

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Deriving Project Health Indicators
of Open Source Software Projects

using Social Network Analysis

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Andreas Kaltenecker
Matrikelnummer 0325400

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Mag.rer.soc.oec. Stefan Biffl
Mitwirkung: Univ.-Ass. Dipl.-Ing. Dr. Alexander Schatten

Wien, 06.05.2010

 (Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Andreas Kaltenecker, Brückelgasse 9, 7471 Rechnitz, Österreich

“Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und
dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbil-
dungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.”

Wien, 06.05.2010

(Andreas Kaltenecker)

i

ii

Abstract

Free/Libre Open Source Software (FLOSS) differs from closed source software
development in a variety of ways. There are different development processes,
distinct motivations, toolsets and structures of a development team. In both
cases it is possible to analyze the current quality of software. As a difference,
Open Source Software provides the chance to look behind the scenes. Due to the
open development process it is possible to analyze not only the product quality
but also the structure of the community and the development process behind.

This diploma thesis takes up this advantages and uses publicly available data
in a social context in order to extract information about how members of a
community act and interact. The interpretation of this information and the
analysis of change over time allows to draw conclusions about the structure of
a community which is used in order to evaluate the current health status and
future development of a FLOSS project.

The instruments introduced in this thesis which meet the requirements for eval-
uating the health status of FLOSS projects are provided within the concept
of ”Social Network Analysis“. Social Network Analysis can be seen as a roof
for measures describing and analyzing the composition, size and scope of social
networks which consist out of actors and relations combining them.

The possibilities of the Social Network Analysis are discussed and health indica-
tors which are applied to specific examples in the practical part of this thesis are
introduced. In order to calculate relevant measures or illustrate the dependencies
within a network an own tool called “SNAnalyzer” [Kal] was developed.

iii

iv

Kurzfassung

Free/Libre Open Source Software (FLOSS) unterscheidet sich von Closed Source
Software Entwicklung in einer Vielzahl an Dimensionen. Es gibt Unterschiede
im Entwicklungsprozess, in der Motivation der Zusammenarbeit, in der Frage,
welche Werkzeuge verwendet werden und auch im Aufbau des Entwicklerteams.
In beiden Fällen ist es möglich, die Qualität eines Endproduktes zu erheben. Im
Unterschied zu proprietärer Softwareentwicklung bietet FLOSS die Möglichkeit,
hinter die Kulissen zu blicken. Der offene Entwicklungsprozess macht es möglich,
nicht nur das Produkt am Ende zu analysieren, sondern auch die Art und Weise
der Zusammensetzung einer Gemeinschaft welche hinter einem Projekt steht zu
untersuchen.

Diese Diplomarbeit greift die genannten Vorteile auf und verwendet öffentlich
verfügbare Daten aus einem sozialen Kontext heraus, um auf die zugrun-
deliegende Struktur einer Gemeinsaft zu schließen, aber auch um Informatio-
nen über die Art und Weise, wie Kommunikation stattfindet zu untersuchen.
Die Interpretation dieser Informationen und die Analyse der Veränderung im
Laufe der Zeit ermöglicht es, Rückschlüsse auf Abhängigkeiten innerhalb eines
Projetteams zu ziehen.

Die Instrumente, welche in der vorliegenden Diplomarbeit die Ansprüche zur
Erhebung der “Projektgesundheit” erfüllen, werden mit dem Konzept “soziale
Netwerkanalyse” (SNA) zur Verfügung gestellt. Dieses Konzept kann als Dach
für eine Sammlung an Ansätzen und Kennzahlen gesehen werden, welche die
Analyse der Zusammensetzung, Größe und Schwerpunkt eines sozialen Netzw-
erks ermöglicht. Ein soziales Netzwerk besteht aus Akteuren (in diesem Fall die
Mitglieder eines FLOSS Projektes) und Beziehungen, welche Akteure miteinan-
der verbindet.

Das Instrument “soziale Netzwerkanalyse” wird in dieser Diplomarbeit
vorgestellt und es wird beschrieben wie eine Umsetzung auf ”Projektgesund-
heit“ erfolgen kann. Konkret wird dies im praktischen Teil dieser Diplomarbeit
anhand von vier Projekten angewendet. Um die Daten für eine weitere Inter-
preation aufzuarbeiten, wurde ein eigenes Projekt ins Leben gerufen, welches die
notwendigen Indikatoren errechnet und die Abhängigkeiten zwischen den einzel-
nen Projektmitgliedern illustriert [Kal].

v

vi

Acknowledgements

My special thanks go to Stefan Biffl and Alexander Schatten for guiding and
supporting this Diploma Thesis. They improved the work with many hints and
provided constructive feedback in various discussions.

Furthermore I want to thank my colleagues at ZZ Vermögensverwaltung. They
made it possible to put studies and work under one manageable roof by providing
understanding and support all the time.

My deepest gratitude goes to my friends for moral support and family for their
unflagging love and support throughout my life. Especially I appreciate the
help of my brother Franz for supporting this thesis in delicious questions about
graphical illustrations in times of being up to his ears with work and training.
Rock on Franz!

Above all I thank my girlfriend Elisabeth for giving moral support, motivation
and inspiration whenever needed.

vii

viii

Contents

1 Motivation 1

2 Introduction 3

3 Related Work 7
3.1 Social Network Analysis . 7
3.2 Project Health . 8
3.3 Overview . 9

4 Open Source Software 11
4.1 Institutional vs. Collaborative . 12
4.2 Market . 14
4.3 Characteristics . 17

4.3.1 Actors . 18
4.3.2 Motivation to Contribute 19
4.3.3 Team Structure . 20
4.3.4 Ressources . 22
4.3.5 Project Management . 22
4.3.6 Development Process . 24

5 Project Health 29
5.1 Why Project Health? . 30
5.2 Project Lifecycle . 31
5.3 Health Indicators . 32

5.3.1 Defining the Shape . 33
5.3.2 The Cathedral and the Bazaar 34
5.3.3 High Dependency - High Risk? 34

6 Research Questions 37

7 Social Network Analysis 39

ix

Contents

7.1 Introduction . 39
7.2 Development of Social Network Analysis 41
7.3 Key Concepts . 44
7.4 Data Management and Illustration 45

7.4.1 Graphs . 45
7.4.2 Matrices . 46

7.5 Indicators measuring Centrality or Prestige 48
7.5.1 Degree Centrality . 49
7.5.2 Closeness Centrality . 52
7.5.3 Betweenness Centrality . 55
7.5.4 Information Centrality . 58
7.5.5 Eigenvector Centrality . 59
7.5.6 Centrality Indicators for Directed Relations 60
7.5.7 Prestige . 61

8 Social Network Analysis in Practice 65
8.1 Action and Interaction Data . 65
8.2 Availability of Social Data in FLOSS Projects 67
8.3 Reference Tools and Libraries for Social Network Analysis 68

8.3.1 Independent Tools . 69
8.3.2 Libraries . 70

9 SNAnalyzer 73
9.1 Technical Solution . 73
9.2 Functionality . 74
9.3 Social Data . 75

10 Evaluation 79
10.1 Healthy Project . 80
10.2 Convalescent Project . 85
10.3 High Dependency - High Risk! . 91
10.4 Collateral Damage . 93

11 Summary 97

12 Critical Discussion 101

13 Suggestions for Future Work 103

A SNAnalyzer 105

x

Contents

B How to use the statistic environment R within a Java application 113

xi

Contents

xii

1 Motivation

Free and Libre Open Source Software (FLOSS) has become a real counterpart to
closed source software and for nearly every proprietary product an equivalent out
of the area of open source is available [Van09]. For stakeholders but also for the
initiators of a project the question of stability and continuity is essential. In the
area of software development, a lot of different indicators, measuring the quality
of a certain project, are existing. Out of the view of stakeholders it is important
to differentiate a variety of projects in order to create a basis for decision making.
Project management although is interested in identifying critical situations to
be able to react on time.

Qualitative indicators could rely on two different approaches. The first would
deal with the product itself and evaluates solely the output of an underlying
process (like a blackbox). Without knowing something about how the product
is created or what demands have been previously defined the product itself can be
analyzed using criteria like reaction times or release intervals. Another approach
could furthermore put the focus towards the underlying process (whitebox).
By assessing the environment and the factors which influence the final output
another view can be introduced and used for evaluations but to be able to achieve,
this insight into the underlying project needs to be available. Comparing open
and closed source software development one particular aspect is eye-catching
and essential for the mentioned approach. Due to the framework which defines
FLOSS the development process is completely transparent.

Understanding the principles of FLOSS development also means that a re-
searcher should not only see the chance to be able to evaluate the development
process of open source software projects because of the mentioned transparency.
Furthermore the way how a community is set up provides the potential or raises
constrictions to become a successful project and provide a high quality product.
Both situations define the future direction of a project [WSM+06].

1

1 Motivation

Aim of this thesis is to introduce kind of a clinical thermometer in the first
instance for open source software projects in order to identify the current health
status of a project. The health status itself bases on the shape and the evolution
of a underlying project team over time. This will be determined using social data
which is stored during the development process and freely available. With the
instruments introduced in this thesis it will be possible to differentiate between
healthy and sick projects by identifying any variations in typical developments
of healthy projects. How healthy projects develop will be previously defined and
will be shown on specific examples. Furthermore in a second step by using health
indicators it will be possible to make prognoses about the future development of
a project by looking at specific indicators.

2

2 Introduction

This diploma thesis introduces a possibility to research the health condition of
FLOSS projects. Health in this case stands for stability and continuity in the
development process which is essential for stakeholders but also for members of
a project. As basis for a practical implementation which is the content of the
second part, a theoretical background is provided. This theoretical background
consists of three chapters which can be summed up briefly as follows:

Free and Libre Open Source Software Chapter 4 introduces Free and Libre
Open Source Software (FLOSS). FLOSS itself has left the area of being interest-
ing for a niche group and has reached the open market. Reason for this change
can be found in the following points [AAB+06]:

• Low cost and low barrier to entry

• Availability of customization and local support services

• Vendor independence and flexibility

In nearly every software group FLOSS alternatives are available and in some
of them they are even dominating the market. Programs like Linux, Apache or
Open Office are widely known and are often recognized as representatives for a
whole ideology. In order to understand the reason for the focus on open source
in this thesis it is important to know some basics about this kind of software
development.

Before software became a commercial product it was just an add on until
some people recognized the valuable asset. Besides that commercial approach, a
parallel universe started to develop where people had strong ideologies containing
different cornerstones. Primarily enabled by the internet, open source relies
on the work of people from all around the world who participate freely out of
different kinds of motivation. The result of this effort is put under the roof of

3

2 Introduction

certain licenses but not to protect knowledge in order to generate a business
advantage.

In fact the freedom of information needs to be protected which means that
projects agreeing to one of the various open source licenses usually depict the
following freedoms:

• The underlying source code of a product has to be freely available

• Changes and redistributions are explicitly allowed

• Derived products have to guarantee the above mentioned freedoms

Although the approach of project health could also be useful for closed source
projects it is focused on open source projects out of different reasons. Due to
the infrastructure which allows people to participate in one project they leave
footprints during the whole development. People communicate via mailinglists
which are readable for public, coordinate via tracker tools and use revision con-
trol systems like the concurrent versioning systems (CVS) in order to manage
the source code and all these systems are public. Walt Scacchi [Sca07] introduces
for these mediums the term informalisms. These informalisms make this thesis
possible.

Project Health In chapter 5 project health is introduced. Different health
states of a FLOSS project are defined and indicators are introduced. Further-
more the evolution of healthy projects is shown which has a typical form and
will be used as a reference for research.

The know-how about reading and interpreting footprints of FLOSS develop-
ment is the topic of the next chapter: Social Network Analysis (SNA)

Social Network Analysis In order to detect the health status of a FLOSS
project instruments available within Social Network Analysis (see chapter 7), will
be used. The instrument Social Network Analysis is defined by Job-Sluder [JS06]
as follows:

“Social Network Analysis (SNA) is another diverse set of methods
for examining the relations between individuals and groups (Wasser-
man & Faust, 1994). A relation can be any form of social interac-

4

tion including knowing the other person by name, communication, or
shared membership within a group. Hampton and Wellman (2003)
examined Internet interactions, name recognition and residence vis-
its. While Paolillo (2001) examined responses in chat interactions.
SNA provides powerful methods for quantifying the size, shape and
scope of a given network.”

The advantage of FLOSS which is a total transparency of the development
process is used. Actors or in the case of this thesis participants in one project
are connected to each other by a diverse set of social relations. This can be
either a common contribution to a patch file or communication in mailing lists.
Out of this relations a graph like in figure 2.1 can be generated which illustrates
the complete social relationships of a development team in a specific period. In
a next step the instruments, provided by SNA can be used to “[...] quantify the
size, shape and scope of a given network.” [JS06] which is a basis for further
interpretation.

5

2 Introduction

Figure 2.1: Social Network with common commits to a source file as linking
relation

6

3 Related Work

The following chapter gives a brief overview about the contributions which had
high impact on this thesis and furthermore tries to differentiate from existing
contributions on this topic.

3.1 Social Network Analysis

Social Network Analysis has a very long history and parts of the instruments
originate from an era when computers had not been invented yet. History of
some parts in the concept can be traced back to the 1950s and descents from the
area of sociology. The basic knowledge about the instrument of Social Network
Analysis used in this thesis relies on work by Stanley Wasserman and Katherine
Faust. With [WF94] they provide a book which covers a general introduction
to the topic and ranges to very detailed explanations of specific instruments,
relevant for this thesis. It is used as a reference for the bigger part of chapter 7.

Although the offspring of the next work was the year 1979, the very impor-
tant contribution to Social Network Analysis by Linton C. Freeman from the
Lehigh University in Bethlehe, U.S.A. needs to be mentioned. He sums up in
his groundbreaking (he called it) conceptual clarification [Fre79] on basic con-
cepts like the different approaches for centrality and has established a basis for
the understanding of centrality in social networks. Out of this work knowledge
about the calculation of different indicators measuring the dependencies within
the members of FLOSS teams is used.

During the research phase the scientists Kevin Crowston and James Howi-
son from Syracuse University were identified as big players in the area of Social
Network Analysis in the recent time of this science. They have shown differ-
ent ambitions concerning FLOSS which contain the following approaches: They

7

3 Related Work

are hosting a project called FLOSSMole [HCC06] where information of FLOSS
projects are collected out of different data sources in order to provide material
for scientific research in different manner. Besides hosting and providing data
they are also using Social Network Analysis in order to research the development
of FLOSS. The information provided in [CH04] shows some basic information
about the social structure and the shape of virtual teams.

Hossain et al. [HZ08] are dealing with centrality measures and put it in relation
to project quality. In their context project quality is evaluated by measuring:

• Number of defects fixed per software promotion

• Number of defects reported

• Time between bug report and bug fix

In their paper they have evaluated if the underlying structure has effect on their
definition of project quality. What differs from the approach in this thesis lies
in the fact, that the knowledge about structures and changes of an underlying
network is used in order to analyze the health state and it is tried to predict
the future development of a project. Project health is defined as a stability and
continuity factor which has influence to the project by assuming that only a
healthy project can produce high quality software over a longer period of time.

3.2 Project Health

Wahyudin et al. are dealing in their work with project health and introduce
this approach to FLOSS [Wah08][WSM+06]. They defined the mature and im-
mature state and introduced kind of a circuit of life for FLOSS projects which
was picked up for this thesis. Unlike to this thesis, Wahyudin et al. do not
use Social Network Analysis as a method to indicate the project health of the
underlying project. Moreover they rely on indicators considering, how they call
it, the developer contribution patterns which capture for example a ratio be-
tween email conversation and defect status changes. Another indicator relies
on service delay which stands for the bug response time or time to resolve an
issue/defect [Wah08].

Now to focus more on the shape of healthy projects it is referred to Eric

8

3.3 Overview

Ramond [Ray00]. He explained the idea of “The Cathedral and the Bazaar” in
which he depicts that young FLOSS projects are usually managed like cathedrals
with actors who are located very central in the project and decide what to do.
The longer projects are existing and the more participants are contributing the
more decentralized a project gets of which he speaks of a bazaar.

Crowston et al. have also researched the conditions of a healthy FLOSS
project[CH06]. They assume that healthy projects are generally onion shaped
and the different contributors have their specific position in the shells. Social
Network Analysis is used in order to determine this fact. They also describe
some standard patterns concerning organization within a project and point out
typical problems.

3.3 Overview

This thesis is structured as follows: Chapter 1 depicts the motivation for the
thesis and also describes the goals followed by chapter 2 which deals with a gen-
eral introduction. Chapter 4 picks up an introduction to Free/Libre Open Source
Software which contains information ranging from general basics to a description
of structures and processes of FLOSS projects. The next chapter (chapter 5)
deals with a description of the project health approach containing information
about health indicators or typical developments within FLOSS projects. After
the research questions in chapter 6 an overview about Social Network Analysis
is provided in chapter 7. In a general introduction methods are shown which
manage relational data and indicators are introduced measuring the dependen-
cies within a project team. What follows next is a practical implementation of
the knowledge given so far. Chapter 8 provides a bridge between the theoretical
and the practical part of this thesis. A tool created in order to support the
identification of project health is described in chapter 9. Chapter 10 contains
concrete examples which have been researched. Followed by the final part of this
thesis where the findings are summed up (chapter 11) and critically discussed in
chapter 12. Further research possibilities are described in chapter 13.

9

3 Related Work

10

4 Open Source Software

Software becomes commercial When somebody thinks of buying a washing
machine it is a matter of fact that the software which controls the machine is
included. In the beginning of information technology it was quite the same with
computers. When DEC or IBM have started their business operating systems
have been a logical add on, also including source code and documentation of the
operating system [The04]. Neal Stephenson emphasizes this fact very appropri-
ate in the following anecdotes:

“A person who went into a coma before Microsoft was founded,
and woke up now, could pick up this morning’s New York Times
and understand everything in it–almost: Item: the richest man in
the world made his fortune from-what? Railways? Shipping? Oil?
No, operating systems. Item: the Department of Justice is tack-
ling Microsoft’s supposed OS monopoly with legal tools that were
invented to restrain the power of Nineteenth-Century robber barons.
[...]” [Ste99]

Stephenson argues that it was not imaginable to that time that somebody
might sometimes become the richest person on earth with earnings out of licenses
and copyright based on intellectual property in a time where only hard facts were
counting.

FLOSS as answer to commercial software development Out of a certain
point of view, Bill Gates and Paul Allen are responsible for the gap between
open and closed source software development. After the source code of software
which was created by them was spreading rapidly, Gates became very angry
because just a minority of the users paid for their copy. This has caused him
to write “an open letter to hobbyists” which was first published on the 3rd of
February 1976 in Computer Notes [Gat76]. The letter had high impact on the

11

4 Open Source Software

hacker community at that time because one out of their own rows was questioning
the basis of their ideology. Gates claimed that it is a crime to steal software.
He was the first one thinking of business models based on selling something
abstract like software. He introduced intellectual property and broke the rules
of the manifest. Whether it was his aim or not, this letter caused a paradigm
change. Williams declares it in his work “Free as in Freedom” as follows:

“Software had become such a valuable asset that companies no
longer felt the need to publicize source code, especially when pub-
lication meant giving potential competitors a chance to duplicate
something cheaply.” [Wil02]

The birth of free and open source software development The development
of FLOSS as a separate paradigm goes hand in hand with the story of some key
actors and the appearance of some specific software projects. Richard Stallman
was the first who picked up the aim to create a completely free software system he
called GNU (which is a acronym for GNU’s Not Unix) and today, he is one of the
biggest proponents of the free software movement. With Linux Linus Torvalds
has created an operating system which became a representative for FLOSS.
No other Open Source Software Projects became as famous and big as Linux.
Step by step the movement achieved acknowledgment and today it is simply
indispensable. FLOSS needs to deal with constrictions, commercial projects do
not have but can also play out advantages closed source projects do not have
and history has shown that success is possible (see section 4.2). In the following
part of the thesis it is focused on the different approaches of commercial software
development and Free/Libre open source software development. Furthermore it
is pointed out what rank FLOSS has enveloped and information is provided in
order to understand how organization happens.

4.1 Institutional vs. Collaborative

Unlike to Bill Gates’ position that good software will always rely on proprietary
approaches, history meanwhile has shown something else (see section 4.2). Ac-
cording to this fact the interesting questions are: What made the success of
Open Source Software Development in different areas possible and what are the

12

4.1 Institutional vs. Collaborative

differences in the underlying value adding process of open and closed source
software projects is the content of the following part of the thesis.

Clay Shirky introduces in his book “Here Comes Everybody” [Shi08] two struc-
tural approaches to follow the aim of producing valuable output which he names
institutional and collaborative. Out of the view of this thesis it is about open
and closed source software development but economically considered he writes
about coordination costs. Coordination costs are that kind of costs that need
to be invested in order to organize a bunch of people to produce coherent out-
put with lasting value. The first and classical approach would be to coordinate
people by starting an institution. You have to raise infrastructure and provide a
framework in order to put everything relevant under one manageable roof. The
problem which appears is that increasing complexity leads to raised communi-
cation costs which are a big contributor to coordination costs. To get rid of this
Shirky presents a second approach which is not to institutionalize rather then
to put the cooperation into an infrastructure. By providing systems which let
people organize and coordinate as a byproduct, you get an alternative point of
view which we have in the case of Open Source Software Development.

“Given enough eyeballs, all bugs are shallow” [Ray00] Out of the view of
both approaches a tension logically arises. Institutionally we would ask, which
people should be hired to get a specific job done and what is following next is
creating restrictions. What needs to be done is to create an evaluation system
to select a specific amount of people in order to get the best effort despite the
constrictions you have to deal with. On the other hand, from coordination point
of view we can ask, what is the value of a specific contribution because we do
not have to tear down the resources.

According to Shirky, Steve Ballmer complained in an interview, that they have
analyzed the community of Linux and it is a myth that thousands of people are
participating because the majority has shown up only once [Shi08]. A corpora-
tion like Microsoft would never hire someone who is wasting time and money and
makes minor input because the valuation is different. However FLOSS projects
like Linux can deal with the question: Was it a good input of this specific
person? What if this single contribution was the solution to a major security
problem. These kinds of values will never be reachable for the classical approach
and Ballmer has to be frightened of this single developer! According to Shirky,
projects like Linux can draw on abundant resources.

13

4 Open Source Software

4.2 Market

What has once started small in the rooms of enthusiastic individuals has spread
over the whole world and has created a movement which is not imaginable to
live without these days. An article in the New York Times refers to Euro-
pean Comission’s competition chief Neelie Kroes who told that FLOSS has put
huge pressure on commercial software development because in nearly every area,
FLOSS provides an alternative [Van09].

Table 4.1: FLOSS usage by application in companies in the UK, Sweden, and
Germany [AAB+06]

UK Sweden Germany Total
small large small large small large

OSS as server operating
system

8.1% 3.7% 9.8% 11.0% 30.7% 30.6% 15.7%

6.4% 10.1% 30.7%
OSS for databases 13.3% 4.6% 7.5% 8.2% 14.1% 20.8% 11.1%

9.9% 7.6% 15.7%
OSS on the desktop 7.6% 2.0% 3.4% 3.2% 13.7% 6.5% 6.9%

5.4% 3.3% 12.0%
OSS for websites 7.9% 4.3% 7.5% 8.7% 15.8% 17.3% 10.1%

6.5% 7.8% 16.2%
Source: Survey results
(n=395).

Marketshare According to a European study on the economic impact of open
source software [AAB+06], FLOSS products are ranked under the top 3 in soft-
ware areas like operating systems, desktop operating systems, web browsers,
databases or e-mail clients. Table 4.1 shows the result of this study, based on an
End-User survey with a sample size of 625 companies from Germany, UK and
Sweden. Different areas have been researched and the results show that FLOSS
has the highest acceptance as operating system on the server market with about
15.7% in total. Also noticeable is the fact, that out of these 3 countries, Germany
has the highest FLOSS quote across all different categories.

14

4.2 Market

Another example comes out of the web server area. Looking at figure 4.1 you
can see the historical market share of different top servers beginning in 1995 and
reaching until 2010. Since 1996 the leading web server with a worldwide market
share in 2010 of about 50% is the open source product Apache [Apaa].

To sum up, FLOSS became irreplaceable in many kinds of businesses. In
the public sector the highest usage of FLOSS can be found in Europe, followed
by Asia and Latin America. However in the commercial software developing
world, more and more medium and large scale enterprises decide towards FLOSS.
Looking at table 4.2 you can see the biggest contributors which are the former
company Sun Microsystems (now part of Oracle), IBM and Red Hat and the
market values of their contributions.

Table 4.2: Cost estimate for FLOSS code contributed by firms. Refined
from [AAB+06]

Number of firms 986
Source lines of code 31.2 million
Estimated effort 16 444 person years
Estimated cost 1.2 billion Euro
Top contributors
Rank Name Person-months Cost (mil euro)
1 sun microsystems inc. 51372 312
2 ibm corp. 14865 90
3 red hat corp. 9748 59
4 silicon graphics corp. 7736 47
5 sap ag 7493 46
6 mysql ab 5747 35
7 netscape communications corp. 5249 32
8 ximian inc. 4985 30
9 realnetworks inc 4412 27
10 At&t 4286 26

Marketvalue To answer the question how far FLOSS got up to now - out of a
financial point of view - it is referred to some facts [AAB+06]:

• Market value of all FLOSS products with acceptable quality has an equiv-
alent commercial value of about Euro 12 billion.

15

4 Open Source Software

Figure 4.1: Market Share for Top Servers Across All Domains August 1995 -
January 2010 [Net10]

• The lines of codes have been doubling every 18-24 months in the last 8
years.

• About 131.000 real person years is the relevant number to recreate the
state of FLOSS software at the time, the study was created.

An article from the New York Times points out that the societal and strate-
gic relevance of open source companies stand in no relation to their financial
value [Van09]. To point out an example, the article uses MySQL (which is an
open source database formally supported by Sun Microsystems1 which has been
taken over by Oracle2 in January 2010) where the number of downloads (about
60.000 a day) strongly outperforms the profit, earned from support deals. The
article mentions a statement by Simon Cosby, the chief technology officer at
Citrix Systems3: “There’s only one company making real money out of open
source, and that’s Red Hat”.

1http://at.sun.com/
2http://www.oracle.com/index.html
3http://www.citrix.com

16

http://at.sun.com/
http://www.oracle.com/index.html
http://www.citrix.com

4.3 Characteristics

4.3 Characteristics

Two different initiatives stand behind the approach of developing free and open
source software. Both originate from the same movement but have split up due to
interest conflicts. The result of this is also expressed by the difference in the terms
“open source software” and “free software” and the difference is quite difficult to
see. Richard Stallmans initiative is following the idea that software should be free
in the sense of “free speech not free beer” [Sta09]. His approach lies in the sense
that knowledge should not be limited by barriers because only free knowledge
can grow. Stallman compares this also with good science, where it is common
to share knowledge. Therefore he has founded the Free Software Foundation
(FSF) to follow his idea of producing free software with high quality. [Fou09]
The fact that free in the sense of “for free” can lead to misunderstanding caused
Eric Raymond to substitute “free software” with “open source software”. Out
of this thought and also to focus more on economical points of view the OSI
(Open Source Initiative) arose. Supporter of the open source initiative have
always pushed the FSF into the corner of eccentricity but Stallman expresses
the difference the following way: “Open source is a development methodology;
free software is a social movement” [Sta09]. He also argues that the term “open
source” is too weak for expressing his original idea. Now, to step over this gap, in
this thesis, expressions will be used interchangeably and none of the approaches
will be preferred. It is focused on the result of both initiatives: High quality
software.

Although the details and approaches are different, the cornerstones of free
software and most open source software can be summed up as follows [Sca07]:

• The source code has to be available for public access

• Modifications of the code have to be allowed

• Redistribution is explicitly permitted

• After a redistribution the above mentioned freedoms have to be guaranteed

The framework and the differences within FLOSS have been declared. What
is even more interesting is the question, how FLOSS development differs closed
source software development in respect to the question whether gained knowledge
is also valid in proprietary software development. To get an introduction table 4.3
shows some concrete differences between open source and closed source software
development. If specific ideas, gained within this thesis, are valid for commercial

17

4 Open Source Software

software development as well, will be handled separately in the empirical part
of this thesis.

Table 4.3: Open vs. Closed Source. Refined from [Wah08]

Dimension Closed source project Open source project
Goal Produce proprietary

software
Produce FLOSS. Based on own
needs a project arises; going public
in order to get feedback and attract
other developers

Actors [SSS07] Commercial organi-
zations, corporate
developers

Volunteers, Universities, non profit
organizations, commercial organiza-
tions

Customer Internal or external Usually at the beginning devel-
oper = customer[Sca07]

Developer Staff developer = customer [Sca07]
Trigger for project
kick off

Needs of the customer,
production plan

In most cases own needs

Physical separation
of the project team

Usually small Members spread all over the world
and barely see each other face to
face

Who has the admin-
istrative authority?

Project leader/central
authority

No one has the authority to tell a
member what to do. Members are
free to decide where, when or how
to participate [Sca07]

Success measure Satisfaction, acceptance Project health, high number of
users, rankings

License Copyright, patents for
protecting knowledge
and secrets of a business

Copyleft in order to protect the free-
dom for public access, modification
and redistribution of the source code

4.3.1 Actors

People participating in FLOSS projects have a very distinct background. As it
is also available in table 4.3 the range goes from single developer, universities,

18

4.3 Characteristics

non-profit organizations like FSF (see section 4.3) or Apache Software Founda-
tion [Apaa] to commercial organizations like IBM or RedHat [SSS07].

Different kind of actors can be identified but the basic differentiation deals
about volunteers and corporate developers. Volunteers are those who spend
their time and energy without getting paid for. They have different motivations
as it is pointed out in section 4.3.2. On the other hand corporate developers
do nothing else then working for FLOSS projects. They are hired by companies
in order to promote or participate at projects [SSS07]. According to [AAB+06]
almost 2/3 of FLOSS software is developed by volunteers, firms participate with
about 15% and the 20% left come from other institutions.

4.3.2 Motivation to Contribute

It was shown so far, what open source is and how the movement arose. Without
the existence of a community Open Source Software Development would not work
and the interesting question is, what keeps people spending their time and effort?
What makes people contributing to FLOSS projects and what benefits do they
have? Linus Torvald’s answers this question in his book “Just for fun” [TD02]
that in times where people can live quite save money is not everything and
especially it is not a good motivator. Torvalds declares that different scientific
studies have shown that people do their best job if they are driven by passion.
They are contributing voluntarily and feel very lucky to work together with
people all over the world, having the same interests and sharing respect to each
other.

Logical to say, somebody contributes to something voluntarily like Open
Source Software Development if the person has benefit. According to Het-
mank [Het06] such reasons can be:

• Earnings for corporations

• Reputation

• For own usage

• Identification with the community

• Fun

Osterloh et al. [ORK02] introduce two categories named intrinsic and extrinsic

19

4 Open Source Software

Figure 4.2: A healthy team is onion shaped with different roles [CH04]

motivators in which the named reasons above can be classified. Intrinsic mo-
tivators are those which emerge out the own inner decision. This can be own
needs, identification with a community or simply the experience of fun. Is the
contribution motivated by some external factors like monetary compensation or
reputation we can speak of extrinsic motivators. In one aspect Torvalds’ “just
for fun” is right. According to Hetmank the motivation of hobby software de-
veloper is primary intrinsic oriented but another thing is logical too: The more
professional it becomes the more important extrinsic values become.

4.3.3 Team Structure

Open Source Software Development can be seen as an extreme form of dis-
tributed software development with the main indicator that the members barely
see each other face to face. FLOSS projects have to deal with barriers in time,
space and culture. To step over this gap specific development styles, techniques,
communication behaviors and platforms for organization have found their place
in FLOSS development.

Another difference to proprietary software development deals also with the
kinds of members of a project team and the underlying structure of development

20

4.3 Characteristics

teams. A wide range of different actors participate in FLOSS [SSS07]. Crowston
et al. [CH06] point out that healthy projects generally are onion shaped (see
figure 4.2) with different roles as shells which define this form.

Core developer Positioned in the center of this shape are the core developer
who have specific duties, responsibilities and privileges regarding the code repos-
itory. The founder of the project can also be found in this group but for others
to get into this position, this needs to be earned. Usually this group has around
3 to 10 members. Crowston et al. [CH06] write about an example where less
then 1 percent of the more than 100,000 projects managed within the platform
sourceforge [sou] have more than 10 core developers which means: Projects like
Linux and Apache [Apaa] represent the minority in the FLOSS world. The core
developers take the technical or organizational decisions and have full access to
the code repository [Sca07]. To get into this group someone not only needs skill,
time and effort but also the ability to communicate, to learn from others and
needs to prove seriousness. According to Scacchi [Sca07] FLOSS developers tend
to participate in more than one project at a time and a mentioned study [HO02]
reports that 5% of developers work in 10 or more projects. This means, that
developers sometimes know each other from earlier projects which can be helpful
to get faster into the inner circle of the development team.

Codevelopers Following the core developers, codevelopers can be identified.
Members of these group contribute by providing bug reports, are writing code,
batches or bug fixes but do not have the rights to commit to the reposi-
tory [Pod09]. They usually add their changes to patch files and give them to
core developers who make reviews of the committed code. If the code seems to
be free from defects they add it to the code base [CH06].

Active users/Passive users Healthy FLOSS projects have a large community
of active users [CH06]. They run new software to do the testing, give feedback
by writing bug reports and documentation. Active user also build a protecting
shield around the developer by answering questions and giving support to pas-
sive users which are those who just use software without participating in the
development process. Crowston et al. [CH06] tell that ideally this group consists
of one or two long term participants and a high number of interchanging users.

21

4 Open Source Software

4.3.4 Ressources

Walt Scacchi [Sca07] introduces the terms formalisms and informalisms. Ac-
cording to Scacchi informalisms are “the information resources and artifacts
that participants use to describe, proscribe or prescribe whats happening in a
FOSSD project” [Sca07]. Out of his view he puts informalisms on the opposite
side of formalisms which are relevant entities like requirement specifications or
design notations in the proprietary software engineering world. He mentions
over 20 different types of informalisms which stand for all the information and
communication channels in order to coordinate and inform what is going on in
FLOSS projects. Some of this informalisms are mentioned as follows:

• Communication within Email lists

• Threaded messages like forums or blogs

• How-to-guides

• To-do-lists

• Wikis

• Architecture diagrams

• Multi-project websites like sourceforge [sou]

• Code repositories

• Bug-Issue management systems like bugzilla

Although informalisms stand in contrast to classical entities in commercial
software development, out of the perspective of traceability it makes this the-
sis possible because in contrast to closed source projects, all this entities are
available to public.

4.3.5 Project Management

Compared to proprietary software development the process of creating software
is different and ironically expressed by Crowston et al. [CH06]: there are few
projects which could apply for a ISO 9000 certificate soon. Scotto et al. [SSS07]
argue that only corporate developers bring real standardization into the field of
FLOSS development by applying predefined processes. While this group repre-
sents the minority, it is not said that anarchy has found the way into FLOSS

22

4.3 Characteristics

development. Different studies show that well accepted standards have spread
in the FLOSS world [CH06] [SSS07] although other values which can be found
in closed source software projects are at least as important as the mentioned
standards.

Conflict management is very important for the development process of
FLOSS. Experienced core developers set up their projects already with the aim
of minimizing the occurrence, duration and effort for conflicts [Sca07] with the
support of tools and project organizational forms. Revision systems pick up the
challenge of recurring stress situations and support the total development pro-
cess. By relying upon SVS systems a need for coordination has to be accepted but
as a result, standardization and synchronization takes place. Scacchi also points
out the potential to create an “online venue for mediating control[...]” [Sca07]
over version and release decisions.

Trust and social accountability Crowston et al. [CH06] write that specific
controlling mechanism can be found in the development process. For example,
it is very common that only a limited group of developers (core developers - see
section 4.3.3) have full write access to the repository. Developers from outside
have to send their proposals to core developers in order to let them review (see
section 4.3.6) their code. Besides that, trust and social accountability play a very
important role as well [SSS07]. This soft facts are invisible resources of a project
and can be found in a variety of different manner. It ranges from assuming of
ownership or responsibility for a specific module to the acceptance of status or
hierarchy of a core developer. A lack in this “social capital” [SSS07] would lead
to conflicts like to find solutions for specific problems or more general to plan
the future direction of the project.

Organization for fun vs. organization for efficiency According to Crowston
et al. [CH06] a main task of proprietary software development is to use all re-
sources as efficient as possible. Due to the inconsistencies in the number of
project members and their inputs these aims have to be secondary in FLOSS
because other values are more important. Crowsten et al. call this the tension
between “organization for fun” and “organization for efficiency”. It is not pos-
sible to order voluntary members of a team, what to do or when and this fact
sometimes causes redundancies or lacks in capacities. As well some duties soon

23

4 Open Source Software

OSS Project

Environment

User

Mailing List

Developer

Mailing List

Issue Tracker

Source Code

Management

Project Participants

@Publisher side

Project Participants

@Publisher side

Publish

Publish

Publish

Project Participants

@Subscriber side

Publish

Project Participants

@Subscriber side

Unsubscribe

Subscribe

Notify

Figure 4.3: Publish-Subscribe mechanism as communication pattern in OSS
projects [Wah08]

cause demotivation especially when members “[...]are driven by intellectual cu-
riosity rather then service mentality” [CH06] because in a software development
there are task to do which are not always driven by a lot of passion. According
to [CH06] it can be a very big challenge to set up a release date and manage all
resources that way to fulfill the aim which also sometimes means to stop being
creative and do standard jobs like testing and bug fixing.

4.3.6 Development Process

Open source software development process can be defined by the dimensions
time, place and ressources. Due to the huge inconsistencies in that dimen-
sions the development process itself has to be very loose coupled and usu-
ally uses publish/subscribe-like interaction schemas [Wah08] like it can be seen
in figure 4.3. A simple process like a bug report could reveal the following

24

4.3 Characteristics

steps [Wah08]: Somebody is reporting a bug by entering the information on
the publisher side into a defect tracker system (defect reporting event). This
event is processed internally and initiates an instance which informs the people
who are subscribed (new defect notification event) through a specified informa-
tion channel (which can be a mailing list). After the processing the responsi-
ble person fires another event by replying with feedback to the tracker system
(defect diagnoses event). By tracing this communication behavior it is possible
to get an overview about the composition of a development team which is used
as approach in this thesis.

Wahyudin describes [Wah08] some standard patterns which can be found in
FLOSS projects. Basically, the aim of all concepts is continuous improve-
ment and how this process of each release cycle could look like can bee seen in
figure 4.4. The figure differentiates between three different views and illustrates
five basic concepts in FLOSS development which read as follows:

Design review The beginning of this cycle can be seen in the design review
subprocess and what happens in there is mostly decided on the basis of informa-
tion out of the tracker tool. Such change requests in the tool are either requests
for new features or requests for enhancements. Before inserting a new issue a
developer usually creates some specification and tries to evaluate this with other
developers (see circle 1 in figure 4.4). Accepted tasks are added to the tracker
tool or the developer himself starts to implement a solution and publishes it in
order to get the code reviewed.

Coding and testing After the design, the second sub circle (see circle 2 in
figure 4.4) follows with coding and testing. Generally, the information what
should be implemented comes again out of the issue tracker tool. If any troubles
in the testing phase do appear, the issue can be set to status “open” and goes
back to the tracker tool, together with information which have been collected
during development. Out of the perspective of this thesis information about the
underlying project team can be gained by analyzing mailing lists which are used
for coordination but also extracting information out of revision systems like CVS
or Subversion.

25

4 Open Source Software

Code peer review Is an issue ready for peer review it is marked as “re-
solved” [Wah08]. Other developers review the code and decide whether the
changes can be added to the next release or have to go back to coding and
testing in order to clarify left doubts (see circle 3 in figure 4.4).

Release and defect validation After the changes have been added to the new
release, the user community takes up work. By using the new software they
implicitly or explicitly test (whitebox testing - see circle 4 in figure 4.4) the
new release and in the case of detecting problems they provide feedback to the
developer by creating a defect report. The developer uses the information from
the user community in order to understand the problem. With black box tests
(see circle 5 in figure 4.4) he tries to detect the specific problem and if the
problem has proven as valid the developer himself starts to correct the bug or
opens a new issue in the tracker system.

26

4.3 Characteristics

T
ri

g
g

e
rs

 f
o

r

Im
p

le
m

e
n

ta
ti

o
n

N
e

w
 R

e
q

u
ir

e
m

e
n

ts

N
e

w
 F

u
n

c
ti
o

n
a

lit
y

a
n

d
 N

e
w

 P
a

tc
h

 I
d

e
a

F
e

a
tu

re
 R

e
q

u
e

s
ts

S
p

e
c
if
ic

a
ti
o

n
 a

n
d

D
e

s
ig

n

N
e

w
 I
s
s
u

e
 (

D
e

fe
c
t,

F
e

a
tu

re
 R

e
q

u
e

s
t,

N
e

w
 F

u
n

c
ti
o

n
a

lit
y
 o

r

N
e

w
 P

a
tc

h
)

S
o

ft
w

a
re

 R
e

le
a

s
e

C
o

d
e

 S
u

b
m

is
s
io

n

D
e

fe
c
t
R

e
p

o
rt

D
e

s
ig

n

R
e

v
ie

w

C
o

d
e

T
e

s
ti
n

g

U
s
a

g
e

s

“B
la
c
k

B
o

x

T
e
s
ts
“

W
h

it
e

B
o

x

T
e

s
ti
n

g

P
e

e
r

R
e

v
ie

w

D
e

s
ig

n

re
v
ie

w
e

d

Is
s
u

e
 r

e
s
o

lv
e

d

R
e

q
u

e
s
t

fo
r

R
e

v
ie

w

Is
s
u

e
 c

lo
s
e

d

D
e

fe
c
te

d

C
a

n
d

it
a

te

D
e

fe
c
t

C
o

d
e

Im
p

le
m

e
n

ta
ti
o

n

F
e

e
d

b
a

c
k

F
e

e
d

b
a

c
k

V
a

lid
 D

e
fe

c
t

F
e

e
d

b
a

c
k
s
 o

n
 v

a
lid

it
y

N
e

w
 F

e
a

tu
re

 R
e

q
u

e
s
t

1

5 4

3

2
T

e
s
t
re

s
u

lt
s

D
e

v
e

lo
p

e
r

V
ie

w

U
s
e

r

V
ie

w

F
ig

u
re

4.
4:

C
on

ti
n
u
ou

s
so

ft
w

ar
e

p
ro

d
u
ct

im
p
ro

ve
m

en
t

w
it

h
in

an
O

S
S

p
ro

je
ct

re
fi
n
ed

fr
om

[W
ah

08
]

27

4 Open Source Software

28

5 Project Health

The importance of FLOSS has already been shown in the previous part of this
thesis. In some areas open source has become a real counterpart to proprietary
software products. From an outside point of view, closed source projects provide
different quality evaluation methods compared to open source projects. Fur-
thermore closed source projects usually have the constriction to provide only a
view to the product. It is not possible to look at the underlying process of soft-
ware development which is a main difference to open software projects. It was
shown so far, how FLOSS projects are usually set up and who are the different
contributors in the development process. In this chapter, it is focused on the
development process with the aim to provide indicators for a project’s health
status which furthermore guarantees the survival of the project.

Project health is defined in the context of this thesis as a
qualitative characteristic for stability and continuity on the ba-
sis of the underlying development process and community (see
also [Wah08], [WSM+06] and[CH06]).

Just because it is possible to look at the underlying process this is not reason
enough to focus on the processes in this thesis. Due to the information given
in the previous chapter it should be possible to understand, why the success of
FLOSS projects strongly relies on the community. For the success of this thesis,
it is furthermore hypothesized that only a healthy community can produce high
quality software [WSM+06].

What keeps projects alive is the result of a variety of factors and due to the
complexity this question cannot be easily answered. As it was already pointed
out, FLOSS projects have similar approaches but how they are managed in
detail differs from project to project and can change over time as well. A health
analysis should support stakeholder to get an overview of the current status and
future development of software projects.

29

5 Project Health

5.1 Why Project Health?

This chapter will be opened with a quote by Michael Olson, CEO of Cloudera1,
which is an open source startup: “A lot of open source firms are one-product com-
panies, and it’s hard to build a long-term, successful business that way” [Van09].
For users or investors in open source projects it is essential to know about the
health condition of a project in order to create a reliable basis for own efforts.
To provide an instrument which is able to differentiate between healthy and sick
projects the project health approach is introduced in this thesis.

Out of a specific view a software project can be compared with a sensitive
organism. A lot of different factors influence the health status of this organism
and if the “immune system” is not strong enough, a project can become sick
what sometimes can even lead to death (see life cycle in figure 5.1). In the first
instance it is important to be able to separate between healthy or sick projects.
Furthermore health indicators should make it possible to make prognoses about
the future conditions of a project by evaluating the current health status of a
FLOSS project.

B. MaturityA. Incubator

Dying

Sickness

HealthyInfancy

Birth Death

Figure 5.1: Open Source Project Lifecycle refined from [Wah08]

1http://www.cloudera.com/

30

http://www.cloudera.com/

5.2 Project Lifecycle

5.2 Project Lifecycle

Wahyudin [WSM+06] shows a classical project lifecycle (see figure 5.1) of open
source software projects. Basically it can be differed between four states which
are infancy, healthy, sickness and dying.

Infancy Before initially going public a code base is typically developed by a
single developer or a very small group [CH06]. Platforms like Sourceforge [sou]
have their own approaches which should support new projects in order to reach
maturity. The Apache Software Foundation (ASF) [Apaa] calls their environ-
ment Apache Incubator [Apab] which has the aim to support podlinds (according
to [Apaa] it is the codebase and it’s community during the incubation process)
on their way in becoming a member of the ASF family. The main aim in the in-
cubation phase is to attract more and more participants and to create a healthy
basis of the project (like in the case of Apache Incubator).

Croston et al. [CH06] mention, that projects with an atmosphere of intellectual
engagement and exploration early in the lifecycle seem to be very interesting for
a user community. This projects are most likely to grow up and to be able to
make the step towards maturity.

Healthy After leaving nursery the project reaches it’s maturity phase. The
project has to compete against other projects and has to attract a user and
developer base in order to stay healthy. This can be seen as a circuit because
healthy projects usually attract publicity and due to publicity, other users and
developers join. Nevertheless according to a study by Wahyudin [WSM+06] less
then 2% of the projects listed in sourceforge reach their maturity phase (see
diagram 5.2).

Sickness and dying According to figure 5.1, a project status can turn from
healthy to sick or even death. Reasons for this developments can be the following:

• Decreasing motivation of a community due to rising conflicts [Sca07]

• Poor project management

• No or late feedback demotivates the user community

31

5 Project Health

• Loss of core developers in a very centralized project (see section 7.5)

• Lack of acceptance of project leaders within a project [Sca07]

• Technical revolutions which make the project redundant

0 5000 10000 15000 20000 25000

Planning

Pre‐Alpha

Alpha

Beta

Produc8on/Stable

Mature

Inac8ve

Figure 5.2: Sourceforge - projects’ degree of maturity in relation to the number
of projects refined from [Wah08]

5.3 Health Indicators

The points mentioned above are the reasons for change in health status. This
part of the thesis deals with indicators, which should identify problems in time
in order to make it possible for stakeholders but also for project management to
get aware of a critical situation.

32

5.3 Health Indicators

5.3.1 Defining the Shape

Experts, analyzing FLOSS projects take a variety of indicators into considera-
tion. To get a general overview of an underlying project it is necessary to look
for a framework. Such frameworks deal with the shape and the development
process of the underlying FLOSS development team. Crowston et al. advise to
consider the following points [CH04]:

Size of the project team In order to get the number of project members some
criteria need to be defined because in FLOSS projects there is usually no official
document available which describes all active participants. Due to transparency
of the underlying processes, the question, who has contributed what and to
which time can be traced back easily. With informalims (see section 4.3.4) like
mailinglists, defect tracker tools and versioning systems which are available to
public and contain the historically output of the process, the relevant information
can be extracted.

In section 4.3.3 different roles in a FLOSS project were described which
contained core developers, codevelopers and active/passive users. Whereas in
healthy projects, the core group should stay stable, the fluctuation in the groups
codevelopers and active/passive users is usually very high.

Tendency in change of size Based on the last point, another indicator for
project health is the tendency, in which direction the size of a project team is
changing. To be able to see the change, data over a period of time need to be
researched. Already mentioned in this thesis, it can be seen as a circuit: The
more publicity a project produces, the more users and developers get attracted
which can also be valid vice versa. Loosing users can also be a signal for a dying
project.

Assignment of responsibilities Already introduced in section 4.3.3 healthy
projects are generally onion shaped with core developers (consisting of founder
and roles like release coordinator) in the centre. According to Crowston
et al. [CH04] it needs to be asked, how responsibilities within a project team
are assigned. Are there subgroups who are specialized or is everybody doing
everything? Are there gatekeepers who centralize communication channels or is

33

5 Project Health

it a very diverse team with balanced, equal contributors? This questions deal
with the social structure of the team. To provide a view to this structure Social
Network Analysis (see chapter 7) will be used in this thesis.

5.3.2 The Cathedral and the Bazaar

One of the most famous models in FLOSS development was created by
Eric Raymond and was published under the name “The Cathedral and the
Bazaar” [Ray00]. Raymond identified two different approaches in FLOSS de-
velopment which he called “Cathedral” and “Bazaar”. Before he started to
research the issue of FLOSS he believed that most of the important projects had
the structure of cathedrals: Step by step build out of the hand of some “indi-
vidual wizards” or small groups of “mages working in splendid isolation, with
no beta to be released before its time” [Ray00]. Linux although showed him a
complete different approach which Raymond called “a great babbling bazaar of
differing agendas and approaches” and out of his view it was a curiosity that the
output of this development style could be that coherent and stable.

After exploring the bazaar style with the example of Linux (release early
and often, delegate everything and be open to the point of promiscuity) he
had to revise his opinion and started to look for reasons, why that type of
project management can be successful. On the basis of a mail client called
Fetchmail [BW] he started a research project whether it is possible to guide a
project towards bazaar style. Out of this experiment he gained different insights
but what is important for this thesis lies in the assumption, that FLOSS projects
usually start as cathedral and then reach the status of a bazaar [CH06]. The
developer core gets bigger and is surrounded by a diverse set of codevelopers and
active/passive users. What the impact of this fact is or how it can be identified
will be answered in chapter 7.

5.3.3 High Dependency - High Risk?

The work of Krishnamurthy [Kri02] shows, that from the top 100 mature projects
available at sourceforge [sou] only a minority has reached the bazaar status. The
median number of developers, participating in one project was 4 but does that
mean, these projects are unhealthy?

34

5.3 Health Indicators

This question is rather difficult to answer because out of the information pro-
vided so far, it needs a certain period of time to reach maturity and also Krish-
namurthy found in his study a positive correlation between time of existence and
number of developers in the project. These projects can be on a good way to-
wards maturity but the fact, which can not be ignored is a higher risk of sickness
or death of the project by relying on a weak fundament. Speaking the language
of Social Network Analysis (see chapter 7), these projects show a high centrality
that finally results in a high dependency on a small set of actors. Appearing
problems like a sudden exit of an actor can have high impact on a project. Sum-
ming up, maturity should also contain a decline of the risk to fail by reducing
the dependency on certain actors and getting a broader core developer group.
Importantly, as stated by Crowston et al. [CH06] certain actors like founders are
always crucial for a project and even if they already dropped out of the project,
their opinion still counts certain value on the project progress. Resulting of this,
a transition of leadership from one actor (which can also be the founder of a
project) to another one is always a challenge for a project. Successfully man-
aged transitions are according to Crowston et al. a positive sign, but in the same
breath they point out the fact that high dependency of certain leaders provides
a risk for the whole project. Transitions in such a case are very critical for a
project.

35

5 Project Health

36

6 Research Questions

In chapter 4 an introduction into the basics of FLOSS was given. It was shown,
how a typical development process looks like and the different roles of a project
team were introduced. The previous chapter contained the concept of project
health and answers questions about how healthy projects develop and tells some-
thing about the different health conditions of a project. As a linking element
between these two concepts Social Network Analysis will be introduced in the
next chapter. Which questions should be answered in this diploma thesis can be
described as follows:

H1: Healthy projects develop an onion shaped structure which can
be identified using Social Network Analysis

The first question deals with the structure of an underlying project team. How
healthy projects are usually set up was described in chapter 5. Information out of
different software projects will be extracted and analyzed with the help of Social
Network Analysis. It will be tried to identify this onion shape of healthy projects
using the footprints left by developers during development. The different roles
of a software project should tried to be identified with the instruments provided
with Social Network Analysis in order to foresee any possibility of observing this
mentioned structure in healthy projects.

H2: Centrality decreases with time of existing of a project

Passing time the centrality (see section 7.5) of healthy projects decreases. Using
Social Network Analysis it will be tried to identify this pattern in healthy or
sick projects. It will also be researched whether an increase of this indicator is
a signal for sickness of a certain project.

H3: Relation between high centrality and project failure

37

6 Research Questions

The last question contains kind of a risk analysis and tries to answer the question
if a generally high centrality indicator stands in relation to a higher risk to fail.
It will tried to research the drop out of a certain very central actor in order to see
the effect on the underlying network. High centrality in this case would mean,
that the rest of the network will not be possible to handle that situation.

38

7 Social Network Analysis

Social Network Analysis represents the core concept of this thesis. It is used as
a technical method to research given Open Source Software Projects in order to
gain the information which is necessary to get answers to the research questions
in this thesis. The following chapter basically relies on the work of Stanley
Wasserman and Katherine Faust [WF94].

Analyzing complex systems is a very challenging task and the words of the
physicist Philip Anderson used by Clay Shirky in his book “Here comes every-
body” [Shi08] illustrate the situation accurately: “more is different” [And72].
Anderson continues to argue, that it is not possible to predict developments of
entities like atoms by aggregating their constituent parts. It is hardly possible
to make rational interpretations about future development of any system by us-
ing information only based on individuals and simply adding up information.
Anderson declares, that “chemistry isn’t just applied physics” because it is not
possible to understand the properties of water by focusing on the characteristics
of its isolated atoms. Neither “Sociology is just psychology applied to individ-
uals” because the explanations of Shirky’s individuals within the group show
behavior that no one could predict by researching the isolated person. A person
is not extroverted as long as it is sitting alone in a room. According to Shirky a
group is not just the sum of individuals.

Social Network Analysis allows to keep that view from above and provides
instruments, methods and approaches, relevant for the needs of this thesis.

7.1 Introduction

A formal definition of a social network by Wasserman et al. [WF94] reads as
follows:

39

7 Social Network Analysis

“The concept of a network emphasizes the fact that each individual
has ties to other individuals, each of whom in turn is tied to a few,
some, or many others, and so on. The phrase “social network” refers
to the set of actors and the ties among them.”

As it is also defined by Jamali and Abolhassani [JA06], a social network is
a set of entities which is connected by a given social relation. As an example,
this relation can be friendship, relationship or communication behavior in the
field of human social science and a possible entity can be an individual. The
instrument Social Network Analysis itself is not limited to this research area. In
fact it provides potential to be used in different fields like economics, marketing,
and like in this thesis as well, information technology, to research relationship
patterns between entities.

When social network analysts deal with a certain problem, they try to illus-
trate the dependencies of the given context in a model in order to detect the
relationships. With the help of certain indicators which will be introduced in
this chapter it is possible to research the composition of the underlying network.
Such indicators can anwer questions like to which extend a project depends
on individual members (see centralitiy indicators in section 7.5). As Wasser-
man et al. [WF94] point out, the next logical step would be to study the impact
of the individual in the group and/or to study the influence of the whole to
each individual within the group. To illustrate this theory more visible Wasser-
man et al. draw the following example:

Example The World’s economic system with it’s different actors (states) rep-
resents an incredible large and complex social network with observable variables
(relations) like trade, loans or foreign investments. Social network analysts can
now try to find regularities or patterns in the system, with the aim to under-
stand the characteristics of each nation, for example the economic development,
by describing the location of a nation within the economic system.

Factor time Social Network Analysis is not only used as a possibility to analyze
current states of given problematics. One other important approach is to look at
changes in social network over a period of time. Adding the “factor time” into
the “World’s economic system” example (see 7.1), makes it possible to research
changes in the economic system by drawing the social network for each period

40

7.2 Development of Social Network Analysis

of time and comparing them.

7.2 Development of Social Network Analysis

Guy et al. [GJS+08] declare that in the beginning social science tools like surveys
and interviews have been used as a fundament for Social Network Analysis. Due
to progress and introduction of the internet, the virtual world has become a
playground as well.

Scott [Sco00] writes, that different roots and strands have led to the methods
we today know as Social Network Analysis. Passing time these strands have
forged and spread, have influenced each other as well and because of this, it is
difficult to draw exact lines in the lineage of Social Network Analysis. Today we
can say, that there have been different motivations in different teams, place and
also time, which have led to the development of Social Network Analysis and
this is the reason for the interwoven lineage of Social Network Analysis.

The method itself is not that new. Parts of the theoretical fundament have
been introduced already in the 1930s and basically we can say that there have
been three main strands (see figure 7.1).

Socioeconomic analysts The Sociometric Analysts existed of small teams and
made important progress in the field of graph theory. Originally this strand
was dealing with Gestalt tradition1 which was mostly contributed to Wolfgang
Köhler [Köh30]. Jacob Moreno was highly influenced by Gestalt theory and
primarily it is due to him using a sociogram (like in figure 7.2) as a way to
illustrate social configurations. This approach had huge impact and was even
reported in the New York Times in 1933. The vocabulary has already been
existing before Jacob Moreno had his ground-breaking ideas. People were talking
about webs, the social fabric and sometimes also of networks and relations, but
it was him putting the information into a sociogram where for example edges
stand for different humans and vertices illustrate the information flow between
them (see figure 7.2). Another group around LLoyd Warner and Elton Mayo

1Gestalt tradition is a topic of psychology and deals with distinct perception and thoughts
of entities and it’s constituent parts [Sco00].

41

7 Social Network Analysis

was dealing with interpersonal relations. Theoretical research during the 1930s
and 1940s was dealing with composition of networks by constituent sub-groups.
They had the aim to use any relational data they could obtain in order to find
techniques which makes it possible to take apart any social system into it’s parts.
This goal could not be achieved totally.

Manchester Anthropologists Max Gluckman and later Clyde Mitchel were
the central figures in the line of the Manchester Anthropologists and made em-
inent contribution to the development of Social Network Analysis. Gluckman
was investigating social structures (“communities”) in different parts on earth.
They were looking for an approach to determine the central element which is
responsible for conflict and power in maintenance and transformation.

Harvard researchers It was in Harvard, where the real breakthrough was hap-
pening. In fact two parallel mathematical innovations have led to this success.

• The development of an algebraic model for describing kinship and other
relations using set theory2

• A multidimensional scaling technique for mapping relationships to social
“distances” in a social space

A group around Harrison White was using these ideas and Social Network
Analysis as a method for structural analysis was born.

Classical Social Network Analysis vs. Social Network Analysis in software
development As it was just pointed out, Social Network Analysis has a long
history which goes back to an era where computers have not been invented
yet. The offspring can be found in the area of social and behavioral science
who were one of the first profiting from Social Network Analysis by using the
new perspective in order to research specific patterns. Clever researchers soon
noticed the potential of this concept in the field of software development in order
to analyze the composition of software development teams [WF94] [Fre79].

2Set theory is a mathematical method, dealing with the infinite and studies properties of
sets, which are abstract objects [Jec02].

42

7.2 Development of Social Network Analysis

Gestalt theory

Field theory,

sociometry

Graph theory

Group dynamics

Structural – functional

anthropology

Warner, Mayo Gluckman

Homans

Barnes, Bott, Nadel

MitchellHarvard structuralists

Social Network

Analysis

Figure 7.1: The lineage of social network analysis

43

7 Social Network Analysis

7.3 Key Concepts

This section provides a brief introduction into the vocabulary which is used in
Social Network Analysis. Basically it is orientated on the information given in
the work of Stanley Wasserman and Katherine Faust [WF94] which can be seen
as a reference book in the area of Social Network Analysis.

Actor Possible actors can be people in a group, departments within a corpo-
ration or nations in the world. We speak of one-mode networks when all actors
are of the same type (e.g. people within a group) which is the common us-
age. Although Wasserman et al. also mention other scientific areas where it
makes sense to accept actors of different kind (researching community members
contacts with public service agencies by Doreian (1990)).

Relational Tie A set of connections of a specific kind is called a relation. Only
the focus, how we look at the group, defines a specific relation because relations
are not limited to a dimension. In a group of people we can identify examples like
friendship, kinship or labour relations as different relations where not everybody
has to be involved.

The idea of relational ties is, that they are representative for the bond between
a pair of actors. Dimensions associated with relational ties can be quite different.
Beginning with the example introduced in 7.1 where the relational tie stands
for trade between nations, we can find a relational tie in the communication
behaviour of an Open Source Software Projects what used in this diploma thesis.
Relationships in families, physical connections (roads, bridges) which together
with cities as actors describe a map are further example for this linking entity.

Subgraph A graph Gs is subgraph of Graph G if

• the set of nodes Ns of graph Gs is subset of the set of nodes N of graph G

• the set of lines of graph Gs is a subset of the set of lines of graph G

• mathematically expressed Ns ⊆ N and Ls ⊆ L is valid.

44

7.4 Data Management and Illustration

Dyad A dyad is a subgraph and consists of a pair of nodes connected by a tie
or not. This means that an unordered pair of nodes can take up two possible
dyadic states: Two nodes are adjacent or they are not adjacent.

Group Wasserman et al. [WF94] use a definition of a group that reads as fol-
lows: “For our purposes, a group is the collection of all actors on which ties
are to be measured. One must be able to argue by theoretical, empirical, or
conceptual criteria that the actors in the group belong together in a more or less
bounded set.” They define a group simply with all members which are connected
by relational ties.

Social Network With the formal definitions given so far, a social network can
be seen as a finite set of actors and the relation defining their linkage.

7.4 Data Management and Illustration

Depending on the aim of how the gained data will be further used, it is possible
to specify two different approaches for managing data, used for Social Network
Analysis. For storage or further statistical research data can be organized in
matrices. Another possibility is using graphs as a method for drawing the social
network and illustrating the dependencies. In the following section a brief intro-
duction into matrices and graphs is given, as they are used in Social Network
Analysis.

7.4.1 Graphs

Wasserman et al. [WF94] describe graph theory with its vocabulary and methods
for modeling social structure properties as a multifunctional and useful part
of the methods of Social Network Analysis. Graph theory provides as well a
mathematical approach for quantifying and measuring relations. As already
mentioned in section 7.2 Jacob Moreno was one of the first using graphs as a
method for detecting social properties. These graphs are called sociograms if
they illustrate the social relationship between humans.

45

7 Social Network Analysis

Undirected dichotomous relations Graphs provide the possibility to model
social networks with relations that do not have a direction. As an example we
can think of kinship or neighborhood as relation. If a person A is related to a
person B, B is also related to person A and resulting of this, a relation between
two actors exists or does not exist (there is no other possibility). Graphs consist
of a set of nodes (are called vertices in graph theory - representing the actors)
N = {n1, n2, ...ng} and lines (are called edges in graph theory - representing the
relation between two actors) L = {l1, l2, ...lL} which connect the nodes. A line
is represented by an unordered pair of distinct nodes (no self relation) and is
annotated in the following form: lk = (ni, nj). Two actors (n1, n5) are adjacent
if the set of nodes contains a line lk = (n1, n5).

Directed relations Relations can also have a direction. Wasser-
man et al. [WF94] present an example where friendship of 6 children are
used to explain directional relations. When one kid considers another as a friend
it is not given that the relation in the other direction is right as well.

These kinds of relations can be represented by directed graphs. Like undirected
relations, we have as well two kinds of elements. Digraphs exist of a set of nodes
N = {n1, n2, ...ng} and a set of arcs L = {l1, l2, ...lL} but as a difference to
undirected graphs, arcs consist of an ordered pair of nodes and are annotated
the following way: lk = 〈ni, nj〉. Back to our “friend of” relationship an arc
l1 = 〈n1, n2〉 would mean, that out of the view of n1, n2 would be considered as
a friend but this relation is not valid vice versa. By changing the direction of the
arc the knowledge base would change as well. Summing up, we have indegrees
(incoming relations) and outdegrees (outgoing relations) that are connecting a
pair of nodes.

7.4.2 Matrices

Basically matrices and graphs contain the same information but differentiate in
the way how they organize it. A matrix is a compact method for managing in-
formation about relations in a social network. If the network, we are watching at
is very large other graphical methods like graphs (see section 7.4.1) soon become
very complex and the extraction of relevant information becomes very difficult.
Managing social structural properties in matrices makes it more useful for fur-

46

7.4 Data Management and Illustration

X n1 n2 n3 n4 n5 n6

n1 - 0 0 0 1 1
n2 0 - 1 0 0 0
n3 0 1 - 0 0 0
n4 0 0 0 - 1 1
n5 1 0 0 1 - 1
n6 1 0 0 1 1 -

Table 7.1: Example of a sociomatrix: relation “lives near” [WF94]

X l1 l2 l3 l4 l5 l6
n1 1 1 0 0 0 0
n2 0 0 1 0 0 0
n3 0 0 1 0 0 0
n4 0 0 0 1 1 0
n5 1 0 0 1 0 1
n6 0 1 0 0 1 1

Table 7.2: Example of an incidence matrix: relation “lives near” [WF94]

ther calculations with computers where as well a lot of interfaces use matrices
for exchanging information. The following two different kinds of matrices are
used for Social Network Analysis [WF94].

The Sociomatrix The lines and columns of sociomatrices or adjacency matrices
represent the different nodes of the social network. Each node has it’s own row
and column and a binary system represents, if there is a connection between
two nodes or not. As we have seen it in section 7.4.1 we have to differentiate
between directional or nondirectional relations. The sociomatrix of a undirected
relationship is symmetric, which means, that all elements or cells of a matrix
are mirrored on the main diagonal (see table 7.1) There is a connection between
node ni and nj if the cell xij or xji = 1. Cell x51 is representative for the available
relation between node n5 and n1 because of the existence of a 1 in cell x51.

47

7 Social Network Analysis

The Incidence Matrix Adjacency matrices have for each node a column and
a row and a binary system describes the social network. However incidence
matrices have for each node a row and for each line a separate column, as it can
be seen in table 7.2. The matrix has the size gXL for g nodes and L lines. Two
nodes n1, n5 are incident if they have a 1 in one column as it can be found in
column l1.

7.5 Indicators measuring Centrality or Prestige

Social Network Analysis not only provides methods for illustrating social rela-
tionships. In fact it is important to differentiate between more or less important
members of a network or compare characteristics of different networks and there-
fore Social Network Analysis provides methods to calculate different indicators.
For this use, the next section introduces the different indicators, used in this
thesis.

Generally we can differ between levels of aggregation. Analysis can be done
on the level of actors. Furthermore, more aggregated, groups or networks can be
researched. Some indicators base on undirected relationships (see section 7.5.1,
7.5.2 and 7.5.3), others need a special form of directed relationships as the notion
of prestige (see section 7.5.7).

The Linton Freeman study [Fre79] about centrality and the difference between
local and global centrality is considered to be fundamental in the area of Social
Network Analysis. He adopted ideas which have their roots at Bavelas, who was
the first, introducing centrality as a measure for importance [Bav48]. Bavelas
was hypothesizing a relationship between centrality and the influence in group
processes.

Centrality vs. Prestige Knoke and Burt [KB83] have introduced a differentia-
tion of importance or prominence. They have defined centrality and prestige as
subcategories. The concept of centrality is one representation of importance and
differentiates between two approaches. The regular kind of centrality measure
bases on nondirectional relations. However this measures can be adopted to use
directed relations as well but to create a difference to prestige, directed central-
ity measures solely focus on outgoing degrees. A prestigious actor is defined by

48

7.5 Indicators measuring Centrality or Prestige

Wasserman et al. as an actor who “is the object of extensive ties, thus focusing
solely on the actor as a recipient.” [WF94].

Freeman points out a potential for misunderstanding in his essay and intro-
duces a consistent vocabulary. In the following part of this thesis in each cen-
trality measure will be differentiated between point centrality (local) and graph
centrality (global). For readers who are interested in more detailed information
also including the derivations of the models in detail, it is referred to Linton
Freeman’s groundbreaking study about centrality [Fre79].

7.5.1 Degree Centrality

Important or prominent actors are those who are highly connected (or highly
visible) to other members of the social network [WF94]. In this case, there is
no differentiation between seeing (being the source of a relation) or being seen
(being the destination of a relation), only the “if” counts. A high actor centrality
declares a high integration into the network and resulting of this, being a part
of many relations. The indicator itself can reach a value between zero and one
where one represents high centrality.

Point centrality Freeman describes the star or wheel sociogram as the origin
of actor centrality. A central actor who is surrounded by other actors, as it is
available in figure 7.2 has the highest possible degree (number of relations to
other actors) and resulting of this approach we have at the same time the “most
intuitively obvious conception” [Fre79] for centrality. Centrality is some function
of the degree of an actor, or using Freeman’s vocabulary a point pi is a count of
all adjacent points pj(i 6= j).

The notation for degree centrality that was mentioned by Freeman [Fre79] and
defined by Nieminen reads as follows:

CD(pk) =
n∑
j

a(pi, pk) (7.1)

where

49

7 Social Network Analysis

a(pi, pk) = 1 if pi and pk are connected by a line, otherwise.

Different network sizes have an impact on this measure. To prevent inaccurate
measures, this indicator needs to be normalized. Freeman describes the following
notation as independent to the size of the network:

C ′D(pk) =

∑n
j a(pi, pk)

(n− 1)
(7.2)

Figure 7.2: Sociogram: star or wheel with five points [Fre79]

Graph centrality Centrality is not consistently defined when we move on to
total graphs. Freeman describes in his fundamental study [Fre79] that there
has been a running controversy over 25 years concerning the sense of this
phrase. Probably the parties have arranged this dispute meanwhile. Wasser-
man et al. [WF94] are already using another vocabulary though it will be con-
tinued with the notation of Freeman.

Freeman tries to illustrate that different scientists who have dealt with Social
Network Analysis have applied at least the same approach however they have
used other names for their indicators which represent the compactness of graphs.
Summing up the basis of the different approaches, Freeman defines compactness
the following way: “A graph is compact to the degree that the distances between
pairs of its points are short.” [Fre79] Basically this indicator is built on the same
idea as it was shown in the paragraph above (see 7.5.1) and the idea was only
transfered to total graphs. Freeman points out some facts that graph centrality
numbers should care about:

50

7.5 Indicators measuring Centrality or Prestige

• They should look at “[...] the degree to which the centrality of the most
central point exceeds the centrality of all other points [...]”

• This should express “[...]a ratio of the excess to its maximum possible value
for a graph containing the observed number of points.”

The general formula for calculating the centralization index reads as fol-
lows [Fre79]:

CX =

∑n
i=1[CX(p∗)− CX(pi)]

max
∑n

i=1[CX(p∗)− CX(pi)]
(7.3)

where

n = number of points
CX(pi) = centrality of point pi

CX(p∗) = highest value of point centrality in the whole network
max

∑n
i=1[CX(p∗)− CX(pi)] = the maximum possible sum of differ-

ences in the point centrality for a graph of n points

The graph centrality CX can be interpreted as the ratio between the summated
differences of the point with the highest degree centrality and all other nodes in
the enumerator, and the highest possible difference between the node with the
highest centrality and all other nodes for a graph with n nodes in the denomi-
nator. To understand this we need to go back to the ideas, this theory bases on.
The star or wheel sociogram has always been crucial to this approach because
only this arrangement provides this requirement. The centrality of such a graph
is used to normalize this indicator to an area between zero for low centralization
and one for high centralization.

As a next step the denominator can be resolved and then be calculated di-
rectly. By doing this the indicator graph centrality CD can adopt the following
form [Fre79]:

CD =

∑n
i=1[CD(p∗)− CD(pi)]

n2 − 3n + 2
(7.4)

Differentiation According to it’s approach, degree centrality only focuses on
local centralities which is relevant for studying the popularity or activity of
actors [HWC06]. The problem degree centrality has to deal with lies in the
fact, that only the neighbors of a node are considered for the calculation of this
measure. If a certain group is separated from the rest of the network an actor

51

7 Social Network Analysis

P1

Figure 7.3: Degree centrality ignoring the total connectivity

positioned central within this group would have a high degree centrality like it
can be seen in figure 7.3. The fact, that there is no connection to the rest of
the network would be ignored. Out of this reason [HWC06] advise to use other
indicators as well because of the mentioned lack of clarity.

7.5.2 Closeness Centrality

The second centrality measure looks at the degree of a point to which it is
separated to all other points in the network. Freeman uses again the example of
the star in order to explain closeness centrality [Fre79]. By looking at figure 7.2
we can see, that the distance of P3 to all other nodes is one, however all other
points need at most two steps to reach all other points. Resulting of this P3 is
closest to all other points in the graph. The idea of this approach is the question
how dependent an actor is. When we look at communication as an example for a
social network, information needs to pass different stations to reach an actor. The
longer the way of one to another actor is the more an actor has to rely on other
actors in the network [Fre79]. This approach was introduced by Bavelas [Bav50]
and Leavitt [Lea51]. Wasserman et al. [WF94] also mention Beauchamp [Bea65]
who found out, that a central actor in the sense of closeness centrality who is
aware of the special position in the network can have a strong positive influence
on information flows where on the other hand economic considerations become

52

7.5 Indicators measuring Centrality or Prestige

a topic. Again this indicator ranges from zero to one and a value closer to one
represents high centrality.

Point centrality Freeman mentions different ways to calculate indicators but he
proposes a measure by Sabidussi [Sab66]. Sabidussi describes that the centrality
should be a function of geodesic distances3 which means, if the geodesic distances
of a specific actor increases the centrality should decrease. Using Freeman’s
notation Sabidussi’s measure of closeness centrality is defined the following way:

If d(pi, pk) = number of lines in the geodesic linking for actor i and
j then

CC(pk)−1 =
n∑

i=0

d(pi, pk)

This measure again is dependent on the size of the underlying network and
therefore this factor needs to be normalized.

C ′C(pk) =
n− 1∑n

i=0 d(pi, pk)
= (n− 1)CC(pk) (7.5)

Graph centrality The next step will be to calculate closeness centrality for
total graphs. Therefore it is necessary to sum up the differences between the
most central actor (using the definition of centrality given above) and all other
actors in the network. This equation reads as follows:

n∑
i=0

[C ′C(p∗)− C ′C(pi)] (7.6)

where

C ′C(p∗) is defined as the centrality value of the most central actor.

This equation 7.6 divided by the maximum value for the network (in order to
normalize), which occurs when one point is separated from all other points only

3shortest possible connection between two points

53

7 Social Network Analysis

by one (again in the case of a star like figure 7.2), determines graph closeness
centrality the following way:

CC =

∑n
i=0[C

′
C(p∗)− C ′C(pi)]

(n2 − 3n + 2)/(2n− 3)
(7.7)

The derivation in detail can be found in Freeman’s study [Fre79]. CC reaches
the maximum if one actor (maximum geodesics of 1) has connections to all n−1
actors (maximum geodesics of 2) what is fulfilled by a star or a wheel graph and
in this case the network is very central.

P1

Figure 7.4: Closeness in node P1

Differentiation To sum up the approach of this indicator, closeness centrality
points out the potential for independence and efficiency. It is a measure rep-
resenting the autonomy of a member due to the potential in reaching all other
members on the shortest path. Like it can be seen in figure 7.4 the node P1 is
able to spread information with minimum time or costs [HWC06].

54

7.5 Indicators measuring Centrality or Prestige

P
P

P

1
3

2

1.

P

P3

5P

P3

5P

P3

5

P4P4P4

10.

P3
P4P4P4

8.

P

P3

5P

P3

5P

P3

5

9.

P

P

P

3

2

5P

P

P

3

2

5P

P

P

3

2

5

7.
P

P

3

2

P4P4P4

6.
P

P

P

P

P

P2

3
5.

P

P
P1

3

5P

P
P1

3

5P

P
P1

3

5

4.

P
P P1 4

3P
P P1 4

3P
P P1 4

3

3.

P
P1

3

2.

Figure 7.5: The ten geodesics from the graph of figure 7.2 [Fre79]

7.5.3 Betweenness Centrality

Betweenness is another construct we want to take a closer look at. This centrality
factor focuses at the frequency of which a point lies between a pair of other points,
defining a geodesic distance (a shortest connection). Using Freeman’s example
of a graph in star-form, figure 7.5 shows ten geodesics of a graph in star-form
with five nodes. Four geodesics have a length of one and connect point p3 with
all other nodes. The six other cases have a length of two and each time point p3

lies on the track which connect a pair of other points. The complete information
flow in the graph now depends on point p3 and as a consequence p3 has total
control.

What kind of influence has such an actor who is defined as central like it

55

7 Social Network Analysis

is the case of this approach? Freeman sums up the sense of this measure the
following way: “It is this potential for control that defines the centrality of these
points” [Fre79]. He also points out Bavelas [Bav48] and Shaw [Sha54] who argue
that an actor who is a mediator by providing a linkage between other pairs of
actors has huge influence on the communication process and information flow.

Point centrality The theoretical approach can be assigned to Shawn though
he did not provide a way to calculate a measure. Anthonisse [Ant71] and Free-
man [Fre77] were the first who have focused their work on creating a measure
for betweenness centrality. Looking at the graph of figure 7.6, you can see that
there are two geodesic connections from point p1 to p3. The total dependency
of one actor is resolved by the availability of a second shortest path, though p2

and p3 have a potential to influence the information flow. Now Freeman brings
probabilities into account. gij is defined as the number of geodesics which con-
nect two points pi and pj. All available geodesics have the same probability to
be chosen and is defined as:

1

gij

The potential of a specific point pk to be on the geodesic path and to be able
to influence information flow is defined by Freeman [Fre79] as the probability
that pk is on the randomly chosen shortest path that connects point pi and pj.
Again, one crucial fact is, that the likelihood of each geodesic to be chosen is
equal. The equation of Freeman reads as follows:

bij(pk) =
1

gij

× gij(pk) =
gij(pk)

gij

(7.8)

where

gij(pk) = number of geodesics linking pi and pj that contain pk

and bij(pk) is the likelihood that the shortest connection is chosen,
where pk is involved

For calculating the centrality of point pk the partial betweenness values for all
unordered pairs of points where i 6= j 6= k have to be calculated and summed
up.

56

7.5 Indicators measuring Centrality or Prestige

CB(pk) =
∑
i<j

bij(pk) =
∑
i<j

gij(pk)

gij

(7.9)

The minimum of CB is zero and the maximum will be (g − 1)(g − 2)/2 which
is the maximum number of pairs not containing pk. To make the measure CB

independent from network size it is necessary to normalize this equation by
dividing with this maximum value. For calculating node betweenness centrality
the following equation will be used:

C ′B(pk) =
2CB(pk)

(n− 1)(n− 2)
=

2CB(pk)

n2 − 3n + 2
(7.10)

Betweenness centrality ranges between zero and one where a value of one
stands for high centrality.

Figure 7.6: Graph with four points and five edges [Fre79]

Graph centrality Like it was the case in all other centrality measures the point
centrality measure of betweenness is used as a basis for the graph centrality
measure. Freeman mentions himself as the only one, providing a model for
calculating this indicator [Fre79] and the idea of this model is the following: “It
was defined as the average difference between the relative centrality of the most
central point, C ′b(p

∗), and that of all other points.” Again, it is only focused on
the final equation which reads as follows:

57

7 Social Network Analysis

P2 P3P1

Figure 7.7: Gatekeeper with special care in betweenness centrality [HWC06]

CB =

∑n
i=1[CB(p∗)− CB(pi)]

(n− 1)(n2 − 2n + 2)
(7.11)

where

CB(p∗) represents the relative centrality of the most central point
and CB(pi) is equivalent to the centrality of all other points

Differentiation The idea, how to measure centrality differs to already men-
tioned closeness and degree centrality. Due to the special approach of this in-
dicator, betweenness takes special care about structural bridges or gatekeepers.
Like it can be seen in figure 7.7 node P1 has a very important role of being an
intermediary between two subnets. In the case of this figure, node P1 would have
the lowest degree centrality but the highest betweenness centrality.

7.5.4 Information Centrality

Wasserman et al. [WF94] mention that there is no other measure than between-
ness centrality which is used more often and according to them, the reason lies
in the generality of this measure. Information centrality relies on this measure
and eliminates assumptions which have been introduced by Freeman in order to
simplification. Freeman hypothesized that if there are more than one geodesic
paths connecting a pair of actors, all paths have the same likelihood to be cho-
sen. The probability to select a path where one specific actor is involved can

58

7.5 Indicators measuring Centrality or Prestige

simply be calculated by 1/gij where gij represents the number of geodesic paths
connecting the pair (i, j) (compare section 7.5.3).

Wasserman et al. then declare that this simplification is not appropriate all
the time. If the graph is very regular where the nodes have constant degrees
(number of connections to other nodes) the approach of Freeman may be valid
but in practice only the minority of cases are regular. The key fact of their
arguments is, that there is no equal likelihood for selecting paths. There are
different influences and information centrality is one measure which tries to care
about this influences. According to Wasserman et al. one solution is to try to
consider if specific actors have higher degrees because as a result they are more
likely to be chosen.

The next point deals with the assumption that geodesic paths are always the
best selection which has not to be true all the time. Introducing an evaluation
and scoring system cares also about other paths.

Stephenson and Zelen [SZ89] have dealt with this kind of problem and have
defined a measure which takes this influences into account. For each node a
weight of the “information” is calculated. Information is defined in a statistical
manner by being the inverse of the variance of an estimator. If the variance is
small the information contained by the estimator is high. Betweenness centrality
is now extended by caring not only about geodesics but also about all available
weighted paths.

Differentiation Basically, information centrality relies on the idea of between-
ness centrality and has nothing in common with degree or closeness centrality.
Betweenness and Information centrality differ in the way how the extend of being
gatekeeper is considered.

7.5.5 Eigenvector Centrality

Eigenvector centrality introduced by Philip Bonacich in 1972 [Bon72] picks up
the approach of closeness centrality but differentiates in one detail. Closeness
centrality is evaluating the distance from one node to all others and treats all
nodes equally. Eigenvector centrality introduces an additional view by consider-
ing the importance of nodes to which one node is connected. Generally spoken

59

7 Social Network Analysis

one node has more power to influence if the nodes to which connections exist
are themselves highly “influential” [New08]. According to Newman, Google’s
page-rank algorithm bases on a variant of eigenvector centrality. The approach
of Bonacich takes two factors into account which are the number of connections
to other vertices and the importance of the connected vertices. Being highly
integrated into a network means to have a lot of connections which is still im-
portant. Never the less a node with fewer but more connections to important
nodes may outrank the situation of having more connections with little quality.

7.5.6 Centrality Indicators for Directed Relations

In the previous part of this chapter centrality measures only deal with undirected
relations. There was no differentiation between like Wasserman et al. [WF94] call
it choices made or choices received. In specific cases it makes sense to introduce
such a differentiation and take a closer look at the behavior of the actors in
the network in order to answer questions like: “Who are the most important
distributors?” On this point it is important to mention again that per definition
directed actor centrality just looks at outdegrees (or how Wasserman et al. use to
call “choices made”) whereas prestige cares about indegrees or “choices received”.

Some of the centrality measures which have been introduced, can be adopted
easily for directional relations, others have their problems.

Degree Centrality In the case of undirected relations, the degree (in and out-
going connections) is considered for this measure. By separating between in and
outdegrees and just counting outdegrees in equations, the former undirected
measure can be used for directed relations. Just by counting the specific degrees
and adopting the denominator (which normalizes the indicators) to (g − 1)2

degree centrality can be further used for directed relations.

Closeness Centrality To recapitulate, closeness centrality cares about the dis-
tances of one node to all other nodes using geodesics. Also this indicator easily
can be adopted for directional relations by differentiating between in and outde-
grees. However this influences the geodesics because edges will not be available
anymore due to the direction. The calculation of the indicator remains the same

60

7.5 Indicators measuring Centrality or Prestige

as it was already shown in section 7.5.2.

One problem arises with the requirement that the graph has to be strongly
connected (each node has to be reachable). Also in the case of undirected rela-
tions this problem remains the same and it can only be solved by ignoring not
reachable nodes. Otherwise some distances will be infinite and the measure can
not be calculated.

Others The two left indicators (betweenness and information centrality) have
been specially designed for undirected relations and for this reason adoption is
a challenge. Wasserman et al. [WF94] present some approaches to adopt this
indicators to make them usable for directed relations but also recommend using
closeness and degree centrality for directed relations and leave the other two
measures behind.

For this reason it is referred to Wasserman et al. in order to get further
information about these two left indicators.

7.5.7 Prestige

Prestige does not differentiate between directed or undirected relations, mean-
ing that the basis of this concept solely relies on directional relations. As it
was already mentioned, prestige differs from directed centrality measures (see
section 7.5.6) by only caring about indegrees (choices received) and uses this
information for calculating representative indicators. Wasserman et al. [WF94]
suggest that centrality and prestige measures should be computed together be-
cause compared to centrality, prestige captures slightly different structural prop-
erties.

Degree Prestige According to Wasserman et al. [WF94] degree prestige is the
simplest measure and just counts indegrees of an actor and normalizes this value
by dividing with the group size minus one.

P ′D(ni) =
x+i

g − 1
(7.12)

where

61

7 Social Network Analysis

x+i represents the number of outdegrees of a node i and g stands for
the size of the group

The interval of this value is a closed one between zero and one. A high value
represents high prestige of an actor.

Proximity Prestige Proximity prestige uses the idea of degree prestige but
extends this by counting not only direct adjacent nodes but also indirect adjacent
nodes. In detail simply the distances of all nodes which can be reached from
one specific node (prestige evaluates only indegrees) are summed up and the
average is computed by dividing with the total accessible nodes. To make this
measure ready for comparisons across different networks, this equation has to be
normalized. Finally Wasserman et al. [WF94] propose the following equation:

P ′P (ni) =
Ii/(g − 1)∑
d(nj, ni)/Ii

(7.13)

where

Ii/(g−1) represents the average number of actors who can be reached
from one actor

d(nj, ni)/Ii stands for the average distance between reachable actors
and the specific node

On group level it is different to calculate a maximum value in the denominator.
Therefore simpler methods like variances or averages of actor prestige values are
used to calculate such indicators.

Status or Rank Prestige Wasserman et al. [WF94] notice that status or rank
prestige is out of the mathematical point of view one of the most sophisticated
measures for prestige. The theoretical approach is also different to those mea-
sures given so far. The prestige of an actor is calculated by looking at the ranking
of the actors who are pointing to a specific actor. The idea of status or rank
prestige can be interpreted the following way: an actor who is surrounded by a
lot of other prestigious actors should as well have high prestige.

Thus this measure combines two different evaluations:

62

7.5 Indicators measuring Centrality or Prestige

• the distances to an actor

• combined with the rank of connected actors

With this idea a problem arises as well. To state the ranking of an actor, the
ranks of the other actors are needed which leads into a lock out. To solve this
problem Wasserman et al. [WF94] present several mathematical approaches.

63

7 Social Network Analysis

64

8 Social Network Analysis in
Practice

The previous chapters contain a theoretical introduction to Social Network Anal-
ysis where the most important ideas of this concept were pointed out. Further-
more background about open source software development was provided and the
reader was introduced to the concept of project health in other chapters. What
follows next is the combination of the information given so far to one approach:
Social Network Analysis will be used to evaluate the health status of FLOSS
projects.

At the beginning of this chapter it will be tried to provide a bridge between
the theoretical approach of Social Network Analysis and a practical usage of this
concept. As a first step social information which is available in projects will be
identified in order to tell something about the conditions and happenings in a
FLOSS project.

8.1 Action and Interaction Data

Crowston and Howison [CH04] differ between two categories of data available in
FLOSS projects which can be used in order to put actors or in this case members
of the community into relation. This relations are necessary to evaluated the
social structure with the methods Social Network Analysis provides.

During the software engineering process huge masses of data are stored which
can be split up to the following categories:

• Information based on interaction can be directly used in order to do re-
search on the social structure of a FLOSS project team. Every medium

65

8 Social Network Analysis in Practice

which describes a relation and is reproducible can be used for these belong-
ings. Out of conversation in mails, mailing lists, forums, instant messaging
or bug-report systems the relevant information can be extracted. Usually
the conversation contains a detailed follow up of messages which can be
used in order to reconstruct the social composition of the FLOSS team
with the help of a “has communicated with” relation.

• The second kind of measure is called action measure. They describe
all side-information which accumulate during the development process.
This kind of information refers to the active happening within the project
like the collaborative writing and managing of code or documentation.
Questions concerning the organization within the project team can be re-
searched by looking at specific data which is stored as a byproduct of the
development process. Reading out this side-information makes it possible
to reconstruct the social composition of a FLOSS team with the additional
constriction to define the linking entity previously. This linking entity can
be the contribution to a single file or the contribution to a complete patch,
it depends on the view of the observer.

For both of these measures assumptions need to be defined and it needs to be
researched which actors are reached with the specific source. Before looking at
the social data which is available in an explicit (interaction measure) or implicit
(action measure) manner the researcher needs to know what should be proven
by his work.

A concrete example: By looking at data which is available in revision control
systems and describes the collaboration of a project team it needs to be evaluated
who is allowed to use the system. Are there other people who contribute to the
project as well and stand in relation to the developer checking in the source code?
What if these external contributors just have no permissions to do this for their
own? At least it needs to be considered if it is alright to leave this external
contributors behind but in some cases it makes sense to search for additional
sources which capture this kind of actors.

As long as it can be argued it is possible to combine various kinds of social
relations. It is also possible to combine interaction and action measures in order
to reach a wider circle of contributors to a project if it makes sense for the topic
which is researched. That is, what this chapter is about. A tool was created in
order to do Social Network Analysis based on various kinds of social relations
with the aim to extract information about the potential of but also limitation in

66

8.2 Availability of Social Data in FLOSS Projects

FLOSS projects.

8.2 Availability of Social Data in FLOSS Projects

Depending on the field of research and the required information different sources
have been used in the past to extract social information. Methods range from
using simple questionaries like it was done in the time before computers existed
or in other areas where digital information is not available and goes to the
extraction of information out of databases. Such databases for example are used
by FLOSS hosting platforms and contain a huge amount of information. Almost
everything what is happening in a project is stored there. Due to the focus on
Open Source Software in this thesis relevant sources are limited to this context.
In order to provide the possibility to research social aspects of FLOSS, different
projects are available which have the aim to provide relevant data for research in
this area. Some of these projects are used in the underlying thesis. The different
kinds of data sources used within this projects are the following:

• Data dumps of hosting sides: The largest and most flexible kinds of data
sources are databases which are hosting information created during the
existence of a FLOSS project. This information is provided by hosting
platforms which are used by FLOSS projects in order to publicize but also
to manage the project. In these databases a huge amount of information is
stored. Beginning with simple project description it ranges from a listing of
all actors in a project to more specific information out of the bug reporting
system (see [VAM08][GACM07][Mad]) or keeps the messages of a forum.
Generally almost everything is stored what is happening within a project.
Further information will be given in chapter 9 where SNAnalyzer [Kal],
the tool developed within this diploma thesis, is explained.

• Historical mailing lists: Another possible source to extract information
about people contributing to a project are mailing lists. To have enough
information for an analysis the history of mail exchanges for a longer period
is relevant. Just register to a mailing list will not be enough because the
history is not available. Different platforms close this lack of information
and provide a history of mailing lists (see the project “gmane” [Ing02]).
Contributions to this topic can be found in [HMS05].

• Revision control systems like Git [Cha05], CVS [PX06] or Apache Subver-

67

8 Social Network Analysis in Practice

sion [The10]: In order to manage revisions such systems store the version
history of a file and among others, information about the contributor and
the time of contribution which is important for this thesis. FLOSS ana-
lysts have recognized this to be relevant for further research because the
link “working together on a patch file” can be interpreted as a social re-
lation within a FLOSS project. Extracting the information of a specific
period allows making conclusions about the structure of a project (see
also [GRMMORM03]).

• Expert finding: The last group contains individual applications which are
harvesting relevant informations directly from project websites. It is also
possible that different kinds of sources are combined [CHC05].

Collecting data for Social Network Analysis can be a hard job to do. Depend-
ing on the aim of the research topic, available data can be used or has to be
gathered. Due to specific requirements in most cases there is no “take it and use
it” solution and resulting of this, there is no other possibility than developing
own software which fulfills the needs. In the case of this thesis it was decided
to go this way and a software was developed which uses a combination of the
mentioned data sources. Primarily data provided by [Mad] is used which contain
monthly data dumps of the platform sourceforge [sou]. Furthermore data out of
the revision control system of a project was extracted in order to get an overview
of the project’s core team. More about the aim of his research and the infor-
mation which is used can be found in chapter 9 where the tool “SNAnalyzer”,
developed within this thesis, is introduced.

8.3 Reference Tools and Libraries for Social
Network Analysis

Social Network Analysis has a long history and over time various tools have been
established. Some of them are freely available whereas other ones are proprietary
and need to be bought. In this section an overview of the most important
approaches for conducting Social Network Analysis with FLOSS projects is given.

Basically it is possible to differentiate between independent programs which
usually provide an interface in order to import or export data. Furthermore
software libraries which equip own software with functionality needed in order

68

8.3 Reference Tools and Libraries for Social Network Analysis

to perform Social Network Analysis are available.

A lot of different tools are existing but not every solution is acceptable due to
different constrictions. The tools, introduced in this chapter had to go through
a selection process which had the following requirements as input:

• An interface to import data, describing the structure of the social network
has to be available

• Centrality measures specified in section 7.5 have to be calculable

• It has to be possible to illustrate the social network with a sociogram for
further graphical analysis

• Due to the topic of this thesis it was focused on FLOSS projects

• Java compatible solution is appreciated

• Compatibility to various operating systems

8.3.1 Independent Tools

Pajek (Slovene word for spider) is a project from the University of Ljubljana
(available at [BM08]). The program which runs on Windows is freely available
for noncommercial use and especially supports the analysis of large networks. It
is possible to factorize a large network into several smaller networks in order to
provide the possibility to perform more sophisticated operations [BM98]. The
program supports a widely used file format which is called “.net”. It is possible
to use other software to extract the information about the structure of a network
and store it in the mentioned format. Pajek can be used for further analysis.

NetMiner Although this software (available at [Cyr01]) does not agree to all
mentioned requirements because of being a proprietary product, it needs to
be mentioned. According to Crowston et al. [HC04] the big advantage of this
program lies in it’s high capability for illustrating sociograms.

69

8 Social Network Analysis in Practice

8.3.2 Libraries

Java libraries Due to the personal capabilities of the author and the fact, that
other software for this thesis was already developed in Java he puts the focus on
java libraries which can perform Social Network Analysis. A hint by a colleague
who also uses Social Network Analysis (see [Omo08]) introduced the author to
JUNG [OFN09] and prefuse [The09].

The Java Universal Network/Graph Framework (JUNG) is a Java library
which supports modeling, analyzing and visualizing of data which can be il-
lustrated with graphs or networks. JUNG implements not only concepts like
importance measures (e.g. centrality - see section 7.5) or network distances out
of the area of Social Network Analysis. Furthermore other algorithms originating
from the research areas of graph theory and data mining are provided [OFN09].

Prefuse, also a Java library is developed at the UC Berkeley - Institute of
Design [The09]. In comparison to JUNG calculating any measures, relevant for
this thesis, is not possible because the focus of this library lies in providing meth-
ods for rich data visualization. Prefuse uses the Java 2D graphics library and
provides methods to implement sophisticated interactive animations, dynamic
queries and integrated search for different kinds of data. Due to the high flex-
ibility the usage area of this library is very wide. To see what is possible it
is referred to the tool SocialAction [PS08] which uses the Prefuse library and
implements a Social Network Analysis tool.

The open source statistic project R The last solution for performing Social
Network Analysis it is referred to is the open source project R [R D09]. R is a
sophisticated statistic software, hosted by the Vienna University of Technology.
Various libraries which are available to extent the functionality make this project
as flexible as a Swiss Army knife. In combination with the Java library JRI
which is part of the rJava [RFo] project a very strong instrument for performing
Social Network Analysis is available. With the help of JRI R runs inside a Java
application as a single thread. According to [RFo] it loads R dynamic libraries
into Java and provides an interface for exchanging data between R and Java. JRI
acts furthermore also as kind of a remote control to access to the functionality,
provided in R. Like it can be seen in figure 2.1 a possibility to draw sociograms
is available as well. According to Crowston et al. [HC04] the advantage of R can
be found in it’s high scriptability.

70

8.3 Reference Tools and Libraries for Social Network Analysis

Table 8.1: Reference Tools and Libraries for Social Network Analysis

Name Type FLOSS Visualization Operating
System

Calculation
of measures

Pajek Tool Freeware
for non-

commercial
use

√
Win

√

NetMiner Tool −
√

Win
√

JUNG Java
Library

√ √
∗1

√

Prefuse Java
Library

√ √
∗1 −

Statistic
project R

Tool/Java
Library

√ √
Unix,
Win,

MacOS

√

∗1 See Java supported systems [Orac]

71

8 Social Network Analysis in Practice

72

9 SNAnalyzer

In order to work on the research questions an own tool fulfilling the specific
needs of this thesis was developed. Which possible technical approaches could
potentially fit to the requirements were already described in the previous chap-
ter. Furthermore table 8.1 shows an overview of all possible solutions arranged
according to all relevant criteria which influenced the decision making.

This chapter contains a description of the solution called “SNAnalyzer” im-
plemented within this thesis. For more information to the tool and the handling
of the software it is referred to section A in the appendix.

9.1 Technical Solution

Based on the information out of reference work, personal experience and ca-
pabilities of the author the approach containing the open source statistic
project R [R D09] was implemented. The advantage lies in it’s high flexibil-
ity because R is a very complex complete statistic environment. With the Java
library JRI the complete functionality of R is available within a Java solution.

Figure 9.1 describes the technical concept of this project. SNAnalyzer pre-
pares information stored in a MySQL database [Oraa] for further analysis what
happens within the statistic environment R and illustrates the results retrieved.
For data exchange between SNAnalyzer and R the Java library JRI is used.
Another important feature in R furthermore provides a possibility to illustrate
sociograms (e.g. figure 10.3). SNAnalyzer also enables the possibility to export
the results gained within the tool. Data generated within an analysis is stored
in a text file in order to provide information for further analysis.

The solution of different technical problems concerning the setup of R in order

73

9 SNAnalyzer

SNAnalyzer

JRI
Library

R Project for Statistical Computing

statnet
Library

igraph
Library

SNAnalyzer
Business Logic

MySql

Figure 9.1: Technical concept of SNAnalyzer

to be used within a Java application is described separately in appendix B.

9.2 Functionality

Social Network Analysis contains a sophisticated set of instruments but not all
of them are relevant for this thesis. In order to provide information for health
analysis some features were implemented which contain the illustration of a social
network in a sociogram (e.g. figure 10.3) and the calculation of:

• Degree centrality (see section 7.5.1)

• Closeness centrality (see section 7.5.2)

• Betweenness centrality (see section 7.5.3)

The reason for the limitation towards the mentioned indicators lies in the fact,
that the data sources selected, restrict the possibilities to extract social relations.
Information out of revision systems and bug reports can only be interpreted as

74

9.3 Social Data

undirected linkages. More about the kinds of social relations which are used in
this thesis is mentioned in the next section.

9.3 Social Data

One part of this thesis deals with the extraction of relevant social information
in order to perform Social Network Analysis. In the theoretical part of this
thesis different possible data sources for extracting relevant social data have
been discussed (see section 8.2). Out of an analysis which information could be
interesting and what kind of information is available the bug reporting system
and the revision system were selected as data sources for the health analysis.
The advantage of these sources lies in the fact that they are matching to each
other by using an identical identifier for a user.

Bug reporting system Crowston et al. [CH04] mention that the bug report
process (see section 4.3.6) is essential for healthy FLOSS projects. Besides a
wish list bug reports are the input for the task list of a project (see continuous
improvement in section 4.3.6). Bugs influence what to do within the project
and attract many people. Not always bug reports are clear to everybody from
the beginning on what generates interaction in order to reach clarity. Figure 9.2
illustrates this case. A person opens a bug report and a discussion follows. The
analysis of this information contains the assumption that people who participate
very often in such projects are also very important for a project. The social rela-
tion is defined that way that people commenting a report have a social relation
if the comments are within the observation period. The linking entity in this
case is the comment to a bug report.

Sourceforge [sou] which is a hosting platform for FLOSS projects provides data
for scientific research. The data is hosted within the project “The SourceForge
Research Data Archive” [Mad] (SRDA) where the author had access in order to
do research. Monthly data dumps can be read out with SQL-queries and the
results can be stored in XML formated files. A parser reading out these files and
storing the information into a local MySQL database was developed.

75

9 SNAnalyzer

Figure 9.2: Discussion based on a bug report

76

9.3 Social Data

Revision Control Systems The second kind of data source describing a social
relation deals with information which is available out of revision systems. In
detail interfaces to read out the log of CVS [PX06] and Subversion [The10] were
developed. These logs contain a history of commits to all files within a directory
and the information is stored in a text file like it is available in figure 9.3. A
parser reads out the following items and stores them in a local database:

• Name of a committer (what is matching to the identifier in the bug report-
ing system)

• Date and time of the commit

• Name of the file

The aim of this approach is to get information about the core project team
for further analysis. Also the fact that only the core team of a project has
permissions to commit to the revision system is considered. By definition actors
have a social relationship if they are committing to the same file within the
observation period.

If an actor has committed just one time within the total period of observation,
he will also be marked as developer in all other periods even if he has only replied
to a bug report in that specific period. This implies that a mixed sociogram
containing social information out of bug reports and revision systems let conclude
the offspring of the specific relation. By labeling the ID’s of the actors with the
colors blue for bug reporters and red for code committers the source of the
relation can be traced back. A mixed relation between a red and a blue actor
describes a core developer who has committed to a bug report. In at least one
other time frame there has to be a relation between two red colored actors.

77

9 SNAnalyzer

Figure 9.3: CVS Log used to extract information about social structure of a
FLOSS project team

78

10 Evaluation

This chapter contains the practical implementation of the concepts, described
within this diploma thesis. In order to validate the hypotheses in chapter 6
different show cases are used. Out of different criteria, examples were selected
which should fulfill the needs in order to proof the validity of his assumptions.
For each case the preconditions are described and the differentiation to the other
cases is pointed out.

Different kinds of FLOSS projects were selected and each of them has a specific
focus in order to declare the logic of project health. The first project should
illustrate the typical development of a healthy project out of the knowledge
which is available so far. A validation is not possible but this example is used
in order to point out some specialities. The aim of this approach lies in the fact
to declare the information provided by the different indicators.

The next example deals with change within the structure of a development
team and puts the health status initially in the background. This project is used
to introduce an additional view in order to extract some information about the
roles within the project.

Project number three puts the focus towards stability and the relation between
stability and project health. The relation between these two factors was already
discussed in chapter 5.3.3. It will be tried to give an answer to this question
with a detailed example.

The chapter is finalized with an approach which should point out the limi-
tations of project health. More generally spoken the limitations such technical
approaches have will be critically analyzed in order to provide preview about
future developments.

It was decided to use a time frame of 10 years (starting from 2001-01-01
or earlier if the project does not exist that long) with periods of a half year.

79

10 Evaluation

During one period all available data is collected in order to reconstruct the
social relationships within this timeframe. The constructed social network out
of the respective period is researched to its change. Challenging is the aim to
clear questions like why specific developments have happened or not.

10.1 Healthy Project

In order to find a project which potentially fits into this group, it was relevant
to focus on the hypotheses defined in chapter 6 which depicts the requirements
to a healthy FLOSS project:

• Diverse set of core developers leads to higher decentrality within the core
group. This can be verified by analyzing the data source revision control
system separately.

• Decline in centrality indicators

Such kind of a project should be representative for having a low risk to become
sick out of social reasons or the drop out of a certain actor. To show the details
an additional view was introduced which differentiates between data extracted
out of the data source revision system solely and data source connected to the
information out of the bug tracking system. The first case makes it possible to
put the focus towards the software development team and research change solely
within the core team. The basic assumption contains a low centrality in the core
team which is a main indicator for a healthy project.

The project which fits to the requirements and can be used as example for
this category is called “Gutenprint - Top Quality Printer Drivers” although some
constrictions dealing with the timeframe of observation have to be raised.

Project description Gutenprint [mK] provides a package of free printer drivers
for various POSIX-compliant operating systems like Linux or Max OS. Due to
it’s initial focus the highest usage can be found in open source systems like Linux.
According to [Wik10] Gutenprint supports about 700 different printers.

80

10.1 Healthy Project

Figure 10.1: Centralities of the project “Gutenprint” [BW] with data sources:
Bug response and revision system checkins

81

10 Evaluation

Figure 10.2: Centralities of the project “Gutenprint” [BW] with data source:
Revision system checkins

Datasource As basis for the analysis bug reports and commits to the revision
system were used which is in this case CVS. Although this example has a strong
focus to the revision system as a separate data source in order to point out
specific information.

Results Like it was already declared, the focus of this example lies on the
period from the beginning of the data row until the end of 2003 because only
this period shows the characteristic of a healthy project. What was initially
very surprising were the centrality scores available in figure 10.1. The author
has compared that information with the centrality calculated on the basis of the
core team (see figure 10.2) which was evaluated by using information just out of
the revision control system and came to the assumption that a high centrality in
that case makes sense and should not be interpreted as a sign of sickness. It is
assumed that a specific developer (see figure 10.4) named “5436” who is right in
the middle of the network could have the special job to deal with bug requests

82

10.1 Healthy Project

Figure 10.3: Sociograms “Gutenprint” [BW] with revision system data
83

10 Evaluation

Figure 10.4: Sociograms “Gutenprint” [BW] with data sources: bug response
and revision system checkins

84

10.2 Convalescent Project

and that is why he attracts that much attention.

Putting the focus back to the relations gained out of revision system enables
the following conclusions: Comparing the sociograms in figure 10.4 with so-
ciograms in figure 10.3 lets furthermore assume that the core group is very diverse
with low centrality (see figure 10.2) which could indicate a very healthy project.
The indicator is not decreasing but is staying relatively stable. The time after
2003 is very hard to be interpreted with the information available. It is quite
striking that the centrality in the core team raises. Reason for this development
could be a more and more specialization of the developer or an indication of
sickness in the project. Specialization could lead to this development with the
effect that developers tend to have individual areas with own responsibilities.

Conclusion On the basis of this example the possibility to reach different roles
in the project team using the two available data sources separately was intro-
duced. It was argued that although the graph centrality indicators were surpris-
ingly high it was not necessarily a sign of sickness in this project. It could also be
representative for a special role allocation in the project by having a few actors
who are responsible for managing bug responses. Those people automatically
attract a lot of attention. A kind of a proof of principle of this thesis can be seen
in figure 10.4 which shows the red (developer) and blue (bug reporter) actor. In
every period one actor is very central and surrounded by a lot of blue actors.
This fact also leads to high graph centrality. Putting the information in relation
to figure 10.4 which shows the core developer solely could be a validation for this
assumption.

10.2 Convalescent Project

The aim of this category is to identify changes of a development team and re-
search the influence to project health. According to Crowston et al. [CH06]
changes within the core team can be very difficult to proceed if the dependencies
within a project are very high (see section 5.3.3) . An example with the project
“SQuirreL SQL Client” [BW] was found where such a transition was success-
fully managed. What is essential for this example is the fact, that this project
shows the typical developments of such a transition within the core team. It is
important for the author to mention, that he was not aware of this fact when

85

10 Evaluation

he was initially looking at the project. He has analyzed the project due to find
inconsistencies.

Project description According to [BW] SQuirrel is a graphical SQL client
developed in Java. It is possible to view the structure of a JDVC compliant
database, browse the data in tables and use SQL commands to perform queries.
The project was initially registered on 2001-5-31 at sourceforge [sou] by the
founder of the project Colin Bell. The project has about 25 registered developers
with commit privilege to the code repository.

Datasource Basically two different data sources have been used for the anal-
ysis. Like it was the case with all other projects bug reports out of subversion
were used. Due to the fact, that passing time a transition from CVS to Subver-
sion has happened, it was necessary to merge the information out of the CVS
and Subversion logs in order to get the relevant information. Very interesting
is that the results of the analysis could indicate a relation between committers
and core developers although one example can not be representative for such a
conclusion.

Results The challenge of this specific example was to understand and declare
two different events in the development of this project. Looking at figure 10.5
it is possible to see that the period at the beginning of 2005 is distinct to the
time before. Figure 10.6 depicts this in a more detailed view where the change is
illustrated in a slideshow of sociograms. The sociogram in the corner down left
shows very low activity. Out of the view of this initial analysis it seems that a
certain very important developer has left the project and kind of a vacuum had
established. The same phenomenon can be found in the period from 2008-1-1 to
2008-6-30.

It was tried to find the reasons for this development and after contacting the
community of SQuirreL it was possible to get an answer. According to Robert
Manning, who is core developer in the project SQuirrel, the project was founded
by Colin Bell. Bell dropped out of the project in late 2004 which is the reason
for drastic change in the indicators. Manning also supported the conviction that
the project went to sleep for a while until new leaders have taken over the job.

86

10.2 Convalescent Project

Figure 10.5: Centralities of the project “SQuirreL SQL Client” [BW]

87

10 Evaluation

Figure 10.6: Sociograms of “SQuirreL SQL Client” [BW] - drop out of an actor

88

10.2 Convalescent Project

Concerning the event in 2008 Manning told, that he went off the radar out of
different reasons.

To provide a better possibility for researching this event an additional view
will be introduced. Until this point of the thesis it was worked with indicators
on basis of a whole network. A total network relies on some certain actors if the
centrality indicator is high. Like it was described in chapter (see point vs. graph
centrality 7.5.1) these indicators can also be used on actor level which means
that there is one parameter which represents the importance of a specific actor
in a network. If the indicator of a certain actor is high it indicates that this
specific actor is important for the project. Figure 10.7 illustrates centralities
on the basis of actors. For each actor within a network a separate centrality
indicator for each time period can be calculated. Putting this information into
a diagram the following information can be seen:

• The importance of each actor with the change over time is illustrated

• The characteristic of each line says something about the continuity of the
participation of each contributor

• With low significance something about role allocation can be seen

• Relations between specific actors can be identified. If somebody reduces
work temporarily, who takes over the work meanwhile?

The usage for degree centrality in the case of actor centrality lies in the fact
that because of the small size of the network important actors are characterized
by having most of the relations. They are simply doing most of the job. Out of
the view of this thesis approaches like a gatekeeper in the case of betweenness
would not work with this example.

Conclusion The example of SQuirreL was used to introduce the difference be-
tween actor and graph centrality. This approach had the aim to identify the
effects of the drop out of a very central member of a project who was in this
example also the founder of the project. Due to prominent position of Colin Bell
(see figure 10.7 point a)) in the social network the establishment of a vacuum
in project leadership (point b)) took place until Robert Manning together with
Gerd Wagner have taken over the leadership (point c)).

Very interesting is also the fact that when Bell dropped out of the project it

89

10 Evaluation

Figure 10.7: Degree actor centrality of the project “SQuirreL SQL Client” [BW]

90

10.3 High Dependency - High Risk!

resulted in a status close to dying (compare figure 5.1) whereas the project was
set up already that stable that the temporary retirement of Manning was partly
absorbed by Wagner (point d) in figure 10.7) which can be seen in figure 10.7. At
the bottom of the figure the activity of codevelopers and active users is illustrated
and it provides information about the continuity of actors out of this group.

10.3 High Dependency - High Risk!

Content of this example is the aim to illustrate the risk which comes with high
dependencies on a few specific actors. Although the majority of all projects
hosted at sourceforge tend to base on a small developer group (see section 5.3.3)
it is not said, that such projects are sick per definition. HSQLDB proves this by
a continuous development progress.

Project description According to the project description at sourceforge,
HSQLDB [TS] is a relational database engine developed in Java. Advantages
are described as being a fast and multithreaded engine and server with features
like transaction isolation and encryption.

Datasource HSQLDB uses Subversion as revision control system which was
loaded into the database of SNAnalyzer. Furthermore the bug reports were used
as datasource in this example.

Results Although figure 10.8 again shows high centrality in all indicators, it
nothing says about the structure of the underlying project team. High centrality
in this situation just declares, that there has to be a specific person who is
responsible for bug responses. When looking at the revision system data let
soon one recognize that the project basically relies on the work of a few people
containing Fred Toussi and Blaine Simpson.

It was already declared that such projects necessarily do not have to be sick
rather the majority of all projects within sourceforge have a small developer
base. Although a stakeholder has to be aware of the risk, high dependencies
provide which was already shown in section 5.3.3.

91

10 Evaluation

Figure 10.8: Centralities of the project “HSQLDB” [BW]

Figure 10.9 furthermore provides other very interesting information. Basi-
cally just actors are considered who have participated in more then two periods.
What is left provides information about actors who have a position within the
network which should be further analyzed. The two core developer were already
identified. Out of the view of the information provided it looks like that the
roles within the projects were assigned that way that Toussi is responsible for
answering to bug reports what declares the high centrality. The lack of capacity
by Toussi in the period at the beginning of 2006 was neutralized by Simpson
(see point a) in figure 10.9) All other participants at the bottom of the project
could be co-developer who don’t have a strong position within the network but
provide more or less constant participation.

Conclusion Although the majority of FLOSS projects have this small funda-
ment it is not obligatory that they produce bad software only because of this
conditions. What can be learned out of this project deals with risk awareness
regarding high dependencies in FLOSS projects.

92

10.4 Collateral Damage

Figure 10.9: Degree actor centrality of the project “HSQLDB” [TS]

Out of a technical view again the approach to plot historic actor centralities
was used in order to identify the kind of participation and relevance of each
actor.

10.4 Collateral Damage

As a last example it is referred to a project where Social Network Analysis would
not really have helped. XDoclet enabled attribute-oriented programming in Java
but with the introduction of annotations in Java version 5.0 this project became
obsolete. The reason for this example can be found in the effort to sensibilize
the awareness of project failing out of other groundbreaking influence.

93

10 Evaluation

Figure 10.10: Sociograms of “XDoclet” [TS] with data sources: bug response
and revision system checkins94

10.4 Collateral Damage

Datasource Initially revision control and bug report information have been
used for analyzation of the project status. After the project changed the bug
tracker no more information was available. It was necessary to deal with that
constrictions and to focus on the information provided by the project.

Results As it was already declared, the information out of bug reports ends
with the period of 2002 which can be seen in figure 10.10. At that point the
project changed its bug tracker tool and. Out of the information available at
the beginning of the project’s life cycle nothing special can be identified. The
project seems to be quite healthy showing the typical structure with a diverse
set of core developers and a lot of active users committing bugs.

In the period ranging from June 2005 to December 2005 it is possible to identify
the break down of the project. What was happening was that Java 5.0 which was
released at the end of September 2004 [Orab] removed the basic reason for the
existence of HSQLDB. It was not possible to see the if the developers of HSQLDB
have known about the actions within Java 5.0. What can be said is that the death
of HSQLDB would have been hardly predictable with the information provided
by Social Network Analysis. Generally this example should be representative for
all kinds of influences which put the further existence of the project at risk. Not
everything is predictable what is happening within a project.

Conclusion The last example should point out that blind faith in technical
indicators is not always adequate. It is always necessary to keep eyes open and
consider possibilities which could influence the development of FLOSS projects.

95

10 Evaluation

96

11 Summary

The aim of this thesis was to evaluate the possibility the instruments of Social
Network Analysis provide in order to draw conclusions describing the health
status of FLOSS projects. Therefore the reader was introduced into the relevant
information of open source software (see chapter 4) containing basics about the
development process and the structure of FLOSS projects.

The very complex instruments of Social Network Analysis (see chapter 7)
were described as a next step. Different indicators measuring the dependencies
within a social network and the importance of specific actors were introduced
which prepared for the practical implementation containing the fusion of the
concept project health and Social Network Analysis. Questions like which data
source would be necessary to be able to research project health and what kind
of information is available were discussed. The tool “SNAnalyzer” which was
developed within this thesis was equipped with information out of two different
kinds of data sources: information out of the bug reporting process and infor-
mation out of revision systems. Each of the projects which were analyzed was
selected out of a specific reason. The aim was to introduce additional views for
interpretation and to give answers to the research questions raised in chapter 6.

Role identification The first example named “Gutenprint - Top Quality
Printer Drivers” was used in order to show how the ideal development of a
healthy project could look like. This project was used to introduce an additional
view using information out of the revision system and the bug reports separately
in order to identify different roles with the help of Social Network Analysis. Like
it was the case in this example, some members were responsible for the bug re-
ports and that was why their centrality indicator was higher then the rest. It was
also possible to identify members of the core group by analyzing the continuity
of their participation.

97

11 Summary

Structural changes Convalescence in the sense of changes in the health status
was the topic of the second example. “SQuirreL SQL Client” was researched with
the aim to identify structural changes within the core team. Two phases in the
development of this project were observed which showed obvious abnormality. It
was assumed that the reason for this effect to the indicator resulted out of change
within the community. In order to verify the assumptions the project team was
contacted. With the help of Robert Manning who is a project member it was
possible to validate the hypothesis about transitions in the project leadership.
For the first time it was possible to use Social Network Analysis in order to
positively identify such a development.

Besides that this example was used to introduce an additional view dealing
with the difference between point and graph centrality (see chapter 7.5.1). By
plotting the historic development of actor centrality the information which was
needed in order to identify the above mentioned changes can be provided.

Dependency and Risk The relation between dependency and risk for project
failing was the topic of the third example. HSQLDB which is a successful project
already for a longer time has the obvious weakness of being too dependent on
specific members of the project. If one person would drop out of the project it
would hardly be possible for the other developers to compensate this loss. Fact
is that the majority of all projects within sourceforge have to fight against the
same problem of having high dependencies within a project. If a transition in
the core community takes place it could happen the way like it was shown in
the example of SQuirreL. The community could fall into a vacuum and it could
need time until new leaders emerge. Such changes could also lead to the death
of a project if nobody takes over the project.

Environmental influences The practical part was finalized with an example
which should illustrate that blind faith into technical approaches is not the best
solution. The black swan theory [Tal07] which suggests to consider the inconsid-
erable deals with the handling of such risks. The author does not like to loose
the focus he just suggests to keep a rest of sensitiveness and a sense for the kind
of information which is analyzed.

98

Reference for closed source projects? As it was announced in the introduc-
tion of this thesis a short comment on the usability of gained knowledge for
proprietary software development will be given. Basically Social Network Anal-
ysis is not limited to any kind of information. Everything which describes a
social relationship can be analyzed hence closed source software development is
not excluded. Project health analysis using Social Network Analysis from out-
side a company simply has to deal with the problem that information which will
be necessary is not or just little available out of reasons which were described
in the introduction of this thesis (see chapter 2). FLOSS software development
provides some ideals (which were used in order to get to the results of this the-
sis) closed source projects do not have. The development process mentioned in
this thesis bases on the content of a tracker tool and follows the aim of contin-
uous improvement. Proprietary software projects base on other values and use
other development processes (see also table 4.3 which describes the main differ-
ences between FLOSS and proprietary software development). In such a case
the instrument needs to be adopted to the specific requirements. If a company
decides to research dependencies with Social Network Analysis out of an internal
point of view other constrictions have to be concidered. Fact is, that the gained
knowledge within this thesis does not have to be valid in the case of proprietary
software development due to the following reasons:

• Closed source software projects have other development standards

• Closed source software projects have other development processes

• Communication is not only constricted to electronic media which can be
read out like in the case of FLOSS (e.g. coffee talk) which makes it more
important to evaluate the quality of the data source

• The structures of FLOSS project teams are different compared to those in
closed source software projects

99

11 Summary

100

12 Critical Discussion

This thesis introduced new possibilities to evaluate project health in FLOSS
projects. It was shown how to identify certain developments of a project and it
was researched how the status of project health could be influenced. Due to the
promising results it is needed to continue with a more comprehensive research
in order to validate the conclusions drawn within this thesis.

Furthermore two different questions have to be raised when thinking critically
about the methods and the results of this thesis. The first question deals with
the representativeness of the result out of a quantitative consideration. On the
other hand it is necessary to ask if the data sources used in this thesis represent
adequate information.

Data quantity On a scientific level it was not possible to validate or reject the
assumptions raised in this thesis because of the focus on some special projects.
That is why only findings or evidences based on profound knowledge described
in the reference work were pointed out. For more precise conclusions on project
health it would be necessary to research a larger set of projects in order to
evaluate the ideas introduced in this thesis.

With respect to the research questions it was necessary to adjust some ideas.
Out of the gained knowledge an empiric value for centrality which indicates
project health or sickness was not possible to determine. The reason for this
could lie in the fact that there seems to be too much changes in activity within
the projects which influences the indicators but can not be further resolved. Also
the data amount was not stable enough to evaluate a constant decline in order
to positively evaluate project health with the underlying assumption.

What can be gained out of this assumptions is the fact that a significant
change of this parameter can admit valuable information about the project. The
example SQuirreL shows that this is a very important kind of information which

101

12 Critical Discussion

needs to be traced back because it could represent an evidence for structural
changes in the community.

Data quality Sometimes it it was hard to get the information needed in order
to perform Social Network Analysis in an educated manner. It was necessary to
deal with information drawbacks or other times was simply not enough activity
in the underlying data source. The question has to be raised if the data sources
used within this thesis really represents the total activity which is necessary to
reconstruct the happenings within the project. What if the project has shifted
towards other technology and this information was not available? Conclusion
on the basis of such sources are very risky. It is suggested to look for reference
measures in order to validate the informative value of the indicators within the
project health approach.

To avoid such problems the specific projects have to be researched and the
gained knowledge has to be critically analyzed. It was tried to act that way
when the project community in the example of SQuirreL was contacted in order
to discuss the findings.

102

13 Suggestions for Future Work

This thesis shows the basic potential of Social Network Analysis as an instrument
in order to identify the health status of a project. Basically it would be important
to discuss the findings on a wider basis. More projects should be investigated in
order to try to validate the concepts identified in this thesis. The question has
to be resolved if Social Network Analysis could cope with the requirements to be
a standard instrument for the analysis of the health status of FLOSS projects.
Like it has already happened within the example of “SQuirreL SQL Client” it
is necessary to do more validation on the findings presented in this thesis by
contacting the specific community.

Further studies can go in two different directions: From a technical point of
view possibilities can be identified in how the instruments within Social Network
Analysis can be adopted in order to get a higher informative value. At least it
has to be cleared if more detailed information can be extracted by the usage
of directed relations. Probably they could indicate a more detailed view to the
happenings within the project because it is possible to differentiate between
indegrees and outdegrees. It has to be evaluated with practical examples if the
usage of directed relations provide a better basis in order to identify roles and
hierarchies within a community. The problem which comes along with this idea
deals with more constrictions to possible data sources because the data sources
have to be directed as well like it is the case in a forum or in mailing lists.

Another possibility which can be suggested would be to add weights (like
the number of exchanged messages) to relations. Like it was the case in this
thesis not the number of active happenings was relevant because the focus was
different. The reason for this simplification in this thesis was the aim of detecting
basic changes in the social structure of a project team over a longer period of
time. Adding information about the activity would provide an additional kind
of information.

103

13 Suggestions for Future Work

104

A SNAnalyzer

To generate the relevant measures out of the data which is available through
the revision system or the bug reports an own tool called “SNAnalyzer” [Kal]
was developed. The basic functions of this application contain the extraction of
the relevant data out of the local database, the preparation for calculating the
numbers and the data exchange with the statistic environment R and Java.

The application dialog consists of four steps which have to be passed in order
to retrieve a result. It is possible to switch between all steps until the button
“Calculate Centrality Measures” is pressed.

105

A SNAnalyzer

Step 1

Figure A.1: SNAnalyzer - Step 1

As it can be seen in figure A.1 the first step provides a selection of all projects
which are currently loaded into the system. In order to load a project into
the system, the data has to be extracted out of the datadump and the revision
system’s log files. A parser extracts the information within this files and writes
it into the database.

106

Step 2

Figure A.2: SNAnalyzer - Step 2

Figure A.2 shows a selection of the possible data sources for an analysis. This
is necessary in order to use both sources separately. The differentiation provides
further possibilities in order to research the structure of FLOSS teams.

107

A SNAnalyzer

Step 3

Figure A.3: SNAnalyzer - Step 3

Figure A.3 provides the possibility to specify time frames in order to per-
form the analysis. Basically dates have to be entered in the following form:
YYYY-MM-TT

The interface provides two different approaches. It is possible to enter the
beginning and the end of the time frame. By defining the length of a period the
system calculates the beginning and the end of each period automatically.

The second possibility is to specify periods manually. The difference in two
consecutive dates out of the list describes the beginning and the end of a ob-
servation period. This approach enables to set up a custom time frame with
custom period lengths.

108

Step 4

Figure A.4: SNAnalyzer - Step 4

After clicking the “Generate centrality measures” the application starts to
collect relevant data in order to calculate the different centrality measures with
the help of the statistical environment R.

109

A SNAnalyzer

Result

Figure A.5: SNAnalyzer - Results

The last figure (figure A.5) represents the result of the specific example. The
listing contains the periods and the value for the centrality measure. The button
“Show network” exports the relevant information to R and draws a sociogram
of the selected period. Actors who origin from the revision system data source
will be labeled with a red color in the sociogram whereas actors aggregated out
of bug reports are marked with a blue color (like it can be seen in figure A.6).
Furthermore an export function was implemented which makes it possible to
save the generated information into a text file in order to provide data for a
later analysis.

110

Figure A.6: Sociogram Gutenprint

111

A SNAnalyzer

112

B How to use the statistic
environment R within a Java
application

Due to the experiences the author has gained within this thesis he likes to provide
this information to other people dealing with the same issue. It was quite striking
to set up R in order to use it within a Java application. Due to the fact that
little information for troubleshooting was available this knowledge is provided
within the appendix of this thesis.

Preconditions Eclipse1 was used as development environment. Before dealing
with the setup of the development environment, R needs to be installed and the
following relevant packages have to be added:

• JRI which is now part of rJava enables the communication between Java
and R. The release version is available from CRAN (The Comprehensive
R Archive Network) and can usually be installed using the command:

install.packages(”rJava”)

Further information is available at [RFo].

• Statnet which is a suit of packages for Social Network Analysis is used in
order to calculate the required centrality measures. More information is
available at [GHH+08]. For installing the package simply enter:

install.packages(”statnet”)

• igraph is used in order to draw the sociograms describing the relations
between actors. Information is available at [sou]. A installation can easily
be initiated with the following command:

1Eclipse is a software development environment available at http://www.eclipse.org/

113

http://www.eclipse.org/

B How to use the statistic environment R within a Java application

Figure B.1: Eclipse - Run Configurations

install.packages(”igraph”)

Eclipse Setup The challenge in setting up of the framework was to specify
the right directories which contain the libraries relevant to access to R. Mac
OS was used as operating system. After adding a run configuration of the type
“Java Application” with the environment variables set to the values, available in
figure B.1 it was possible to run the software. Critical was the fact, that R and
the libraries had to be installed that way that the installation was accessible for
every user in the system.

Further tests made it necessary to set up the testing environment on a windows
based computer where the configurations looked like a bit different. It was
necessary to add a variable to the environment leading to the directory where R
is installed (see figure B.3). Furthermore it was necessary to specify the directory,
containing the libraries of jri through the build path (see figure B.2).

114

Figure B.2: Eclipse - Arguments Windows

Figure B.3: Eclipse - Environment Windows

115

B How to use the statistic environment R within a Java application

116

Bibliography

[AAB+06] Philippe Aigrain, Roberto Andradas, Raphaël Badin, Renaud
Bernard, Luis Cañas Dı́az, Paul David, Santiago Dueñas,
Theo Dunnewijk, Rishab Aiyer Ghosh, Ruediger Glott, Jesus
Gonzalez-Barahona, Kirsten Haaland, Bronwyn Hall, Wendy
Hansen, Juan Jose Amor, Huub Meijers, Alvaro Navarro,
Francesco Rentocchini, Gregorio Robles, Barbara Russo, Gi-
ancarlo Succi, and Adriaan van Zon. Study on the: Economic
impact of open source software on innovation and the compet-
itiveness of the information and communication technologies
(ict) sector in the eu, November 2006.

[And72] P. W. Anderson. More is different. Science, 177(4047):393–
396, August 1972.

[Ant71] J. M. Anthonisse. The rush in a graph. Amsterdam: Mathe-
matical Centre, 1971.

[Apaa] Apache Software Foundation. http://www.apache.org/

(2010-02-28).

[Apab] Apache Software Foundation. Apache incubator. http://

incubator.apache.org/ (2010-02-28).

[Bav48] A. Bavelas. A mathematical model of group structure. Human
Organizations, 7:16–30, 1948.

[Bav50] Alex Bavelas. Communication patterns in task-oriented
groups. The Journal of the Acoustical Society of America,
22(6):725–730, 1950.

[Bea65] M. A. Beauchamp. An improved index of centrality. In Be-
havioral Science, volume 10, pages 161–163, 1965.

[BM98] Vladimir Batagelj and Andrej Mrvar. Pajek - program for
large network analysis. Connections, 21:47–57, 1998.

117

http://www.apache.org/
http://incubator.apache.org/
http://incubator.apache.org/

Bibliography

[BM08] Vladimir Batagelj and Andrej Mrvar. Pajek. http://pajek.

imfm.si/doku.php (2010-03-02), May 2008.

[Bon72] Philip Bonacich. Factoring and weighting approaches to sta-
tus scores and clique identification. Journal of Mathematical
Sociology, 2(1):113–120, 1972.

[BW] Colin Bell and Gerd Wagner. Squirrel sql client. https://

sourceforge.net/projects/squirrel-sql/ (2010-03-03).

[CH04] Kevin Crowston and James Howison. The social structure of
free and open source software development. First Monday, 10,
2004.

[CH06] Kevin Crowston and James Howison. Assessing the health of
open source communities. Computer, 39(5):89–91, 2006.

[Cha05] Scott Chacon. Git. http://git-scm.com/ (2010-02-02), De-
cember 2005.

[CHC05] Megan Conklin, James Howison, and Kevin Crowston. Collab-
oration using ossmole: a repository of floss data and analyses.
SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.

[Cyr01] Cyram Co., Ltd. Netminer. http://www.netminer.com

(2010-03-02), December 2001.

[Fou09] Free Software Foundation. The free software definition.
http://www.gnu.org/philosophy/free-sw.html (2009-07-
14), June 2009.

[Fre77] Linton C. Freeman. A set of measures of centrality based on
betweenness. Sociometry, 40(1):35–41, March 1977.

[Fre79] Linton C. Freeman. Centrality in social networks conceptual
clarification. Social Networks, 1(3):215–239, 1979.

[GACM07] Yongqin Gao, Matthew Van Antwerp, Scott Christley, and
Greg Madey. A research collaboratory for open source software
research. In Proceedings of the 29th International Conference
on Software Enginering + Workshops (ICSE-ICSE Workshops
2007), Minneapolis, MN, May 2007.

[Gat76] Bill Gates. An open letter to hobbyists. Computer Notes,
1(9):1, 1976.

118

http://pajek.imfm.si/doku.php
http://pajek.imfm.si/doku.php
https://sourceforge.net/projects/squirrel-sql/
https://sourceforge.net/projects/squirrel-sql/
http://git-scm.com/
http://www.netminer.com
http://www.gnu.org/philosophy/free-sw.html

Bibliography

[GHH+08] Steven M. Goodreau, Mark S. Handcock, David R. Hunter,
Carter T. Butts, and Martina Morris. R - statnet package. In
Journal of Statistical Software, volume 24, 2008.

[GJS+08] Ido Guy, Michal Jacovi, Elad Shahar, Noga Meshulam,
Vladimir Soroka, and Stephen Farrell. Harvesting with sonar:
the value of aggregating social network information. In CHI
’08: Proceeding of the twenty-sixth annual SIGCHI conference
on Human factors in computing systems, pages 1017–1026,
New York, NY, USA, 2008. ACM.

[GRMMORM03] José Centeno-González Gregorio Robles-Mart́ınez, Jesús M.
González-Barahona, Vicente Matellán-Olivera, and Luis
Rodero-Merino. Studying the evolution of libre software
projects using publicly available data. In Proceedings of the 3rd
Workshop on Open Source Software Engineering, 25th Inter-
national Conference on Software Engineering, volume 3, pages
111–115. opensource.ucc.ie, 2003.

[HC04] James Howison and Kevin Crowston. The perils and pitfalls
of mining sourceforge. In In Proceedings of the International
Workshop on Mining Software Repositories (MSR 2004, pages
7–11, 2004.

[HCC06] J. Howison, M. Conklin, and K. Crowston. Flossmole: A col-
laborative repository for floss research data and analyses. In-
ternational Journal of Information Technology and Web En-
gineering, 1(3):17–26, 2006.

[Het06] Maik Hetmank. Open-Source-Software - Motivation der En-
twickler und ökonomischer Hintergrund. VDM Verlag Dr.
Müller, Saarbrücken, 2006.

[HMS05] Ralf Hölzer, Bradley Malin, and Latanya Sweeney. Email alias
detection using social network analysis. In LinkKDD ’05: Pro-
ceedings of the 3rd international workshop on Link discovery,
pages 52–57, New York, NY, USA, 2005. ACM.

[HO02] Alexander Hars and Shaosong Ou. Working for free? motiva-
tions for participating in open-source projects. Int. J. Electron.
Commerce, 6(3):25–39, 2002.

[HWC06] Liaquat Hossain, Andrè Wu, and Kenneth K S Chung. Ac-
tor centrality correlates to project based coordination. In

119

Bibliography

CSCW ’06: Proceedings of the 2006 20th anniversary confer-
ence on Computer supported cooperative work, pages 363–372,
New York, NY, USA, 2006. ACM.

[HZ08] Liaquat Hossain and David Zhou. Measuring oss quality
through centrality. ACM, 2008.

[Ing02] Lars Magne Ingebrigtsen. Gmane. http://gmane.org/ (2010-
02-11), 2002.

[JA06] Mohsen Jamali and Hassan Abolhassani. Different aspects
of social network analysis. In WI ’06: Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web In-
telligence, pages 66–72, Washington, DC, USA, 2006. IEEE
Computer Society.

[Jec02] Thomas Jech. Set theory. http://plato.stanford.edu/

entries/set-theory/#2 (2009-04-14), 2002.

[JS06] Kirk Job-Sluder. Automated social network analysis as a tool
for evaluating sociability. In ICLS ’06: Proceedings of the 7th
international conference on Learning sciences, pages 940–941.
International Society of the Learning Sciences, 2006.

[Kal] Andreas Kaltenecker. SNAnalyzer - Performing Social
Network Analysis on sourceforge projects. https://

sourceforge.net/projects/snanalyzersf/ (2010-04-20).

[KB83] D. Knoke and R.S. Burt. Applied Network Analysis - A
Methodological Introduction. Sage Publications, 1983.

[Köh30] Wolfgang Köhler. Gestalt Psychology. G. Bell and Sons Ltd.,
London, 1 edition, 1930.

[Kri02] Sandeep Krishnamurthy. Cave or community? an empirical
investigation of 100 mature Open Source projects. First Mon-
day, 7(6), June 2002.

[Lea51] H. J. Leavitt. Some effects of certain communication patterns
on group performance. J Abnorm Psychol, 46(1):38–50, Jan-
uary 1951.

[Mad] Greg Madey. The sourceforge research data archive (srda).
http://zerlot.cse.nd.edu/ (2009-07-07).

120

http://gmane.org/
http://plato.stanford.edu/entries/set-theory/#2
http://plato.stanford.edu/entries/set-theory/#2
https://sourceforge.net/projects/snanalyzersf/
https://sourceforge.net/projects/snanalyzersf/
http://zerlot.cse.nd.edu/

Bibliography

[mK] mbroughtn and Robert Krawitz. Gutenprint - top qual-
ity printer drivers. https://sourceforge.net/projects/

gimp-print/ (2010-04-03).

[Net10] Netcraft Ltd. Webserver marketshare. http://news.

netcraft.com/ (2010-01-07), January 2010.

[New08] M. E. J. Newman. mathematics of networks. In Steven N.
Durlauf and Lawrence E. Blume, editors, The New Palgrave
Dictionary of Economics. Palgrave Macmillan, Basingstoke,
2008.

[OFN09] Joshua O’Madadhain, Danyel Fisher, and Tom Nelson. Jung.
http://jung.sourceforge.net/ (2010-04-02), April 2009.

[Omo08] Inah Omoronyia. Sharing awareness during distributed collabo-
rative software development. PhD thesis, University of Strath-
clyde, November 2008.

[Oraa] Oracle Corporation. http://www.mysql.com/ (2010-03-28).

[Orab] Oracle Corporation. Five reasons to move to the
j2se 5 platform. http://java.sun.com/developer/

technicalArticles/J2SE/5reasons.html (2010-04-02).

[Orac] Oracle Corporation. JavaTM se 6 release notes supported
system configurations. http://java.sun.com/javase/

6/webnotes/install/system-configurations.html (2010-
04-02).

[ORK02] Margit Osterloh, Sandra Rota, and Bernhard Kuster. Open
source software production: Climbing on the shoulders of gi-
ants. Arbeitspapier der Universität Zürich, 2002.

[Pod09] Giacomo Poderi. Legitimate peripheral participation in free
and open source software communities of practice — even non
developers enter the community. In Walt Scacchi, Kris Ven,
and Jan Verelst, editors, Proceedings of the OSS 2009, pages
73–82, Skövde, Sweden, June 2009.

[PS08] Adam Perer and Ben Shneiderman. Integrating statistics and
visualization: case studies of gaining clarity during exploratory
data analysis. In CHI ’08: Proceeding of the twenty-sixth an-
nual SIGCHI conference on Human factors in computing sys-
tems, pages 265–274, New York, NY, USA, 2008. ACM.

121

https://sourceforge.net/projects/gimp-print/
https://sourceforge.net/projects/gimp-print/
http://news.netcraft.com/
http://news.netcraft.com/
http://jung.sourceforge.net/
http://www.mysql.com/
http://java.sun.com/developer/technicalArticles/J2SE/5reasons.html
http://java.sun.com/developer/technicalArticles/J2SE/5reasons.html
http://java.sun.com/javase/6/webnotes/install/system-configurations.html
http://java.sun.com/javase/6/webnotes/install/system-configurations.html

Bibliography

[PX06] Derek Robert Price and Ximbiot. Cvs. http://www.nongnu.

org/cvs/ (2010-02-02), December 2006.

[R D09] R Development Core Team. R: A language and environment
for statistical computing. http://www.R-project.org (2009-
04-14), 2009.

[Ray00] Eric S. Raymond. The cathedral and the bazaar.
http://www.catb.org/~esr/writings/cathedral-bazaar/

cathedral-bazaar/ (2009-06-17), 2000.

[RFo] RForge. Jri - java/r interface. http://www.rforge.net/JRI/
(2010-04-03).

[Sab66] Gert Sabidussi. The centrality index of a graph. Psychome-
trika, 31(4):581–603, December 1966.

[Sca07] Walt Scacchi. Free/open source software development: recent
research results and emerging opportunities. In ESEC-FSE
companion ’07: The 6th Joint Meeting on European software
engineering conference and the ACM SIGSOFT symposium on
the foundations of software engineering, pages 459–468, New
York, NY, USA, 2007. ACM.

[Sco00] John P. Scott. Social Network Analysis: A Handbook. SAGE
Publications, January 2000.

[Sha54] M. E. Shaw. Group structure and the behavior of individuals
in small groups. In Journal of Psychology, volume 38, pages
139–149, 1954.

[Shi08] Clay Shirky. Here Comes Everybody: The Power of Organiz-
ing Without Organizations. Penguin Press HC, The, February
2008.

[sou] sourceforge.net. http://sourceforge.net/ (2010-02-28).

[SSS07] Marco Scotto, Alberto Sillitti, and Giancarlo Succi. An em-
pirical analysis of the open source development process based
on mining of source code repositories. International Journal of
Software Engineering and Knowledge Engineering, 17(2):231–
247, 2007.

[Sta09] Richard Stallman. Why “open source” misses the
point of free software. http://www.gnu.org/philosophy/

122

http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.R-project.org
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.rforge.net/JRI/
http://sourceforge.net/
http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://www.gnu.org/philosophy/open-source-misses-the-point.html

Bibliography

open-source-misses-the-point.html (2009-07-14), June
2009.

[Ste99] Neal Stephenson. In the Beginning...Was the Command Line.
William Morrow & Co., Inc., New York, NY, USA, 1999.

[SZ89] K. Stephenson and M. Zelen. Rethinking centrality: Methods
and examples. Social Networks, 11(1):1–37, 1989.

[Tal07] Nassim N. Taleb. The Black Swan: The Impact of the Highly
Improbable. Random House, April 2007.

[TD02] Linus Torvalds and David Diamond. Just for Fun. Dtv,
Dezember 2002.

[The04] Markos Themelidis. Open Source Die Freiheitsvision der
Hacker. Books on Demand GmbH, Norderstedt, 2004.

[The09] The Berkeley Institute of Design. The r project for statis-
tical computing. http://www.r-project.org/ (2010-04-02),
January 2009.

[The10] The Apache Software Foundation. Apache subversion. http:

//subversion.apache.org/ (2010-04-02), February 2010.

[TS] Fred Toussi and Blaine Simpson. Hypersql database en-
gine. https://sourceforge.net/projects/hsqldb/ (2010-
04-03).

[VAM08] M. Van Antwerp and G. Madey. Advances in the sourceforge
research data archive (srda). In Fourth International Confer-
ence on Open Source Systems, IFIP 2.13 (WoPDaSD 2008),
Milan, Italy, September 2008.

[Van09] Ashlee Vance. Open source as a model for business is elu-
sive. http://www.nytimes.com/2009/11/30/technology/

business-computing/30open.html (2010-02-02), November
2009.

[Wah08] Dindin Sjahril Fadjar Wahyudin. Quality Prediction and Eval-
uation Models for Products and Processes in Distributed Soft-
ware Development. PhD thesis, Vienna University of Technol-
ogy, 1030 Wien, Baumgasse 58/43, 11 2008.

[WF94] Stanley Wasserman and Katherine Faust. Social Network
Analysis : Methods and Applications. Cambridge University
Press, November 1994.

123

http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://www.r-project.org/
http://subversion.apache.org/
http://subversion.apache.org/
https://sourceforge.net/projects/hsqldb/
http://www.nytimes.com/2009/11/30/technology/business-computing/30open.html
http://www.nytimes.com/2009/11/30/technology/business-computing/30open.html

Bibliography

[Wik10] Wikipedia. Gutenprint — wikipedia, die freie enzyk-
lopädie. http://de.wikipedia.org/w/index.php?title=

Gutenprint&oldid=71850228 (2010-04-03), 2010. [Online;
Stand 11. April 2010].

[Wil02] Sam Williams. Free as in Freedom: Richard Stallman’s Cru-
sade for Free Software, chapter 13. O’Reilly, 2002.

[WSM+06] Dindin Wahyudin, Alexander Schatten, Khabib Mustofa, Ste-
fan Biffl, and A. Min Tjoa. Introducing ”health” perspec-
tive in open source web-enginerring software projects based
on project data analysis. In iiWAS, pages 269–278, 2006.

124

http://de.wikipedia.org/w/index.php?title=Gutenprint&oldid=71850228
http://de.wikipedia.org/w/index.php?title=Gutenprint&oldid=71850228

	1 Motivation
	2 Introduction
	3 Related Work
	3.1 Social Network Analysis
	3.2 Project Health
	3.3 Overview

	4 Open Source Software
	4.1 Institutional vs. Collaborative
	4.2 Market
	4.3 Characteristics
	4.3.1 Actors
	4.3.2 Motivation to Contribute
	4.3.3 Team Structure
	4.3.4 Ressources
	4.3.5 Project Management
	4.3.6 Development Process

	5 Project Health
	5.1 Why Project Health?
	5.2 Project Lifecycle
	5.3 Health Indicators
	5.3.1 Defining the Shape
	5.3.2 The Cathedral and the Bazaar
	5.3.3 High Dependency - High Risk?

	6 Research Questions
	7 Social Network Analysis
	7.1 Introduction
	7.2 Development of Social Network Analysis
	7.3 Key Concepts
	7.4 Data Management and Illustration
	7.4.1 Graphs
	7.4.2 Matrices

	7.5 Indicators measuring Centrality or Prestige
	7.5.1 Degree Centrality
	7.5.2 Closeness Centrality
	7.5.3 Betweenness Centrality
	7.5.4 Information Centrality
	7.5.5 Eigenvector Centrality
	7.5.6 Centrality Indicators for Directed Relations
	7.5.7 Prestige

	8 Social Network Analysis in Practice
	8.1 Action and Interaction Data
	8.2 Availability of Social Data in FLOSS Projects
	8.3 Reference Tools and Libraries for Social Network Analysis
	8.3.1 Independent Tools
	8.3.2 Libraries

	9 SNAnalyzer
	9.1 Technical Solution
	9.2 Functionality
	9.3 Social Data

	10 Evaluation
	10.1 Healthy Project
	10.2 Convalescent Project
	10.3 High Dependency - High Risk!
	10.4 Collateral Damage

	11 Summary
	12 Critical Discussion
	13 Suggestions for Future Work
	A SNAnalyzer
	B How to use the statistic environment R within a Java application

