorithm with good potential for parallelism.
The benchmark multiplies two matrices of dimension 100x100. This calcu-
lation results in 1 million multiplication operations. Each row of the re-
sulting matrix is calculated by a single CPU. A synchronization variable
secures that the next idle CPU takes the next unsolved row until the result
is achieved. The benchmark measures the elapsed time for the calculation.
MMul is classified as a parallel workload – computational intensive with low
synchronization overhead.

Hash Table Access

Hash tables are often used data structures to manage and lookup different
data objects. Each value of a hash table is associated with a key. The
key permits efficient access to the value. HTable presents an interesting
application for the JopCMP; multiple CPUs access the shared data structure
in a tight loop leading to severe synchronization conflicts. HTable measures
the elapsed time until a fixed number of read, insert and delete operations
are performed.
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4.4.2 Hardware Platforms

We use two different hardware platforms for our evaluation. They differ in
FPGA technology and memory bandwidth.

Altera DE2 Board

The system has been prototyped on Altera’s Development and Education
Board (DE2 Board) with a low-cost Cyclone II (EP2C35) FPGA. It has a
capacity of 33,000 logic elements (LEs) and 483,000 bits of on-chip memory.
This FPGA can be populated with up to 8 JOP cores. The DE2 Board
contains 512 KB SRAM connected via a 16-bit data bus. A single read
operation for a 32-bit data item takes 4 clock cycles. On the DE2 board, we
run all systems with the same clock frequency (90 MHz). This frequency is
the maximum value that all different configurations can run and that can be
configured with the PLL.

Cycore Board

The Cycore FPGA board contains the older Cyclone I FPGA (EP1C12)
from Altera. It has a capacity of 12,000 LEs and 239,000 bits of on-chip
memory. A 1 MB, 15 ns SRAM is connected via a 32-bit data bus. With
this SRAM, it is possible to perform a 32-bit memory read in two cycles for
system frequencies up to 100 MHz. Therefore, the memory bandwidth is two
times higher than the bandwidth of the Altera DE2 board.

4.4.3 Measurements

To evaluate JopCMP, we compare the performance of different multicore
configurations with the single JOP version under varying workloads and
FPGA platforms.

As it is expected that the memory bandwidth will restrict the number of
useful cores we also measure the consumed bandwidth. We have integrated
a memory access counter into the memory controller to measure the number
of cycles the memory bus is busy. Equation 4.1 gives the memory load rela-
tive to the available memory bandwidth. The resulting memory bandwidth
utilization depends on the size of the instruction cache. It decreases with
larger cache sizes because memory access frequency drops as well.

UtilizationMem.Bandwidth =
MemoryAccessT ime

ExecutionT ime
(4.1)
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Table 4.1: Execution time and memory bandwidth utilization of Lift, Altde2
@ 90 MHz

1 KB Cache 2 KB Cache 4 KB Cache

Number of Time Util. Time Util. Time Util.

JOP Cores (ms) (%) (ms) (%) (ms) (%)

1 1255 40 1158 32 1158 32

2 769 66 662 56 662 56

4 613 83 484 77 484 77

8 595 85 459 81 − −

Table 4.1 shows the measured execution time and memory bandwidth uti-
lization of Lift running at a frequency of 90 MHz on the Altera DE2 board.
The first column gives the number of JOP cores of the system. Addition-
ally, the size of the instruction cache is varied between 1, 2 and 4 KB for
each CPU. The execution time and the memory bandwidth utilization are
measured for each combination of number of CPUs and cache size. A 4 KB
cache version of 8 cores is missing, as it does not fit into the available FPGA.
One JOP with an instruction cache of 2 KB executes Lift in 1158 ms and
the measured memory bandwidth utilization is 32%. A dual-core performs
about 1.8 times faster than a single JOP. Actually, a 4-processor system with
1 KB of cache nearly doubles the performance of a single-core. The same
system with more cache experiences a speedup of 2.4, no matter if either a
2 KB or a 4 KB instruction cache is used. Using more processors does not
provide significantly better performance.

Furthermore, Table 4.1 gives information on the memory bandwidth utiliza-
tion (denoted Util.) of the system. The utilization decreases with larger
caches. Nevertheless, no real difference between 2 KB or 4 KB can be seen.
We conclude from this measurement that the kernel of the Lift benchmark
is small enough to fit into the 2 KB cache. Although the consumed memory
bandwidth does not reach the theoretical possible 100%, we see only minor
performance differences between a 4-core and 8-core system.

Table 4.2 depicts the results of the measurement of MMul on the DE2 plat-
form. The computationally intensive algorithm demonstrates its good po-
tential for parallelism. The speedup of the CMPs consisting of 2 and 4 cores
comes up to our expectations with speedups of 1.5 and 1.7 accordingly. 8
cores provide no additional significant speedup. We assume that a combi-
nation of high memory conflicts and increased synchronization cost becomes
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Table 4.2: Execution time and memory bandwidth utilization of MMul,
Altde2 @ 90 MHz

1 KB Cache 2 KB Cache 4 KB Cache

Number of Time Util. Time Util. Time Util.

JOP Cores (ms) (%) (ms) (%) (ms) (%)

1 2957 52 2957 52 2957 52

2 1932 79 1932 79 1932 79

4 1773 86 1773 86 1773 86

8 1771 86 1771 86 − −

Table 4.3: Execution time and memory bandwidth utilization of HTable,
Altde2 @ 90 MHz

1 KB Cache 2 KB Cache 4 KB Cache

Number of Time Util. Time Util. Time Util.

JOP Cores (ms) (%) (ms) (%) (ms) (%)

1 413 27 410 26 410 26

2 423 29 408 26 408 26

4 341 31 346 29 344 29

8 263 32 262 30 − −

noticeable. The memory bandwidth utilization remains constant at 86% in-
dependent of a 4- or 8-way CMP. Increasing the cache size does not result
in any performance improvements or any change of the consumed memory
bandwidth.

Table 4.3 shows the measurements of HTable running at a frequency of 90
MHz on the DE2 board. Unlike Lift and MMul, this benchmark results in a
small performance slowdown comparing a single JOP with a 2-core system
with 1 KB of cache. Only slight speedups with the 2 KB and 4 KB ver-
sions can be seen. This originates from the application’s characteristics. It
combines low computational demands with high synchronization overhead.
Nevertheless, CMPs with more CPUs cover this overhead by introducing
more processing power. The 8-core JopCMP with 2 KB of cache is about
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Figure 4.3: Performance comparison of JopCMP, running three different
benchmarks.

1.6 times faster than the comparable single-JOP. HTable’s high synchroniza-
tion demands are easily noticeable by the figures of the memory bandwidth
utilization. These results show a very small increase when adding more CPUs
to the CMP.

Figure 4.3 summarizes the measured execution times of the configurations
with 2 KB cache size. The horizontal axis describes the number of CPUs and
the vertical axis illustrates the relative speed-up. The relative speedup is the
relation between the execution time on a single core and a multi core version.
We can see different saturation points for Lift and MMul. Interesting is the
result of the HTable benchmark: it only shows a significant speedup with
many cores and we do not see the saturation at 8 cores. For this benchmark,
it would be interesting to run a 16-way multicore version.

Table 4.4 shows Lift benchmark results based on the Cycore FPGA board.
Running at a clock frequency of 60 MHz, the 2-way CMP with 2 KB cache
is 1.9 times faster than JOP. The system consisting of three processors is
2.5 times faster. In comparison to the DE2 board, the memory bandwidth
utilization of 48% of the 3-core CMP with 2 KB cache is lower than every
2-core configuration of the DE2 platform. The measurements confirm that
the memory of the Cycore board is about 2 times faster than the memory
on the DE2 board. Synthesis results show that JopCMP can achieve a max-
imal clock frequency of 60 MHz on the Cyclone I FPGA. This is reasonable
because the Cyclone I series is an older technology compared to Cyclone II.
Furthermore, a 3-way JopCMP with 2 KB cache size is the maximum that
can be integrated into this FPGA.
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Table 4.4: Execution time and memory bandwidth utilization of Lift, Cycore
@ 60 MHz

1 KB Cache 2 KB Cache 4 KB Cache

Number of Time Util. Time Util. Time Util.

JOP Cores (ms) (%) (ms) (%) (ms) (%)

1 1506 24 1455 18 1455 18

2 844 45 779 35 779 35

3 661 57 578 48 − −

4.4.4 Comparison with a Complex Java Processor

picoJava II [26], Sun’s hardware implementation of the JVM, consumes more
resources than JOP. An interesting comparison is whether a single, complex
processor or a multiprocessor based on simple processors performs better for
multi-threaded workloads. In the server domain Sun has chosen to implement
8 simple RISC cores (with a 6-stage in-order pipeline) in the CMP Niagara
[16] while Intel and AMD still use their complex super-scalar out-of-order
architectures.

Puffitsch has implemented the picoJava II in an FPGA [19] on the same
board (DE2) that we use for our evaluation. picoJava II runs at 40 MHz
in the Cyclone II. The resource consumption is 27,562 LEs and 381 KBit
memory when configured with 16 KB instruction and 16 KB data cache.

Puffitsch could run the Lift and the HTable benchmark in the picoJava
FPGA implementation. Table 4.5 shows the comparison between picoJava
and various versions of JopCMP with 2 KB instruction cache. The per-
formance of the Lift benchmark and the resource consumption are given
relative to picoJava. picoJava executes the Lift benchmark in 632 ms. A
single JOP needs 1158 ms for the same workload. That means that picoJava
is about two times faster at 40 MHz than a single JOP version at 90 MHz.
Note, that the resource consumption (LEs and memory for the caches) of
picoJava is much higher than for JOP. The two-processor configuration is
5% slower than picoJava and consumes 1/5 of the FPGA resources. A 4-
way processor configuration of JOP is about 30% faster than picoJava, but
consumes less than half of the resources.

The benchmark HTable executes in 165 ms on picoJava. On this synthetic,
lock intensive benchmark picoJava is almost three times faster than JOP. pi-
coJava uses two lock registers to cache the last two obtained locks. This hard-
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Table 4.5: Performance and size of JopCMP relative to picoJava in the same
FPGA board

Number of
JOP Cores Performance Size Memory

1 0.55 0.11 0.12
2 0.95 0.22 0.24
4 1.30 0.43 0.47
8 1.38 0.84 0.94

ware feature allows execution of bytecodes monitorenter and monitorexit
in 3 and 2 cycles when the lock is found in one of the lock registers. JOP
needs for those operations with the global lock 18 and 20 cycles.

4.4.5 Synthesis Results

Table 4.6 shows the utilization of different multicore systems within the
FPGA device EP2C35 on the DE2 board. The size of the instruction cache
of all JOPs is configured to 2 KB. With such a small cache, the utilization of
logic elements and on-chip memory is balanced. However, 2 KB instruction
cache and 0.5 KB data cache (the stack cache) are very small, even for
embedded processors. For a CMP system based on FPGA technology, we
would prefer devices with a different LE to on-chip memory ratio.

Surprisingly, the frequency does not change significantly with the number
of JOP cores in the system. The timing analysis results are obtained with
Altera Quartus II. The maximum frequency varies between 110 MHz (for a
single JOP) and 96 MHz (for an 8-way CMP). Using the phase-locked loop
(PLL) of the FPGA, the clock frequency of all configurations is configured
to 90 MHz.

Our arbiter scales quite well with respect to the maximum clock frequency.
The arbiter performs the arbitration decision with zero cycle latency without
hurting the maximum clock frequency with more bus masters.

4.5 Conclusion and Future Work

We have shown that even in a medium sized low-cost FPGA it is possible to
run 8 cores of a Java processor in parallel. The performance enhancements
of factors 1.7 and 2.5 with 2- and 4-way cores for a real-world application
are promising. We did not expect a linear improvement in speed. A speedup
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Table 4.6: Synthesis Results on the Cyclone II FPGA (EP2C35)

Number of Resources On-chip Memory Frequency

JOP Cores (LE) (%) (KBit) (%) (MHz)

1 3,033 9 45 10 110

2 6,196 19 90 19 104

4 11,946 36 180 38 101

8 23,252 70 360 76 96

logarithmic to the number of cores would satisfy future processing demands
as the number of transistors that can be integrated into a single chip is still
increasing exponentially.

However, 2 out of 3 benchmarks saturated at 4 cores. For the benchmarks
with almost no synchronization like Lift and MMul, the bottleneck is the
memory bandwidth. The access to the hash table needs a lot of synchro-
nization. For this benchmark, the memory bandwidth utilization is almost
independent of the numbers of processors or the instruction cache size.

The bandwidth of the memory is limited on the DE2 board due to the narrow
16-bit interface to the SRAM. It even limits the performance of a single
processor. A comparison between the performance of the Cycore board and
the DE2 board shows that the Cycore board running at 2/3 of the clock
frequency is not that much slower. We conclude that the configuration of
the DE2 memory interface limits the usable number of cores to four.

We estimate that fast memory and caching can increase the number of useful
cores to about 8. However, additional cache memories are not an option with
the logic to memory relation of current FPGAs. The on-chip memory is the
limiting factor for the configuration with 8 cores. For 8 cores, we had to limit
the instruction cache to 2 KB. Reducing the instruction cache further to 1 KB
does not impair the performance of the small benchmarks. However, we see
a performance reduction in the application benchmark Lift: a 4-processor
version with 2 KB instruction cache performs better than an 8-processor
version with 1 KB instruction cache. Even the two-processor version with
2 KB cache is almost as fast as the 8-processor version with 1 KB cache.

Comparing our JopCMP against a complex Java processor, such as pico-
Java II, we conclude that a multiprocessor version of a simpler and smaller
architecture is more efficient (performance/die area) for parallel workloads.
With independent instances of the application benchmark Lift a 4-core ver-
sion of JopCMP is 1.3 times faster than picoJava with a die area of about
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45% of picoJava.

We saturate the memory access up to 86%. Theoretically, 100% bandwidth
utilization is possible. We have not saturated the memory bandwidth, as
the arbiter does not yet fully support the pipelining of the SimpCon specifi-
cation. The pipeline is flushed on a switch between cores. We assume that
an enhancement of the arbiter will result in 100% utilization of the memory
bandwidth with 8 cores.

For applications with lot of inter-thread communication, the single global
lock is clearly the bottleneck (as seen by the hash table test). We consider
two different paths of enhancements: (1) adding hardware for several, inde-
pendent locks and (2) implement a hardware transactional memory. Hard-
ware transactional memory is the more complex solution. However, it results
in an automatically finer grained locking that will improve the performance
of the concurrent hash table access.

In this paper, we have evaluated the Java CMP system with respect to
average case throughput. However, JOP is designed as a real-time processor
to simplify the WCET analysis. The ultimate goal of our research is a
Java multiprocessor architecture for embedded real-time systems that can
be analyzed with respect to the WCET of individual tasks.
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Abstract

In this paper, we propose an approach to calculate worst-case execution times
(WCET) of tasks running on a homogeneous Java multiprocessor. These pro-
cessors access a shared main memory. Hence, the tasks running on different
CPUs may influence the execution times of each other. Therefore, we im-
plemented a time division multiple access arbiter that divides the memory
access time into equal time slots, one time slot for each CPU. This memory
arbitration allows calculating upper bounds for the execution time of Java
bytecodes depending on the number of CPUs, the size of the time slot, and
the memory access time. A WCET analysis tool can utilize these results and
generate temporal, upper bounds for application tasks. We further explore
how the size of the time slot and the number of CPUs in the system influ-
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ence the WCET results. Furthermore, a real-world application task is used
to compare the analyzed results with measured execution times. This paper
describes the timing analysis of a time-predictable Java multiprocessor with
shared memory.

Keywords: Chip-Multiprocessor, Java, Shared Memory, Worst-case Execu-
tion Time

5.1 Introduction

Multiprocessors and particularly chip-multiprocessors (CMP) are gaining im-
portance in the embedded market. The CMP technology integrates two or
more processing units and a sophisticated communication network into a sin-
gle integrated circuit. A heterogeneous CMP combines different processing
units connected with their memories that are customized to one single part
of the application. The homogeneous CMP approach consists of identical
CPUs to increase the computation power for general-purpose applications.
To save resources and keep the price of the semiconductors low, a single
shared main memory is used.

Today, many embedded systems are used for applications where real-time
behavior is more important than computation power. Such hard real-time
systems must undergo a timing analysis. Therefore, the worst-case execution
time (WCET) of each task in the system has to be known. The WCET is the
maximum execution time of a piece of code. It is the time a process could
eventually need to execute under worst conditions on a given processor. In
[20], Wilhelm et al. define the goal of WCET analysis concerning the upper
bounds of the execution time:

1. they have to be safe and

2. should be as tight as possible.

Most importantly, the calculated upper timing bounds have to be safe in
order to ensure hard real-time behavior of the system. The results must not
underestimate the WCET values; otherwise, unpredictable behavior of the
system could put the mission at risk with potentially serious consequences.
Moreover, the upper bounds should be as tight as possible to keep the over-
estimation low in order to conserve resources.

There are three different methods to estimate the WCET of a task: static
analysis; by measurement; or a hybrid approach combining both methods.
The large drawback of the measurement-based method is that these esti-
mates cannot reliably guarantee that the worst-case situation – provoked by
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a special rare occurring input – is part of the measurement [2]. Furthermore,
this kind of analysis is rather complex and time-consuming. Measurement-
based analysis can be sufficient for soft real-time systems, but the authors
believe that static analysis should be the state-of-the-art of modern hard
real-time systems. Using static WCET analysis, the WCET of tasks is an-
alyzed before runtime, independent of any input values. The objective of
this analysis is to find the path with the maximum execution time of the
program code.

This paper proposes a static WCET analysis of a homogeneous CMP with a
shared memory. The CMP system is composed of multiple Java Optimized
Processor (JOP) [15, 17] cores and a shared memory. The shared memory is
uniformly accessible by the homogeneous processing cores. A system-on-chip
(SoC) bus connects the devices of the system.

JOP comes with a static WCET analysis tool, which is described by Schoe-
berl and Pedersen in [18]. A contribution of this paper is the extension of
the WCET tool for timing analysis of the multiprocessor system. The key
component for real-time analysis of the CMP is the arbiter that divides the
memory access bandwidth into time slots, one for each CPU. Hence, we can
analyze the WCET of Java bytecodes depending on the size of the time slot,
the number of CPUs in the system, and the memory access time. These ex-
ecution times are the basis for the WCET analysis of tasks. Our approach is
described using a simple example. Additionally, we provide measured data of
the execution time of the example. The results are obtained by running the
application in hardware. Consequently, we are able to compare the analyzed
results with measured execution times. Furthermore, the measured and an-
alyzed execution time results of a real-world application show the reliability
of the proposed method.

The rest of the paper is structured as follows. Section 5.2 outlines related
work on WCET analysis. Section 5.3 presents the CMP system. Addition-
ally, we introduce the approach for time-predictable arbitration of the shared
memory access. Section 5.4 summarizes the static WCET analysis based on
JOP. Furthermore, it outlines the WCET analysis of the JopCMP system
and gives an example. Section 5.5 compares the obtained WCET results
with measured execution times. Finally, Section 5.6 concludes the paper
and provides guidelines for future work.

5.2 Related Work

WCET analysis is crucial to timing analysis of hard real-time systems. The
task set of a real-time system requires timing validation by schedulability
analysis [4, 8]. Hence, the WCET of each task has to be calculated. If and
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only if these upper bounds of the execution times are known, the schedu-
lability analysis can be performed. Consequently, the result of the analysis
shows whether the deadlines of the tasks will be met (guaranteeing that all
tasks can be executed by the system) or not.

WCET analysis has been an active and well-established research area for
years in the uniprocessor domain. Both Puschner and Burns [12], and Wil-
helm et al. [20] give a broad overview of the WCET research. Nevertheless,
not all these achievements can be applied to multiprocessor systems. They
are based on the assumption that tasks are independent and cannot influ-
ence each other. Using modern multiprocessors with shared resources (i.e. a
shared memory), tasks influence each other’s execution times and cannot be
analyzed in isolation.

To the best of our knowledge, only one research group (from university of
Linköping) has studied the WCET analysis of multiprocessors [1, 13]. These
publications are based on a multiprocessor system-on-chip with a shared
communication bus, connecting several CPUs with two different types of
memory. Each CPU has a private memory and all the processing units share
a common memory for communication. A CPU is equipped with instruction
and data caches, which are used to fetch data and instructions from the
private memory. During execution, a task can only access private memory
and no shared data objects. Hence, all input data must be placed into
the private memory before the task can start executing. Consequently, in
most cases the execution time of the task can never be influenced by other
tasks (compare the simple-task model [5]). However, the communication
bus serves as a communication interface between the CPUs and the private
memories, and the CPUs and the shared memory. If a cache miss occurs
during task execution, data has to be fetched from private memory using
the communication bus. Therefore, some sort of bus arbitration is necessary
because several CPUs may request a cache line from their private memories
simultaneously.

In this paper, we introduce our approach to WCET analysis of a multipro-
cessor using shared resources. Even though the application tasks running on
different CPUs may influence the execution times of each other, we are able
to bound the WCET of the real-time tasks.

5.3 JopCMP Architecture

According to [21], a multiprocessor system consists of three major subsys-
tems: processing elements, memory and an interconnection network. JopCMP
implements the symmetric (shared-memory) multiprocessor (SMP) model
[3]. Several JOPs provide the basis of the homogeneous CMP as depicted in
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JOP 1 JOP 2 JOP N
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Figure 5.1: JopCMP Architecture.

Figure 5.1. JOP is an implementation of the Java Virtual Machine (JVM)
in hardware [15, 17]. It features a stack cache for the private data of each
thread. Additionally, a kind of instruction cache (called method cache) lim-
its the memory access frequency and increases the processing power. These
real-time processing elements perform computations in parallel. Instructions
and data are stored in a single shared memory. The interconnection network
is responsible for connecting multiple processors with the memory. An ar-
biter is part of this network and controls the memory access to the shared
memory. An SoC bus, called SimpCon [16], is used to connect the processing
cores to the arbiter, and the arbiter to the shared memory. We consider the
synchronization of shared data as a further major subsystem of an SMP. It is
responsible for coordinating access to shared objects. A detailed description
of the JopCMP architecture can be found in [10].

5.3.1 Arbitration Challenge

The arbitration of a time-predictable CMP with a shared memory can be
divided into two closely coupled challenges:

• Control of the shared memory access

• Timing analysis of the memory access
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The arbiter is responsible for partitioning the memory access bandwidth be-
tween the CPUs in the system. It controls the memory access of multiple
CPUs to the shared memory. Naturally, if one CPU is accessing the shared
memory, no other CPU can simultaneously access the memory. They are
forced to wait until the CPU has completed its memory transfer. The ar-
bitration unit takes the supervisory and control role for the shared access.
Two different arbitration policies exist: dynamic and static arbitration ap-
proaches.

A dynamic arbitration policy resolves simultaneous access at runtime. The
fixed priority policy is an example. Each CPU of the system is assigned
a unique priority. If memory access contention occurs, the CPU with the
highest priority will be granted access to the memory. All other CPUs will
have to wait. This arbitration algorithm implements a dynamic decision
scheme depending on the CPU priorities.

The static arbitration policy strictly defines the access pattern before run-
time. Consequently, no arbitration is necessary during execution time. This
policy is typical for real-time systems because it provides information for
the timing analysis. An example of this policy is the time division multiple
access (TDMA) scheme.

What is the problem with time predictability of the CMP? In uniprocessor
systems, only one processor accesses the memory and we can predict the
WCET of a memory access. However, tasks running on different CPUs in-
fluence each others’ execution times when they access a shared resource [19],
i.e. a shared memory. Therefore, we want to remove the interdependencies
between the execution times of tasks. If we already know the pattern of
how another task of a CPU accesses the memory, this will make the arbitra-
tion and the analysis a lot easier (compare the work of Pitter and Schoeberl
in [9]). Usually, we cannot exactly predict the memory access pattern of
multiple CPUs. Therefore, we need an arbitration algorithm that is able to
bound the WCET of a task running on a CPU, even though tasks execut-
ing on other CPUs may also access the main memory. Consequently, the
analysis of WCETs is possible.

According to [1, 11, 13], a TDMA based policy guarantees a constant band-
width to each processor. We agree that this arbitration policy is well suited
for time predictability in multiprocessor systems with shared resources. Each
processor is assigned a predefined part of the bandwidth. The easiest solu-
tion to implement this idea is the division of time. Consequently, each CPU
gets an allocated time slot for accessing the shared memory.

We implemented a TDMA arbiter in the hardware description language
VHDL. It is fully configurable concerning the number of CPUs and the size
of the time slot. Hence, we are capable of running JopCMP with a TDMA
arbiter in an FPGA development board. It contains a Cyclone-I FPGA
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(EP1C12) from Altera and a 1 MB, 15 ns SRAM that provides the main
memory of the system. This prototyping hardware is used for experimental
measurements of execution times of tasks, as described in Section 5.5.

5.4 WCET Analysis

This section starts with a short introduction of the static WCET analysis
of JOP. The remaining sections describe the WCET analysis approach of
JopCMP.

5.4.1 Static WCET Analysis based on JOP

Real-time processors like JOP have simpler and less powerful architectures
than modern CPUs. Several advanced features that increase the average-case
performance (i.e. data caches, out-of-order execution, and branch prediction)
are disregarded [17]. Although these methods speedup the execution of pro-
grams, they impede the predictability of the timing behavior because the
WCET depends on the execution history. Hard real-time processors like
JOP benefit from a hardware model that assigns an accurate execution time
to each machine instruction.

Using JOP’s WCET analysis tool [18], the WCET result of a task can be
obtained. A Java program is compiled into class files that include the JVM
language instructions called bytecodes. For static WCET analysis, the byte-
code sequence is transformed into a directed graph of basic blocks called con-
trol flow graph (CFG). Each basic block consists of bytecode instructions.
JOP translates each bytecode to a microcode or a sequence of microcode in-
structions that are executed by the processor. Every microcode has a fixed
execution time. Hence, each basic block can be assigned an exact execution
time.

Furthermore, flow facts have to be added to the Java program code in ad-
vance. In general, this is the only way to bound the loops and calculate the
frequency of execution of the basic blocks. The CFG including the flow facts
and the mapping to the hardware make the WCET analysis possible using
the implicit path enumeration technique (IPET) [6].

5.4.2 Multiprocessor WCET Approach

With the use of the TDMA arbitration scheme, the WCET of an arbitrary
memory access of a CPU can be calculated using Equation 5.1.

WCETaccess = (n− 1) · ttime slot + taccess (5.1)
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The unit of WCETaccess is clock cycles. n specifies the number of CPUs
in the system. The more CPUs integrated into the system, the longer the
WCET of a single memory access. taccess describes the memory access time
in clock cycles. The width of a time slot (ttime slot) is given in clock cycles,
which is configurable. It should be configured as small as possible to reduce
the WCETaccess. The larger the time slot, the higher the WCETaccess for a
single memory access. The minimum size of the time slot is fixed with taccess.
Otherwise, a processing unit could never successfully access the memory in
one time slot.

To find out the overall WCET, the size of the time slot of the arbiter is of
major importance. The size of the time slot is dependent on the memory
access time. Usually, processors run with a higher clock frequency than
memories. The gap between the processor and the memory frequency is
further widening [3]. Therefore, the usage of caches is a common approach
to reduce the memory access frequency. Nevertheless, the problem with
the memory access cannot be circumvented. If the memory access time
cannot keep up with the CPU frequency, the processor stalls until the data
is available. This delay can be referred to as wait states, which has a large
impact on the WCET. A large number for each memory access will degrade
the performance of the system.

In our approach, we analyze the bytecodes’ WCETs that are dependent on:

• Number of JOPs integrated in the CMP

• Size of the time slot

• Memory access time

First, the memory access pattern of each bytecode has to be investigated.
The number of JOPs and the size of the time slot have to be defined. This
configuration of the system introduces a fixed TDMA memory access scheme
where each CPU is assigned a time slot of the TDMA period. Subsequently,
all preconditions are accomplished to determine the WCET of each bytecode
using the algorithm described in Section 5.4.4. JOP’s WCET analysis tool
uses the generated bytecode estimates to calculate the WCET of the Java
source code.

5.4.3 Bytecode Memory Access Pattern

JOP translates most of the bytecodes to its native microcode instructions.
Each bytecode is composed of a microcode instruction or a series of mi-
crocode instructions. Some bytecodes are actually implemented in hard-
ware. A couple of bytecodes are implemented in Java. The timing analysis
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Type Bytecode Memory Area

const ldc, ldc_w, ldc2_w Method area
get getfield, getstatic Heap
put putfield, putstatic Heap
array aaload, aastore, baload, bastore, Heap

caload, castore, daload, dastore,
faload, fastore, iaload, iastore,
laload, lastore, saload, sastore,
arraylength

call invokeinterface, invokespecial, Method area
invokestatic, invokevirtual

return areturn, dreturn, freturn, Method area
ireturn, lreturn, return

new anewarray, multianewarray, new, Heap
newarray

switch lookupswitch, tableswitch Method Area
cast checkcast, instanceof Heap

Table 5.1: Bytecodes accessing the shared memory.

of these bytecodes is not part of this work because they have to be analyzed
like general Java source code.

According to the JVM specification [7], the heap and the method area are
shared data areas, whereas the stack is a private data area for each thread.
In JOP, the heap and the method area are located in the main memory.
Consequently, all bytecodes that work on these areas have to be carefully
examined. Some bytecodes access the memory several times, some only
once. Hence, it makes sense to have a closer look at the different instructions.
Table 5.1 summarizes the bytecodes that access the main memory. As stated
before, some bytecodes are implemented in Java, i.e. bytecodes of type new,
switch and cast. Therefore, they are disregarded in the proposed analysis.

Most memory access patterns of the bytecodes can be statically analyzed;
i.e. bytecodes that access the heap and those of type const. The pattern
is only dependent on the memory access time. If the memory access time is
known, the memory access pattern of the bytecodes can be analyzed regard-
less of the source code of the program. An example of such a bytecode is
ldc, which pushes a single word constant onto the stack. Therefore, only one
memory access to the method area is needed. JOP translates this bytecode
into a series of microcodes. If the memory access time is known, the memory
access pattern can be specified using JOP’s bytecode implementation. An-
other example is iaload, which is implemented in hardware. For the analysis
of the memory access pattern, we determine the VHDL implementation in

81



Chapter 5

combination with ModelSim simulations.

The memory access patterns of the bytecodes of type call and return need
a dynamic analysis and are more difficult to attain. Each JOP is equipped
with an instruction cache that caches complete Java methods [14]. Conse-
quently, the memory access patterns of these bytecodes vary, depending on
the history of the execution. If the method is already in the cache, no addi-
tional memory accesses are needed to load the method into the cache. If a
cache miss occurs, JOP will have to load the whole method into the cache.
Depending on a cache hit or a cache miss and the length of the method that
has to be loaded, the access pattern has to be created for each individual
occurrence of the bytecode in the source code. Therefore, we integrated the
generation of the patterns into the WCET analysis tool where the cache in-
formation is available. Again, JOP’s microcodes and ModelSim simulations
make it possible to analyze the timing of the memory accesses.

5.4.4 WCET Analysis of Bytecodes

Listing 5.1 shows a simplified version of the algorithm to find the WCET
of the bytecodes. The inner loop of this algorithm calculates the execution
time of the bytecode starting at position. The bytecode describes the memory
access pattern of the instruction. It has a predefined length and each element
contains either a READ/WRITE request or a NOP (no memory access). If
the indexed element is a NOP, the execution time illustrated by execTime
will be advanced. Additionally, the variable position is increased by 1, which
defines the position of the tdmaPattern array. If the element of the bytecode
equals either a READ or a WRITE access, the tdmaPattern will decide
whether this CPU will be allowed to access the memory. In case another CPU
is on turn to access the memory (the element equals to 0), execTime and
position are advanced until the CPU is allowed access again. The WRITE
case of the switch-case statement is similar to the READ case and is therefore
omitted from the listing.

The outer loop changes the starting position of the calculation in each it-
eration. The constant TDMA_PERIOD is defined by the multiplication of
the number of CPUs by the size of the time slot. Each iteration of this loop
calculates an execution time value of the bytecode. If the new execTime is
greater than the current worst-case execution time, it will be assigned to
wcet. Hence, the resulting WCET of the bytecode depending on the number
of CPUs and the size of the time slot is available after the last iteration.
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Listing 5.1: Algorithm to find the WCET of the bytecodes.

int wcet=0;

for(i=0;i<TDMA_PERIOD;i++){
execTime=0;
position=i;

for(j=0;j<bytecode.length;j++){
switch(bytecode[j]){

case NOP:
execTime++;
position++;
break;

case READ:
while(tdmaPattern[position]!=1){

execTime++;
position++;

}

execTime++;
position++;
break;

case WRITE:

...

break;
}

}
if(wcet<execTime){

wcet=execTime;
}

}

83



Chapter 5

ttime slot

cycles
0 15 30 45 60

CPU0

CPU

CPU1

CPU2

TTDMA

Figure 5.2: Time slots of the CPUs.

NOP RDNOPNOP NOP NOPRD RD

...

8 cycles 30 cycles

cycles
0 15 455 10

...

ttime slot

NOP NOP

RD NOP NOPNOP RDNOPNOP NOP NOPRDCPU0

iaload

2*ttime slots

3 cycles

Figure 5.3: WCET calculation of iaload.

WCET Calculation of Bytecode iaload

This simple example exemplifies the calculation of the bytecode iaload. Jop-
CMP contains 3 CPUs and the time slot is configured to 15 clock cycles.
A read access to the main memory takes 2 cycles. Figure 5.2 shows the
TDMA memory access pattern for each CPU. Time slots to access the shared
memory are allocated for each processor. It should be noted that a time slot
of 15 cycles permits each CPU to access the memory until the 14th cycle.
In the 15th cycle, a read access cannot be permitted. Otherwise, we cannot
guarantee that the next CPU is able to access the memory in the first cycle
of its time slot. (This originates from the pipelining transactions of the
SimpCon specification [16]).

We want to evaluate the WCET of the bytecode iaload. The following access
pattern is given for iaload = {NOP, NOP, NOP, RD, NOP, RD, NOP, RD,
NOP, NOP}. We can see that iaload performs three read accesses to the
memory. The WCET is calculated when the index of the outer loop equals
to 7. This scenario is shown in Figure 5.3. iaload starts with an NOP
operation in the 8th cycle of the CPU’s time slot. We can see that the 3rd

RD access of iaload cannot immediately be executed. Therefore, it is delayed
two time slots until it is allowed to access the memory. The WCET results
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Table 5.2: Java bytecodes and basic blocks of the loop.

Block Addr. Bytecode Cycles BB Cycles

B1 0: iconst_0 1
1: istore_3 1 2

B2 2: iload_3 1
3: iload_0 1
4: if_icmpge 4 6

B3 7: aload_1 1
8: iload_3 1
9: aload_1 1
10: iload_3 1
11: iaload 41
12: iload_2 1
13: iadd 1
14: iastore 46
15: iinc 8
18: goto 2 4 105

in 41 cycles.

5.4.5 Loop Example

In the following, we systematically analyze the WCET of a simple loop to
show how the WCET is calculated. Listing 5.2 shows the source code where
a scalar s is added to a vector. This loop is parallelizable because each
iteration of the statement in the loop body is independent. Therefore, the
loop body could be easily executed on different CPUs in parallel.

Listing 5.2: Simple Loop.

for (i=0; i<10; i++) { // @WCA loop=10
a[i]=a[i]+s;

}

As explained before, the WCET estimate for each bytecode accessing the
main memory has to be calculated depending on the configuration of the
CMP. For this example, JopCMP consists of 3 CPUs and the time slot for
each CPU is specified as 15 clock cycles. Consequently, one TDMA period
is 45 cycles. The bytecodes and basic blocks of the example, as generated
by the WCET analysis tool, are shown in Table 5.2. The fourth column
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Figure 5.4: Control flow graph of the simple loop.

presents the execution time in clock cycles for each bytecode, and the fifth
column gives the execution time for each basic block. If we compare the
bytecodes with Table 5.1, only iaload and iastore access the main memory.
Therefore, their WCETs are dependent on the configuration of the system.

The CFG, illustrated in Figure 5.4, is constructed from the basic blocks. The
vertices represent the basic blocks labeled with their name and execution
time. All edges are labeled with an execution frequency. Hence, the WCET
can be calculated and the result is 1118 cycles.

We can also measure the execution time of this simple example by running
the JopCMP on the FPGA development board described in Section 5.3. The
measured execution time of the loop example results in 987 cycles. This re-
sult and the analytical WCET estimate diverge slightly. This overestimation
of the analytical result is not surprising because the analysis always takes
the WCET for the bytecodes iaload and iastore into account. In the mea-
surement, some array accesses are executed in fewer clock cycles than the
worst case.

5.5 Results

We use the simple loop as an example to find the WCET estimates for varying
system configurations. In Table 5.3, the analyzed WCETs of different system
configurations are shown. The number of CPUs is varied between 1 and 32.
Additionally, the size of the time slot changes between 3 and 48 clock cycles.
The first row of the results shows that the WCET of the single JOP is 488
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Table 5.3: Analyzed WCET of the loop example depending on the system
configuration.

Configuration Analyzed
# of CPUs Time Slot WCET

(cycles) (cycles)

1 − 488
2 3 708
2 4 668
2 5 728
2 6 708
2 7 728
2 8 768
2 9 698
2 10 718
2 11 738
2 12 758
2 24 998
2 48 1478
4 3 1068
4 6 1068
4 12 1238
4 24 1958
4 48 3398
8 3 1788
8 6 1788
8 12 2198
8 24 3878
8 48 7238

16 3 3228
16 6 3228
16 12 4118
16 24 7718
16 48 14918
32 3 6108
32 6 6108
32 12 7958
32 24 15398
32 48 30278
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Table 5.4: Analyzed WCET and measured execution time of the loop exam-
ple.

Configuration Analyzed Measured
# of CPUs Time Slot WCET Exec.

(cycles) (cycles) (cycles)

1 − 488 488
2 3 708 670
2 6 708 666
2 9 698 554
2 12 758 716
2 24 998 502
2 48 1478 931
3 3 888 838
3 6 888 747
3 9 878 815
3 12 998 735
3 24 1478 765
3 48 2438 1410

cycles. No number is given for the time slot of this configuration because a
single JOP does not have to share the main memory bandwidth.

The second part of the table shows the results of the dual-core JopCMP with
varying time slot sizes. In general the WCET increases continuously with
larger time slot sizes. The systems with more CPUs show a similar behavior
concerning the size of the time slot. When comparing the analyzed WCET
results of the 2-way JopCMP, both systems with the time slot equal to 3 and
6 cycles have the same WCET. Only the two bytecodes iaload and iastore of
the loop access the main memory. The execution times of all other bytecodes
of the loop are not affected by the size of the time slot. The configuration
with the time slot equal to 3 results in a WCET of 22 cycles for iaload and
24 cycles for iastore. If the time slot is 6 cycles, the WCETs of iaload=17
and iastore=29 cycles. We can see that the sums of the two WCETs of the
bytecodes are the same, independent of whether the size of the time slot
equals 3 or 6 cycles. Consequently, the execution times of both loop bodies
are identical. Note that the configuration with a 4-cycle time slot results
in the lowest execution time. In this configuration, the sum of iaload and
iastore is minimized.

The more CPUs integrated into the system, the longer the WCETs. The
configuration with 4 CPUs and 6-cycle time slot results in a WCET of 1068
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cycles. iaload executes in 29 cycles and iastore in 53 cycles. Even though,
the number of CPUs in the system is doubled, the WCET only increases by
51% compared to the 2-way CMP with the same time slot value.

Table 5.4 compares the measured execution time and the analyzed WCET
of the simple loop example. One can see that the measured execution time
and the WCET estimate are equal for a single JOP system. This originates
from the characteristics of the example. The WCET result and the measured
execution time are the same, because only one execution path exists in the
code. Furthermore, one can see that the WCET estimates are tight for
CMP versions with minor time slots. The configurations with a slot size of
9 cycles result in the lowest WCETs. The measured execution times vary
greatly depending on the time slot. It results in 716 cycles for the 2-way
CMP with a 12-cycle time slot. The same system with a slot size equal to 24
cycles executes in only 502 cycles. This result shows that iaload and iastore
are frequently executed in only one time slot in the configuration with 24
cycles. In the worst case, they need two time slots to execute, which explains
the large difference between the measured and the analyzed execution time.

Furthermore, we used a benchmark called Lift as another example to cal-
culate some WCETs. Lift is a real-world example with an industrial back-
ground. This embedded application is a lift controller used in an automa-
tion factory. It is part of the embedded Java benchmark suite called Jav-
aBenchEmbedded, as described in [15]. Table 5.5 shows that the WCET
of a single JOP results in 8689 cycles. Each CPU of a dual-core JopCMP
with a time slot size of three cycles executes the Lift benchmark in 12391
cycles in the worst case. Therefore, the WCET increases only by 43%. The
tri-core CMP version experiences an increase of 83% in the execution time
compared to the single JOP. Whereas one JOP executes Lift only once, the
CMP configuration executes the benchmark three times in parallel.

The last column of Table 5.5 illustrates the pessimism of the WCET analysis.
Even though we cannot pretend to measure the WCET, the pessimism ratio
gives us an idea of the quality of our analyzed results. One can see that
there is not much difference between the measurement and the analysis of
the single JOP and the 2-way CMP version with a reasonable size of the time
slot. Nevertheless, the conservatism of the analysis does not increase greatly
with three JOPs. Unfortunately, we are not able to integrate more than 3
JOP cores into the available Cyclone-I FPGA. Therefore, no values of the
measured execution times and corresponding pessimism ratios are available
for the 4-way CMP. We can see that the pessimism is in an acceptable range
for a multiprocessor WCET analysis.

89



Chapter 5

Table 5.5: Analyzed WCET and measured execution time of the Lift bench-
mark.

Configuration Analyzed Measured Pessimism
# of CPUs Time Slot WCET Exec. (Ratio)

(cycles) (cycles) (cycles)

1 − 8689 5830 1.49
2 3 12391 7587 1.63
2 6 12580 7305 1.72
2 9 13621 7623 1.79
2 12 14867 8131 1.83
2 24 19391 8409 2.31
2 48 28618 9499 3.01
3 3 15872 9234 1.72
3 6 16186 8721 1.86
3 9 18072 9720 1.86
3 12 20456 11097 1.84
3 24 29735 12489 2.38
3 48 48106 14211 3.36
4 3 18827 − −
4 6 19876 − −
4 9 22621 − −
4 12 26171 − −
4 24 40079 − −
4 48 67594 − −

90



Time-Predictable Memory Arbitration for a Java Chip-Multiprocessor

5.6 Conclusion and Future Work

In this paper, we have described the extension of JOP’s WCET tool for a
homogeneous multiprocessor with a shared memory. The key component of
real-time analysis of JopCMP is a TDMA arbiter that divides the memory
access bandwidth into equal shares. Hence, we can analyze the WCET of
Java bytecodes depending on the size of the time slot, number of CPUs in the
system and the memory access time. They are used in the WCET analysis
tool to calculate WCET estimates. A simple loop example is presented and
WCET estimates are compared to real measurement results.

In the future, we will conduct extensive experiments using more benchmarks
to investigate the frequencies of the bytecodes that access the main memory.
The applications determine the size of the time slot to achieve tight WCET
results. It is defined to be short in size if single memory accesses are dominant
in the application code. A medium slot size is the solution for frequent field
and array accesses and a large time slot size for predominant method cache
load accesses. Consequently, we will be able to better justify, whether to
define the size of the time slot larger or smaller. Furthermore, we want to
extend the solution and present an idea how tighter WCET estimates can
be obtained, in order to increase the accuracy of the analysis.

We will investigate the use of a percentage-based arbitration of the available
memory access bandwidth. Hence, the memory bandwidth per CPU will be
adjusted, dependent on the workload of the multiple CPUs. For example,
if CPU0 needs 60% of the available memory bandwidth for example, it will
receive 60% of the bandwidth share or the time slots accordingly.
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6
Further Analysis and Evaluation

This chapter is based on a submitted paper called A Real-Time Java Chip-
Multiprocessor. It provides a coherent view of three different arbitration
policies described in previous chapters for use in a CMP with shared mem-
ory. This chapter analyzes and evaluates different arbitration configurations
with respect to WCET and average-case performance. In comparison to
Chapter 5, configurations with more processors are evaluated.

6.1 Memory Arbitration Revisited

The memory arbitration of a real-time CMP with a shared memory presents
a number of closely related challenges:

• Synchronization of memory access

• Timing analysis of memory access

• Zero-cycle arbitration

• Scalability with the number of CPUs

• Support of burst mode memory access

The arbiter controls the memory access of multiple CPUs to the shared
memory. Naturally, if one CPU is accessing the memory, no other CPU
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can access it concurrently. It is forced to wait until the CPU on turn has
completed its memory transfer. In this case, a memory arbiter resolves this
possible parallel access by serializing the CPUs’ read and write operations.

Two different arbitration policies exist: the dynamic and the static arbi-
tration approach. A dynamic arbitration policy resolves concurrent access
of two or more CPUs at runtime. An example is a priority-based arbitra-
tion scheme where each CPU in the system is assigned a unique priority. If
memory access contention occurs, the CPU with the highest priority will be
granted access to the memory and all other CPUs will have to wait.

The static arbitration policy defines the access pattern before runtime. Con-
sequently, no arbitration is necessary during execution time. Implementation
of this policy is typical for real-time systems to prevent memory access con-
tention. Each CPU has an a priori allocated time to perform its operations
on the memory.

In uniprocessor systems, only one processor accesses the memory and the
WCET of a memory access can be predicted. However, tasks running on a
CMP on different CPUs influence each others’ execution times when access-
ing a shared resource [10], e.g. a shared memory. Therefore, a removal of
the interdependencies between task execution times is the stated objective.
As described in Chapter 2, a fixed memory access pattern of an application
task, e.g. a DMA unit, simplifies the arbitration and timing analysis. Usually,
memory access patterns of multiple CPUs cannot be accurately predicted.
Therefore, an arbitration algorithm is needed that enables WECT analysis
of a task running on a CPU, even though tasks executing on other CPUs
may also access the main memory. Consequently, an analysis of bounded
WCETs is possible.

All described arbiter designs perform an arbitration decision in the same
cycle the request arrives. No additional cycle is lost for arbitration and
memory access latency is not affected. Subsequently, memory access time
is reduced and the bandwidth increases considerably. Furthermore, arbiters
can be configured for variable numbers of CPUs. The CMP system is thus
customized to the application needs.

Typically, CPUs access a memory either using single read/write accesses or
a burst access mode. Single read or write accesses are used to exchange data
and instructions. The burst access mode ensures fast data transmission of
consecutive chunks of memory. This feature has become state-of-the-art to
load cache memories. Therefore, memory arbiters have to support the burst
mode to access a memory.
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Figure 6.1: Memory access arbitration of the fixed priority arbiter.

6.1.1 Fixed Priority Arbiter

The fixed priority arbitration policy is a typical example of a dynamic arbi-
tration scheme. Each CPU in the system is assigned a unique CPU identity,
hereinafter referred to as CPUID. This CPUID establishes priority for each
CPU. The CPU with the lowest CPUID has top priority to access the shared
memory. The memory arbiter solves simultaneous memory accesses by de-
termining an access priority order.

In Figure 6.1, an arbitration scenario of a 2-way CMP with a memory access
time of 2 cycles is shown. The cycle numbers are specified at the top of
the figure. All depicted signals are either input or output signals of the ar-
biter, illustrated by the signals’ names. Furthermore, the subscripts indicate
whether the signals belong to a specific CPU (denoted by the CPUID) or to
the memory controller. Some SimpCon signals are disregarded in Figure 6.1,
e.g. the signals for write access.

At the first clock cycle, both CPU0 and CPU1 want to perform a read
access to the shared memory. CPU0 is immediately granted access given
that the memory is idle (rdy_cnt_inM equals to 0) because it has a higher
priority than CPU1. Consequently, the read enable signal of the memory
(rd_outM ) is driven high and the memory address (addr_outM ) is asserted.
The read request of CPU1 is registered in the arbiter. It has to wait until
CPU0 has finished accessing the memory, indicated by the value 0 of signal
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rdy_cnt_inM and no further request of CPU0 is pending. At the fourth cy-
cle, CPU1’s registered request has to wait again until completion of another
memory access of CPU0. At the seventh cycle, CPU0’s data is available and
the registered memory access of CPU1 is processed. At the eighth cycle,
CPU0 wants to access the memory again. This read access is registered in
the arbiter and will be performed after CPU1 has completed its memory
access.

The fixed priority arbiter has been used for a WCET analyzable configuration
of a single CPU and a DMA device [6]. The DMA device, e.g. a graphics
controller, performs a regular memory access within a short period of time
and is assigned top priority.

6.1.2 Fair Arbiter

The fair arbiter implements an arbitration policy that guarantees fairness
among the CPUs accessing the shared memory. Memory access can be ei-
ther a pipelined or a single access. Furthermore, starvation of any CPU
is prohibited. Each CPU in the system is assigned a unique CPU identity
(CPUID), starting from 0 up to the number of CPUs-1. Our fair arbitration
policy uses a wrapping counter. It changes the permission, which CPU is
allowed to access the memory at a given time. The value of the counter has
the same range as the CPU identity. As soon as the preceding memory access
is complete, the counter is advanced by one. If the new counter value is the
same as a requesting CPUID and the memory is ready to execute a mem-
ory access, memory access will be processed and the current counter value
remains the same until the data transmission has finished. If the counter
shows a CPUID that does not want to access the memory, the counter is
immediately advanced.

Figure 6.2 shows an arbitration scenario of a 2-way CMP system with a
memory access time of 2 cycles. The cycle numbers are specified at the top
of the figure. The signals clk and counter are internal signals of the arbiter.
All other signals are either input or output signals of the arbiter, as indicated
by their names. Furthermore, the subscripts indicate whether signals belong
to a specific CPU (denoted by the CPUID) or to the memory controller.

At the first clock cycle, both CPU0 and CPU1 want to simultaneously per-
form a read access to the shared memory. CPU0 is immediately allowed to
perform the read access because the counter’s value is 0 and the memory is
idle (rdy_cnt_inM equals to 0). Consequently, the read enable signal of the
memory (rd_outM ) is driven high and the memory address (addr_outM )
is asserted. The read request of CPU1 is registered in the arbiter. It has
to wait until CPU0 has finished accessing the memory, as indicated by the
value 0 of signal rdy_cnt_inM and, accordingly, by the received data on
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Figure 6.2: Memory access arbitration of the fair arbiter.

data_inM and data_out0. At the fourth cycle the memory access has been
completed, the counter increments by one and the registered memory access
of CPU1 is processed. At the seventh cycle the data is available, the counter
shows a 0 value. Consequently, CPU1 is not granted access. As opposed to
CPU1, CPU0 does not request a memory access. The counter is therefore
advanced at the eighth cycle and the registered memory access of CPU1 is
processed.

The more CPUs are part of the system the higher is the probability that the
counter matches a CPUID with a pending memory request after a successful
access. Therefore, a high workload will result in a saturation of the memory
bandwidth. In case of low competition among several CPUs, this scheme
wastes memory bandwidth (and performance) because delays without any
memory access can occur.

6.1.3 Time-sliced Arbiter

According to [2, 7, 8], a time-sliced or time division multiple access (TDMA)
arbitration policy guarantees constant bandwidth for each processor. Each
processor is assigned a predefined part of the bandwidth, which is mapped to
an appropriate time slot, so each CPU has an a priori allocated time to per-
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Figure 6.3: TDMA period consisting of three time slots.

form its operations on the memory. The author agrees that this arbitration
policy is suitable for timing analysis of multiprocessor systems with shared
resources. The arbitration configuration provides the needed information for
timing analysis.

Figure 6.3 shows the TDMA memory access pattern for a CMP system with
3 CPUs. Each CPU is allocated a time slot to access the shared memory
in every TDMA period. This time slot, configured to a predefined number
of clock cycles, is divided into an access time and an access gap. Memory
operations of the corresponding CPU can only be started during access time.
During the gap segment, the CPU is not allowed to start a memory access
because a switch to the next CPU is necessary. This gap permits the next
CPU on turn to access the shared memory in the first cycle of its time slot,
because every memory access requested in the previous time slot is reliably
completed. The size of the gap is depends on the memory access time. The
larger the memory access time, the larger the gap.

6.2 Timing Analysis

This section describes WCET analysis of a CMP system using the specified
memory arbiters. Furthermore, WCET results are compared to measured
execution times and a WCET performance prospect is given.

6.2.1 Fixed Priority Arbitration Approach

Common for all arbitration approaches is the fact that the WCET of a single
memory access is the sum of two parts. One part represents the maximum
waiting time before the memory access can be executed. The other part
represents the CPU’s memory access time without any memory contention.
WCET results are given in clock cycles.

The fixed priority arbitration policy assigns a unique priority to each CPU.
If memory access contention occurs, the CPU with the highest priority will
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be granted access to the memory. Using this arbitration policy, the WCET
of a memory request of the highest priority CPU, indicated by the subscript
0, can be calculated thus:

WCET0 = max
∀i 6=0
{tWCETi − 1}+ t0 (6.1)

whereby t0 denotes the memory access time of CPU0. The other part of
the equation represents the maximum waiting time. Let i be a variable that
can take any number between 1 up to the number of CPUs-1 and tWCETi

be the maximum duration of all possible memory access types of CPUi. On
the one hand, this variable can represent a single memory access but on the
other hand, it can account for a full method load into the method cache.
In the worst possible scenario, one or more CPUs in the system request a
memory access one cycle earlier than CPU0. Therefore, CPU0 has to wait
max {tWCETi − 1} cycles until it can read from or write to the memory.
Consequently, the WCET of a single memory access of the highest priority
CPU is the load time of the longest method of all lower priority CPUs added
to the memory access time of CPU0.

Calculating the WCET of a lower priority CPU memory access is either
rendered impossible or the result represents a very conservative estimate,
depending on the number of CPUs. In case of a 3-way CMP, for example,
the WCET of the lowest priority CPU cannot be estimated because the
higher priority CPUs in the system may prevent that CPU from accessing
the memory indefinitely.

A fixed priority arbiter can be used for systems that execute hard real-time
tasks on the top priority CPU, and tasks with non-critical timing require-
ments on all other CPUs.

6.2.2 Fair Arbitration Approach

The fair arbiter implements a fair access to the shared memory for all CPUs
of the CMP. This policy avoids starvation of a CPU. The WCET of a memory
access by an individual CPU can be calculated using Equation 6.2.

WCETj =
∑
∀i 6=j

tWCETi + tj (6.2)

As in the case of the fixed priority CPU, tWCETi is the WCET of all memory
access types of CPUi. Again, this variable can be either a single memory
access or a full method load. In the case of a CPU method load, the internal
counter of the arbiter is stopped until the full method load has been com-
pleted. After that, the counter is advanced and the next CPU is allowed to
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access the memory. The worst-case scenario for a single CPU memory access
can be estimated to be the load time of the longest method of each CPU
until the CPU can access the shared memory.

6.2.3 Time-sliced Arbitration Approach

The TDMA arbitration policy defines a static memory access pattern. Each
CPU is assigned an allocated time slot. Using the TDMA arbitration scheme,
the WCET of a single memory access from an individual CPU can be calcu-
lated with Equation 6.3:

WCETj = (tgap − 1) + (n− 1) · tslot + tj (6.3)

whereby n specifies the number of CPUs in the system, and tslot defines the
size of the time slot in clock cycles. tj describes the memory access time of
CPUj . In the worst-case scenario, CPUj wants to access a memory in the
first cycle of the gap segment (tgap) of its own time slot.

The part describing this scenario has not been described in detail by the
Equation 5.1 in Chapter 5. Nevertheless, it has been considered in the
WCET analysis, as demonstrated by the code in Listing 5.1 and its de-
scription of the algorithm.

The WCET of a single memory access increases with the number of CPUs in
the system. Moreover, the size of the time slot of the arbiter is of major im-
portance. The minimum time slot size is predetermined and depends on the
memory access time. Otherwise, a processing unit could never successfully
access the memory within one time slot.

Applying Equation 6.3 to individual instances of memory access results in
conservative bytecode WCET bounds. The novel method presented in Sec-
tion 5.4 calculates the WCET for complete bytecode instructions instead of
analyzing the WCET of a single memory access. The bytecode WCETs are
dependent on:

• the number of JOPs integrated in the CMP

• time slot size

• memory access time

Assuming all configurations are set and the memory access time is known,
the WCET of each bytecode can be determined as described in Section 5.4.
JOP’s WCET analysis tool uses the generated bytecode estimates to calcu-
late the WCET of a Java application.
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Table 6.1: Analyzed WCET and measured execution time of the Lift bench-
mark.

Configuration Analyzed Measured Pessimism

# CPUs Time Slot WCET Best Exec. Worst Exec.
(cycles) (cycles) (cycles) (cycles) (Ratio)

1 − 10567 6309 6818 1.55

2 6 18793 8634 10463 1.80
2 12 18417 8472 9663 1.91
2 18 20529 9900 11263 1.82
2 24 22713 9988 11275 2.01

4 6 32001 13604 17579 1.82
4 12 31683 14238 17007 1.86
4 18 37917 17532 20875 1.82
4 24 44505 18604 21415 2.08

8 6 58305 24452 32747 1.78
8 12 58275 27528 33615 1.73
8 18 72693 35100 41755 1.74
8 24 88089 37228 42823 2.06

6.2.4 WCET vs. Measured Execution Time

In Chapter 5, the used hardware only permits an integration of up to 3 JOPs.
Therefore, the CMP system using the TDMA arbiter has been prototyped
on Altera’s Development and Education Board (DE2 Board) with a low-cost
Cyclone II (EP2C35) FPGA. This FPGA can be populated with up to 8 JOP
cores, each core equipped with a 1 KB stack cache and a 2 KB method cache.
The DE2 Board contains 512 KB SRAM connected via a 16-bit data bus.
The design is clocked at 90 MHz and the main memory is a 16-bit SRAM
with an access time of 4 cycles for a 32-bit read operation, and 6 cycles for
a 32-bit write operation.

A benchmark called Lift is used to calculate WCETs of a real-world appli-
cation with an industrial background. This embedded application is a lift
controller used in an automation factory. Lift is part of an embedded Java
benchmark suite called JavaBenchEmbedded, as described in [9].

Table 6.1 compares the measured execution time and the analyzed WCET
of the Lift benchmark. The first two columns describe the different system
configurations. Column 3 shows that the analyzed WCET of Lift on a single
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JOP results in 10567 cycles. The result of the dual-core JopCMP with a time
slot size of 12 cycles is 18417 cycles (worst-case scenario). Even though both
CPUs execute the Lift benchmark simultaneously, their WCETs increase
only by 74%. The 8-way CMP with a 12-cycle time slot experiences an
increase of a factor of 5.5 in the worst case compared to the single JOP.
Whereas one JOP executes Lift only once, the CMP configuration executes
the benchmark 8 times concurrently.

Measured execution time results are illustrated in the fourth and fifth columns.
Several measurements are carried out for each configuration, so the best case
and the worst case are represented in the table. It has to be noted that the
measured worst case is probably not the real WCET. As the simulation en-
vironment does not cover all data possibilities, there is no guarantee that the
path for the real WCET has been triggered. The last column of Table 6.1
illustrates the pessimism of the WCET analysis. It is calculated by dividing
the analyzed WCET by the worst measured execution time. The pessimism
ratio gives an idea of the quality of our analyzed results. The pessimism of
a single CPU is 1.55. The analysis is not a great deal more conservative in
configurations with more CPUs and a reasonable time slot size. This slightly
WCET increase can be explained as the analysis always takes the WCET
of each individual bytecode due to memory arbitration into account. Nev-
ertheless, the author believes that the pessimism in such cases is within an
acceptable range for a multiprocessor WCET analysis.

6.2.5 WCET Performance

One interesting issue is how the CMP system scales with respect to the
WCET. The goal using the time-predictable CMP system is twofold: (1)
to provide a system where safe WCET bounds can be estimated and (2) to
enhance the performance by means of multiple cores within the CMP.

The WCET results from Table 6.1 permit an estimation of a WCET per-
formance increase. Executing the Lift benchmark simultaneously, increases
the WCET on the individual cores, but also the number of iterations that are
executed within the whole system. JOP executes Lift in 10567 cycles in the
worst case. Assuming a 12-cycle time slot, an 8-way CMP needs 58275 cycles
for completion of 8 simultaneously executed Lift benchmarks. Equation 6.4
calculates the resulting speed-up to be 1.45.

SpeedupCMP =
WCETCPU

WCETCMP
· 8 ≈ 1.45 (6.4)

Figure 6.4 shows the WCET performance through multiprocessing. There is
a measurable WCET speed-up for the TDMA arbiter with relatively small
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Figure 6.4: WCET performance of the Lift benchmark.

slot sizes. Choosing a larger slot size actually decreases performance. Com-
pared to an average-case performance increase, as shown in the following
section, the WCET performance enhancements are moderate.

6.3 Performance Evaluation

Although the CMP is designed for hard real-time systems with time-predictable
task execution, the average-case performance is still interesting. Applying
three different arbitration schemes, the trade-offs using a time-predictable
solution compared to using an average-case optimized CMP system can be
explored. The benchmarks highlight that several processors working simul-
taneously outperform a uniprocessor that executes the same workload in
sequence. Again, the FPGA-based platform is used to evaluate different
configurations.

6.3.1 Benchmarks

Using a multi-core system, application development is more complex because
the application code has to be split up among several processors. Three
different benchmarks are used for the CMP evaluation:

• a real-world embedded application in industrial use (Lift),

• a matrix multiplication (MMul), and

• an embedded TCP/IP stack (ejip).
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Our benchmark methodology is as follows: Lift is executed 10000 times.
This workload is distributed evenly among the processors. The benchmarks
MMul and ejip perform an automatic distribution of the workload.

Lift Application

The Lift benchmark, introduced in Section 6.2.4, is actually written to
measure uniprocessor performance. Nevertheless, it is used for executing
several Lift tasks on multiple CPUs concurrently. This benchmark thus
represents a medium computational, fully parallelized application without
any synchronization needs.

Matrix Multiplication

The benchmark MMul is designed to give an idea of the performance of a com-
putationally intensive algorithm showing good parallelism potential. The
benchmark multiplies two matrices with a dimension measuring 100x100.
This calculation results in 1 million multiplication operations. Each row of
the resulting matrix is calculated by a single CPU. A synchronization vari-
able secures that the next idle CPU takes the next unsolved row until the
desired result is achieved. The benchmark measures the elapsed time for
the calculation. MMul is classified as a parallel workload – computationally
intensive with low synchronization overhead.

Embedded TCP/IP Stack

As an example of an application with several communicating threads, an em-
bedded TCP/IP stack for Java called ejip is used. The benchmark explores
the possibility of parallelizing the TCP/IP stack. The application that uses
the TCP/IP stack is an artificial example of a client thread requesting a ser-
vice (vector multiplication) from a server thread. That benchmark consists
of 5 threads: 3 application threads (client, server, result), and 2 TCP/IP
threads executing the link layer as well as the network layer protocol.

6.3.2 Measurements

Table 6.2 shows the measured execution time of Lift, running at a frequency
of 90 MHz on the Altera DE2 board. The first column gives the number of
JOP cores in the system. The results of three different arbiters are shown.
Configurations using

• the fixed priority arbiter,
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Table 6.2: Performance comparison of different arbiter types using the Lift
benchmark.

Number of Fixed Fair TDMA

JOP cores Exec. time (ms) Exec. time (ms) Exec. time (ms)

1 702 702 702

2 389 399 469

4 336 292 405

8 340 277 395

3

2,5

p

1 5

2

Sp
ee
d‐
up

1

1,5

el
at
iv
e 
S

Fixed

0,5

1

Re

Fair

0

TDMA

1 2 4 8
Number of CPU Cores

Figure 6.5: Performance comparison of the Lift benchmark using different
arbiters.

• the fair arbiter, and

• the time-sliced arbiter with a time slot of 12 cycles.

The execution time is measured for each combination of number of CPUs and
arbitration policy. One JOP executes the Lift workload in 702 ms and does
not have to share memory bandwidth. A dual-core system performs about
1.8 times faster than a single JOP, using a fixed priority or a fair arbiter.
The configuration with a TDMA arbiter shows a performance improvement
of 50%. A 4-processor system using a fixed arbiter doubles the performance
of a single-core. The same system with a fair-based arbiter experiences a
speed-up of 2.4. A time-sliced arbiter cannot keep up with these system
speed-ups but is still 73% faster than a single JOP. Executing the workload
on more than 4 processors does not give a significantly better performance,
irrespective of the used arbiter type.
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Table 6.3: Performance comparison of different arbiter types using the MMul
benchmark.

Number of Fixed Fair TDMA

JOP cores Exec. time (ms) Exec. time (ms) Exec. time (ms)

1 839 839 839

2 461 467 556

4 306 315 421

8 305 306 336

3

2,5

p

1 5

2

Sp
ee
d‐
up

1

1,5

el
at
iv
e 
S

Fixed

0,5

1

Re

Fair

0

TDMA

1 2 4 8
Number of CPU Cores

Figure 6.6: Performance comparison of the MMul benchmark using different
arbiters.

Figure 6.5 summarizes the performance results. The horizontal axis describes
the number of CPUs, the vertical axis illustrates the relative speed-up. The
relative speed-up is the relation between the execution time on a single core
and a multi-core version. The figure shows that configurations up to 4 cores
using different arbiters scale adequately. Using an 8-core CMP with a fixed
priority arbiter results in a performance slow-down. The reason is the large
competition among the CPUs to access the memory.

Table 6.3 and Figure 6.6 show the measurement results of MMul. This com-
putationally intensive algorithm shows a good potential for parallelism. Ex-
ecution time for the fair arbiter configuration is shorter than reported in
Chapter 4, as the benchmark code is optimized to avoid memory access as
much as possible. The speed-ups of CMP versions consisting of 2 and 4
cores lived up to our expectations with 1.5 (TDMA) and 1.8 (fixed and fair),
respectively. The fixed arbitration policy scales well using up to 4 proces-
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Table 6.4: Performance comparison of different arbiter types using the ejip
benchmark.

Number of Fixed Fair TDMA

JOP cores Exec. time (ms) Exec. time (ms) Exec. time (ms)

1 305 305 305

2 193 196 245

4 125 124 210

8 271 223 334

sor cores. Adding more CPUs to the system does not result in a better
performance. Whereas the first four CPUs calculate 97% of the final result
altogether, the other CPUs calculate only 3%. Notably, CPU6 and CPU7

suffer from starvation because they never get their turn to calculate a single
multiplication. The fair arbiter distributes a workload evenly among all the
processors. Each CPU contributes to the final result by calculating either 12
or 13%. Nevertheless, 8 cores do not provide a significant speed-up. Also,
the TDMA arbiter distributes the workload evenly and is only 10% slower
than the fair arbiter using 8 CPUs.

The results for the embedded TCP/IP example ejip are shown in Table 6.4.
This application, consisting of five communicating threads, scales quite well
using up to 4 cores. Applying the fair or the fixed priority arbiter, perfor-
mance increases by a factor of 2.5. Even the TDMA-based system is about
45% faster than a single core solution. The overheads introduced by 8 cores,
with only 5 cores executing threads, leads to a performance decrease com-
pared to the 4-core system shown in Figure 6.7. The performance decrease
of configurations using the fair and the TDMA arbitration can be explained
as the algorithms allocate memory bandwidth to three CPUs that do not
execute any threads.

One bottleneck in the TCP/IP stack is a global buffer pool. All layers com-
municate via this single pool. The single pool is not an issue for a unipro-
cessor system, however simultaneously running threads in a CMP system
compete more often for pool access. A revised version of the TCP/IP stack
would use dedicated queues, preferably non-blocking, single reader/writer
queues, for the communication between layers. Furthermore, a finer paral-
lelization within the TCP/IP stack needs to be explored to fully utilize the
available CPUs.
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Figure 6.7: Performance comparison of the ejip benchmark using different
arbiters.

6.4 Discussion

Three different arbiters were implemented to experiment with different CMP
systems, highlight advantages and disadvantages, and find the most practical
field of application. Table 6.5 summarizes the differences between various
arbitration policies.

6.4.1 Starvation

CMPs using a fair or a TDMA arbiter cannot suffer from starvation because
each CPU gets the chance to access the memory. A fixed priority arbiter
may cause starvation of CPUs, because higher priority CPUs might access
the shared memory first. This situation can occur when more than 2 CPUs
are integrated in a CMP. The two highest priority CPUs could alternately
access the shared memory. Consequently, the third CPU will never get to
access the memory.

6.4.2 Predictability

Even though a timing analysis approach of each arbitration policy is pre-
sented in Section 6.2, some of them are not viable for hard real-time sys-
tems. The proposed timing analysis approach of a TDMA arbiter enables
the WCET calculation of Java bytecodes instead of the WCET for a single
memory access. The WCET is dependent on the number of CPUs and the
time slot size. It is preferable to keep the time slot short if single memory
access is dominant in the application code. A medium time slot size is the
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Table 6.5: Comparison of the arbitration policies.

Property Fixed Fair TDMA

Starvation - + +

Predictability - +/- +

Performance +/- + -

Pipelined Split Transaction - - +

CPU-overlapping Pipelining - - +

solution for frequent field and array accesses, a large slot size for predomi-
nant cache load accesses. Further experiments are necessary to be able to
better define whether to make time slot sizes larger or smaller. Appendix B
shows bytecode WCETs of different CMP configurations.

A fair-based arbiter enables timing analysis of all tasks running on different
CPUs. Nevertheless, the WCET of a single memory access by a CPU is a
very conservative estimate, because a possible method cache load by each
CPU has to be taken into account. The resulting WCET values are not
feasible. If a method cache load could be split into several transactions, this
arbitration could also be a viable solution.

Using the fixed priority arbiter, only the highest priority CPU of a CMP
is predictable. WCETs cannot be calculated for programs executing on the
other CPUs. Therefore, this arbitration policy can be used for real-time
systems where one CPU executes hard real-time and the other ones non-
critical tasks.

6.4.3 Performance

Using three benchmarks, the speed-up capability of real-world applications
is demonstrated using multiple processors cores. The speed-up increase has
lived up to expectations for systems using a fair arbiter. The Lift bench-
mark executes 2.5 times faster on an 8-way CMP than on a single JOP. The
performance improvement of CMP systems with a fixed priority arbiter scales
well up to 4 cores. When integrating more CPUs, some of them may suffer
from starvation using fixed priority arbitration. As expected, the average-
case performance of systems using the TDMA arbiter cannot keep up with
the performance improvements of other arbiters. Furthermore, experimental
results with the ejip benchmark show that more cores does not certainly
result in a better CMP performance.
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Comparing the CMP system to a complex Java processor such as picoJava II,
described in Chapter 4, the conclusion is that a multiprocessor version of a
simpler and smaller architecture is more efficient (performance/die area) for
parallel workloads. With independent instances of the application bench-
mark Lift, an 8-core CMP version is around 1.4 times faster than picoJava
with a die area of about 90% of picoJava.

6.4.4 Implementation Features

The arbiters implemented within this research work are fully configurable
with respect to the number of connected CPUs. Compared to existing ar-
biters like AMBA [3] or CoreConnect [4], the maximum number of connected
masters is not limited. As a result, the application and the hardware re-
sources determine the quantity of connected processors.

Another advantage over existing arbiters like Avalon [1], or AMBA is the
zero-cycle arbitration latency. The synchronization of the shared memory
access does not need an extra cycle for its arbitration decision. The syn-
thesis results of Table 4.6 show that clock frequency scales quite well with
an increasing number of CPUs. Therefore, an evaluation of an additional
pipeline stage has not been conducted.

Additionally, all implemented arbiters feature a burst memory access mode
for loading cache memories. Therefore, back-to-back reads of the memory
are supported. Compared to other arbiters, the TDMA arbiter supports
CPU-overlapping pipelining. This feature allows for a full saturation of the
available memory bandwidth.

6.4.5 Real-Time Speed-up of Multicore

TheWCET analysis of an application task for a TDMA-based system showed
only a moderate speed-up (up to a factor of 1.5 for an 8-core system). A
lower increase of real-time performance compared to the increase of average-
case performance has been expected. However, the achievable speed-up was
less than expected. It has to be noted that the measured workload consisted
of independent tasks without communication overheads. This result serves
as a foundation for further improvements.

The reduced memory bandwidth calls for more research on time-predictable
caching. The WCET analysis tool only considers the leaf nodes of a call tree
for the method cache analysis. Tighter bounds on method cache misses will
directly pay off for a system with a pressure on memory bandwidth. First
experiments with a local cache analysis showed a WCET reduction of 15%
using an 8-way configuration [11].
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Furthermore, a time-predictable solution for the caching of heap-allocated
data will have to be considered. A small, fully associative buffer similar
to a victim cache [5] will allow detection of some cache hits in the WCET
analysis.
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7
Conclusion and Outlook

This section starts with a short summary of the major goals described in this
thesis. Furthermore, the research course is outlined and the main findings
and results are presented. The conclusion will demonstrate the relevance
of this thesis to current scientific work and will give some ideas for future
research.

7.1 Thesis Goal

The main research goal of this thesis was the design and development of a
homogeneous CMP with a shared memory for real-time embedded systems
based on Java. Multiple CPUs increase the processing power but the system
should remain predictable in the temporal domain. Even though threads
execute on different CPUs and access the shared memory, interaction of
execution times due to memory access have to be prevented. Consequently,
the execution times of different threads can be analyzed separately. Another
objective was the development of a static WCET analysis concept with a
corresponding tool to provide a fully featured package for real-time Java
application development.
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7.2 Research Compendium

In the beginning, this thesis explored a new timing analysis approach of a
system consisting of one processor and a hardware thread, both accessing a
shared memory. Results achieved in this part of research were encouraging,
so the design for a chip-multiprocessor system composed of multiple Java pro-
cessors with shared memory was initiated. The first prototype showed that
the proposed architecture operated correctly. Furthermore, first benchmark
execution results running on multiple cores supported this research direction.
Memory arbitration played the most important role within the multiproces-
sor system design. It had to control simultaneous access by multiple CPUs
to the shared memory. First, a fixed-priority arbiter was implemented. Later
on, a fair-based arbiter was introduced to obtain average-case performance
results of applications. Finally, a TDMA arbiter turned out to be the best
solution for a time-predictable Java chip-multiprocessor. It provides a basis
for a successful WCET analysis. An evaluation of the CMP system con-
cerning static WCET analysis and average-case performance completes the
research paper.

7.2.1 Main Findings and Results

The following points describe the author’s most valuable findings and contri-
butions gained during this research project. They show that the objectives
set out by this thesis, defined in Section 1, have been accomplished.

• Timing analysis is in fact possible for a homogeneous multiprocessor
system with a shared memory. Tasks running on different CPUs usu-
ally influence each others’ execution times when accessing shared mem-
ory. The TDMA arbitration concept removes the interdependencies
between task execution times due to bandwidth partitioning. WCET
estimates of single application tasks can be analyzed in isolation.

• The design of a time-predictable CMP architecture is presented in de-
tail. A prototype implementation, integrating up to 8 JOP cores in a
low-cost FPGA, shows a successful execution of real-world programs.

• WCET analysis approaches of different arbiters show that a time-sliced
arbiter is the only option for obtaining viable WCET estimations.
While resolving simultaneous access conflicts to the shared memory,
it enables WCET analysis of Java bytecodes by splitting the memory
access bandwidth into equal time slots.

• Timing analysis of Java applications generates WCET bounds given in
clock cycles before runtime. There is no need for any measurements. A
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static WCET analysis tool, enhanced for use with multiprocessors, pro-
duces these WCET estimates and completes a real-time development
solution.

• A comparison of CMP configurations using different arbiters shows that
dynamic arbitration mechanisms are less predictable in the temporal
domain but more powerful for average-case program execution.

• The course of this research confirmed the assumption that a real-time
processor has to be designed from scratch for time-predictability. Both
publications from Thiele & Wilhelm [9] and Lickly et al. [4] share
this opinion. Microprocessors used for real-time systems have to be
as predictable with regard to time as they are in the range of com-
puted values. Several advanced microprocessor features that increase
average-case performance cannot be analyzed precisely. Therefore, the
following principle should be pursued for real-time system design: Build
a processor for WCET analysis, don’t use a common processor tailored
to average-case performance and try to analyze it!

7.3 Thesis Relevance

7.3.1 Real-Time Java

Interest for an increased abstraction level has gained the embedded sys-
tem industry’s acceptance for Java. Nevertheless, it is still on the verge
of breakthrough in the real-time system sector. A step in the right direc-
tion is a European Commission funded project called Java environment for
parallel real-time development (JEOPARD) [8]. The consortium members
started the development of an independent software interface for Java real-
time multiprocessor systems in January 2008. During this project, the pro-
posed real-time Java CMP is used for further research activities on real-time
garbage collection [5, 7] and future time-predictable processor architecture
[6, 10]. The author is convinced of Java’s success in developing future time-
predictable systems.

7.3.2 Simultaneous Multiprocessing

This section raises a provocative question: Are simultaneous multiprocessors
the future for increasing processing performance? Although multiple pro-
found arguments have been made that support the use of the most popular
multiprocessor architecture, some doubts are emerging about future efficient
use of SMP computing.
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In the 20th century, a computer system’s performance was dominated by
the low CPU clock rate. Since then, times have changed and the biggest
problem has been to provide the CPU with enough data as quickly as possi-
ble, because CPU clock rate has outperformed memory speed. This growing
speed imbalance, commonly known as “memory bottleneck”, is intensified if
multiple CPUs are using a shared memory bus. The pipelines of multiple
processors have to be kept busy. Therefore, caches have been used to lower
memory bandwidth demands. Consequently, processors can continue execut-
ing their tasks quickly and can contribute significantly to the multiprocessor
performance.

According to Hennessy and Patterson [1], this computer architecture only
scales up to a few dozen cores. Typical state-of-the-art desktop and server
processors integrate two or four CPUs. In this thesis, benchmark executions
scale well in CMP configurations with up to four cores. Integrating more
CPUs does not yield superior results. Even though a CMP with four cores
should be satisfactory for current real-time applications, further enhance-
ments can only be attained by increasing memory bandwidth or lowering
bandwidth demand.

Research and advancements of hardware and software are needed in order to
benefit from the SMP concept. New bus architecture innovations are needed
to combat slow memory access problems even when the number of CPUs in-
creases. On the software side, a distinct lack of advanced multiprocessor pro-
gramming techniques is noticeable. Only a few applications have an innate
parallel capability to efficiently exploit the available processing performance.
Various parallelizable application types include signal and image processing,
server applications, and embedded applications. Mapping sequential code
to SMP architectures requires new parallelization methodologies in order to
exploit the full application performance.

7.4 Outlook

In this project, a complete and detailed timing analysis of a multiprocessor
system with a shared memory has been performed. Three different arbi-
tration algorithms have been implemented and analyzed for practical use in
real-time systems. Only the TDMA arbitration technique features viable
WCET bounds. When carrying out performance comparisons, some issues
regarding the speedup of the WCET have been identified in this type of sys-
tem. Still, many interesting ideas for further system improvements remain
unexamined – they would have exceeded the scope of this thesis.

Further research on a time-predictable CMP examines two closely related
aspects: improvements to the multiprocessor architecture and the WCET
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analysis. Modifications within the architecture might make the analysis more
intricate but an increase in processor performance is assured.

7.4.1 Enhanced Memory Arbitration Concepts

An investigation of a percentage-based memory arbitration of the available
memory access bandwidth could be an interesting concept to investigate.
Based on the time-sliced arbiter, the memory bandwidth per CPU will be
adjusted dependent on the workload of multiple CPUs. For example, if one
CPU needs 60% of the available memory bandwidth, that is exactly what it
will receive. Either this CPU gets more time slots or one larger-sized time
slot. A lookup table could be used to dynamically schedule time slots at
runtime. For example, it might be necessary to give 100% of the available
bandwidth to one CPU due to a high priority event.

Further enhancements of the fair arbiter could result in a promising arbi-
tration solution. In case of a burst memory access (method cache load),
this access might be interrupted after a predetermined period of time. This
would result in a mix of fair and TDMA-based arbitration. Consequently,
using a limited access time, better average-case performance due to a fair
arbitration would be combined with the already existing time predictability.

7.4.2 Advanced Synchronization Mechanisms

One major challenge of a multiprocessor with a shared memory is the syn-
chronization of access to shared objects. Multiple processors communicate
via these data structures. If multiple threads executing on different CPUs
need to access the same objects or class variables simultaneously, their data
access must be properly managed. Only then predictable program behavior
and data consistency can be ensured.

The first CMP prototype utilizes one global lock for all shared data struc-
tures residing on the heap. Even though this synchronization limits the
parallel program execution, it does not entail problems with fine grained
locking (e.g. livelock or deadlock). More advanced mechanisms like lock-
free synchronization algorithms [3] or transactional memory [2] could not be
evaluated within the course of this thesis. Especially, transactional memory
that executes a number of memory accesses in an atomic transaction is a
promising synchronization option. Combining the synchronization of mul-
tiprocessors with timing analysis presents a future challenge for predictable
multiprocessor architectures.
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7.4.3 Dynamic Memory Support

This thesis assumes a main memory with predefined memory access time
latencies. Static random access memory (SRAM) is used for prototype im-
plementation because it features short and predetermined memory access
times. A large disadvantage of SRAM is that it needs a large number of
transistors, namely 6, to store a single bit of information. Therefore, it is
very expensive with respect to die area and cost compared to dynamic ran-
dom access memories (DRAM). These memories only need one transistor
and a capacitor for storing a single bit. A capacitor discharges over time and
therefore DRAMs must be periodically refreshed to maintain charge. For
use in a real-time CMP system, this refresh would not complicate WCET
analysis. A designated time slot within the TDMA period could be allocated
for refresh execution. Research will have to prove whether longer memory
access latencies make DRAM a viable alternative for use in time-predictable
CMPs.

7.4.4 WCET Analysis of Bytecode Sequences

Currently, the WCET is analyzed at Java bytecode level. Each bytecode’s
WCET is calculated separately. For uniprocessor WCET analysis, these
bytecode WCETs do not differ from best-case or average-case execution
times. However, the multiprocessor analysis searches for the worst-case over-
lap between the bytecode’s memory access pattern and the TDMA memory
access scheme. In order to obtain a WCET of an application task, both
concepts add up all bytecode WCETs.

A more advanced approach for multiprocessor analysis could analyze basic
blocks consisting of numerous successive bytecodes. Consequently, analyzing
a sequence of bytecodes would tighten the WCET estimation, because the
memory access pattern of a bytecode sequence is taken into account. Fur-
thermore, in order to enhance the quality of WCET bounds, an analysis of
multiple basic blocks could be investigated.

7.4.5 WCET Analyzable Data Caching

The gap between memory access time and processor speed is widening. CPUs
have to idle until the requested data from the main memory is available.
Multiprocessors using a shared memory increase the pressure on the mem-
ory bandwidth even further. Typically, caches serve as very fast memories
because on a cache hit, data does not have to be fetched from the main
memory.
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Data caching remains problematic for static timing analysis, because it is
difficult to determine whether a data item is in cache or not. Even though
each JOP uses a method cache (caching instructions) and a stack cache,
caching of heap allocated data has so far been disregarded and requires
further exploration.

Time-predictable data caching for multiprocessors including the implemen-
tation and analysis of a cache coherence mechanism (e.g. a snooping or a
directory-based mechanism) poses a further challenge in analyzing tight ex-
ecution time bounds.

7.5 Summary

This thesis shows that timing analysis is in fact possible for homogeneous
multiprocessor systems with a shared memory. A Java chip-multiprocessor
architecture consisting of a number of JOP cores and a shared memory is
presented. An arbiter is used to serialize the memory access of multiple
processors. Three different arbitration schemes are described, analyzed, and
compared for viable use in real-time CMPs.

The key component enabling a WCET analysis of the CMP is a TDMA ar-
biter that splits the memory access bandwidth into equal shares. Therefore,
a WCET analysis of Java bytecodes can be performed instead of analyzing
each single memory access. In this research, JOP’s WCET tool was en-
hanced to integrate maximum latencies through memory access collisions of
multiple CPUs. Examples of WCET calculations are presented, and WCET
estimates are compared to measured results. Several experiments, carried
out by executing benchmarks on real hardware, have demonstrated that the
performance capability of a time-predictable architecture cannot keep up
with an architecture designed for average-case performance. Nevertheless,
for real-time applications safe upper WCET bounds are more important
than processing performance.
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A
Measurement-based Verification of

Bytecode WCET Analysis

A.1 Verification Goal

The verification goal is to check the WCET analysis of bytecodes. Therefore,
bytecode execution times are measured. The bytecode execution time is
dependent on the starting point within a TDMA period. Two properties
of measured bytecode execution times have to be demonstrated in order to
verify multiprocessor WCET analysis:

1. A measured execution time should never be larger than the analyzed
WCET. Otherwise, the static WCET analysis tool produces unsafe
WCET bounds.

2. Ideally, the maximum measured execution time is the same as the
analyzed WCET. Consequently, tight bytecode WCETs are produced
due to a precise and accurate hardware model.

A.2 Verification Method

The verification is carried out by measuring bytecode execution times in real
hardware. It is assumed that the bytecode starting point within the TDMA
period that produces the bytecode WCET is part of the verification process.
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Table A.1: Java bytecodes of sample assignment.

Bytecode Cycles

aload_0 1
iconst_0 1
iaload 25
istore_1 1

A random latency delays the bytecode starting point between consecutive
runs. Consequently, it is possible to start the bytecode execution in every
possible cycle of a given TDMA period and to cover all different bytecode
execution options. To eliminate the risk that a worst-case scenario is not
measured, prime numbers are used for the TDMA period and the latency
generation.

A.2.1 Hardware Configuration

The hardware board described in Section 3.4.3 is used to obtain measured
bytecode execution times. For these experiments, the CMP integrates 3
CPUs and the TDMA period is configured to 21 clock cycles.

A.3 Verification Result of Bytecode iaload

Line 18 of the example code shown in Listing A.1 assigns an array component
with index 0 to the local variable test. This Java assignment results in the
bytecodes described in Table A.1. The WCET analysis of this assignment
is only dependent on the bytecode iaload, which accesses the memory. All
other bytecodes do not access the memory and execute in a single cycle. In
summary, the analyzed WCET of this simple Java assignment results in 28
clock cycles.

Listing A.1 shows a method that measures the execution time of the Java
assignment MAX times. After initializing some local variables, a random num-
ber generator is initialized with a prime number SEED. In each run of the loop
body, a random latency delays the execution of the assignment. MAX is ini-
tialized to 10000. The PRIME constant is chosen to be 183, which generates
latencies between 0 and 3470 clock cycles. The variable result stores the
execution time of each run. Running this measurement in real hardware
results in 28 cycles at a maximum. Subtracting the three bytecodes that
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Listing A.1: Method for assignment measurement.
1 void measure(int [] array) {
2 int test = 0;
3 int random = 0;
4 int start = 0;
5 int stop = 0;
6 int result = 0;
7

8 // Initialization of random generator
9 Random r = new Random(SEED);

10

11 for(int i=0; i<MAX; i++){
12

13 // Random latency generation
14 random = Math.abs(r.nextInt() % PRIME);
15 for(int j=0; j<random; j++);
16

17 start = Native.rdMem(Const.IO_CNT);
18 test = array[0];
19 stop = Native.rdMem(Const.IO_CNT);
20 result = stop−start;
21 }
22 }

do not access the memory gives exactly the same result of 25 cycles as the
analyzed WCET of iaload.
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B
Analyzed Bytecode WCETs

When using a TDMA arbiter, bytecode WCETs are dependent on the num-
ber of CPUs, time slot sizes and memory access times as described in Chap-
ters 5 and 6. This chapter shows analyzed bytecode WCET results of differ-
ent CMP configurations.

Assuming memory access times of two cycles for a read and three cycles for
a write access, Table B.1 lists bytecodes and their WCETs. Only bytecodes
that access the main memory are shown. All other bytecodes are omitted
from the table because their WCETs are not affected by a shared memory
multiprocessor. The second column presents bytecode WCETs of a single
JOP, which does not have to share the memory bandwidth. Therefore, a
time slot size is not provided. All other columns show WCET results of
different configurations regarding the number of CPUs and the time slot
size. For the analysis of return and invoke bytecodes it is assumed that the
desired method resides in cache and no cache miss occurs.

CMP Configuration (# of CPUs/Slot size)

Opcode 1/- 2/3 2/15 2/30 4/3 4/15 4/30 8/3 8/15 8/30

ldc 8 12 24 39 18 54 99 30 114 219
ldc_w 9 13 25 40 19 55 100 31 115 220
ldc2_w 17 21 33 48 32 63 108 56 123 228
xaload1 10 22 26 41 40 56 101 76 116 221
xastore2 14 24 31 46 42 61 106 78 121 226
xreturn3 23 27 39 54 33 69 114 45 129 234

Table B.1: Bytecode WCETs depending on CMP configuration in
clock cycles. The time slot size is varied between 3 and 30 cycles.
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CMP Configuration (# of CPUs/Slot size)

Opcode 1/- 2/3 2/15 2/30 4/3 4/15 4/30 8/3 8/15 8/30

return 21 25 37 52 31 67 112 43 127 232
getstatic 8 12 24 39 18 54 99 30 114 219
putstatic 10 15 27 42 21 57 102 33 117 222
getfield 13 19 29 44 31 59 104 55 119 224
putfield 16 22 33 48 34 63 108 58 123 228

invokevirtual 100 109 127 154 121 217 274 169 397 514
invokespecial 75 79 97 106 85 157 166 121 277 286
invokestatic 75 79 97 106 85 157 166 121 277 286
arraylength 7 11 23 38 17 53 98 29 113 218

Table B.1: Bytecode WCETs depending on CMP configuration in
clock cycles. The time slot size is varied between 3 and 30 cycles.

1xaload = iaload, faload, aaload, baload, caload, saload
2xastore = iastore, fastore, aastore, castore, sastore
3xreturn = ireturn, freturn, areturn

In contrast to the previous table, Table B.2 compares bytecode WCET re-
sults using time slot sizes between 6 and 12 cycles.

CMP Configuration (# of CPUs/Slot size)

Opcode 1/- 2/6 2/9 2/12 4/6 4/9 4/12 8/6 8/9 8/12

ldc 8 15 18 21 27 36 45 51 72 93
ldc_w 9 16 19 22 28 37 46 52 73 94
ldc2_w 17 29 27 30 53 45 54 101 81 102
xaload 10 17 20 23 29 38 47 53 74 95
xastore 14 29 25 28 53 43 52 101 79 100
xreturn 23 30 33 36 42 51 60 66 87 108
return 21 28 31 34 40 49 58 64 85 106

getstatic 8 15 18 21 27 36 45 51 72 93
putstatic 10 18 21 24 30 39 48 54 75 96
getfield 13 20 23 26 32 41 50 56 77 98
putfield 16 31 27 30 55 45 54 103 81 102

invokevirtual 100 109 133 136 145 187 184 238 331 328
invokespecial 75 82 97 112 118 151 184 190 259 328
invokestatic 75 82 97 112 118 151 184 190 259 328
arraylength 7 14 17 20 26 35 44 50 71 92

Table B.2: Bytecode WCETs depending on CMP configuration in
clock cycles. The time slot size is varied between 6 and 12 cycles.
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Table B.3 lists bytecode WCET results analyzed for a system with an SRAM
memory as specified in Section 6.2. A TDMA arbiter needs a minimum time
slot size of 6 clock cycles to assure a successful memory access of multiple
CPUs.

CMP Configuration (# of CPUs/Slot size)

Opcode 1/- 2/6 2/15 2/30 4/6 4/15 4/30 8/6 8/15 8/30

ldc 10 19 28 43 31 58 103 55 118 223
ldc_w 11 20 29 44 32 59 104 56 119 224
ldc2_w 20 33 38 53 57 68 113 105 128 233
xaload 16 41 34 49 77 64 109 149 124 229
xastore 21 44 59 56 80 119 116 152 239 236
xreturn 23 32 41 56 44 71 116 68 131 236
return 21 30 39 54 42 69 114 66 129 234

getstatic 10 19 28 43 31 58 103 55 118 223
putstatic 13 24 33 48 36 63 108 60 123 228
getfield 17 32 35 50 56 65 110 104 125 230
putfield 21 36 41 56 60 71 116 108 131 236

invokevirtual 105 121 160 169 169 280 289 241 520 529
invokespecial 78 87 130 111 121 220 171 193 400 291
invokestatic 78 87 130 111 121 220 171 193 400 291
arraylength 9 18 27 42 30 57 102 54 117 222

Table B.3: Bytecode WCETs depending on a CMP system with
larger memory access times.
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List of Acronyms

ACET Average-Case Execution Time
AHB Advanced High-performance Bus
ASIC Application-Specific Integrated Circuit
BCET Best-Case Execution Time
BMVIT Bundesministerium für Verkehr, Innovation

und Technologie
CFG Control Flow Graph
CMP Chip-Multiprocessor
CPU Central Processing Unit
DE2 Development and Education Board 2 from Altera
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
EDK Embedded Development Kit from Xilinx
EP1C12 Cyclone I FPGA from Altera
EP2C35 Cyclone II FPGA from Altera
FP Fixed Priority
FPGA Field-Programmable Gate Array
GC Garbage Collector
GUI Graphical User Interface
IC Integrated Circuit
ILP Instruction-Level Parallelism
IP Intellectual Property
IPET Implicit Path Enumeration Technique
JEOPARD Java Environment for Parallel Real-time Development
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JOP Java Optimized Processor
JSR Java Specification Request
JVM Java Virtual Machine
LRU Least Recently Used
NUMA Non-Uniform Memory Access
OPB On-chip Peripheral Bus
PLL Phase-Locked Loop
RISC Reduced Instruction Set Computer
RTL Register Transfer Level
RTS Real-Time System
RTSJ Real-Time Specification for Java
SoC System-on-Chip
SimpCon Simple SoC Bus
SMP Symmetric (shared-memory) Multiprocessor
SOPC System-on-a-programmable-chip builder from Altera
SP Synergistic Processor
SRAM Static Random Access Memory
TDMA Time Division Multiple Access
TPCM Time-Predictable Chip-Multiprocessor
UMA Uniform Memory Access
VGA Video Graphics Array
VHDL Very High Speed Integrated Circuit (VHSIC)

Hardware Description Language
WCET Worst-Case Execution Time
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