
 

Technische Universität Wien 
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at 

Artist-Controlled Modeling of 
Urban Environments 

 

DIPLOMARBEIT 

zur Erlangung des akademischen Grades 

Diplom-Ingenieur 

im Rahmen des Studiums 

Computergraphik/Digitale Bildverarbeitung 

eingereicht von 

Johannes Scharl 
Matrikelnummer 0325783 

 
 
 
 
an der 
Fakultät für Informatik der Technischen Universität Wien  
 
 
Betreuung 
Betreuer: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer 
Mitwirkung: Univ.Ass. Dipl.-Ing. Mag.rer.soc.oec. Dr. tech. Daniel Scherzer 
 
 
 
 
 
 
Wien, 21.07.2010     

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in) 

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





Erklärung zur Verfassung der Arbeit

Johannes Scharl

Antonsplatz 10/14-15
1100 Wien
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Abstract

Creating large-scale virtual environments for interactive applications such
as computer games poses a demanding challenge for computer graphics.
Urban environments are usually hand-crafted by artists using commercial
3D modeling software. For today’s detail-rich games, this becomes less and
less feasible. Procedural modeling techniques strive to help artists to create
virtual worlds in less time.

In this thesis, I present a system that helps artists and game designers
to plan, layout and model urban environments for games and other media.
Methods are described to create street networks manually and procedurally
and to edit them interactively at any time in the development process. A
stable street tessellation technique is employed that is able to represent street
segments as well as crossings connecting an arbitrary number of streets and
that adapts to the underlying terrain. Furthermore, I propose a constraint
based method to automatically populate a city with buildings from a set of
existing building models.





Kurzfassung

Das Erstellen von weitläufigen virtuellen Umgebungen für interaktive
Anwendungen wie Computerspiele stellt eine große Herausforderung für die
Computergraphik dar. Solche urbanen Umgebungen werden meist per Hand
von Level Artists mithilfe von kommerzieller Modellierungssoftware erstellt.
Das ist jedoch für detailreiche, moderne Spiele kaum noch machbar, da es
sich dabei um einen sehr zeitintensiven Prozess handelt. Prozedurale Metho-
den versuchen, Artists das Gestalten von virtuellen Welten zu vereinfachen.

In dieser Diplomarbeit stelle ich ein System vor, das Artists und Game
Designern dabei hilft, urbane Umgebungen für Spiele zu planen und zu mod-
ellieren. Es werden Methoden beschrieben, wie ein Straßennetz manuell und
prozedural erzeugt werden und zu jeder Zeit im Entwicklungsprozess bear-
beitet werden kann. Weiters stelle ich eine Methode vor, mit der eine ge-
ometrische Repräsentation von Straßen generiert wird, die sowohl Straßenseg-
mente als auch beliebige Kreuzungen darstellt und sich an das darunter-
liegende Terrain anpasst. Außerdem beschreibe ich ein System, das eine
Stadt automatisch mit Gebäuden aus einem Set von bestehenden Modellen
bestückt.
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Chapter 1

Introduction

In today’s video games and other media such as movies, large urban environ-
ments often play a central role. Titles like Grand Theft Auto or Assassin’s
Creed feature huge, highly detailed cities and other surroundings as can be
seen in Figure 1.1. Usually, such AAA titles are created by a huge workforce1.

Fig. 1.1: A screen shot of an historic city from the game Assassins Creed. Image
courtesy of Ubisoft S.A.

Urban environments such as cities and villages are usually created
by hand in commercial 3D modeling applications such as Autodesk
Maya [Aut10] or custom level editors created by the developers. This
involves modeling each building individually, creating street geometry
manually, and placing buildings and other models in the scene. While this
is feasible work for games with a linear, bounded level structure, creating

1 In 2007, Ubisoft Montreal, the studio behind the Assassins Creed games, employed
1600 people.
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an open world for large sandbox2 games is a huge and tedious effort that
involves many man-years of artist work. For modern applications that
demand even larger and more detailed environments, this gets less and less
suitable.

A promising approach that has emerged in recent years is to create content
procedurally. Procedural modeling is a method to describe an object not as
static data, but as a sequence of instructions needed to build that object. A
simple example is the snowflake shown in Figure 1.2.

Starting with an initial triangle shape, each line is recursively replaced
with a generator shape. After a few iterations, a very detailed snowflake is
constructed.

Fig. 1.2: Procedural construction of a snowflake shape. Image courtesy of P.
Prusinkiewicz and A. Lindenmayer [PL91].

Game design is an iterative process. This means that such environments
are often changed and revised during the development of the game. Until
its release, a game passes through many phases, as described by Bethke et
al. [Bet03]:

• Concept Prototype: shows very basic gameplay features.

• First Playable: An early version containing representative gamplay and
assets.

• Alpha: Key gameplay functionality is implemented and contains the
major features.

2 A sandbox game is video game where the player can freely roam a large, virtual world.
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• Beta: Feature and asset complete version of a game, three to four
months before the game is released.

• Game Release: The final version of the game.

Usually, the game is tested by the quality assurance team after every
single phase, and the feedback is incorporated into the further development.
Examples of such changes may include:

• Moving a street because the walking distance for the player was too
long or the player got lost.

• Restructuring a whole part of a city because a mission was cut or
redesigned.

These are just two very specific examples of changes that can appear in
the game development process, but they prove an important point: Urban
environments can and will change often after they have been initially created.
This means that the whole area affected by the change has to be re-modeled:

• Buildings and other models have to be moved manually.

• Street geometry has to be re-created by hand.

• Connections to other streets have to be updated.

All this involves even more time and work, because every step has to be
done manually by an artist. A system or tool that would allow the designer to
make some central changes and that updates the surroundings automatically
would greatly reduce the time spent on revising the scene. This would give
artists the time to focus on key assets even more and thus create a better
user experience.

1.1 Typical Artist Workflow

While working at the game studio Team Vienna as a programmer, I
interviewed coworkers experienced in game design. I asked them how a city
environment for a game is usually planned, layouted and built. Especially
helpful was Julian M. Breddy, lead level designer at Team Vienna. He was
supervising the city design and creation for the game 7Million and gave
me valuable insight on how artists and designers approach the creation of
a large urban environment for a game. A screen shot from 7Million can be
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Fig. 1.3: A screen shot from the game 7Million. Image courtesy of Koch Media
GmbH.

found in Figure 1.3.

A typical design process works as follows - it is basically a top-down
approach:

1. The first draft is a very coarse map that just color-encodes certain
regions of the city (e.g. little Italy, suburbans, slums, industrial park)
and the arrangements of certain districts (that are guided by game
design/progress mainly).

2. For each major city part, a more detailed map is created that will
show the positions of some landmarks (stadium, office tower, etc.) and
some buildings or locations important for gameplay. No street layout is
created yet, these maps contain just basic information about topology
(parks, rivers, harbors, etc).

3. The city is divided into smaller parts: These are patches of a few
hundred meters side length. For each of these sections, a layout is
created that shows the approximate location of streets and buildings.
Interestingly, creating this layout always begins with the landmarks
(mostly one per section) mentioned earlier, the buildings and streets
”grow” around the landmark.

4. Now, the creation process begins, every section is modeled in the editor.
This is done by importing assets created by artists and placing them
on the map. Streets are generated by drag-and-dropping texture tiles
onto the ground, a very tedious process.
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5. Local changes are made very often: sometimes buildings or the arrange-
ment of buildings change, a road is narrowed, some gameplay elements
are changed or cut completely, etc.

6. There might even be global changes necessary, although this is less
frequent. Sometimes it turns out that walking distances are too long,
or the space is too tight, etc. Redesigning a previously modeled section
is very tedious: rearranging all texture tiles is a lot of work that could
be greatly accelerated if those streets had been modeled procedurally.

A cutout of a typical game map is shown in Figure 1.4. Note the
landmark annotations such as police stations, restaurants, etc.

Fig. 1.4: A map from the game Grand Theft Auto IV. Image courtesy of Take-Two
Interactive Software Inc.

Based on these insights and information, I created an editor that can
be used by artists or designers for the whole design process. It supports all
the described steps, from planning and layouting maps, creating the street
network procedurally or manually to placing buildings and other models.
Also, most details, including streets, can be changed easily and interactively
at any time.

1.2 Scope of this Thesis

Based on the artist workflow described in Section 1.1, and limitations of sim-
ilar, previously existing work that I will describe in Section 2.5, the following
issues were the main focus for my thesis:
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Planning and Layouting a City Map The user can import and display
various maps in the application. This includes height maps for terrain gen-
eration as well as maps denoting gameplay elements, city zones or any other
kind of spatial information, such as special points of interest. Additionally,
markers can be set to identify important spots for game design or city layout,
such as landmarks.

Street Network Creation Streets can be created procedurally or manually
by placing nodes on the ground. Parameters can be defined for road growth,
such as the road pattern, length, angles, etc. Also, it is possible to simply
define some main roads and to apply the procedural growth in between.

Street Network Editing The user is able to edit the street network in-
teractively at any time. This includes adding or deleting streets, moving
junctions, etc. The affected streets are updated immediately.

Street Geometry Both manually and automatically created streets have
a simple geometric representation. Creating complex parametric geometry
is outside the scope of this work, but a stable tessellation is created that is
able to represent street segments as well as crossings connecting an arbitrary
number of streets. It is also important that the street geometry adapts to
the underlying terrain.

Building Placement The user is able to place buildings and other models
everywhere in the scene as well as to move, rotate and scale them. Addition-
ally, it is possible to populate the city automatically with buildings using a
constraint based system.

1.3 Contributions

The following list provides an overview of the major contributions:

• Existing applications and methods provide insufficient tools for artists
that allow them to plan an urban environment before modeling it. In
Chapter 3, I will describe techniques that help artists and game design-
ers to plan and layout a city: height maps can be imported for terrain
generation and maps can be projected onto the ground. This includes
area maps, topology information, or maps denoting gameplay elements.
Additionally, points of interest can be indicated with markers.
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• Urban environments are mainly defined by their street network. Such
a network forms the back bone of a city and determines its layout.
Therefore it is the first thing that has to be generated when modeling
a city. Usually a top-down approach is used, meaning that major roads
are created first, because they define the main routes and districts in
the city. Regions surrounded by major roads are then filled with mi-
nor roads, creating the finer structures of districts and neighborhoods.
When using this approach, areas surrounded by major roads are usu-
ally located at the city center. This often leads to sparse regions at
the outskirts of the city, where no minor roads can be created. In
Section 4.2.5 an approach will be proposed that generates cities where
minor roads are also generated in the outer regions.

• After the street network is generated, street geometry is created and
the blocks in between are subdivided into building parcels. Tessellating
the street geometry is straightforward in the case where all streets
are in a single plane, but gets complicated if streets adapt to three
dimensional terrain. In this case, junctions have to be kept planar. This
is usually handled by forcing the junction geometry to be parallel to the
ground plane, resulting in unnatural steps in steeper roads. Section 5.2
introduces a way to adjust these junctions in order to adapt them to
the underlying terrain.

• Buildings are an essential part of every urban environment. Usually
each model is hand-crafted in a modeling software and placed at its
destination by a designer or artist. This approach is not feasible for
larger urban environments. Usually only certain regions of the city are
crucial for a computer game, while other regions do not contain a lot of
individual detail. A method that fills these regions automatically can
reduce the time needed to add building models to a road network.

In Chapter 6, a method to select a building from a set of existing models
that fits best for a certain building parcel and places it there, will be
described.

• As mentioned in Section 1.1, the street network as well as the build-
ing models are often modified during game development. Chapter 7
describes various methods for editing the street network interactively.
Changes in the street geometry as well as the surrounding models can
be viewed in real-time.
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1.4 Structure of this Thesis

The thesis is structured into different chapters as follows:

1. Chapter 2 gives an overview of previous methods used for urban mod-
eling, including procedural techniques.

2. Chapter 3 explains how an artist can plan and layout urban environ-
ments in my application using image maps and markers.

3. Chapter 4 deals with the procedural creation of street networks and
parcels and the necessary parameters.

4. Chapter 5 shows how street geometry is tessellated and adjusted to the
underlying terrain.

5. Chapter 6 introduces a novel method to automatically populate an ur-
ban environment with previously modeled buildings using a constraint
based system.

6. Chapter 7 explains the different methods that can be used to edit ex-
isting street networks and buildings.

7. Chapter 8 deals with implementation details and presents results on
the basis of two urban environment examples.

8. Chapter 9 concludes this thesis and shows some possible future en-
hancements.



Chapter 2

State of the Art in Urban Modeling

Using procedural methods for urban modeling is a rapidly evolving field in
computer graphics with many different applications, such as computer games,
movies or urban planning. In the following, I will describe various approaches
and aspects of urban modeling related to the methods I have employed in
this work.

A detailed overview of various urban modeling techniques can also be
found in a recent survey paper by Vanegas et al. [VAW+10].

2.1 Street Networks

The layout of an urban environment is based on its street network. Before
actual street geometry can be generated, a street network has to be created
either automatically or manually by a designer or an artist. Street networks
are usually modeled as planar graphs. They specify position, orientation and
length of street segments as well as junctions and often contain additional
information, such as street widths, number of lanes, etc.

In the following sections, I will describe various previous methods used
to create and edit street networks.

2.1.1 L-Systems

The work described in this thesis is based on previous procedural modeling
methods that employ L-systems. L-Systems where originally developed
as a formalism for plant modeling [PL91] such as the tree shown in Figure 2.1.

L-Systems are parallel string rewriting systems that consist of a starting
string ω and so-called production (or rewriting) rules. Each production rule
consists of a predecessor and a successor string. In each rewriting step, each
character in ω is replaced by its successor string of a matching production
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Fig. 2.1: Tree procedurally generated using an L-System. Image courtesy of P.
Prusinkiewicz and A. Lindenmayer [PL91].

rule. See the following example of an L-System Lindenmayer used to model
algae growth with production rules p1 and p2:

ω : A

r1 : A→ AB

r2 : B → A

The first 4 iterations of this L-System look like this:

n0 : A

n1 : AB

n2 : ABA

n3 : ABAAB

n4 : ABAABABA

In order to create geometry from L-Systems, the resulting strings can
be interpreted using a LOGO-style turtle [Ad86]. The basic idea of a turtle
interpretation is that specific characters represent certain commands that are
used to control the movement of the turtle:
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• F: Move forward and draw a line

• +: Rotate to the right

• -: Rotate to the left

These commands can be used with the following L-System to create a
dragon curve. Variables E and G represent the same turtle instruction as F,
but have different production rules:

ω : EF

r1 : E → E

r2 : F → F +GE

r3 : G→ EF −G

The results of this L-System after 8 iterations is shown in Figure 2.2.

Fig. 2.2: Dragon curve after 8 iterations.

Using more complex commands and geometric representations, L-
Systems can be easily used to create various 3D objects, such as the tree
shown in Figure 2.3.
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Fig. 2.3: Tree generated using a more complex L-System.

2.1.2 Using L-Systems to Create Street Networks

Měch et al. [MP96] introduced an extension to L-Systems that allows plants
to communicate bidirectionally with their environment, called Open L-
systems. The key concept of this method is the exchange of environmental
information between plants and their surroundings, so that they influence
each other. One example for this are tree roots growing in soil, absorbing
water from it and following the gradient of water concentration [MP96]. This
is shown in Figure 2.4.

To achieve this, communication modules of the form ?E(x1, ..., xm) are
embedded into the string and used to both send and receive environmental
information represented by the parameters x1, ..., xm [MP96]. This is illus-
trated in Figure 2.5. Using this technique, a variety of novel plant behavior
can be modeled, such as collisions between branches or the development of
tree crowns competing for light.

Parish et al. [PM01] have extended this method to create city street maps
using a set of production rules, calling their method Extended L-Systems.
Street networks can be grown just like plants by developing new street seg-
ments and interacting with the environment to create crossings, avoid ob-
structed areas and steep slopes, etc. Instead of trying to set the parameters
of the L-System inside the production rules, they proposed a 3-level hierarchy
to evaluate parameters for a new street segment: First, an ideal successor is
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Fig. 2.4: Plant roots interacting with their environment using Open L-Systems.
Image courtesy of R. Mech and P. Prusinkiewicz [MP96].

Fig. 2.5: Information can be exchanged between plants and their environment.
Image courtesy of R. Mech and P. Prusinkiewicz.

created. This is a new street segment without any parameters assigned. For
this new street segment, the global goals function is evaluated. The location
and orientation of the street is set according to the superimposed street pat-
tern and the local population density. After the initial parameters have been
evaluated, the street segment is adapted to its local environment by calling
the local constraints function: This function changes the location and orien-
tation of the street according to the criteria such as the following [PM01]:
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• check if the road segment ends in obstructed area

• check for intersections with other road segments

• snap new segment end points to existing junctions

Some of these constraints are illustrated in Figure 2.6. Extended L-
Systems are capable of producing impressive results, such as the street maps
shown in Figure 2.7

Fig. 2.6: Examples of local constraints. Image courtesy of Y. I. H. Parish and P.
Müller [PM01].

2.1.3 City Hierarchy

Weber et al. [WMWG09] have extended this method to simulate a three-
dimensional urban model over time. They define a city hierarchy to guide
the creation of such networks:

A street network is a planar graph (V,E) with nodes V and edges E.
A street consists of one or more edges e ∈ E, the street segments. Each
street segment e connects two nodes n(e)1, n(e)2 ∈ V 2. Streets can be major
or minor streets and have different widths. A facet in the planar graph
(Vmajor, Emajor) is referred to as quarter, that is an area surrounded by major
roads. A facet in (V,E) (an area surrounded by any street) is called a
block. Each block can be subdivided into building parcels. This hierarchy
is illustrated in Figure 2.8.

To create a city obeying this hierarchy, major streets are created first,
and spaces in between are filled with minor roads afterwards. This results
in a planar street network and building blocks in between. A block consists,
according to this hierarchy definition, of multiple building parcels, each defin-
ing the space a single building can take up. These parcels can be generated
by repeatedly subdividing a building block.
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Fig. 2.7: Street network created using extended L-Systems. Image courtesy of Y.
I. H. Parish and P. Müller [PM01].

Fig. 2.8: City Hierarchy. Main roads are displayed red, minor roads are orange.
Quarters are areas surrounded by major roads. Blocks are surrounded by any road
and divided into parcels.

2.1.4 Other Methods to Create Street Networks

To allow more extensive user-control over the creation of street networks,
Chen et al. [CEW+08] proposed an interesting method to interactively
model and edit street networks without the usage of L-Systems. Instead,
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tensor fields are used to guide the generation of streets. Tensor fields give
rise to two sets of hyperstreamlines, one following the major eigenvector
field and the other the minor eigenvector field [CEW+08]. Tensor fields
are generated by a combination of user input, such as street patterns, and
environmental information (terrain, obstructed areas, etc.) The user can
modify the field by blending multiple fields together or modifying tensor
values using a brush interface [CEW+08]. In a second stage, streets are
extracted as hyperstreamlines and networks are modeled using a similar
hierarchy as the one discussed in Section 2.1.3. Afterwards, the user can
interactively edit the street network by again modifying the tensor field or
by directly changing the created street graph [CEW+08]. Results of this
method are shown in Figure 2.9.

Fig. 2.9: Street network created using tensor fields. Image courtesy of Chen et
al. [CEW+08]

Another system that allows the user close control over the generation
process was introduced by Kelly et al. [KM07]. Major roads can be
interactively drawn and manipulated. Once a region is enclosed by major
roads, minor streets are created automatically using an L-System similar
to [PM01]. As discussed before, a variety of parameters can be changed and
their effect can be viewed in real time. Additionally, a method is presented
to generate simple buildings procedurally by extruding a building footprint
from the previously calculated buildings lots.

A different approach to reconstruct a road network has been used by
Aliaga et al. [AVB08]: They investigated the problem of synthesizing urban
layouts from existing examples. This can be used for the design and exten-
sion of urban areas in a similar style as an existing location. Aerial-view
images registered with street data from real-world urban environments are
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Fig. 2.10: Urban Layout synthesized from example images and structures. Image
courtesy of Aliaga et al. [AVB08]

used to extract a street network and synthesize new layouts, as can be seen
in Figure 2.10. This is done by creating a network of streets that attempts to
follow the layout style given by the provided examples, extracting building
blocks and parcels. Image synthesis is used to generate a new set of image
fragments from the set of input aerial-view images. The system also allows
several high-level editing operations such as joining, expanding, and blending
example layouts. [AVB08].

2.1.5 Interactive Editing of Street Networks

Recently, Lipp et al. [LSWW10] presented new solutions for the interactive
modeling of city layouts. They introduced transformation and merging op-
erators for topology preserving as well as topology changing transformations
based on graph cuts. Graph cuts stem from graph theory and were originally
introduced by Ford and Fulkerson [FF62]: In a graph G = (V,E) with a
source s ∈ V , a sink t ∈ V and capacities ce for every edge e ∈ E, a s-t
graph cut partitions all vertices into two subsets S and T with s ∈ S and
t ∈ T [LSWW10]. According to the Max-Flow-Min-Cut-Theorem, such a
cut is minimal if the sum of all edge capacities between the two partitions is
minimal. By saturating all of those edges, the maximum flow in the given
graph can be reached [FF62].

In image processing, graph cuts are used to merge multiple tex-
tures [KSE+03]. Lipp et al. use a similar method to merge two different
urban layouts Ūa and Ūb. A shared graph is created by copying the
streets of Ūa and Ūb into a single data structure and calculating all in-
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tersections. For Ūa, a source node is created, and a sink node is added
to Ūb. User defined weights are used as capacities for the edges in the
shared graph to compute the graph cut. After that, all streets that are
not in the correct partition are deleted: Only the streets of Ūa in S
and the streets of Ūb in T are kept. By adjusting the weights of the
graph, the user can control how important certain regions of the urban
layout are. More important regions are kept when merging them into less
important ones [LSWW10]. Results of this method are shown in Figure 2.11.

Fig. 2.11: Renderings of two urban layouts merged using graph cut. From left
to right: (1) Two separated layouts (2) merged scene (3) closeup of merged ares.
Image courtesy of Lipp et al. [LSWW10]

Another editing method proposed in the same paper are non-topological
transformations : Many operations on a street network (e.g. a junction moved
by a small amount) do not change the topology of the streetgraph. In this
case, it is sufficient to update the parcels in the blocks adjacent to the
node [LSWW10]. This is done either by distorting the existing parcels or,
if the area of the block was changed more than a certain threshold, creating
new parcels by subdividing the block.

Parcel distortion can be achieved using mean value coordinates [Flo03]:
These are calculated for every vertex of a parcel with respect to its containing
block. If a node of this block is moved, the new parcel vertex positions
can be calculated from these changes. A more detailed description of this
method will be given in Section 7.2.

The city modeling system introduced by Lipp et al. allows very com-
plex and powerful transformations on existing street networks, including the
merging of multiple urban layouts. However, no real geometric representa-
tion for the streets is used, and street networks are limited to the 2D case of
planar layouts. Transformations of networks that adjust to the underlying
terrain are not discussed.
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2.2 Street Geometry

The methods presented so far describe methods how to create and edit
street networks but not how to create geometric representations of them.
In the following section, I will discuss previous work that has focused on
creating actual street geometry. I define the term street geometry as any
tessellated geometric representation of a street, from very simple one-lane
roads to complex geometry including sidewalks, lamp posts, roundabouts,
etc.

In his master thesis, Hummel [Hum01] introduced a method to generate
tessellated street geometry for large cities suited for real-time visualization.
Input is provided in the form of static input files and consists of a terrain
height map, the building footprints and the street graph. In a first step,
street segments are processed into a set of points that serve as supporting
points for the shape of the generated 3D geometry. Actual polygons are
created by connecting these points and creating the final geometry using
Delauney-triangulation. In the final step, the streets are textured.

While Hummel describes how street segments adapt to the underlying
terrain by interpolating between height samples, the problem of how
junctions should be modified to match the local features of the terrain is not
addressed. Furthermore, junctions are limited to connect a maximum of 4
street segments.

Gebhart [Geb08] describes a system that helps artists to create tessellated
3D street networks. Streets are ”drawn” by an artist or designer as skele-
ton lines in an editor. Based on these lines, detailed geometry consisting
of multiple driving lanes, sidewalks and hard shoulders can be created and
controlled using various parameters such as the number of lanes, lane widths,
the radius of a curve, etc. Crossing geometry is created by adding osculating
circles between the crossing streets. These curve segments have to be con-
trolled manually by an artist and are not created completely automatically.
Also, crossings are limited to two types:

• Intersections of two streets

• T-junctions, where one street segment ends at another street

Any other type of junction has to be hand-modeled as a roundabout,
where the roundabout is a separate street connecting to the other streets via
t-junctions [Geb08]. While this method creates highly impressive geometric
street representations, it is not well suited for interactive editing of street
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networks, because many crossings have to be recreated by hand every time
the topology of the street graph changes.

The method I will describe in Chapter 5 to create street geometry is based
on the work of Zimmermann [Zim07]. He presents a technique to construct
a fully polygonal 3D street representation out of centerlines that are given
by edges in the street graph. While this is trivial for single streets, Zimmer-
mann also proposes a method to create geometry for crossings connecting
an arbitrary number of street segments. This is done by finding the inter-
section points of the outer lines of the street segments and connecting them
with the center point of the junction. This is illustrated in Figure 2.12. To
create queuing zones next to the junction, the tessellation is altered so that
street segments have an ending perpendicular to their direction. To achieve
this, the intersection points have to be mirrored to the other side of the
street [Zim07].

Fig. 2.12: Left: Junction geometry created by finding the intersection points of
the outer street lines. Right: Intersection geometry with mirroring applied. Image
courtesy of M. Zimmermann [Zim07]

While this method produces a good and reliable geometric representation
of planar streets, it fails to address the problem of maintaining a stable and
realistic tessellation for 3D streets that adjust to terrain levels of different
heights.
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2.3 Automatic Building Assignments

The problem of finding a model that fits into a certain environment has
not been investigated very extensively. Kjølaas [Kjø00] presents a system
that automatically places furniture into a given floor plan. To ensure valid
room layouts and reasonable spatial allocations, he proposes a case-based
approach. Templates are created by the user that represent different room
types, such as dining, working or bedrooms. These templates are defined by
drawing rectangular shapes inside room plans representing bounding boxes
of the furniture. Since rooms and templates are restricted to rectangular
shapes in the presented method, templates can be easily fitted into any
given room by using rotation, translation, flip and scale operators [Kjø00].
If no transformation can be found without conflicts with doors or windows,
furniture will be removed one by one and placed somewhere else. If no
valid configuration can be found without removing the vital furniture of
the template, it is discarded for this room. The presented system allows
simple furniture population of indoor environments, but is very limited by
its restriction to rectangular rooms and furniture bounding boxes.

In the field of automated building placement, a lot of work has been done
in the direction of recognition and reconstruction of buildings from aerial
images:

Jaynes et al. [JRH03] introduced a model-based technique for the au-
tomatic 3D reconstruction of building shapes. As input, digital elevation
maps derived from optical stereo images registered to photographs of urban
environments are used. Their method is divided into two phases [JRH03]:

1. First, a perceptual grouping algorithm detects building boundaries in
the photograph using low-level features such as straight lines or image
corners.

2. Then, rooftop shapes are determined from the corresponding regions in
the digital elevation map. This is done by comparing surface orientation
histograms for each model from a database of shape models to the
elevation map. The best matching model is taken as the initial input
for a robust surface fitting algorithm that refines the model parameters
to get an approximation of the building shape.

This approach leads to the recognition and reconstruction of a wide
variety of buildings [JRH03].
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Suveg et al. [SV04] use a very similar approach to reconstruct buildings
from stereo aerial images. The main difference from the method of Jaynes
et al. [JRH03] is the use of models described as CSG trees and a metric that
evaluates the found building shape in a final verification step.

Both methods can be used in the process of reconstructing existing cities,
e.g. for mapping applications, but are not suited for artist-created urban
environments due to their lack of interactivity.

2.4 Shape Grammar Applications

Recently, procedural generation of buildings and facades has been an active
field of research, including the generation of facades using shape grammar.
Shape grammars, first defined by Stiny et al. [Sti80, Sti82], are production
systems that generate geometric shapes. Similar to L-Systems, production
rules, here specifically called shape rules, define a predecessor and a successor
shape. Starting with an initial shape, existing structures are refined according
to the production rules. See Figure 2.13 for an illustration.

Fig. 2.13: Simple example of a shape grammar that inscribes squares in squares.
(a) Shape rule, (b) generation of a shape after repeatedly applying the rule [Sti80].

Parametric shape grammars are an extension of shape grammars that
allow the use of parametrized shapes so that the context of already existing
shapes can be taken into account.

Wonka et al. [WWSR03] and more recently Müller et al. [MWH+06] pro-
pose a shape grammar based approach to procedurally model buildings. They
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extend the shape rule definition to contain one or more shapes and commands
as the successor. Commands are macros creating new shapes or commands,
like the following [LWW08]:

• Splitting a shape into multiple parts

• Repeating of shapes in a certain direction

• Component split: creates new shapes on components (edges or faces)
of a shape

Repeated application of different rules including these commands creates
a hierarchy of shapes by inserting the successor shapes as children of the
predecessor shapes. This method allows to create very detailed and diverse
buildings using a small set of shape rules, as can be seen in Figure 2.14.

Fig. 2.14: Two examples of procedurally generated buildings using shape gram-
mars. Image courtesy of Müller et al. [MWH+06].

The main limitation of this approach is that it is not very flexible: To
add a little variation to the created model, for instance a single different
window in a facade, the whole rule set has to be re-created to model the
variation. This can quickly result in an explosion of the rule base.

Lipp et al. [LWW08] propose a solution to overcome this limitation using
a visual workflow to shape grammar rules. This enables artists and designers
to utilize shape grammars in an easy-to-use way. Additionally, Lipp et al.
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introduced an extension to shape grammars that allows local modifications
for created building instances. This is done by directly modifying the subtree
of the created shape hierarchy interactively without exposing the hierarchy
to the user. The modified nodes in the subtree are then marked to preserve
the changes even if global changes in the set of shape rules are made and the
shape hierarchy is re-created.

2.5 Commercial Applications

Fig. 2.15: Screen shot of the CityEngine application showing a complex junction
modeled with shape grammar rules. Image courtesy of Procedural Inc. [Pro10]

The CityEngine [Pro10] is a commercial software package that is capable
of procedurally generating cities. Input is provided in the form of controllable
parameters and image maps: height maps can be used to model terrain, ob-
stacle maps denote regions where no streets should be created and population
density maps control the type and density of the streets and buildings in cer-
tain regions. The application implements many of the techniques discussed
in the previous sections:

• Procedural street network and parcel creation using L-Systems as de-
scribed in [PM01, WMWG09].
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• Parametric street geometry creation similar to the method of Zimmer-
mann et al. [Zim07], but also employing shape grammar techniques.

• Parametric modeling of 3D buildings using shape grammars as dis-
cussed in Section 2.4 [MWH+06, WWSR03, LWW08].

• Interactive editing of the street network by adding, moving or deleting
streets.

The application is available for purchase and new features are added reg-
ularly. It is one of the best known and most powerful modeling solutions for
urban environments. Screen shots of the application are shown in Figure 2.15
and 2.16.

At the time I started my thesis, the CityEngine had the following limita-
tions, some of which have been made obsolete by recent preview versions:

• No possibility to directly modify the street geometry and view the
results in real time: When adding, moving or deleting a street in the
street graph, the affected geometry has to be removed and recreated
manually.

• Sparse outer city regions: As mentioned in Section 1.3, minor roads are
only created in quarters surrounded by major roads.

• Unnatural steps in steeper roads: To keep junctions planar, junction
geometry is forced to be parallel to the ground plane.

These limitations were, among the insight won by the artist workflow
described in Section 1.1, the main inspiration for the focus of my thesis. As
mentioned in Section 1.3, I will introduce solutions to overcome them in the
following chapters.
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Fig. 2.16: Screen shot of the CityEngine application showing a large street network.
Image courtesy of Procedural Inc. [Pro10]



Chapter 3

Planning and Layouting an Urban
Environment

As discussed in Section 1.1, urban environments for games are usually
planned using annotated maps. In the following chapter, I will introduce
layouting tools that can be used to implement this artist workflow.

In Section 3.1, I will describe how image maps can be imported and used
to model terrain. Image maps can also be used to illustrate regions of the
city or gameplay related information, such as the player progress. This is
shown in Section 3.2.

Points of interest in the scene can be denoted with markers without having
to model the respective geometry. They will be discussed in Section 3.3.

3.1 Terrain

Most environments in games will be set in some kind of terrain, like moun-
tains or hills. For instance, Assassins Creed 2 is set in the hills of Tuscany.
Terrain forms the basis of every game setting. The development of a street
network is limited by too steep slopes, since streets usually do not run up or
down a cliffy mountain. Instead, they form serpentines or follow the direction
of the most even slope.

Similarly, buildings can not be placed on steep terrain without subsiding
parts of the model into the terrain.

To model terrain, heightmaps are often used. A height map is a texture
that stores elevation data as gray scale values in the interval [0, 1]. This
texture can then be used to displace the vertices of a regular mesh by the
stored values. The result is a tessellated terrain patch, as can be seen in
Figure 3.1.
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Fig. 3.1: Height map interpreted as terrain. Left: A gray scale image representing
a terrain. Right: A regular mesh displaced by the height values stored in the
texture.

To make the created terrain look more plausible, it can be rendered using
a simple height dependent color scheme. Different colors simulate water,
vegetation, timberline and finally snow. The result is simple but effective
and produces believable coloring for terrain meshes.

3.2 Image Maps

Planning a city for a game usually involves the creation of many maps. These
maps are used by the game designers for illustration purposes and can have
different meanings:

• Maps showing the spatial layout of the city and indicating different
regions of the urban environments (e.g. little Italy, suburbans, slums,
industrial park)

• Illustration of the planned topology (parks, rivers, harbor, etc.)

• Plans to illustrate the player’s progress, showing starting regions, game-
play targets, or places of certain missions

• Maps containing any other kind of spatial information, such as special
points of interest.
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Such maps are often put on different layers to combine and blend them
together. For instance, it can be useful for a designer to see the planned
player progress on top of a detailed spatial layout of the city’s regions. Two
examples of maps can be found in Figure 3.2.

Fig. 3.2: Examples of maps used in the planning process. Left: Map showing
the quarters of Liberty City, a fictional city from the game Grand Theft Auto IV.
Image courtesy of Take-Two Interactive Software Inc. Right: A tactical map with
points of interest like spawn points or mission targets from the game Call of Duty
4. Image courtesy of Activision Publishing, Inc.

To help the game designer to layout an urban environment, maps can be
displayed as overlays. They can be imported as images and selected to project
down their content onto the terrain maps below. To display multiple maps
on top of each other, they can be sorted by the user and blended together
by controlling the transparency of each single map. It is also possible to
hide projected image maps so that just the projection is visible. Figure 3.3
illustrates the method and shows some results.

3.3 Markers

As mentioned above, designers usually denote special points of interest in
maps. Such maps can be inflexible to use if the position of these points is
changed. Also, the maps may lack clarity if they are crowded with points.
A better way to denote such points in the layout process is to use markers.
Markers are billboard pointers that can be placed freely anywhere in the
scene. To emphasize the importance of certain markers, they can also be
scaled to different sizes.
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Fig. 3.3: Image projections. Left: A basic area map is projected onto a terrain
using an orthographic projection. Right: Two (hidden) area maps are blended
together with a third texture of a street network layout on top.

Points of interest highlighted by markers may be:

• The positions of special buildings, such as churches, office towers or
landmarks.

• Starting positions of the player.

• Important mission targets or any other type of gameplay relevant po-
sition.

Markers are implemented as billboards [AMH02, p. 318-329] that always
face towards the camera. They can contain user-defined icons to identify the
denoted position. In Figure 3.4, three markers are shown displaying the
planned positions of a windmill, a church and a lighthouse.

Fig. 3.4: Three markers denoting future positions of various buildings.



Chapter 4

Creating the Street Network

In this chapter, an algorithm is described that creates whole street networks
or can be used to add streets to existing networks. This algorithm is based on
the work of Parish et. al [PM01] and Weber et al. [WMWG09]. Streets are
created using a system similar to extended L-Systems, although I chose not
to implement a string rewriting system, but to apply the production rules
directly to the street objects to avoid slow string operations, as proposed
in [WMWG09]. The city hierarchy definition is the same as described in
Section 2.1.3. I will first describe a set of important control parameters
that are used for creating streets in Section 4.1. Finally, I will explain the
algorithm in detail in Section 4.2.

4.1 Control Parameters

The creation of streets can be controlled with the following different param-
eters:

• Cities usually have different layouts. Streets in New York City are
strictly rectangular, whereas Paris follows a loosely circular pattern.
Cities with no superimposed pattern grow organically. In our system,
major and minor roads can follow different patterns, as illustrated in
Figure 4.1.

• Street length, width and angles between adjacent street segments can be
controlled.

• To avoid street ends near existing junctions, a distance
snappingDistance can be defined. If the distance between a
street end and a junction is smaller than snappingDistance, the
street end is snapped to this junction.

• A height map may be specified to create a terrain (see Figure 4.2). The
streets will then adjust to this terrain. If the slope of a street segment
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Fig. 4.1: Different street patterns. From left to right: (1) Grid/raster pattern (2)
Radial/circular pattern (3) Organic pattern

between two positions A and B is larger than a user defined threshold
maxSlope, the end B of the segment is rotated around A until it is
plain enough, or removed if that is not possible.

• Urban environments may contain areas where no streets should be cre-
ated, such as parks or water. Such areas can be denoted in an obstacle
map (see Figure 4.2). This map is sampled regularly and the street
creation algorithm will avoid any obstacles.

• Real cities are planned to meet the requirements of its inhabitants:
Major roads connect centers of high population densities, while minor
roads provide access to the major roads in populated areas. A popula-
tion density map (Figure 4.2) can be set to control the development of
major and minor streets.

• The average size of a building parcel can be controlled to adjust the
parcels to the desired building size.

All of these parameters can be set using the user interface of our
application.

4.2 Creating the Street Network

As explained in Section 2.1.3, to create a city obeying the used hierarchy,
the algorithm is divided into two stages: (1) creating major streets and
(2) identifying quarters surrounded by major streets and filling them with
minor streets. Both stages can either be done automatically or manually
by a designer as described in Section 7.1. In the following sections I will
focus on the various aspects of automatic street network creation. This is
basically an in-depth discussion on the algorithm introduced by Weber et.
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Fig. 4.2: Input maps for a bay area environment. From left to right: (1) Height
map, (2) Obstacle map, (3) Population density map.

al [WMWG09]. In Section 4.2.5, I will propose an extension for this method
to create more realistic city boundaries.

4.2.1 Seed Street Segment Creation

The L-System used to create street networks needs an initial street segment
as input. Production rules can be applied on this input segment to further
develop the road network.

Therefore, the very first step in the city creation algorithm is to create
an initial major street segment. This seed street can then be expanded
and new streets can be created as branches. The position of this first
segment is dependent on some input parameters, mainly the input maps.
Since realistic street growth should start in a densely populated area, the
density map (if supplied) is sampled to find the positions with the highest
population density. These samples are weighted with their distance from
the center of the map, so that there is a better chance of creating the first
segment near to the center. The first segment is placed at the position
with highest value v = d · deltac, where d is the population density at this
position, and deltac is the Euclidean distance to the center of the map,
normalized to the texture coordinates [0, 1]. If no density map was supplied,
d is constant. The initial street segment is created at the position with
the highest value v. If the street segment could not be created (if the
position is obstructed or at a too steep slope), the position with the sec-
ond highest value v is chosen. This is repeated until a valid position is found.

To fill a quarter with minor streets, another seed street is needed inside
this quarter. A seed street for a quarter is created as follows: At first, the
seed street segment is created at the barycenter of the polygon surrounding
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the quarter. If this is not possible (e.g. because of obstruction, or if the
polygon is concave and the center is outside of the polygon), the following
algorithm is used to find another position:

While no valid seed street segment found:
pick a random node v in the surrounding polygon
pick a random node w != v in the surrounding polygon
take a random position p between v and w
try to create a street segment at p

After a few iterations, the loop is canceled to avoid infinite loops in case
no seed street can be found (e.g. if the whole quarter is obstructed).

4.2.2 Street Growing Strategies

Created streets with at least one initial street segment can be iteratively
expanded. They can either grow or create new streets by branching. As
proposed in [PM01] and discussed in 2.1.2, a 3-step system is used to develop
a street in each iteration:

1. A production rule is chosen to grow a street or to create a branch. This
production rule returns a new street segment called the ideal successor.
This new street segment is either added to the existing street at the
beginning or the end, or is the first segment of a new street.

2. The parameters for this segment are evaluated by the global goals func-
tion. This mostly effects the orientation of the new street segment.

3. The local constraints that limit the creation of the new street segments
are determined. If a segment cannot be changed to fit all constraints,
it will be deleted. These constraints will be described in more detail in
the next section.

Creating a new street segment can happen in two ways: Either a street
segment is added to an existing street, or a new branch is created. This can
be modeled by the following three different production rules:

• Appending Production Rule: Creates a new street segment at the end
of the given street

• Prepending Production Rule: Creates a new street segment at the be-
ginning of the street
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• New Branch Production Rule: Creates a new street as a branch of the
given street. A random node of the existing street will be picked as the
crossing where the new street will be created. It is possible to limit the
number of streets per crossing. This production rule will pick a node
where this number has not been reached.

All of these rules will return a new street segment as ideal successor. The
parameters for this segment will be set according to the following global rules:

Street Patterns

The algorithm will adjust the new segment to follow the superimposed road
pattern. This includes mostly road length and orientation. In the following,
the patterns illustrated in Figure 4.1 will be explained:

Basic (organic) pattern This is the street pattern found in most historic
European city centers. Instead of developing the city according to a certain
layout, roads and buildings were mostly built where space was available.

Such a ”pattern” is achieved by setting the segment length according
to the parameters length and lengthDeviation. The resulting length
segmentLength = length±random(0,lengthDeviation). The same
is done with the street width. The orientation is changed in relation to the
previous segment by a random angle between [0,maximumAngle].

Grid/raster pattern This pattern is used in many cities in the United
States, most notably in Manhattan.

New streets will be classified as longitudinal or latitudinal according to
their initial orientation. The main directions are defined once for major
streets and once per quarter for minor streets. The orientation of the streets
will vary very little, and new street branches are created exactly orthogonal
to the existing street.

Radial pattern Some European cities like Paris or Vienna follow a radial
pattern. Streets can be divided into two different categories: radial streets
that run from the city centers outwards, and tangential streets that form a
concentric circle around the center.

Creating streets according to this pattern is not as easy as with the
previous designs. The street length will be assigned very similarly to the
basic pattern, but the segment orientation is more complex, since newly
created segments have to be re-oriented to become either a radial or a
tangential segment. Otherwise, the created street network will not resemble
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a radial pattern.

First, it is determined if the new street segment is oriented more radial
or tangential to the center of the radial pattern.

• If it is radial, it is re-oriented to point inwards or outwards from the
center as can be seen in Figure 4.3.

Fig. 4.3: A street segment in a radial/circular pattern is re-oriented to become a
radial street. The pattern is given in gray, the original street segment is displayed
in red and green after the re-orientation.

• If it is more tangential, the segment’s orientation has to be changed so
that it forms a tangent to the pattern center. The starting point P1

of the street segment has to remain unchanged to keep the connection
to the existing street. Therefore, the end point P2 of the segment has
to be moved. Its new position can be calculated by intersecting two
circles C1 and C2, where the center of C1, centerC1 = centerrp (the
center of the radial pattern) and the radius radiusC1 is the distance
from centerrp to P1, while the center of C2, centerC2 = P1 and the
radius radiusC2 is the distance from P1 to P2. This is illustrated in
Figure 4.4.
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Fig. 4.4: Adaption of a tangential street segment to fit a circular pattern. The
pattern is given in gray, the street segment (P1, P2= is displayed in red. In this
case, P2 will be set to the found intersection point I1 so that the street segment is
a perfect tangent to the center of the radial pattern.

The intersection points of the two circles can easily be calculated as
described in [MST89]. Note that there is no intersection point if
radiusC2 >= radiusC1 , in that case the street segment is discarded.
If radiusC2 < radiusC1 , there will be two intersection points. P2 is set
to the one where the orientation of the new segment changes less.

Population Density

If the current street is a major road, the algorithm will try to connect centers
of population with this street. For this purpose, the population density map
is evaluated to find peaks of population density. As described in [PM01,
p. 303], ”Every highway road-end shoots a number of rays radially within a
preset radius. Along this ray, samples of the population density are taken
from the population density map. The population at every sample point on
the ray is weighted with the inverse distance to the road end and summed up.
The direction with the largest sum is chosen for continuing the growth.” An
illustration is shown in Figure 4.5.
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Fig. 4.5: Main streets will connect centers of high population density. Left: ray
shooting to find next population peak. Right: Street Network connecting popula-
tion centers. Image courtesy of Parish et al. [PM01].

4.2.3 Local Constraints

As mentioned in [PM01, WMWG09], local constraints are used to adapt the
new street segment to its local environment. Segment length and orientation
may change within certain boundaries. These boundaries can be predefined,
such as minimum street length or maximum rotation angle change. If it is
not possible to find valid parameters, the segment is discarded. The following
rules have been implemented, some of them are shown in Figure 4.7:

Slope correction Streets can not follow every slope. If they are to steep,
they would be impossible to use. If the slope of the new segment is more
than a user defined threshold maxSlope, the street segment is rotated until
the slope is below maxSlope.

Obstacle avoidance Streets should not be created inside obstructed areas
such as parks or water. This can be controlled by providing an obstacle
map that is sampled at regular positions along the new street segment. If
the segment runs through an obstructed area, the system tries to shorten
the segment. If the new segment length is below a user defined threshold
minimumSegmentLength, the segment is rotated until a valid alignment
is found.

Intersection In order to create junctions with other roads, the new street
segment is intersected against other street segments in its local proximity
using a simple line/line intersection test as described in [AMH02, p. 127-
129]. The two segments only intersect if the intersection point lies within
both segment bounds. If an intersection is found, the segment is shortened
and ends at the intersection point.
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Extension intersection To avoid road ends close to other streets, new street
segments are extended by a certain factor and tested for intersections. If such
an intersection is found, the segment end is set to the new intersection point.
If not, the segment length is reset to its original value.

Snapping Snapping is used to prevent close-by crossings of streets. If the
distance between the node at the end of the new segment and a node in its
surroundings is below a user-defined threshold, the new node snaps to this
position.

Clip to mask In order to allow the user to limit the creation of new streets
to a certain region, it is possible to define a closed polygon that is used
to clip the new street segments at the borders of this polygon. A simple
inside/outside test like the odd-even rule as described in [HB04, p. 127-
129] is used to determine if the new street segment is intersecting the mask
polygon. If so, the segment is clipped to the mask.

Remove duplicates Sometimes street segments are created very close to
already existing streets. If they are nearly parallel and the distance of the
two segments is below a user-defined value minimumStreetDistance, the
new segment is discarded. The two street segments are roughly parallel if
the following inequality yields true:

|van · vbn| > 0.9

Where van and vbn are the normalized direction vectors of the two street
segments. As described in [Wei10], the distance of a point x0 to a line
specified by two points x1 = (x1, y1, z1) and x2 = (x2, y2, z2) can be calculated
as follows:

t = −(x1 − x0) · (x2 − x1)

|x2 − x1|2

d =
|(x0 − x1)× (x0 − x1)|

|x2 − x1|
Where d is the distance of the point to the line and parameter t describes

the position between x1 and x2 that is nearest to the point x0. An
illustration can be found in Figure 4.6.

This distance is calculated for both nodes of the new street segment to
other line segments in its proximity. If the distance of both nodes is less than
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Fig. 4.6: Distance of a point x0 to a line specified by two points x1 = (x1, y1, z1)
and x2 = (x2, y2, z2). Image courtesy of Wolfram Research, Inc. [Wei10].

minimumStreetDistance, the system uses the calculated parameters t
to determine if the two line segments are actually close-by. If this is the case,
the new street segment is discarded.

Fig. 4.7: Selection of local constraints. Proposed street segments are drawn in
gray, corrected ones in blue. From left to right: (1) Intersection (2) Snapping (3)
Obstacle avoidance (4) Slope correction

4.2.4 Quarter Identification

As defined by Weber et. al [WMWG09], areas surrounded by major roads
are called quarters (see Section 2.1.3). To fill all quarters in a street
network with minor streets, they have to be identified. If the street graph is
interpreted as a graph, quarters are equivalent to faces in the planar graph
(Vmajor, Emajor). A simple example is given in Figure 4.8.

To find all faces in the graph, the system uses a planar face traversal
algorithm similar to the one implemented in the boost C++ libraries [Riv10].
Facets can be found by traversing each edge in the graph and visiting the
next edge in counter-clockwise order. To speed up this process, for every
node n in the street graph data structure, the nodes that are connected to
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Fig. 4.8: A simple graph with five differently colored facets.

n by a street segment are stored. The pointers to these nodes are ordered
counter-clockwise as illustrated in Figure 4.9

Fig. 4.9: Data structure used to store node adjacency information: For each node
n, pointers to all adjacent nodes are stored in counter-clockwise order.

Using this data structure, the algorithm works as follows:

For every two connected nodes n and m in street graph:
travelEdge(n, m)
travelEdge(m, n)

travelEdge(n, m)
e = getEdge(n, m)
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if e has not been visited: // new face
create new face f
while (n not visited from e)
add n to f
temp <- n
n <- m
e <- edge to next node connected to n after temp
m <- e.end

This algorithm starts with visiting each edge in the planar graph once
in every direction. If this edge has not been traversed in this direction yet,
a new face is created and the current edge is added to this face. From the
end of the edge, the next edge in counter-clockwise order is visited. This is
repeated until a node is visited from an edge the second time - then the face
is complete.

Of course, the outer face of the planar street graph is also found, but it
does not represent a city quarter. Therefore it is discarded. It is crucial that
the data structure describing which nodes are connected to a node is kept
up-to-date and correct, even minor errors in this list can cause the algorithm
to fail detecting all quarters. This is ensured by encapsulating the methods
to add, insert and delete a street segment to the street graph data structure
and maintain the list of nodes there.

The very same algorithm can be used to identify building blocks in the
street network by applying it to the whole street graph (V,E) instead of just
the planar graph (Vmajor, Emajor).

4.2.5 City Boundaries

One of the main problems of the system is that quarters - facets in the
planar street graph - have to be surrounded by main roads. That means
that no quarters (and therefore no minor streets) can be created outside of
the city borders with the algorithm discussed so far, as shown in Figure 4.10.

I propose the following solution for this problem: A convex hull around
the city is calculated using for instance the Graham-Scan algorithm [Gra72].
We use the street nodes Vmajor of the planar graph (Vmajor, Emajor) as points
for the finite set. This yields a new set of line segments surrounding the
street network. But using these line segments directly to detect quarters
would result in very artificial looking city borders. Therefore, the calculated
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Fig. 4.10: Left: In previous methods, no detailed neighborhoods are created in the
outskirts of the city. Right: Outer regions created with the new algorithm.

convex hull is ’bulged’ to create a more realistic city outline: First, the
barycenter C for the convex hull is calculated. Then, each line segment of
the convex hull is subdivided into 4 new segments, creating 3 new nodes.
Each of these nodes is displaced away from C by a random value, forming an
irregular, not necessarily convex city outline. The resulting hull can be used
to find city quarters, including quarters at the city borders not completely
surrounded by major streets.

After the quarters have been filled with minor streets using the procedural
algorithm described in the last sections, the convex hull is removed.

4.2.6 Building Parcel Generation

As mentioned in 4.2.4, the same facet finding algorithm used to identify
quarters can also be used to find enclosed building blocks in the street
network. But the facets found in the street graph do not directly correspond
to the areas the parcels can take up. Since each street has a certain width,
subdividing the facet directly would cause intersections between parcel and
street geometry.

Therefore, a polygon shrinking algorithm is used to calculate the correct
outline of the building blocks. Aicholzer et al. [AAAG95] introduced a
method to calculate a straight skeleton for a polygon that can be used to
shrink a polygon by a fixed offset for each edge (as opposed to linear scaling,
where a polygon is just resized around a certain point). I modified this
method so that different offsets can be used for each edge. This allows the
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calculation of a stable and accurate boundary of the real block polygon.

Once the block footprint is found, building lots can be created using
a simple subdivision scheme as described in [WMWG09]. The algorithm
recursively splits the building lot polygon until the area of each resulting
polygon is below a user defined threshold maxArea. If the area of a polygon
is larger than maxArea, it is split using the following steps:

• Collinear edges of the polygon are merged

• The longest side of the polygon is selected

• A split line is calculated perpendicular in the middle region of the
selected side

• The polygon is split along this line

Fig. 4.11: This figure illustrates how a block is recursively split into parcels until
each parcel is below the area threshold maxArea.

The algorithm is illustrated in Figure 4.11. The user can define various
parameters:

• float maxArea will control the size of the created building lots

• float subdividingEdgeDerivation controls the randomness of
the splitting line position

• bool deleteInnerLots specifies if lots without street access should
be deleted

The complete street creation process is illustrated in figure 4.12.
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Fig. 4.12: This figure illustrates the steps necessary to create a street network.
Top left: Major streets are created (organic pattern, red). Top right: The convex
hull is calculated and bulged (blue). Bottom left: Minor streets are created inside
the quarters (grid pattern, orange). Bottom right: The final street network with
building parcels, convex hull and dead end roads removed.
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Chapter 5

Street Geometry Tessellation

Street tessellation is not the main scope of my thesis, so I opted to imple-
ment a simple, but stable geometrical representation of the street network
that enables simple shading of streets that can adjust to the slope of the
underlying terrain.

Tessellating a single street is straightforward, but some problems arise
at junctions: If each street was tessellated and rendered independently,
discontinuities and z-fighting would appear where two streets meet. There-
fore a special geometric representation for junctions is needed that allows
junctions to connect an arbitrary number of street segments. Most previous
work like [Geb08] limits junctions to connect a maximum of four orthogonal
streets. But in general, real street layouts are usually more complex, like
the crossing shown in Figure 5.1 that connects five street segments. One of
the main requirements of the street tessellation was that such cases must be
handled correctly without user interaction.

Another problem that arises is how streets that adjust to multiple height
levels should be tessellated so that junctions are planar, but do not form
unnatural steps on slopes. I will first describe my method for street tessel-
lation in case of streets that are coplanar in Section 5.1. In Section 5.2, I
will discuss how I solved the problem of non-coplanar street networks. In
Section 5.3, a simple method to texture the created street geometry will be
described.

5.1 Geometry for Planar Streets

The street network is represented as a planar graph of edges that connect to
each other at junctions. To draw this network, we need to construct a fully
polygonal street representation. The original edges serve as centerlines for
the street geometry.
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Fig. 5.1: Complex junctions connecting more than 4 street segments. Left: A
crossing in the 4th district in Vienna ( c©ViennaGIS). Right: A similar junction
modeled in my application.

The geometric representation of a street network consists of junctions
and street segments. Each street has a certain streetWidth that was
set in the street network creation process. The point where two street
centerlines meet is called the center point of a junction.

To create a polygonal representation of the street, I use a similar approach
as the one discussed in [Zim07]: we offset lines from the centerline on both
sides by streetWidth

2
. These offset lines are called street outlines. Street

outlines of two adjacent street segments intersect at the corner points that
define the corners of the junction and separate the junction geometry from
the street segment geometry. To create the junction geometry, the two corner
points of one end of a street segment together with the junction center point
form a triangle. This triangle is called a street head.

A junction consists of n street heads, where n is the number of street
segments adjacent to the junction. This is illustrated in Figure 5.2. In cases
where two junctions are too close to each other, and junction geometries over-
lap, the two center points are merged to create a stable junction geometry.

5.2 Geometry Displacement for 3D Streets

The method described in [Zim07] creates good results as long as all streets
are in one plane. If streets are not coplanar, numerous problems arise:
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Fig. 5.2: This figure illustrates how a junction is defined by 4 street heads. The
street centerlines are displayed in red and meet at the center point. Street outlines
are colored black. Street heads are shown in green, the lower right street head is
highlighted for clarity (A).

The junction geometries described in Section 5.1 need to be flat, otherwise
streets will twist unnaturally. In the following, I will describe a method
that nestles street segments and junctions to the terrain underneath while
preserving the planarity of junction geometry.

To create flat junction geometry, initially all the vertices of the junction
geometry are placed at the same height as the center point of the junction.
This leads to unaesthetic and unrealistic steps and extreme slopes, as can
be seen in Figure 5.3. These steps can be smoothed by moving the junction
geometry into the tangent plane to the terrain surface at the junction center
point. This can be done by calculating how much the normal of the terrain is
rotated against the up vector. Based on that, a rotation matrix is calculated
around an arbitrary axis that is later applied to every vertex of the junction.
As a result, the whole junction geometry is rotated into the tangent plane
of the terrain surface. An illustration can be found in Figure 5.3.

Unnatural steps in steep streets are avoided this way, but a certain lateral
grade is introduced. This lateral grade is limited by the longitudinal slope of
all other streets adjacent to this junction. This is acceptable for interactive
applications such as games, since the maximum allowed longitudinal slope
(12%) is not much higher than the maximum allowed lateral grade (8%)1.

I follow the approach in [Zim07], where street segment ends are modified
so that they connect to the junction at a line perpendicular to the direction

1 In Austria; this may be different in other countries and for mountain roads.
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Fig. 5.3: Smoothing of junction geometry. Top: The initial geometry is displayed
transparently. It is then rotated into the tangent plane of the terrain surface.
Bottom, left: Geometry before rotation. Right: After rotation.

of the segment. Refer to Figure 5.4 for an illustration.

This is done for the following reasons:

• If the two corner points of a street head do not lie on a line perpendic-
ular to the street segment direction, the street may twist unnaturally
or become uneven.

• The connecting line separates junction and street segment geometry.
This can be used to texture junctions differently than roads (as dis-
cussed in Section 5.3). In the future, queuing zones or crosswalks could
be created at these lines.

This method produces simple and stable results, as can be seen in
Figure 5.5.

In between the street heads, the geometry of the street segment is subdi-
vided regularly and displaced according to the terrain height to nestle against
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Fig. 5.4: Street ends are modified to create connecting lines perpendicular to the
street segment direction. The original junction geometry is shown in green (A),
the modified geometry in blue (B).

Fig. 5.5: Even complex junctions are tessellated correctly.

the underlying terrain surface. Street geometry is also displaced away from
the terrain by a configurable offset to avoid z-fighting and overlaps between
road and terrain geometry.

This may cause the street to appear floating above the terrain, so the
tessellation algorithm adds side faces to the geometry that intersect with the
underlying terrain. A screen shot of a tessellated street with side faces can
be found in Figure 5.6
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Fig. 5.6: A single tessellated street segment with side faces. Left: Shaded geometry
with underlying terrain. Right: Wire frame view of the street segment with hidden
terrain.

5.3 Street Texturing

To make it more visually appealing, generated street geometry is textured.
This is done by using a road texture: every street has two lanes, independent
from its width. The lanes are separated by a double line, the hard shoulder
is bordered by a single line. The used input texture and some results can be
seen in Figure 5.7.

Fig. 5.7: Street texturing. From left to right: (1) Input texture with (u, v) coordi-
nate system. (2) Simple T-junction, texture coordinates of vertices are shown in
white. (3) More complex junction with texturing.

The texture contains the two hard shoulder lines and, around texture co-
ordinate (0.5, 0), the double line between the two lanes. For street segments,
texture coordinates (0, 0) − (1, 0) are used. Starting from the connecting
line perpendicular to the segments, the junction geometry is textured using
coordinates (0, 1)− (1, 1). This ensures that the double lines at the center of
the street will not be drawn in the junction area. Refer to Figure 5.7 for an
illustration.



Chapter 6

A Constraint Based System to Populate
Cities with Buildings

In today’s games, urban environments are usually created by hand by artists
using commercial software packages. Even in open sandbox games like
Grand Theft Auto all buildings are placed manually by artists. This can take
several man-years for larger environments. Of course certain regions of a
city or village have to be hand-crafted to perfectly suit the game design, e.g.
a vicinity where an important mission takes place in special buildings and
scripted events matched to the surroundings guide the progress of the player.

But placing buildings in a larger environment outside of such gameplay
related areas is a huge and tedious effort. Since it is not necessary to dictate
the placement of every single building, a tool that places buildings in such
locations would greatly reduce the time artists and designers have to spend
modeling surrounding areas and would allow them to concentrate on the
sites that are important for the attractiveness of the game.

Therefore, one of the main contributions of my thesis is a technique to
automatically assign buildings to parcels from a set of previously modeled
buildings. After the street network creation process described in Section 4,
building parcels of various size and shape have been created by subdividing
buildings blocks enclosed by streets, most of them being rectangular. I
propose a method that selects the ”best fitting” model for each parcel from
a set of existing buildings. I define ”best fitting” as the model that occupies
most of the building parcel, while satisfying various constraints, such as
not protruding from the parcel. These buildings can be created using a
commercial modeling software like Autodesk Maya, or may be procedurally
generated. They can be loaded into the application with various importing
tools, and grouped together in a pool. An example of a set of previously
modeled buildings is shown in Figure 6.1.



54 Chapter 6. A Constraint Based System to Populate Cities with Buildings

Fig. 6.1: A selection of 20 pre-modeled buildings.

The rest of this section is structured as follows: First, I will discuss some
characteristics of building models in Section 6.1. Then I will describe my new
method for selecting the ”best fitting” building for a parcel in Section 6.2.

6.1 Building Properties

Each house has a footprint that can be defined as the convex hull of all
vertices in its geometry projected onto the ground plane. This gives a good
estimate for the area the building will occupy on a parcel. If this area
exceeds the area of a certain parcel, the building will not be considered any
further (constraint 1).

A building consists of sides that have to face a street side, e.g. because
there is a door that needs street access. Also, there are sides that must
not face a street, e.g. because there is a plain brick wall on this side. I
will refer to them as street access sides and inaccessible sides. These sides
pose constraints to the system that have to be met. Street access sides have
to be aligned and placed next to streets to guarantee direct street access
(constraint 2), and inaccessible sides have to point away from streets so
that they will not be directly visible (constraint 3). All other faces of the
building may or may not face a street (see Figure 6.2).

All these properties are stored as meta information in a XML file for each
building model.
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Fig. 6.2: A simple building model. Street access sides are displayed by green lines
on the ground plane (A), red lines denote inaccessible sides (B).

6.2 Selecting a Building

The building with the largest footprint that meets all the criteria described
above will be selected as the ”best fitting” building for a parcel.

The set of previously modeled buildings is stored in a list ordered by
footprint area size from largest to smallest. This list is enumerated for each
parcel. All models that have a larger footprint area than the current parcel
are discarded. Also, models that contain more street access sides than the
parcel has adjacent street sides are not considered, because it is not possible
to align these models correctly. For every remaining building, a series of
transformations and tests are applied. The first model that passes all the
tests is chosen for the current parcel. This guarantees that the building that
occupies most of the parcel area and that meets all constraints is selected.
The process is illustrated in Figure 6.3.

1. The building footprint is moved into the center of the parcel.

2. The largest street access side of the footprint is aligned to the largest
side of the parcel that is adjacent to a street to get an initial alignment
for the building. This suffices for most of the buildings, since many of
them only have one front side that needs to face the street. If all sides
are correctly aligned after this step, step 3 can be omitted.

3. Rotate the building footprint until all street access sides face a street
and all inaccessible sides do not. A side faces a street if it is nearly
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parallel1 and a ray cast perpendicular from its center directly hits a
street.

4. Move the footprint as close as possible to any street adjacent to the
parcel. Buildings usually adjoin directly to streets, but a minimum
distance can be configured in the user interface.

5. Check if all points of the footprint are inside the parcel.

6. If any of the above tests failed, repeat the process with the next smaller
building. If a valid solution is found, assign the building to this lot
considering the found transformations.

If the parcel is located on a slope, the building is moved down so that
every vertex is on the ground or beneath. If the slope of the gradient of the
parcel exceeds a user defined threshold maxParcelSlope, the parcel is
discarded and no building is assigned.

The selected building is placed on the parcel and can be further modified
in the same way as if it was placed manually. That means that it can be
translated, rotated, scaled or even deleted as described in Section 7.3. This
way, a designer or artist can make adjustments to the building placement if
he/she is not satisfied with the results of the automatic assignment.

In Figure 6.4, a small suburban street network is displayed where
buildings have been assigned to the parcels using the proposed method.
The whole scene was created in less than 3 minutes. All the buildings
were created by Mogens Bregnbaek and are taken from Google 3D ware-
house [Goo10a]. Google 3D warehouse is a platform to share 3D content,
including models that are intended for use in Google Earth [Goo10b]. At
the time of this writing, models uploaded to Google warehouse could be
used and distributed freely, at least for non-commercial use.

All buildings displayed in Figure 6.4 are part of the Aeroeskoebing col-
lection. Aeroeskoebing is a town on the small island of Aeroe in Denmark.
They were selected because they share a common design and nicely resemble
typical buildings in European suburbs and villages.

1 I chose a max. deviation of ± 30 degrees
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Fig. 6.3: Steps for fitting a building footprint into a parcel. The outer polygon
illustrates the parcel, the inner one the building. Street access sides and parcel
sides adjacent to a street are colored green (A), inaccessible sides red (B). (1) The
footprint is moved into the center of the parcel. (2) The largest street access side is
aligned with the largest parcel side with street access. (3) The footprint is rotated.
(4) The footprint is moved close to the streets.
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Fig. 6.4: Buildings assigned automatically to parcels using a constraint based
system.



Chapter 7

Interactive Editing of Urban Scenes

7.1 Interactive Street Sketching

As described in Section 4.2, street networks can not only be created auto-
matically using L-Systems, but streets can also be placed manually by the
user in my system. This is crucial for artists and designers if they want direct
control over the street network layout. Of course it is also possible to just
create single streets manually and the rest of the city procedurally. Streets
can also be added to a previously created road network.

Manual street creation is realized via interactive street sketching : First,
the user has to set some parameters such as street width and type (major
or minor) or control maps such as the terrain map used to displace the
streets. Then the street geometry can be drawn interactively by clicking
at a position in the render window. A street graph node is created and
placed at this position. The world space position of the node is calculated
by picking as described in [AMH02, p. 557-564]: A ray is cast from the
camera position through the unprojected screen space position where the
mouse was clicked. This ray is then intersected with the terrain geometry to
evaluate the exact position the user selected. If no terrain map is provided,
the ray is intersected with the ground plane and the node is placed at the
intersection point. Street sketching is shown in Figure 7.1.

After each click, a new street segment is created. The end point follows
the mouse cursor while it is over the render window. This way, the user
is able to see exactly what geometry will be created when placing the
next node at the current position. The geometry of the current segment is
updated continuously while the cursor is moved.
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Fig. 7.1: Interactive street sketching; street nodes can be placed using point-and-
click operations. Left: A street created on terrain; Right: Without terrain.

Instant intersections If the current street segment intersects an already
existing segment, it is shortened to end at the intersection point. As soon
as a new node is created, this node is also inserted into the existing street
and a new junction is created and its geometry instantly tessellated. Refer
to Figure 7.2 for an illustration.

Fig. 7.2: Junctions and the corresponding geometry are created on-the-fly when
the currently drawn segment intersects an existing street.

Snapping To prevent close-by intersections and overlapping junction
geometries, the end point of the currently sketched road segment is snapped
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to existing nodes in the street graph if the distance of the new and the
existing node is below a user-defined threshold snappingDistance.

Street deletion Street segments can also be deleted manually. There are
two modes to delete road geometry:

• The user can select a single street segment by picking it in the render
window. This time, the ray is intersected with the bounding volumes of
the street segments (or junctions for the next mode) [AMH02, p. 616-
619]. If an intersection is found, the ray will be further tested directly
against the segment geometry using a ray-triangle test as described
in [AMH02, p. 578-582]. If the ray intersects a triangle, this segment
will be selected and can be deleted in the user interface. Just this
segment will be removed, adjacent nodes will be preserved as long as
the segment is not a dead end.

• Similar to picking a segment, the user can also select a node or junction.
If a node is deleted, all adjacent street segments will be removed too.

Topology changes To enable the topology preserving transformations dis-
cussed in Section 7.2, parcels and buildings are assigned to the street graph
facets (i.e. blocks) that enclose them. Adding or removing street segments
may change the topology in the street graph. Facets can be split or merged
and parcel/building assignments may become invalid.

In this case, parcels and building models that were assigned to a no longer
existing block are reassigned. This is done with the following steps:

• Collect all ”abandoned” parcels and buildings in an array.

• Calculate all shrinked blocks in the street network as described in Sec-
tion 4.2.6.

• For each parcel/building to reassign, test if it is completely contained
in one of the shrinked blocks.

• If it is contained in a block, reassign it to the corresponding parcel.

• If it is not contained in any block, remove the assignment. The position
of that object is now fixed and will not change with the surrounding
geometry as described in Section 7.2.
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• If a parcel or building is now protruding out of a shrinked block, it will
intersect a newly created street segment. Therefore, this object has to
be removed. This is illustrated in Figure 7.3.

Fig. 7.3: Block Splitting. If the topology of the street graph changes, existing
parcels and buildings are instantly reassigned to new building blocks. Left: Orig-
inal block with parcels and houses. Right: After adding a new street, the block is
split, objects intersecting the road are removed.

7.2 Topology Preserving Transformations

Interactive street sketching as described in Section 7.1 enables the user
to create street networks fitting his requirements. But usually, urban
environments are not used ”as-is” right after they have been created, they
are changed and modified very often. Therefore, it is desirable for an
artist or designer to be able to directly edit street networks including ad-
jacent parcels and models without removing a street and remodeling it again.

Inspired by the non-topological transform proposed by Lipp et.
al [LSWW10], I implemented a similar method to interactively edit the street
network without changing the topology of the street graph. This can be done
by selecting any node or crossing (again by picking) directly in the render
window and dragging it around. The new position of the node is calculated
in the same way as described in Section 7.1. Adjacent street segments and
their geometric representations are updated instantly. In addition, the adja-
cent parcels and buildings are moved with the node. In the following, I will
describe in more detail how this is done.

Mean value coordinates Parcel vertices and the position of models inside
a closed building block are stored as mean value coordinates as proposed by
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Floater [Flo03]. Mean value coordinates are a generalization of barycentric
coordinates that allow to express a vertex v0 as a convex combination of its
neighboring vertices v1,...,vk using a set of weights λ1,...,λk such that [Flo03]:

k∑
i=1

λivi = v0

k∑
i=1

λi = 1

”Let αi, 0 < αi < π, be the angle at v0 in the triangle [v0, vi, vi+1], defined
cyclically. Then the weights

λi =
ωi

k∑
j=1

ωj

, ωi =
tan(αi−1/2) + tan(αi/2)

||vi − v0||

are coordinates for v0 with respect to v1,...,vk.” [Flo03, p. 21]

These mean value representations are used to store parcel and building
positions with respect to the nodes of their enclosing building block. This
way, if a position vi of a block polygon v1,...,vk changes, the updated par-
cel vertices and building positions can easily be calculated using the stored
weights λ1,...,λk with the formula introduced above:

k∑
i=1

λivi = v0

This calculation is very fast (as opposed to the calculation of weights,
which has to be done just once) and can be used to modify the contents of a
building block at interactive frame rates. Figure 7.4 shows some results.

Updating the street geometry When moving a node in the street
network, the tessellated street geometry has to be updated in real time.
Tessellating the whole network would take too long, it would be impossible
to edit streets interactively. Therefore, each street segment is stored in a
separate vertex buffer. This results in many more draw calls than if a single
buffer had been used for the whole network, and therefore a significant
overhead. On the other hand, this way streets can be culled away if they
are not visible using standard view frustum culling [AMH02, p. 363-365].
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Fig. 7.4: Topology Preserving Transformations. Left: Two building blocks with
parcels and building models in their initial state. Right: The same blocks after
the street at the center has been moved to the left and the right street even more
to the right.

If a node is moved, all adjacent street segments have to be re-created.
But this is not always sufficient, since the intersection points between these
segments and their adjacent segments at the neighboring nodes may have
changed during the process. Therefore, these segments of second grade have
to be updated as well. This is shown in Figure 7.5.

Fig. 7.5: Street Geometry updating. Left: Every color represents a single street
segment vertex buffer. Right: If the junction marked with a red circle is moved,
the surrounding segments are updated. Directly adjacent segments are colored
red, segments of second grade are colored yellow.

7.3 Building Transformations

Not only will it be necessary to modify the street network in the game de-
velopment process, but it should also be possible to place, rotate, and scale
every model including buildings. For this purpose, standard 3D manipula-
tors are used. When I interviewed experienced game designers and artists
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about how such editing operations should work, everybody insisted that I
should use a user interface known from modeling software, such as Autodesk
Maya [Aut10]:

Translation manipulators are visualized as a 3D coordinate system. The
user can click at one of the axes and pull and push it back and forth in the
axis direction. The model is then translated into the corresponding direc-
tion. Models can also be translated with one additional degree of freedom
by moving a plane defined by two of the axes.

Rotation is only possible around the vertical Y-axis, since buildings should
not be tilted. For this manipulator, a circle is displayed around the model
that can be dragged to rotate it.

Scaling works very similar to translation. Building models can be scaled
around single axes and planes. Additionally, a uniform scaling manipulator
can be used that does not distort the model.

Hover mode This is a transformation mode not available in Autodesk
Maya. Models can be dragged around and placed at the current terrain
position. This is implemented using the same picking code as explained in
Section 7.1 and the building is placed at the intersection position. This is a
very convenient tool for fast and accurate placing of buildings on terrain,
parcels or street geometry.

Illustrations of all manipulators can be found in Figure 7.6.
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Fig. 7.6: Model transformation manipulators. Top left: Translation. Top right:
Rotation. Bottom left: Scaling. Bottom right: Hover mode.
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Implementation and Results

8.1 Implementation Overview

The introduced system was implemented as a C# application. The XNA
framework [Mic10] was used for rendering and to simplify various tasks.
XNA includes an extensive set of libraries specific for game development.
While normally the XNA runtime has to be installed first to run a software
that makes use of it, all required assemblies are included in my application.
All the software requires is Windows and the DirectX Runtime.

Using the XNA framework has various advantages over using native Di-
rectX or OpenGL that have allowed me to focus on the central issues of my
thesis:

• XNA provides complete model loading functionality. Building mod-
els can be imported using built-in methods without writing a custom
importer. FBX and X formats are supported out of the box and ex-
tensions for other formats such as Collada or OBJ exist and can easily
be docked to the application.

• XNA already contains a simple shader framework that can be used
right away. While it does not feature advanced effects such as shadow
mapping, it is easy to extend and has saved me a lot of time otherwise
spent on implementing basic shader functionality.

• Many math helpers and data structures are available. Besides vec-
tor, matrix and quaternion classes, intersections between rays, planes,
bounding spheres, boxes and frustums can be calculated. This made it
easy to implement view frustum culling or object picking in a couple
of hours.
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8.2 Code Reuse

Most of the algorithms presented in this thesis were implemented in a sepa-
rate library and decoupled from any rendering framework or user interface.
This includes the following features:

• Procedural street network creation

• Block shrinking and parcel subdivision

• Street geometry tessellation

• Automatic building assignments

All these functionalities can be used via an interface from any other
.net application. The library uses data structures such as a street graph
including nodes and edges, vector and matrix types or parcels. These data
structures are defined as interfaces that must be implemented by the user of
the library. To allow the instantiation of classes implementing the data type
interfaces, the abstract factory pattern is used.

Abstract factory is a pattern used to insulate the creation of objects from
their usage. An interface is defined that provides methods to create instances
of abstract data types. The factory class implementing this interface is
responsible for instantiating the objects. This way, the algorithms in the
library have no knowledge of the concrete type and only deal with the
abstract types defined by the provided interfaces. The declaration of the
IAbstractDatatypeFactory interface can be found in Listing 8.1.

This allows to reuse the code in various other applications and decouples
the algorithms from the application. Most of these techniques were actually
reused by Lipp et al. in their related work [LSWW10].

8.3 User Interface

The user interface of my application can be seen in Figure 8.1 and is divided
into three parts:

Render window This is the central element of the user interface, where
the current scene is displayed. Here, the user can select elements (buildings,
streets, junctions, markers etc.), place, move and delete them. The camera
is controlled in the same way as in Autodesk Maya [Aut10]: While pressing
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1 public interface IAbstractDatatypeFactory
2 {
3 IVector2 CreateVector2(double x, double y);
4 IVector3 CreateVector3(double x, double y,

double z);
5

6 INode CreateNode(double x, double y, double
z);

7 IWay CreateWay(IStreetGraph father);
8 IParcel CreateParcel(IStreetGraph father,

double verticalOffset);
9

10 IStreetGraph CreateStreetGraph();
11 }

Listing 8.1: Interface for abstract data type factory

Fig. 8.1: The user interface of my application. The four panels at the right are
usually placed behind each other and have been rearranged for illustration.
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the ”Alt” Key, the camera can be rotated by holding the left mouse button,
translated by pressing the middle mouse button, and zoomed in and out
using the right button.

Transformation tool bar The tool bar is placed left of the render win-
dow. Here, the user can select the current transformation mode (described
in Section 7.3):

• Hover mode

• Translation

• Rotation

• Scaling

Element panel The element panel is divided into four tabs. Usually these
tabs are placed behind each other and the user can switch between them,
but they can also be rearranged as shown in Figure 8.1.

The marker, model and image map tab work very similar: Elements
can be loaded from a file (images or 3D models) and imported into the
application. They are displayed in a list together with their attributes,
such as the transparency value. From this list, they can be dragged into
the render window and placed in the scene. The model tab also contains a
button to open a dialog used to assign buildings as discussed in Chapter 6.

The street network tab differs from the other tabs and contains buttons
to create streets and street networks. Apart from drawing streets manually,
there are three ways to create streets automatically:

• Create a whole street network using L-Systems. This can be used to
create a street network without placing any street by hand. The dialog
is shown in Figure 8.2.

• Fill the quarters of an existing network with minor streets. This can
be useful if a rough layout of the city was created by a manual sketch
of major roads. The finer structures of the quarters are then created
automatically.

• Create streets inside a mask polygon drawn by the user to grow streets
in a bounded region only.

The street network tab also contains buttons to create parcels and to
completely delete a street network.
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Fig. 8.2: The grow streets dialog. Parameters for the major streets are shown left
(organic pattern), parameters for the minor streets on the right (grid pattern).
The user can also select control maps, such as the terrain or obstacle map.

8.4 Rendering Improvements

Building models and other elements are hard to place in a scene without
any depth clues showing the exact position of the object in 3D space. Two
improvements were implemented to enhance the depth impression in the
rendered scene:

Shadow maps All objects cast and receive shadows. The shadow map is
updated after each modification of the scene (e.g. moving a building) and
resized to contain all elements of the created environment.

Depth darkening A post processing shader is employed that darkens areas
in screen space where depth values change strongly. This creates a dark
”glow” around the silhouettes of objects that helps to distinguish them from
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Fig. 8.3: Rendering Improvements: Shadows are cast by scene elements onto other
objects, and a depth darkening effect outlines silhouettes.

the background.

A screen shot that shows both effects can be found in Figure 8.3.

8.5 Persistency

To save and load a modeled city scene, it can be serialized to and deserialized
from an XML file. To implement this functionality, I used the C# serializa-
tion framework. The attributes (e.g. the used texture map, the position,
etc.) of all objects are saved to a file. This file can be loaded later on and
the objects are created with the serialized attributes. Pointers between ob-
jects are handled by saving its hash code1 with each object. This hash code
can then be referenced from other objects to store a pointer.

1 A hash code is a unique identifier for an object.
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8.6 Results

In the following sections, I will present two different (sub)urban environments
that were created with the methods described in this thesis. I will also show
performance measurements of various operations carried out in these scenes
and discuss the tasks and time that were necessary to build them.

8.6.1 Bay Area Village

The first scene is a village near a bay. It was layouted using an area map that
denotes three different town districts: On one side of the bay, a residential
district is arranged around a church. On the opposite side there is a more
suburban area with a lighthouse at the water front. An agricultural area is
set in the back-country with some windmills in between. The positions of
the church, the lighthouse and the windmills was indicated with markers in
the layout process. Figure 8.4 shows the layout process and the creation of
the agricultural area. Screen shots of the other quarters and some close-up
views are displayed in Figure 8.5. Performance measurements taken in this
scene are shown in Table 8.1.

Task Count Time
Procedural street creation1 34 streets, 155 segments 4.21s
Street network tessellation 63 streets, 261 segments 2.17s

Parcel creation 226 parcels, 56 blocks 0.09s
Building assignments 223 buildings 1.48s

Junction manipulation2 12 segments tessellated, 0.18s
17 building parcels updated

Tab. 8.1: Performance benchmarks of my system for the village scene.

8.6.2 Virtual New York City

The second showcase scenario is a city scene that resembles Manhattan. To
layout the city, a simplified aerial image of New York City was used. Central
Park and the Statue of Liberty were flagged with markers. Again, the major

1 Only the streets inside the three quarters were created procedurally.
2 A junction node moved by the user. The junction is adjacent to 4 street segments and

4 building blocks with a total of 17 building parcels that are updated. Together with the
2ndgrade segments, 12 segments have to be tessellated anew.
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Fig. 8.4: Layouting process of the bay village scene. From top to bottom: (1)
Initial terrain mesh with projected area map and markers (2) Manually sketched
major roads (3) Agricultural area with parcels and buildings; streets have been
generated procedurally.
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Fig. 8.5: Bay village results. From top to bottom: (1) suburban quarter with
lighthouse; note that no parcels have been created on the steep slope towards the
water; (2) Overview of the village; the residential district is front, the agricultural
area behind; (3) Close-up views show details like the church or windmills.
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streets were created by hand, and the minor streets were generated procedu-
rally using a grid pattern typical for Manhattan. Screen shots of the scene
can be found in Figure 8.6. Table 8.2 shows benchmarked measurements.

Task Count Time
Procedural street creation1 43 streets, 239 segments 1.21s
Street network tessellation 51 streets, 282 segments 4.47s

Parcel creation 132 parcels, 116 blocks 0.10s
Building assignments 112 buildings 0.54s

Junction manipulation2 12 segments tessellated, 0.17s
4 building parcels updated

Tab. 8.2: Performance benchmarks of my system for the village scene.

8.6.3 Modeling Effort

Another aspect worth evaluating is the time needed to plan and create a
virtual environment using the system described in this thesis. Table 8.3 lists
the tasks that were necessary to create the scenes presented above. Modeling
urban settings with similar level of detail as the shown examples usually
takes days if the designer uses a traditional 3D modeling software. With
my application, urban environments can be built from scratch in a couple
of hours. Please also bear in mind that the building preparations listed in
Table 8.3 have to be made just once, then these buildings can be utilized in
any future scene without additional overhead.

1 Since the minor streets were created all at once and not separately for each quarter,
the generation was much faster than in the previous example.

2 A junction node moved by the user. The junction is adjacent to 4 street segments
and 4 building blocks (with one building parcel each) that are updated. Together with
the 2ndgrade segments, 12 segments have to be tessellated anew.
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Fig. 8.6: Results from the Manhattan scene. Top: The initial city map with
markers denoting Central Park and the Statue of Liberty. The outline of the city
and some major roads were created manually. Bottom: A screen shot from the
finished scene.
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Conclusion

9.1 Summary

In this thesis, I presented a system that can be used by designers and artists
to interactively plan, layout and create urban environments for games.
Creating such environments poses great challenges for the developers of
modern games.

The main scopes of my thesis were guided by limitations of previous
methods for procedural city generation as well as ideas deduced from an
interview with a professional game designer experienced in creating virtual
worlds for games. In the following, I will describe the main contributions
and improvements of my thesis over existing systems:

Planning and layout Existing applications and methods provide insuffi-
cient tools for artists that allow them to plan an urban environment before
modeling it. The system I presented supports various techniques that sim-
plify the work of artists and game designers: height maps can be imported
for terrain generation and maps can be projected onto the ground. This
includes area maps, topology information, or maps denoting gameplay ele-
ments. Additionally, points of interest can be indicated with markers.

Street network creation While the procedural generation of street net-
works greatly reduces the time needed to build a virtual city, it minimizes
the artist’s ability to control the created environment in every detail. In
the presented application, streets can be drawn interactively using a sketch-
based approach. Procedural street generation can be employed accurately in
specified regions or quarters without limiting the artist’s possibility to create
streets according to their wishes. Additionally, I introduced a new method to
create minor roads at outer city regions where previous methods fail to find
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enclosed quarters and fill them with streets. Procedurally generated street
networks have a more natural layout using this method.

Street geometry improvements The geometric representation of streets
described in previous methods is usually limited to connect only three or four
street segments. The method proposed by Zimmerman [Zim07] is capable of
tessellating junctions with more than 4 segments, but the created geometry
does not adjust to the local features of the terrain. Based on this work
I described a method that is able to create junctions with any number of
adjacent segments and proposed a novel tessellation technique that adapts
to the underlying terrain without creating unnatural steps or steep slopes.

Interactive editing In the development process of a game, the virtual en-
vironment will be changed and revised very often. In previous work, the
created street geometry can not be edited directly. If at all possible, the
initial street graph has to be changed and the tessellation of the affected
street segments must be triggered manually. The application described in
this thesis allows to modify the street geometry directly by adding, moving
or deleting streets. The involved geometry is updated interactively.

Building placement A major contribution in this thesis is the introduction
of a constraint based system that automatically places buildings in a
city. Without this method, every building has to be positioned manually
by the user. This is a very tedious and time consuming process. Vari-
ous building properties are taken into account to place a building on a
parcel, such as its footprint size and sides that must or must not face a street.

As a whole, the methods described in this thesis form a system that
enables and supports artists and game designers to create virtual urban en-
vironments in a very short time. The application provides support for all
aspects of the development process, from the planning of the city to its real-
ization and revision.

9.2 Future Work

Since this thesis covers many different methods used to create virtual envi-
ronments, there are various possibilities for improvement and future work.
Some of them are listed below:
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Curved street segments The algorithm used in this thesis to create street
networks is based on previous methods that employ L-Systems. The street
graph created with this technique consists of nodes and straight edges be-
tween them. However, real streets are often curved. While this can be
modeled with many short segments, it would be beneficial to investigate pos-
sibilities to create curved street segments. This could for instance be done
using a spline-based approach.

Detailed street tessellation The street geometry created in my system is
quite simple. To create more detailed street representations, shape grammar
methods could be used. Street details such as multiple lanes, crosswalks,
sidewalks and lamp posts could be added this way.

More sophisticated building placement The constraint based building as-
signment algorithm could be improved in many ways:

• An image map similar to a height map could control the building height
for different regions.

• Another map could be used to manage the type of buildings: A build-
ing could be of a certain type (residential, industrial, suburban, etc.),
and each type would be associated with a certain color in the map.
This information could be used in the building assignment process to
automatically create districts with a different look and feel.

• In one building assignment pass (buildings can be assigned at any time,
only empty parcels are populated automatically) the same set of build-
ings is used for every parcel. Therefore, it mainly depends on the parcel
properties (size, shape, street access) which building is selected. If the
parcels are very uniform, a few buildings will be assigned very often.
To account for that, the algorithm could be adapted to consider often
used buildings less for future assignments.

• The building assignment process does not take neighboring buildings
into account. In most larger cities, adjacent buildings directly connect
to each other and form a common facade. To model such a behavior in
my system, the algorithm must take the adjacent parcels into account
and select building models that fit together.
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