
DISSERTATION

Analysis of On-Chip Fault-Tolerant

Distributed Algorithms

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr. Ulrich Schmid
Institut für Technische Informatik

Embedded Computing Systems Group
Technische Universität Wien

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Matthias Függer

fuegger@ecs.tuwien.ac.at

Matrikelnummer: 0100031
Friedenshöhegasse 36
1130 Wien, Österreich

Wien, Juni 2010

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Die formale Spezifikation und Analyse von hochintegrierten Schaltungen (VLSI Cir-
cuits) ist für die Verwendung in hochzuverlässigen Anwendungen unerlässlich. Zwei Trends
im VLSI Design sprechen für einen Modellierungsansatz analog zu dem verteilter Syste-
me: (i) merkliche Kommunikationszeiten zwischen Schaltungskomponenten und (ii) nicht
vernachlässigbare Fehlerraten, verursacht durch Abnutzungseffekte und Teilchentreffer in
Schaltungen mit immer kleiner werdenden Strukturgrößen. Trotz dieser vielversprechenden
Gemeinsamkeiten können VLSI Circuits mit Modellen klassischer verteilter Algorithmen
nur umständlich oder gar nicht spezifiziert und analysiert werden: Im Gegensatz zu klas-
sischen verteilten Systemen, in denen Berechnungen von Prozessen in diskreten Schritten
ausgeführt werden, benötigt die Modellierung von VLSI Circuits ein kontinuierliches Be-
rechnungsmodell. Ein on-chip Algorithmus wird in diesem Kontext zu einer Menge von
Schaltungskomponenten, die auf kontinuierlichen Berechnungsströmen operieren und via
kontinuierlicher Nachrichtenströme kommunizieren.

In der Dissertation wird ein Spezifikations- und Analyse-Framework vorgestellt, welches
auf die Besonderheiten von fehlertoleranten on-chip Algorithmen abgestimmt ist. Dieses
basiert auf einer dreifachen Darstellung des Verhaltens der Komponenten über die Zeit. Die
elementarste Darstellung ist ein “signal”, eine Folge von Ereignissen. Darauf folgt die ab-
straktere Repräsentation des “status”, der mehrere ähnliche signals umfasst und schließlich
die “counting function”, die eine noch größere Menge von signals repräsentiert. Diese drei-
fache Darstellung erlaubt die Spezifikation von unterschiedlichen Schaltungskomponenten
auf verschiedenen Abstraktionsniveaus.

Die Stärken des vorgestellten Frameworks werden beispielhaft an einem asynchronen
on-chip Algorithmus, das ist ein Algorithmus, der nicht von einem zentralen Taktgenera-
tor versorgt wird, illustriert. Die Erweiterung des Frameworks um eine Petrinetz-ähnliche
Spezifikationssprache erlaubt es einige für das Design von asynchronen Schaltungen zen-
trale Komponenten kompakt zu spezifizieren. Unter diesen befindet sich auch das “General
Join” Modul, welches das Zusammenführen von mehreren Datenpfaden von verschiedenen
Quellen auf eine fehlertolerante Weise ermöglicht. Neben einer vollständigen Spezifikati-
on werden für dieses Modul auch allgemeine Aussagen über das Zeitverhalten abgeleitet.
Weiters wird eine Implementierung des General Join Moduls, bestehend aus einfachen
Subkomponenten, präsentiert und deren Korrektheit bewiesen.

Im Gegensatz zu asynchronen werden synchrone Designs von einem zentralen Takt ver-
sorgt, welcher einen unvermeidbaren single-point of failure darstellt. Eine übliche Methode,
um synchrone Designs fehlertolerant zu machen, ist die Replikation des Designs und der
Taktquelle. Dies führt allerdings zum sogenannten “Tick Generation” Problem: alle ein-
zelnen Komponenten mit fehlertoleranten, synchronisierten Taktsignalen, die nicht über

die Zeit divergieren, versorgen zu müssen. In der Dissertation wird eine Lösung mit Hil-
fe einer Schaltung aus interagierenden General Join Modulen präsentiert, deren zeitliches
Verhalten charakterisiert und deren Korrektheit bewiesen.

Abschließend werden Grenzen einfacher Schaltungen aufgezeigt, die nur aus kombinato-
rischer Logik und deren Verbindungen bestehen. Es wird bewiesen, dass es keine derartige
Schaltung gibt, die das “short-pulse-filter” Problem löst; ein Problem von großer Wichtig-
keit für das Design von zustandsbehafteten Schaltungen, wie Arbitern, an deren Ausgängen
keine beliebig kurzen, transienten Zustandswechsel erlaubt sind. Die Dissertation endet mit
einem probabilistischen Ansatz zur Implementierung eines short-pulse-filters.

Abstract

For Very Large Scale Integrated (VLSI) Circuits intended to be used in highly reliable
applications, formal specification and analysis is mandatory. Two trends in VLSI design
favour a modeling approach analogous to that used for distributed systems: (i) noticeable
communication delays between circuit components and (ii) increasing failure rates caused
by wear-out and particle hits in circuits with ever decreasing feature sizes. Despite these
striking similarities, specifying and analyzing circuits by means of classic distributed system
models is either overly lengthy or not possible: In contrast to classic distributed systems,
where computations are performed by processes in discrete steps in time, digital circuits in
general adhere to a continuous computation model. An on-chip algorithm thus becomes a
set of circuit components that compute on continuous streams of events and communicate
by continuous streams of messages.

In this thesis a modeling and analysis framework tied to the peculiarities of fault-
tolerant on-chip algorithms is presented. It is based on a three-fold representation of the
behavior of a circuit’s outputs over time. The most fundamental is the signal, a trace of
events; next comes the more abstract status, grouping together similar signals, and finally
the counting function, grouping together an even larger set of similar signals. The three-
fold representation allows the specification of diverse circuit components at different levels
of abstraction.

The capabilities of this framework are then illustrated by applying it to clockless on-
chip algorithms, that is, circuits that are not driven by a central clock. The framework is
extended by a Petri net like specification language, which is used to state pivotal circuit
components for building clockless fault-tolerant on-chip algorithms. Among those is the
General Join module, a module that allows to merge data provided by different sources
in a fault-tolerant manner. In the thesis a complete specification is provided and generic
timing properties are derived. Furthermore, an implementation of a General Join module
in terms of simpler circuit components is given and proven correct.

In contrast to clockless circuits, synchronous circuits are driven by a central clock which
inherently constitutes a single-point of failure. A common technique to make synchronous
circuits fault-tolerant is by replication of the circuit and its clock source. Thereby, the
problem arises to provide fault-tolerant, synchronized clock signals that do not diverge
over time to each of the replicas. This problem is termed the “tick generation” problem. It
is shown that an alternative to replicated synchronized clock sources is to let a set of Gen-
eral Join modules, forming an on-chip distributed algorithm, generate synchronized clock
signals in the course of their interaction. A correctness proof and performance measures
of this solution are derived.

Finally limitations of a restricted set of on-chip algorithms are established: It is shown
that there is no circuit, only comprising combinatorial gates and wires with constant delay
that solves the short-pulse-filter problem, a problem of great importance when building
state-holding devices like arbiters that are not allowed to glitch at their output. The thesis
concludes with a probabilistic by-pass of these limitations.

Acknowledgements

I would like to thank my adviser Ulrich Schmid. He did not only manage to create
perfect conditions for scientific work in the Embedded Computing Systems Group, most
notably by his engagement in qualitative lectures on distributed computing, but was always
a great help through numerous discussions on general ideas and proof details. It was also
him who had the very interesting idea to study fault-tolerant VLSI systems under the
perspective of distributed systems, finally leading to the thesis’ topic.

I further want to thank Andreas Steininger with whom discussions were always fruitful
and led to many new insights. I especially appreciate his open-minded and creative way
to approach VLSI systems.

Many thanks go to Gottfried Fuchs with whom I very much enjoyed working. We
collaborated in the DARTS project1 in which many of the thesis’ fundamental ideas, that
could be both refined and set into a more general context in the FATAL project, emerged.

I would like to thank Josef Widder for his fundamental discussions during my time at
ECS and for his great PhD thesis.

I would like to thank Bernadette Charron-Bost for her insist to closely look at the
very fundamentals of distributed computing, where she always discovered deep results on
their nature.

Thanks, too, go to my co-supervisor Jennifer Lundelius Welch who wrote a wonderful
book and with whom I recently had the pleasure to work.

For comments to improve the thesis I am grateful to Andreas Steininger, Josef Widder,
Thomas Nowak, Gottfried Fuchs and Johanna Függer.

For her support in organizational issues, I would like to thank Traude Sommer.
Finally I would like to thank my family Michaela, Reinhold, Barbara and Tapas, Hanna,

my grandparents and Christian as well as Dymfna, Ulrike, her family and my friends for
their warm support through all the years.

Matthias Függer
Vienna, Austria, June 29, 2010

1The work received funding from the DARTS project of the FIT-IT program of the Austrian bm:vit
(contract 809456-SCK/SAI) and from the FATAL project of the Austrian FWF Fond under project number
P21694.

For Dymfna.

Contents

1 Preface 1

1.1 Motivation . 3

1.2 Structure of the thesis . 9

2 Introduction 11

2.1 Classical Asynchronous Computations . 11

2.2 Asynchronous Computations in Hardware 13

3 Modeling and Analysis Framework 17

3.1 Signals . 18

3.2 Executions . 22

3.3 Modules . 23

3.4 Problems . 26

3.5 Restricting problems . 26

3.6 Problem solving . 26

3.7 Implementation . 27

3.8 Failures . 27

3.9 Related Work . 28

4 Modeling Fault-tolerant Clockless Algorithms 33

4.1 Petri Nets and Event Graphs . 33

4.1.1 Timed Event Graph . 35

4.2 And-or Event Graph . 37

4.3 Threshold Graph . 39

4.4 Modeling Control Circuits . 40

4.4.1 High Level View . 42

i

ii Contents

4.4.1.1 Queue Module . 45

4.4.1.2 Non-buffering Join Module 45

4.4.1.3 General Join Module . 45

4.4.2 Timing Properties of General Joins 46

4.5 Implementing General Joins . 50

4.5.1 Specification of the compound module GJImp 51

4.5.1.1 Pairs of elastic pipes . 53

4.5.1.2 Diff-Gate module . 53

4.5.1.3 Pipe Compare Signal Generator (PCSG) module 54

4.5.1.4 Threshold modules . 55

4.5.1.5 Req generation module . 56

4.6 Correctness Proofs . 56

4.7 Performance of clockless algorithms . 76

4.8 Related Work . 78

5 Fault-tolerant Tick Generation 83

5.1 The DARTS Architecture . 84

5.1.0.6 Distributed system . 88

5.1.0.7 Failure model . 88

5.1.0.8 Booting . 89

5.1.1 Tick Generation Problem . 89

5.1.2 A Solution with General Join modules 90

5.1.2.1 TG Node Implementation 90

5.2 Correctness Proofs . 91

5.2.1 Bottom Proof Layer . 91

5.2.2 Intermediate Proof Layer . 92

5.2.3 Top Proof Layer . 101

5.2.3.1 Low-level solution . 105

5.3 Remarks on the TG-Alg Solution . 110

5.4 Related Work . 111

Contents iii

6 Fault Containment 113

6.1 Deterministic Fault Containment . 113

6.1.1 The SPF Problem . 114

6.1.2 Circuit Implementation of a Module 115

6.1.3 Dependence graph . 119

6.1.4 Circuit Implementation Module Characterization 124

6.1.5 Impossibility results . 126

6.1.6 Reducing circuit implementability 132

6.2 Probabilistic Fault Containment . 133

6.3 Related Work . 135

7 Conclusions 137

7.1 Future Work . 139

Bibliography 141

iv Contents

List of Figures

1.1 Adder Circuit . 7

1.2 Relative Delay Constraints . 7

2.1 Classical asynchronous execution . 13

2.2 AND gate . 14

2.3 Asynchronous execution in hardware . 14

4.1 Example Petri net . 34

4.2 Muller C-Element . 37

4.3 Timed and-or Event Graph . 38

4.4 Example Threshold graph . 39

4.5 Asynchronous communication . 40

4.6 High level view . 40

4.7 2-phase bundled data communication . 41

4.8 Queues . 42

4.9 Fork . 42

4.10 Non-buffering/General Join . 42

4.11 Example high level view . 44

4.12 Unbounded Queue Module . 45

4.13 Bounded Queue Module of size 1 . 45

4.14 Non-buffering Join Module . 46

4.15 General Join Module . 47

4.16 Architecture of the GJImp module . 52

5.1 Replacing synchronous clocking by fault-tolerant distributed tick generation 85

5.2 Simple algorithm for generating approx. simultaneous tick(k) messages . . 85

5.3 Fault-tolerant algorithm for generating approx. simultaneous tick(k) messages 86

v

vi List of Figures

5.4 Fault-containment region for TG node p 89

6.1 Circuit implementation graph of Example 6.1 116

6.2 Circuit implementation module of Example 6.1 117

6.3 Dependence graph D(G, b, 7) of Example 6.4 121

6.4 Input pulse with positions of input leafs marked 128

6.5 Circuit impl. module MSPF solving SPF in a restricted environment 132

6.6 Simulation results of a C-Element short-pulse-filter implementation 134

Chapter 1

Preface

THE AIM of this thesis is to approach the challenging area of on-chip fault-tolerant
distributed algorithms in a way inspired by the formal analysis of classic distributed

algorithms. As such, the thesis is neither the first step into this direction (for exam-
ple, [17] is a special issue on hardware design) nor the last. However, the author hopes
the reader will still find one or the other inspiring novel approach towards this interest-
ing field. Classically a distributed system is a set of autonomous processes equipped with
means to communicate with each other, e.g., by message passing. A distributed algorithm
is an assignment of locally executed algorithms to the processes of a distributed system,
where each local algorithm operates only on the process’ local state (including its received
messages). Interesting distributed algorithms are intended to solve a global problem, de-
spite their lack of global knowledge. In this thesis the term “on-chip algorithm” denotes
an algorithm that is intended not to be implemented in software, but rather in terms of
(simple) hardware building blocks (modules) directly placed on a chip. In this thesis a
distributed system is a set of modules residing on a chip that can communicate with each
other by signalling, and an on-chip algorithm is an assignment of an implementation to
each of the distributed system’s modules. Implementations themselves comprise of modules
that perform very simple computations only (here a multiplication of two 8-bit numbers is
already a non-simple computation).

Due to the impossibility to cover all significant aspects in satisfactory depth, this thesis
has to concentrate on a few particular issues that, however, are still representative. The
following were chosen:

(i) A formal framework to model on-chip algorithms is introduced. We assume that
the algorithm’s hardware modules may fail during operation time due to wear-out,
particle hits, etc., and behave in an arbitrary way after they have become faulty.
Therefore major ingredients of the framework are the possibility to capture timing
properties and fault tolerance.

1

2

(ii) A high-level Petri net like specification language is presented, together with building
blocks that can be used to construct fault-tolerant on-chip algorithms.

(iii) An example non-toy algorithm is stated in terms of high-level building blocks and is
proven correct; performance bounds are also derived.

(iv) The possibility of fault-containment of modules, that is, the possibility to build mod-
ules that meet their specification even if some of their inputs are driven by faulty
modules, is investigated.

A brief description of the above issues follows.

Not to the least because of their great aesthetic attraction, this thesis only covers
clockless algorithms, i.e., on-chip algorithms that do not make use of a central clock source.
A second, more practical, reason in favor of clockless algorithms can be easily given: unlike
their classical synchronous counterparts, clockless algorithms are not driven by a central
clock which inherently constitutes a single point of failure. Clearly, though, synchronous
algorithms can be made fault-tolerant by replicating the clocks. This, however, inevitably
leads to metastability-prone1 communication between functional units, clocked by different
clocks, unless the clocks are synchronized. A method of how to obtain synchronized clocks is
the topic of one of the chapters: interestingly the presented solution makes use of a clockless
algorithm. Most of the ideas presented, however, can be easily applied to synchronous
circuits as well.

Obviously, a thorough analysis of any system requires a formal modeling and analy-
sis framework. It is first shown that classical modeling frameworks do not fit very well
the peculiarities of on-chip algorithms: either they are not expressive enough, or a repre-
sentation of important concepts in their language is lengthy. Thus a new modeling and
analysis framework for on-chip algorithms is proposed, capable of expressing continuous
time and fault-tolerance. This approach allows the specification of hardware components
in terms of modules that communicate with each other and together form the system under
consideration.

A more abstract, Petri-net-like, way of specifying clockless circuits is presented. The
proposed language is then used to specify common building blocks of fault-tolerant clockless
circuits. For example, a standard module used in non fault-tolerant circuit design is the
Join module. It is used to merge data of multiple predecessor modules and forward it to a
successor module. It does so by waiting to receive data from all its predecessor modules,
before handing over the merged data to the successor module. Because of this “wait for
all” semantics the join, however, is of limited use in fault-tolerant on-chip algorithms. Thus
the set of modules is extended by a General Join module that does not wait for data from
all predecessor modules. Rather, it only waits for a subset of its predecessor modules. In

1A hardware module that is bistable, i.e., has two stable internal states, may remain in an unstable
state different from the two stable states for an unbounded time before it flips into one of its stable states.
This problem is called the “metastability problem”. See Section 6.2 for more details on metastability.

Chapter 1: Preface 3

terms of the Petri net like specification language, this change boils down to introducing
anti-tokens circulating in the Petri net.

A further point of interest is to measure the timing performance of a given algorithm.
In the field of distributed computing this is classically done by giving best case and worst
case bounds for the sought timing measures. Typically, those bounds are too conservative.
We thus present a (simulation) relation between non fault-tolerant control structures of
clockless algorithms and a well-known simple distributed algorithm, namely Full Reversal
introduced by Gafni and Bertsekas [42], of which the detailed performance measures are
known. While the technique is restricted to non fault-tolerant clockless algorithms with
identical communication delays, it provides good estimates for real systems with homoge-
neous communication delays. An adaptation of this method to fault-tolerant algorithms
and to non-homogeneous delays is planned future work.

The new framework, together with the abstract specification language, is then “tested”
by applying it to a fault-tolerant tick generation algorithm: the latter comprises a set of
tick generation units that locally generate ticks (0/1-transitions) in a distributed manner
and establish synchronization, even in spite of a certain fraction of arbitrarily faulty tick
generation units. Using the new modeling framework, the algorithm is proven correct and
performance metrics are derived.

When proving a distributed system correct, one typically partitions it into isolated and
autonomous parts, which may fail, and then proceeds to prove that the distributed system
still solves a certain problem in spite of up to some number f of faulty parts. Such a
partitioning only makes sense if a single faulty part cannot cause another part or even all
other parts to fail, i.e., if fault-containment can be guaranteed. The thesis’ final topic is a
short investigation of fault-containment in terms of the new modeling framework.

1.1 Motivation

This thesis is motivated by three important aspects of on-chip algorithm design, namely
fault-tolerance, the distributed system’s view, and the focus on clockless circuits which are
discussed in detail below.

Fault-tolerance. The International Technology Roadmap of Semiconductors [48] projects
that feature sizes and operating voltages will further decrease, such that product failures
and parametric shifts of a chip’s components will increase. While these trends result
in a higher number of permanent faulty chips at production time, decreasing the man-
ufacturer’s yield [48], system failures that occur during operation will and have already
increased, too [4,18,19]. The latter types of failures, clearly, play a crucial role when used
in high-reliability applications. The reasons for failures that occur during system opera-
tion, and by this their effects on the system, differ. A possible classification of faults in
terms of persistency is given in [18,19]: faults can be permanent, intermittent or transient.

4 1.1 Motivation

A permanent fault is one that results in an irreversible malfunction of the faulty device,
e.g., a transistor, logic or memory cell. A malfunctioning cell with, say, one output is not
necessarily silent, i.e., produces a constant signal after it has failed. The latter type of fault
is called a stuck-at fault . Simulations carried out by Grahsl et al. [43] with a C-Element
(a cell widely used in asynchronous circuit designs) where transistors were replaced by
permanently faulty transistors, have shown that stuck-at faults only make up a minority
of possible faults of a C-Element. In [33], Fuchs et al. discussed alternative fault models to
the stuck-at fault. Unfortunately, it turned out that only arbitrary (in terms of distributed
computing, Byzantine [56]) behavior of faulty cells can be assumed with sufficiently high
coverage of the fault hypothesis.

An intermittent fault results from a device that behaves slightly off specification, e.g.,
due to a parameter shift or highly resistive interconnections between cells, which may result
in (data dependent) delay faults [19]. While not permanently faulty, an intermittently
faulty cell produces failures, e.g., glitches2, with an increased rate. When being replaced
by a correct device, the rate decreases.

Transient faults occur because of environmental conditions, like radiation, and thus
their rate cannot be decreased by replacement of cells with equivalently designed (identical
design, layout, etc.) cells. The main reasons for radiation-induced faults at sea level are
(i) alpha particles emitted from package impurities, as well as neutrons (the most common
hadrons at sea level) colliding with (ii) 10B isotopes from the B-doping of Si and with (iii)
Si atoms, which both produce ionized secondary particles [4, 5]. Ionized particles, while
traversing the Si material, produce e−-h+ (electron-hole) pairs along their track. The effect
an ionized particle has on the circuit hit is typically given in terms of LET (linear energy
transfer), dE

dx
/ρ, where E is the energy deposited in the material and ρ the material density.

Given the LET of a particle, the number of induced e−-h+ pairs generated per traversed
distance can be calculated. The pairs are typically collected at reverse biased junctions
of transistors, thereby generating a current, respectively, voltage swing when moving in
the material [65, 93]. Note that, particle movement is both due to drifting in the electric
field and diffusion, initiated by the higher e− and h+ concentrations near the ion track.
Baumann [4] states that typically the drifting process produces a large current spike, while
the diffusion process becomes dominating later on, leading to a long tail of the induced
charge pulse.

The induced current then may either (i) flip a memory bit stored in a DRAM, SRAM
or flip-flop (we say a soft error (SE) and more specifically, a single-event-upset (SEU) has
occurred), (ii) create a glitch (we say a single-event-transient (SET) has occurred), that is,
either generate a new or mask an existing voltage pulse at a logic cell’s output, or (iii) be
masked by electrical means. Since masked electrical pulses are not necessarily well-formed,
they may be perceived differently by successor cells. In terms of a purely digital system
model, as our framework, the above failures map to spurious and missing 0-to-1 and 1-to-0
transitions that are received by a (possibly proper) subset of successor modules, leading to
arbitrary and asymmetric failures.

2A cell’s output is said to glitch, if it takes on an unintended, wrong state for a short time.

Chapter 1: Preface 5

DRAM cells used to be more susceptible to radiation-induced faults compared to SRAM
cells because of their large surface and dynamic update. However, this is not any longer the
case [4]. Two trends can be observed: due to decreasing feature sizes, SRAM cells became
smaller and thus less likely to be hit by a particle. However, for the same reason and
because of the reduced operating voltage, the critical charge necessary to flip a bit became
smaller [4, 20]. While mitigation techniques allowed to reduce the resulting soft error rate
(SER) of a single bit cell , the system SER is nearly constant for DRAM and has increased
for SRAM [4], because of the increasing system size, and for combinatorial logic [4,18–20],
due to dominating interconnects with non negligible and varying RC, reduced voltage swing
and smaller drivers, which make electrical masking less likely.

Summarizing, according to Constantinescu [18–20], the rate of transient and intermit-
tent system faults will further increase and affect combinatorial logic to a larger extent.
Mitigation techniques are numerous and reach from material level to the system level.

Material level techniques comprise the use of different or highly pure materials. For
example, it was observed that alpha particles result from radioactive impurities in the
device material as well as solder bumps [5]. Baumann et al. [5] have identified 10B isotopes,
used in doping and to form dielectric layers, as a major contributor to the system SER and
propose not to use 10B. Advanced VLSI process technology like Silicon on insulator (SOI)
has also been proven to effectively reduce radiation susceptibility: the idea is to have a
buried insulator in the substrate that shortens the effective path an ion can generate e−-h+

pairs along [65, 93].

Techniques on higher levels of abstraction include W/L sizing of transistors3, where a
larger W/L results in stronger drivers and thus less susceptible combinatorial logic. Zhou et
al. [99] have proposed a model allowing fast estimation of the reliability gained by transistor
sizing, enabling tradeoff-decisions between reliability, circuit size, and power consumption.
Further mitigation techniques consider layout adaptations [86] and different cell-designs.

Techniques at even higher level of abstraction consider error detection and correction
codes which are widely used to protect highly-regular circuit designs, like memory, against
transient faults. Another example is the Dual Interlocked Storage Cell (DICE) [11] which
is a storage cell made tolerant to SEUs by (i) replicating the internal inverter storage loop
of a memory cell and (ii) interlocking both storage loops in a way such that transient upsets
of one loop are corrected by the second loop within a short time.

Finally, system level methods use replication of functional units in space as well as cal-
culations redundantly performed in time, and combinations of both. Clearly, redundancy
in time is restricted to transiently faulty units, while redundancy in space allows to tol-
erate permanent, intermittent and transient faults, provided that a single fault occurring
at a functional unit does not lead to faulty behavior of other replicated functional units,
i.e., fault-containment is guaranteed. While replication of functional units within a single
chip is expensive, it is expected to gain in importance because of the increase of system

3W denotes the width and L the length of the transistor.

6 1.1 Motivation

SER [20] and the decrease in cost per transistor. Further, system-level techniques may use
standard fabrication processes and cells and therefore, too, are attractive for industry.

Distributed Systems’ View. Due to the replication of functional units, forming a
system-on-chip (SoC), and the need to keep their state consistent, problems arise that are
analogous to the problems encountered in the context of classic replicated state machines.
Related issues have been studied for decades by the distributed algorithms community,
both for non-fault prone systems [54] and systems where functional units may fail [30,
56, 83]. Indeed an SoC comprising a system of functional units that (i) may fail and (ii)
communicate by signaling each other with non-negligible message delays, deceptively looks
like a classical distributed system, formed by autonomous processes that communicate by
message passing. It is thus promising to apply approaches used in the context of distributed
computing to SoCs. A recent investigation of whether such approaches exist and can be
successfully used to solve problems in fault-tolerant chip design, has been undertaken in a
Dagstuhl seminary, organized by Charron-Bost, Dolev, Ebergen and Schmid [14].

Despite all similarities classical distributed systems share with systems-on-chip, there
are major differences: the most striking ones being (i) the absence of a discrete zero-time
step abstraction that performs complicated computational tasks in SoCs and (ii) the high
degree of heterogeneity in SoCs. Chapter 2 is concerned with discussing the implications
of (i). Here we will concentrate on (ii): most of the theoretical work assumes classical
distributed systems to be highly regular with respect to the local algorithms run on the
processes (the only difference of any two local algorithms run on distinct processes are
often just their process identifiers) and the communication structure. While it could be
argued that distributed algorithms for SoCs, too, comprise only a few distinct algorithmic
components (consider, for example, a circuit that is only built from NAND, NOR and
NOT gates), the heterogeneity of the communication structure, typically, does not match
classically assumed homogeneous communication structures. Although there exists a large
body of work on classical distributed algorithms that may be run in systems with irregular
communication graphs, links in the communication graph are typically assumed to be
equally constrained. For example, in case of synchronous systems, the lower and upper
bounds of all timely links are identical. An interesting exception is the work by Halpern,
Megiddo and Munshi [46] who consider the clock synchronization problem in distributed
message passing systems with arbitrary communication graphs and not necessarily equal
delay uncertainties on its links. Contrary, in a circuit of NAND, NOR and NOT gates
interconnections are not necessarily equally long; rather, their actual delays depend on the
outcome of the layout process.

We will next see why global, homogeneous constraints on the interconnect often are too
restrictive: typically, a circuit C is intended to solve a problem, e.g., the adder problem,
where inputs to the circuit are two binary numbers (in a certain range) and the output is
the sum of the inputs. One would consider C a correct solution for the adder problem, if
the output really is the sum for each possible input number pair, possibly subject to some
additional properties on the inputs and output. Figure 1.1 shows an example solution for

Chapter 1: Preface 7

A

B
O0

O1

Figure 1.1: Adder Circuit

a

b

c

d

Figure 1.2: Relative Delay Constraints

the adder problem, where inputs A and B are restricted to 1 bit numbers and the output
comprises two ports O0 and O1, whose state is the binary sum of the input’s states after
some time. Assume we further demand that when the inputs’ states change at exactly the
same time, the outputs’ states must not glitch, i.e., produce arbitrarily short pulses. Then
we must require that the delay from port A to the input port of the XOR gate and the
delay from port B to the other input port of the XOR gate are equally long. Otherwise,
O0 might glitch4. Notice that not all the interconnect delays in C affect correctness: while
some delays must adhere to restrictions, like relative delay constraints (e.g., say, in the
circuit of Figure 1.2 the delay along the path from gate a via b to c must be at least twice
the delay along the path from a via d to c) and absolute delay bounds, others can be chosen
arbitrarily, without violating C’s correctness and having only effects on the performance
of C. The approach taken in this thesis is to assume unknown, but finite delay bounds on
sets of links, i.e., links that can be assumed to have common delay bounds, but allow each
link to have an arbitrarily and typically varying delay within the bounds. The proofs then
show which constraints have to hold for these bounds in order for a circuit to correctly
solve a problem. Note that, the less timing constraints exist and the easier it is to fulfill
those, the more robust the circuit will be.

Clockless Circuits. Consider a distributed system that communicates by message pass-
ing. In the context of distributed computing the term “asynchronous” is used to describe
systems where no restrictions on the end-to-end message delays (from message send to
message receive) exist and the relative speed by which processes perform computing steps
is unbounded. That is, nothing but the finiteness is known on message and computing
delays. By contrast, in VLSI the term “asynchronous” describes systems that are not
clocked by a single oscillator. It does, however, not specify the degree, to which delay
bounds are restricted: there, too, exist design styles for asynchronous hardware, in partic-
ular, delay insensitive (DI) circuits [16,91], where no assumption beyond the finiteness has
to be put on the message (signal) delays between the components. Automatic compilation
techniques that map languages to distributed SoCs were proposed, e.g., by Martin [62] and
Ebergen [26]. Interestingly, both had to introduce additional constraints on some com-

4For example consider the inputs A, B to change from state 0, 0 to 1, 1.

8 1.1 Motivation

munication forks5, namely to have approximately the same delay on all the fork’s paths,
thereby forming an isochronic fork . A circuit, with some of its forks being isochronic is
called quasi delay insensitive (QDI), whereas a circuit with all of its forks being isochronic
is termed speed-independent . In [63], Martin proved that the set of problems solvable with
circuits without any isochronic fork is very restricted. In that sense, QDI circuits make
use of inhomogeneous timing assumptions. In this thesis, we will, however, only partially
make use of the QDI design style: to prove complicated algorithms correct, like the one
presented in Chapter 5, even more general timing assumptions than the isochronic fork
have to be considered, allowing to express delay constraints on arbitrary circuit paths and
not just forks. In terms of general constraints, often looser constraints can be found, that
are easier to fulfill than isochronic fork assumptions.

Whenever confusion may arise which of the two meanings of “asynchronous” we refer
to, we will replace the VLSI related term by the more descriptive “clockless”.

It remains to motivate the use of clockless circuits in the context of fault-tolerant on-chip
algorithms. From the above discussion it is already clear that clockless circuits allow for
heterogeneous use of relative as well as absolute timing constraints, whereas synchronous
circuits demand absolute timing constraints (introduced by the fixed clock period) on all its
paths of combinatorial logic between two successive flip-flops. Therefore a larger robustness
of asynchronous circuits to (slightly) varying communication delays is expected: in [18],
Constantinescu performed a case study with commercial of-the-shelf (COTS) components
under harsh environmental conditions (operating voltage and temperature), where it was
shown that most failures were due to setup/hold-violations, i.e., violations of the absolute
timing constraints of the combinatorial logic. The violations even lead to multi-bit errors
and most of the time occurred in bursts.

There is a further concern about the appropriateness of synchronous systems for fault-
tolerant on-chip algorithms: the clock together with the clock distribution network makes
up a significant part of the chip and clearly is a single point of failure. Seifert et al. [84]
have found the impact of radiation hits on the clock distribution network to be significant:
simulations of particle-hits on a synchronous flip-flop-based design showed that bit failures
in flip-flops due to current pulses in the clocking network made up 20% of the total system
soft-errors.

Despite all the reasons given in favor of clockless circuits for fault-tolerant on-chip
algorithms, some changes to classical clockless algorithms have to be made: ordering of
computational events, respectively signal transitions, is achieved by two means in clock-
less algorithms: (i) explicit handshaking by acknowledging and (ii) implicit handshaking
by timing constrains between two communicating components. Clearly, in case of fault-
tolerance explicit handshaking cannot be used alone: consider a network of components,
where each component receives data from its predecessor components, processes it and
hands it over to all its successor components. Here, explicit handshaking can be used as a
communication scheme between the components. However, as soon as one allows compo-
nents to become faulty, a correct component that simply waits for all its predecessor and

5A component, providing data to two or more successor components does this by a communication fork.

Chapter 1: Preface 9

successor components might stop making progress as soon as one of these is faulty. To over-
come this limitation, implicit handshaking can be used, however, introducing additional
timing constraints.

1.2 Structure of the thesis

In Chapter 2 the major difference between classical computation and a computation model
that is tied to on-chip algorithms are discussed. It is followed by the introduction of a
new formal framework in Chapter 3. The framework is then used to describe important
components for building the control structures of fault-tolerant clockless algorithms in
Chapter 4. The central component presented is the General Join Module. In Chapter 5
this component is used to solve the fault-tolerant tick generation problem. The solution
provides the chip designer with a generic solution to replace the central clock signal by a
set of synchronized, local clock signals, generated by a fault-tolerant distributed on-chip
algorithm. Chapter 6 finally discusses the fault-containment assumptions made throughout
the previous chapters from a theoretical point of view: it is investigated whether the
modules previously used can be implemented with boolean gates and channels alone. Each
chapter is ended by a “related work” section which both discusses existing related work as
well as lists further, detailed, work by the author.

10 1.2 Structure of the thesis

Chapter 2

Introduction

IN THE previous chapter it has been motivated that the formal analysis of fault-tolerant
clockless on-chip algorithms is of its own interest and cannot (very well) be performed

by standard formal means to analyze classical distributed algorithms. The most signifi-
cant difference between hardware-based and classical algorithms is the missing abstraction
of discrete computing steps in the former. To shed light on this major difference, we
will compare the causal structure of a classical asynchronous computation model and an
asynchronous hardware-based computation model.

2.1 Classical Asynchronous Computations

Consider a computation model analogous to the one proposed by Fischer et al. in [30]: a
distributed system comprises a finite set P of processes, with |P | > 2, where processes can
communicate by message passing and each can run a local algorithm, resulting in a series
of (receive-compute-send) steps happening at each p ∈ P . Each process p in P is equipped
with a local memory (that holds p’s state). A distributed algorithm is an assignment of
local algorithms to processes in P . A configuration is a tuple of all the processes’ state
as well as the message layer state (containing the messages in transit). A step is a tuple
comprising (i) the process p ∈ P that makes the step, (ii) the messages received in the
step and (iii) the messages sent in the step. A step is either applicable to a configuration
or not. For example, a step involving the reception of message m is only applicable in
a configuration where m is in transit. An application of a step to a configuration leads
to a new configuration and the possible state transitions are specified by the distributed
algorithm’s transition relation φ: let Σ be the set of steps and Γ the set of configurations.
Further, let relation φ ⊆ Γ×Σ×Γ, where 〈C, s, C ′〉 ∈ φ iff s is applicable to configuration
C and results in configuration C ′. We further restrict ourselves to deterministic algorithms,
i.e., φ is right-unique1. Without formally stating the details, transition relation φ is the

1That is for any two 〈C, s, C′′〉 and 〈C, s, C′′′〉 in φ, C′′ = C′′′.

11

12 2.1 Classical Asynchronous Computations

union of local transition relations of every process’ algorithm: the application of a step
of process p ∈ P comprises (i) either p receiving a message which is in transit to p or p
receiving a special ∅ message, and (ii) based on p’s current local state and the message
received: p changing its state according to its local algorithm and sending messages to a
(possibly empty) subset of processes in P . In case p ∈ P sends some message m (m is
unique in each execution) in step s and q ∈ P receives m in step s′, s will be called a send
step (of m) and s′ the corresponding receive step. An execution of a distributed algorithm
is an alternating sequence of configurations and steps made by processes in P , generated
by the successive application of applicable steps to an initial configuration. For analysis
purpose the existence of global Newtonian time is assumed and steps of an execution occur
at instants in Newtonian time from R+

0 .

The only restriction on the message communication is that a process performing in-
finitely many (receive-compute-send) steps during an execution will eventually receive any
message sent to it. Since we do not assume any failures here, we demand that every process
in P makes an infinite number of steps during an execution. Thus, every message sent is
eventually received.

We will next recapitulate the means by which the causal structure of asynchronous
distributed computations can be captured: for this purpose let us define an event of process
p ∈ P in an execution. Given an execution ǫ, we define the set of events of ǫ, denoted by
E(ǫ) or simply by E, as the set of 〈t, s〉, such that step s occurs in ǫ at time t. For an
event e = 〈t, s〉 ∈ E, we denote its time of occurrence by T (e) = t.

For execution ǫ an event e = 〈t, s〉 ∈ E(ǫ) is a send event (of message m) iff s is a
send step (of m) that occurs at time t in ǫ. Event er = 〈tr, sr〉 ∈ E(ǫ) is the corresponding
receive event (of message m) iff s is a receive step sr ∈ Σ where m is received that occurs
at time tr in ǫ.

In his seminal work [54], Lamport introduced a general formalism to express the po-
tential causal structure of some execution ǫ, which can be also applied to the computation
model described above. The key components are events e from a set E = E(ǫ) and a
binary relation → on E2 = E × E, called “happened before” that is defined by:

Definition 2.1. → is the smallest (with respect to set inclusion) relation for which:

(i) If a and b are events of process p and a directly happens before b, then a→b.

(ii) If a is a send event and b is the corresponding receive event, then a→b.

(iii) If a→b and b→c, then a→c (transitivity). �

The intuitive meaning of “→” is that if a→b, event a can potentially influence event b
via a chain of local computations and messages sent between processes. If ¬(a→b), there
does not exist such a chain and a cannot influence b. Two events a and b are said to be
concurrent iff both ¬(a→b) and ¬(b→a).

Mattern [64], too, investigated the potential causal structure of executions, with a
slightly different notation: the direct successor relation on a process is denoted by ≺l, i.e.,

Chapter 2: Introduction 13

p3

p2

p1

t

t

t

a

b

c

Figure 2.1: Classical asynchronous execution

a ≺l b iff both events a and b occur at the same process and a is a direct successor of b and
a ≺ b is analogously defined to a→b. To avoid confusion of happened before with logical
implication we will stick to Mattern’s notation throughout the thesis. In [64] Mattern
introduced consistent cuts of executions. A consistent cut S for a given execution with
events E is a set S ⊆ E that is left-closed with respect to ≺: for all e in S and e′ in E,
e′ ≺ e ⇒ e′ ∈ S. A special consistent cut is the causal past of event e in E, defined by the
set {e′ ∈ E | e′ ≺ e}. The importance of the causal past of e is that in an asynchronous
distributed system analogous to [30] (with a deterministic algorithm run on it), a process’
local state after an event e is fully determined by the causal past of e, with the ≺ relation
on it, together with the initial states of the processes. It is this latter observation that will
play an important role in Chapter 6 for proving impossibility results.

Example 2.1. An example execution of three processes is depicted in Figure 2.1. The
asynchronous execution has been embedded in global Newtonian real-time which, however,
is not visible to the processes themselves. Events of a process happening at a certain time
are depicted as dots on the process’ timeline. A message send event e with the corresponding
receptive event e′ is shown by an arrow from e to e′. Here a ≺l b and a ≺ c holds. It is
important to note that the local state of process p1 after application of c only depends on
the causal past of c and the initial local states of processes p1 and p2. In Figure 2.1 the
causal past of c is the set of events to the left of the dashed boundary line.

We will next discuss asynchronous2 executions in hardware and relate these to classical
asynchronous computations.

2.2 Asynchronous Computations in Hardware

The most significant difference to classical asynchronous computations is the absence of
discrete computing steps which are replaced by a continuous stream of computation. We
discuss this difference by means of the example of the digital AND gate depicted in Fig-
ure 2.2. The gate has one output port c and two input ports that are connected to ports a

2Here “asynchronous” refers to the distributed computing term, i.e., unbounded but finite delays.

14 2.2 Asynchronous Computations in Hardware

a

b
c

Figure 2.2: AND gate

pb

pc

pa

t

t

t

b(1) b(5)

c(3) c(8)

a(2)a(2.5) a(6)

Figure 2.3: Asynchronous execution in hardware

and b via wires with varying, unbounded delay. The behavior of ports is described by sig-
nals, where a signal s is assumed to be binary; thereby s : R+

0 → {0, 1} is a function, where
s(t) is the state of signal s at time t. We can model this hardware setup as a distributed
system comprising three processes pa, pb and pc. Process pa and process pb continuously3

send messages to process pc, where the content of the message is the current binary state
of signal a and b, respectively. Let us further assume that after some initial phase ending
at time T > 0, at any point t > T in time, process pc receives two messages, one from pa

and one from pb. This is true if a wire is modeled by a FIFO channel with a delay that is a
continuous function in time, which is a realistic assumption: wire delays change because of
chip temperature, voltage etc. It is adequate to assume that these changes are continuous
over time. The FIFO property for channels results from the fact that binary signal transi-
tions from 0 to 1 and vice versa do not overtake each other on a wire, if properly encoded
(like 0 corresponds to low voltage and 1 to high voltage). If pc receives two messages at
time t > 0, it can easily determine c(t), by computing the logical AND of both message
contents received at time t. In case it does not receive a message from either pa or pb, we
may model this by the reception of a special ∅ message from the respective sender process
and define default values for the message ∅, depending on whether it comes from pa or
pb. The latter models the initial state of the wire: e.g., to model the fact that the wire
from pa to pc is initialized to 0 (respectively 1), the default value ∅ received from pa is 0
(respectively 1).

Figure 2.3 shows an execution of the distributed system just described. The status
of the three signals a, b and c is depicted above the timeline of the respective process.
There have only been drawn 8 out of the continuum many messages and 12 out of the
continuum many steps performed by the processes.4 For example, process pc at time 3
receives a message from pa with content a(2) = 1, which is the value of signal a when
pa sent the message, and a message with content b(1) = 0 from pb. pc then computes
c(3) = a(2) ∧ b(1) = 0. Similarly, c(8) is computed by c(8) = a(6) ∧ b(5) = 1.

Before we investigate the causal structure of asynchronous hardware computations by

3Here, the term “continuously” does not mean forever periodically, but at every time t in R+
0 . Thus an

uncountable number of messages are sent.
4The messages drawn are those pc received from pa and pb in the 4 steps depicted.

Chapter 2: Introduction 15

means analogous to [64], we have to take a look at the formal definition of an execution
and a process making a step. Clearly a modeling approach as described in Section 2.1 is
not possible here, since there is no immediately preceding step in a continuum of steps: a
step thus cannot take a pre-state and transform it into a post-state. Further the concept of
a transition function must be replaced. We thus define: A distributed system is a set P of
processes. Steps are from a set Σ and are tuples that comprise (i) the process p ∈ P that
makes the step, (ii) the messages received from all other processes (possibly ∅ messages)
and (iii) the messages sent to all other processes (possibly ∅ messages). Whether a process
p’s step is applicable at some time t ∈ R+

0 and the effect of the application of the step on
the process’ output state is specified by p’s output relation φp: let Hp be the set of histories
of p. Then φp ⊆ Hp × Σ × {0, 1} is a right-unique relation, 〈H, s, x〉 ∈ φp is applicable
at time t iff s happens on p, p’s history at time t, Hp(t) (defined later on), is equal to H
and the result of applying s is that p’s output state at time t is set to x. An execution
ǫ : P × R+

0 → Σ × {0, 1} is a function that maps each process p ∈ P and time t ∈ R+
0

to the tuple 〈s, x〉, where s is the step process p makes at time t and x is the resulting
output state of process p at time t. It remains to specify Hp(t), p’s history at time t. There
are two natural ways to do this, both of which will be needed throughout the thesis: (a)
processes with empty history and (b) processes with full history. We will discuss one after
the other. Before doing so, we adapt Definition 2.1 not to make use of the term “directly
happens before”. Consider an execution ǫ. The set of events of ε, denoted by E = E(ǫ) is
analogously defined as for the classic asynchronous system from Section 2.1, namely, the
set of all tuples 〈t, s〉, such that s occurs in ǫ at time t. Relation ≺l on E2 is defined in a
way specific to the two cases (a) and (b) and therefore detailed later on. We define relation
≺ on E2 by:

Definition 2.2. ≺ is the smallest (with respect to set inclusion) transitive relation for
which:

(i) If a and b are events of process p and a ≺l b, then a ≺ b.

(ii) If a is a send event and b is the corresponding receive event, then a ≺ b. �

ad (a) In case of processes with empty history we define: for all processes p ∈ P and
times t ∈ R+

0 , Hp(t) = ∅. By the definition of φp, a process thus becomes a device that
sets its output state at time t ∈ R+

0 only according to the messages it receives at time t. If
a process wants its current output state to influence its future output state it has to send
a local message to itself which then influences its output state at the time of reception.

To model the absence of causal influence of locally performed steps on their successor
states, we simply define ≺l= ∅. The definitions of consistent cuts and causal past can
be taken over from Section 2.1 without a change. Again, it holds that the causal past of
event e at process p happening at time t > 0 determines p’s output state at time t: the
output state at time t is a function of the causal past of e, together with the ≺ relation,
alone. In case of the example execution depicted in Figure 2.3, the casual past of the event
happening at pc at time 8 is the set comprising the events happening at pa and pb at times
6 and 5, respectively.

16 2.2 Asynchronous Computations in Hardware

This approach is useful when modeling simple gates, like the AND gate. However, it
has its limitations when describing more complex systems: first, there are systems whose
specification in terms of this system model is lengthy; and secondly, in Chapter 6, it is
shown that there exist important hardware systems that cannot be specified in terms of
this system model.

ad (b) In case of processes with full history we define: for all processes p ∈ P and times
t ∈ R+

0 , Hp(t) is the set of s ∈ Σ, such that s happens at process p at least at time t,
equipped with the happened before relation, i.e., tuples 〈s, s′〉 ∈ Σ2, for which holds that s
and s′ happen at process p, s happens before s′ and s′ occurs at latest at time t. To model
the fact that each event is possibly causally influenced by all local predecessor events, we
define ≺l to reflect exactly this dependence, by letting ≺l be the set of 〈e, e′〉 ∈ E2, where
T (e) < T (e′). An example specification making use of a full history φp follows:

Example 2.2. Consider the gate depicted in Figure 2.2. We will specify the behavior of
the AND gate in a different way, making it act as an AND for 0-to-1 transitions: pc sets
its state to 1 in the event e happening at time t > 0, iff either (i) it has received a message
with value 1 from both pa and pb at time t, or (ii) it has already set its state to 1 in an
event locally happening before e. Otherwise, it sets it state to 0. Note that, as a result of
(ii), pc thus remains in state 1 once it has changed to 1.

Again the definitions of consistent cuts and causal past can be taken over from [64]
without any changes. In case of Example 2.2 and the execution depicted in Figure 2.3, the
causal past of pc’s event at time 8 is the set comprising all events at pc with time stamp
less than 8, and all events at pa, as well as pb, with timestamps not greater than 6 and not
greater than 5, respectively.

Specifying distributed systems with the latter kind of transition function often turns
out to be more compact. In Chapter 6, we will show that there exist systems that can be
specified by means of transition functions as defined in (b), but not by means of transition
functions as specified in (a).

Unfortunately, there are problems that are neither expressible solely in terms of (a) nor
in terms of (b), but rather by general constraints that a correct execution must fulfill. Here,
the concepts of [64] cannot be applied. Since we do not restrict our attention to purely
asynchronous computations, we will make also use of such augmented specifications in the
thesis. Examples of the latter kind are systems with time constraints that are expressible
by processes with a timed history: in contrast to (b) where Hp(t) only includes an ordering
on steps (by the happened before relation) we include timing information in Hp(t): for this
purpose let Hp(t) be the set of events that happened at p at latest at time t. Note that
some systems (e.g., non-causal systems) require even more general constraints. After this
brief discussion of specifications of continuous executions, a detailed formal framework is
presented in the following chapter.

Chapter 3

Modeling and Analysis Framework

THE KEY differences between classical and hardware based asynchronous computation
models were discussed in the previous chapter. It has been shown that these differ-

ences lead to distinct forms of causal structures inside an execution. It is thus evident, that
despite the many commonalities classical distributed systems have with hardware systems,
a different formalism must be used to specify, analyze, and prove correct hardware sys-
tems. In this chapter we provide such a formal modeling and analysis framework, which is
adapted to the peculiarities of computations in hardware and amenable to mathematical
correctness proofs as well as worst-case and average case performance analysis. To handle
the design complexity challenge, which arises when analyzing non-toy hardware systems
specified at a very low level of abstraction, it also supports hierarchical modeling: The
framework is based on modules that possess input and output ports, which themselves are
modeled via binary signals whose values evolve over time. A module’s behavior specifies
how the input and output signals are related. There are two different techniques to specify
a module’s behavior analogous to the two classical VLSI specification types: either directly
(termed “behavioral specification” in VLSI designs), or via a composition of sub-modules
whose input/output ports are connected in an a priori defined way (termed “structural
specification” in VLSI designs). The former kind of module is named basic module, while
the latter kind of module is called compound module. Before we proceed to the definition
of the basic concepts the framework relies on, namely signals and executions , we intro-
duce some notation used throughout the thesis: both 〈a, b〉 and (a, b) denote a tuple with
components a and b. The different styles of brackets are only used for better readability.
To denote component x from tuple y = 〈. . . , x, . . . 〉, we may write y.x. To specify that a
lemma (respectively theorem) holds if a constraint C holds, we write “Lemma (C)” (re-
spectively “Theorem (C)”) when stating the lemma (respectively theorem). An interval
[α−, α+], with α−, α+ ∈ R is denoted by α±. For convenience we even allow the use of more
complicated terms to specify intervals, e.g., α± + β± is short hand for [α− + β−, α+ + β+].
We denote the set of Boolean values by B = {0, 1}. We further assume Newtonian real-
time for analysis purpose and let the domain of time T = R+

0 be the set of non-negative

17

18 3.1 Signals

reals, that is, we assume that the system starts booting at time t = 0. For some systems
it is necessary to include the possibility of different booting completion times for different
modules in the formal system model. Note that this is not prevented in the presented
framework.

3.1 Signals

Signals are the key elements for specifying systems. Although signals are abstract math-
ematical concepts, they can be thought of as the behavior of measurement points in a
digital circuit over Newtonian time. While signals are event traces, that is, sets of time-
value tuples, more abstract representations can be given for a signal: (i) a status and (ii)
a counting function. At first sight it might seem superfluous to represent a single signal
by three different means, since a formal framework typically intends to unify concepts.
During the analysis of more complex hardware systems [23, 41], however, the three-fold
representation turned out to be of practical importance when writing specifications and
proofs. While combinatorial logic like AND gates can be compactly specified in terms of
how the input’s events or status is mapped to the output’s status, components from asyn-
chronous circuit theory, like the Muller C-Element [72,92] (later discussed in this chapter)
can be easily specified in terms of the input’s status and the output’s events. Counting
functions finally turn out to be of great help when specifying components with queueing
effects, like micropipelines [92] (which will be extensively used in Chapter 4). On the other
hand, trying to specify a queueing system via signal states or combinatorial logic via the
event representations results in long behavioral definitions.

Certainly, a three-fold representation of signals, would be of no use unless different
representations could be used interchangeably as appropriate, e.g., to specify different
components inside a single system. We will thus show under what assumptions the repre-
sentations can be converted into each other and how this can be done. In fact, conversion
between different representations of a signal is not possible for arbitrary signals. While all
signals are event traces by definition, a status representation can only be assigned to signals
with certain properties. Finally, counting functions can be assigned only to a proper subset
of those signals that have a status representation. This leads to a hierarchical ordering of
the representation possibilities with respect to their expressiveness.

Since we focus on purely digital systems, except for Chapter 6, we consider signals
which can take on Boolean values only. We thus restrict a signal’s value to be from B only.
We now present the formal definitions.

Event trace. A signal S is an event trace, i.e., a relation

S ⊆ T × B.

Chapter 3: Modeling and Analysis Framework 19

We say that signal S has value v at time t iff 〈t, v〉 ∈ S. We require non-simultaneity of
contradicting events on a single signal by

∀t ∈ T : (〈t, v〉 ∈ S ∧ 〈t, v′〉 ∈ S) ⇒ v = v′, (3.1)

and demand the existence of an initial event by

∃I ∈ B : (0, I) ∈ S, (3.2)

stating that S must have some initial value I at time 0.

Example 3.1. An example signal S is S = {〈0, 0〉, 〈5, 1〉, 〈7, 0〉, 〈8, 0〉}. Here S initially
has value 0, then at time 5 takes on value 1 and finally at both time 7 and 8 takes on value
0 again.

From the above definitions and Example 3.1 it becomes evident that event traces can
involve idempotent events (i.e., events with the same value and no event with a different
value in between) and do not need to be dense in time T .

We further define the prefix pre(S, t) and suffix suff(S, t) of signal S at time t ∈ T by

pre(S, t) := {〈t′, v〉 ∈ S | t′ 6 t}

suff(S, t) := {〈t′, v〉 ∈ S | t′ > t}

Clearly for all t ∈ T , S = pre(S, t) ∪ suff(S, t).

Typically, when specifying and analyzing a signal, one is interested in the “last event”
that happened until (and including) some time t ∈ T . As has been motivated in Chapter 2,
terms like “direct predecessor” and “last event” generally are not well defined on (poten-
tially) continuous computations. Indeed, this is reflected in the definition of an event trace
which is only restricted to adhere to (3.1) and (3.2). Consider for example the event trace

S = {(t′, 0) | t′ < 2} , (3.3)

for which no last event of pre(S, 2) is well-defined. Note that this is in contrast to classical
distributed “event-by-event” computations, where for any process and time t ∈ T a last
event locally executed at time not greater than t exists. Although we cannot speak of a
“last event” before time t, it is sometimes possible to speak of the “last value” of an event
trace before time t. We thus specify

last-val(S, t) = v′ ⇔

∃(t′, v′) ∈ pre(S, t) : ∀(t′′, v′′) ∈ pre(S, t) : (t′′ > t′) ⇒ (v′′ = v′). (3.4)

The idea behind (3.4) is that a signal has a last value of v′ at time t iff an event with value v′

occurred until and including time t and no other-valued (non-idempotent) event occurred
between this event and time t. For (3.3), we thus obtain last-val(S, 2) = 0. The question
arises, whether the last value is always well-defined, that is: does either last-val(S, t) = 0
or last-val(S, t) = 1 hold for all t ∈ T . The answer is no, as can be seen from the following
example.

20 3.1 Signals

Example 3.2. Let signal S = {〈0, 0〉} ∪ {〈ti, vi〉 | i > 1, ti+1 − ti = 1
i2

and vi = i mod 2}.

S of Example 3.2 comprises of events 〈0, 0〉, 〈1, 1〉, 〈5/4, 0〉, etc., which alternate in value,
approach time π2/6, but never reach it. Thus, last-val(S, π2/6) is undefined. Following [58,
p. 737f] such behavior will be called Zeno-behavior (formally defined later on). We will see
that if an event trace is non-Zeno, we may safely apply the last-val function to it. For this
purpose, we introduce the concept of transitions: a set of events A is said to have at least
n ∈ N transitions iff there are events ai ∈ A with 1 6 i 6 n+1, where ai occurs before ai+1

and consecutive ai have alternating values. Note that the initial event 〈0, I〉 is not counted
in n. The set A is said to have exactly n transitions iff it has at least n, but not at least
n+1 transitions. In case there is an n ∈ N such that A has exactly n transitions, A is said
to have finitely many transitions, otherwise it is said to have infinitely many transitions.
We say that an event trace S is non-Zeno until time t > 0 iff for all times t′ 6 t, the prefix
of S at time t′ has only finitely many transitions. Event trace S is non-Zeno iff all finite
time prefixes have only finitely many transitions. Interestingly, the non-Zeno property of
S implies the existence of last-val(S, t) for all t ∈ T , however, the existence of last-val(S, t)
for all t ∈ T , does not imply the non-Zeno property as shown by Example 3.3:

Example 3.3. Let S be the set of events {〈t, v〉 | (t ∈ T ∩Q ⇒ v = 1)∧ (t ∈ T ∩ (R\Q) ⇒
v = 0)}. Clearly S is Zeno but has a well-defined last-val(S, t) for all t ∈ T , because S is
a “complete” trace with an event happening at all t ∈ T .

Zeno-behavior is not just a tedious property that one must take care of when arguing
about signals, but provides us with a means to model metastable behavior of signals.
Metastability is a physical effect, discussed in Section 6.2, that can result in a physical
signal taking on an indefinite (non 0/1) value for a potentially unbounded time. Since our
signals may only take on values in B, a direct modeling of metastability is not possible.
Fortunately, Zeno-behavior comes as a rescue here: an undefined last-val(S, t) for t in some
interval I can be used to model metastability of S during I.

If, however, last-val(S, t) is well defined for all t ∈ T , we may make use of a different
type of a signal’s representation, namely its status .

Status. Sometimes it is more convenient to describe the behavior of signal S by means
of its status. Formally, ·̃ is a function that maps (in a way defined later on) a signal S to

status S̃, where

S̃ : T → B.

We say that signal S has value v at time t iff S̃(t) = v.

Example 3.4. A possible example for the status of signal S from Example 3.1 is

S̃(t) =

0 if 0 6 t < 5,

1 if 5 6 t < 7,

0 otherwise.

Chapter 3: Modeling and Analysis Framework 21

It remains to specify function ·̃. For this purpose we define the following transformation
from S to S̃: For all t ∈ T ,

S̃(t) = last-val(S, t), (3.5)

and say that S has status (representation) S̃. Thus, provided that S is non-Zeno, (3.5) is
well-defined and a status representation of S exists. The set of all signals that have the
same status S̃ forms an equivalence class Event(S̃). Formally

Event(S̃) := {S | ∀t ∈ T : last-val(S, t) = S̃(t)}.

For two signals S ∈ Event(S̃) and S ′ ∈ Event(S̃), we say that S and S ′ are equivalent

with respect to their status. When transforming back from S̃ to S, one loses information
about the original event trace. However, for most systems, the exact event trace is not
important, as long as it has the same status. If not otherwise specified, we transform back,
by returning the “complete trace” (having many idempotent events) representative of the

equivalence class, i.e., the graph of S̃(t):

S = max-event(S̃)

with

max-event(S̃) := {〈t, S̃(t)〉 | t ∈ T }. (3.6)

Example 3.5. Reconsidering Example 3.1 and Example 3.4, by (3.5), we obtain that

S ∈ Event(S̃), i.e., that S has status S̃.

Counting function. Finally, some signals can be represented by the number of non-
idempotent events (excluding the initial event) that occur during (0, t] for time t together
with the initial status I ∈ B. Formally function #· maps (in a way defined later on) a
signal S to a counting function #S, where

#S : T → N.

Formally, function #S is defined by: For all t ∈ T ,

#S(t) = ℓ if pre(S, t) has exactly ℓ transitions.

The counting function exists iff the signal is non-Zeno. It immediately follows from the
definition of the counting function that it is non decreasing, i.e., for any t1 6 t2, #S(t1) 6

#S(t2). Let ν → t− denote the fact that ν is approaching t from the left. We say S makes
transition k at time t, for k > 0 and t in T , iff #S(t) = limν→t− #S(ν) + 1 = k.

Example 3.6. Let S = {〈0, 0〉, 〈1, 0〉, 〈2, 1〉, 〈3, 1〉}. Then #S(0) = 0, #S(1.5) = 0,
#S(2) = 1 and S makes transition 1 (to value 1) at time 2.

22 3.2 Executions

Sometimes we will also employ generalized counting functions, which are counting func-
tions with an arbitrary but fixed offset. A generalized counting function #S ′ for signal S
at time t ∈ T is defined by

#S ′(t) := S0 + #S(t), (3.7)

where #S is the counting function of S and S0 is a constant offset.

Vice versa, given signal S with counting function #S and initial value I, we say that
it has status S̃, iff for all t in T ,

S̃(t) = (#S(t) + I) mod 2.

3.2 Executions

We begin with the definition of a system. A system is a set of ports P. Ports correspond to
processes in classical distributed computing and can be thought of as measurement points
on a chip. An execution (of ports P) is a function eP that maps each port p ∈ P to a
signal p̂. To avoid cluttered notation we shortly write e instead of eP , when P is clear from

the context. Further, for p ∈ P, we write p̃ for the status ˜̂p as well as #p for the counting
function #p̂. When no confusion may arise we write “port p” instead of “the signal of
port p”. For example, we say “port p has status p̃” instead of “the signal of port p has
status p̃”.

Example 3.7. A (very small) example execution eP of ports P = {i, o, x} is e(i) = î, e(o) =
ô and e(x) = x̂ with î = ô = x̂ = {〈0, 0〉}. It consists only of the initial events happening
at the three ports.

Given two non empty subsets of ports P ′ and P with P ′ ⊆ P, we define for any
execution eP the abstraction eP | P ′ of execution eP to ports P ′ to be eP ’s restriction to
the domain P ′. Clearly an abstraction eP | P ′ is an execution, too.

Example 3.8. Given the execution from Example 3.7, the abstraction fP ′

:= eP | P ′

with P ′ = {i, o}, has domain P ′ = {i, o} and value fP ′

(i) = eP(i) and fP ′

(o) = eP(o).
Abstraction is used to strip down an execution of many ports to some ports only (here from
{i, o, x} to {i, o}).

The inverse process of abstraction is combination. Given two disjoint, non-empty sets
of ports P ′ and P ′′, we say execution eP := eP

′

1 ∪eP
′′

2 , with P = P ′∪P ′′, is the combination
of executions eP

′

1 and eP
′′

2 . Clearly one can separate the executions with, eP | P ′ = eP
′

1 and
eP | P ′′ = eP

′′

2 again.

A useful abbreviation, further, is eP [6 t], denoting the execution prefix of execution eP

until (and including) time t ∈ T . Formally, for all t ∈ T , we define eP [6 t] by

∀p ∈ P : eP [6 t](p) := pre(eP(p), t).

Finally, we will denote the set of all executions of a set of ports P by Exec(P).

Chapter 3: Modeling and Analysis Framework 23

3.3 Modules

Executions of ports P will be used to model the behavior of a hardware system comprising
ports P over time T . However, until now, we did not introduce any computational device
corresponding to a process in classical systems that is capable of performing computations.
The purpose of computational devices is to restrict the set of possible executions. As an
example consider a zero-delay AND gate with input ports a, b and output port c: this gate
(representing a hardware computing device) affects the execution of ports P = {a, b, c}

by imposing the restriction that, for any time t ∈ T , if the outcome of ã(t) ∧ b̃(t) is well-

defined, then c̃(t) = ã(t) ∧ b̃(t) has to hold. A hardware system thus can be modeled as a
set of restrictions on the executions of its ports. Typically it is useful to group restrictions
that result from a single hardware component together. For this purpose we introduce the
concept of a module. A module M = 〈I, O, E〉 consists of

(i) a finite (possibly empty) set of input ports I,

(ii) a finite, non empty, set of output ports O, together with

(iii) a non empty set of possible executions E on the ports I∪O that module M produces.

E’s form depends on whether I is empty or not. We therefore distinguish between

I is empty: Then E is a non empty set of executions of ports O.

I is non empty: For each ein ∈ Exec(I), there is a non empty set of output executions
EO(ein) of ports O. We refer to the executions in EO(ein) as the output executions cor-
responding to input execution ein. EO(ein) = {eout, e

′
out, . . .} means that M reacts to ein

with one of eout, e
′
out, etc. There are two extreme cases for the outcome of EO: (i) EO(ein)

is a singleton, in which case M reacts deterministically to ein and (ii) EO(ein) is the set of
all possible output executions, in which case M reacts arbitrarily. Let React(ein) be the
set of all combinations of ein and eout ∈ EO(ein), i.e.,

React(ein) := {e | e = ein ∪ eout with eout ∈ EO(ein)}.

Then E is defined as

E =
⋃

ein∈Exec(I)

React(ein).

There are different ways to specify EO, and by this, E: (i) By explicitly stating the
restrictions on E in terms of formulas, which is done for the basic modules. (ii) By
specifying E by means of connected submodules, which is done for compound modules.
Hereby, the port x of a module M1 is said to be connected to port y of a module M2, iff
x = y. A submodule M1’s output o1 even can be another submodule M2’s and M3’s input.
We, however, demand that a single input port must not be connected to more than one
output port. The next paragraphs introduce two important basic modules that will be
used throughout this thesis: the channel and the Boolean function modules.

24 3.3 Modules

Channel. A (FIFO) channel C = 〈{i}, {o}, E〉 = Ch(i, o, τ−, τ+, v0) is a module with
one input port i and one output port o only. Its delay may vary during the execution in
the range [τ−, τ+]. We define a delivery time function d(t) : T → T of the channel to be
a continuous, strictly monotonically increasing (t < t′ ⇒ d(t) < d(t′)) function for which

d(t) − t ∈
[
τ−, τ+

]
. (3.8)

The channel’s behavior is specified by the initial value conditions

(0, v0) ∈ ô and

∄(t, v) ∈ ô : 0 < t < d(0) (3.9)

as well as the existence of a delivery function d that fulfills the propagation condition

∀t ∈ T : 〈t, v〉 ∈ î ⇔ 〈d(t), v〉 ∈ ô. (3.10)

The delivery time function d may vary from execution to execution, i.e., for each execution
of the channel, there must exist some d that correctly models the channel’s delivery times.
Because of d’s properties (continuous and strictly increasing), d is a bijection from T to
its codomain d(T). More specifically, d maps every closed interval [t1, t2] bijectively to the
closed interval [d(t1), d(t2)]. Thus there exists an inverse function d−1(t) which again is
continuous and strictly increasing. In the special case of a constant delay, i.e., τ− = τ+,
we obtain d(t) = t + τ− and d−1(t) = t − τ−.

Since d carries over the total order of the events 〈t, v〉 in î to the events 〈d(t), v〉 in ô
[called matching events in the sequel], it follows immediately that ô is an event trace, if î
is an event trace.

Boolean function module. A (zero-delay) Boolean function module B = 〈I, {o}, E〉 =
Bfm(I, o, f) is a module with a finite set of inputs ports I = {a, b, . . . } and one output
port o. f is an arbitrary finite Boolean function with propositional variables from the set
I. The module’s behavioral equation is: an execution of B is in E, iff it holds: for each t
in T , if f(ã(t), b̃(t), . . .) is well-defined, then

õ(t) = f
(
ã(t), b̃(t), . . .

)
, (3.11)

where the status of the execution’s ports at time t ∈ T is obtained by (3.5). Note that,
in contrast to the channel, (3.11) defines a Boolean function module’s behavior in terms
of the status of its executions; here we do not care about the exact output event trace as
long as it has the correct status. We thus observe:

Observation 3.1. For any Boolean function module B = 〈I, {o}, E〉 = Bfm(I, o, f), any
input execution ein of ports I and output executions eout and e′out of port o, if e′out(o) ∈

Event(ẽout(o)) and eout ∈ E(ein), then e′out ∈ E(ein).

Chapter 3: Modeling and Analysis Framework 25

Compound module. A compound module M = 〈I, O, E〉 = Cm(I, L, O, A) is a module
specified by a composition of submodules: I is the set of input ports, L the set of local
ports and O, the set of output ports. A, the architecture, is a finite set of submodules
A = {M1, M2, . . . } with the submodule’s inputs and outputs from I ∪ L ∪ O. We further
demand that:

(i) For all pairs of distinct submodules M i = 〈I i, Oi, Ei〉 and M j = 〈Ij, Oj, Ej〉 with
i 6= j, the sets of outputs are distinct, i.e., Oi ∩ Oj = ∅. This reflects the designer’s
rule of not connecting two submodule’s outputs.

(ii) For all submodules M i = 〈I i, Oi, Ei〉, Oi ∩ I = ∅. That is, submodule outputs are
never connected to module inputs.

(iii) For every s ∈ (L∪O∪
⋃

i I
i), there is a submodule M j = 〈Ij, Oj, Ej〉 with s ∈ (Oj∪I).

The meaning is that every submodule’s non-input port is driven by a submodule
output or is a module’s input port.

We now specify the predicate that esys is a valid system execution for input execution ein,
denoted by valid(esys, ein), where esys is an execution of ports I∪L∪O and ein an execution
of ports I, by

valid(esys, ein) :⇔

(i) esys | I = ein and

(ii) for all submodules M i = 〈I i, Oi, Ei〉: esys | Oi ∈ Ei
O(esys | I i).

With this in mind we define the set of possible output executions for an input execution
ein as

EO(ein) := {(esys | O) | valid(esys, ein)}.

Clearly, there exist compound modules with input ports I and ein ∈ Exec(()I), for which
EO(ein) = ∅, i.e., which do not have a valid definition of output executions corresponding
to input ein. As an example for such a system see Example 3.9. In this case the module’s
possible executions are not well defined. Thus, before using a compound module, one
always has to prove, that its executions are well defined.

Example 3.9. Consider a module comprising only a single output port o and a single
submodule, namely an inverter with zero-time loopback from the output to the input. Such
an inverter can be modeled by the Boolean function module Bfm({o}, {o}, õ(t) = ¬õ(t)).
This module has no valid system executions: assume by contradiction that the system has
a valid execution. In this execution, signal ô must comprise of an initial event 〈t, I〉, for
some I ∈ B. However, by the specification of the module, I = ¬I —a contradiction.

26 3.4 Problems

3.4 Problems

A problem P is a module, i.e., it is specified by the triple P = 〈I, O, E〉, where I are
the input ports, O the output ports and E the possible executions. When we intend to
emphasize the problem character rather than the module character of P , we print it in bold
face, e.g., SPF is the short-pulse-filter problem, introduced and investigated in Section 6.1.

3.5 Restricting problems

In the context of a module M = 〈I, O, E〉, we often use the term (input) environment for
a set Env ⊆ Exec(I). Given problem PROBLEM = 〈I, O, E〉 and environment Env, we
define PROBLEM restricted to environment Env, in short PROBLEM ↾ Env, as the
problem PROBLEM′ = 〈I, O, E ′〉, with

E ′ := E ∪ {ein ∪ eout | ein ∈ (Exec(I) \ Env)∧

eout ∈ Exec(O)}.

Informally, this means, that for every ein in the input environment Env, PROBLEM′

behaves as PROBLEM, while for every ein not in the input environment, PROBLEM′

behaves arbitrarily.

3.6 Problem solving

Let M be a module and PROBLEM be a problem both with the same set of inputs I
and outputs O. Again we distinguish between two cases for I:

In case I is empty: We say that M solves PROBLEM iff

M.E ⊆ PROBLEM.E. (3.12)

In case I is non empty: In this case demanding (3.12) is too weak to get the intuitive
meaning of problem solving: M could possibly not react to any input executions ein at
all and still satisfy (3.12). What we want is that, for any possible input execution ein, M
reacts in a way allowed by PROBLEM. It thus may only not react to input execution
ein if PROBLEM allows it to do so. Formally, let Env be an input environment, that
is, a non empty set of executions of ports I. Then we say that M solves PROBLEM in
environment Env iff

∀ein ∈ Env : M.React(ein) ⊆ PROBLEM.E

or, which is equivalent, in the syntax of restricted problems

∀ein ∈ Exec(I) : M.React(ein) ⊆ (PROBLEM ↾ Env).E.

Chapter 3: Modeling and Analysis Framework 27

3.7 Implementation

When formalizing hierarchical systems, two design approaches are of importance: (i) Mod-
ules are built out of submodules corresponding to a bottom-up approach. For this purpose
it is necessary for a formal model to precisely define the behavior of a module that is
built from a set of submodules. This is what has been done by the introduction of the
compound module in Section 3.3, whose behavior is defined by means of the behavior of its
submodules. (ii) However, hardware systems are typically not designed solely in a bottom-
up fashion. For the top-down approach, the designer specifies an abstract (that is, not yet
physically implemented) module M , which is implemented later on by module MI during
the design process. Hereby, the designer does not care about MI as long as it behaves like
M , that is, solves problem M . This process has not yet been reflected in the proposed
model. We thus proceed with:

Definition 3.1. Module MI implements module M (in environment Env), iff MI solves
problem M (in environment Env). �

One of the key properties of the “implements” relation is expressed by the following
lemma. Intuitively, it justifies the correctness of approach (ii) in the above paragraph in
our modeling framework.

Lemma 3.1. If M implements M ′ (in environment Env) and M ′ solves problem P (in
environment Env), then M solves problem P (in environment Env).

Proof. We distinguish two cases:

(i) M.I is empty: Then, by Definition 3.1, M.E ⊆ M ′.E. Further, M ′.E ⊆ P.E, yielding
M.E ⊆ P.E. The lemma holds.

(ii) M.I is non empty: Choose an arbitrary ein in Env. By Definition 3.1, M.React(ein) ⊆
M ′.E, that is M.EO(ein) ⊆ M ′.EO(ein). The combination with M ′.EO(ein) ⊆ P.EO(ein)
yields the desired result M.EO(ein) ⊆ P.EO(ein). The lemma holds. �

Furthermore, if two modules implement each other, we say that these modules are
indistinguishable. In terms of a hardware design, these modules can be replaced by each
other without changing the behavior of the whole chip. In formal terms:

Definition 3.2. Two modules M and M ′ are indistinguishable (in environment Env), iff
M implements M ′ (in environment Env) and M ′ implements M (in environment Env).
�

3.8 Failures

Since the aim of this chapter is to provide a formal framework for analyzing fault-tolerant
clockless algorithms, and we have only focused on specifying the correct behavior of mod-
ules up to now, it remains to specify the incorrect behavior of modules. In [43], it was

28 3.9 Related Work

shown that the effects of faults in physical hardware cannot just be restricted to benign
failures while maintaining a high assumption coverage. Thus, we have to assume Byzan-
tine, that is unrestricted, behavior of faulty modules. While modules can often easily be
designed to deal with missing transitions on ports, the adverse power of Byzantine failures
typically lies in the ability of a faulty module to generate wrong transitions (early or even
spurious transitions) that are perceived inconsistently at different successor modules. Such
failures could be the consequence of manufacturing defects or electrostatic breakdown [51],
particle hits [4,76], or electromagnetic noise [66], which may affect any module in a circuit.
Due to different wire lengths and signal-level detection thresholds, such faults typically
propagate differently to different successor modules. Note that we allow faulty modules to
create even metastability [55], but we must assume that metastability cannot propagate
beyond so called fault-containment regions (see below); the latter assumption will be dis-
cussed in detail in Chapter 6. After this brief motivation on which failures we would like
the framework to be capable of expressing, the formal definitions follow:

A distributed system is specified by a compound module comprising of multiple nodes ,
which are sub-modules, and their interconnect.

We partition our system into multiple fault-containment regions (FCRs), i.e., sets of
(sub-)modules, such that, (i) modules in the same FCR are potentially affected by a single
fault like a particle hit and thus cannot be assumed to fail independently, and (ii) modules
in different FCRs are not affected by the same fault.

Throughout the thesis, let C be the set of correct FCRs, and F , with f := |F |, the set
of faulty FCRs. Clearly P = C ∪ F and C ∩ F = ∅, i.e., C and F partition P . The set of
correct (respectively faulty) modules thus is given as

⋃
C (respectively

⋃
F).

Given a distributed system together with a partitioning into FCRs, one typically needs
to constrain its set F such that, the distributed system still solves a problem in spite
the

⋃
F faulty modules. A widely used approach is to simply constrain |F | by an upper

bound f , the maximum number of faults that can occur in the system.

3.9 Related Work

Further reading: Part of the proposed system model has already been presented in [40] as
well as [37], where the model has been applied to analyze a fault-tolerant on-chip algorithm.

Existing work: There exist a number of formal frameworks both from the distributed
computing community and from the VLSI community:

In [59], Lynch and Tuttle introduced I/O Automata. An I/O Automaton comprises
shared input and output actions for communicating with the environment, a state and
transition rules. The latter are specified by (i) a transition name, (ii) a pre-condition (on
the automaton’s state) and (iii) its effect on the automaton’s state. Whenever the pre-
condition of a transition is true, it is applicable to the current state; and being applied leads
to a new state. If multiple transitions are applicable, the scheduler chooses any one among

Chapter 3: Modeling and Analysis Framework 29

those and applies it. Clearly, additional constraints have to be put on the scheduler to
guarantee fairness. As such, I/O automata are well suited to model classical asynchronous
computations.

Merritt et al. [69] extended I/O automata by introducing time-constrained automata,
a simplified version of which is presented in Lynch’s book [58] as MMT Timed Automata:
Transitions are grouped into tasks. Tasks are assigned lower and upper time bounds, say
∆− and ∆+, respectively. When a transition of a task becomes enabled, say at time t > 0,
it has to occur within t + [∆−, ∆+], unless it is disabled (by its pre-condition becoming
false) in the meantime. The pre-condition of a transition and its effect can be written in
form of a guarded command of the form P ⇒ action, where P is a predicate that is true
iff the pre-condition is fulfilled and action the action taken by the transition. As such the
behavior of an internal (that is, not externally triggered) transition can be specified in the
thesis’s system model by means of equations of the form1

∀t > 0 : P0(t) ⇔ (0, t) ∈ Ŝ and

P1(t) ⇔ (1, t) ∈ Ŝ, (3.13)

where P0(t) and P1(t) are predicates on the status of a module’s signals at time t, that

specify when the status of signal Ŝ should be set to 0 and 1 respectively.2 The delay
[∆−, ∆+] can be modeled by a FIFO channel with delay [∆−, ∆+] and input port S. Clearly,
this approach allows an infinite number of events to occur at S during a finite duration,
a property, that is forbidden for executions of time-constrained automata. These are only
allowed to have a finite number of events during any finite interval of time.

General Timed I/O Automata were introduced by Lynch and Vaandrager [58,60]. They
generalize time-constrained automata in several ways: most notably, in (a) allowing Zeno-
traces, where a Zeno-trace is an execution with an infinite number of events occurring in
a finite interval of time, and (b) replacing the task’s time bounds with a time-passage
event ν(t), t > 0, that increments state now (the current time) by t, and allowing a
transition to have access to now. For example a transition’s pre-conditions may depend
on now. While the specification of Timed I/O Automata does not exclude Zeno-traces,
they are not capable of specifying an execution that has both (i) an infinite number of
events occurring during a finite prefix and (ii) events with unbounded time stamps. Thus
continuous computation streams cannot be captured.

In the VLSI community, both exist untimed and timed models of computation exist as
well. Martin [62] and Ebergen [26] both proposed frameworks that allow (i) to specify a
system’s behavior in terms of a language on the occurrence of transitions of its ports’ states
and (ii) to systematically map, i.e., compile, this language into a set of basic modules that
have known physical implementations.

1Note, that (3.13) does not allow disabling.
2The system model only allows binary state signals. More complicated state signals must be represented

by a set of binary signals.

30 3.9 Related Work

In [62], the behavior of a system is stated in terms of guarded commands, as in (3.13),
where guards are predicates on state variables and their effects transitions of the system’s
state. An example specification for an AND gate with input ports a and b and output port
c is

⋆[[a ∧ b → c ↑ |¬(a ∧ b) → c ↓]].

The proposed language allows to specify execution of guarded commands in sequence (“;”),
in parallel (“|”) and their repetition (“⋆[[. . .]]”). The specification is then translated into a
set of production-rules (guarded commands as in (3.13)), that are all executed in parallel.
Analogously to [59, 69], a production rule’s effect is only guaranteed to take place, if the
rule’s guard is enabled until the effect has occurred; otherwise the effect may not take place.
Stability is the property that the rule’s effect always take place before the guard is disabled
again. The set of production rules, finally can be mapped to basic components, whose
production rules are known. The method is time-free in the sense, that it does not contain
any references to time, except for the isochronic fork , a forking wire with (nearly) equal
propagation delays on both forks, that is added to the basic components. The resulting
circuits are called quasi-delay insensitive (QDI) circuits.

In [26], Ebergen proposes a similar approach, however, in terms of transition logic: the
system is not specified by a set of guarded commands (mapping state to events), but by
commands , that specify a language over the alphabet of signal transitions: for each port
a, symbol a (ended by either ? or ! depending on whether it is an input or output port)
represents the occurrence of either a ↑ or a ↓. An example specification of a C-Element in
an environment, where transitions on both a and b only occur after the effect (a transition
of c) has taken place, is

pref ⋆ [a?||b?; c!]. (3.14)

Here, “;” denotes sequential, “||” parallel, “⋆[. . .]” repeated execution and “pref” is the
prefix-closure operator. An execution in the language specified by (3.14) is a; b; c; b; a.

Both, [62] and [26], however, do not allow to introduce fine-grained timing constraints
on paths between system components (besides isochronic forks), an important property
of a formal framework when specifying fault-tolerant systems, since the behavior of faulty
system components cannot be restricted, leading to violation of stability.

In [74,75], Myers et al. proposed a system model that allows to capture detailed timing
constraints: the order in which events occur is either specified by means analogous to
production-rules (however, where guards are not on the system state, but on the occurrence
of events) or by Petri net like graphs (orbital nets), which can be automatically derived from
the production-rules. Both representations capture the causal structure of the occurrence
of events together with numeric timing constraints on the maximum and minimum time
between two causally related events. While this method allows to specify and verify a
large class of clockless circuits, it has two drawbacks: (i) the large representation of state
based logic (like combinatorial gates) in a purely event based specification language and

Chapter 3: Modeling and Analysis Framework 31

(ii) the explicit use of explicit numbers for timing constraints (instead of symbolic timing
constraints).

An untimed framework that is capable of not only expressing AND causality between
occurrences of events but also OR causality was proposed by Yakovlev et al. in [98]: they
discuss existing, Petri net like, system models with respect to their ability to express two
types of OR causality, namely disjoint and joint OR causality: constraints on rising and
falling transitions of state variables are expressed via Petri net like graphs. In disjoint
OR causality, causal predecessor events of an event e are not related: any occurrence of a
predecessor event causes e to happen. That is, the number of occurrences of e until some
time t > 0 is the sum of the numbers of occurrences of each predecessor event until t.
Contrary, in joint OR causality, causal predecessor events of e are related: consider the
example where the kth, k > 1, occurrence of e depends on the kth occurrence of any of its
predecessor events by joint OR causality. Then, for all k > 1, only the first kth occurrence
of a predecessor event causes e to happen. All later kth occurrences of predecessor events
have no effect. Thus, the number of occurrences of e until some time t > 0 is the minimum
over the number of occurrences of each predecessor event until t. Yakovlev et al. then
introduce the Causal Logic Net , capable of capturing both joint and disjoint OR causality
and represent it in an efficient way. The main idea is to assign each event in the Causal
Logic Net an enabling function, that is, a Boolean predicate on the occurrences of the
predecessor events. While joint OR causality is important when specifying fault-tolerant
systems, the proposed framework does not allow for explicit use of time.

32 3.9 Related Work

Chapter 4

Modeling Fault-tolerant
Clockless Algorithms

WE HAVE presented a comprehensive modeling framework, which is expressive
enough to specify the behavior of any fault-tolerant on-chip algorithm. In this

chapter we try to identify key “building blocks” of fault-tolerant clockless algorithms and,
step by step, build these building blocks in terms of our modeling framework.

We start this chapter by giving a very short introduction of how Petri nets can be used
to model the control structure of clockless algorithms. Since Petri nets are too expressive for
many clockless algorithms, we restrict our considerations to the subclass of event graphs.
Starting from event graphs, we add more and more expressiveness to finally arrive at
threshold graphs which turn out to be particularly well suited for modeling an important
subclass of fault-tolerant clockless algorithms.

4.1 Petri Nets and Event Graphs

Since the author assumes that the reader is familiar with the basics of Petri nets, this section
only very briefly summarizes definitions and results on Petri nets needed throughout the
thesis. For an extensive introduction consult [73,77], for example. In this thesis, we follow
the notation of [15], since we will later in this chapter build on a generalization of Petri
nets introduced therein.

A Petri net PN is a tuple PN = 〈P, T, E, M0〉, where P is a finite set of places, T a
finite set of transitions, E = Epre ∪ Esucc a relation, where for the predecessor set Epre it
holds Epre ⊆ P × T and for the Esucc successor set it holds Esucc ⊆ T × P . M0 : P → N
is a function which assigns every place an initial number of tokens. An example Petri net
with P = {aw, bw, cw, ap, bp, cp} and T = {tw, ta, tb, tc} is depicted in Figure 4.1. Relation
E is visualized by arcs— whenever 〈x, y〉 ∈ E we draw an arrow from x to y. The initial

33

34 4.1 Petri Nets and Event Graphs

aw

bw

cw

tw

ap

bp

cp

ta

tb

tc

Figure 4.1: Example Petri net

configuration of the Petri net, M0, is not drawn in Figure 4.1. Typically one depicts
M0(p) = k for some p ∈ P and k ∈ N by placing k black tokens in place p.

Due to its length, we do not give a formal definition of an execution of a Petri net
here. Rather we will give (much shorter) definitions for executions of certain subclasses
of Petri nets. Let us start with an important subclass, the so called event graphs [15]1:
Let the predecessor places (respectively, successor places) of transition tx, denoted by •tx
(respectively, tx•), be

•tx := {p | 〈p, tx〉 ∈ Epre} and

tx• := {p | 〈tx, p〉 ∈ Esucc}.

Analogously the predecessor transitions •p (respectively, successor transitions p•) of a
place p, are defined as

•p := {tx | 〈tx, p〉 ∈ Esucc} and

p• := {tx | 〈p, tx〉 ∈ Epre}.

An event graph is a Petri net for which

∀p ∈ P : | • p| 6 1 ∧ |p • | 6 1 (4.1)

holds. Property (4.1) constraints a place p to have at most one predecessor and at most
one successor transition. The Petri net depicted in Figure 4.1 thus is an event graph. The
restriction comes at the price of reduced expressibility; its most important effect being
the impossibility to model choice (a place has more than one successor transition) in event
graphs. However, we will see that event graphs are expressive enough to model the behavior
of many clockless algorithms.

1In [73] the same subclass is called marked graph.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 35

Let a state of the event graph PN be a function µ : P → N, where µ(p) is the number of
tokens that reside in place p. A transition tx is said to be enabled in µ, iff for all predecessor
places p ∈ •tx, µ(p) > 1 holds. A transition tx is said to fire in µ resulting in µ′, iff (i) tx
is enabled in µ and (ii)

∀p ∈ •tx : µ′(p) = µ(p) − 1 and

∀p ∈ tx• : µ′(p) = µ(p) + 1.

Then an execution e of PN is a possibly infinite sequence of states µ0, µ1, . . . , where
initially

∀p ∈ P : µ0(p) = M0(p) (4.2)

and for any µi+1, with i > 0, in the execution, µi+1 is the result of a (possibly empty)
subset of T firing in µi:

Example 4.1. Consider the event graph PN given in Figure 4.1 with M0(ap) = M0(bp) =
M0(cp) = 1 and M0(aw) = M0(bw) = M0(cw) = 0. PN can be interpreted to model the
behavior of three computing devices a, b and c which initially all are in their processing
state, ap, bp and cp (modeled as tokens in the respective places). As soon as a process, say
a, has finished processing, it changes into its waiting state, say aw. When all processes
reside in their waiting states, they interchange their processing results and afterwards start
the next phase of processing, by changing into the processing state again.

Example 4.1 is a very simple example for a set of collaborating processes. While its
structure has commonalities with the triple-mode redundancy (TMR) technique used to
make synchronous designs fault-tolerant, it is not fault-tolerant. A simple crash of one
of the processes would result in a blocking of the other correct two processes. During
this chapter, we will derive techniques which in fact are analogous to TMR in synchronous
designs. While it is not possible to directly apply [30] or techniques therein, without clearly
specifying the exact problem, there is a strong indication that untimed event graphs are not
expressive enough for modeling hardware components that solve non-trivial fault-tolerant
problems. Thus, a first feature that has to be added to event graphs to allow the modeling
of fault-tolerant designs are timing properties.

4.1.1 Timed Event Graph

While event graphs can be used to model asynchronous behavior, they are not expressive
enough to model some behavior that is restricted by timing constraints. To overcome this
restriction, we introduce a function D : Epre → (T × T), which assigns every edge in
Epre a delay interval [τ−, τ+], with τ− and τ+ in R+

0 . Further, we distinguish between two
types of places in P : (i) binary places and (ii) unbounded places, the former of which are
visualized as places with a double boundary line. In terms of the visualization of timed

36 4.1 Petri Nets and Event Graphs

event graphs, binary places can hold only 0 or 1 tokens. However, unlike 1-bounded places
of standard Petri nets, where a place p’s predecessor transition is forbidden to fire if the
1-bounded place p already holds one token, we allow firing of the predecessor transition,
with the effect that the token in p is overwritten, resulting in 0 tokens in p. In contrast,
unbounded places can store an arbitrary number of tokens. A timed event graph thus
becomes a tuple TEG = 〈P, ρ, T, E, M0, D〉, where ρ assigns every place p in P whether it
is binary (ρ(p) = 2) or unbounded (ρ(p) = ∞).

Behavior of Timed Event Graph. We are now equipped to specify the behavior of
timed event graphs in terms of the formal framework introduced in Chapter 3. Assume
that TEG = 〈P, ρ, T, E, M0, D〉 is given. Let the set of ports P be defined by

P = P ∪ {rcvdp,q | p ∈ P, tp ∈ •p and q ∈ •tp}. (4.3)

Intuitively, rcvdp,q represents the output port of a channel from q to p and is formalized
later on. Note that, for any p ∈ P , if there exists a tp in •p, then it must be unique by
(4.1). We say that e is an execution of TEG, iff all of the following properties hold:

(i) e is an execution of the ports P, where for all p in P and t in T , #p(t) is well-defined.

(ii) For each rcvdp,q ∈ P, port rcvdp,q is the output port of a channel with input port q,
initial value 0 and delay bounds D(〈q, tp〉), where tp is the unique transition in •p.
In terms of rcvdp,q’s status, we thus demand that there exists a delay function d with
bounds D(〈q, tp〉) such that,

r̃cvdp,q(t) =

{
0 if d−1(t) undefined
q̃(d−1(t)) else

(4.4)

We will also refer to d as the outgoing delay function of q.

(iii) For each p ∈ P with unique tp ∈ •p: let P2 be the set of binary places in •tp and P∞

the set of unbounded places in •tp. Then for any t ∈ T and v ∈ B, 〈t, v〉 in p̂(t) iff,

(a) for all q in P2, r̃cvdp,q(t) = v and

(b) #p(t) 6 M0(p) + min{#rcvdp,q(t) | q ∈ P∞} ∪ {+∞} is not violated.

Note, that we do not constrain #p in case there exists no preceding transition tp. Places
with no preceding transition are input places and will play an important role in the next
section.

There are two special cases, where condition (iii) can be simplified significantly:

In case •tp comprises binary places only: then condition (b) is trivially fulfilled and signal

p̂ is defined as: for any t in T and v in B, 〈t, v〉 in p̂(t) iff, for all q in P2, r̃cvdp,q(t) = v.

In case •tp comprises unbounded places only: here, condition (a) is trivially fulfilled and
we thus obtain: for all t in T ,

#p(t) = M0(p) + min{#rcvdp,q(t) | q ∈ •tp}. (4.5)

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 37

Timed Event Graph Module. Since the behavior of timed event graphs can be ex-
pressed within the formal framework of Chapter 3, one can specify the behavior of a module
via a timed event graph. Let TEG = 〈P, ρ, T, E, M0, D〉 be a timed event graph, where
P = I ∪O∪L is partitioned into the three sets I (the input places), O (the output places)
and L (the local places). We demand two properties to hold on the TEG:

(P1) Input places have no preceding transitions and exactly one succeeding transition.
Output places have no succeeding transitions and exactly one preceding transition,
while all local places have exactly one preceding and succeeding transition.

(P2) Input places and output places are binary places.

We are now equipped to define the set of executions E of module M = 〈I, O, E〉 =
TEGm(P, ρ, T, E ′, M0, D): consider an arbitrary execution e of ports P as defined in (4.3).
In case e | I has a well defined counting representation, e | P in E if e is an execution of
TEG. In case e | I does not have a well defined counting representation, e in E, i.e., the
module’s possible reactions are unconstrained.

Example 4.2. The Muller C-Element is a frequently used basic building block for clockless
algorithm designs [92]. A zero-latency Muller C-Element is a module with two input ports
a and b and one output port c, whose behavior is specified by: for all t in T and v in B, in
case #a and #b are well-defined for all times t ∈ T ,

〈t, v〉 ∈ ĉ :⇔ ã(t) = b̃(t) = v.

An equivalent behavioral definition of a Muller C-Element in terms of a timed event graph
is given in Figure 4.2.

a

b

c

Figure 4.2: Muller C-Element

4.2 And-or Event Graph

Adding time to event graphs alone does not add the capability to model fault-tolerant
systems. Again, consider Example 4.1. Intuitively the crash of process a, i.e., ta not firing
anymore, still results in an execution where no process makes a step.

38 4.2 And-or Event Graph

a

b

t1

c

d

e

t2

t3

Figure 4.3: Timed and-or Event Graph

To overcome this restriction we would need to replace tx by a different kind of transition,
one that does not have “wait-for-all” semantics. There exists work form both the VLSI
community and the control theory community [15,44,98] which have in common that they
add a transition with “wait-for-first” semantics, also called Or-Transition, in contrast to
the And-Transitions with the “wait-for-all” semantics. During this work we will follow [15]
and name the resulting graph an and-or event graph. Figure 4.3 depicts an example graph,
where And-transitions are depicted as filled bars, while Or-transitions are depicted as
unfilled bars.

Formally a timed and-or event graph (or short and-or graph) AOG is defined as a tuple
AOG = 〈P, ρ, T, E, M0, D, θ〉 where all variables are defined analogously as for the timed
event graph, except for the additional θ : T → {min, max} which maps a transition to a
type. With the intention to keep the behavioral specification of an and-or graph simple,
we demand: for p in P with preceding transition tp, where θ(tp) = max, all places in •tp
are unbounded. In analogy to (4.5) the behavior for those signals p̂ is then specified by:
for all t in T ,

#p(t) = M0(p) + max{#rcvdp,q(t) | q ∈ •tp}.

The behavior of all other ports is specified analogously to the ports in timed event graphs.

Executions of and-or event graphs can be visualized by tokens and anti-tokens traversing
through the graph. For this purpose let the number of tokens residing at place p at time t
be k = #p(t) − #q(t) if p is an unbounded place and k = (#p(t) − #q(t)) mod 2 if p is
a binary place, where q is an arbitrary “successor” place (q ∈ (p•)•).2 In case k > 0, we
draw k full tokens at place p. Otherwise, if the number of tokens is negative, we draw |k|
anti-tokens, that is, unfilled tokens at place p.

2Note that for any two successor places q and r of p, #q(t) = #r(t) which justifies the choice to use an
arbitrary one among them.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 39

aw

bw

cw

2

tw

ap

bp

cp

ta

tb

tc

Figure 4.4: Example Threshold graph

4.3 Threshold Graph

We will next generalize and-or graphs to threshold graphs. While this generalization does
not add any extra capability in terms of expressiveness, it provides means to replace large
sets of and-or transitions and places, which are interconnected in some regular way, with
new kinds of transitions, namely threshold transitions.

Timed event graphs can be modeled as and-or graphs whose range of θ is restricted to
{min}, while and-or graphs have a θ with range {min, max}. We can extend the range
even more. Consider a transition tp and let the number of the input places of tp be n.
Then θ(tp) may be of any type out of the set {1st, 2nd, . . . , nth}, where kth applied to a
multi-set S, with |S| > k, returns the k smallest element. Thus as special cases 1st = min
and nth = max. A transition tp with θ(tp) = kth will be called threshold transition. A
threshold transition is depicted as an unfilled bar with the number k inside the bar. The
special cases for min respectively max still are depicted as filled respectively unfilled bars.
An example threshold graph is depicted in Figure 4.4.

It remains to define the set of possible executions of a threshold graph. The behavioral
specification of a threshold graph is analogous to the specification of an and-or graph:
given place p in P with preceding transition tp, where θ(tp) 6= min, we require all places in
•tp to be unbounded. The behavior of signal p̂ is then specified by: for all t in T ,

#p(t) = M0(p) + θ(tp){#rcvdp,q(t) | q ∈ •tp}.

The behavior of all other ports is defined analogously to those in and-or graphs.

Example 4.3. Analogous to Example 4.1, consider a system comprising three nodes a, b
and c. Each process p either is in the waiting state pw or in the processing state pp.
However, unlike in Example 4.1, a process in the waiting state does not wait for all processes
to reach the waiting state, before it enters the processing state, but only for a majority of
(two) processes. This behavior can be modeled via the threshold graph depicted in Figure 4.4.

40 4.4 Modeling Control Circuits

Although a formal definition of the failure of a process has not been given yet, the
example system above intuitively tolerates the crash failure of a single process.

4.4 Modeling Control Circuits

Clockless circuits can be modeled at different levels of abstraction. In Chapter 3 we have
introduced modules and ways to specify the behavior of modules. During the design
process, the circuit designer typically uses even higher levels of description than available
for modules. One such abstraction, not possible with modules, is to group ports together
to buses. For example a typical asynchronous interface, when considering bundled data
communication, comprises: (i) a binary request port (short req), (ii) a data bus and (iii)
a binary acknowledge port (short ack). The communication interface between two such
modules is depicted in Figure 4.5. Here module A pushes data to module B by sending

A B

req

ack

data

Figure 4.5: Asynchronous communication

A B

Figure 4.6: High level view

the data value over the data bus and issuing a request over the req line. After B has
successfully captured A’s data, it issues an acknowledge back to A over the ack line. As
soon as A receives the acknowledgement, it may push the next data item to B.

Sparso describes in [87] a high level graphical notation, where he abstracts from the
specific communication interface, by drawing only a single “⇒” between the modules, as
done in Figure 4.6. This has two benefits: (i) the graphical notation of a system becomes
smaller and less tedious to paint and (ii) the abstract communication interface can be
substituted by any asynchronous communication interface. The decision of using, e.g.,
four-state logic communication instead of bundled data communication is thus deferred
to a later design stage. In this thesis, however, we restrict ourselves to 2-phase bundled
data communication, that is explained in the following. The protocol of data exchange
between two modules communicating by 2-phase bundled data communication is depicted
in Figure 4.7. It shows the state of ports ack, req and data at their respective origin, i.e.,
req and data at A’s output ports and ack at B’s output port. For convenience, we say
that A (respectively B) makes a step at time t, t > 0, iff A produces a transition on its
req (ack) port at time t.

The protocol may be started from one of two possible initial states, depending on
whether initially (at time 0) (i) B waits to receive data from A or (ii) A waits to receive
an acknowledge from B:

(i) Assume that module A initially is waiting to receive an acknowledgement from B. In

this case let the ports’ status be r̃eq(0) = ãck(0) = 0. As soon as B is ready to receive data

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 41

from A, it makes a step, thereby producing a transition on ack. This instant is depicted in
Figure 4.7 by vertical line � . As soon as A receives the transition and is ready to provide
data, it applies the data on the bus and makes a step, thereby producing a transition on
req. As soon as B receives the req transition, B can be sure that the data on the bus is
valid (assuming that the propagation delays of data and req are matched), and makes a
step, thereby again producing a transition on ack, as soon as it is ready to receive new
data (e.g., when it has safely stored the data). The protocol repeats.

(ii) Otherwise, assume that module B initially is waiting to receive data from A. In this

case we let r̃eq(0) = 0 and ãck(0) = 1. The initial state is depicted by the vertical line �
in Figure 4.7. As soon as A is ready to provide data, it makes a step and thereby issues
a request and additionally applies its data on the data bus. As soon as B receives the
req transition, B can be sure that the data on the bus is valid and makes a step, thereby
producing a transition on ack, as soon as it is ready to receive new data. When A receives
the ack transition, it may repeat as before.

We thus observe for any two modules A and B communicating by the 2-phase bundled
data protocol:

Observation 4.1. During an execution of two modules A and B communicating by the
2-phase bundled data protocol, A and B alternate in making steps, where, depending on the
protocol’s initial state either B (in case of (i)) or A (in case of (ii)) makes the first step.

� �ack

req

valid data

Figure 4.7: 2-phase bundled data communication

A simple, but central, module is the register . A register R has one input communication
interface and one output communication interface. The input communication interface
is connected via channels to a predecessor module that provides data to R. Likewise
the output communication interface is connected via channels to a successor module that
receives data from R. A register R can only store one data word at a time. It behaves
as follows: as soon as R has received both (i) a request (and by this, valid data) from its
predecessor module over the input communication interface and (ii) an acknowledge from
its successor module over its output communication interface, it makes a step, that is, (i)
takes over the data applied to the input communication interface (storing it in its local one
word memory) and issues an acknowledge over the input communication interface as well
as (ii) provides the newly captured data to the output interface and issues a request over
the output interface. Alternative registers exist that provide more decoupling between the
input and output communication interface by the possibility to store a second word [87,92]

42 4.4 Modeling Control Circuits

A

B
2

Figure 4.8: Queues

F1

Figure 4.9: Fork

J1

Figure 4.10: Non-buffering/General Join

(thus the instant when data on the input communication interface is captured and the
instant when that data over the communication interface is provided is not necessarily the
same).

Besides registers, Sparso further introduces the fundamental design modules forks and
joins (among others) and later on discusses their physical implementations in [87].

Though the method presented in [87] is very appealing, for fault-tolerant asynchronous
designs it is not possible to strictly stick to the asynchronous communication scheme based
on handshaking in all cases: A single faulty module that deadlocks may prevent all its
successor modules from performing computations, by simply not issuing the acknowledge
signal. We therefore extend our high level view with a communication interface comprising
of no acknowledge line. Whenever we make use of this communication interface between
two modules, we denote it with a thin “→”, between the two respective modules.

4.4.1 High Level View

We follow [87] and introduce a set of fundamental modules in the high level model: queues,
forks and non-buffering, respectively, General Joins which are depicted in Figures 4.8, 4.9
and 4.10. After an informal description of these modules, an exact definition in terms of
our system model is given.

Queue. Queues are FIFO buffers, which are written by a single producer module and
read by a single consumer module. There are two kinds of queues: unbounded and
bounded queues. While unbounded queues do not have an apriori bound on their
maximum fill size, bounded queues have. An unbounded and a bounded queue are
depicted in Figure 4.8. For bounded queues the maximum fill size is drawn in the
lower left corner. Bounded queues with maximum fill level 1 are identical to registers.

Fork. A fork is a data broadcast. Forks are used whenever the same data has to be
processed by different successor modules along different lines of computation. A fork
for three successor modules is depicted in Figure 4.9. The forks we use here are
identical to those introduced in [87]. Forks handshake with all successor modules by
waiting to receive acknowledges from all of them before acknowledging its predecessor
module.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 43

Non-buffering Join. While forks are used to broadcast data, their counterparts, non-
buffering joins, are responsible to merge data coming along different data paths.
A non-buffering join (comparable to the join in [87]) is a module that allows the
join’s successor module to handshake with all predecessor modules of the join. The
join performs this task, by waiting to receive requests and data from all predecessor
modules before it hands over the merged data and a request to the successor module.
The acknowledge it receives from the successor module is simply forwarded to all
predecessor modules. Note that non-buffering joins do not intermediately store data
from the predecessor modules and are thus named “non-buffering”.

General Join. In case of fault-tolerant on-chip algorithms a join’s successor module can-
not wait for all predecessor modules’ data. Otherwise a single faulty predecessor
module could prevent the successor module from making progress. Therefore we
generalize a join’s behavior as we did for and-transitions: let J be a General Join.
Then a type θ(J) is assigned to J , where the range of θ is defined in analogy to θ of
a transition; however, we allow for a more general type θ(J) than a single threshold,
namely,

θ(J) ∈ {kth
0 , kth

1 , 〈kth
0 , ℓth

1 〉 | 1 6 k, ℓ 6 |Q|}, (4.6)

where Q is the set of J ’s predecessor modules. We then define: For a multiset S,
kth

i (S), where 1 6 k 6 |S|, is given by

kth
i (S) := kth{x − i | x ∈ S} (4.7)

and 〈kth
0 , ℓth

1 〉(S), where 1 6 k, ℓ 6 |S|, is given by

〈kth
0 , ℓth

1 〉 := max{kth
0 (S), ℓth

1 (S)}. (4.8)

Figure 4.10 shows a General Join J1 for three predecessor modules. In this work
we require a General Join to have a “→” communication interface to its successor
module. This implies, that the successor module cannot put backpressure onto the
General Join, by delaying its acknowledge signal.3 Clearly the Fork module suffers
the same problems as the Non-buffering. Here the same techniques could be ap-
plied, obtaining a General Fork module. For simplicity of the thesis’ presentation
we will however concentrate on the Join Module and obtain a fault-tolerant Fork
module simply by dismissing the Fork’s acknowledge signals, leaving it with “→”
communication interfaces only.

The idea behind the generalized θ(J) is to not only allow J to wait for the data of
a certain threshold of predecessor modules, but, in case θ(J) = 〈αth

0 , βth
1 〉 to combine

two thresholds with distinct offset together: J will wait for the kth, k > 0, data item
from at least α predecessor modules, or k +1st data item from at least β predecessor

3It is definitively of interest to eliminate this simplifying restriction in future work.

44 4.4 Modeling Control Circuits

A

B

C J1

D F1

E
2

F
1

Figure 4.11: Example high level view

modules, before it outputs the k + 1st data item. Clearly, a General Join requires a
data buffer for each predecessor module, since the successor module makes progress
even if data has not been received from all predecessor modules. Thus buffering is
necessary in order not to loose the predecessor modules’ data (a reception of the kth

data item could be taken for the reception of the k + 1st data item).

While the motivation of the two generalizations of timed event graphs, the first to
and-or graphs and the second to threshold graphs, are natural generalizations on the
way to express fault-tolerant on-chip algorithms, the combination of two thresholds in
a single module does not have a straightforward application. However, it is shown in
Chapter 5 that General Joins with two thresholds play an important role in Byzantine
fault-tolerant on-chip algorithms like the simulated authenticated broadcast primitive
introduced by Srikanth and Toueg in [88] and refined by Widder and Schmid in [97].

Example 4.4. An example high level model of a simple system is shown in Figure 4.11.
Here, three queues A, B and C feed their data into a General Join J1. The type of the
General Join is not further specified here. The result is fed into queue D (without being
acknowledged, which is denoted with the “→” communication interface). D’s results are
then broadcast (via fork F1) to two bounded queues E and F .

It remains to formally specify the queue, fork, non-buffering join and General Join
modules. A common technique is to partition a module in a control part (comprising of
the req and ack input and output ports) and a data part (comprising of the data lines) and
only model the control part. The simplification is justified whenever the data values have
no direct consequences on the signals of the control ports. Since this holds for many typical
asynchronous circuits, we might follow [87, 92] and model only the control structure. The
data path can be added at a later stage by analogous methods as described in [87, 92].
For our purposes (2-phase bundled data) it suffices to think of a simple coupling between
control path and data path: transitions (both 0-1 and 1-0) of a module’s control signals
trigger associated flip-flops in the data path.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 45

4.4.1.1 Queue Module

The unbounded queue module is defined as a module M = 〈I, O, E〉, with two input ports
I = {reqI, ackI} and two output ports O = {reqO, ackO}. Its set of possible executions
E is specified via the timed event graph shown in Figure 4.12. Note that delays D and
initial values M0 are omitted on purpose, as they depend on the queue to be modeled. For
example, M0(q) = k > 1 models a queue prefilled with k data items.

reqI

ackI

reqO

ackO

qA

Figure 4.12: Unbounded Queue Module

The bounded queue module of size 1 is defined as a module M with identical input and
output ports as the unbounded queue module, however, E is specified by the timed event
graph shown in Figure 4.13. A bounded queue module of size k > 1 can be modeled as a
compound module comprising of a sequence of k bounded queue modules of size 1 each.

4.4.1.2 Non-buffering Join Module

Consider a non-buffering join module with predecessor modules Q = {A, B, . . . }. The
module is defined to have input ports I = {reqA, reqB, . . . } ∪ {ackO} and output ports
O = {ackA, ackB, . . . } ∪ {reqO}. The module’s behavior is specified by the timed event
graph depicted in Figure 4.14; for reasons of simplicity, it shows only two predecessor
modules A and B. Furthermore, delays and initial number of tokens are not depicted.

4.4.1.3 General Join Module

A General Join module with predecessor modules Q = {A, B, . . . } is defined as a module
with input ports I = {reqA, reqB, . . . } and output ports O = {ackA, ackB, . . .} ∪ {reqO}.

reqI

ackI

reqO

ackO

A
1

Figure 4.13: Bounded Queue Module of size 1

46 4.4 Modeling Control Circuits

reqA

ackA

reqB

ackB

reqO

ackO

J

Figure 4.14: Non-buffering Join Module

Its behavior is specified by the threshold graph depicted in Figure 4.15. In the figure, the
threshold graph is only depicted for a General Join with two predecessor modules A and B.
A generalization to more than two predecessor modules is obtained by a straightforward
replication of the thresholds graphs’ structure. In the threshold graph, we set all delays to
0, except for those explicitly depicted in the figure. Further the initial number of tokens
at all places, except for s and X ′r, with X in Q, are set to 0. For place s, M0(s) = 1 and
for all X in Q, M0(X

′r) = −1.

We will start with an informal description of the behavior of a General Join module:
the graph can be partitioned into (i) the component comprising of the places reqX, ackX,
Xr and X l, for X in Q, (ii) the places X, for X in Q, th, th′ and s, and (iii) places reqO
and l. Subgraph (i) roughly looks like unbounded queues without output. It is responsible
for storing transitions that arrived at input reqX, separately for each X. Subgraph (ii)
determines how many times the threshold θ(J) = 〈αth

0 , βth
1 〉 has been reached in X and

stores the result in s. Finally, (iii) generates the output transitions at reqO after a latency
delay in τ±

PC + τ±

TH, as well as feeds back the generated transition via l to Xr and X ′r, for
all X in Q. This feedback serializes the output transitions generated by J to occur one
after the other.

4.4.2 Timing Properties of General Joins

Since General Join modules shall be used as building blocks in fault-tolerant on-chips
algorithms a formal characterization of their correctness and timing properties is inevitable.

Before we formally state important properties of a General Join J , we introduce some
notation: for time t in T , k > 1 and predecessor module X of General Join module J ,
we say J receives transition k from X at time t, iff reqX makes transition k at time t.
Analogously, we say J sends transition k at time t iff reqO makes transition k at time t.

In the following, we assume that #reqX(t), for each X in Q, is well defined and right-
continuous for all t in T unless stated otherwise. Further assume that θ(J) = 〈αth

0 , βth
1 〉,

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 47

reqA

ackA

Ar

A′r

Al

A′l

A

A′

reqB

ackB

Bl

B′l

Br

B′r

B

B′

α th

β th’

s reqO

l
τ±

loc
τ±

Diffτ±

Diff

τ±

Diff[0, ε]

τ±

Diffτ±

Diff

τ±

Diff[0, ε]

τ±

PC + τ±

TH

to Br

to B′r

J

Figure 4.15: General Join Module

for some α and β. Later on in the thesis it will be shown that this assumption is non
restrictive, since we can easily extend our results to the simpler case where θ(J) = αth

i for
some i ∈ {0, 1}. We are now prepared to state properties on when J must send transitions:

Lemma 4.1. Let J be a General Join with predecessor modules Q = {A, B, . . .}. Then J
sends the first transition at tJ,1 in τ±

PC + τ±

TH.

Proof. According to (4.5), for all times t in T ,

#reqO(t) = #rcvdreqO,s(t).

Let d be the outgoing delay function of s. Then for t < d(0), #reqO(t) = 0 and for t > d(0),
#reqO(t) > 1, i.e., J sends the first transition at time d(0). Since d(0) in τ±

PC + τ±

TH, the
lemma follows. �

Lemma 4.2. Let J be a General Join with predecessor modules Q = {A, B, . . .}. Wlog.
assume θ(J) = 〈αth

0 , βth
1 〉. For all k > 1: if

(i) J sends transition k at time tJ,k and

(ii) there is a set Q ⊆ Q, with |Q| > α such that J has received at least transition k from
all X in Q by time tQ,k,

48 4.4 Modeling Control Circuits

then J sends transition k + 1 by time max{tJ,k + τ+
loc, tQ,k} + τ+

Diff + τ+
PC + τ+

TH.

Proof. For all t, #l(t) = #reqO(t). Because of assumption (i), for all t < tJ,k, #l(t) 6 k−1
and for all t > tJ,k, #l(t) > k. Let d be the outgoing delay function of l. Then for each X
in Q, port Xℓ as well as port X ′ℓ make transition k at time t′ = d(tJ,k). Due to the delay
bounds of d,

t′ ∈ tJ,k + τ±

loc,

and therefore, for each X in Q, port rcvdX,Xl makes transition k at t′′ with

t′′ ∈ tJ,k + τ±

loc + τ±

Diff. (4.9)

Because of assumption (ii), for all X in Q, port Xr makes transition k by time tQ,k.
Thus, for all times t > tQ,k + τ+

Diff and X in Q,

rcvdX,Xr(t) > k. (4.10)

From (4.9) and (4.10), we deduce, that port X ′ makes transition k by time t′′′, with

t′′′ = max{tJ,k + τ+
loc, tQ,k} + τ+

Diff (4.11)

Further

rcvds,th(t
′′′) = #th(t′′′)

= αth{#X(t′′′) | X ∈ Q} > k,

i.e., rcvds,th makes transition k by time t′′′.

Clearly, port s makes transition k + M0(s) = k + 1 by time t′′′, too, and thus reqO
makes transition k + 1 by time t′′′ + τ+

PC + τ+
TH. Combination with (4.11) yields the desired

result and the lemma follows. �

The following lemma’s requirements are similar to Lemma 4.3, except that the lemma
only holds for transitions greater or equal to 2, and requires to receive transition k + 1
from at least β predecessor modules.

Lemma 4.3. Let J be a General Join with predecessor modules Q = {A, B, . . .}. Wlog.
assume θ(J) = 〈αth

0 , βth
1 〉. For all k > 1: if

(i) J sends transition k at time tJ,k and

(ii) there is a set Q ⊆ Q, with |Q| > β, such that, J has received at least transition k +1
from all X in Q by time tQ,k,

then J sends transition k + 1 by time max{tJ,k + τ+
loc + τ+

Diff, tQ,k + ε} + τ+
PC + τ+

TH.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 49

Proof. The proof follows the proof of Lemma 4.2 in large parts.

For all t in T , #l(t) = #reqO(t). Let d be the outgoing delay function of l. Because
of assumption (i), for each X in Q, ports X l and X ′l make transition k at time t′ = d(tJ,k)
and due to the delay bounds of d, t′ ∈ tJ,k + τ±

loc. Thus, for each X in Q, port rcvdX,X′l

makes transition k at t′ with

t′ ∈ tJ,k + τ±

loc + τ±

Diff. (4.12)

Because of assumption (ii), for all X in Q, port X ′r makes transition k+1+M0(X
′r) = k

by time tQ,k. Therefore, for times t > tQ,k + ε and X in Q, it holds that

rcvdX,X′r(t) > k. (4.13)

From (4.12) and (4.13), we deduce, that port X ′ makes transition k by time t′′′, with

t′′′ = max{tJ,k + τ+
loc + τ+

Diff, tQ,k + ε} (4.14)

Further

rcvds,th′(t′′′) = #th′(t′′′)

= βth{#X ′(t′′′) | X ∈ Q} > k,

i.e., rcvds,th′ makes transition k by time t′′′.

Again, port s makes transition k + M0(s) = k + 1 by time t′′′ and thus reqO makes
transition k +1 by time t′′′ + τ+

PC + τ+
TH. Combination with (4.14) yields the desired result.

The lemma follows. �

Lemmata 4.2 and 4.3 state that a General Join J is able to “make progress” despite
the failure of subset of its predecessor modules: both lemmata state that J only needs
to receive transitions from a sufficiently large subset Q of predecessor modules to send
transitions.

We will next derive a necessary condition on the transitions received by J for sending
transition k > 2:

Lemma 4.4. Let J be a General Join with predecessor modules Q = {A, B, . . .}. Wlog.
assume θ(J) = 〈αth

0 , βth
1 〉. For all t in T : if #reqO(t) = k + 1 > 2, then J has sent

transition k at time tJ,k with

tJ,k 6 tJ,k+1 − τ−

TH − τ−

PC − τ−

Diff − τ−

loc (4.15)

and either

(i) there exists a set Q ⊆ Q of size |Q| > α such that for t′ := t − τ−

TH − τ−

PC − τ−

Diff:

∀X ∈ Q : #reqX(t′) > k (4.16)

50 4.5 Implementing General Joins

(ii) or there exists a set Q ⊆ M of size |Q| > β such that for t′ := t − τ−

TH − τ−

PC:

∀X ∈ Q : #reqX(t′) > k + 1. (4.17)

Proof. Since #reqO(t) > k + 1, and #s(0) = 1,

#s(t − τ−

PC − τ−

TH) > k + 1. (4.18)

must hold. Further (4.18) only holds if either (i)

αth{#X(t − τ−

PC − τ−

TH) | X ∈ Q} > k

or (ii)

βth{#X ′(t − τ−

PC − τ−

TH) | X ∈ Q} > k.

We consider both cases one after the other:

(i) Then there exists a set Q ⊆ X of size |Q| > α, such that, for all X in Q, #X(t− τ−

PC −
τ−

TH) > k. Since #X(t − τ−

PC − τ−

TH) 6 #reqX(t − τ−

PC − τ−

TH − τ−

Diff), (4.16) follows. Since

further #X(t− τ−

PC− τ−

TH) 6 #reqO(t− τ−

PC − τ−

TH− τ−

Diff− τ−

loc), (4.15) follows. The lemma
follows.

(ii) Thus there exists a set Q ⊆ X of size |Q| > β, such that, for all X in Q, #X ′(t −
τ−

PC − τ−

TH) > k. Since #X ′(t− τ−

PC − τ−

TH) + 1 6 #reqX(t− τ−

PC − τ−

TH − ε), (4.17) follows.
Since, further #X ′(t− τ−

PC − τ−

TH) 6 #reqO(t− τ−

PC − τ−

TH − τ−

Diff − τ−

loc), (4.15) follows. The
lemma follows.

The lemma follows in both cases. �

From Lemma 4.4 (4.15), there follows a minimum time between two successive transi-
tions sent by a General Join:

Corollary 4.1. If General Join J sends transition k, k > 1, at time tJ,k and transition
k + 1 at time tJ,k+1, then tJ,k+1 − tJ,k > τ−

TH + τ−

PC + τ−

Diff + τ−

loc.

4.5 Implementing General Joins

In the previous sections, a high level view has been introduced, which allows to model
the control structure of on-chip algorithms at the level of data flows. The key component
herein is the fault-tolerant join, called General Join module, for which the deadlock of one
of its preceding input modules does not necessarily lead to a deadlock of the join output.
Interestingly threshold transitions introduced in Section 4.3 can be used to formally express
join behavior, which does not necessarily follow a “wait-for-all” semantics and still keeps
the synchrony between the join’s successor module and all the join’s predecessor modules.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 51

Given the importance of General Joins in fault-tolerant clockless circuits, the question
arises how to physically implement them. For this purpose we make use of the ideas
presented in Chapter 3: we will discuss an implementation of a General Join module J
by a compound module GJImp(J) comprising less complex sub-modules. For a physical
implementation, it thus remains to implement the less complex GJImp(J). In order not to
hide the key message, we slightly modify the General Join module J : we discard J ’s AckX
output ports for all X in J ’s predecessor modules Q. Further, for each X in Q, we attach
a so called input channel , that is a channel with input port bX , output port ReqX, delay
within

[
τ−

rem, τ+
rem

]
and initial value 0 to each of J ’s inputs. Port bX is the output port of

predecessor module X.

In the previous sections of this chapter we only investigated the behavior of correct
modules. Here the analysis is extended to the behavior of a GJImp(J) module in the
presence of faulty predecessor modules. We will thus explicitly state whether a predecessor
module is assumed to be correct or not. In case a predecessor module is faulty, we do not
restrict the behavior of the corresponding input channel, i.e., the channel may produce an
unconstrained series of events at its output. We only require that its counting function is
well-defined for all t ∈ T .

We start by formally specifying the architecture of a module GJImp(J) for a given
General Join module J , i.e., stating GJImp(J)’s sub-modules (including their behavior) and
interconnect. It is important to note that the behavioral properties of the sub-modules
defined in this subsection are assumed properties, i.e., basic properties that must a priori
be guaranteed by the implementation of the sub-modules.

Again we will attach input channels with delay in
[
τ−

rem, τ+
rem

]
and initial value 0 to

each of GJImp(J)’s input ports. It is then shown in Section 4.6 that GJImp(J) with input
channels implements J with input channels, given that certain constraints hold.

4.5.1 Specification of the compound module GJImp

Consider a General Join module J with a set of m predecessor modules Q = {q, r, . . .}.
Wlog. assume that θ(J) = 〈αth

0 , βth
1 〉. We will next define a GJImp(J) module. In the

following let p be a GJImp(J) module. Further let tp,b ∈ T be p′s booting completion
time. Figure 4.16 shows p’s architecture which has been inspired by the architecture of
our DARTS fault-tolerant tick generation approach [41]. It consists of one +/− counter
module per predecessor module (only two are depicted), four Threshold modules, two of
which are implementing the αth

0 rule and the other two implementing the βth
1 rule, and

a request broadcast module that finally generates p’s output request transitions #bp(t).
Every +/− counter is refined into several additional sub-modules: A pair of elastic pipes
(remote pipe, local pipe) that form FIFO buffers for (remote, local) transitions, a Diff-
Gate module that removes matching remote and local transitions from the pipes, and a
PCSG module that generates the status signals reflecting the difference of the number of
transitions present in the local and the remote pipe.

We will now specify the ports and the behavior of all these modules in detail.

5
2

4
.5

Im
p
lem

en
tin

g
G

en
era

l
J
o
in

s
+/− counter for r

remote pipe
#rrem

p,r (t)

#srem
p,r (t) #dp,r(t)

local pipe
#rloc

p,r(t)

#sloc
p,r(t)

P̃GEQ,o
p,r (t) P̃GEQ,e

p,r (t) P̃GR,o
p,r (t) P̃GR,e

p,r (t)

+/− counter for q

remote pipe
#rrem

p,q (t)

#srem
p,q (t) #dp,q(t)

local pipe
#rloc

p,q(t)

#sloc
p,q(t)

P̃GEQ,o
p,q (t) P̃GEQ,e

p,q (t) P̃GR,o
p,q (t) P̃GR,e

p,q (t)

〈PGRtoGR, e, p, q〉

〈PGRtoGR, e, p, r〉

Threshold module

G̃R
e

p,q(t)
. . .

G̃R
e

p,r(t)

〈
∑

GRtoTHGR, e, p〉

〈PGRtoGR, o, p, q〉

〈PGRtoGR, o, p, r〉

Threshold module

G̃R
o

p,q(t)
. . .

G̃R
o

p,r(t)

〈
∑

GRtoTHGR, o, p〉

〈PGEQtoGEQ, e, p, q〉

〈PGEQtoGEQ, e, p, r〉

Threshold module

G̃EQ
e

p,q(t)
. . .

G̃EQ
e

p,r(t)

〈
∑

GEQtoTHGEQ, e, p〉

〈PGEQtoGEQ, o, p, q〉

〈PGEQtoGEQ, o, p, r〉

Threshold module

G̃EQ
o

p,q(t)
. . .

G̃EQ
o

p,r(t)

〈
∑

GEQtoTHGEQ, o, p〉

Req generation module

T̃HGR
e

p(t)

T̃HGR
o

p(t)

˜THGEQ
e

p(t)

˜THGEQ
o

p(t)

#bp(t)

〈LOC, p, r〉

〈LOC, p, q〉

F
igu

re
4.16:

A
rch

itectu
re

of
th

e
G

J
Im

p
m

o
d
u
le

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 53

4.5.1.1 Pairs of elastic pipes

Module p incorporates m pairs of unbounded queues, each of which corresponds to a single
q ∈ Q. We will denote the pair of pipes at p corresponding to q by (p, q) in the sequel. (p, q)
consists of a remote pipeline that stores transitions sent by q, and a local pipeline that
stores transitions sent by p locally. Since our intention is to physically implement the pair
of pipes, we will have to replace the pipepair by bounded queues as soon as we know their
maximum attained fill level. For this purpose we denote the maximum attainable fill level
of a remote respectively local pipe by Srem respectively Sloc. Note that the numbers Srem

and Sloc depend on the circuit the General Join is used in, as well as its delays. However,
as soon as we manage to prove that the bounds Srem and Sloc hold, we can substitute
the unbounded queue pair by a bounded queue pair with the respective bounds without
changing the overall behavior.

The local pipe in (p, q) has a single (req) input port that is fed by p’s local transitions,
i.e., #bp(t), supplied via the channel 〈LOC, p, q〉, and a single (req) output port represented
by the counting function #rloc

p,q(t). Similarly, the remote pipe in (p, q) has a single (req)
input port that is fed by q’s transitions, and a single output port represented by the
counting function #rrem

p,q (t).

We say that p receives transition k from q at time t, or, equivalently, that transition k
is received at the remote pipe of (p, q) at time t, iff rrem

p,q makes transition k at time t.
Analogously, we say that transition k is received at the local pipe of (p, q) at time t, iff rloc

p,q

makes transition k at time t.

Behavioral description: Both pipes in the pair (p, q) have the behavior of a zero-delay
queue: For any t > 0, #rloc

p,q(t) respectively #rrem
p,q (t) counts the number of transitions

received at the local respectively remote pipe of (p, q) until time t. Upon reset, both pipes
are pre-filled with the virtual transition 0 (such a transition is called virtual since it has
never been sent). Formally, for each t ∈ [0, tp,b], it holds that #rrem

p,q (tp,b) = #rloc
p,q(tp,b) := 0.

4.5.1.2 Diff-Gate module

To avoid pipes with infinite capacity, each pair of pipes is equipped with a special Diff-
Gate circuit that removes matching transitions, i.e., transitions received in both pipes. The
Diff-Gate for (p, q) has two input ports connected to #rrem

p,q (t) and #rloc
p,q(t), and a single

output port represented by the counting function #dp,q(t), which gives the largest transition
number that has been removed from both the remote and local pipe of (p, q) by time t.
To formalize the removal of the virtual transition 0, the initial value is #dp,q(tp,b) = −1.
Formally, we say that transition k > 0 is removed from (p, q) at time t iff port dp,q makes
transition k at time t.

Behavioral description: Recall that virtual transition 0 is received in all local and
remote pipes at booting completion time tloc,0 = tp,b. Transitions are removed from pairs
of pipes as follows:

54 4.5 Implementing General Joins

• k = 0: If

– transition k + 1 = 1 is received at the remote pipe of (p, q) at time trem,k+1, and

– transition k + 1 = 1 is received at the local pipe of (p, q) at time tloc,k+1,

then transition k = 0 is removed from (p, q) at trmv,k, with

trmv,k ∈ max{trem,k+1, tloc,k+1} +
[
τ−

Diff, τ+
Diff

]
.

• k > 1: If

– transition k + 1 is received at the remote pipe of (p, q) at time trem,k+1, and

– transition k + 1 is received at the local pipe of (p, q) at time tloc,k+1, and

– transition k − 1 has been removed from (p, q) at time trmv,k−1,

then transition k is removed from (p, q) at trmv,k, with

trmv,k ∈ max{trem,k+1, tloc,k+1, trmv,k−1} +
[
τ−

Diff, τ+
Diff

]
.

On top of #rrem
p,q (t), #rloc

p,q(t) and #dp,q(t), we define the actual fill size of the local and
remote pipe of (p, q) at time t as

#sloc
p,q(t) := #rloc

p,q(t) − #dp,q(t)

#srem
p,q (t) := #rrem

p,q (t) − #dp,q(t).

4.5.1.3 Pipe Compare Signal Generator (PCSG) module

The ports provided by the pair of pipes (p, q) and its Diff-Gate are connected to the

PCSG, which generates four status ports P̃GEQ,o
p,q (t), P̃GEQ,e

p,q (t), P̃GR,o
p,q (t) and P̃GR,e

p,q (t) that
characterize the difference of the number of transitions stored in the remote and local
pipes by time t. Different ports are provided for odd and even transitions. For example,
P̃GEQ,o

p,q (t) signals when the number of transitions in the remote pipe of (p, q) is greater
or equal than the number of transitions in the local pipe of (p, q), provided that the last

transition that was received in the local pipe of (p, q) was odd; P̃GR,o
p,q (t) does the same for

“greater” replacing “greater or equal”.

All these signals are fed, via dedicated channels that add some delay, to the Threshold
modules of the General Join Module p.

Behavioral description: The status signals generated by the PCSG associated with
(p, q) must satisfy the following properties: for all q in Q and all t in T ,

P̃GEQ,o
p,q (t) := [#rrem

p,q (t) > #rloc
p,q(t)] ∧ [#rloc

p,q(t) ∈ {1, 3, . . .}] ∧ [#sloc
p,q(t) = 1]

P̃GEQ,e
p,q (t) := [#rrem

p,q (t) > #rloc
p,q(t)] ∧ [#rloc

p,q(t) ∈ {0, 2, . . .}] ∧ [#sloc
p,q(t) = 1]

P̃GR,o
p,q (t) := [#rrem

p,q (t) > #rloc
p,q(t)] ∧ [#rloc

p,q(t) ∈ {1, 3, . . .}] ∧ [#sloc
p,q(t) = 1]

P̃GR,e
p,q (t) := [#rrem

p,q (t) > #rloc
p,q(t)] ∧ [#rloc

p,q(t) ∈ {0, 2, . . .}] ∧ [#sloc
p,q(t) = 1]

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 55

Note that these signals need to be valid only if the local pipes contain exactly one tran-
sition (#sloc

p,q(t) = 1), which makes it easier for a physical implementation to fulfill these
properties.

The above signals are fed into four dedicated channels that connect the PCSG with
the Threshold modules: for all q in Q, there exist the following channels, all of which are
initialized to 0:

• Channel 〈PGEQtoGEQ, o, p, q〉 with input P̃GEQ,o
p,q (t), output G̃EQ

o

p,q(t) and delay in[
τ−

PC, τ+
PC

]
.

• Channel 〈PGEQtoGEQ, e, p, q〉 with input P̃GEQ,e
p,q (t), output G̃EQ

e

p,q(t) and delay in[
τ−

PC, τ+
PC

]
.

• Channel 〈PGRtoGR, o, p, q〉 with input P̃GR,o
p,q (t), output G̃R

o

p,q(t) and delay in[
τ−

PC, τ+
PC

]
.

• Channel 〈PGRtoGR, e, p, q〉with input P̃GR,e
p,q (t), output G̃R

e

p,q(t) and delay in
[
τ−

PC, τ+
PC

]
.

4.5.1.4 Threshold modules

G̃EQ
o/e

p,q (t) and G̃R
o/e

p,q (t) are further processed at four Threshold modules: If the number

of active G̃EQ
o/e

p,q (t) receptively G̃R
o/e

p,q (t) signals exceeds the α respectively β threshold,

the corresponding threshold signal ˜THGEQ
o/e

p (t) respectively T̃HGR
o/e

p (t) becomes active

within
[
τ−

TH, τ+
TH

]
. This property will be formalized below as a logical predicate [which is

a function of time here] involving the sum of the status functions of a Threshold module’s
input ports, which is fed into a channel.

Behavioral description: The Threshold modules are modeled as Boolean function mod-
ules with channels at their outputs: for each q in Q there are the following Boolean function
modules and channels, all of which are initialized to 0:

• Channel 〈
∑

GEQtoTHGEQ, o, p〉 with input
∑

q∈Q G̃EQ
o

p,q(t) > α, output ˜THGEQ
o

p(t)

and delay in
[
τ−

TH, τ+
TH

]
.

• Channel 〈
∑

GEQtoTHGEQ, e, p〉 with input
∑

q∈Q G̃EQ
e

p,q(t) > α, output ˜THGEQ
e

p(t)

and delay in
[
τ−

TH, τ+
TH

]
.

• Channel 〈
∑

GRtoTHGR, o, p〉 with input
∑

q∈Q G̃R
o

p,q(t) > β, output T̃HGR
o

p(t)

and delay in
[
τ−

TH, τ+
TH

]
.

• Channel 〈
∑

GRtoTHGR, e, p〉 with input
∑

q∈Q G̃R
e

p,q(t) > β, output T̃HGR
e

p(t)

and delay in
[
τ−

TH, τ+
TH

]
.

56 4.6 Correctness Proofs

4.5.1.5 Req generation module

Module p sends the next transition at time t, when (i) both threshold outputs for the

previously generated transition, say, ˜THGEQ
o

p(t) and T̃HGR
o

p(t), are inactive again, and

(ii) at least one threshold output ˜THGEQ
e

p(t) or T̃HGR
e

p(t) for the current transition
becomes active. We will refer to (i) as the disabling path and to (ii) as the enabling path
in the sequel. The Req generation module hence has four input ports connected to the
threshold output ports, and a single output port represented by the counting function
#bp(t), which is the number of transitions broadcast by p by time t. Finally, #bp(t) is
distributed to the local pipe in (p, q) at p for all q ∈ Q, via dedicated channels 〈LOC, p, q〉,
and to the successor module.

Behavioral description: Let port bp be defined by its event trace b̂p as the set for which

(0, 0) ∈ b̂p

and for all t in T ,

(˜THGEQ
o

p(t) ∨ T̃HGR
o

p(t)) ∧ ¬(˜THGEQ
e

p(t) ∨ T̃HGR
e

p(t)) ⇔ (t, 0) ∈ b̂p

(˜THGEQ
e

p(t) ∨ T̃HGR
e

p(t)) ∧ ¬(˜THGEQ
o

p(t) ∨ T̃HGR
o

p(t)) ⇔ (t, 1) ∈ b̂p.

Then, #bp(t) is the counting function of bp, with initial value #bp(0) = 0.

4.6 Correctness Proofs

In the previous section we have formally defined module GJImp(J), where J is a General
Join module with threshold Θ(p) = 〈αth

0 , βth
1 〉. It remains to formally prove that GJImp(J)

with input channels implements module J with input channels. For this purpose we derive
properties for GJImp(J) analogous to the properties obtained for the General Join module
in Section 4.4.1.3.

For ease of reading we denote the delay function d of a channel Ch in module GJImp(J)
with d(Ch; ·). For example, the value of some channel 〈PGRtoGR, o, p, q〉’s delay function
at time t ∈ T is d(〈PGRtoGR, o, p, q〉; t) and the value of the inverse delay function at time
t is d−1(〈PGRtoGR, o, p, q〉; t).

We start our detailed treatment with the technical Lemma 4.5, which asserts a certain
persistence of the number of transitions present in the local and remote pipe for a certain
time.

Lemma 4.5. Let p be a correct GJImp(J) module. If, for a correct predecessor module
q ∈ Q, at time t it holds that

(#rloc
p,q(t) = k) ∧ (#sloc

p,q(t) = 1)

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 57

for some k > 1, then it must hold that

#rloc
p,q(t − τ−

Diff) > k and

#rrem
p,q (t − τ−

Diff) > k.

Proof.

(#rloc
p,q(t) = k) ∧ (#sloc

p,q(t) = 1) ≡ (#rloc
p,q(t) = k) ∧ (#rloc

p,q(t) − #dp,q(t) = 1)

⇒ #dp,q(t) = k − 1 (4.19)

Let trmv,k−1 be the time at that transition k − 1 is removed from the pipepair (p, q). From
(4.19) it follows that

trmv,k−1 6 t. (4.20)

Now assume by contradiction that

#rloc
p,q(t − τ−

Diff) < k or

#rrem
p,q (t − τ−

Diff) < k. (4.21)

Denoting by tloc,k (respectively trem,k) the time at that transition k is received in the local
(respectively remote) pipe of (p, q), it follows that

tloc,k > t − τ−

Diff resp. (4.22)

trem,k > t − τ−

Diff. (4.23)

Combination of (4.20) with (4.22) (respectively (4.23)) yields

trmv,k−1 < tloc,k + τ−

Diff resp. (4.24)

trmv,k−1 < trem,k + τ−

Diff. (4.25)

From the behavioral specification of the Diff-gate, however, we know that

trmv,k−1 > tloc,k + τ−

Diff and

trmv,k−1 > trem,k + τ−

Diff,

contradicting (4.24) and (4.25). �

We next establish a main result, the Interlocking Lemma 4.6, which states that an “old”
transition k − 2, k − 4, etc. is never falsely interpreted as a “new” transition k in the GR
and GEQ rules of the algorithm. This is not immediately evident: An even transition k+1

is generated by either ˜THGEQ
o

or T̃HGR
o

being active (depending on whether the GEQ

or the GR rule triggered the broadcast); assume that it was triggered by the ˜THGEQ
o

signal. ˜THGEQ
o

is only enabled, if enough (at least α) G̃EQ
o

signals are active. For all of

58 4.6 Correctness Proofs

these signals, it must hold that the responsible +/− counter has received an even number

of transitions locally, that is, any G̃EQ
o

may be based on local transition k, k − 2 or even

earlier. We, however, require transition k + 1 to depend solely on G̃EQ
o

signals based on
transition k only.

The Interlocking Lemma will require that all the local loop delays in p are within a
factor 2 of each other, which is expressed formally in Constraint 1.

Constraint 1. [C1] (Interlocking Constraint). With the abbreviations

Tmax := τ+
TH + τ+

PC + τ+
loc

Tmin := τ−

TH + τ−

PC + τ−

loc + τ−

Diff (4.26)

Tmin,dis := τ−

TH + τ−

PC + τ−

loc,

the relation Tmax 6 Tmin + Tmin,dis must hold.

Lemma 4.6 (C1 Interlocking Lemma). Let p be a correct GJImp(J) module. For all times
t in T : if #bp(t) = k + 1 > 2, then

(i) either there exists a set Q of size |Q| > α such that for t′ := t − τ−

TH − τ−

PC:

k ∈ {0, 2, . . .} ⇒ ∀q ∈ Q : ∃tq 6 t′ : P̃GEQ,e
p,q (tq) ∧ #rloc

p,q(tq) > k

k ∈ {1, 3, . . .} ⇒ ∀q ∈ Q : ∃tq 6 t′ : P̃GEQ,o
p,q (tq) ∧ #rloc

p,q(tq) > k

(ii) or there exists a set Q of size |Q| > β such that for t′ := t − τ−

TH − τ−

PC:

k ∈ {0, 2, . . .} ⇒ ∀q ∈ Q : ∃tq 6 t′ : P̃GR,e
p,q (tq) ∧ #rloc

p,q(tq) > k

k ∈ {1, 3, . . .} ⇒ ∀q ∈ Q : ∃tq 6 t′ : P̃GR,o
p,q (tq) ∧ #rloc

p,q(tq) > k

Proof. The proof is by induction on k + 1 > 2, the number of transitions sent by p until
time t. To carry out the induction step, we will prove a slightly stronger lemma, where in
case of (i) we require

tq = d−1(〈PGEQtoGEQ, e, p, q〉; d−1(〈
∑

GEQtoTHGEQ, e, p〉; tp,k)) for k ∈ {0, 2, . . .},

tq = d−1(〈PGEQtoGEQ, o, p, q〉; d−1(〈
∑

GEQtoTHGEQ, o, p〉; tp,k)) for k ∈ {1, 3, . . .},

and in case of (ii) we require

tq = d−1(〈PGRtoGR, e, p, q〉; d−1(〈
∑

GRtoTHGR, e, p〉; tp,k)) for k ∈ {0, 2, . . .},

tq = d−1(〈PGRtoGR, o, p, q〉; d−1(〈
∑

GRtoTHGR, o, p〉; tp,k)) for k ∈ {1, 3, . . .}.

The lemma is first shown for transition k + 1 = 2. Then we assume that some transition
k + 1 > 2 is the first transition for which the lemma does not hold. By investigating

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 59

the cause which triggered the sending of this transition, we obtain a contradiction to
Constraint 1.

Begin (k + 1 = 2): Assume p sends transition 2 at time tp,2. Then, by the module

specification (specification of the Req generation module), either (a) ˜THGEQ
o

p(tp,2) or (b)

T̃HGR
o

p(tp,2) must have held. We consider both cases:

case (a): If ˜THGEQ
o

p(tp,2), then by the module specification (specification of the Thresh-
old modules), there must be a set Q ⊆ Q, of size |Q| > α, such that, for time
t′ := d−1(〈

∑
GEQtoTHGEQ, o, p〉; tp,2)

∀q ∈ Q : G̃EQ
o

p,q(t
′).

Again by the module specification (specification of the PCSG to Threshold module chan-
nels), and with the time tq := d−1(〈PGEQtoGEQ, o, p, q〉; t′) defined for every q ∈ Q, we
obtain

∀q ∈ Q : P̃GEQ,o
p,q (tq)

and by this

P̃GEQ,o
p,q (tq) ≡ [#rrem

p,q (tq) > #rloc
p,q(tq)] ∧ [#rloc

p,q(tq) ∈ {1, 3, . . .}] ∧ [#sloc
p,q(tq) = 1]. (4.27)

Since #rloc
p,q(tq) > 0 from reset on and #rloc

p,q(tq) ∈ {1, 3, . . .},

#rloc
p,q(tq) > 1 = k. (4.28)

Finally, from the channel properties, we know that

tp,2 − tq = tp,2 − d−1(〈PGEQtoGEQ, o, p, q〉; d−1(〈
∑

GEQtoTHGEQ, o, p〉; tp,2))

> τ−

TH + τ−

PC.

case (b): If T̃HGR
o

p(tp,2), then, by the module specification (specification of the Thresh-
old modules), there must be a set Q ⊆ P \ {p}, of size |Q| > β, such that, for
t′ := d−1(〈

∑
GRtoTHGR, o, p〉; tp,2)

∀q ∈ Q : G̃R
o

p,q(t
′).

By the module specification (specification of the PCSG to Threshold module channels),
and with the point in time tq := d−1(〈PGRtoGR, o, p, q〉; t′) defined for every q ∈ Q, this
implies

∀q ∈ Q : P̃GR,o
p,q (tq) (4.29)

60 4.6 Correctness Proofs

and by this

P̃GR,o
p,q (tq) ≡ [#rrem

p,q (tq) > #rloc
p,q(tq)] ∧ [#rloc

p,q(tq) ∈ {1, 3, . . .}] ∧ [#sloc
p,q(tq) = 1]. (4.30)

Since #rloc
p,q(tq) > 0 from reset on and #rloc

p,q(tq) ∈ {1, 3, . . .},

#rloc
p,q(tq) > 1 = k. (4.31)

From the channel properties, we know that

tp,2 − tq = tp,2 − d−1(〈PGRtoGR, o, p, q〉; d−1(〈
∑

GRtoTHGR, o, p〉; tp,2))

> τ−

TH + τ−

PC.

Step (k + 1 > 3): Assume by contradiction that k + 1 is the first transition for which the
lemma does not hold. Let tp,k+1 be the time p issues transition k + 1. Assume wlog. that
k ∈ {1, 3, . . .}4. We will establish two delay bounds, one on the enabling path and the
other on the disabling path.

Enabling path: To send transition k + 1 at time tp,k+1, by the module specification
(specification of the Req generation module), at least one of the two threshold signals

must have been enabled, i.e., (a) ˜THGEQ
o

p(tp,k+1) or (b) T̃HGR
o

p(tp,k+1) must have held.
We consider both cases:

case (a): If ˜THGEQ
o

p(tp,k+1), then, by the algorithm (specification of the Thresh-
old modules), there must be a set Q ⊆ Q, of size |Q| > α, such that, for time
t′ := d−1(〈

∑
GEQtoTHGEQ, o, p〉; tp,k+1)

∀q ∈ Q : G̃EQ
o

p,q(t
′). (4.32)

Again by the algorithm (specification of the PCSG to Threshold module channels), and
with the time tq := d−1(〈PGEQtoGEQ, o, p, q〉; t′) defined for every q ∈ Q, this implies

∀q ∈ Q : P̃GEQ,o
p,q (tq) (4.33)

and by this

P̃GEQ,o
p,q (tq) ≡ [#rrem

p,q (tq) > #rloc
p,q(tq)] ∧ [#rloc

p,q(tq) ∈ {1, 3, . . .}] ∧ [#sloc
p,q(tq) = 1]. (4.34)

By the channel properties

τ−

TH + τ−

PC 6 tp,k+1 − tq 6 τ+
TH + τ+

PC. (4.35)

4The proof for k ∈ {0, 2, . . . } is analogous.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 61

Assuming that ∀q ∈ Q : #rloc
p,q(tq) > k yields the desired result of the Lemma. Thus we

only have to investigate the negation:

∃q ∈ Q : #rloc
p,q(tq) < k.

Since, by (4.34), #rloc
p,q(tq) ∈ {1, 3, . . .}, we obtain

∃q ∈ Q : #rloc
p,q(tq) 6 k − 2.

Thus, transition k − 1 must be received in the local pipe of pipepair (p, q) at time trcv,k−1,
with

trcv,k−1 > tq.

The combination with (4.35) yields

tp,k+1 − trcv,k−1 < τ+
TH + τ+

PC. (4.36)

Let tp,k−1 be the sending time of transition k − 1. Clearly, by the local channel properties,
we arrive at

tp,k−1 > trcv,k−1 − τ+
loc ⇒

tp,k+1 − tp,k−1 < τ+
TH + τ+

PC + τ+
loc. (4.37)

Before proceeding further, we will handle the disabling path.

Disabling path: Let tp,k be the sending time of transition k. By the induction hypothesis,
we know that the lemma holds for transition k. According to the lemma, we have to
distinguish two cases (i) and (ii):

case (a.i): Assume that implication (i) is valid, i.e., there exists a set Q′ of size |Q′| > α,
such that, for

tq′ := d−1(〈PGEQtoGEQ, e, p, q′〉; d−1(〈
∑

GEQtoTHGEQ, e, p〉; tp,k))

it holds that

∀q′ ∈ Q′ : P̃GEQ,e
p,q′ (tq′) ∧ #rloc

p,q′(tq′) > k − 1. (4.38)

Thus, transition k−1 must have been received in the local pipe of (p, q′) at time tq′,rcv,k−1,
with

tq′,rcv,k−1 6 tq′ − τ−

Diff

by Lemma 4.5. Furthermore, by the properties of the local channels,

tq′,rcv,k−1 − tp,k−1 > τ−

loc.

62 4.6 Correctness Proofs

Thus, we find

tp,k − tp,k−1 > τ−

TH + τ−

PC + τ−

Diff + τ−

loc. (4.39)

From the algorithm (specification of the Req generation module), it follows that at time
tp,k+1

¬ ˜THGEQ
e

p(tp,k+1) (4.40)

[and also ¬T̃HGR
e

p(tp,k+1), which is handled analogously, cf. (a.ii) below] must hold, i.e., the
threshold signals that generated (the odd) transition k must be inactive again. Therefore,
for the times tq′′ defined as

tq′′ := d−1(〈PGEQtoGEQ, e, p, q′〉; d−1(〈
∑

GEQtoTHGEQ, e, p〉; tp,k+1)) (4.41)

it must hold that

∄Q′′, |Q′′| > α : ∀q′′ ∈ Q′′ : P̃GEQ,e
p,q′′ (tq′′). (4.42)

Let us choose Q′′ := Q′. Because of the FIFO property of the channels and because of
tp,k < tp,k+1, we obtain

tq′ < tq′′ .

Clearly, there has to be at least one q′ ∈ Q′ for which

P̃GEQ,e
p,q′ (tq′) but ¬P̃GEQ,e

p,q′ (tq′′), (4.43)

since otherwise Q′′ := Q′ would have been a choice for Q′′, contradicting (4.42). However,
(4.43) can only hold if local transition k has been in pipepair (p, q′) at time tq′,rcv,k, with

tq′,rcv,k 6 tq′′ .

In combination with (4.41) and the channel properties, this implies

tp,k+1 − tq′,rcv,k > τ−

TH + τ−

PC (4.44)

and, by the local channel properties,

tq′,rcv,k − tp,k > τ−

loc. (4.45)

Finally, (4.39) together with (4.44) and (4.45) yields

tp,k+1 − tp,k−1 > (τ−

TH + τ−

PC + τ−

Diff + τ−

loc) + (τ−

TH + τ−

PC + τ−

loc). (4.46)

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 63

case (a.ii): Assuming that implication (ii) is valid, i.e., that there exists a set Q′ of size
|Q′| > β, such that, for

tq′ := d−1(〈PGRtoGR, e, p, q′〉; d−1(〈
∑

GRtoTHGR, e, p〉; tp,k))

it holds that

∀q′ ∈ Q′ : P̃GR,e
p,q′ (tq′) ∧ #rloc

p,q′(tq′) > k − 1.

By analogous arguments as in case (a.i), we obtain

tp,k+1 − tp,k−1 > (τ−

TH + τ−

PC + τ−

Diff + τ−

loc) + (τ−

TH + τ−

PC + τ−

loc). (4.47)

Combination of (a.i) and (a.ii): Combining (4.37), (4.46) and (4.47) leads to

(τ−

TH + τ−

PC + τ−

Diff + τ−

loc) + (τ−

TH + τ−

PC + τ−

loc)

6 tp,k+1 − tp,k−1 < τ+
TH + τ+

PC + τ+
loc,

which is a contradiction to Constraint 1.

case (b): If T̃HGR
o

p(tp,k+1), then, by the algorithm (specification of the Threshold
module), there must be a set Q ⊆ P \ {p}, of size |Q| > β, such that, for t′ :=
d−1(〈

∑
GRtoTHGR, o, p〉; tp,k+1)

∀q ∈ Q : G̃R
o

p,q(t
′).

By analogous arguments as in case (a), we obtain an analogon to (4.37) as

tp,k+1 − tp,k−1 < τ+
TH + τ+

PC + τ+
loc, (4.48)

as well as analogons to (4.46) and (4.47), namely,

tp,k+1 − tp,k−1 > (τ−

TH + τ−

PC + τ−

Diff + τ−

loc) + (τ−

TH + τ−

PC + τ−

loc). (4.49)

and

tp,k+1 − tp,k−1 > (τ−

TH + τ−

PC + τ−

Diff + τ−

loc) + (τ−

TH + τ−

PC + τ−

loc). (4.50)

Combination of (b.i) and (b.ii): Combining (4.48), (4.49) and (4.50) leads to

(τ−

TH + τ−

PC + τ−

Diff + τ−

loc) + (τ−

TH + τ−

PC + τ−

loc)

6 tp,k+1 − tp,k−1 < τ+
TH + τ+

PC + τ+
loc,

which is a contradiction to Constraint 1. �

64 4.6 Correctness Proofs

The next lemma provides a lower bound on the time p sends transition k > 1. Before
we state the lemma, we introduce some notation:

Consider a GJImp(J) module p. For any q in Q and k > 0, we denote with tGEQ
q,k

(respectively tGR
q,k) the first time t, such that, in case k ∈ {0, 2, . . .}, P̃GEQ,e

p,q (t) (respec-

tively P̃GR,e
p,q (t)) and #rloc

p,q(t) = k hold, and in case k ∈ {1, 3, . . .}, P̃GEQ,o
p,q (t) (respectively

P̃GR,o
p,q (t)) and #rloc

p,q(t) = k hold. For each k > 0, let tGEQ
k be the earliest time t, such that,

there exists a set Q ⊆ Q of size |Q| > α, where for all q in Q, #rrem
p,q (t) > k and let tGR

k+1 be
the earliest time t, such that, there exists a set Q ⊆ Q of size |Q| > β, where for all q in
Q, #rrem

p,q (t) > k + 1.

We are now ready to state:

Lemma 4.7 (C1). Let p be a correct GJImp(J) module with input channels. Then p sends
transition k > 1 at time tp,k with

tp,1 > τ−

PC + τ−

TH and (4.51)

tp,k+1 > min

{
max{tGEQ

k , tp,k + τ−

loc} + τ−

Diff

max{tGR
k+1, tp,k + τ−

loc + τ−

Diff}

}
+ τ−

PC + τ−

TH (4.52)

Proof. By the algorithm (specification of the PCSG to Threshold module channels and
Threshold modules), it follows that p sends transition 1 at tp,1 with

tp,1 > τ−

PC + τ−

TH.

Thus (4.51) holds.

We will next prove, that (4.52) holds, too. Assume that p sends transition k + 1 > 2
at time tp,k+1, wlog. for k ∈ {0, 2, . . .}. We apply Lemma 4.6 for transition k + 1. Thus,
either implication (i) or (ii) has to be true:

case (i): There exists at set Q ⊆ Q, |Q| > α, where for all q in Q, for some tq 6

tp,k+1 − τ−

TH − τ−

PC,

P̃GEQ,e
p,q (tq) ∧ (#rloc

p,q(tq) > k) ⇒

(#sloc
p,q(tq) = 1) ∧ (#rloc

p,q(tq) > k).

By applying Lemma 4.5, we obtain

#rloc
p,q(tq − τ−

Diff) > k and (4.53)

#rrem
p,q (tq − τ−

Diff) > k. (4.54)

Because of (4.54) it must hold that,

tGEQ
k 6 tp,k+1 − τ−

Diff − τ−

TH − τ−

PC. (4.55)

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 65

Furthermore, by the local channel properties,

#rloc
p,q(tq − τ−

Diff) 6 #bp(tq − τ−

Diff − τ−

loc). (4.56)

Combining (4.53) and (4.56) yields

#bp(tq − τ−

Diff − τ−

loc) > k,

i.e., transition k must have been sent at time tp,k with

tp,k 6 tq − τ−

Diff − τ−

loc

6 tp,k+1 − τ−

Diff − τ−

TH − τ−

PC − τ−

loc. (4.57)

Combination of (4.55) and (4.57) yields,

tp,k+1 > max{tGEQ
k , tp,k + τ−

loc} + τ−

Diff + τ−

TH + τ−

PC (4.58)

case (ii): There exists at set Q ⊆ Q, |Q| > β, where for all q in Q, for some tq 6

tp,k+1 − τ−

TH − τ−

PC,

P̃GR,e
p,q (tq) ∧ (#rloc

p,q(tq) > k) ⇒

(#sloc
p,q(tq) = 1) ∧ (#rloc

p,q(tq) > k) ∧ (#rrem
p,q (tq) > k + 1). (4.59)

Thus it must hold,

tGR
k+1 6 tp,k+1 − τ−

TH − τ−

PC. (4.60)

Furthermore, from applying Lemma 4.5 to (4.59) we obtain,

#rloc
p,q(tq − τ−

Diff) > k and (4.61)

By the local channel properties,

#rloc
p,q(tq − τ−

Diff) 6 #bp(tq − τ−

Diff − τ−

loc). (4.62)

Combining (4.61) and (4.62) yields

#bp(tq − τ−

Diff − τ−

loc) > k,

i.e., transition k must have been sent at time tp,k with

tp,k 6 tq − τ−

Diff − τ−

loc

6 tp,k+1 − τ−

Diff − τ−

TH − τ−

PC − τ−

loc. (4.63)

Combination of (4.60) and (4.63) yields,

tp,k+1 > max{tGR
k+1, tp,k + τ−

loc + τ−

Diff} + τ−

TH + τ−

PC (4.64)

The lemma follows from combining (4.58) and (4.64). �

66 4.6 Correctness Proofs

From Lemma 4.7, a minimum duration between two successive transitions sent by a
correct GJImp(J) module p directly follows:

Corollary 4.2 (C1). Let p be a correct GJImp(J) module. If p sends transition k > 1 at
time tp,k, then it cannot send transition k + 1 before tp,k + Tmin.

Before we proceed to prove further properties on a GJImp(J) module p with input
channels, we need to introduce some notation: for predecessor module q in Q, we say that
q sends transition k > 1 at time t, iff bq makes transition k at time t.

Lemma 4.8 together with Constraint 2 allows us to exclude the possibility of unbounded
queuing effects inside a pipepair (p, q) for q in Q. Constraint 2 and Assumption 1 ensure
that the Diff-gate can remove matching transitions at least as fast as any predecessor
module can send them.

Constraint 2. [C2] τ+
Diff 6 Tmin

Assumption 1. We say that Assumption 1 holds for a GJImp(J) module p, iff, for all q in
Q: if q is correct and it sends transition k > 1 at time tq,k, then it does not send transition
k + 1 before tq,k + Tmin.

Lemma 4.8 (C1,C2). Let p be a correct GJImp(J) module with input channels and assume
Assumption 1 holds for p. For any correct predecessor module q in Q and k > 1: If both

(i) p sent transition k at tp,k and

(ii) q sent transition k at tq,k,

then transition k−1 is removed from the local and remote pipe of (p, q) by time max{tk,p +
τ+
loc, tk,q + τ+

rem} + τ+
Diff.

Proof. The proof is by induction on the number of transitions k > 1 that are sent by p
and q.

Begin (k = 1): Assume that p sends transition 1 at tp,k. Transition 1 will be received in
any of p’s local pipes by tp,k + τ+

loc. Furthermore, assume that q sends transition 1 at tq,k.
It will certainly be received in the remote pipe of the pipepair (p, q) by tq,k + τ+

rem. Since
there is no transition that could block the removing of transition 0, transition 0 is removed
by max{tp,k + τ+

loc, tq,k + τ+
rem}+ τ+

Diff from both the local and remote pipe, according to the
Diff-gate properties.

Step (k > 1): As our induction hypothesis, assume that transition k − 2 is removed from
both pipes by max{tp,k−1 + τ+

loc, tq,k−1 + τ+
rem} + τ+

Diff. By analogous arguments as above,
transition k is received in both pipes of (p, q) by tboth, defined as

tboth := max{tp,k + τ+
loc, tq,k + τ+

rem}.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 67

Because of Corollary 4.2 and since Assumption 1 holds for p, consecutive transitions cannot
be generated with less than Tmin distance in-between, i.e.,

tp,k − tp,k−1 > Tmin and

tq,k − tq,k−1 > Tmin.

Thus

tboth > max{tp,k−1 + τ+
loc, tq,k−1 + τ+

rem} + Tmin

> max{tp,k−1 + τ+
loc, tq,k−1 + τ+

rem} + τ+
Diff

by Constraint 2. According to the induction hypothesis, transition k − 2 has already been
removed by tboth. By the properties of the Diff-gate, transition k − 1 is hence removed by
tboth + τ+

Diff. �

On executions with marginal queueing effects. Lemma 4.8 provided us with means
to get rid of queueing effects when considering executions of a correct GJImp(J) module
with input channels: whenever a local or remote transition k > 1 arrives at the latest
possible time at pipepair (p, q) for some correct q in Q, there are no queueing effects from
before that could further delay the removal of transition k − 1.

We will next show that it even suffices to study executions of GJImp(J) modules with
input channels, where queuing effects can block the removal of transition k − 1 no longer
than ε, for an arbitrarily small ε > 0. For this purpose we introduce the concept of
non-ε-queueing respectively non-ε-blocking executions:

Consider an execution e of a GJImp(J) module with input channels. Let us denote the
time of arrival of transition k at the local (respectively remote) pipe of (p, q) in e by tlq,k

(respectively trq,k).

For k > 2, by the Diff-gate specification, the removal of transition k − 1 starts at time
tdif,k−2 = max{trq,k, t

l
q,k, trmv,k−2}, where trmv,k−2 is the time transition k−2 > 0 is removed

from both the local and remote pipe of (p, q). Thus a late trmv,k−2 can lead to queueing
effects in deleting transition k − 1 from the pipepair (p, q). We say that the Diff-gate is
busy at time t > 0, iff t is within an interval [tdif,k, trmv,k], for k > 0. For an arbitrary
interval I, the Diff-gate is busy during I, iff it is busy for all t in I. For some small ε > 0,
we say the removal of transition k − 1 at (p, q) did not face ε-queueing whenever

trq,k > trmv,k−2 − ε or tlq,k > trmv,k−2 − ε,

which is equivalent to

trmv,k−2 < max{trq,k, t
l
q,k} + ε.

Otherwise it did face ε-queueing . In case of 0-queuing, we simply speak of queueing . If
the removal of transition k − 1 at (p, q) did not face ε-queueing,

tdif,k−1 ∈ max{trq,k, t
l
q,k} + [0, ε] (4.65)

68 4.6 Correctness Proofs

holds. We say that an execution e of GJImp(J) is non-ε-queuing iff for all k > 2, q in Q,
the removal of transition k − 1 at (p, q) did not face ε-queueing.

We obtain the following result:

Lemma 4.9 (C1,C2). Let e be an execution of a GJImp(J) module p with input channels.
If Assumption 1 holds for p, then there exists an execution e′ of p with input channels,
denoted by e′ = nonqueueingε(e), for an arbitrarily small ε > 0, for which:

• e′ is non-ε-queueing,

• e′ and e have the same behavior of input and output ports,

Proof. Let e′ be identical to e, except that for each k > 1, we shift the time of arrival of
transition k at the local pipe of (p, q) in e, say tlq,k to t′lq,k in e′, and the time of arrival of
transition k at the remote pipe of (p, q) in e, say trq,k to t′rq,k in e′ as follows. Clearly, one has
to make sure that e′ still is a valid execution. For this purpose, we will show by induction
on k > 1 that the new arrival times t′lq,k and t′rq,k (i) do not violate the FIFO property or the

delay bounds of the local and remote channels and (ii) during
[
tlq,k, t

′l
q,k

]
as well as during[

trq,k, t
′r
q,k

]
the Diff-gate is busy. The latter is important, as it makes sure that the behavior

of the PCSG’s output ports is the same in e and e′: if the Diff-gate of pipepair (p, q) is
busy at time t ∈ T , all output ports of (p, q)’s PCSG module are inactive.

For k = 1: t′lq,k = tlq,k and t′rq,k = trq,k. The FIFO property and the delay bounds of both the
local and remote channels are trivially fulfilled. Thus both (i) and (ii) are valid.

For k > 2: assume that both (i) and (ii) hold for k − 1. We will show that they hold for
k, too. We distinguish between two cases:

• Assume the removal of transition k − 1 at (p, q) did not face queueing. Further we
distinguish between two cases on the order of occurrence of trq,k and tlq,k:

– In case trq,k > tlq,k and since k − 1 did not face queuing at (p, q), trmv,k−2 < trq,k

and tdif,k−1 = trq,k. Thus the Diff-gate is not busy within
[
trmv,k−2, t

r
q,k

]
. By the

induction hypothesis, (ii) holds for k−1 and thus the arrival of remote transition
k − 1 is not shifted beyond trq,k. We may thus safely set

t′rq,k = trq,k,

without violating the FIFO property of the remote channel. We will next choose
a value for t′lq,k−1. If tlq,k > t′lq,k−1, we may safely set

t′lq,k = tlq,k. (4.66)

Otherwise, (4.66) would violate the FIFO property of the local channel and we
set t′lq,k to a value within

(
t′lq,k−1, trmv,ℓ

)
, where trmv,ℓ, ℓ > 0, is the next removal

of a transition at (p, q) that occurs after t′lq,k−1. Note that the Diff-gate is busy

throughout
[
tlq,k, t

′l
q,k

]
. Thus both (i) and (ii) are fulfilled.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 69

– Otherwise, if trq,k < tlq,k, we set

t′lq,k = tlq,k.

If trq,k > t′rq,k−1, we set

t′rq,k = trq,k.

Otherwise, in order not to violate the FIFO property of the remote channel, we
set t′rq,k to a value within

(
t′rq,k−1, trmv,ℓ

)
, where trmv,ℓ, ℓ > 0, is the next removal

of a transition at (p, q) that occurs after t′rq,k−1. Again the the Diff-gate is busy

throughout
[
trq,k, t

′r
q,k

]
. By analogous arguments as before, (i) and (ii) are hence

fulfilled.

(i) and (ii) are fulfilled in both cases.

• Assume the removal of transition k − 1 at (p, q) did face queueing. We distinguish
between two cases for q.

– q is correct. Then we may apply Lemma 4.8 and obtain that transition k − 2 is
removed at

trmv,k−2 6 max{tp,k−1 + τ+
loc, tq,k−1 + τ+

rem} + τ+
Diff

6 max{tp,k − Tmin + τ+
loc, tq,k − Tmin + τ+

rem} + τ+
Diff

6 max{tp,k + τ+
loc, tq,k + τ+

rem}.

Thus, it is always possible, for t′lq,k respectively t′rq,k, to be set such that t′lq,k within
trmv,k−2 + [−ε, 0) respectively t′rq,k within trmv,k−2 + [−ε, 0) without violating the
delay bounds of the local and remote channels. Wlog. assume that we may shift
t′rq,k to a later time, by setting t′rq,k to a value > trq,k within trmv,k−2+[−ε, 0). Note

that the Diff-gate is busy during
[
trq,k, t

′r
q,k

]
. For tlq,k we again have to make sure

that it does not violate the FIFO property of the local channel. If tlq,k > t′lq,k−1,
set

t′lq,k = tlq,k

and otherwise set t′lq,k to a value within
(
t′lq,k−1, trmv,ℓ

)
, where trmv,ℓ, ℓ > 0, is the

next removal of a transition at (p, q) that occurs after t′lq,k−1. Again the Diff-gate

is busy during
[
tlq,k, t

′l
q,k

]
. Thus (i) and (ii) are fulfilled.

– In case q is faulty, we do not assume any bounds on the remote channel delay.
We can thus choose t′rq,k to lie within trmv,k−2 + [−ε, 0) without having to pay
attention to not violating the delay bounds of the remote channel and then
proceed as above. Again (i) and (ii) are fulfilled.

(i) and (ii) are hence fulfilled in both cases as well.

70 4.6 Correctness Proofs

Thus, e′ does not violate the FIFO property of the local and remote channels, does not
violate the upper bounds of the local and remote channel delays, and is non-ε-queueing by
definition.

Further, since, the arrival of local and remote transitions are only shifted throughout
intervals during which the Diff-gate is busy, the status outputs of the PCSG modules
behave the same in e′ and e. Thus, e′ is a valid execution. �

One can transform an execution of GJImp(J) with input channels even further: we say
that execution e of the General Join implementation p is non-ε-blocking , for an arbitrarily
small ε > 0, iff (i) e is non-ε-queueing and (ii) it holds that for all k > 1 and q in Q,
transition k − 1 is removed from pipepair (p, q) at

trmv,k−1 6 max{tlq,k + τ+
Diff, trq,k+1} + ε. (4.67)

We are now ready to deduce:

Lemma 4.10 (C1,C2). Let e be an execution of GJImp(J) module p with input channels.
If Assumption 1 holds for p, then, for an arbitrarily small ε > 0, there exists an execution
e′ of p with input channels denoted by e′ = nonblockingε(e), for which:

• e′ is non-ε-blocking,

• e′ and e have the same behavior of input and output ports.

Proof. Let e′ be identical to nonqueueingε(e) except for the following changes:

For each k > 1 and q in Q, distinguish between the two cases:

• Assume trq,k+1 > tlq,k+1. Clearly then, since e′ is non-ε-queueing, transition k − 1 is
removed from the pipepair (p, q) at trmv,k−1 with

trmv,k−1 < max{trq,k+1, t
l
q,k+1} + ε

= trq,k+1 + ε ⇒

trmv,k−1 6 max{trq,k+1 + ε, tlq,k + τ+
Diff + ε}.

Thus (4.67) is fulfilled.

• Otherwise, assume that trq,k+1 < tlq,k+1. We distinguish between two cases for trq,k+1,
namely, (i) trq,k+1 + ε > trmv,k−1 and (ii) trq,k+1 + ε < trmv,k−1:

ad (i) By the assumption transition k − 1 is removed at

trmv,k−1 6 trq,k+1 + ε

6 max{trq,k+1 + ε, tlq,k + τ+
Diff + ε}.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 71

Thus (4.67) is fulfilled.

ad (ii) This is the only case, where e′ is changed. Choose t′rq,k+1 such that t′rq,k+1 >

trq,k+1, t′rq,k+1 > t′rq,k and t′rq,k+1 within

trmv,k−1 + [−ε, 0) .

Clearly, this shifting ensures the FIFO property of the remote channel. Further it
does not violate the remote channel delay bounds and does not change the value of
P̃GEQ,e

p,q (t), P̃GEQ,o
p,q (t), P̃GR,e

p,q (t) and P̃GR,o
p,q (t) in e′ for all t ∈ T , since the Diff-gate is

busy during
[
trq,k+1, t

′r
q,k+1

]
.

�

We will next derive results for non-ε-queueing and non-ε-blocking executions of a
GJImp(J) module with input channels.

Lemma 4.11 (C1,C2). Consider a non-ε-queueing execution of a GJImp(J) module p
with input channels, where ε > 0. If Assumption 1 holds for p, then p sends transition
k + 1 > 2 at time tp,k+1 with

tp,k+1 6 max{tGEQ
k , tp,k + τ+

loc} + τ+
Diff + ε + τ+

PC + τ+
TH (4.68)

Proof. Wlog. assume that k ∈ {0, 2, . . .}. Let

t′ := max{tGEQ
k , tp,k + τ+

loc} + τ+
Diff + ε + τ+

PC + τ+
TH.

By definition of tGEQ
k , there exists a set Q ⊆ Q with |Q| > α such that for all q ∈ Q,

#rrem
p,q (tGEQ

k) > k. We distinguish two cases:

(a) Suppose that ∃q ∈ Q : #rloc
p,q(t

′) > k. Since #rloc
p,q(t

′) 6 #bp(t
′), as no transition can

be locally received if it has not been sent before, #bp(t
′) > k must hold. Thus, p has

sent transition k + 1 by t′. The upper bound follows.

(b) Otherwise, assume that

∀q ∈ Q : #rloc
p,q(t

′) 6 k. (4.69)

Enabling condition: p must receive transition k in all its local pipes by trcv,p :=
tp,k + τ+

loc. Since the execution is non-ε-queueing, it follows that transition k − 1 is
removed from all of pipepairs (p, q) (for all q ∈ Q) by

tdel,k−1 := max{trcv,p, t
GEQ
k } + τ+

Diff + ε.

72 4.6 Correctness Proofs

Consequently, at

trcv := max{trcv,p, t
GEQ
k , tdel,k−1}

6 max{tp,k + τ+
loc, t

GEQ
k } + τ+

Diff + ε

with trcv 6 t′, it holds that:

#rloc
p,q(trcv) > k #rrem

p,q (trcv) > k #dp,q(t) > k − 1 (4.70)

By combination of (4.70) with (4.69), it holds that for all ξ ∈ [trcv, t
′]:

#rloc
p,q(ξ) = k. (4.71)

Furthermore,

P̃GEQ,e
p,q (ξ) ≡ (#rrem

p,q (ξ) > #rloc
p,q(ξ)) ∧ (#rloc

p,q(ξ) ∈ {0, 2, . . .}) ∧ (#sloc
p,q(ξ) = 1)

≡ (#rrem
p,q (ξ) > k) ∧ (#rloc

p,q(ξ) − #dp,q(ξ) = 1)

≡ (#dp,q(ξ) = k − 1). (4.72)

Assuming ∃q ∈ Q : #dp,q(ξ) > k − 1 implies #rloc
p,q(ξ) > k, contradicting (4.71).

Thus ∀q ∈ Q : #dp,q(ξ) = k − 1 must hold. Therefore ∀q ∈ Q : P̃GR,e
p,q (ξ) is true for

ξ ∈ [trcv, t
′].

By the algorithm (specification of the PCSG to Threshold module channels), ∀q ∈

Q : G̃EQ
e

p,q(ξ) is true for ξ ∈
[
trcv + τ+

PC, t′
]
. Again by the algorithm (Threshold

module),

˜THGEQ
e

p(ξ) (4.73)

is true for

ξ ∈
[
trcv + τ+

PC + τ+
TH, t′

]
⊆[

max{tp,k + τ+
loc, t

GEQ
k } + τ+

Diff + ε + τ+
PC + τ+

TH, t′
]
.

Disabling condition: It remains to be shown that the disabling path cannot inhibit
the generation of transition k + 1 at p. For the sake of contradiction, assume that
the disabling path can enforce tp,k+1 > t′.

Transition k must eventually be received in all of p’s local pipes corresponding to a
predecessor module r in Q. Thus, for all r in Q, #rloc

p,r(ξ) > k, for ξ ∈
[
tp,k + τ+

loc, t
′
]
.

Since transition k + 1 is not generated by t′, we actually have #rloc
p,r(ξ) = k. As

k ∈ {0, 2, . . .}, this implies

¬
(
P̃GR,o

p,r (ξ) ∨ P̃GEQ,o
p,r (ξ)

)
.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 73

Consequently, by the algorithm (specification of the PCSG to Threshold module
channels and the Threshold modules),

¬
(
T̃HGR

o

p(ξ) ∨ ˜THGEQ
o

p(ξ)
)

(4.74)

for ξ ∈
[
tp,k + τ+

loc + τ+
PC + τ+

TH, t′
]
.

Combining (4.73) and (4.74), it is apparent that p must send transition k + 1 by t′,
providing the required contradiction.

The lemma follows in both cases. �

From Lemma 4.9 and Lemma 4.11 we can deduce:

Corollary 4.3 (C1,C2). Let p be a GJImp(J) module with input channels and assume
that Assumption 1 holds for p. If there exists a set Q ⊆ Q of correct processes with
|Q| > α, such that, for all q ∈ Q, all processes q send transition k > 1 by tQ,k, then p
sends transition k + 1 at tp,k+1 6 max{tp,k + τ+

loc, tQ,k + τ+
rem} + τ+

Diff + τ+
PC + τ+

TH.

Lemma 4.12 (C1,C2). Consider a non-ε-blocking execution, ε > 0, of a GJImp(J) module
p for which Assumption 1 holds. Then p sends transition k + 1 > 2 at time tp,k+1 with

tp,k+1 6 max{tGR
k+1, tp,k + τ+

loc + τ+
Diff + ε} + τ+

PC + τ+
TH (4.75)

The proof follows the proof of Lemma 4.11 throughout large parts. Nonetheless, to
fully convince the reader from the result’s correctness it is stated here.

Proof. Wlog. assume that k ∈ {0, 2, . . .}. Let

t′ := max{tGR
k+1, tp,k + τ+

loc + τ+
Diff + ε} + τ+

PC + τ+
TH.

By definition of tGR
k+1, there exists a set Q ⊆ Q with |Q| > β such that for all q ∈ Q,

#rrem
p,q (tGR

k+1) > k + 1. We distinguish two cases:

(a) Suppose that ∃q ∈ Q : #rloc
p,q(t

′) > k. Since #rloc
p,q(t

′) 6 #bp(t
′), as no transition can

be locally received if it has not been sent before, #bp(t
′) > k must hold. Thus, p has

sent transition k + 1 by t′. The upper bound follows.

(b) Otherwise, assume that

∀q ∈ Q : #rloc
p,q(t

′) 6 k. (4.76)

Enabling condition: p must receive transition k in all its local pipes by trcv,p :=
tp,k + τ+

loc. Since the execution is non-ε-blocking, it follows that transition k − 1 is
removed from all pipepairs (p, q), for all q ∈ Q, by

tdel,k−1 := max{trcv,p + τ+
Diff, tGR

k+1} + ε.

74 4.6 Correctness Proofs

Consequently, at

trcv := max{trcv,p, t
GR
k+1, tdel,k−1}

6 max{tp,k + τ+
loc + τ+

Diff, tGR
k+1} + ε

with trcv 6 t′, it holds that:

#rloc
p,q(trcv) > k #rrem

p,q (trcv) > k #dp,q(t) > k − 1 (4.77)

By combination of (4.77) with (4.76), it holds that for all ξ ∈ [trcv, t
′]:

#rloc
p,q(ξ) = k. (4.78)

Furthermore,

P̃GEQ,e
p,q (ξ) ≡ (#rrem

p,q (ξ) > #rloc
p,q(ξ)) ∧ (#rloc

p,q(ξ) ∈ {0, 2, . . .}) ∧ (#sloc
p,q(ξ) = 1)

≡ (#rrem
p,q (ξ) > k) ∧ (#rloc

p,q(ξ) − #dp,q(ξ) = 1)

≡ (#dp,q(ξ) = k − 1). (4.79)

Assuming ∃q ∈ Q : #dp,q(ξ) > k − 1 implies #rloc
p,q(ξ) > k, contradicting (4.78).

Thus ∀q ∈ Q : #dp,q(ξ) = k − 1 must hold. Therefore ∀q ∈ Q : P̃GR,e
p,q (ξ) is true for

ξ ∈ [trcv, t
′].

By the algorithm (specification of the PCSG to Threshold module channels), ∀q ∈ Q :

G̃R
e

p,q(ξ) is true for ξ ∈
[
trcv + τ+

PC, t′
]
. Again by the algorithm (Threshold module),

T̃HGR
e

p(ξ) (4.80)

is true for

ξ ∈
[
trcv + τ+

PC + τ+
TH, t′

]
⊆

[
max{tp,k + τ+

loc + τ+
Diff, tGR

k+1} + ε + τ+
PC + τ+

TH, t′
]
.

Disabling condition: It remains to be shown that the disabling path cannot inhibit
the generation of transition k + 1 at p. For the sake of contradiction, assume that
the disabling path can enforce tp,k+1 > t′.

Transition k must eventually be received in all of p’s local pipes corresponding to a
predecessor module r in Q. Thus, for all r in Q, #rloc

p,r(ξ) > k, for ξ ∈
[
tp,k + τ+

loc, t
′
]
.

Since transition k + 1 is not generated by t′, we actually have #rloc
p,r(ξ) = k. As

k ∈ {0, 2, . . .}, this implies

¬
(
P̃GR,o

p,r (ξ) ∨ P̃GEQ,o
p,r (ξ)

)
.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 75

Consequently, by the algorithm (specification of the PCSG to Threshold module
channels and the Threshold modules),

¬
(
T̃HGR

o

p(ξ) ∨ ˜THGEQ
o

p(ξ)
)

(4.81)

for ξ ∈
[
tp,k + τ+

loc + τ+
PC + τ+

TH, t′
]
.

Combining (4.80) and (4.81), it is apparent that p must send transition k + 1 by t′,
providing the required contradiction.

The lemma follows in both cases. �

From Lemma 4.10 and Lemma 4.12 we can deduce:

Corollary 4.4 (C1,C2). Consider a GJImp(J) module p for which Assumption 1 holds:
If there exists a set Q ⊆ Q of correct processes with |Q| > β, such that, for all q ∈ Q,
all processes q send transition k + 1 > 2 by tQ,k+1, then p sends transition k + 1 at
tp,k+1 6 max{tp,k + τ+

loc + τ+
Diff, tQ,k+1 + τ+

rem} + τ+
PC + τ+

TH.

The following corollary, deduced from Lemma 4.11 and Lemma 4.12, provides us with
an upper bound on when p sends transition k > 1:

Corollary 4.5 (C1,C2). Consider a non-ε-blocking, ε > 0, execution of a GJImp(J)
module p with input channels, where Assumption 1 holds for p. Then p sends transition k >

1 at time tp,k with

tp,1 6 τ+
PC + τ+

TH and

tp,k+1 6 min

{
max{tGEQ

k , tp,k + τ+
loc} + τ+

Diff + ε

max{tGR
k+1, tp,k + τ+

loc + τ+
Diff} + ε

}
+ τ+

PC + τ+
TH

Lemma 4.13 (C1,C2). Let p′ be a General Join module with input channels and p the
corresponding GJImp(p

′) module with input channels. Let e be a non-ε-blocking execution,
ε > 0, of p for which Assumption 1 holds. Then there exists an execution e′ of p′ where
the delay bounds τ±

Diff of p′ are replaced by the bounds τ±

Diff + [0, ε], such that, for all k > 0,
t > 0 and q in Q,

• #reqO(t) = k in e′ iff #bp′(t) = k in e.

• #bq(t) = k in e′ iff #bq(t) = k in e.

• #rq(t) = #r′q(t) + 1 = k in e′ iff #rrem
p,q (t) = k in e.

Since the detailed proof is rather technical, we only give the proof idea here:

We first construct e′ from e and show that it is an execution of General Join module p
with input channels.

Choose the behavior of the input and output ports of e′ identical to those in e, i.e., for
all k > 1,

76 4.7 Performance of clockless algorithms

• p sends transition k in e′ at the same time, p sends transition k in e,

• for all q in Q, whenever q sends transition k in e, q sends transition k in e′, and

• for all q in Q, whenever transition k is received at the remote pipe of pipepair (p, q)
in e, both ports qr and q′r make transition k in e′.

We then make use of an inductive argument over k > 1. From the above choice, it
follows that for each k > 1, (i) the earliest time t by which transition k is received from
a set of Q ⊆ Q, |Q| > α, predecessor modules in e′ is identical to tGEQ

k in e and (ii)
the earliest time t by which transition k + 1 is received from a set of Q ⊆ Q, |Q| > β,
predecessor modules in e′ is identical to tGR

k+1 in e. Further, p must send transition k + 1
in e within the bounds given by Lemma 4.7 and Corollary 4.5. By analogous arguments
as given in the proof of Lemma 4.2, 4.3 and 4.4, we can thus let transition k arrive at the
X l and X ′l, for each X in Q, such that p sends transition k + 1 in e′ at the same time, p
sends transition k + 1 in e.

From Lemma 4.13 we deduce the main result of this section, namely:

Theorem 4.1 (C1, C2). Let p be a GJImp(J) module with input channels, where Assump-
tion 1 holds for p. Then p with input channels implements the corresponding General Join
module J with input channels, where the delay bounds τ±

Diff of J are replaced by the bounds

τ±

Diff + [0, ε], for an arbitrarily small ε > 0.

4.7 Performance of clockless algorithms

Given a clockless algorithm it is usually of interest to know its worst-case performance.
While classical methods from distributed computing can be used to analyze the worst-case
timing behavior of highly regular distributed systems (e.g., those with fully connected or
regular communication graphs), stating worst case performance bounds for systems with
irregular communication graphs is typically difficult.

In this section it is shown that executions of non fault-tolerant clockless algorithms built
from bounded queue modules of size 1 (registers), forks and non-buffering joins, can be
mapped to executions of the simple and elegant distributed algorithm called Full Reversal
(FR) that was introduced by Gafni and Bertsekas [42]. FR is an algorithm on directed
graphs5 that transforms an initial graph G0 with nodes from the set N = {0, . . . , n},
n > 0, and links between nodes, in discrete time steps t > 0, yielding a series of graphs
G0, G1, . . . , Gt, . . . as follows: a node i in N is said to be enabled in Gt, t > 0, iff it only has
incoming links in Gt. The graph Gt at time t > 1 is obtained from Gt−1 by letting a non
empty subset of nodes from the set N \{0} that are enabled in Gt−1 perform a step at time
t− 1. We will denote the set of all these nodes by St−1. The result of node p performing a

5We further demand that the graph’s support is connected.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 77

step at time t − 1 is that it reverts the directions of all its links in Gt−1. In case no nodes
are enabled at time t, the algorithm terminates. In the original algorithm, node 0 plays a
special role and never performs a step. Removal of node 0 leads to an algorithm that never
terminates in case G0 is acyclic. This adaption of FR has been studied in the context of
mutual exclusion by Chandy and Misra [12] as well as Barbosa and Gafni [3] and will be
used throughout this section. We will thus assume in the following that N = {1, . . . , n},
for some n > 1. An execution of FR with initial graph G0 is a (possibly infinite) alternating
sequence G0, S0, G1, S1, . . . of graphs Gt, t > 0, and node sets St ⊆ N , t > 0, where Gt and
St are defined as above. An execution where for all t > 0, St is the set of all nodes enabled
in Gt is called greedy . We will next establish a relation between greedy FR executions and
executions of a general class of non fault-tolerant clockless algorithms.

Relation to Executions of Clockless Algorithms. Consider a compound module
M(D0, s), comprising only registers, non-buffering joins and forks, that is specified by
a directed graph D0 = 〈N ′, E ′〉, called data flow graph6, and an initial state function
s : E ′ → {P, S}, where P (standing for “predecessor”) and S (standing for “successor”)
are constants. Function s determines the initial state of the communication interface, as
described in Section 4.4, between two nodes p and q, where 〈p, q〉 ∈ E ′: in case s(p, q) = S,
p is initially waiting for q’s (q is among p’s successor modules) acknowledge and in case
s(p, q) = P , q is initially waiting for p’s (p is among q’s predecessor modules) request (and
data). Module M then is obtained by the following means: for each p in N ′:

(i) There is exactly one register p in M .

(ii) For each 〈q, p〉 ∈ E ′, q ∈ N ′, the output communication interface of q is connected to
the input communication interface of p via channels: in case there is only one such
q, directly, and otherwise, via a non-buffering join module.

(iii) For each 〈p, q〉 ∈ E ′, q ∈ N ′, the output communication interface of p is connected to
the input communication interface of q via channels: in case there is only one such
q, directly, and otherwise, via a fork module.

Throughout this section we make use of the following simplifying assumption7:

Assumption 2. For each 〈p, q〉 ∈ E ′: (i) the delay between p issuing a request (and
applying the data on the bus) and q receiving the request (and the data) is exactly 1 and
(ii) the delay between q issuing an acknowledge and p receiving it is exactly 1.

Given a module M(D0, s) specified by D0 = 〈N ′, E ′〉 and function s, we will next
construct an initial FR graph G0(D0, s) = 〈N, E〉 by: (i) N = N ′ and (ii) 〈p, q〉 ∈ E iff:
〈p, q〉 ∈ E ′ and s(p, q) = S, or 〈q, p〉 ∈ E ′ and s(q, p) = P .

6Again, we demand that the support is connected.
7Getting rid of this assumption is central interest in future work. A refined delay assumption, e.g.,

with the possibility to specify different delay bounds for REQ and ACK signals thus is subject to current
research.

78 4.8 Related Work

Interestingly, the following correspondence holds:

Theorem 4.2. If Assumption 2 holds in an execution of M(D0, s), p in N makes a step
at time t > 0 iff p makes a step in the greedy FR execution with initial graph G0(D0, s) at
time t.

Theorem 4.2 provides means to answer performance questions of executions of M(D0, s)
by answering related performance questions of executions of FR with initial graph G0(D0, s).
For the latter, important measures are either known or have recently been discovered by
means of a min-plus algebraic [47] approach.8 Before stating one such measure, namely
the average rate, we introduce some notation: a chain c (of length ℓ(c) = k > 1) in graph
G0 = 〈N, E〉 is a finite sequence c = (pi)06i6k of nodes pi from the set N , such that for two
successors pi and pi+1, either 〈pi, pi+1〉 ∈ E or 〈pi+1, pi〉 ∈ E. Its start node is p0, its end
node is pk and its weight ωG0

(c) the number of links traversed in the direction of E, that is
the number of 〈pi, pi+1〉 ∈ E, where 0 6 i 6 k. For both FR executions with initial graph
G0(D0, s) and executions of module M(D0, s) let the work #wp(t) of node p ∈ N until and
including time t > 0 in an execution be the number of steps made by p at times no greater
than t in the execution, and the average rate of p in the execution be limt→∞ #wp(t)/t.

Average Rate. From Theorem 4.2, we deduce that, given a module M(D0, s) with graph
D0 = 〈N ′, E ′〉 and function s, for each p ∈ N ′, the average rate of p in the execution of
module M(D0, s) is equal to the average rate of p in the greedy FR execution with initial
graph G0(D0, s).

From [3] (Theorem 16), it follows that the average rate of p ∈ N in a greedy FR
execution eG0

with initial graph G0(D0, s) = 〈N, E〉 is equal to min{ωG0
(c)/ℓ(c) | c ∈

C(G0)}, where C(G0) is the set of chains in G0 with identical start and end node. From
this, we obtain the following results: (i) If G0 is cyclic, for each p ∈ N , the average rate of
p in eG0

is 0. If G0 is acyclic, for each p ∈ N , the average rate of p in eG0
is greater than

0. (ii) In case G0 is acyclic and the shadow of G0 is a tree, the average rate of any node
p ∈ N is 1/2.

4.8 Related Work

Further reading: The GJImp(J) module was developed in the DARTS project9 to solve the
tick generation problem (see next chapter). The work by Függer et al. [36, 41] contains
its formal analysis dedicated to the specific tick generation problem and stated in terms
of a predecessor formal model. Further, [41] contains a description of a physical gate-level
implementation of a GJImp(J) module. In [29] implementation details are discussed to a
greater extent and a field programmable gate array (FPGA) implementation is presented.

8A joint paper of the author with Bernadette Charron-Bost, Jennifer Welch, and Josef Widder is
submitted for review at the time of writing.

9see ti.tuwien.ac.at/ecs/research/projects/darts

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 79

In [35], alternatives to GJImp(J) were investigated and their timing constraints analyzed.
In [24, 37] part of the system model as well as a specification and formal analysis of an
adapted GJImp(J) module have been published. Again, both with respect to solving the
tick generation problem. The adaption consists of a further generalization of (4.6) which
restricts the threshold kth

i , k > 1, to an offset i in {0, 1}. In [24, 37], it was shown
how to implement General Join modules with arbitrary offset i > 0. Fuchs’ thesis [32]
contains a thorough investigation of the implementation of a system of GJImp(J) modules
for solving the tick generation problem. An approach to measure the performance of some
(fault-tolerant) clockless control structures introduced in this chapter using min-max-plus
algebra [45, 47] was presented by Függer et al. in [38].

Existing work: Different approaches for designing fault-tolerant clockless circuits are de-
scribed in literature. Most of them, however, either deal with finding defects after fabrica-
tion, typically gate level stuck-at faults10, or tolerating single event upsets (SEU) happening
during mission time. Those, however, do not permanently destroy a circuit’s components.

Verdel and Makris [95] propose a technique to detect errors in clockless circuits, whose
components communicate by 4-phase handshaking. Their idea is to duplicate the D-
elements that perform the 4-phase handshaking, and compare their output signals. How-
ever, the point in time of performing the comparison for equality is not clear in clockless
circuits, unlike in synchronous circuits. The presented error detection circuit thus tolerates
inequality of the output signal status of duplicated D-Elements within timing windows of
predefined length, and raises an error signal otherwise. Clearly, though, detailed knowledge
of the time window length is required. Further, no permanent faults, but only faults leading
to soft-errors can be tolerated by resetting (part of) the circuit after a detected error.

LaFrieda and Manohar [52] present a method to make QDI circuits less susceptible to
faults and, further, to map faults to stuck-at faults where possible. The latter are easier
to detect than other faults as they typically result in deadlock after some time. A method
proposed in their work is to duplicate all synchronization channels forming system’s control
structure (yielding a top and a bottom channel) and let each handshaking component not
only perform handshaking with its predecessor and successor components, but also with its
duplicated instance. Unfortunately, however, this introduces significant additional delay:
because of the handshaking between the duplicated top and bottom components, they do
not communicate in parallel, but one after the other with their predecessor and successor
components. Further, this approach does not allow to tolerate permanent faults.

Monnet et al. [71] consider hardening of QDI circuits and propose duplicating the data
path and crosschecking its memory cells (C-gates). In case there is a memory mismatch an
alarm is triggered. Clearly, however, this method is restricted to SEUs only, that is, does
not allow to tolerate permanent faults.

Jang and Martin [49] proposed a simple and efficient method to tolerate soft-errors.
They transform a gate G into a soft-error tolerant gate, by duplicating it and introduc-
ing synchronizing cross-coupled C-Elements after both duplicates of G, say G1 and G2.

10A stuck-at fault at port x at some time t results in a constant 0 or 1 status of x from t on. Note that
this may produce an extra transition at time t.

80 4.8 Related Work

Thereby each C-Element has its inputs connected to the outputs of both G1 and G2. In
case a spurious transition occurs on either G1’s or G2’s output, or in case a transition is
lost, both C-Elements do not propagate the gate’s outputs, until they both match again.
Thereby, the technique makes use of the stability property of correctly designed QDI cir-
cuits: both gates’ production rules remain enabled until they are acknowledged. Thus,
after the spurious pulse has decayed, the faulty gate, whose production rule is still enabled
by stability, will change its output to the correct output, resulting in matching outputs
of G1 and G2. Now the output can propagate, possibly leading to a deactivation of the
gates’ production rules. While this method is powerful and has successfully been used to
implement a soft-error tolerant microcontroller [50], again, it does not allow to tolerate
permanent faults.

OR causality, which is central in the specification of the presented General Join module,
has also been investigated by the asynchronous VLSI community, albeit with a focus of early
decision joins: a join module with > 2 predecessor modules that receives data from one
of its predecessor modules, which makes the reception of data from the other predecessor
modules superfluous (the first data allows for an early decision), is not required to wait for
these before handing over the data to its successor module. In order, however, not to loose
synchrony with the other modules, the early deciding join generates an anti-token at all its
inputs corresponding to the other predecessor modules. In case a data item (represented
by a token) and an anti-token collide, they cancel each other. Typically, control structures
are extended by structures that propagate anti-tokens (against the token direction) to
predecessor modules.

As already stated in Section 3.9, Yakovlev et al. [98] investigated OR causality and
separated it into joint and disjoint OR causality. In [10], Bystrov et al. extend this classi-
fication by the slack : consider two ports a and b whose transitions cause a third port c to
make a transition by means of joint or disjoint OR causality. Then slack is the maximum
number of transitions, the two ports a and b can be off at any time t ∈ T . As an example
consider ports a and b, whose transitions cause transitions of port o with joint OR causality.
In case the slack is 1, the kth, k > 1, occurrence of a transition of either a or b whichever
first occurs (say a) causes a transition of o. However, before the (k + 1)th transition of a
can happen, b must make a transition. Typically, slack is enforced by handshaking with
the components with output port a and b, respectively. In [10], implementations of a com-
ponent (called a joint merge) with joint OR causality of its input ports with respect to
its output port are presented: one with bounded slack and one with “almost” unbounded
slack. While the solution with bounded slack cannot be used in fault-tolerant circuits
whose components may permanently fail (leading to deadlock in case of bounded slack),
the “almost” unbounded slack joint merge module could be used as an implementation
for a General Join module as presented in the thesis.11 However, here, we allow faulty
components to act arbitrarily, making it unnecessary to keep synchronization with these.
Thus, we do not profit from the benefits of the “almost” unbounded joint merge and can

11Clearly, the OR semantics, that is, waiting for the first transition, had to be changed to a more general
waiting for the kth transition, with k > 1.

Chapter 4: Modeling Fault-tolerant Clockless Algorithms 81

use the simpler GJImp(J) implementation.

Another approach making use of joint OR causality has been described in [21]. In [22]
Cortadella et al. proposed to use elastic handshaking protocols between synchronously
clocked pipeline stages. Later, in [21] the design method was extended to allow not only
for tokens, but also for anti-tokens flowing into the opposite direction. The idea is to
double the pipelines and add combinatorial logic between corresponding pipeline stages,
such that a token and an anti-token annihilate each other. Unfortunately, the possibility
of metastability during normal operation12 and the central clock are prohibitive for use in
fault-tolerant systems.

Another approach intended to speed-up asynchronous circuits by early evaluation and
using anti-tokens is proposed by Brej [8]. The idea is as follows: in case a module M does
not need a predecessor module’s data any more, it may acknowledge and thereby disable
the predecessor module’s request port at any time. The approach, however, is susceptible to
produce glitches on the request port, by race conditions between the predecessor enabling
it and M disabling it. This may lead to metastability during normal operation, unless a
detailed timing analysis and optimization are carried out.

Ampalam and Sigh [1] presented building blocks (stage, fork, join) that support circu-
lation of tokens and anti-tokens. The blocks can be connected with each other to form an
asynchronous circuit that supports early evaluation and preemption of superfluous compu-
tations by feeding back the anti-tokens. While this method is close to the one presented
in this thesis, there are significant differences: unlike [1] we do not excessively make use of
stages that can propagate and merge tokens and anti-tokens. In fact, the Diff-gate can be
seen as such a merging gate (of far smaller size), which merges tokens stored in the remote
pipeline with anti-tokens stored in the local pipeline. This approach (i) allows to store to-
kens and anti-tokens locally at the General Join module (which is necessary when building
fault-tolerant circuits), rather than propagate them back to the predecessor modules and
(ii) yields shorter token passage times (and by this higher throughput) through the remote
pipelines of the General Join, since inside the General Join conventional pipeline stages
are used instead of merging pipeline stages.

12Unless conservative clock periods are used such that under normal operation, transient effects have
decayed before the clock transition occurs.

82 4.8 Related Work

Chapter 5

Fault-tolerant Tick Generation

IN THIS chapter an application of the framework from Chapters 3 and 4 is presented.
The application is both sufficiently simple in order not to distract from the major points

but complex enough to show the applicability for practical systems.

Because of physical environmental effects like ionizing particle hits inducing current
on one of their ports [4, 100], components of digital systems are subject to faults. In
order to protect a system from failing due to a faulty component, different mitigation
techniques exist on different levels of abstraction: well-known methods to obtain fault-
tolerant systems range from sizing transistors [99] and layouting techniques (see [86] for
an example application) for making cells less susceptible to radiation faults to introducing
error correction mechanisms for memory and computation by redundant logic, just to name
a few. A typical approach at system level is to replicate a single module n times and let
the replica communicate via channels in order to remain consistent in their state. In the
following we will refer to the ith, 1 6 i 6 n, module as functional unit Fui. The problems
arising from this replication have been extensively studied for classic distributed system
models in the past decades, see e.g., [56, 83]. It is well known that solving important
problems arising in this context (like the consensus problem) require a certain degree of
synchrony on the computations performed by the replicated modules [30]. Synchrony
is thereby typically obtained by restricting message and computation delays. Distributed
algorithms that directly rely on these timing constraints are usually complex. A commonly
used approach thus is (i) to provide a synchronized notion of time to the functional units
Fui and (ii) run algorithms that maintain a consistent global state of the Fui’s on top of
the synchronized functional units. In case of a digital system, a notion of time is typically
provided by a clock signal to a functional unit. A measure of how good any two clock
signals are synchronized can be defined by different means: (i) By its skew , that is the
maximum difference in real-time two clock signals produce their kth transition, over all
k > 1. (ii) By a less accurate synchrony measure, their precision, that is the maximum
difference in the number of transitions of every two clock signals at some real-time t, over
all t ∈ T .

83

84 5.1 The DARTS Architecture

One possible approach to supply a set of replicated functional units with synchronized
clock signals is to provide a global clock signal from a single oscillator to all functional
units. Although becoming more and more difficult due to decreasing feature sizes and
increasing transistor densities, there exist clock tree engineering techniques by which the
maximum skew can be minimized. Clearly, however, these designs bear a single point of
failure, namely the oscillator itself.

An alternative approach without this weakness is to replicate the clock sources, too,
one for each functional unit. It remains to specify the means by which the functional units
communicate with each other: (i) In case of asynchronous communication, we arrive at the
well known GALS (globally asynchronous, locally synchronous) designs [13]. (ii) In case of
synchronous communication, an underlying fault-tolerant clock synchronization protocol
must be available, which ensures that the functional units’ local clocks do not arbitrarily
drift apart, which would lead to arbitrarily large skews between corresponding (kth) clock
transitions. Unfortunately, both solutions (i) and (ii) are susceptible to metastability
during communication, even if no single component is faulty.

Fortunately there is a further possibility to provide the functional units with a local
clock signal: to generate the clock signal in a distributed manner. The idea is to make the
kth clock transition of a correct functional unit’s clock at about the same time all other
correct functional units generate the kth clock transition of their clock signals. We will call
this problem the tick generation problem. An interesting question thus is to find a set of
modules that solve the tick generation problem in the presence of faults and prove them
correct.

In this chapter it will be shown that a module comprising of (i) a set of General
Join modules, with identical, well-chosen thresholds 〈αth

0 , βth
1 〉 and (ii) a set of channels

interconnecting all these General Join modules solves the tick generation problem, in spite
of a fraction of Byzantine faulty general join modules. The proposed architecture is called
DARTS and was developed in the DARTS project1 in our group.

5.1 The DARTS Architecture

As shown in Figure 5.1, the basic idea of DARTS is to replace the common quartz oscil-
lator and the clock tree by a fully distributed GALS-like approach [13]: every functional
unit Fui has attached a dedicated fault-tolerant tick generation node (TG node) here,
which generates Fui’s local clock signal. To accomplish this, all TG nodes communicate
with each other over a simple “network” by broadcasting their clock signals (TG-Net).
In contrast to standard GALS, however, DARTS ensures that the local clock signals of
different Fu’s are synchronized to each other to within a few clock cycles (sometimes called
multi-synchronous clocking [85,94]). In [78], Polzer et al. have shown that even such loose
synchrony suffices for implementing metastability-free high-speed communication between

1ti.tuwien.ac.at/ecs/research/projects/darts/

Chapter 5: Fault-tolerant Tick Generation 85

different Fu’s. Thus SoCs built atop of DARTS do not need asynchronous communication
mechanisms.

C
lo

ck

T
re

e

Oscillator

Fu1
Data Bus Fu3

Fu2

xx
xxx

TS-Algs

Fu1 Data Bus

Fu3

Fu2

x
x

TS-Net

Figure 5.1: Replacing synchronous clocking by fault-tolerant distributed tick generation.

DARTS clocks (patented in [82]) provide a number of additional advantages, which
makes them particularly promising for critical applications in the aerospace domain: First
of all, the approach entirely circumvents quartz oscillators, which are fairly big and sen-
sitive devices (shock, vibration, temperature etc.), as well as the cumbersome clock tree
engineering issue [6, 31, 70, 79]. It is fault-tolerant, in the sense that clock signals supplied
by correct TG-Algs are not affected by transient and permanent failures occurring in other
TG-Algs and/or in the TG-Net. DARTS clocks can also be guaranteed to indeed start
operating at booting time, a feature that is crucial to ensure for oscillator-based clocking
approaches in difficult to maintain applications, like space applications. Moreover, the
clock always runs at the maximum speed and adapts to the current operating conditions.
And last but not least, since different Fu’s are driven by slightly different clock signals,
DARTS clocks alleviate EM radiation and ground bouncing problems [66] that typically
plague devices using synchronous clocking.

We will next describe the idea of the TG-Alg’s algorithm: the TG-Algs derive from a
simple synchronizer algorithm for the Θ-Model [57, 96, 97] introduced in [97]. Consider a
system of n > 1 nodes in a classical message-passing system, where nodes make atomic
receive-compute-send steps whenever they receive a message. Further consider the code
shown in Figure 5.2.

1: /* Initialization */
2: VAR k : integer := 0;
3: initially send tick(0) to all [once];
4:

5: if received tick(k) from all n processes then
6: send tick(k + 1) to all [once]; k := k + 1;
7: end if

Figure 5.2: Simple algorithm for generating approximately simultaneous tick(k) messages.

Assume that all processes are correct and boot at time 0. Processes are connected by a
reliable point-to-point message-passing network: no spurious messages are ever generated,
no messages are lost or altered, and all messages sent at time t are eventually received at

86 5.1 The DARTS Architecture

some time in t + [τ−, τ+], where τ− resp. τ+ denote the (possibly unknown) lower resp.
upper bound on the end-to-end delay of messages exchanged between processes.

All processes will send tick(k), k > 0, within τ+−τ− of each other and thereby generate
synchronized ticks: assume that a process sends tick(k), k > 1, at time tk ∈ T . Then it
must have received tick(k−1) from all processes by time tk. Thus, all processes must have
sent tick(k−1) by time tk−τ− and all processes will receive tick(k−1) by time tk−τ−+τ+.
Thus all processes will send tick(k) by then. The proposition follows. Clearly, however,
the above algorithm fails to make progress in case of even a single crashed process that
stops sending ticks after some point in time.

A fault-tolerant variant of this algorithm, whose core is based on Srikanth & Toueg’s
consistent broadcasting primitive [88], is shown in Figure 5.3. It again assumes a message-
driven system of n = 3f + 1 processes (i.e. TG-Alg instances), but this time, at most
f of those may behave arbitrarily faulty, i.e., Byzantine. The processes are connected
by a reliable2 point-to-point message-passing network (i.e. the TG-Net) with the same
restrictions as before: there are no spurious, lost or altered messages and all messages sent
from correct nodes to correct nodes are received within [τ−, τ+]. Let ε = τ+ − τ− be the
maximum uncertainty of the message delay, and Θ = τ+/τ− the maximum delay ratio.

1: /* Initialization */
2: VAR k : integer := 0;
3: initially send tick(0) to all [once];
4:

5: if received tick(ℓ) from at least f + 1 distinct processes with ℓ > k then
6: send tick(k + 1), . . . , tick(ℓ) to all [once]; k := ℓ;
7: end if
8: if received tick(k) from at least 2f + 1 distinct processes then
9: send tick(k + 1) to all [once]; k := k + 1;

10: end if

Figure 5.3: Fault-tolerant algorithm for generating approximately simultaneous tick(k)
messages.

The algorithm works as follows: initially, every process broadcasts tick(0) in line 3. If
a correct process p receives f + 1 tick(ℓ) messages (line 5), it can be sure that at least
one of those was broadcast by a correct process. Therefore, p can safely catch up and
send tick(k + 1), . . . , tick(ℓ). If some process p receives 2f + 1 tick(k) messages (line 8)
and thus send tick(k + 1), one can be sure that all tick(k) messages broadcast by correct
processes, i.e., at least f + 1, will be received within ε by every other correct process.
Hence, every correct process will execute line 5 and send tick(k), if it has not already
done so. Consequently, at most τ+ later, every other correct process q will receive 2f + 1
tick(k) messages and thus send tick(k + 1).

2Note that this reliable network assumption is not unduly restrictive, since communication failures can
be mapped to failures of the sending process.

Chapter 5: Fault-tolerant Tick Generation 87

In conjunction with the fact that the fastest correct process cannot send consecutive
tick(k), tick(k + 1), . . . arbitrarily fast, this implies a bound on the synchronization preci-
sion: The detailed analysis will reveal that correct nodes generate a sequence of consecutive
messages tick(k), k > 1, in a synchronized way: if #bp(t) denotes the number of tick(k)
messages broadcast by process p by real-time t (which is identical to the value of variable
k at real-time t, cf. Figure 5.3), it will turn out that (t2 − t1)αmin 6 #bp(t2) − #bp(t1) 6

(t2 − t1)αmax for any correct node p and t2 − t1 sufficiently large (“accuracy”); the con-
stants αmin and αmax depend on τ−, τ+. Moreover, every two correct nodes p, q maintain
|#bp(t) − #bq(t)| 6 π (“precision”), for a small constant π that depends on Θ only. Note
carefully that the algorithm automatically adapts to the instantaneous timing character-
istics of any involved computation and communication.

Since the algorithm in Figure 5.3 looks very simple, it is tempting to conclude that it
is easily translated into a hardware description language: Node p’s TG-Alg just needs to
drive a boolean-valued clock signal, where it outputs the k-th signal transition when the
algorithm sends its tick(k) message; the TG-Net is formed by feeding all clock signals to
all TG-Algs. It turns out, however, that a number of challenging issues must be solved to
actually accomplish this:

• How to implement the TG-Net efficiently?

The algorithm assumes a fully connected network, consisting of n2 links,3 so anything
beyond a single wire per link is unacceptable [35]. Moreover, for implementation
simplicity and performance, the information transmitted via the TG-Net must be
kept to a minimum. Ideally, and almost mandatory, the TG-Net should just feed the
emitted clock ticks, i.e., signal transitions, of every TG-Alg to every other TG-Alg.

• How to adapt the original algorithm for zero-bit messages?

By just sending signal transitions, no information except the occurrence time can be
conveyed over the TG-Net. Thus, the tick number k contained in the messages of
Figure 5.3 must be maintained at every receiver, individually for every sender.

• How to map hardware faults to process failures?

Given that the algorithm shown in Figure 5.3 tolerates Byzantine failures, we are
on the safe side here. Interestingly, there is evidence [43] that assuming less severe
failures is inappropriate in the presence of real hardware faults: Even simple stuck-
at faults could produce early and/or inconsistently perceived signal transition, and
cannot hence be modeled as a crash or omission process failure. More severe hardware
faults, like delay faults or early/spurious clock transitions induced e.g. by particle hits
or crosstalk, can also easily lead to Byzantine failures.

3Note that a bus of n broadcast links that provide every TG-Alg with the messages from all other
TG-Algs is in fact sufficient here.

88 5.1 The DARTS Architecture

• How to ensure atomicity of actions in a VLSI implementation?

This turned out to be the most demanding challenge, which actually triggered this
thesis: All fault-tolerant distributed computing models assume atomic computing
steps at the level of a single process. For example, the algorithm presented in Fig-
ure 5.3 assumes that: (i) messages are received, (ii) the number of received messages
is checked with respect to a threshold, and (iii) possibly a new message is broadcast
and variable k is updated; all this happens in one atomic computing step. This
abstraction does not apply when the algorithm is implemented via asynchronous dig-
ital logic gates, which concurrently and continuously compute their outputs based
on their inputs. Explicit synchronization (serialization of actions/interlocking) must
be introduced if two local computations must not interfere with each other.

Recalling Chapter 4, it should become clear that the algorithms stated in Figure 5.2
and 5.3 are just abstract (zero-time) descriptions of the behavior of General Join modules:
the first algorithm corresponds to a General Join module J with Θ(J) = nth

0 and the second
algorithm corresponds to a General Join J with Θ(J) = 〈(2f +1)st

0 , (f +1)st
1 〉. It is exactly

this correspondence which will allow us to elegantly express and prove correct the DARTS
solution for the tick generation problem.

In the following we will describe the distributed system under consideration as well as
the assumed failure model in detail.

5.1.0.6 Distributed system

The distributed system is a compound module comprising of (i) a set P of TG nodes, where
|P | = n = 3f + 2, for some f > 0, and (ii) the interconnection formed by the TG-Net.
Each TG node p in P has n input ports reqp,q, one for each q in P \ {p}, and 1 output
port, bp, over which it broadcasts its locally generated clock signal. Each output port bp,
p in P , is connected to exactly one input port, namely reqq,p, of each remote TG node q
in P \ {p}, via a channel with delay bounds τ±

rem. The channels are forming the TG-Net
and are all initialized to 0.

5.1.0.7 Failure model

We partition our system into multiple fault-containment regions (FCRs) as follows: let
FCR p in P consist of the single TG node p together with all its outgoing channels, as
depicted in Figure 5.4. Since every FCR is associated with exactly one TG node, we will
also use these terms interchangeably. As already stated in Chapter 3, we assume each
of the FCRs to fail in an arbitrary way: the adverse power of Byzantine failures in our
context lies in the ability of a faulty TG node to generate wrong clock ticks (early timing
failures or even spurious) that are perceived inconsistently at different remote TG nodes.

Recapitulate from Chapter 3 that the set of FCRs is partitioned in to the correct FCRs
C and the faulty FCRs F . We will prove that there exist modules with the same input and

Chapter 5: Fault-tolerant Tick Generation 89

output ports as the TG nodes, which solve the tick generation problem specified below in
Section 5.1.1 in the presence of up to f Byzantine faulty FCRs, provided that the total
number of TG nodes is n > 3f +2. Note that this is slightly more than the required lower
bound of n > 3f + 1 for clock synchronization [25], but facilitates a considerably better
precision and accuracy (attained by counting only remote messages when calculating the
f+1 resp. 2f+1 thresholds; including self-reception would lead to τ−

rem = τ−

loc in Theorem 5.2
and hence spoil the achievable worst-case precision).

FCR p

node p #bp(t)

〈REM, p, q〉 node q#reqq,p(t)

〈REM, p, r〉 node r#reqr,p(t)

...

〈REM, p, s〉 node s#reqs,p(t)

Figure 5.4: Fault-containment region for TG node p

5.1.0.8 Booting

We assume that the whole system is simultaneously reset at time t = 0. However, we
allow the modules to complete booting at (slightly) different times: If tp,b denotes the time
by which all modules in a correct FCR p in P have completed booting, we require that
tp,b ∈ [0, B] for some constant B 6 τ−

rem. The latter condition ensures that messages sent
by p are never lost at a different correct module q in P because of late booting.

5.1.1 Tick Generation Problem

We will next formally state the tick generation problem: in all executions complying to
the system and failure model introduced in the previous sections, the set P of TG nodes
must guarantee the following properties:

(P) Precision: There is a constant π, such that for every pair of correct TG nodes
p, q ∈ C:

∀t ∈ T : |#bq(t) − #bp(t)| 6 π. (5.1)

90 5.1 The DARTS Architecture

(A) Accuracy: There are constants R−, O−, R+, O+ > 0, such that for every correct
TG node p ∈ C:

∀t1, t2 ∈ T , t2 > t1 : O−(t2−t1)−R− 6 #bp(t2)−#bp(t1) 6 O+(t2−t1)+R+. (5.2)

Informally, the precision requirement (P) just states that the difference of the number
of clock ticks generated by any two different correct TG nodes is bounded, whereas the
accuracy requirement (A) guarantees some relation of the progress of the clock ticks with
respect to the progress of real-time. Note that (A) is also called envelope requirement in
literature, and effectively bounds the frequency of the generated clock ticks.

5.1.2 A Solution with General Join modules

A solution of the tick generation problem is an assignment of modules to TG nodes P ,
such that the obtained distributed system solves the tick generation problem in spite of up
to f faults. We will next present two solutions: a high-level and a low-level one.

5.1.2.1 TG Node Implementation

High-level solution. The proposed solution is fairly simple: let each TG node p, p in
P be a General Join module p with thresholds Θ(p) = 〈(2f + 1)st

0 , (f + 1)st
1 〉. A correct

solution additionally has to fulfill Constraint 3, defined later on.

Low-level solution. In a second step, we will give a more refined module of a TG
node p. Since we know how to implement a General Join with input channels in terms
of even simpler building blocks, namely by module GJImp(J) with input channels, we can
simply let each TG node p in P , be a GJImp(J) module. This solution is well suited to be
mapped to physical hardware. To underline the importance of GJImp(J) modules being a
solution for the tick generation problem, we will also call module GJImp(J) with parameters
α = 2f + 1 and β = f + 1 a TG-Alg module.

Clearly, for a physical implementation of a TG-Alg, we have to further restrict module
GJImp(J): up to now GJImp(J) comprises of a set of +/− counters and we assumed +/−
counters to have unbounded capacity. To get rid of this unduly restrictive assumption, we
require the following size requirement (S) to hold for all executions of the low-level solution
complying to the system and failure model.

(S) Size: There are constants Srem and Sloc, such that for every pair or correct TG nodes
p, q ∈ C;

∀t ∈ T : #sloc
p,q(t) 6 Sloc and #srem

p,q (t) 6 Srem.

In the following section, we will show that the distributed system with TG-Algs as TG
nodes indeed satisfy the above properties (P), (A) and (S) in all executions complying to

Chapter 5: Fault-tolerant Tick Generation 91

our system and failure model, provided that the already introduced Constraints 1–2 and
the additional Constraint 3, introduced later, hold. Our Theorems 5.2, 5.3, 5.4 and 5.6
will also establish numerical values for all the constants introduced in (P), (A) and (S),
which only depend on the delay parameters of the TG-Net and those introduced in the
specifications of the TG-Alg basic modules.

5.2 Correctness Proofs

Unless otherwise stated, we consider the high-level solution first. Its correctness proof can
be partitioned into three layers of abstraction. The bottom proof layer is concerned with
deriving basic results on how a single TG node behaves. We thereby heavily make use
of the results derived for General Join modules and restate them in terms of the given
distributed system.

The intermediate proof layer builds upon the results derived in the bottom proof layer.
Its main result is the proof that a set of global properties, so called synchronization prop-
erties, hold for the distributed system.

Finally, properties (P) and (A) are derived from the synchronization properties in the
top proof layer .

In a second step, we will show that (P) and (A) also hold for the low-level solution,
and prove that (S) also holds for the latter.

5.2.1 Bottom Proof Layer

We first prove a minimum time between two ticks sent by a correct TG node:

Lemma 5.1. If correct node p in C sends tick k > 1 at time tp,k, then it cannot send tick
k + 1 before tp,k + Tmin.

Proof. Since node p is a General Join, the result follows from Corollary 4.1. �

Next, we derive, that the 2f + 1 threshold performs its duty:

Lemma 5.2. For all correct nodes p in P and ticks k > 1: if there exists a set Q ⊆ C of
correct nodes with |Q| > 2f + 1, such that, for all q ∈ Q:

(i) for all q ∈ Q, q sends tick k by tQ,k,

(ii) p sends tick k at tp,k,

then p sends tick k + 1 by time max{tp,k + τ+
loc, tQ,k + τ+

rem} + τ+
Diff + τ+

PC + τ+
TH.

92 5.2 Correctness Proofs

Proof. Node p and nodes q in Q all are General Joins with threshold 〈(2f +1)st
0 , (f +1)st

1 〉.
Since all nodes q in Q are correct, node p receives transition k from each node q by time
tQ,k + τ+

rem. Since further |Q| > 2f + 1, we may apply Lemma 4.2 and obtain that p
sends transition k + 1 by time max{tp,k + τ+

loc, tQ,k + τ+
rem}+ τ+

Diff + τ+
PC + τ+

TH. The lemma
follows. �

Further, the f + 1 threshold performs its duty:

Lemma 5.3. For all correct nodes p in C and ticks k > 1: If there exists a set Q ⊆ C of
correct nodes with |Q| > f + 1, such that,:

(i) for all q ∈ Q, node q sends tick k + 1 by tQ,k+1, and

(ii) p sends tick k at tp,k,

then p sends tick k + 1 by time max{tp,k + τ+
loc + τ+

Diff, tQ,k+1 + τ+
rem} + τ+

PC + τ+
TH.

Proof. The proof follows the proof of Lemma 5.2 in large parts: node p and nodes q in Q
all are General Joins with threshold 〈(2f + 1)st

0 , (f + 1)st
1 〉. By the correctness of the nodes

in Q, node p receives transition k + 1 from each node q by time tQ,k + τ+
rem. Since further

|Q| > f + 1, we may apply Lemma 4.3 and obtain that p sends transition k + 1 by time
max{tp,k + τ+

loc + τ+
Diff, tQ,k + τ+

rem} + τ+
PC + τ+

TH. The lemma follows. �

5.2.2 Intermediate Proof Layer

Based on the results of the bottom proof layer, we can now establish elementary synchro-
nization properties of the ticks generated by different correct nodes. The following Theo-
rem 5.1 corresponds to well-known classic results on consistent broadcasting [57,80,88,97],
which are expressed and proved in our new modeling framework. For the theorem to hold,
Constraint 3 must hold, which essentially guarantees that even the slowest local channel
is faster than the fastest remote channel.

Constraint 3. [C3] With T−

first defined by

T−

first := τ−

rem + τ−

Diff + τ−

PC + τ−

TH, (5.3)

the relation T−

first > τ+
loc + τ+

Diff + τ+
PC + τ+

TH must hold.

Theorem 5.1 (C3, but only in (QS)). (Synchronization Properties). The algorithm sat-
isfies the synchronization properties Progress (P), Unforgeability (U), Quasi-Simultaneity
(QS) and Booting-Simultaneity (BS), if n > 3f + 2 holds.

(P) Progress. If all correct nodes send tick k > 1 by time t, then every correct node sends
at least tick k + 1 by time t + TP, with

TP := max{τ+
loc, τ

+
loc} + τ+

Diff + τ+
PC + τ+

TH. (5.4)

Chapter 5: Fault-tolerant Tick Generation 93

(U) Unforgeability. If no correct node sends tick k > 1 by time t, then no correct node
sends tick k + 1 by time t + T−

first or earlier, where T−

first is given by (5.3).

(QS) Quasi-Simultaneity. If some correct node p sends tick k + 1 > 2 by time t, then
every correct node (p included) sends at least tick k by time t + TQS, with

TQS := max

{
(τ+

rem − τ−

rem) − τ−

Diff,

B − T−

first

}
+ (τ+

PC − τ−

PC) + (τ+
TH − τ−

TH). (5.5)

(BS) Booting-Simultaneity. If some correct node sends tick k > 1 by time t, then every
correct node sends at least tick k by time t + TBS(k), with

TBS(k) := B + (τ+
PC − τ−

PC) + (τ+
TH − τ−

TH) + (TP − T−

first)(k − 1). (5.6)

We will show the properties Progress (P), Unforgeability (U), Quasi-Simultaneity (QS)
and Booting-Simultaneity (BS) one after the other.

Progress (P)

Proof. Assume that all correct nodes C, with |C| > 2f + 2, sent tick k > 1 by time t.
Now focus on a correct node p ∈ C: We can apply Lemma 5.2 with Q = C \ {p} and
tp,k = tQ,k = t. Thus, p must send tick k + 1 by

t′ = max{tp,k + τ+
loc, tQ,k + τ+

rem} + τ+
Diff + τ+

PC + τ+
TH

= t + max{τ+
loc, τ

+
rem} + τ+

Diff + τ+
PC + τ+

TH

= t + TP.

The lemma follows. �

Unforgeability (U)

Proof. Let p be the first correct node that sends tick k + 1 > 2 at time tp,k+1. Since p is a
General Join, we can apply Lemma 4.4 and consider its two possible implications (i) and
(ii), one of which must hold:

(i) Since |Q| > 2f+1, there must be a subset C ′ ⊆ Q of correct nodes of size |C ′| > f+1.
Clearly, it must hold that, for t′ = tp,k+1− (τ−

Diff + τ−

PC + τ−

TH + τ−

loc) and for all r in C ′,

#reqp,r(t
′) > k.

By the remote channel properties, this implies #br(t
′′) > k with

t′′ := t′ − τ−

rem = tp,k+1 − T−

first,

i.e., r — and by this the first correct node which sent tick k — has sent tick k by
tp,k+1 − T−

first. The lemma follows.

94 5.2 Correctness Proofs

(ii) Since |Q| > f + 1, there must be at least one correct node r 6= p among Q for which

#reqp,r(t
′) > k + 1,

with t′ = tp,k+1 − τ−

TH − τ−

PC. For r, this implies #br(t
′) > k + 1— a contradiction

to the assumption that p was the first correct node to send tick k + 1. The lemma
follows.

The lemma follows in both cases. �

Before turning to the proof of (QS), we proceed with two technical lemmas.

Lemma 5.4. If the first correct node p sends tick k + 1 > 2 at time tp,k+1, then at
t′ := tp,k+1 − τ−

TH − τ−

PC − τ−

Diff it must hold that there exists a set Q ⊆ P \ {p} of size
|Q| > 2f + 1, such that

∀q ∈ Q : #reqp,q(t
′) > k.

Proof. Analogous to the proof of Unforgeability (U), we apply Lemma 4.4 and consider its
two possible implications (i) and (ii):

(i) This case exactly matches the implication of our lemma. The lemma follows.

(ii) Since, |Q| > f + 1, there must be at least one correct node r 6= p among Q that has
already sent tick k+1 before p did; this contradicts the assumption that p is the first
correct node to send tick k + 1. The lemma follows.

The lemma follows in both cases. �

Lemma 5.5. Let tb be the time when the first correct node boots. Let tfirst,1 (respectively
tlast,1) be the time the first (respectively last) correct node sends tick 1. Then,

tfirst,1 > tb + τ−

PC + τ−

TH, and

tlast,1 6 tb + B + τ+
PC + τ+

TH.

Proof. Correct nodes can boot only within tb + [0, B] by assumption. Further, from
Lemma 4.1, we know that a correct node p that boots at time tb,p sends transition 1
within tb,p + τ±

PC + τ±

TH. The lemma follows. �

Chapter 5: Fault-tolerant Tick Generation 95

Quasy Simultaneity (QS)

Proof. The proof is by induction on the number of ticks k + 1 > 2 sent by the first correct
node.

Begin (k + 1 = 2): By Lemma 5.5, the first correct node must send tick 1 at tfirst,1 with

tfirst,1 > tb + τ−

PC + τ−

TH.

Let tfirst,2 be the time when the first correct node sends tick 2. By Unforgeability (U),

tfirst,2 > tfirst,1 + T−

first

> tb + τ−

PC + τ−

TH + T−

first.

By Lemma 5.5, all other correct nodes must send tick 1 by tlast,1 with

tlast,1 6 tb + B + τ+
PC + τ+

TH.

Thus we obtain the bound,

tlast,1 − tfirst,2 6 B + (τ+
PC − τ−

PC) + (τ+
TH − τ−

TH) − T−

first

6 TQS.

Step (k + 1 > 3): Let tfirst,k be the time when the first correct process sends tick k. As
our induction hypothesis, we assume that all correct nodes send tick k − 1 by tlast,k−1 6

tfirst,k + TQS.

Let tfirst,k+1 be the time the first correct node, say p, sends tick k + 1 > 3. By
Lemma 5.4, there exists a set Q of size |Q| > 2f + 1, such that at time t′ = tfirst,k+1 −
τ−

TH − τ−

PC − τ−

Diff,

∀q ∈ Q : #reqp,q(t
′) > k. (5.7)

Clearly, there is a subset Q̃ ⊆ Q of correct nodes among Q of size at least |Q̃| > f + 1.

Let Q̃′ := C \ (Q̃∪{p}). Now consider the partitioning of correct nodes C = Q̃∪{p}∪ Q̃′.

We will prove the lemma separately for each of the three partitions: In case q ∈ Q̃, by
(5.7) and the remote channel properties, q has sent tick k by t′ − τ−

rem < tfirst,k+1. In case

q = p, it has sent tick k by tfirst,k+1. For the only non-trivial case q ∈ Q̃′, it follows from

the remote channel properties that any q̃ ∈ Q̃, as a correct node, must have sent tick k by

t eQ,k := tfirst,k+1 − τ−

TH − τ−

PC − τ−

Diff − τ−

rem. (5.8)

Now consider an arbitrary correct node r ∈ Q̃′. By the induction hypothesis and (U),

tr,k−1 6 tfirst,k + TQS

6 tfirst,k+1 − T−

first + TQS. (5.9)

96 5.2 Correctness Proofs

We may now apply Lemma 5.3 to node r and the set of correct nodes Q̃ with tr,k−1 and
t eQ,k from (5.9) and (5.8). This yields: r sends tick k at time tr,k with

tr,k 6 max

{
tr,k−1 + τ+

loc + τ+
Diff,

t eQ,k + τ+
rem

}
+ τ+

PC + τ+
TH

6 max

{
tfirst,k+1 − T−

first + TQS + τ+
loc + τ+

Diff,

tfirst,k+1 − τ−

TH − τ−

PC − τ−

Diff − τ−

rem + τ+
rem

}
+ τ+

PC + τ+
TH

= tfirst,k+1 + max

{
−T−

first + TQS + τ+
loc + τ+

Diff,

−τ−

TH − τ−

PC − τ−

Diff − τ−

rem + τ+
rem

}
+ τ+

PC + τ+
TH

6 tfirst,k+1 + max

{
TQS,
−τ−

TH − τ−

PC − τ−

Diff − τ−

rem + τ+
rem + τ+

PC + τ+
TH

}
(5.10)

6 tfirst,k+1 + TQS, (5.11)

where (5.10) follows by applying Constraint 3 and (5.11) from the definition of TQS. �

Booting Simultaneity (BS)

Proof. The proof is by induction on k > 1.

Begin (k = 1): From Lemma 5.5, we deduce, that

tlast,1 − tfirst,1 6 B + (τ+
PC − τ−

PC) + (τ+
TH − τ−

TH)

6 TBS(1).

Step (k > 1): Assume the Lemma is true for k. From (U) and (P), it follows that

tfirst,k+1 − tfirst,k > T−

first

tlast,k+1 − tlast,k 6 TP.

In combination with the induction hypothesis, this yields:

tlast,k+1 − tfirst,k+1 = (tlast,k+1 − tlast,k) + (tlast,k − tfirst,k) + (tfirst,k − tfirst,k+1)

6 TP + TBS(k) − T−

first

= TBS(k + 1).

This completes the induction step and the lemma follows. �

Lemma 5.6. (Fastest Progress). Assume that p is the first correct node that sends tick
number k > 1 at time tfirst,k. Then no correct node can send tick k′ > k before time
tfirst,k + (k′ − k)T−

first.

Chapter 5: Fault-tolerant Tick Generation 97

Proof. The proof is by induction on k′ − k.

Begin (k′ = k): The lemma trivially holds since the first correct node cannot send tick k
before time tfirst,k.

Step (k′ > k+1): Assume that p is the first correct node that sends tick k. The first correct
node q ∈ C, by the induction hypothesis, does not send tick k′ before t + (k′ − k)T−

first.

Because of (U), no other correct node can send tick k′+1 by time t+(k′−k)T−

first+T−

first =

t + (k′ + 1 − k)T−

first. �

Having completed the proof of our major Theorem 5.1, we proceed with Lemmas 5.7, 5.8
and 5.9 that bound the progress of the ticks generated by the fastest node. For this purpose,
we define bmax(t) as the maximum of #bp(t) over all correct nodes C, i.e., bmax(t) :=
max{#bp(t) | p ∈ C}. Similarly, we define bmin(t) := min{#bp(t) | p ∈ C}. Furthermore,
we abbreviate the left limit of a function f(ξ) at point t as limξ→t− f(ξ) = f(t→). For
example, if node p sends tick k > 1 at time tp,k, then #bp(t

→
p,k) = k − 1 (whereas it holds

that #bp(tp,k) = k).

Lemma 5.7. (Maximum Increase of bmax(ξ) in (tfirst,k, t)). If the first correct node sends
tick k > 1 at tfirst,k, then

∀t > tfirst,k : bmax(t→) − bmax(tfirst,k) 6

⌈
t − tfirst,k

T−

first

⌉
− 1

or, equivalently: The number N of ticks sent by the correct first node in the interval

I = (tfirst,k, t) is upper bounded by

⌈
t−tfirst,k

T−

first

⌉
− 1.

Proof. Let tfirst,j be the time when the first correct node sends tick j, and assume by
contradiction that

N >

⌈
t − tfirst,k

T−

first

⌉
. (5.12)

According to the definition of N ,

tfirst,k+N < t. (5.13)

By applying Lemma 5.6 to tfirst,k and tfirst,k+N , we find

tfirst,k+N − tfirst,k > NT−

first

>

⌈
t − tfirst,k

T−

first

⌉
T−

first

> T−

first

t − tfirst,k

T−

first

= t − tfirst,k. (5.14)

Clearly, (5.14) contradicts (5.13). �

98 5.2 Correctness Proofs

Lemma 5.8. (Maximum Increase of bmax(ξ) in (tfirst,k, t]). If the first correct node sends
tick k > 1 at tfirst,k, then

∀t > tfirst,k : bmax(t) − bmax(tfirst,k) 6

⌊
t − tfirst,k

T−

first

⌋

or, equivalently: The number N of ticks sent by the correct first node in the interval

I = (tfirst,k, t] is upper bounded by

⌊
t−tfirst,k

T−

first

⌋
.

Proof. Let tfirst,j be the time when the first correct node sends tick j, and assume by
contradiction that

N >

⌊
t − tfirst,k

T−

first

⌋
+ 1. (5.15)

According to the definition of N ,

tfirst,k+N 6 t. (5.16)

By applying Lemma 5.6 to tfirst,k and tfirst,k+N , and recalling x < ⌊x⌋ + 1 for all real x,
we find

tfirst,k+N − tfirst,k > NT−

first

>

(⌊
t − tfirst,k

T−

first

⌋
+ 1

)
T−

first

> T−

first

t − tfirst,k

T−

first

= t − tfirst,k. (5.17)

Clearly, (5.17) contradicts (5.16). �

The following Lemma 5.9 is a weaker form of Lemma 5.8, where the beginning of the
interval I not necessarily coincides with the sending of a tick by the first correct node, i.e.,
where I is not “aligned” with tfirst,k.

Lemma 5.9. (Maximum Increase of bmax(ξ) in (t, t′]).

∀t′ > t : bmax(t′) − bmax(t) 6

⌈
t′ − t

T−

first

⌉

or, equivalently: The number N of ticks sent by the correct first node in the interval

I = (t, t′] is upper bounded by

⌈
t′−t

T−

first

⌉
.

Chapter 5: Fault-tolerant Tick Generation 99

Proof. Let tfirst,j the time when the first correct node sends tick j. We distinguish two
cases: (i) N > 1, i.e., ∃k : tfirst,k+1 ∈ I and (ii) N = 0.

ad (i): Assume by contradiction that

N >

⌈
t′ − t

T−

first

⌉
+ 1. (5.18)

According to the definition of N and the assumption N > 1, there must be some k s.t.

tfirst,k+1 > t (5.19)

tfirst,k+N 6 t′. (5.20)

By applying Lemma 5.6 to tfirst,k+1 and tfirst,k+N , we find

tfirst,k+N − t > tfirst,k+N − tfirst,k+1

> (N − 1)T−

first

>

⌈
t′ − t

T−

first

⌉
T−

first

> T−

first

t′ − t

T−

first

= t′ − t. (5.21)

Clearly, (5.21) contradicts (5.20).

ad (ii): Obviously N = 0 6

⌈
t′−t

T−

first

⌉
holds for t′ > t. �

The following Lemma 5.10 is an analogon to Lemma 5.9 for any correct node p.

Lemma 5.10. (Maximum Increase of #bp(ξ) in (t, t′]).

∀t′ > t : #bp(t
′) − #bp(t) 6

⌈
t′ − t

Tmin

⌉

or, equivalently: The number N of ticks sent by the correct node p in the interval I = (t, t′]

is upper bounded by
⌈

t′−t
Tmin

⌉
.

Proof. Let tp,j the time when node p sends tick j. We distinguish two cases: (i) N > 1,
i.e., ∃k : tp,k+1 ∈ I and (ii) N = 0.

ad (i): Assume by contradiction that

N >

⌈
t′ − t

Tmin

⌉
+ 1. (5.22)

100 5.2 Correctness Proofs

According to the definition of N and the assumption N > 1, there must be some k s.t.

tp,k+1 > t (5.23)

tp,k+N 6 t′. (5.24)

By applying Lemma 5.1 to tp,k+1 and tp,k+N , we find

tp,k+N − t > tp,k+N − tp,k+1

> (N − 1)Tmin

>

⌈
t′ − t

Tmin

⌉
Tmin

> Tmin

t′ − t

Tmin

= t′ − t. (5.25)

Clearly, (5.25) contradicts (5.23).

ad (ii): Obviously N = 0 6
⌈

t′−t
Tmin

⌉
holds for t′ > t. �

The next Lemma 5.11 bounds the progress of the last correct node.

Lemma 5.11. (Last Progress) If the last correct node sends tick k > 1 at tlast,k, then the
last correct node sends tick k + N , N > 0, by tlast,k+N , with

tlast,k+N − tlast,k 6 NTP.

Proof. The proof is by induction on N :

Begin (N = 0): Clearly tlast,k − tlast,k 6 0 is true.

Step (N > 0): As induction hypothesis, assume that the Lemma is true for N − 1. By
applying (P), we immediately obtain

tlast,k+N − tlast,k = (tlast,k+N − tlast,k+N−1) + (tlast,k+N−1 − tlast,k)

6 TP + (N − 1)TP

= NTP.

�

The following two simple technical lemmas complete the intermediate proof layer.

Lemma 5.12 (C3). (Progress by (QS)). If p is a correct node which sends tick k > 2 at
tp,k, then p sends tick k + N , N > 1, at tp,k+N with

tp,k+N − tp,k 6 (N + 1)TP + TQS.

Chapter 5: Fault-tolerant Tick Generation 101

Proof. With Lemma 5.11 and (QS), it follows that

tp,k+N − tp,k 6 tlast,k+N − tfirst,k

= (tlast,k+N − tlast,k−1) + (tlast,k−1 − tfirst,k)

6 (N + 1)TP + TQS.

�

Lemma 5.13. (Progress by (BS)) If p is a correct node which sends tick k > 1 at tp,k,
then p sends tick k + N , N > 1, at tp,k+N with

tp,k+N − tp,k 6 NTP + TBS(k).

Proof. With Lemma 5.11 and (BS), it follows that

tp,k+N − tp,k 6 tlast,k+N − tfirst,k

= (tlast,k+N − tlast,k) + (tlast,k − tfirst,k)

6 NTP + TBS(k).

�

5.2.3 Top Proof Layer

We are now ready for establishing our major results. The first one, Theorem 5.2, bounds
the precision π of our algorithm, i.e., shows that for every pair of correct nodes p, q ∈ C :
∀t : |#bq(t) − #bp(t)| 6 π.

Theorem 5.2 (C3). (Precision). π :=

⌈
TQS

T−

first

⌉
+ 1 is a valid precision-bound.

Proof. Let p, q be two distinct correct nodes. Clearly for all t, |#bq(t)−#bp(t)| 6 bmax(t)−
bmin(t). We will bound this term by distinguishing three cases for t: (i) t ∈ [0, tlast,1), (ii)
t = tlast,k for some k > 1 and (iii) t ∈ (tlast,k, tlast,k+1) for some k > 1.

102 5.2 Correctness Proofs

ad (i): Since t ∈ [0, tlast,1), we have bmax(t) 6 bmax(t→last,1) and bmin(t) = 0. Thus,

bmax(t) − bmin(t) = bmax(t)

6 bmax(t→last,1)

=
(
bmax(t→last,1) − bmax(tfirst,1)

)
+ bmax(tfirst,1)

6

⌈
tlast,1 − tfirst,1

T−

first

⌉
(5.26)

6

⌈
B + τ+

PC + τ+
TH − (τ−

PC + τ−

TH)

T−

first

⌉
(5.27)

6

⌈
TQS + T−

first

T−

first

⌉

=

⌈
TQS

T−

first

⌉
+ 1, (5.28)

where (5.26) follows from Lemma 5.7 and (5.27) from Lemma 5.5.

ad (ii):

bmax(tlast,k) − bmin(tlast,k) = (bmax(tlast,k) − bmax(tfirst,k+1)) +
(
bmax(tfirst,k+1) − bmin(tlast,k)

)

= (bmax(tlast,k) − bmax(tfirst,k+1)) + 1

6

⌊
tlast,k − tfirst,k+1

T−

first

⌋
+ 1 (5.29)

6

⌊
TQS

T−

first

⌋
+ 1 (5.30)

where (5.29) follows from Lemma 5.8 and (5.30) from (QS).

ad (iii): Since t ∈ (tlast,k, tlast,k+1), we have bmax(t) 6 bmax(t→last,k+1). Thus,

bmax(t) − bmin(t) = (bmax(t) − bmax(tfirst,k+2)) +
(
bmax(tfirst,k+2) − bmin(t)

)

= (bmax(t) − bmax(tfirst,k+2)) + (k + 2 − k)

6
(
bmax(t→last,k+1) − bmax(tfirst,k+2)

)
+ 2

6

⌈
tlast,k+1 − tfirst,k+2

T−

first

⌉
+ 1 (5.31)

6

⌈
TQS

T−

first

⌉
+ 1, (5.32)

where (5.31) follows from Lemma 5.7 and (5.32) from (QS).

Chapter 5: Fault-tolerant Tick Generation 103

Combining (5.28), (5.30) and (5.32) provides a precision bound π for arbitrary t:

π := max

{⌊
TQS

T−

first

⌋
,

⌈
TQS

T−

first

⌉}
+ 1

=

⌈
TQS

T−

first

⌉
+ 1

The statement holds in all three cases. �

Our next major result, Theorem 5.3 (Accuracy), bounds the number of ticks generated
locally at a correct node p during some real-time interval (t1, t2], i.e., allows to make
statements about the local clock frequency. For example, it reveals that the long-term
frequency is within

[
1/TP, 1/T−

first

]
.

Theorem 5.3 (C3). (Accuracy). Given t1 and t2 with t2 > t1 > tp,1, the accuracy
#bp(t2) − #bp(t1) of any correct node p is bounded by

max

{
0,

⌊
t2 − t1 − max {TBS(1), min {TBS(k), TQS + TP} | k > 2}

TP

⌋
+ 1

}

6 #bp(t2) − #bp(t1) 6

min

{⌈
t2 − t1
T−

first

⌉
+ π,

⌈
t2 − t1
Tmin

⌉}
.

Proof. To prove the accuracy upper bound, we start from

#bp(t2) − #bp(t1) 6 bmax(t2) − bmin(t1)

6 (bmax(t2) − bmax(t1)) +
(
bmax(t1) − bmin(t1)

)
. (5.33)

Both terms of (5.33) can be bounded by applying Lemma 5.9 and Theorem 5.2, respectively,
which gives

bmax(t2) − bmax(t1) 6

⌈
t2 − t1
T−

first

⌉
(5.34)

bmax(t1) − bmin(t1) 6 π, (5.35)

thus yielding

#bp(t2) − #bp(t1) 6

⌈
t2 − t1
T−

first

⌉
+ π. (5.36)

104 5.2 Correctness Proofs

Moreover, from Lemma 5.10, it follows that

#bp(t2) − #bp(t1) 6

⌈
t2 − t1
Tmin

⌉
. (5.37)

A combination of both bounds (5.36) and (5.37) leads to

#bp(t2) − #bp(t1) 6 min

{⌈
t2 − t1
T−

first

⌉
+ π,

⌈
t2 − t1
Tmin

⌉}

To prove the accuracy lower bound, let k = #bp(t1) > 1 and N > 0, s.t., k + N =
#bp(t2). Clearly such k and N exist since p has sent tick 1 by t1. By the definition of k
and N ,

tp,k 6 t1 (5.38)

tp,k+N+1 > t2. (5.39)

For k > 2 we can apply Lemma 5.12 together with (5.38) and (5.39), yielding

t2 − t1 < tp,k+N+1 − tp,k (5.40)

6 (N + 2)TP + TQS ⇒

N >
t2 − t1 − TQS − 2TP

TP

⇒

N >

⌊
t2 − t1 − TQS − TP

TP

⌋
+ 1. (5.41)

For k > 1, we apply Lemma 5.13 to (5.40), which yields

t2 − t1 < (N + 1)TP + TBS(k) ⇒

N >
t2 − t1 − TBS(k) − TP

TP

⇒

N >

⌊
t2 − t1 − TBS(k)

TP

⌋
+ 1. (5.42)

Combining the bounds (5.41), (5.42) and the trivial bound 0 yields (with #bp(t1) = k)

#bp(t2) − #bp(t1) = N >

max
{

0,
⌊

t2−t1−TBS(1)

TP

⌋
+ 1
}

if k = 1,

max

{
0,

⌊
t2−t1−min{TBS(k),TQS+TP}

TP

⌋
+ 1

}
if k > 2.

(5.43)

In case k is not known, a valid bound is the minimum of all lower bounds, i.e.,

#bp(t2) − #bp(t1) >

max

{
0,

⌊
t2 − t1 − max {TBS(1), min {TBS(k), TQS + TP} | k > 2}

TP

⌋
+ 1

}
. (5.44)

�

Chapter 5: Fault-tolerant Tick Generation 105

Note that the term min {TBS(k), TQS + TP} for k > 2 in both (5.43) and (5.44) accounts
for the fact that correct nodes may be synchronized very tightly after booting (within
TBS(k)), such that TQS + TP would be too conservative. From the definition of TBS(k)
in (5.6), however, it follows that the initial synchrony from booting cannot usually be
maintained: When T−

first < TP, which is typically the case in real systems, we obtain
limk→∞ TBS(k) = ∞. Thus, for some k0, ∀k > k0 : TQS + TP < TBS(k), i.e., the constant
bound from (QS) will be tighter, which prevents the nodes from drifting apart further.

This ends the analysis of the high-level solution. Now we will prove the low-level
solution correct.

5.2.3.1 Low-level solution

We will first show that Precision and Accuracy , hold, too:

Lemma 5.14 (C1). Assumption 1 holds for each correct node p in C.

Proof. Consider an arbitrary p in C. Let Q be the set of correct predecessor modules of
p. Since all q in Q are GJImp(J) modules, we can apply Corollary 4.2 to each of them. It
follows that Assumption 1 holds for p. �

We are now in the position to state and prove correct a result that allows us to take
over the bounds for Precision and Accuracy derived in Theorems 5.2 and 5.3:

Lemma 5.15 (C1,C2). Each correct node p in C with input channels implements a Gen-
eral Join (with respective thresholds 〈(2f + 1)th0 , (f + 1)th1 〉) with input channels, where
the delay bounds τ±

Diff of the General Join are replaced by the bounds τ±

Diff + [0, ε], for an
arbitrarily small ε > 0.

Proof. Consider a correct node p in C. By Lemma 5.14, Assumption 1 holds for p. We
may thus apply Theorem 4.1. The lemma follows. �

From Lemma 5.15, it follows that Theorems 5.2 and 5.3 hold for the low-level solution
as well, provided that (i) each occurrence of τ+

Diff has to be replaced by τ+
Diff + ε for an

arbitrarily small ε > 0, and (ii) Constraints C1, C2 and C3 hold.

Our final Theorems 5.4 and 5.6 establish bounds on the size of the local and remote
pipeline. We start with a technical Lemma 5.16, which bounds the maximum time some tick
can exist in the system before it is eliminated by the Diff-Gate in all pipepairs associated
with correct nodes.

Lemma 5.16 (C1, C2, C3). If the first correct node has sent tick k > 2 by time t, then
every correct node p ∈ C has removed tick k − 2 from all its pipepairs corresponding to
correct nodes q ∈ C by time t + Tdel, with

Tdel := TQS + max{τ+
loc, τ

+
rem} + τ+

Diff, (5.45)

106 5.2 Correctness Proofs

or, which is equivalent

#dp,q(t + Tdel) > bmax(t) − 2.

Proof. Consider a pair of pipes (p, q) located at p ∈ C, corresponding to a different q ∈ C.
Furthermore, assume that bmax(t) > k holds at time t. We are interested in how much
later tick k − 2 is removed from this pipepair:

Clearly, tfirst,k 6 t, and by (QS),

tp,k−1 6 tlast,k−1

6 tfirst,k + TQS and (5.46)

tq,k−1 6 tfirst,k + TQS. (5.47)

We can now apply Lemma 4.8 in combination with (5.46) and (5.47), which reveals that
tick k − 2 is removed from the pipepair at p corresponding to q by time trmv,k−2, with

trmv,k−2 6 max{tp,k−1 + τ+
loc, tq,k−1 + τ+

rem} + τ+
Diff

6 tfirst,k + TQS + max{τ+
loc, τ

+
rem} + τ+

Diff

= tfirst,k + Tdel

6 t + Tdel.

�

Theorem 5.4 (C1, C2, C3). (Local pipeline size bound). For every pair of distinct
correct nodes p, q ∈ C, #sloc

p,q(t) is bounded by Sloc, with

Sloc := max

{⌈
Tdel − τ−

loc

T−

first

⌉
+ 2,

⌊
Tdel − τ−

loc

T−

first

⌋
+ 3

}
. (5.48)

Proof. Choose two arbitrary distinct correct node p, q and consider #sloc
p,q(t). We distinguish

between two cases for t: (i) t > tfirst,2 + Tdel and (ii) t < tfirst,2 + Tdel.

ad (i):

#sloc
p,q(t) = #rloc

p,q(t) − #dp,q(t)

6 #bp(t − τ−

loc) − #dp,q(t)

6 bmax(t − τ−

loc) − #dp,q(t)

=
(
bmax(t − τ−

loc) − bmax(t − Tdel)
)

+ (bmax(t − Tdel) − #dp,q(t))

6

⌈
Tdel − τ−

loc

T−

first

⌉
+ 2 (5.49)

6 Sloc,

Chapter 5: Fault-tolerant Tick Generation 107

where (5.49) follows from applying Lemma 5.9 and Lemma 5.16.

ad (ii): Since #srem
p,q (t) 6 #rrem

p,q (t) + 1 must always hold, because the local pipe may
contain at most all ticks received so far plus the initial tick 0, we obtain

#sloc
p,q(t) 6 #rloc

p,q(t) + 1

6 #bp(t − τ−

loc) + 1

6 bmax(t − τ−

loc) + 1

6 bmax(tfirst,2 + Tdel − τ−

loc) + 1

6
(
bmax(tfirst,2 + Tdel − τ−

loc) − bmax(tfirst,2)
)

+ bmax(tfirst,2) + 1 (5.50)

6

⌊
Tdel − τ−

loc

T−

first

⌋
+ 3 (5.51)

6 Sloc,

where (5.51) follows from Lemma 5.8. �

In order to derive a bound for the size of the remote pipelines, we can use exactly the
same derivation based on Lemma 5.16 as used in Theorem 5.4 (with remote delays instead
of local delays) to obtain the following Theorem 5.5.

Theorem 5.5 (C1, C2, C3). (Remote pipeline size bound). For every pair of distinct
correct nodes p, q ∈ C, #srem

p,q (t) is bounded by Srem, with

Srem := max

{⌈
Tdel − τ−

rem

T−

first

⌉
+ 2,

⌊
Tdel − τ−

rem

T−

first

⌋
+ 3

}
. (5.52)

However, the resulting bound is overly large in most parameter settings: In order to
maximize #srem

p,q (t), we need a scenario where the local node p is slow and the remote
node q is fast. The time Tdel established by Lemma 5.16 is too conservative for this case,
however, since it actually considers q being slow. The following Lemma 5.17 provides a
refined result.

Lemma 5.17 (C1, C2, C3). If k := bmax(t) > 2, then for every pair of correct nodes
p, q ∈ C, with

T loc
del := TQS + τ+

loc + τ+
Diff, (5.53)

t′ := t + T loc
del − τ+

rem − τ+
Diff,

k′ := #bq(t
′),

the following holds:

(a) If k′ > k − 1, then tick k − 2 is removed from pipepair (p, q) by time t + T loc
del , i.e.,

#dp,q(t + T loc
del) > bmax(t) − 2.

108 5.2 Correctness Proofs

(b) If k′ 6 k − 2, then tick k′ − 1 is removed from pipepair (p, q) by time t + T loc
del , i.e.,

#dp,q(t + T loc
del) > #bq(t

′) − 1.

Proof. To prove case (a), assume k′ > k − 1, which implies tq,k−1 6 t′. Hence,

tq,k−1 + τ+
rem + τ+

Diff 6 t′ + τ+
rem + τ+

Diff = t + T loc
del ,

and, by (QS) and our assumption tfirst,k 6 t,

tp,k−1 + τ+
loc + τ+

Diff 6 tfirst,k + TQS + τ+
loc + τ+

Diff 6 t + T loc
del . (5.54)

We can now apply Lemma 4.8, which reveals that tick k − 2 is removed from the pipepair
(p, q) by time trmv,k−2, with

trmv,k−2 6 max{tp,k−1 + τ+
loc, tq,k−1 + τ+

rem} + τ+
Diff

6 t + T loc
del

(5.55)

as asserted.

To prove case (b), assume k′ 6 k − 2, which implies tq,k−1 > t′ and tq,k′ 6 t′. Hence,

tq,k′ + τ+
rem + τ+

Diff 6 t′ + τ+
rem + τ+

Diff = t + T loc
del ,

tq,k−1 + τ+
rem + τ+

Diff > t′ + τ+
rem + τ+

Diff = t + T loc
del .

Since (5.54) also holds in case (b) and trivially tp,k′ 6 tp,k−1, we find

tp,k′ + τ+
loc + τ+

Diff 6 t + T loc
del .

We can again apply Lemma 4.8, which reveals that tick k′−1 is removed from the pipepair
(p, q) by time trmv,k′−1, with

trmv,k′−1 6 max{tp,k′ + τ+
loc, tq,k′ + τ+

rem} + τ+
Diff

6 t + T loc
del .

as asserted. �

Now we can establish our final major Theorem 5.6.

Theorem 5.6 (C1, C2, C3). (Remote pipeline size bound). For every pair of distinct
correct nodes p, q ∈ C, #srem

p,q (t) is bounded by Srem, with

Srem := max

{⌈
T loc

del − τ−

rem

T−

first

⌉
+ 2,

⌊
T loc

del − τ−

rem

T−

first

⌋
+ 3,

⌈
τ+
rem − τ−

rem + τ+
Diff

Tmin

⌉
+ 1

}
. (5.56)

Chapter 5: Fault-tolerant Tick Generation 109

Proof. Choose two arbitrary distinct correct nodes p, q and consider #srem
p,q (t). Since we

will apply Lemma 5.17, we distinguish the following cases:

Case (a): Suppose t > tfirst,2 + T loc
del and #bq(t − τ+

rem − τ+
Diff) > bmax(t− T loc

del) − 1. Then,

#srem
p,q (t) = #rrem

p,q (t) − #dp,q(t)

6 #bq(t − τ−

rem) − #dp,q(t)

6 bmax(t − τ−

rem) − #dp,q(t)

=
(
bmax(t − τ−

rem) − bmax(t − T loc
del)
)

+
(
bmax(t − T loc

del) − #dp,q(t)
)

6

⌈
T loc

del − τ−

rem

T−

first

⌉
+ 2 (5.57)

6 Srem,

where (5.57) follows from applying Lemma 5.9 and Lemma 5.17.

Case (b): Suppose t > tfirst,2 + T loc
del and #bq(t − τ+

rem − τ+
Diff) 6 bmax(t− T loc

del)− 2. Then,
we find

#srem
p,q (t) = #rrem

p,q (t) − #dp,q(t)

6 #bq(t − τ−

rem) − #dp,q(t)

= #bq(t − τ−

rem) − #bq(t − τ+
rem − τ+

Diff)

+ #bq(t − τ+
rem − τ+

Diff) − #dp,q(t)

6

⌈
τ+
rem − τ−

rem + τ+
Diff

Tmin

⌉
+ 1 (5.58)

6 Srem,

where (5.58) follows from Lemma 5.10. Note that τ+
rem− τ−

rem + τ+
Diff is always non-negative.

Case (c): Suppose t < tfirst,2 + T loc
del . Since #srem

p,q (t) 6 #rrem
p,q (t) + 1 must always hold,

because the remote pipe may contain at most all ticks received so far plus the initial tick 0
we obtain

#srem
p,q (t) 6 #rrem

p,q (t) + 1

6 #bq(t − τ−

rem) + 1

6 bmax(t − τ−

rem) + 1

6 bmax(tfirst,2 + T loc
del − τ−

rem) + 1

6
(
bmax(tfirst,2 + T loc

del − τ−

rem) − bmax(tfirst,2)
)

+ bmax(tfirst,2) + 1 (5.59)

6

⌊
T loc

del − τ−

rem

T−

first

⌋
+ 3 (5.60)

6 Srem,

where (5.60) follows from Lemma 5.8. �

110 5.3 Remarks on the TG-Alg Solution

5.3 Remarks on the TG-Alg Solution

At the beginning of this chapter, it was argued that the DARTS distributed tick generation
solution provides synchronously clocked functional units with local clock signals that are
synchronized to each other in spite of up to f faulty TG-Algs. Different functional units can
also exchange data over a communication medium distinct from the TG-Net either (i) by
appropriately downscaling their local clock to non-overlapping macro-tick rounds or (ii) by
communication via bounded-size ring-buffers. This is enabled by bounded precision which
both allows constant factor clock division and read/write-conflict-free communication via
the shared buffers. The latter approach has been described and analyzed in detail by Polzer
et al. in [78].

There is, however, a different solution for the functional units to communicate with
each other, which combines the data communication with the proposed TG-Alg solution.
Remember that Chapter 4 was concerned with the modeling of asynchronous fault-tolerant
circuits. There it was argued that one possible solution to perform the modeling is to
partition the circuit under consideration into a control part and a data-dependent part.
With this in mind, the proposed TG-Alg solution is not only a circuit that solves the tick
generation problem, but can be viewed as a set of interconnected General Joins, forming
the control part of a fault-tolerant asynchronous design. The idea now is to add the data-
dependent circuit to the TG-Alg solution, i.e., to attach data word k > 1 to tick k. This
can be done in a way analogous to a method that has been described by Sutherland in [92]
for micropipeline structures:

• Each stage of a micropipeline provides a clock signal for an m-bit wide register, where
m is the bit width of the data path. That is, beneath each of the local and remote
pipes of the +/− counters a data path is added.

• Each point-to-point connection of the TG-Net is extended by an m-bit wide bus over
which the data of the sending TG-Alg is provided to the respective remote pipe of
the receiving TG-Alg.

• The Tick Generation unit is extended by a Data Generation unit, which merges all
the data attached to the remote k received the other TG-Algs, and generates the data
attached to the newly broadcast tick k (respectively k+1, depending on whether the
f + 1 or 2f + 1 rule fired).

Short Note on Transient Failures. A straightforward simplification of the resulting
circuit is to remove the data registers from all the local pipes of the +/− counters, since
the local pipes’ sole purpose is to memorize how many ticks have already been locally
broadcast (that is, to store the anti-tokens). Thus, attaching the locally generated data to
all of these ticks seems to be unnecessary.

There is an important generalization, however, where one could profit from data at-
tached to the ticks residing in the local pipes: In this work we only considered static failure

Chapter 5: Fault-tolerant Tick Generation 111

models , that is, (i) modules in a faulty FCR may behave arbitrarily during the whole ex-
ecution and (ii) the number of faulty FCRs is upper bounded by f per execution. We
therefore do not benefit form the difference of transient and permanent faults, but treat
them equally. While this is appropriate for small mission-times, long-mission-time systems,
where a large number of transient failures can violate any f -bound, require dynamic failure
models , where all FCRs may be faulty during an execution, albeit not at the same time.

Unfortunately the proposed TG-Alg solution is non-straightforward to adapt to a dy-
namic fault model: in contrast to the high-level algorithm stated in Figure 5.3, the TG-Algs
only send event (differential) information in form of anonymous tick transitions, without
tick numbers attached, over the TG-Net. Thus the conversion back to the state infor-
mation, i.e., the tick number, has to be performed by the receiving TG-Alg. While this
approach is cheaper (we need only a single wire from each TG-Alg to each other TG-Alg),
it is the root of the “anonymity” problem. When two ticks are lost, say from node p
to node q, (either because of a temporarily faulty TG-Alg p or a temporarily faulty link
from p to q), the corresponding TG-Algs p and q remain unsynchronized forever, i.e., the
Diff-Gate of pipe (q, p) will match p’s remote tick k− 2 and q’s local tick k. Consequently,
transient faults are in fact converted into permanent faults. If we would, however, be able
to attach data to both ticks, the Diff-Gate could note the difference in the tick numbers.
A possible solution thus is to periodically use the data path for sending a tick identifier
attached to a tick. Since the identifiers are fed back into the local pipes, the Diff-gate can
detect transient faults when matching a tick with identifier in one pipe and a tick without
identifier in the corresponding pipe. A detailed discussion of a system of TG-Algs within a
dynamic failure model is outside the scope of this work and will be subject to future work.

5.4 Related Work

Further Reading: All work that has been published on the General Join Module has been
done in the context of solving the tick generation problem. Thus one could cite all the
work presented in Section 4.8, here, too. A short overview of the DARTS approach can be
found in [89]. The reader interested in the non-trivial implementation testing of DARTS
is pointed to the work of Steininger et al. [90] and Függer et al. [39].

Existing work: The publications on (fault-tolerant) clock synchronization are numerous.
Since one of the advantages of DARTS is to avoid external clock sources, we do not consider
the sizeable body of work on hardware-assisted fault-tolerant clock synchronization (see [81]
for an overview) here. The few approaches for distributed clock generation without external
clock sources we are aware of are essentially based on a (distributed) ring oscillator, which
is formed by gates arranged in a feedback loop. Instead of being dictated by a quartz,
the frequency of the generated clock signal is determined by the end-to-end delay of the
feedback loop. In [67], a regular structure of closed loops of an odd number of inverters
is used for distributed clock generation. Similarly, [27, 28] employs local tick generation
cells, arranged in a two-dimensional grid, with each cell inverting its output signal when

112 5.4 Related Work

its four inputs (from the up, down, left and right neighbor) match the current clock output
value. Since clock synchronization theory [25] reveals that high connectivity is required
for bounded synchronization tightness in the presence of failures, however, the sparsely
connected designs proposed in [27, 28, 67] are not fault-tolerant.

Chapter 6

Fault Containment

IN CHAPTER 4, an implementation of a general join module with input channels was
given. Although the presented implementation uses only low-level building blocks, which

are easier to implement in hardware, one could imagine implementing its basic modules by
even more refined modules, comprising only very simple standard design building blocks
like combinatorial logic gates (NAND, NOR, etc.) and channels. It is the topic of this
chapter to investigate whether such very low-level implementations, which will be called
circuit implementations, exist for a given module like, e.g., the pivotal +/− counter module
of the TG-Alg.

Rather than searching for positive answers, Section 6.1 will be concerned with showing
that a Byzantine fault-tolerant circuit implementation does not exist for the so-called
short-pulse-filter module, which is important for building stable storage. Interestingly, the
degree of freedom of the faulty module that generates the input to be harmful is quite
modest: The capability to generate a single pulse of arbitrary length suffices. From there
it will be proven by reduction that a +/− counter module, as well as a TG-Alg module,
does not have a circuit implementation if just one of the inputs are allowed to be driven
by a Byzantine faulty module: a Byzantine faulty module can produce an erroneous extra
transition at a correct TG-Alg’s output and thus violate fault-containment. Clearly, this
negative answer is disappointing. However, there is still hope that the probability that
a Byzantine faulty module can produce a glitch of a correct TG-Alg module is very low.
This topic is investigated in Section 6.2.

6.1 Deterministic Fault Containment

In this section, we focus on the short-pulse-filter problem. We thus start with its definition:

113

114 6.1 Deterministic Fault Containment

6.1.1 The SPF Problem

We define the parametrized short-pulse-filer problem, abbreviated by SPF(Tmin, TL), with
parameters Tmin > 0 and TL > 0, as follows: Consider a module with one input port i and
one output port o. We will first define an environment for the input port.

Definition 6.1. Let EnvSPF be the set of executions of input port i that fulfill at least one
of the properties:

• There are constants tb > 0 and te > tb such that ĩ is well defined and

ĩ(t) =

0 if t ∈ [0, tb)

1 if t ∈ [tb, te]

0 if t ∈ (te,∞)

. (6.1)

We will call this input ĩ(t) a 〈tb, te〉-pulse.

• The input is a constant-0 signal, i.e., for all t > 0,

ĩ(t) = 0.

�

Definition 6.2. The SPF(Tmin, TL) problem is defined by: For every single input execution
î in EnvSPF, let the set of valid output executions EO (̂i) for input î be those ô, which are
non-Zeno (thus we may use state functions for their description) and further fulfill the
properties:

(No short pulse) The output does not contain a short pulse, i.e.,

∀t1 < t2 < t3 ∈ T : (õ(t1) = 0 ∧ õ(t2) = 1 ∧ õ(t3) = 0) ⇒ (t3 − t1 > Tmin)

(No generation) If ĩ(t) = 0 for all t ∈ T , then õ(t) = 0 for all t ∈ T .

(No muteness) If the input pulse length ∆ := te − tb > TL, then the output must not be
mute, i.e.,

∃t ∈ T : õ(t) = 1. (6.2)

�

Chapter 6: Fault Containment 115

We say that module M solves the SPF problem in environment EnvSPF iff there exist
Tmin > 0 and TL > 0 such that M solves the SPF(Tmin, TL) problem in environment
EnvSPF. Further, since we are only interested in solving the SPF problem in environment
EnvSPF and no other environments, we abbreviate “M solves SPF in environment EnvSPF”
with simply: “M solves SPF”.

Note that the properties in Definition 6.2 do not prevent the output to oscillate, i.e.,
make transitions arbitrarily often, or steadily stay at 1 after a transition has occurred at
the input signal. Clearly the above properties are an insufficient restriction of the allowed
behavior of real-world short-pulse-filters. Those are typically intended to filter not only
one short pulse, but multiple short pulses through its mission time, and are thus required
neither to oscillate nor to produce a constant 1 from some t ∈ T on. Here, however, we
are interested in impossibility results and we will show that even a short-pulse-filter that
must adhere to only the above properties is does not admit a circuit implementation.

6.1.2 Circuit Implementation of a Module

The main goal of this chapter will be to show that there is no circuit implementation of
the SPF module in environment EnvSPF. For this purpose, we formally define a circuit
implementation module.

Given a module M , we are interested in whether there exists a physical implementation
of M . Typically, a positive answer is given if the hardware designer comes up with a correct
implementation— that is a collection of well-known basic gates (like NAND and NOT) and
their wiring that behaves as the module M . In this section we are mainly concerned with
impossibility results on the physical implementability of a module M , i.e., if we are able
to deduce that no circuit implementation for M exists, this should suggest that there
does not exist a physical implementation. By contrast, if we came up with a circuit
implementation in our framework, this would not necessarily tell us whether there really
exists a feasible physical implementation: Our solution might require ideal components
that are not available in practice: constant delay channels (that do not jitter in time) and
arbitrarily large (zero-delay) Boolean function modules.

We start our formalization of the concept of “circuit implementability” by introduc-
ing the circuit implementation graph, which will be helpful later on in specifying circuit
implementations.

Circuit Implementation Graph. A circuit implementation graph G = 〈I, L, O, fB, E, f0〉
is a directed graph with a finite set of nodes V = I ∪ L ∪ O (input nodes I, local nodes L
and output nodes O) and a finite set of weighted edges E ⊆ V × V × (0,∞) between its
nodes. The intended meaning of 〈a, b, δ〉 ∈ E is that there is a channel with delay (exactly)
δ from node (port) a to node (port) b. We demand that nodes in I have in-degree 0 and
nodes in L ∪ O have in-degree at least 1. Further, every node v ∈ (L ∪ O) has assigned
a finite propositional formula fB(v) to it with its propositional variables from the set of

116 6.1 Deterministic Fault Containment

incoming edges Ev = {〈x, v, δ〉 | 〈x, v, δ〉 ∈ E}. The meaning of fB(v) is the instantaneous
output of v computed from the current output of its incoming channels. Function f0 is a
from E to B and assigns every edge e an initial value f0(e). The meaning of f0(e) is the
initial value of the channel e.

Example 6.1. An example circuit implementation graph G = 〈{i}, {a}, {b}, fB, E, f0〉
has nodes V = {i, a, b} and edges E = {〈i, a, 1〉, 〈a, a, 2〉, 〈a, b, 1〉}. Further let fB(a) =
〈a, a, 2〉 ∧ 〈i, a, 1〉, as well as fB(b) = ¬〈a, b, 1〉. The initial values are f0(〈i, a, 1〉) = 0,
f0(〈a, a, 2〉) = 1 and f0(〈a, b, 1〉) = 1. See Figure 6.1 for a visualization of the graph.

bai
1

2

1

Figure 6.1: Circuit implementation graph of Example 6.1

Circuit Implementation Module. We define a circuit implementation module to be
a composed module MI = Cm(I, L′, O, A), specified by a circuit implementation graph
G = 〈I, L, O, fB, E, f0〉, where the set of local ports L′ and the architecture A (comprising
only of channels and Boolean function modules) are defined as follows:

(i) L′ := L ∪ E, i.e., the set of local ports contains all local ports of G and additionally
one port per edge.

(ii) For every edge e = 〈a, b, δ〉 ∈ E there is a channel 〈a, 〈a, b, δ〉, δ, δ, f0(e)〉 in A, with
delay exactly δ and initial value determined by the function f0.

(iii) For every node v ∈ (L ∪ O) there is a Boolean function module 〈Ev, v, fB(v)〉, with
input ports from the set Ev of incoming edges of v and Boolean function fB(v), in A.

Example 6.2. A visualization of the circuit implementation module specified by the circuit
implementation graph of Example 6.1, is depicted in Figure 6.2: ports are displayed by full
dots together with their names. A channel with delay δ and initial value v0 is drawn as a
rounded rectangle with caption δ(v0) and Boolean function blocks are visualized as rectangles.

We are now ready to specify what it means for a module MI to be a circuit imple-
mentation of module M (in environment Env): it must hold that both MI is a circuit
implementation module and MI implements M (in environment Env).

Given a module M (and environment Env), we say, that M has a circuit implementa-
tion, iff there exists a module MI that is a circuit implementation of M (in environment

Chapter 6: Fault Containment 117

b
fB(b)

〈a, b, 1〉
1(1)

a
fB(a)〈a, a, 2〉

〈i, a, 1〉

2(1)

1(0)

i

Figure 6.2: Circuit implementation module of Example 6.1

Env). Carefully note that the concept of a circuit implementation captures physical im-
plementability in terms of purely binary building blocks, but not in terms of analogue
components. Further, it is important to notice that the environment plays a key role when
analyzing whether a given module has a circuit implementation module or not. Consider
the following example:

Example 6.3. The perfect C-Element problem, namely CELEMENT(v0, δ), where v0 ∈
B is the initial value and δ > 0 is the propagation delay is the problem 〈{a, b}, {o}, E〉,
with E defined by: For all non-Zeno input executions ein of ports {a, b}, the set of possible
output executions EO(ein) consists of those ô, for which: For all t ∈ T :

〈0, v0〉 ∈ ô and

ã(t) ∧ b̃(t) ⇔ 〈t + δ, 1〉 ∈ ô and

(¬ã(t) ∧ ¬b̃(t)) ⇔ 〈t + δ, 0〉 ∈ ô.

Notice that in the environment Env1 defined by

∀t ∈ T : ã(t) = b̃(t) = 0 (6.3)

it can easily be proven that a Boolean function module that always produces 0 implements
CELEMENT(0, δ) for arbitrary δ. Further, considering the environment Env2, where

ã always changes before (and remains steady until) b̃ changes, a single identity gate with

input b and output y (Boolean function module Bfm({b}, o, ỹ(t) = b̃(t))) succeeded by a
constant delay channel Ch(y, o, δ, δ, 0) implements CELEMENT(0, δ). Clearly for more
complex environments, more complex implementation modules will be needed.

An interesting question that will be answered later on in this chapter is whether
CELEMENT(0, δ) has a circuit implementation for less restricted input environments
at all. A positive answer here is of severe importance when trying to physically build a
module like the CELEMENT(0, δ) module that can cope with faulty (Byzantine) input
environments.

A first step towards this direction is the characterization of a circuit implementation
module’s properties.

118 6.1 Deterministic Fault Containment

Every Circuit Implementation Module is non-Zeno. We will now deduce that a
circuit implementation module cannot produce Zeno traces out of non-Zeno traces. We
start with auxiliary lemmata which state that channels and Boolean function modules
cannot introduce Zeno behavior.

Lemma 6.1. Let C = Ch(i, o, δ, δ, v0) be a channel with constant delay δ ∈ (0,∞) and
some initial value v0 ∈ {0, 1}. If the input event trace î is non-Zeno until time t ∈ T , then
the output event trace ô is non-Zeno until time t + δ.

Proof. Assume by contradiction that the input event trace is non-Zeno until t, but the
output event trace is Zeno by time t + δ. By definition, this implies that infinitely many
transitions occur on port o during time [0, t + δ], that is, there is an infinite series ((aj)j∈N)
of successive alternating-value events aj = 〈tj, vj〉, with tj ∈ [d(0), t + δ], occurring at o.
Because of (3.10) and d being a bijection, an infinite series of successive, alternating-value,
events bj = 〈t′j, v

′
j〉 with j ∈ N and bj .t

′
j ∈ [d−1(d(0)), d−1(t + δ)] = [0, t] must have occurred

at i, a contradiction to the assumption. �

Lemma 6.1 enables us to safely make use of the state function in the channel’s behavioral
description if its input is non-Zeno. In the case where we do not mind about the exact
input trace and corresponding output traces, as long as they behave equivalently in terms
of state, (3.9) and (3.10) become

õ(t) =

{
v0 if t ∈ [0, d(0))

ĩ(d−1(t)) if t > d(0)
. (6.4)

An analogous result for Boolean function modules, namely, that Boolean function mod-
ules cannot produce Zeno behavior out of non-Zeno behavior holds, too:

Lemma 6.2. Let B = Bfm(I, o, f) be a Boolean function module. If all input event traces
î, where i ∈ I, are non-Zeno until time t ∈ T , then the output event trace ô is non-Zeno
until time t.

Proof. Assume that all input event traces are non-Zeno until t. Thus for every input
in I = {x1, . . . , xn} there exists a counting function #xj until time t. By induction on∑

16j6n #xj(t) it can be shown that

#o(t) 6
∑

16j6n

#xj(t), (6.5)

i.e., that the number of transitions at the output port is at most the number of transitions
occurring at all input ports. By definition of the non-Zeno property, #xj(t) is finite for
each 1 6 j 6 n. Thus by (6.5), #o(t) is finite or, which is equivalent, o is non-Zeno until
time t. �

Chapter 6: Fault Containment 119

Combining Lemmata 6.1 and 6.2 we can deduce the following result:

Lemma 6.3. Let MI be a circuit implementation module with circuit implementation
graph G and let δmin be the minimum of all its channels’ delay times, that is, δmin :=
min{δ | 〈a, b, δ〉 ∈ G.E}. If the input execution ein is non-Zeno until time t ∈ T , then the
output execution eout is non-Zeno until time t + δmin.

Proof. Assume that the input execution is non-Zeno until time t. Now assume by con-
tradiction that the module’s execution is Zeno by time t + δmin. Thus at least one of the
non-input ports has an event trace that is Zeno by t. Let o be among the “earliest” be-
coming Zeno, in the sense that for some tZen ∈ (0, t] and some ε ∈ (0, δmin) it holds that:
all signals of non-input ports are non-Zeno until time tZen − ε > 0 and ô is Zeno by time
tZen. Such a tZen and ε must exist, since all signals of non-input ports are non-Zeno until
time 0 and at least one is Zeno by time t. To determine ε, we approach from both sides
the point where at least one port’s signal becomes Zeno and stop approaching when the
difference between the left and right bound is ε < δmin.

Since o is a non-input port, it is the output of either (i) a Boolean function module or
(ii) a channel. In case of (i), we apply Lemma 6.2, yielding that at least one of its inputs
must have been non-Zeno by time tZen. Because every input of a Boolean function module
is the output of a channel, (i) has been reduced to (ii). In case of (ii), let o = 〈a, b, δ〉.
Application of the negation of Lemma 6.1 implies that â must have been Zeno by time
tZen − δ 6 tZen − δmin < tZen − ε, a contradiction. �

Lemma 6.3 is of great importance for the subsequent analysis, as it allows to handle
circuit implementation modules and their components by means of status functions rather
than event traces. This considerably simplifies our proofs.

6.1.3 Dependence graph

We have introduced the concept of a circuit implementation graph, which allows to formally
describe implementation modules. In this section we will concentrate on a technique for
arguing about executions of circuit implementation modules. For this purpose we introduce
the dependence graph. Given a circuit implementation module M (with output port o) and
an input execution, a natural question is now to determine the value of õ(τ) for a given τ
in T . Intuitively, the dependence graph provides some means to answer this question, by
providing us with all input signal values õ(τ) depends on:

Consider a circuit implementation module M with output o (possibly among others)
specified by the circuit implementation graph G. Further let τ ∈ T be an arbitrary instant
in time. Then the dependence graph D(G, o, τ) = 〈V, K〉 is a directed graph with the set
of nodes V and the set of edges K defined as

V :=
⋃

i>0

{〈x, i〉 | x ∈ Vi} K :=
⋃

i>0

{〈〈x, i + 1〉, 〈y, i〉〉 | 〈x, y〉 ∈ Ki+1}, (6.6)

120 6.1 Deterministic Fault Containment

where the sets Vi, Ki make up the layers i of the dependence graph and are constructed
by the rules defined below. In order to disambiguate between two identical nodes x in two
different layers i and i′, we extend the nodes in V with the layer number, obtaining 〈x, i〉
and 〈x, j〉. Every x actually is a tuple 〈p, δ〉 where p is a port (output of a channel or
function module) and δ is a time. In the following we define the sets Vi and Ki, for i > 0,
as the smallest sets for which

• Base case (V0, K0):

– V0 = {〈o, τ〉}

– K0 = ∅

• Function module iteration step (Vi, Ki with i ∈ {1, 3, . . .}): For all 〈s, τ ′〉 ∈ Vi−1 with
arbitrary τ ′ and s ∈ (G.L ∪ G.O):

– For all edges e = 〈a, s, δ〉 ∈ G.E with arbitrary a and δ: 〈e, τ ′〉 ∈ Vi and
〈〈e, τ ′〉, 〈s, τ ′〉〉 ∈ Ki.

• Channel iteration step (Vi, Ki with i ∈ {0, 2, . . .}): For all 〈e, τ ′〉 ∈ Vi−1 with arbi-
trary τ ′ and e = 〈a, s, δ〉 ∈ G.E:

– If τ ′ − δ > 0: 〈a, τ ′ − δ〉 ∈ Vi and 〈〈a, τ ′ − δ〉, 〈e, τ ′〉〉 ∈ Ki.

Given a circuit implementation module M = 〈I, O, E〉 with output o ∈ O and its
dependence graph D(G, o, τ) = 〈V, K〉, we call a node x ∈ V a leaf , denoted by x ∈ Lτ ,
iff x has no incoming edges in K. Nodes that are not leafs are called intermediate nodes.
We further call node x an input leaf , denoted by x ∈ LI

τ , iff x ∈ L and x is of the form
x = 〈〈s, τ ′〉, i〉, with s ∈ I (i.e., it is a module input) and arbitrary i and τ ′. Note that
non-input-leaf nodes are those where a further channel iteration step would have led to
τ ′ − δ < 0. We further observe:

Observation 6.1. Consider a circuit implementation module M and a dependence graph
D = 〈V, K〉. For each intermediate node x = 〈s, τ〉 in Vi, with arbitrary port s, τ > 0 and
i > 0, the value s̃(τ) is a function of the values s̃′(τ ′), where 〈〈s′, τ ′〉, i + 1〉 is a child of
〈〈s, τ〉, i〉 in graph D.

Observation 6.1 states that the value of an intermediate node just depends on the value
of its children— justifying the term “dependence graph”. We will next consider the value
of the leafs: notice that leafs 〈x, i〉, i > 0, are always of one of two kinds: either (i)
〈x, i〉 = 〈〈s, τ〉, i〉 is an input leaf, or (ii) 〈x, i〉 = 〈〈e, τ〉, i〉, for e = 〈a, b, δ〉 in G.E and
τ < δ and a, b being ports of the circuit implementation module M .

In case of (i), the value of 〈x, i〉 is given by s̃(τ) and in case of (ii), the value of 〈x, i〉 is

given by ˜〈a, b, δ〉(τ). Since τ < δ, the value is equal to the initial value of the channel with
input port a, output port b and delay δ. We thus observe:

Chapter 6: Fault Containment 121

Observation 6.2. Consider a circuit implementation module M and a dependence graph
D = 〈V, K〉. For each leaf 〈x, i〉 = 〈〈s, τ〉, i〉 in V , with arbitrary port s, τ > 0 and i > 0,
the value s̃(τ) is either (i) the status of input port s at time τ , or (ii) the initial value of
one of M ’s channels.

We will exemplify all this by means of a simple dependence graph:

Example 6.4. An example dependence graph is depicted in Figure 6.3. It is the dependence
graph D(G, b, 7) with G from Example 6.1. The leafs are depicted as filled nodes, while
intermediate nodes are empty. To enhance readability, we denote node 〈a, τ〉 ∈ Vi with the
string 〈a(τ), i〉 (although related, not to confuse with the value ã(τ)).

〈b(6), 0〉〈〈a, b, 1〉(6), 1〉〈a(5), 2〉

〈〈a, a, 2〉(5), 3〉

〈〈i, a, 1〉(5), 3〉

〈i(4), 4〉

〈a(3), 4〉

〈〈a, a, 2〉(3), 5〉

〈〈i, a, 1〉(3), 5〉

〈i(2), 6〉

〈a(1), 6〉

〈〈a, a, 2〉(1), 7〉

〈〈i, a, 1〉(1), 7〉

〈i(0), 8〉

layer 0layer 1. . .

Figure 6.3: Dependence graph D(G, b, 7) of Example 6.4

We will next prove a series of lemmata, which provide us with basic properties of
dependence graphs. We start with:

Lemma 6.4. For every node 〈x, i〉 ∈ V of the dependence graph D(G, o, τ), the set of paths
P = {p1, p2, . . . } from 〈x, i〉 to the root 〈〈o, τ〉, 0〉 is non empty and the length of all paths
is i.

Proof. The proof is by induction on the layer i > 0.

Begin (i = 0): Node 〈〈o, τ〉, 0〉 clearly is reachable from 〈〈o, τ〉, 0〉 over the empty path of
length 0. Since, by construction of D, there is no edge from a node 〈x, i〉 ∈ V , with i > 1
to node 〈〈o, τ〉, 0〉 the statement follows.

Step (i → i + 1) with i > 0: Assume that, for all nodes 〈x, i〉 ∈ V , the lemma holds. We
will show that for all 〈y, i + 1〉 ∈ V , the proposition holds, too.

By construction of V , since 〈y, i + 1〉 ∈ V , y ∈ Vi+1. By the minimality of Vi+1, y has
been added by one of the rules (i) or (ii). By these rules, there must be a node x ∈ Vi+1

with 〈y, x〉 ∈ Ki+1. Thus 〈〈y, i+1〉, 〈x, i〉〉 ∈ K. Therefore there is at least one path to the

122 6.1 Deterministic Fault Containment

root of length i + 1. Since 〈y, i + 1〉 has only outgoing edges to nodes 〈a, i〉 ∈ V , and all
〈a, i〉 have paths to the root of length exactly i, 〈y, i + 1〉 has paths to the root of length
exactly i + 1 only. �

Let D(G, o, τ) = 〈V, K〉 be a dependence graph. For all layers Vi = {〈s, τ ′〉 | 〈〈s, τ ′〉, i〉 ∈
V }, we define maxtime(i) as the maximum time-instant of any of the nodes in layer Vi,
that is,

maxtime(i) := max{τ ′ | 〈s, τ ′〉 ∈ Vi}. (6.7)

Recall the definition of δmin from Lemma 6.3, which is the minimum of all the channels’
propagation times. We now prove:

Lemma 6.5. Let D(G, o, τ) = 〈V, K〉 be a dependence graph. For any non empty layer Vi,
with i > 0:

(i) If i = 0, then maxtime(i) = τ .

(ii) If i ∈ {1, 3, . . .}, then maxtime(i) 6 maxtime(i − 1).

(iii) If i ∈ {0, 2, . . .}, then maxtime(i) 6 maxtime(i − 1) − δmin.

Proof. (i) is trivial.

(ii) In case i ∈ {1, 3, . . .}, if node 〈e, τ ′′〉 ∈ Vi, by the minimality of Vi, there must be a
node 〈s, τ ′′〉 ∈ Vi−1. By (6.7), τ ′′ 6 maxtime(i − 1).

(iii) In case i ∈ {0, 2, . . .}, if node 〈a, τ ′′〉 ∈ Vi, by minimality of Vi, there must be a node
〈e, τ ′′′〉 ∈ Vi−1, with τ ′′′ = τ ′′ + δ, for some channel delay δ. By (6.7), τ ′′′ 6 maxtime(i− 1)
and thus τ ′′ + δ 6 maxtime(i − 1), i.e., τ ′′ 6 maxtime(i − 1) − δmin. �

Lemma 6.6. Any dependence graph D(G, o, τ) = 〈V, K〉 has a finite number of nodes V
and edges K.

Proof. The number of nodes Vi and edges Ki is finite for every finite i > 0: V0 and K0 are
finite and every node x ∈ Vi adds only finitely many nodes y (which are all connected to
x) to Vi+1 by rules (i), resp., (ii). Thus the finiteness of a single layer follows by induction.

Further because of Lemma 6.5 in conjunction with δmin > 0 and the fact that nodes
always have time values > 0, D has only finitely many non empty layers. Thus the total
number of nodes V and edges K is finite. �

Chapter 6: Fault Containment 123

Dependence Graphs with equivalent Structures. Consider a circuit implementa-
tion module MI with circuit implementation graph G. We call two of its dependence
graphs, D(G, o, τ) = 〈V, K〉, for τ > 0, and D(G, o, τ + ε) = 〈V ′, K ′〉, for ε ∈ R, equivalent

in structure, denoted by D(G, o, τ)
ϕε

≈ D(G, o, τ + ε) or shortly D(G, o, τ) ≈ D(G, o, τ + ε),
iff there exists a bijection ϕε : V → V ′ such that,

(i) ϕε(〈〈a, τ ′〉, i〉) = 〈〈a, τ ′ + ε〉, i〉 and

(ii) 〈x, y〉 ∈ K ⇔ 〈ϕε(x), ϕε(y)〉 ∈ K ′.

We are now ready to prove the central lemma on equivalence, namely the indistin-
guishability of two input executions at two successive times τ ∈ T and τ + ε, for ε ∈ R, at
some output port o of a circuit implementation module:

Lemma 6.7. Let MI = 〈I, O, E〉 be a circuit implementation module with o ∈ O and
D(G, o, τ) = 〈V, K〉 respectively D(G, o, τ + ε) = 〈V ′, K ′〉 its dependence graphs at times
τ respectively τ + ε. Further let ein and e′in be two input executions of ports I, and eout ∈
EO(ein) and e′out ∈ EO(e′in) be the corresponding output executions. If

(i) D
ϕε

≈ D′ and

(ii) for all input leafs 〈〈s, τ ′〉, i〉 ∈ V and ϕε(〈〈s, τ
′〉, i〉) = 〈〈s, τ ′ + ε〉, i〉 ∈ V ′, it holds

that s̃(τ ′) in ein is identical to the value s̃(τ ′ + ε) in e′in,

then õ(τ) in eout is identical to õ(τ + ε) in e′out.

Since the proof is rather technical and lengthy, only the proof idea will be presented.
Because of Lemma 6.4 and Lemma 6.6 we may use induction on the depth i > 0 to show
that, for all nodes 〈x, i〉 in V the value of node x in the execution of M corresponding
to input execution ein is identical to the value of node ϕε(〈x, i〉) in the execution of M
corresponding to input execution e′in.

The induction base (i = max{i | 〈x, i〉 ∈ V }) thereby makes use of Observation 6.2
and the induction step (from i → i − 1 > 0) uses both Observation 6.2 for leafs and
Observation 6.1 together with the induction hypothesis for intermediate nodes.

From Lemma 6.7 we immediately obtain the following result:

Corollary 6.1. Let MI = 〈I, O, E〉 be a circuit implementation module with o ∈ O and
τ ∈ T a time. For an input execution ein of ports I, the set of possible output state values
õ(τ), MI might produce on ein, is a singleton.

Proof. Let D(G, o, τ) = 〈V, K〉 respectively D(G, o, τ + ε) = 〈V ′, K ′〉 be MI ’s dependence
graphs at times τ respectively τ + ε. Application of Lemma 6.7 with ε = 0 and input
executions e′in = ein, yields, that the set of possible output state values õ(τ) is a singleton.

�

124 6.1 Deterministic Fault Containment

Furthermore we observe from Lemmata 6.6, 6.5 and δmin > 0 that a dependence graph
can always be shifted by a small ε > 0 such that the resulting dependence graph has no
additional nodes.

Observation 6.3. Let MI = 〈I, O, E〉 be a circuit implementation module with o ∈ O and
D(G, o, τ) its dependence graphs for some time τ ∈ T . There exists a ε > 0 such that

D(G, o, τ + ε) has no leafs at time 0 and D(G, o, τ)
ϕε

≈ D(G, o, τ + ε).

6.1.4 Circuit Implementation Module Characterization

A circuit implementation module can be further characterized with respect to determinacy
and causal behavior. These characterizations then lead to first impossibility results, which
support the intuition on the non-existence of circuit implementations of modules that are
not deterministic in state or not causal.

We start with a formal definition: module M = 〈I, O, E〉 is deterministic (in environ-
ment Env), iff (i) in case it has no inputs (I = ∅), E = {eout} is a singleton and (ii) in
case it has inputs I, for each input executions ein ∈ Env, there is only one corresponding
output execution— that is, EO(ein) = {eout} is a singleton.

In case we do not care about the specific event trace but solely about the state of the
execution, we are not interested in determinism but rather determinism “modulo state”.
Formally, we thus define: module M = 〈I, O, E〉 is deterministic in state (in environment
Env), iff (i) in case it has no inputs (I = ∅), for each o in O, any two eout(o) and e′out(o),
where eout and e′out in E, are elements of the same equivalence class Event(õ), for some
status function õ; and (ii) in case it has inputs I, for each o in O and input execution
ein ∈ Env, any two eout(o) and e′out(o), where eout and e′out in EO(ein), are elements of the
same equivalence class Event(õ), for some status function õ.

Example 6.5. Let M = 〈∅, {o}, E〉 be a module with no inputs and output o only. Assume
that E = {eout, e

′
out} with eout(o) = {〈0, 0〉, 〈1, 0〉, 〈2, 1〉} and e′out(o) = {〈0, 0〉, 〈2, 1〉}. Then

M is not deterministic, but deterministic in state.

Lemma 6.8. Any circuit implementation module MI = 〈I, O, E〉 is deterministic in state
if I = ∅ and in the environment Env consisting of all non-Zeno input executions for I 6= ∅.

Proof. Assume that I 6= ∅: consider an arbitrary output o in O and time τ > 0. Further,
since Env consists of all non-Zeno input executions, the input’s state functions are well
defined. Application of Corollary 6.1 reveals that the set of possible output state values
õ(τ) is a singleton. Since this holds for arbitrary τ > 0, it follows that M is deterministic
in state in Env.

Otherwise, assume that I = ∅: by analogous arguments as above, it follows that M is
deterministic. �

Chapter 6: Fault Containment 125

We further say that module M = 〈I, O, E〉 with non empty I is causal in environment
Env iff there exists a function FO(·, ·), that maps an input execution prefix ein[6 t] and a
time t > 0 to a set {eout[6 t], e′out[6 t], . . . } of output execution prefixes, such that, for all
t > 0,

∀ein ∈ Env : ∀eout ∈ EO(ein) : eout[6 t] ∈ FO(ein[6 t], t) (6.8)

and

∀ein ∈ Env : ∀e′out[6 t] ∈ FO(ein[6 t], t) :

∃eout ∈ EO(ein) : eout[6 t] = e′out[6 t]. (6.9)

Both that causality is defined with respect to event traces only and not modulo state.
Intuitively, (6.8) makes sure that for a given input execution ein, FO contains at least the
prefixes (until time t) of all the possible output executions eout that M might produce when
fed with input ein. Thus (6.8) is a “minimum size” requirement on the set FO(ein[6 t], t)
and it can be simply fulfilled by letting FO(ein[6 t], t) be the set of all output execution
prefixes (until time t) with arbitrary behavior. By contrast, (6.9) is a “maximum size”
requirement on FO(ein[6 t], t). Given an input execution ein, it specifies that those output
execution prefixes that are in FO(ein[6 t], t) must be the prefix of an allowed output
execution for ein. As such, (6.9) alone can be simply fulfilled by letting FO(ein[6 t], t) = ∅.

We are now ready to prove that all circuit implementation modules are causal in non-
Zeno environments:

Lemma 6.9. Any circuit implementation module MI = 〈I, O, E〉 with non-empty I is
causal in the environment Env consisting of all non-Zeno input executions.

Proof. We define FO by its graph, namely

FO := {〈〈ein[6 t], t〉, Y (ein, t)〉 | ein ∈ Env, t > 0}, where

Y (ein, t) := {eout[6 t] | eout ∈ EO(ein)}.

In case FO is a function, both (6.8) and (6.9) are fulfilled by the construction of FO. It
thus remains to show that FO indeed is a function.

Assume, by contradiction, that FO is not a function. Then there exists some 〈ein[6 t], t〉
that is both mapped to set Y1 and set Y2 6= Y1. Thus there exist two input executions ein

and e′in as well as an output execution eout such that (i) eout in EO(ein), but eout not in
EO(e′in) and (ii) ein[6 t] = e′in[6 t].

By (i), there must exist an o in O and a time t′ 6 t, such that the value õ(t′) = x
for some x in B is allowed by module M when fed with ein but not allowed by M when
fed with e′in

1, i.e., õ(t′) = ¬x must hold for M when fed with e′in. Clearly, for all input

1Note that this must be the case, because o is the output of a Boolean function module, which allows
arbitrary behavior of ô as long as ô has the correct status. By Observation 3.1, EO(ein) and EO(e′in) do
not only differ by output executions that are equivalent in status.

126 6.1 Deterministic Fault Containment

executions in Env, the status function is well-defined. Application of Lemma 6.7 with
τ = t′ and ε = 0 reveals that the value õ(t′) is a function of t′ and the status of the input
ports at times 6 t′ only. However, the status of ein and e′in does not differ until time t′ by
(ii)— a contradiction to the different values õ(t′) for ein and e′in. �

6.1.5 Impossibility results

At the beginning of this chapter, the naturally arising question whether any module M has
a circuit implementation module MI that implements M (in a given environment Env)
was stated. With the characterizations of circuit implementation modules carried out in
the former section, we know that this is not the case: a module M that is non-deterministic
in state or acausal does not have a circuit implementation. As a simple example consider
the following module:

Example 6.6. Let PRED(T) = 〈{i}, {o}, E〉 be the “predictive step” problem with one
input i, one output o and prediction range T > 0. The input environment EnvT is defined
to consist of only those ĩ, for which either (i) or (ii) below holds:

(i) there exists a time tb > 2T , such that,

ĩ(t) =

{
0 if t ∈ [0, tb)

1 if t ∈ [tb,∞)
(6.10)

(ii) for all t > 0, ĩ(t) = 0.

For every input execution ein ∈ EnvT of type (i), we define the set of valid output executions
EO(ein) as those for which

∃to ∈ [0, tb − T] : õ(to) = 1 (6.11)

and for the input executions of type (ii), the only valid output execution is

õ(t) = 0. (6.12)

PRED does not have a circuit implementation. By Lemma 6.8 and Lemma 6.9
we know that all circuit implementation modules behave deterministically in state and
causally in the environment of non-Zeno input executions. Thus all that remains to show
for the impossibility is to prove acausality:

Lemma 6.10. For any T > 0, PRED(T) is not causal in the environment EnvT .

Chapter 6: Fault Containment 127

Proof. Assume by contradiction that PRED(T) = 〈I, O, E〉 is causal in environment
EnvT . Clearly, EnvT is non-Zeno.

Then there exists a function FO(ein[6 t], t) as defined in (6.8) and (6.9). Now consider
the two (non-Zeno) input executions ein and e′in:

ein(i) = î, with ĩ(t) =

{
0 if t ∈ [0, 2T)

1 if t ∈ [2T,∞)
, and

e′in(i) = î′, with ĩ′(t) = 0

together with the output executions

eout(o) = ô, with õ(t) =

{
0 if t ∈ [0, T)

1 if t ∈ [T,∞)
, and

e′out(o) = ô′, with õ′(t) = 0.

By definition of PRED, eout ∈ EO(ein). Thus by (6.8), eout[6 T] ∈ FO(ein[6 T], T).
Since ein[6 T] = e′in[6 T], eout[6 T] ∈ FO(e′in[6 T], T).

By (6.9), there must exist an output execution e′′out ∈ EO(e′in), for which, e′′out[6 T] =

eout[6 T]. Since ẽout(o)(T) = 1, however, this contradicts (6.12). �

SPF does not have a circuit implementation. After having shown the not too
surprising result that PRED does not have a circuit implementation in environment EnvT ,
we proceed with proving the main result of this chapter, namely, that SPF does not have
a circuit implementation in the single-pulse environment EnvSPF of Definition 6.1. Since
the environment EnvSPF consists only of (tb, te)-input pulses and the 0 signal, we are able
to make some simplifications first.

The impossibility proof for SPF will be by means of contradiction. To this end we
assume that a circuit implementation module MI exists, such that MI solves SPF in
environment EnvSPF. We will next characterize MI and introduce some useful notation:
let G be MI ’s circuit implementation graph and Dτ = 〈G, o, τ〉 be the dependence graph
for some time τ > 0. Recall that we denote the set of leafs of Dτ as Lτ and the set of input
leafs as LI

τ . Given that the input signal is a 〈tb, te〉-pulse, we partition the input leafs Lτ

into three sets: 0B, 1 and 0A, where,

0B := {〈i, τ ′〉 ∈ LI
τ | τ ′ < tb},

1 := {〈i, τ ′〉 ∈ LI
τ | τ ′ ∈ [tb, te]},

0A := {〈i, τ ′〉 ∈ LI
τ | τ ′ > te}.

The intended meaning of the sets 0B, 1 and 0A is to contain those input leafs with value
0 before the pulse, those with value 1 during the pulse, and those with value 0 after the
pulse, respectively.

128 6.1 Deterministic Fault Containment

Example 6.7. As an example consider Figure 6.4, which depicts a 〈2, 5〉-pulse together
with the positions of the input leafs of some dependence graph. Here, 0B = {〈i, 0〉, 〈i, 1〉},
1 = {〈i, 2.5〉, 〈i, 4〉, 〈i, 5〉} and 0A = {〈i, 5.9〉}.

ĩ(t)

t

ĩ(0) ĩ(1) ĩ(2.5) ĩ(4) ĩ(5) ĩ(5.9)

Figure 6.4: Input pulse with positions of input leafs marked.

We are now ready to prove:

Theorem 6.1. SPF does not have a circuit implementation in environment EnvSPF.

Proof. Assume by contradiction that SPF has a circuit implementation in environment
EnvSPF, namely module MI . The proof proceeds by the following steps: (i) A time t > 0,
where output õ(t) = 1, is determined that will be used to construct the glitch (arbitrarily
short pulse) of õ around t. (ii) The shortest input pulse that still produces õ(t) = 1 is
constructed. It is then shown by an indistinguishability argument that (iii) at an arbitrarily
short time before t and (iv) at an arbitrarily short time after t, the status of the output
must have been 0, contradicting the (No short pulse) property of the SPF problem in
Definition 6.2. The theorem follows.

(i) Finding a time where MI will glitch. Choose an arbitrary t̃b > 0, and choose
t̃e > t̃b such that MI reacts to input pulse 〈t̃b, t̃e〉 with õ, in the sense that there exists a
t′ ∈ T with õ(t′) = 1. Such a t̃e must exist because of (No muteness). Fix this t′ and
observe the dependence graph Dt′ = D(G, o, t′). The point of time where we intend to
generate a glitch will be called t′′ and is obtained as follows:

• In case there is no leaf (may it be an input leaf or not) 〈s, τ ′〉 ∈ Lt′ with time τ ′ = 0,
we simply set t′′ := t′ and tb := t̃b as well as te := t̃e.

• Otherwise, we add a small γ > 0 to t′, i.e., t′′ := t′ + γ, such that Dt′′ = D〈G, o, t′′〉
has no leaf at time 0 and Dt′′ ≈ Dt′ = 〈G, o, t′〉. Such a γ exists by Observation 6.3.
Further we shift the input pulse ĩ by the same amount γ to the right, such that the
〈t̃b, t̃e〉-pulse becomes a 〈tb, te〉-pulse, with tb := t̃b + γ and te := t̃e + γ. By definition
of Dt′′ , Dt′ ≈ Dt′′ and by the right shift of the input signal, both Dt′ with input
pulse 〈t̃b, t̃e〉 and Dt′′ with input pulse 〈tb, te〉 have the same input leaf values. Thus
by Lemma 6.7, it holds that õ(t′′) = õ(t′) = 1.

Chapter 6: Fault Containment 129

The existence of an input ĩ, being a 〈tb, te〉-pulse with 0 < tb < te, and a time t > 0,
such that Dt = D(G, o, t) has no leafs with time 0 and produces õ(t) = 1 when fed with ĩ
follows.

In the following we call every input pulse that produces õ(t) = 1 a one-pulse and every
input pulse that produces õ(t) = 0 a zero-pulse. Clearly, by construction, our 〈tb, te〉-pulse
is a one-pulse.

(ii) Searching for the shortest one-pulse. We now consider the set P ⊂ T × T of all
tuples 〈t′b, t

′
e〉 (representing 〈t′b, t

′
e〉-pulses) with t′b > tb and t′e 6 te. For each such pulse let

∆ := t′b − t′e be the pulse length.

Since 〈tb, te〉 ∈ P and 〈tb, tb〉 ∈ P , P consists of at least a one-pulse and a zero-pulse2.
We denote the set of zero-pulses with P0 and the set of one-pulses with P1.

We are interested in the shortest (w.r.t. pulse length) pulse (or if there are more fulfilling
this requirement: one of the shortest) that is a one-pulse. Let

∆− := inf{t′e − t′b | 〈t
′

b, t
′

e〉 ∈ P1}. (6.13)

We first prove that the infimum is a minimum: since the value õ(t) only depends on
the structure of the graph Dt and the values of its finitely many input leafs, the shortest
(infimum) pulse 〈t′b, t

′
e〉 must be one with an input-leaf at time t′b and an input leaf at

time t′e; otherwise we arrive at a contradiction:

• If there is no input leaf at either t′b or t′e but an input leaf with time in [t′b, t
′
e], then

there is a shorter 〈t′′b , t
′′
e〉-pulse, with t′′b > t′b and t′′e 6 t′e and input leafs at both time t′′b

and time t′′e such that: the input leaf values are identical for both the 〈t′b, t
′
e〉-input

pulse and the 〈t′′b , t
′′
e〉-input pulse. Thus, by Lemma 6.7, õ(t) = 1 must hold in both

cases— a contradiction to the minimal length of the 〈t′b, t
′
e〉-pulse.

• If there is no input leaf at either t′b or t′e and there is no input leaf with time in [t′b, t
′
e],

then the values of the input leafs are identical for both the 〈t′b, t
′
e〉-input pulse and

the constant 0 input. By Lemma 6.7, õ(t) = 1 in both cases— a contradiction to (No
generation).

Since there are only finitely many input leafs LI
t by Lemma 6.6 and by the above

arguments, the shortest pulse’s t′b and t′e must have times identical to input leaf times. As
there are only finitely many combinations t′b and t′e, the minimum exists.

2By analogous but simplified indistinguishability arguments as in the proof of this theorem it can be
easily shown that any 〈tb, tb〉-pulse must be a zero-pulse: If a 〈tb, tb〉-pulse were a one-pulse, the output o

would produce zero-length pulses, contradicting (No short pulse) of SPF. For sake of better readability
of the proof’s key message we leave the proof of this simpler case to the reader.

130 6.1 Deterministic Fault Containment

(iii) Left-shift. We now proceed by observing the output value after a small left shift:
we define

τa := min{τ ′ − 0 | 〈〈s, τ ′〉, i〉 ∈ Lt and τ ′ > 0, i > 0},

τb := min{τ ′ − t′b | 〈〈s, τ
′〉, i〉 ∈ LI

t and τ ′ ∈ (t′b, t
′

e] , i > 0},

τc := min{τ ′ − t′e | 〈〈s, τ
′〉, i〉 ∈ Lt and τ ′ > t′e, i > 0}.

In case any of these values is not well defined, we set it to +∞. The meaning of τa, τb and
τc is: τa is the maximum amount Dt = 〈G, o, t〉 can be shifted to the left, by say εL > 0,
obtaining Dt−εL

= 〈G, o, t− εL〉, without violating Dt ≈ Dt−εL
. Clearly, by a left shift, the

input leafs with time t′b are moved from 1 to 0B. τb is the maximum amount Dt can be
shifted to the left, without moving other leafs in 1 into 0B. τc is the maximum amount Dt

can be shifted to left, without moving any leafs in 0A into 1. Now choose an arbitrarily
small

εL ∈ (0, min{τa, τb, τc}) .

Clearly, Dt−εL
≈ Dt. Further, by the definition of εL, the input leaf sets 0B

′, 1′ and 0A
′

after the shift are:

0B
′ = {〈s, τ − εL〉 | 〈s, τ〉 ∈ (0B ∪ {〈i, t′b〉})},

1′ = {〈s, τ − εL〉 | 〈s, τ〉 ∈ (1 \ {〈i, t′b〉})},

0A
′ = {〈s, τ − εL〉 | 〈s, τ〉 ∈ 0A}.

We are now interested in õ(t− εL). It turns out that the input leaf sets 0B
′, 1′ and 0A

′ are
equivalent to those of Dt with the input forming a 〈t′b + τb, t

′
e〉-pulse. Clearly the size of

the latter pulse is smaller than ∆− and thus by Lemma 6.7,

õ(t − εL) = 0. (6.14)

(iv) Right-shift. We further observe the output value after a small right shift:

τ ′

a := min{0 − τ | 〈s, τ〉 ∈ Lt and τ 6 0},

τ ′

b := min{t′b − τ | 〈s, τ〉 ∈ Lt and τ ∈ (0, t′b)},

τ ′

c := min{t′e − τ | 〈s, τ〉 ∈ Lt and τ ∈ (t′b, t
′

e)}.

In case any of these values is not well defined, we set it to ∞. Further choose an arbitrarily
small

εR ∈ (0, min{τ ′

a, τ
′

b, τ
′

c}) .

Clearly, Dt+εR
= D(G, o, t+ εR) ≈ Dt. By the definition of εR, the leaf-sets 0B

′, 1′ and 0A
′

after the shift are:

0B
′ = {〈s, τ + εR〉 | 〈s, τ〉 ∈ 0B},

1′ = {〈s, τ + εR〉 | 〈s, τ〉 ∈ (1 \ {〈i, t′e〉})},

0A
′ = {〈s, τ + εR〉 | 〈s, τ〉 ∈ (0A ∪ {〈i, t′e〉})}.

Chapter 6: Fault Containment 131

The value õ(t + εR) is obtained as follows: the leaf-sets 0B
′, 1′ and 0A

′ are equivalent to
those of Dt with the input forming a 〈t′b, t

′
e − τ ′

c〉-pulse. Clearly the size of the latter pulse
is smaller than ∆− and thus by Lemma 6.7,

õ(t + εR) = 0. (6.15)

Since εL and εR may be chosen arbitrarily small, equations (6.14) and (6.15) violate
property (No short pulse) of SPF. Thus MI is not a correct circuit module implementation
of SPF in environment EnvSPF. �

Theorem 6.1 tells us that a certain problem, namely SPF does not have a circuit
implementation even in quite a restricted environment EnvSPF, which allows only for single
pulses of arbitrary length. The result is noteworthy, as it might have been suspected that
for very complicated circuit implementation modules MI , only very complicated input
behaviors can make MI ’s output glitch. This, however, is not the case. By the constructive
nature of Theorem 6.1’s proof, we even obtained an algorithm that, given any such module
MI , can construct a malicious input pulse, producing a glitch. Interestingly, as soon as
we further restrict EnvSPF to contain only pulses of minimum length ∆1 > 0, or, more
generally, does not contain pulses with length in [∆1, ∆2] for arbitrary ∆1 < ∆2, SPF turns
out to have a circuit implementation. Let us call the latter environment EnvSPF(∆1, ∆2).
The circuit implementation module MSPF, with input port i and output port o, which
solves SPF in EnvSPF(∆1, ∆2) for arbitrary ∆1 < ∆2 is depicted in Figure 6.5. Its Boolean
function modules are defined by the functions fB(a) = AND and fB(o) = OR. The delay
∆− is set to ∆2 − ∆1. MSPF’s correctness follows from the following lemma:

Lemma 6.11. MSPF solves the SPF problem in environment EnvSPF(∆1, ∆2) for arbitrary
∆1 < ∆2.

Proof. We distinguish between two cases for the input behavior:

• In case the input has a constant-0 status, or is a pulse with ∆ < ∆1, ã(t) = 0, for all
t > 0. Thus õ(t) = 0, for all t > 0, implying, that MSPF fulfills (No shortpulse), (No
generation).

• In case the input is a pulse with ∆ > ∆2, ã is a pulse of length

∆ − ∆1 > ∆2 − ∆1 = ∆−,

which is at least of the length of the feedback delay of o. Thus, the output o will once
make a single transition from 0 to 1 and then steadily stay at 1. Clearly, therefore,
(No shortpulse), (No generation) and (No muteness) are fulfilled.

The lemma follows. �

132 6.1 Deterministic Fault Containment

o
fB(o)

〈a, o, 1〉
1(0)

a

〈o, o, ∆−〉

(∆−)(0)

fB(a)

〈i, a, 1〉

〈i, a, 1 + ∆1〉

1(0)

(1 + ∆1)(0)

i

Figure 6.5: Circuit implementation module MSPF solving SPF in a restricted environment.

6.1.6 Reducing circuit implementability

The result of Theorem 6.1 has some impact on the question of whether certain well-known
modules have a circuit implementation. By means of reduction one can show that this
question has to be negatively answered for many modules introduced so far in this thesis.
For example the CELEMENT(v0, δ) module, with initial value v0 ∈ B and delay δ > 0,
which was introduced in Example 6.3, can be shown to have no circuit module implemen-
tation in environment EnvSPF: assume for the sake of a contradiction that it has a circuit
module implementation MI . Then we can construct a circuit module implementation for
SPF by connecting (i) input port i over an arbitrary delay channel initialized with 0 to
port a of MI , and (ii) connecting input b of MI with a subcircuit that steadily produces
1 (simply obtained by an OR gate and a feedback channel initialized with 1), and (iii)
connecting the output port of MI with o. Since this gives a circuit implementation module
that solves SPF in environment EnvSPF, MI cannot exist, which completes the proof.

Likewise, a +/− counter which is among the key components of a TG-Alg module can
be shown to have no circuit implementation if its remote input behavior is arbitrary within
environment EnvSPF.

Relation to Fault-containment. What effects do these results have on the fault-
containment of, e.g., a TG-Alg module? Assuming that the concept of circuit imple-
mentability of module M indeed captures physical implementability of M , they state that
there are modules M whose input environments have to be further restricted in order for
M to work correctly. Typically, if M is not stateless but has some memory, one such
input constraint is a minimum duration of input pulses. Restricting M ’s input signals
appropriately is not a problem at all, if the module driving M ’s input is correct and de-
signed in a proper way to fulfill the additional requirements. However, assume that the
predecessor module, call it B, that drives M ’s input is in a different fault-containment
region than M . In case B is Byzantine faulty, it may provide an input signal that does
not fulfill any restrictions. Since M is driven by an unrestricted input, it may behave in
an arbitrary way itself, thereby leading to a violation of the fault-containment region. An

Chapter 6: Fault Containment 133

obvious workaround would have been to insert a short-pulse-filter in between B and M .
Unfortunately, however, we have shown that there does not exist a circuit implementation
of such a short-pulse-filter.

6.2 Probabilistic Fault Containment

We have shown that there does not exist a circuit implementation solving the SPF problem.
For a circuit implementation, we can hence only hope that no input signal ever experiences
a forbidden pulse that produces an output signal violating the SPF specification. It could
be argued that the unsolvability result of the SPF problem with circuit implementation
modules is overly pessimistic and suffers from over-abstraction: more accurate predictions
of the behavior of physical components are obtained by modeling their signals’ behavior
with continuous-valued and differentiable status, leading to finite rise and fall times of
transitions. Clearly an arbitrarily short pulse with zero rise and fall times, as allowed by
our purely digital framework cannot be produced by a physical circuit. However, analog
representations of digital circuits face another problem: metastability. Metastability is
the problem3 of a physical module that is bistable, i.e., has two stable internal states, to
remain in an unstable state different from the two stable states for an unbounded time. An
example of such a bistable module is the C-Element. Here metastability occurs if the C-
Element’s input signal changes such that the C-Element reacts with an output transition
from, say, 0 to 1. In case the input changes back before the transition has completed
(note that it has non-zero duration in an analog representation), the C-Element might end
up in a metastable state, where it remains for an unbounded time. The adverse power
of metastability is that (i) the unstable state may switch to any of the stable states at
any time and (ii) it may lead to an output state that lies in between the voltage range
of logical 0 or 1 for an unbounded time, thereby possibly being perceived differently by
different successor modules: one may take the value as a 0 and one as a 1. Several
realistic system models for physical modules [7, 53, 61, 68] have been utilized to prove the
impossibility of implementing bistable modules that are required to be in a stable state
within bounded time. By analogous means, a natural adaptation of the SPF specification
in terms of continuous signals can be shown not to have a physical implementation [61].
Consider, for example, the physical implementation of a short-pulse-filter with a C-Element
as presented in Section 6.1.6. Figure 6.6 shows SPICE simulation results of a C-Element
based on detailed Bsim3v3 [9] transistor models. A set of input pulses together with their
corresponding output pulses is shown: it can be observed that the shortest pulse (100ps
length) leads to a spike at the output that returns to 0V before it reached the final 1.8V
representing a logical 1. If we assume that it did not reach the threshold voltage of any of
its successor modules, these consistently interpret the pulse as a steady logical 0 signal. The
longest pulse (150ps length) already produces a 0-to-1 transition with normal slope. Pulses
with ∆ ∈ I = [100, 150]ps either produce spikes that possibly reach the successor modules’

3Not in the sense as SPF is a problem.

134 6.2 Probabilistic Fault Containment

threshold voltages or may take arbitrarily long to reach the final steady state (either 1.8V
or 0V). I is called interval of forbidden pulse lengths. Note that the metastable state is
with high probability in the logical 1 region of all the successor modules here.4 While this
prevents inconsistent recognition at different successor modules, the output signal of the
short-pulse-filter may drop to logical 0 at an arbitrary time after the transition to 1—
thereby possibly leading to a short pulse at the output port.

2 2.2 2.4 2.6 2.8 3

x 10
−9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time [s]

si
gn

al
 s

ta
te

 [V
]

Figure 6.6: Simulation results of a C-Element short-pulse-filter implementation.

How do metastability and short-pulses relate? Despite the quite abstract, since
purely digital, means used to describe circuits in this thesis, it is conjectured by the author
that the presented digital framework reflects the metastability problem (continuous in
value) in terms of arbitrary short pulses (discrete in value). The question is whether the
concept of circuit implementation modules alone already captures all important aspects of
metastability of analogue physical implementations. Unfortunately, this is not the case.
Although a detailed treatment is outside the scope of this thesis and subject to future
work, we will give ideas why this holds and how the formalism of circuit implementation
modules could be extended. We start with a discussion of metastability upsets in physical
implementations using the example of DARTS.

Consider the distributed system of TG-Algs presented in Chapter 5. Clearly, the +/−
counter modules in the TG-Algs comprise bistable modules and are thus susceptible to
metastability. A faulty TG-Alg may thus provide an input signal that propagates through
the +/− counter and leads to a metastable upset of the PCSG module outputs, further
leading to a metastable upset of the Threshold module and finally driving the Req gener-
ation module into an unstable state— a violation of fault-containment.

4Actually the voltage of the metastable state changes with the output load of the C-Element.

Chapter 6: Fault Containment 135

Although this scenario seems unlikely, an investigation of its likelihood is inevitable
for a system intended for high-reliability applications like DARTS. In Fuchs et al. [34] it
has been shown that a faulty TG-Alg that may produce pulses of arbitrary length is very
unlikely to lead to a metastable upset of a correct TG-Alg’s PCSG module’s output: the
remote pipeline, part of the +/− counter, acts like a chain of synchronizers that decrease
the possibility of a metastable upset of a PCSG output with each additional pipeline
stage. Simulation results carried out in Matlab with simplified C-Element models (first
order approximations of forward and backward path in the storage loop, calibrated by
matching with simulations from detailed Bsim3v3 transistor models) have shown that the
intervals ∆ ∈ I (where a pulse with length ∆ at the remote pipeline’s input leads to a
metastability upset of the remote pipeline’s output) decrease exponentially in length with
the number of the remote pipeline’s stages. This provides us with an effective method
to make the probability of a metastable-upset across fault-containment regions arbitrarily
small: concatenating an appropriate number of equivalent pipeline stages.

Now, consider the related SPF problem in our purely digital modeling framework.
It was shown that module MSPF from Figure 6.5 solves the SPF problem if the input
environment is forbidden to contain pulses of length ∆ in interval I = [∆1, ∆2], with
arbitrarily small |I|. A concatenation of MSPFs forming a module chain, however, does
not further reduce the interval of forbidden pulse lengths but rather enlarges it to I =
[0, ∆2]. Alternative short-pulse-filter designs seem to behave similarly: in contrast to their
analogue counterparts, concatenation does not result in shrinking |I|. It turns out that
this is not an ultimate restriction of a purely digital framework. One way to capture the
synchronizing behavior of concatenated circuit modules is to allow their channels to have
more complicated delivery functions: for example, instead of a constant value one could
allow delivery times that depend on the pulse length ∆. This would allow mapping of short
pulses to even shorter pulses at the output. Finding appropriate delay functions that are
in accordance with analogue models is subject to future work.

6.3 Related Work

Further reading: All the details, including the analytic model and simulation results, on
the synchronizing behavior of the control structure of micropipelines can be found in [34].

Existing work: Besides the work by Lamport [53, 55], Marino [61] and Branicky [7], who
all studied metastability in system models with continuous signal behavior, Anderson et
al. [2] presented a proof for the impossibility of implementing an arbiter (a bistable mod-
ule) in a purely discrete system model: the model is discrete in the signals’ state, like the
model presented in this thesis, with the major difference, however, that modules perform
only a countable number (rather than continuous many) of discrete steps, like in the clas-
sical system models described in Section 2.1. Furthermore [2] does not allow to constrain
channel delays.

136 6.3 Related Work

Chapter 7

Conclusions

FAULT-TOLERANCE OF VLSI systems plays an important role, and is even gaining
in relevance, not only for highly-reliable but also for everyday applications, because

of decreasing transistor sizes. Appropriate failure mitigation techniques allow to increase
both the yield and a circuit’s probability to fulfill its specification during mission-time.
To rigorously analyze such techniques, and to answer the question whether some circuit
indeed solves a problem (respectively implements its specification), an investigation in
terms of a formal framework is inevitable. Formalization approaches are typically of one
of the following two kinds: (i) The circuit under investigation is specified in a framework
that allows to assign probabilities to system executions. From these the probability that
a system fulfills its specification can be calculated. (ii) A deterministic fault-hypothesis
is formulated (e.g., up to f Byzantine faults may occur in any execution) and the circuit
is proven to fulfill its specification in each of the executions that adhere to the fault-
hypothesis. The latter can solely be carried out in a non-probabilistic framework. Finally,
the probability that the circuit fulfills its specification at least is equal to the probability
that the fault-hypothesis holds during mission time (the so called coverage). Although (ii)
may lead to conservative bounds, its decoupling into a probabilistic and non-probabilistic
analysis is usually the only feasible way to rigorously analyze real-world applications.

In this thesis, method (ii) was hence chosen and a framework for purely digital VLSI
circuits following those of classic distributed systems was presented. We have seen that de-
spite the convincing commonalities between classic distributed systems and modern VLSI
systems, a number of key differences exist, most notably the absence of discrete computing
steps in circuits, which prevents a trivial take-over of results from one community to the
other. The formalism introduced in this thesis incorporates the peculiarities of chip-level
computations, but in contrast to detailed electrical engineering system models, abstracts
from analogue signals: a port’s status can be 0, 1 or undefined at some time t ∈ T .
In general a port’s behavior over time can be specified by three different means in our
framework: most fundamentally by signals, by its status and finally by its counting func-
tion. This three-fold representations turned out to be flexible for specifying and analyzing

137

138

non-trivial circuits like the system of TG-Algs presented in Chapter 5.

The introduction of Petri-net-like languages in Chapter 4 allows writing specifications
and correctness proofs of circuit modules at a more convenient level of abstraction. Never-
theless, it can be translated back into a set of relations on signal level at any point during
the analysis if needed. Petri-net-like approaches are well known to be a useful way to
model control structures of clockless circuits. To adequately express fault-tolerant control
structures we restricted ourselves to the analysis of event graphs and, in a second step,
introduced threshold graphs by adding so called threshold transitions, naturally capturing
OR causality. The latter becomes inevitable when describing the behavior of clockless
circuits in the presence of faults. General Join modules were found to be central circuit
components in this context, as they generalize the well known Join modules with “wait-for-
all” semantics to modules with “wait-for-k-out-of-n” semantics with arbitrary 0 ≤ k ≤ n.
Interestingly, General Joins have short representations in terms of threshold graphs. In a
detailed treatment of General Joins, their timing properties have been analyzed and an
implementation in terms of low-level building blocks has been presented and proven cor-
rect. These results not only showed the adequacy of the formal framework for non-trivial
modules, but also allow a hardware designer to systematically incorporate fault-tolerance
at control flow level into clockless circuits.

The importance of General Join modules was underlined in Chapter 5, where it was
shown that a system of General Joins interconnected by channels, called DARTS, provides
us with a solution of the tick generation problem in spite of a fraction of Byzantine faulty
modules. This is of considerable practical importance, as a circuit fulfilling the tick gener-
ation specification can be used to provide synchronized clock signals to a set of replicated
synchronously clocked functional units in a fault-tolerant system-on-chip. In [32], it was
shown that the attainable synchronization of DARTS in realistic scenarios is in the order
of a few clock ticks only.

Throughout the thesis faulty modules and thereby faulty General Joins were allowed
to behave arbitrarily. Although a low-level circuit was shown to correctly implement a
General Join in spite of possibly faulty predecessor modules in Chapter 4, the question
arises whether an implementation in terms of simple Boolean gates and fixed delay channels
(called circuit implementation) exists that implements a General Join even if some input is
driven by a faulty module. Clearly, an affirmative answer is necessary if fault-containment
of modules like the General Join shall be maintained. In order not to distract form the
essence of the problem, the simpler question of whether a module with a single input and
output port can filter out arbitrarily short pulses at the input in a non-trivial way (filtering
all pulses as well as always producing a proper pulse at the output is both not allowed)
was investigated. Unfortunately, it turned out in Chapter 6 that such a short-pulse-filter
module does not have a circuit implementation and thus cannot be built by purely digital
components. The chapter ended with a brief investigation of whether switching from
digital to analogue system models helps to circumvent this impossibility result. However,
this is not the case: in the latter, the problem of metastability is inevitable [61]. Fault-
containment thus can only be ensured if faulty modules are disallowed to produce pulses

Chapter 7: Conclusions 139

of lengths within an arbitrarily small, but non empty, interval.

7.1 Future Work

The author’s aim was to provide a representative overview on a formal framework intended
to argue about fault-tolerant on-chip algorithms and to show its usability by deriving non-
trivial propositions. Along the main track, a number of interesting future research questions
have been identified. We will briefly summarize some here:

• In Chapter 4 the General Join module was introduced. Since it is intended to be
used in on-chip algorithms where modules may deadlock, General Joins comprise
queues of unbounded size at their input ports, which allow only limited backpressure
on the predecessor modules. For this reason the acknowledge output ports to the
predecessor modules have been entirely removed when implementing a General Join
J with a GJImp module. However, in cases where no permanent but only transient
faults are assumed to occur, General Joins with bounded queue size become inter-
esting. Clearly, their treatment becomes more involved since backpressure can be
passed from successor modules to predecessor modules, resulting in non-negligible
queueing effects.

Related to this topic is a refined analysis of queuing effects inside a GJImp module:
In this thesis queueing of transitions occurs because of the Diff-Gate only. All prop-
agation delays of transitions through the local and remote pipes are conservatively
mapped to the τ±

loc and τ±

rem delay bounds while the queues themselves are modeled
by zero-delay queues of unbounded size. If this leads to unacceptable results, the
queue models could be replaced by bounded size queues, built of separate stages that
explicitly take queueing effects into account.

• The current DARTS solution of the tick generation problem turns transient faults
into permanent faults: since only event messages (in contrast to status messages) are
exchanged between the TG-Algs, spurious or missing transitions are memorized in
the local and remote pipes at the respective TG-Algs. This is especially problematic
if the probability of link failures is significant. Ideas on how to restore the pipe’s
status were presented in Section 5.3. A formal specification, correctness proof as well
as a prototype implementation are planned future work.

• In Chapter 6 limitations of fault-containment regions in the presence of Byzantine
faulty modules have been discussed. The main theorem of this chapter is an impos-
sibility result of the implementability of short-pulse-filters with purely digital com-
ponents. Many results on the non-existence of circuit implementation modules for
other important problems, like the arbiter problem, follow by reduction. A detailed
investigation of which problems can be reduced to which is a topic of future research.

140 7.1 Future Work

Recently there has been made some progress1: It has been shown that there exists a
circuit implementations of an eventual short-pulse-filters, i.e., a module that fulfills
properties (no generation), (no muteness) and is allowed to glitch only finitely often.

It was conjectured that the impossibility to build short-pulse-filters with digital cir-
cuits relates to the impossibility to build metastability free circuits with continuous,
analogue components. An in depth treatment of this research topic is of great im-
portance as it would allow to abstract from analogue system models to purely digital
models while still not loosing the essential characteristics.

1Unpublished note by Matthias Függer and Thomas Nowak

Bibliography

[1] M. Ampalam and M. Singh. Counterflow pipelining: architectural support for pre-
emption in asynchronous systems using anti-tokens. In ICCAD ’06: Proceedings
of the 2006 IEEE/ACM international conference on Computer-aided design, pages
611–618, New York, NY, USA, 2006. ACM.

[2] J. H. Anderson and M. G. Gouda. A new explanation of the glitch phenomenon.
Acta Informatica, 28(4):297–309, 1991.

[3] V. C. Barbosa and E. Gafni. Concurrency in heavily loaded neighborhood-
constrained systems. ACM Trans. Program. Lang. Syst., 11(4):562–584, 1989.

[4] R. Baumann. Soft errors in advanced computer systems. IEEE Design & Test of
Computers, 22(3):258–266, May-June 2005.

[5] R. C. Baumann and E. B. Smith. Neutron-induced 10b fission as a major source of
soft errors in high density srams. Microelectronics Reliability, 41(2):211 – 218, 2001.

[6] R. Bhamidipati, A. Zaidi, S. Makineni, K. Low, R. Chen, K.-Y. Liu, and J. Dal-
grehn. Challenges and methodologies for implementing high-performance network
processors. Intel Technology Journal, 6(3):83–92, Aug. 2002.

[7] M. S. Branicky. Why you can’t build an arbiter. Technical report, Massachusetts
Institute of Technology. Laboratory for Information and Decision Systems., 1993.

[8] C. Brej. Early Output and Anti-Tokens. PhD thesis, Department of Computer
Science, University of Manchester, 2005.

[9] Bsim3v3 Standard. www-device.eecs.berkeley.edu/˜bsim3/get.html.

[10] A. Bystrov, D. Sokolov, and A. Yakovlev. Low-latency contro structures with slack.
Asynchronous Circuits and Systems, International Symposium on, 0:164, 2003.

[11] T. Calin, M. Nicolaidis, and R. Velazco. Upset hardened memory design for submi-
cron CMOS technology. IEEE Transactions on Nuclear Science, 43(6):2874–2878,
Dec 1996.

141

142 Bibliography

[12] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Trans.
Program. Lang. Syst., 6(4):632–646, 1984.

[13] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,
Stanford University, Oct. 1984.

[14] B. Charron-Bost, S. Dolev, J. Ebergen, and U. Schmid, editors. Fault-Tolerant Dis-
tributed Algorithms on VLSI Chips, Schloss Dagstuhl, Germany, September 2008.
http://drops.dagstuhl.de/opus/frontdoor.php?source opus=1927.

[15] Y. Cheng. A survey of the theory of min-max systems. In D.-S. Huang, X.-P. Zhang,
and G.-B. Huang, editors, ICIC (2), volume 3645 of Lecture Notes in Computer
Science, pages 616–625. Springer, 2005.

[16] W. A. Clark. Macromodular computer systems. In AFIPS ’67 (Spring): Proceedings
of the April 18-20, 1967, spring joint computer conference, pages 335–336, New York,
NY, USA, 1967. ACM.

[17] E. M. Clarke. Distributed computing issues in hardware design. Distributed Com-
puting, 1(4):185–186, 1986.

[18] C. Constantinescu. Impact of deep submicon technology on dependability of VLSI
circuits. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN’02), pages 205–209, June 2002.

[19] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE Micro,
23(4):14–19, July 2003.

[20] C. Constantinescu. Neutron SER characterization of microprocessors. In Interna-
tional Conference on Dependable Systems and Networks (DSN), 2005.

[21] J. Cortadella and M. Kishinevsky. Synchronous elastic circuits with early evalua-
tion and token counterflow. In DAC ’07: Proceedings of the 44th annual Design
Automation Conference, pages 416–419, New York, NY, USA, 2007. ACM.

[22] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of synchronous elas-
tic architectures. In DAC ’06: Proceedings of the 43rd annual Design Automation
Conference, pages 657–662, New York, NY, USA, 2006. ACM.

[23] A. Dielacher, M. Függer, and U. Schmid. Brief announcement: How to speed-up
fault-tolerant clock generation in VLSI systems-on-chip via pipelining. In Proceedings
of the 27th ACM Symposium on Principles of Distributed Computing (PODC’08),
page 423. ACM Press, Aug. 2008. An extended version is available as RR 15/2009,
Institut für Technische Informatik, TU-Wien.

Bibliography 143

[24] A. Dielacher, M. Függer, and U. Schmid. How to speed-up fault-tolerant clock gener-
ation in VLSI systems-on-chip via pipelining. Research Report 15/2009, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 2009.

[25] D. Dolev, J. Y. Halpern, and H. R. Strong. On the possibility and impossibility of
achieving clock synchronization. Journal of Computer and System Sciences, 32:230–
250, 1986.

[26] J. C. Ebergen. A formal approach to designing delay-insensitive circuits. Distributed
Computing, 5:107–119, 1991.

[27] S. Fairbanks. Method and apparatus for a distributed clock generator, 2004. US
patent no. US2004108876.

[28] S. Fairbanks and S. Moore. Self-timed circuitry for global clocking. In Proceedings of
the Eleventh International IEEE Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 86–96, Mar. 2005.

[29] M. Ferringer, G. Fuchs, A. Steininger, and G. Kempf. VLSI Implementation of a
Fault-Tolerant Distributed Clock Generation. IEEE International Symposium on
Defect and Fault-Tolerance in VLSI Systems (DFT2006), pages 563–571, Oct. 2006.

[30] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

[31] E. G. Friedman. Clock distribution networks in synchronous digital integrated cir-
cuits. Proceedings of the IEEE, 89(5):665–692, May 2001.

[32] G. Fuchs. Fault-Tolerant Distributed Algorithms for On-Chip Tick Generation: Con-
cepts, Implementations and Evaluations. PhD thesis, Technische Universität Wien,
Institut für Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2009.

[33] G. Fuchs, M. Függer, U. Schmid, and A. Steininger. Mapping a fault-tolerant dis-
tributed algorithm to systems on chip. In 11th Euromicro conference on Digital
System Design Architectures, Methods and Tools (DSD’08), pages 242–249, Parma,
Italy, September 2008.

[34] G. Fuchs, M. Függer, and A. Steininger. On the threat of metastability in an asyn-
chronous fault-tolerant clock generation scheme. In 15th IEEE International Sympo-
sium on Asynchronous Circuits and Systems (ASYNC’09), Chapel Hill, N. Carolina,
USA, May 2009.

[35] G. Fuchs, M. Függer, A. Steininger, and F. Zangerl. Analysis of constraints in a
fault-tolerant distributed clock generation scheme. 3rd International Workshop on
Dependable Embedded Systems (WDES’06), Oct. 2006.

144 Bibliography

[36] M. Függer. Fault-Tolerant Distributed Clock Generation in VLSI Systems-on-Chip.
Master’s thesis, Technische Universität Wien, Institut für Technische Informatik,
Treitlstrasse 1-3/182-1, A-1040 Vienna, Austria, Apr. 2006.

[37] M. Függer, A. Dielacher, and U. Schmid. How to speed-up fault-tolerant clock
generation in VLSI systems-on-chip via pipelining. In Proceedings of the Eighth
European Dependable Computing Conference (EDCC), 2010.

[38] M. Függer, G. Fuchs, U. Schmid, and A. Steininger. On the stability and robustness
of non-synchronous circuits with timing loops. 3rd Workshop on Dependable and
Secure Nanocomputing, Jun. 2009.

[39] M. Függer, T. Handl, A. Steininger, J. Widder, and C. Tögel. An Efficient Test
for a Transistion Signalling based Up-/Down-Counter. In The Austrian National
Conference on the Design of Integrated Circuits and Systems (Austrochip 2006), Oct.
2006.

[40] M. Függer and U. Schmid. Reconciling fault-tolerant distributed computing and
systems-on-chip. Research Report 13/2010, Technische Universität Wien, Institut
für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2010.

[41] M. Függer, U. Schmid, G. Fuchs, and G. Kempf. Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. In Proceedings of the Sixth European Depend-
able Computing Conference (EDCC-6), pages 87–96. IEEE Computer Society Press,
Oct. 2006.

[42] E. M. Gafni and D. P. Bertsekas. Distributed algorithms for generating loop-free
routes in networks with frequently changing topology. IEEE Transactions on Com-
munications, 29(1):11–18, January 1981.

[43] J. Grahsl, T. Handl, and A. Steininger. Exploring the usefulness of the gate-level
stuck-at fault model for Muller C-elements. In Proceedings 20. Workshop für Test-
methoden und Zuverlässigkeit von Schaltungen und Systemen (TuZ’08), pages 165–
169, Vienna, Austria, Feb. 2008.

[44] J. Gunawardena. Causal automata. Theoretical Computer Science, 101(2):265 – 288,
1992.

[45] J. Gunawardena. Cycle times and fixed points of min-max functions. In 11th In-
ternational Conference on Analysis and Optimization of Systems, pages 266–272.
Springer, 1994.

[46] J. Y. Halpern, N. Megiddo, and A. A. Munshi. Optimal precision in the presence of
uncertainty. In STOC ’85: Proceedings of the seventeenth annual ACM symposium
on Theory of computing, pages 346–355, New York, NY, USA, 1985. ACM.

Bibliography 145

[47] B. Heidergott, G. J. Olsder, and J. von der Woude. Max plus at work. Princeton
Univ. Press, 2006.

[48] International Technology Roadmap for Semiconductors, 2009.

[49] W. Jang and A. J. Martin. Soft-error robustness in QDI circuits. In First workshop
on System Effects of Logic Soft Errors (SELSE 1), April 2005.

[50] W. Jang and A. J. Martin. A soft-error tolerant asynchronous microcontroller. In
13th NASA Symposium on VLSI Design, June 2007.

[51] I. Koren and Z. Koren. Defect tolerance in VLSI circuits: Techniques and yield
analysis. Proceedings of the IEEE, 86(9):1819–1838, Sep 1998.

[52] C. LaFrieda and R. Manohar. Fault detection and isolation techniques for quasi delay-
insensitive circuits. In DSN ’04: Proceedings of the 2004 International Conference
on Dependable Systems and Networks, page 41, Washington, DC, USA, 2004. IEEE
Computer Society.

[53] L. Lamport. On the glitch phenomenon. Technical report, SRI Technical Report,
1976.

[54] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM, 21(7):558–565, 1978.

[55] L. Lamport. Buridan’s principle. Technical report, SRI Technical Report, 1984.

[56] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

[57] G. Le Lann and U. Schmid. How to implement a timer-free perfect failure detec-
tor in partially synchronous systems. Technical Report 183/1-127, Department of
Automation, Technische Universität Wien, January 2003. (Replaced by Research
Report 28/2005, Institut für Technische Informatik, TU Wien, 2005.).

[58] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[59] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. In PODC ’87: Proceedings of the sixth annual ACM Symposium on Principles
of distributed computing, pages 137–151, New York, NY, USA, 1987. ACM.

[60] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations for timing-
based systems. In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg,
editors, REX Workshop, volume 600 of Lecture Notes in Computer Science, pages
397–446. Springer, 1991.

[61] L. Marino. General theory of metastable operation. IEEE Transactions on Comput-
ers, C-30(2):107–115, February 1981.

146 Bibliography

[62] A. J. Martin. Compiling communicating processes into delay-insensitive VLSI cir-
cuits. Distributed Computing, 1:226–234, 1986.

[63] A. J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
AUSCRYPT ’90: Proceedings of the sixth MIT conference on Advanced research in
VLSI, pages 263–278, Cambridge, MA, USA, 1990. MIT Press.

[64] F. Mattern. On the relativistic structure of logical time in distributed systems. In
Parallel and Distributed Algorithms, pages 215–226. Elsevier Science Publishers B.V,
1992.

[65] D. Mavis and P. Eaton. Seu and set modeling and mitigation in deep submicron
technologies. In Reliability physics symposium, 2007. proceedings. 45th annual. ieee
international, pages 293 –305, 15-19 2007.

[66] M. S. Maza and M. L. Aranda. Analysis of clock distribution networks in the presence
of crosstalk and groundbounce. In Proceedings International IEEE Conference on
Electronics, Circuits, and Systems (ICECS), pages 773–776, 2001.

[67] M. S. Maza and M. L. Aranda. Interconnected rings and oscillators as gigahertz
clock distribution nets. In GLSVLSI ’03: Proceedings of the 13th ACM Great Lakes
symposium on VLSI, pages 41–44. ACM Press, 2003.

[68] M. Mendler and T. Stroup. Newtonian arbiters cannot be proven correct. Formal
Methods in System Design, 3(3):233–257, 1993.

[69] M. Merritt, F. Modugno, and M. R. Tuttle. Time-constrained automata. In Pro-
ceeding of CONCUR ’91, pages 408–423, 1991.

[70] C. Metra, S. Francescantonio, and T. Mak. Implications of clock distribution faults
and issues with screening them during manufacturing testing. IEEE Transactions on
Computers, 53(5):531–546, May 2004.

[71] Y. Monnet, M. Renaudin, and R. Leveugle. Designing resistant circuits against ma-
licious faults injection using asynchronous logic. IEEE Transactions on Computers,
55:1104–1115, 2006.

[72] D. E. Muller, W. S. Bartky, and J. Gunawardena. A theory of asynchronous circuits.
In of LNCS, pages 278–292. Draft, 1959.

[73] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4), 1989.

[74] C. J. Myers and T. H. Y. Meng. Synthesis of timed asynchronous circuits. IEEE
Trans. VLSI Syst., 1(2):106–119, 1993.

Bibliography 147

[75] C. J. Myers, T. G. Rokicki, and T. H. Meng. Automatic synthesis and verification
of gate-level timed circuits. Technical report, Stanford, CA, USA, 1994.

[76] E. Normand. Single-event effects in avionics. IEEE Transactions on Nuclear Science,
43(2):461–474, Apr 1996.

[77] J. L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, 1977.

[78] T. Polzer, T. Handl, and A. Steininger. A metastability-free multi-synchronous com-
munication scheme for fault-tolerant SoCs. Research Report 10/2009, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 2009.

[79] P. J. Restle et al. A clock distribution network for microprocessors. IEEE Journal
of Solid-State Circuits, 36(5):792–799, May 2001.

[80] U. Schmid. How to model link failures: A perception-based fault model. In Proceed-
ings of the International Conference on Dependable Systems and Networks (DSN’01),
pages 57–66, Göteborg, Sweden, July 1–4, 2001.

[81] U. Schmid, J. Klasek, T. Mandl, H. Nachtnebel, G. R. Cadek, and N. Kerö. A
Network Time Interface M-Module for distributing GPS-time over LANs. J. Real-
Time Systems, 18(1):24–57, Jan. 2000.

[82] U. Schmid and A. Steininger. Dezentrale Fehlertolerante Taktgenerierung in VLSI
Chips. Research Report 69/2004, Technische Universität Wien, Institut für Technis-
che Informatik, 2004. (Österr. Patentanmeldung A 1223/2004).

[83] F. B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: a tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[84] N. Seifert, P. Shipley, M. Pant, V. Ambrose, and B. GiII. Radiation-induced clock
jitter and race. In Proceedings 43rd Annual IEEE International Reliability Physics
Symposium, pages 215–222, 17-21, 2005.

[85] Y. Semiat and R. Ginosar. Timing measurements of synchronization circuits. Asyn-
chronous Circuits and Systems, International Symposium on, 0:68, 2003.

[86] W. Snoeys, F. Faccio, M. Burns, M. Campbell, E. Cantatore, N. Carrer,
L. Casagrande, A. Cavagnoli, C. Dachs, S. D. Liberto, F. Formenti, A. Giraldo,
E. H. M. Heijne, P. Jarron, M. Letheren, A. Marchioro, P. Martinengo, F. Meddi,
B. Mikulec, M. Morando, M. Morel, E. Noah, A. Paccagnella, I. Ropotar, S. Saladino,
W. Sansen, F. Santopietro, F. Scarlassara, G. F. Segato, P. M. Signe, F. Soramel,
L. Vannucci, and K. Vleugels. Layout techniques to enhance the radiation toler-
ance of standard cmos technologies demonstrated on a pixel detector readout chip.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 439(2-3):349 – 360, 2000.

148 Bibliography

[87] J. Sparsø and S. Furber. Principles of Asynchronous Circuit Design. Dimes, 2001.

[88] T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the ACM,
34(3):626–645, July 1987.

[89] A. Steininger, M. Függer, U. Schmid, and G. Fuchs. Fault-Tolerant Algorithms on
SoCs - A case study. In Supplemental Proceedings of the International Conference
on Dependable Systems and Networks (DSN’06), pages 190–191, Philadelphia, USA,
June 2006.

[90] A. Steininger, T. Handl, G. Fuchs, and F. Zangerl. Testing the hardware implemen-
tation of a distributed clock generation algorithm for SoCs. IEEE East-West Design
and Test International Workshop, pages 59–64, Sept. 2006.

[91] M. J. Stucki, S. M. Ornstein, and W. A. Clark. Logical design of macromodules.
In AFIPS ’67 (Spring): Proceedings of the April 18-20, 1967, spring joint computer
conference, pages 357–364, New York, NY, USA, 1967. ACM.

[92] I. E. Sutherland. Micropipelines. Communications of the ACM, Turing Award,
32(6):720–738, June 1989. ISSN:0001-0782.

[93] S. M. Sze and K. K. Ng. Physics of Semiconductor Devices. Wiley-Interscience, 3rd
edition, 2006.

[94] P. Teehan, M. Greenstreet, and G. Lemieux. A survey and taxonomy of gals design
styles. IEEE Design and Test of Computers, 24(5):418–428, 2007.

[95] T. Verdel and Y. Makris. Duplication-based concurrent error detection in asyn-
chronous circuits: shortcomings and remedies. In Proceedings 17th IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2002), pages
345–353, 2002.

[96] J. Widder, G. Le Lann, and U. Schmid. Failure detection with booting in partially
synchronous systems. In Proceedings of the 5th European Dependable Computing
Conference (EDCC-5), volume 3463 of LNCS, pages 20–37, Budapest, Hungary,
Apr. 2005. Springer Verlag.

[97] J. Widder and U. Schmid. The Theta-Model: Achieving synchrony without clocks.
Distributed Computing, 2009.

[98] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and M. Pietkiewicz-
Koutny. On the models for asynchronous circuit behaviour with or causality. Formal
Methods in System Design, 9:189–233, 1996.

[99] Q. Zhou and M. Kartik. Transistor sizing for radiation hardening. In IEEE interna-
tional reliability physics symposium proceedings, 42nd annual, 2004.

Bibliography 149

[100] J. F. Ziegler and W. A. Lanford. The effect of sea level cosmic rays on electronic
devices. Journal of Applied Physics, 52(6), 1981.

150 Bibliography

Curriculum Vitae
Matthias Függer

Date of Birth: March, 3rd, 1983
Place of Birth: Vienna, Austria

1989–2001 4 years Volksschule St. Ursula (Vienna)
8 years Oberstufenrealgymnasium St. Ursula
(nat. wiss. Zweig mit Darstellender Geometrie).
Matura: June 15, 2001.

2001–2004 Bachelor Curriculum Computer Engineering
at the Vienna University of Technology.
Graduation with distinction.

2004–2006 Master Curriculum Computer Engineering
at the Vienna University of Technology.
Graduation with distinction and nomination for
the best thesis award.
Sponsion at June 29, 2006.

2004–2009 Curriculum Philosophy
at the University of Vienna (without graduation).

2006–2010 PhD Curriculum Computer Engineering
at the Vienna University of Technology.

2006–2010 Research Assistant and then Assistant
Professor at the ECS Group,
Department of Computer Engineering,
Vienna University of Technology.

151

