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Abstract

Motion planning is one of the most challenging tasks in robotics. Dedicated algorithms
are used in many different applications starting from CNC machines to human-like robots.
An interesting research area within this field is motion planning for car-like robots. In the
last few years, car-like robots became increasingly important, because precise positioning
systems like GPS or GLONASS and modern sensor technologies allowed navigating in
rural or even in urban terrains. These car-like robots can be used for different kinds of
purposes. In the automotive domain, they may pave the way for driving in urban terrain. In
the agriculture area, applications for harvesting, fertilizing or lawn mowing can be realized.
This thesis focuses on motion planning for car-like robots and particularly on applications
where an arbitrary working area should be covered as efficient as possible.

The aim of this thesis is to develop a path planning application which is able to compute
a feasible path between two arbitrary points. Furthermore, the path shall fully cover a
predefined area avoiding obstacles. Moreover, it is desired that the predefined working area
is cruised in parallel lanes (e.g., for mowing a soccer field). The path shall be calculated
based on lists of geodetic data which represent arbitrary but simple polygons.

At the beginning, basic concepts of system theory and system modeling will be studied.
Next, different approaches for solving the basic motion planning problem will be discussed.
Then, system models for car-like robots will be addressed. Based on such a system model,
motion planning concepts are examined which are suitable for car-like robots. Considering
the benefits and the drawbacks of all investigated algorithms, a solution based on random-
ized trees is proposed. Finally, an algorithm for motion planning covering predefined areas
in parallel lanes is introduced.

A proof-of-concept implementation in combination with a simulation framework allows
evaluating the quality and the feasibility of the computed path. The simulation is based on
a simple path following controller and a realistic system model for a car-like robot which
considers errors of the system (e.g., GPS and heading errors) close to reality. Analyses
of the simulation show that the car-like robot is able to follow the computed path even in
presence of system errors.



Kurzfassung

Routenplanung bzw. Bewegungsplanung sind aktuell spannende Forschungsgebiete der
Robotertechnik. Angefangen von CNC Maschinen bis hin zu humanoiden Robotern gibt
es verschiedenste Anwendungsbereiche für Roboter. Ein wichtiger Anwendungsbereich ist
der automotive Sektor. Hier nehmen Arbeiten an autonomen Fahrzeugen, die sich im städti-
schen Bereich frei bewegen können, einen bedeutenden Stellenwert ein. Darüber hinaus gibt
es noch weitere, weniger bekannte, jedoch ebenfalls anspruchsvolle Anwendungsgebiete
für mobile Roboter. Großes Potential haben dabei mobile Roboter im landwirtschaftlichen
Bereich. Genau diesem Anwendungsgebiet ist diese Diplomarbeit gewidmet. Sie beschäf-
tigt sich hauptsächlich mit der Routenplanung für mobile Roboter im landwirtschaftlichen
Kontext und geht dabei speziell auf die Anfordernisse dieses Bereichs ein. Ein Beispiel für
eine Anwendung ist das Mähen einer bestimmten Fläche auf einem Feld.

Das Ziel dieser Arbeit ist es, einen Routenplanungsalgorithmus für automobilähnliche
Roboter zu entwickeln und zu implementieren. Die Entwicklung ist an ein bereits exis-
tierendes Fahrzeug angelehnt. Dieses Fahrzeug ist mit einem präzisen satelliten-gestützten
Navigationssystem und digitalem Kompass ausgestattet. Der genannte Algorithmus soll es
ermöglichen, einen Pfad zwischen zwei beliebigen Punkten zu finden, sowie einen definier-
ten Bereich, wie z.B. eine Arbeitsfläche, in parallelen Bahnen abzufahren.

Um dieses Ziel zu erreichen, werden im ersten Schritt einige vielversprechende Pla-
nungsstrategien und Ansätze untersucht. Im Anschluss daran werden Algorithmen disku-
tiert, die speziell für mobile Roboter geeignet sind. Diese Ansätze gehen von dem grundle-
genden Problem aus, unter Berücksichtigung von Hindernissen und spezifischen Systemei-
genschaften, einen zulässigen Pfad zwischen zwei beliebigen Punkten zu finden. Bei der
Untersuchung dieser Algorithmen wird auch auf die praktische Umsetzbarkeit geachtet.

Basierend auf den zuvor vorgestellten Ansätzen wird ein Algorithmus entwickelt und
diskutiert, der es ermöglicht, ein beliebiges Feld in parallelen Bahnen abzufahren, wobei
größter Wert auf Effizienz und Realisierbarkeit gelegt wird. Um zu verifizieren, ob der
generierte Pfad für das Fahrzeug fahrbar ist, wird das Verhalten eines solchen Fahrzeugs
simuliert. Dabei wird ein realistisches Modell eines automobilähnlichen Fahrzeugs ange-
nommen. Weiters werden die Fehler der Sensoren (Positionsfehler und Orientierungsfeh-
ler) realtitsnahe berücksichtigt. Um das Fahrzeug entlang eines Pfades zu bewegen, wird
ein geeigneter Steuer- bzw. Regelalgorithmus verwendet. Analysen zeigen, dass der neu
entwickelte Algorithmus alle gewünschten Anforderungen erfüllt.
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CHAPTER 1
Introduction and motivation

1.1 Problem environment

In the past two decades, robots became more and more present in our daily life. Primarily, robots
were invented to save human resources in industry. Since a few years the use of robots is not
only limited to the industrial domain. In the following, the use of robots in the three popular
domains is presented:

• Industry

• Urban traffic

• Agriculture

1.1.1 Robots in the industry

Manufacturing steps where normally a lot of manpower is necessary is nowadays done by differ-
ent types of robots. This automation saves a lot of human resources and increases the quality of
the products because robots work precisely around the clock. In the most cases, robot arms are
used to replace the work of humans. However, movements which are easy to handle for humans
(e.g., moving along a contour of a component) are difficult tasks for robots. Many challeng-
ing aspects like mechanical uncertainty or dynamic forces (e.g., inertia) have to be considered.
It is often desired that the robot moves as fast as possible which obviously increases the dy-
namic forces. This simple example provides a first insight into the complexity of planning and
controlling tasks.

However, not only simple robot arms are used in the industry. Automated guided transport
vehicles are used in factory halls. Consider, for example, large assembly lines where objects
are transported from one machine to another. These robot systems can also save lots of human
resources. Robots which are used in factory halls can possibly be guided by a colored line on
the floor or by a radio signal in a wire under the floor. They are often controlled by centralized

1
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entities which plan and supervise the actions of the system. The realization of such systems is
not a trivial task. For instance, it must be guaranteed that the robot stops if there is an obstacle in
front of it (e.g., an employee). It must be guaranteed that the robot keeps on a predefined path. If
no predefined path exists, the robot must navigate based on an indoor positioning system. Such
a system is necessary to determine its position. In case of a factory robot, this could be done
by laser beams or triangulation techniques. These two examples show that robots have revolu-
tionized the industry. However, controlling a robot or planning its actions are still challenging
tasks.

1.1.2 Robots in urban terrain

Another very interesting application of robots are Automated Guided Vehicle (AGV)s which
are able to navigate in urban environments in presence of traffic lights, road signs, and traffic
participants. Since a lot of unpredictable events (e.g., obstacles in front of the car) are possi-
ble, no technically mature autonomous car exists at present. Currently, some prototypes (e.g.,
[11, 12]) are developed which use laser distance measuring to construct a 3D surface of the envi-
ronment. Due to the relative high speed of the vehicle, it is immanent to have a dependable long
range obstacle detection. Additionally, precise satellite based navigation systems can be used.
Many systems rely on image processing technologies to recognize signal lights or road markings
(e.g., for lane keeping). However, many of these technologies are still under development or too
expensive for practical use. Therefore, it will take further time to be ready for market.

1.1.3 Robots in agriculture

Besides industry, robots are more and more used in agriculture. However, robots in this area
are not widespread. One reason is that agricultural robots need precise positioning systems to
navigate in rural terrains. In this case, techniques which are well suited for indoor applica-
tions can not be used. The key-technology for this application is a Global Navigation Satellite
System (GNSS). This term denotes positioning systems that use satellites to determine the ac-
tual position of an entity. The use of this technology was impractical for a long period of time
due to economical and political reasons. Since navigation in rural terrain is less complex than
in urban terrain, agricultural robots do not depend on expensive sensor technologies. Moreover,
the speed of agricultural robots is slower than the speed of urban AGVs Thus, the reaction time
can be longer and less expensive hardware is necessary.

Due to these facts, the agricultural area provides a widespread area for research and de-
velopment at present. Currently, a few companies (e.g., CLAAS GPS Pilot1) provide Global
Positioning System (GPS)-based tractors and harvesters. However, a lot of challenges still re-
main for agricultural robots.

1More Information at http://www.claas.com/
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1.2 Aim of the thesis

This thesis mainly deals with robots for agricultural purposes. Since precise navigation systems
like GPS are available for everyone and well established sensor technologies (e.g., for obstacle
detection) are sufficient for navigation in rural terrain, robots for agricultural purpose seem to be
realizable at the moment.

Thus, the thesis focuses on Car-Like Robot (CLR) which are able to navigate in rural terrain.
For many applications in the agricultural field, it is necessary to cover a predefined area (e.g., a
field). If a robot should be used to mow or harvest, it is desired and necessary that it visits each
point of the field at least once. However, it is not desired that the robot visits one part of the field
several times and other parts of the fields only once. For many applications, it is also necessary
to cruise the field in parallel lanes.

In the context of this thesis, different motion planning strategies will be discussed partic-
ularly useful for CLRs. Furthermore, a practical motion planning algorithm will be designed
and implemented which fulfills the mentioned claims. This algorithm shall compute a complete
path based on a predefined environment in an achievable way. The computed paths have to be
feasible for CLRs.

1.3 Problem statement

The aim of this thesis is to find a feasible path for a CLR which covers a predefined area. The
most common positioning system (GPS) shall provide the field coordinates. An area can be
defined by an ordered set of GPS coordinates. This ordered set of points represents a polygon
on the plane. In addition to the plane coordinates (latitude, longitude), GPS provides also the
height w.r.t. the sea level. Therefore, it could even be possible to define the field in a 3D space.
However, it is assumed that the field is flat, i.e., differences between the representation in 3D
space and in 2D space can be neglected. Hence, a polygon will be represented by a list of two
dimensional plane coordinates. Moreover, it is mandatory that the polygon is simple. This means
that the polygon delimits exactly one area. This definition is equivalent with the claim that two
pairwise disjoint line segments must not intersect. Figure 1.1 illustrates the difference between
a simple and a complex polygon. However, it is not necessary that the polygon is convex. This
means that it is allowed that the polygon consists of internal angles greater than 180 degree. To
illustrate the difference between these two types of polygons, Figure 1.2 shows an example of
each one.

Based on such polygons a complete definition area can be defined as shown in Figure 1.3.
The term definition area denotes an area on the plane where a robot is allowed to work indepen-
dently with a few restrictions. In the figure, the definition area is represented by the red polygon.
It is assumed that nothing outside this area is considered. If the robot gets out of this area (e.g.,
due to an uncertain event), it has to stop immediately. Moreover, it is assumed that all static
obstacles within the definition area are known. Thus, the robot can safely operate within this
area.

Furthermore, the definition area contains the working area. This area should be covered
by the robot as shown in Figure 1.3 to be suitable for special applications. It is aimed, that
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(a) Complex Polygon (b) Simple Polygon

Figure 1.1: Example of a complex and a simple polygon

(a) Non-convex Polygon (b) Convex Polygon

> 180°
> 180°

Figure 1.2: Example of a non-convex and a convex polygon

the working area is cruised in parallel lanes. Since robots can have different working breadth,
the distance between two adjacent lanes must be variable. Moreover, it is necessary that the
direction of the lanes is variable, too. This property can reduce the number of turn maneuvers
dramatically. Since it is not required that the working area is convex, it is possible that very short
lanes appear. These short lane segments can be neglected, if they are shorter than a predefined
length.

Finally, all polygonal static obstacles in the definition area must be defined and known in
advance. These obstacles represent dangerous areas for the robot (e.g., trees, lakes, fences). In
Figure 1.3, these obstacles are marked blue. To simplify the routing considerations in the fol-
lowing chapters, it is assumed w.l.o.g. that obstacles are either completely within the working
area or outside the working area.
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Figure 1.3: Example of a definition area including the working area and two obstacles

1.4 Outline

As mentioned in the introduction, this thesis primarily deals with motion planning for GPS-based
AGVs. Thus, Chapter 2, provides a short introduction to satellite based navigation systems and
presents basic concepts of system theory and system modeling. In Section 2.1, an overview about
GNSS is given. Furthermore, GPS is introduced and approaches to improve the precision of GPS
are discussed. Additionally, methods are presented how to transform GPS coordinates to planar
coordinates. Additionally different types of real systems (e.g., robots) are shown. Since real
systems have some constraints in general, this chapter also describes methods to model different
constraints. Moreover, the difference between a trajectory or a physical path is presented.

After the basic concepts of system theory were introduced, Chapter 3 presents a selection of
different motion planning approaches. Moreover, this chapter also works out the advantages and
disadvantages of each approach and the possibility of practical use.

As this thesis especially deals with CLRs, Chapter 4 presents a simplified system model
(including the kinematic constraints) of CLRs . Based on this system model, motion planning
algorithms are considered which are well suited for CLRs. Finally, a comprehensive algorithm
is presented which completely covers a predefined field.

In additional to the theoretical work, Chapter 5 describes a proof-of-concept implementation
of the designed motion planning approach for CLR which fulfills the requirements. In this chap-
ter, the implementation of data structures and geometric algorithms (e.g., collision detection) are
discussed, too. Furthermore, important computational optimizations are discussed and finally a
method is described which can be used to avoid dynamically appearing obstacles.
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To prove the feasibility of the computed path, the behavior of a real CLR was simulated.
Chapter 6 discusses the considered uncertainties of the simulation (e.g., error models). Further-
more, different path tracking controllers are discussed. Finally, one controller is used to simulate
the behavior of the system.

Finally, Chapter 7 summarizes the main results of this thesis. On one hand, the results of the
motion planning application are discussed (i.e., the performance and the quality of the path). On
the other hand, the results of the simulation are presented which show that the computed paths
are feasible.

The thesis is concluded with Chapter 8 which contains a summary and an outlook on further
research activities.



CHAPTER 2
Basic concepts

2.1 Positioning systems

In the previous chapter, it was claimed that AGVs commonly navigate with the help of GNSSs.
Thus, this section introduces the principles of GNSS. Since a GNSS basically provides geodetic
data, an overview about the geometry of geodetic data is given, too.

2.1.1 Global navigation satellite systems

GNSSs are basically used to determine the absolute position of an entity allover the world. In
addition to the position information, these systems also provide the height w.r.t. the sea level
which is important for aerospace applications. Currently, a few GNSS are available from which
exactly one is fully operational, namely GPS. All these systems are based on the same principle.
A complete GNSS consists of a few base stations (four base stations and one control center in
case of GPS) around the equator. These base stations communicate with a set of satellites (at
least 24 for GPS) to determine and to correct the position of the satellites. To determine the
position and the height of a point, a receiver is necessary. Based on the information of at least
three satellites, a receiver is able to determine the position of a point.

Primarily, GNSS were developed for military use. Nevertheless, GPS provides a low accu-
rate version for civilian use. The GPS system uses two different code sequences (P/Y and C/A)
which are transmitted over two different carrier frequencies L1 and L2 for position determina-
tion as shown in Figure 2.1.

• The P/Y code uses a high chiprate for the transmitted signal and therefore it provides high
accuracy. Since it is encrypted, it is only usable for military purposes. The P/Y code is
transmitted over L1 and over L2 to correct atmospheric disturbance. The reason is that
atmospheric errors behave different for different frequencies and therefore errors can be
estimated and corrected.

7



8 Chapter 2. Basic concepts

P/Y

C/A

L2

L1

L1

Figure 2.1: Generation of a GPS signal

• The C/A code uses a ten times lower chiprate. Thus, the position determination is less ac-
curate. However, the C/A code is not encrypted and can be used free of charge. However,
the C/A code is only transmitted over the L1 carrier frequency. Error estimation and cor-
rection as mentioned above are not possible. Furthermore, the accuracy of the C/A code
was artificially degraded by a technique called Selective Availability (SA). Therefore, the
position accuracy of GPS was about 100 meters [13] . In 2000, the US turned of the SA
and therefore the precision increased to 30 meters. Since the accuracy is still too low for
dedicated application fields, Differential GPS (DGPS) is a common alternative to increase
the accuracy below 30 meters.

2.1.2 Differential global positioning system

DGPS makes it possible to increase the relative accuracy for civilian use by merging the results
of two receivers. This approach is based on the idea that most of the natural errors (e.g., strato-
spheric errors) are strongly correlated for receivers which are not too far away from each other.
Before SA was turned off, DGPS was able to correct the artificial errors, too because these errors
are also correlated for different receivers.

With this system, the relative accuracy (from one receiver to the other) was increased up to 3
meters. If DGPS is used, two receivers are necessary which have to be connected to each other.
In general, one of these receivers is called the base-station which is located on a fixed position
The base station transmits correction data via a radio connection to the other mobile receiver
called rover.

Since the atmospheric errors only change over a long period of time (i.e., a few minutes) and
are quite similar for large regions, it is possible to use broadcast correction data. These data can
either be transmitted via radio signals or over satellites. These systems are called Satellite Based
Augmentation System (SBAS). One example of such a system is the European Geostationary
Navigation Overlay Service (EGNOS). This system uses geostationary communication satellites
to transfer the correction data to the receivers. Hence, receivers which can receive EGNOS
correction information in addition to the normal signals of GPS satellites provide higher position
accuracy. Since the correction information of such a wide range system is based on interpolation
techniques, it is not as precise as the information of a local base-station.
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2.1.3 Real time kinematic

Another approach called Real Time Kinematic (RTK) provides a much more accurate position-
ing method. Instead of evaluating the phase of the code, RTK receivers are able to evaluate the
carrier phase of the signal. Since the code is modulated with a carrier frequency, this frequency
(approx. 1.500 MHz) must be much higher than the code frequency (approx. 1MBaud) called
chiprate. Thus, the phase difference between the received carrier signal and the local reference
signal provides higher resolution than the phase difference of the code itself. Since two receivers
are used, the influence of atmospheric errors can be reduced and an accuracy of 0,2 meters can
be provided. If the carrier phase of both L1 and L2 frequency is evaluated, the position accuracy
increases up to 0,02 meters. As mentioned in the previous section, it is not possible to decrypt
the code, which is modulated by the L2 frequency but it is possible to compare the carrier phase
independently from the modulated data. At the moment, RTK systems are primarily used for
geodetic purposes. The main reasons are the costs of such systems. Thus, this approach is not
suitable for low cost applications.

2.2 Position determination

If one specifies a point anywhere on earth using geodetic data (i.e., latitude, longitude, and
height), this point is not determined exactly. To specify the exact position of a point, the geodetic
model and the coordinate system has to be defined, too. Hence, this section introduces the
geodetic models to determine GPS coordinates. Furthermore, methods to compute the distance
between two points are presented.

2.2.1 Coordinate systems

Since the earth has no exact geometric form (e.g., ellipsoid), a few slightly different geometric
models (i.e., coordinate systems) exist. The most commonly used coordinate system is the
World Geodetic System 1984 (WGS84). The WGS84 is based on a three-dimensional Cartesian
coordinate system as shown in Figure 2.2. Furthermore, the origin and the directions of at least
two axes have to be defined. For the origin of WGS84, the center of mass of the earth is taken.
The direction of the Z-axis is defined as the north pole of the earth. The direction of the X-
axis is determined by the intersection between the meridian plane and the equator. The meridian
plane has no physical matter and is defined arbitrarily.1 The direction of the Y -axis follows from
the origin and the two other axis.

To specify the position of the north pole and the equator, the earth is approximated by an
ellipsoid where the center of it is equal to the center of mass of the earth. The ellipsoid used by
WGS84 is defined by the parameters given in Table 2.1.

The semi-major axis represents the distance from the center of the ellipsoid to the farthest
point of the ellipsoid (i.e., longest diameter of the ellipsoid). In contrast, the semi-minor axis
represents the shortest diameter diameter of the ellipsoid. To illustrate these parameters, the
ellipsoid can be interpreted as rotating ellipse. Figure 2.3 shows an ellipse with the semi-major

1The Prime Meridian historically passes through Greenwich (UK)
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North Pole

Zero Meridian
Center of Mass

Equator
longitude

latitude height

Vienna UT

Figure 2.2: Definition of the WGS84 coordinate system (taken from [1])

Parameter Name Value (WGS84) Unit
Semi-major axis a 6.378.137, 000 m

Semi-minor axis b 6.356.752, 314 m

Angular velocity ω 7, 292115E − 5 rad
s

Geocentric gravitational constant G ·M 3.986.004, 418E8 m3

s2

Table 2.1: Parameters of the WGS84 ellipsoid

and semi-minor axis. The further parameters mentioned in Table 2.1 can be neglected for the
geometric coordinate system.

If this cartesian coordinate system is used, a point can be determined by specifying cartesian
coordinates σx, σy, σz based on the tree axesX,Y, Z. However, an even better coordinate system
exists to specify a point. By using spheric coordinates a point can be determined by two angles
and the Euclidean distance from the origin. Since the reference ellipsoid (i.e., the shape of
the earth) is defined by WGS84, the third parameter can be expressed as the distance from
the desired point to the perpendicular point of the ellipsoid. This height can approximately be
interpreted as the height over sea level.

Consider, for example, the position of the Vienna University of Technology. If spheric coor-
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semi-major axis

semi-minor axis

rotation

Figure 2.3: Parameters of a rotating ellipse

dinates are used, the position can be determined as

latitude = 48.1989206◦North
longitude = 16.369913◦East
height = 170m

The three coordinates represent the position w.r.t. the WGS84 reference ellipsoid. In contrast to
this representation, the same point can be expressed by cartesian coordinates as follows:

σx = 4086702, 43588491m
σy = 1200450, 40780295m
σz = 4731774, 6142551m

Based on these coordinates it can be computed, that the Vienna University of Technology is
6.366.467, 543m away from the center of the earth.

2.2.2 Distance estimation

If points on the earth are determined by GPS modules, they are represented by spheric coordi-
nates based on WGS84 in general. If one assumes that all points are near the ellipsoid, the height
can be neglected for distance calculation because the latitude and longitude specify a point on
the ellipsoid.

Since these two coordinates are only angles, it is not immediately possible to calculate the
distance between two different points. However, this calculation and the calculation of the head-
ing between two points are fundamental for motion planning.

There are several possibilities to calculate the distance and the heading between two points.
The simplest method is to ignore that the spheric coordinates are based on an ellipsoid and to
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assume that the coordinates specify a point on a sphere. Further, it can be assumed that the
points are close together and so the difference between the Euclidean distance and the distance
on the surface of the ellipsoid (i.e., the arc length) can be neglected. In this case, the distance
can be evaluated by simple trigonometric functions.

Another precise possibility to evaluate the distance and the heading is presented in [14].
This method considers the exact figure of the WGS84 ellipsoid. However, one drawback of this
method is that the computational effort is very high in contrast to the simple approach mentioned
before. This drawback can lead to serious problems in practice, since motion control algorithms
use this calculation frequently.

2.3 System models and constraints

Before a motion planning strategy can be applied, a system model of the target system is nec-
essary. A system model is used to describe the behavior and the constraints of a system. Every
feasible path or trajectory has to suffice constraints of the system. Consider the case of a CLR
where not every path is feasible. Since system models determine the behavior of a system, they
implicitly determine the constraints of a system, too. Thus, it is not necessary to specify the
system constraints explicitly.

However, system models and system constraints for generic problems can be described in
different ways.

• It is possible to describe a system with a set of rules of the form if(· · · )then{· · · }else{· · · }.

• Another possibility is to describe a system in fuzzy logic [15].

• Furthermore, a system model can be specified by a set of difference equations (i.e., a time
discrete system).

• Moreover, system models can be determined by a set of differential equations.

The most common method in robotics is the description of a system using a set of difference
or differential equations. Thus, these methods are described in the next part of this section.

2.3.1 Time discrete models

In the following, a common form of difference equations is used to describe a time discrete, not
necessarily linear time invariant system.

xk+1 = f(xk, uk) (2.1)

In this equation, xk represents the state vector that has the dimension n. Furthermore, uk repre-
sents the input vector with dimension m. The state vector xk represents the actual state of the
system at a discrete time k and the input vector uk represents the inputs at a discrete time k. In
literature, u is also called action space. The function f() is called state transition function and
computes the actual state in the so called State Space (SS) X at time k+ 1 based on the previous
state xk and the input vector uk at time k. The state vectors xk and xk+1 are elements of the SS
(xk, xk+1 ∈ X ).
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2.3.2 Differential models

Parametric model
Similarly to the time discrete system model, time continuous system can be defined. A time

invariant not necessarily linear system model can be specified by a set of differential equations.
Generally, such a set of equations can be written in the following form:

ẋ(t) = f(u(t), x(t)) (2.2)

In this equation, x(t) represents a state in the SS X . The SS contains state variables and/or
velocity variables. A state variable represents for example the position of an object. In contrast
a velocity variable represents for example the velocity of an object. If the SS only consists of
state variables, the SS is also called Configuration Space (CS) C. If the SS contains both state
variables and velocity variables, a function can be defined which maps the SS to the CS. This
function is simply a projection from the SS to the CS. Furthermore, the tangent space can be
defined as the deviation of the SS. Thus, the state transition function maps a state in the SS and
a state in the action space to a state in the tangent space.

Furthermore, the Workspace (WS)W is defined as the physical space of the system. Con-
sider for example an arbitrary object in the 3D Euclidean space. Obviously, the CS is defined as
C = R3 × [0, 2π[3 (where the last vector components represent the headings of the entity). The
WS only considers the position of the system (i.e.,W = R3).

Moreover, the SS X and the tangent space Ẋ can be combined to the Phase Space (PS)
X × Ẋ . A state in the PS represents a complete state including its tangents in each dimension.

Finally, u(t) ∈ U(x(t)) represents a state in the action space of the system. In general, it is
possible that every state x(t) has a different set of possible actions U(x(t)). The action space
can be defined as U =

⋃
∀x(t)∈X U(x(t)), the union of all possible actions.

Since the transition function is only able to consider the velocities, it is not possible to
express accelerations or higher moments of a system with this model. In this case, the system
model is expressed by

ẍ(t) = f(u(t), x(t), ẋ(t)) (2.3)

However, a method to express systems with higher order deviations by systems with only
first-order deviations exists. It is possible to reduce the degree of a system by increasing the
dimension of the system. Consider for example a two dimensional SS. Assume that a system
with constraints on the velocity and the acceleration exists. The following SS model describes
this system:

(
ẍ
ÿ

)
= f

((
ẋ
ẏ

)
,

(
x
y

)
, u

)
(2.4)

Considering Equation 2.3 and Equation 2.4, note that x(t) 6= x. To reduce the degree of this
system, the SS of the model can be extended by the first-order deviations of the states via χ := ẋ
and γ := ẏ. The system model can now be written as follows.
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ẋ
ẏ
χ̇
γ̇

 = f ′

(
x
y
χ
γ

 , u

)
(2.5)

In this example, (x, y, χ, γ)T ∈ X represents the SS where (x, y)T ∈ C represents the CS.
Moreover, (x, y, χ, γ)T × (ẋ, ẏ, χ̇, γ̇)T represents the PS.

Note that it is always possible to reduce a higher-order system to a first-order system.
The resulting SS consists of state variables and velocity variables. Thus, a system with an
n-dimensional CS and kth-order derivations can be reduced to a first-order system with a (n · k)
- dimensional SS.

Implicit model
In contrast to the parametric model of Equation 2.2, a system model can also be expressed in

another way. In this case, the system behavior itself is specified without considering an input
vector. An implicit system model can be specified as

g(q, q̇) = 0 (2.6)

Under certain restrictions as mentioned in [7], it is possible to transform an implicit model
to a parametric model. Note that the implicit model can also be described by a set of equalities
and inequalities as shown in the following equation.

g(q, q̇) on 0 (2.7)

The on-operator is a placeholder for =, <,>,≤,≥. Since the system behavior can be ex-
pressed by a set of inequalities, it is clear that they are more powerful than the parametric model.
However, this is out of the focus of this thesis because this kind of constraints is not necessary
for the aimed systems.

2.3.3 Classification of constraints

In the previous section, system models and their constraints were introduced. In this section,
a few systems with different kinds of constraints are examined. Nearly every physical system
has any kind of constraints. Only in some rare cases, it is assumed that all constraints can be
neglected. Constraints can be divided into kinematic constraints and dynamic constraints.

• Kinematic constraints are constraints on the CS or the first-order model. They only de-
pend on the velocities of the CS or on the CS itself, i.e., a system model in the form of
Equation 2.2 with no phase variables (i.e., C = X ) is a kinematic model.

• If a system is defined as
Ẍ(t) = f(U(t), X(t), Ẋ(t)), (2.8)

the system has dynamic second-order constraints. Even if the order of the system is re-
duced by increasing the SS, the system remains dynamic.
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System models can be divided based on the type of their constraints, too. These types have high
impact on the complexity of motion planning approaches.

• Unconstraint systems:
As mentioned before, completely unconstraint systems are very rare. Consider for ex-
ample a free flying spheric object with zero mass. In this case, the action vector can be
mapped directly to the SS (x(t) = u(t)). Since every dimension is independent from each
other, the system is unconstraint.

• Systems with holonomic constraints:
A holonomic constraint is a constraint which only depends on the time and on one variable
of the CS. The constraint must not depend on any variable of the tangent space. If the
constraints of a system are given in the implicit form as described in Equation 2.7, a
holonomic system looks like:

g(q) = 0. (2.9)

If it is possible to integrate the equation

g(q, q̇) = 0 (2.10)

such that q̇ can be eliminated, the system is called absolute integrable (i.e., the constraint
is holonomic).

Consider again a spheric flying object with zero math (e.g., no dynamic forces) but restrict
the movement of this object to the surface of a sphere with radius r (e.g., a satellite). In
this case, the constraint can defined as

(x2 + y2 + z2)− r2 = 0 (2.11)

where x, y, z are parameters of a three-dimensional cartesian coordinate system, i.e., the
CS. Since this does not contain any parameter from the tangent space, the system suffices
the claim above and therefore it is holonomic. Otherwise, the system is non-holonomic.

One can show that every holonomic system in C′ can be transformed to an unconstraint
system based on a transformed CS (C′′) [7]. Thus, holonomic constraints do not increase
the complexity for motion planning tasks but change the definition of the CS of the system.
However, holonomic systems are not unconstraint systems.

• Systems with non-holonomic constraints:
As mentioned before, non-holonomic constraints not only depend on values of the CS.
They further depend on values of the tangent space. If a constraint is expressed by the
following equation

g(q, q̇) = 0 (2.12)

and it is not possible to integrate this equation (i.e., to eliminate q̇), the constraint is non-
holonomic. In contrast to holonomic constraints, non-holonomic constraints increase the
complexity for motion planning approaches dramatically.
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Consider for example a rolling coin on a plane surface as shown in Figure 2.4. This system
is better known as unicycle model in literature. The parametric model can be defined as

q̇ =

ẋẏ
θ̇

 =

cos(θ) 0
sin(θ) 0

0 1

 · (u1

u2

)
. (2.13)

The corresponding implicit model of this system can be defined as

ẋ · sin(θ)− ẏ · cos(θ) = 0. (2.14)

Obviously, the equation can not be integrated such that ẋ and ẏ can be eliminated. The
CS for this system is C = R2 × [0, 2π[, (x, y, θ) where the first two dimensions represent
the position on the plane and the last dimension represents the orientation of the disk
w.r.t. the inertial system. It is clear that the object is able to move in two directions
(forward, backward) but it is not possible that the disc moves sidewards. This is called a
non-holonomic constraint.

If the system has non-holonomic constraints, it is much more difficult to find a feasible
path or even a trajectory and therefore the complexity of the planning task is more diffi-
cult than in the holonomic case. However, most real-world systems have non-holonomic
constraints. Hence, the following chapters of this thesis deal with non-holonomic systems.

y

x

(x ,y )0 0

Θ0

Figure 2.4: System configuration of a unicycle

2.4 Objectives of motion planning

Before motion planning approaches can be discussed, the desired result of a motion planning
application has to be determined. The following objectives of motion planning are supposable:

• A geometric path in the WS or in the CS can be aimed.
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• If a geometric path is not sufficient, a trajectory in the CS can be required.

• Another possibility is that an action trajectory in combination with a trajectory in the CS
is aimed.

• In some rare cases, it is possible that only an action trajectory is necessary to control a
system.

• However, it is possible that (in case of a discrete system) a consecutive sequence of states
(i.e., including input and SS) depending on the time is desired.

Since in general either a geometric path or a trajectory in the CS is aimed, the differences
between these two curves are presented as follows.

2.4.1 Trajectory vs. geometric path

• A trajectory is an integral curve g(t) on an arbitrary SS (e.g., for a CLR) which suffices the
state transition function. As mentioned before, a trajectory can be computed by integrating
the state equation function based on an action trajectory and an initial state in the SS
(x0 = x(t0)).

If an action trajectory u(t) (i.e., an arbitrary time dependent curve in the action space) and
an initial state x(t0) are given, the state trajectory can be calculated as follows:

x(t) = x(t0) +

∫ t

t0

f(x(t′), u(t′))dt′ (2.15)

• A geometric path is a curve in 2D or 3D Euclidean space. This means that the WS is equal
to the Euclidean space (i.e., R2 = W ⊆ C or R3 = W ⊆ C). In contrast to a trajectory
which is a time dependent curve, a geometric path g(u) depends not on the time t but only
on a monotonic increasing variable u.

2.4.2 Conversion of curves

• From trajectory to a geometric path
Since a trajectory contains more information than a geometric path, it is possible to gen-
erate a geometric path based on a trajectory. This can be done by a function which maps
the SS to the two- or three-dimensional Euclidean space (p : C 7→ R3). In many cases, the
mapping can be done by a simple projection of the higher dimensional trajectory to the
Euclidean space. Since a trajectory depends on a time variable which is obviously mono-
tonic increasing, the time variable of a trajectory can be mapped directly to a geometric
path (t 7→ u).

• From a geometric path to a trajectory
In general, it is not possible to derive a trajectory from a geometric path. In some cases, it
is even possible to derive a trajectory from a geometric path. In Section 4.2.1 an example
is presented, where this is possible. The challenge in this case is to map the variable u to
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the time variable t. A wrong mapping u 7→ t can lead to an infeasible trajectory, even if
the geometric path is feasible.

2.5 Complexity of motion planning

While in the previous section the desired result of a motion planning process was discussed, this
section deals with the complexity of motion planning problems. In general, a lot of different
motion planning problems exist. To determine the quality of a motion planning approach, it
is very helpful to know lower bounds on execution time or memory consumption for a given
motion planning problem.

Due to the amount of different motion planning problems, providing a proof for the lower
bound for each planning problem is not possible. Therefore, a few classes of motion planning
problems are presented for which lower bounds were already specified and proved.

• One of the most famous motion planning problem is the piano mover’s problem [16]. The
challenge of this problem is to move a polyhedral object (e.g., a piano) from an initial
position (i.e., a state in the CS) to a target position in an unbounded CS in presence of
polyhedral obstacles (e.g., walls or tables). Note that if a bounded CS is desired, then
it can be modeled with a number of polyhedral obstacles which limit the CS around the
initial and the goal point. Moreover, this problem asks for an arbitrary path and not for
the shortest path.

The piano mover’s problem can be generalized by adding free flying polyhedral rigid
objects to the robot. An example for such a system is a robot arm where every part can be
moved freely. This problem is called the generalized mover’s problem ([16]). This specific
problem seems to be very difficult to solve. In fact a lower bound proof is presented in
[16] which shows that the generalized mover’s problem is PSPACE-hard.

• Another motion planning problem which is relevant for this thesis deals with the motion of
a robot with non-holonomic constraints. The challenge of this problem is to find a curva-
ture constrained shortest path in a two dimensional WS. Furthermore, the WS is restricted
by arbitrary many polygonal obstacles. Intuitively, this problem is quite hard to solve. In
[17], a lower-bound proof for this problem is provided with the result that this problem
is NP-hard. This problem is very similar to the motion planning problem for CLRs. The
challenge in this case is to navigate a CLR meeting all kinematic constraints from an arbi-
trary initial position to a goal position in presence of arbitrary obstacles. These obstacles
are represented by rigid polygons. In Chapter 4, a few motion planning algorithms are
presented to solve this problem. Since it was shown that the described problem is NP -
hard, no complete solution exists which solves the problem efficiently.



CHAPTER 3
Motion planning algorithms

3.1 Overview

In the previous chapter, the basic concepts of system theory were introduced. This chapter
presents a few basic motion planning algorithms. These algorithms are used to solve the basic
motion planning problem (i.e., finding a path between two arbitrary states). However, these
algorithms are described in a generic way and they are not applied to a specific system.

At the beginning, a discrete naive approach is presented to solve the motion planning prob-
lem. Next, a few roadmap based motion planning approaches are examined. To overcome the
complexity of motion planning, the last part of this chapter introduces probabilistic approaches
to solve the motion planning problem.

3.2 Discrete motion planning algorithms

The following section deals with the basic aspects of discrete motion planning. Before motion
planning strategies are described, the basic problem is formalized as follows:

• Let X be an n-dimensional discrete SS where the dimension is finite or countable infinite.

• Furthermore, define for each state x ∈ X in the discrete SS a specific input vector u from
the so called action state u ∈ U(x). Note that in general the action space can be different
for each element x ∈ X . Furthermore, define U =

⋃
∀x∈X U(x) as the complete action

space.

• The state transition function x′ = f(x, u) (as described in Section 2.3) defines the transi-
tion from a state x ∈ X to a state x′ ∈ X depending on the input vector u ∈ U(x) where
U(x) ⊆ U .

• Finally, define xinit ∈ X as the initial state and Xgoal ⊆ X as the set of goals of the
motion planning problem.

19
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In addition to the previously mentioned definitions, a few more definitions are necessary, if an
optimal path is desired. A path is called optimal if and only if no other feasible path exists with
lower costs (i.e., a shorter path).

• Let l be a function l : (X ,X ) 7→ R+ which represents the length (or the costs) between
two states in X . Since the system is deterministic, the function l can also be defined as
l : (X , U) 7→ R+.

• Subsequently, it is assumed that the result of the planning process is a sequence of input
vectors for the system π = (u0, u1, ...., uk). If the initial state xinit is given, the complete
sequence of states in X can be derived.

• Furthermore, let L be the cost function which represents the costs for a plan π and define
it as L =

∑K−1
k=0 l(xk, uk) for a plan with length K.

In some cases, it is not necessary to know the sequence of action vectors of a system because
a low level feedback controller generates the action vector during runtime depending on the
current state and the estimated state. However, this is described in a later chapter.

The given formulation can also be described by a weighted undirected graphG(V,E, l, vinit, Vgoal).
In addition to the common definition of the graph, a distinct vertex vinit ∈ V exists which
denotes the initial node of the graph. Moreover, a state vgoal or even a set Vgoal ⊆ V repre-
sents the goal vertices. Furthermore, the function l is defined similarly to the above definition:
l : E = (V, V ) 7→ R+. If a feasible path between two vertices vk and v′k exists, l is defined as
0 ≤ l(vk, vk′) <∞ and if no path exists l(vk, vk′) =∞.

In the following section, an introduction about basic search strategies is given and further-
more an overview on the most popular graph search algorithms in context of motion planning is
presented.

3.2.1 Graph search algorithms

Graph search algorithms offer a systematic way to find a not necessary optimal path from a
state xinit to a set of goal states Xgoal. Graph search algorithms are a special case of greedy
algorithms and have a common scheme as described in [7]. Algorithm 1 shows an approximate
scheme of a graph search algorithm. Most of the graph search algorithms are based on this
concept. Basically, this search approach separates all vertices in three distinct sets.

• Unvisited nodes
This set contains nodes which were not considered yet. Thus, they are neither in P nor in
Q.

• Dead nodes
All the dead nodes are in the set P . These nodes were still processed by the algorithm and
therefore P ∩Q = ∅.

• Alive nodes
These nodes are represented by the sequence Q of Algorithm 1. This means that they are
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not processed but they were appended to the queue Q. A node can only be in Q if one of
its neighbors is dead (i.e., in P ).

At the beginning, the set P is empty and the sequence Q only contains the initial node. The
algorithm pops the first element from Q. Note that Q is a sequence of unprocessed nodes.
Depending on the concrete search algorithm, the order within this queue is defined differently.
If one node is removed from Q it is added to P and furthermore all possible successor nodes are
checked. Since for every node x a set of actions U(x) exists, every possible action is applied to
reach a possible successor x′. If such a successor node is neither in Q nor in P (i.e., not visited
yet), it is added to Q. This step is performed for every possible successor x′ of x.

Algorithm 1 FORWARD_SEARCH (taken from [7])
1: P ← ∅
2: Q.Insert(xI)
3: while Q 6= ∅ do
4: x← Q.popF irst()
5: P ← P ∪ x
6: if x ∈ XG then
7: return SUCCESS
8: end if
9: for all u ∈ U(x) do

10: x′ ← f(x, u)
11: if x′ /∈ Q ∧ x′ /∈ P then
12: Q.Insert(x′)
13: end if
14: end for
15: end while

The presented algorithm shows the basic scheme of graph search approaches by means of a
forward search algorithm. However, a few slightly different concepts exist. These concepts can
be distinguished on the direction of the search. Depending on the motion planning task, some
may have more benefits than others.

• Forward search
This method is the most common one. The search algorithm starts in the initial state xinit
and explores the search space based on the system model until a state within the set of
goal states Xgoal is reached.

• Backward search
This method starts from a goal state xgoal ∈ Xgoal and explores the SS backwards. How-
ever, in this case it is necessary to transform the system model because a function g = f−1

is needed which calculates the predecessor x of x′ based on x′ and u ∈ U(x). Note that f
represents the state transition function as introduced in Section 2.3.1.



22 Chapter 3. Motion planning algorithms

• Bidirectional search
In some cases, it is useful to combine forward search with backward search. If the two
trees meet each other the algorithm terminates.

In the previous part of this section, the basic properties and distinctions of search algorithms
were considered. In the following part of the section, a few popular search algorithms are pre-
sented. These algorithms are able to find a path in an efficient way. Furthermore, the results of
these algorithms are optimal and complete in the discrete space which means that the algorithm
finds an optimal solution, if one exists. Otherwise, it fails.

Dijkstra’s Algorithm
One of the most famous algorithms in graph theory is the so called Dijkstra algorithm. Nor-

mally, this algorithm is applied on an undirected, weighted graph G = (V,E, s, t). However,
in this case the algorithm is adapted to solve a discrete motion planning problem as described
before. The only difference is the selection of the neighbor nodes (states). In a normal graph,
these nodes can be selected directly but in this case all possible actions U(x) have to be ap-
plied on a state x to get all successor states x′ according to the discrete transition function
x′ = f(x, u), ∀u ∈ U(x).

In contrast to the basic search scheme, Dijkstra’s algorithm does not need a set P . This set
is replaced by using the dist attribute of each state. Every discrete state x has an attribute x.dist
which denotes the distance to the initial state xinit. If a state is unprocessed (i.e., no path to
xinit exists yet) this attribute is set to infinity. Furthermore, every state has an attribute x.pred
which stores the way back to its predecessor (i.e., a pointer to the parent node). If the node is
still unprocessed, x.pred is set to NIL. Algorithm 2 illustrates Dijkstra’s algorithm in context
of discrete motion planning.

A* Algorithm
An extension to Dijkstra’s algorithm is the A* algorithm. The basic concept of the A* algo-

rithm is quite similar. In addition, a heuristic is used by the A* algorithm to estimate the distance
from an arbitrary state to the goal state (or a set of states). Based on the motion planning problem
and the SS, there are many possibilities to realize such a heuristic. However, the quality of the
heuristic is immanent for the performance of the algorithm. In case of an Euclidean SS without
obstacles, the Euclidean distance to the goal state(s) can be used as heuristic. Algorithm 3 shows
the concept of the A* algorithm. The only difference in contrast to Dijkstra’s algorithm can be
found in Line 16. The decision about the next state is based on the distance to the root and
further on the estimated distance to the goal.

3.2.2 From continuous systems to discrete systems

If a discrete motion planning approach is used in practice, a strategy is necessary to discretize
the continuous system to a discrete system. Obviously, the SS has to be quantized but it is also
necessary to adapt the state transition function which is the more challenging task.
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Algorithm 2 Dijkstra’s Algorithm
1: ∀x ∈ X\xinit : x.dist←∞
2: xinit.dist← 0
3: ∀x ∈ X : x.pred← NIL
4: Q← {xinit}
5: while Q 6= ∅ do
6: x← {q′ ∈ Q|q′.dist ≤ q′′.dist ∀q′′ ∈ Q}
7: Q← Q\x
8: if x.dist =∞ then
9: return FAILURE

10: end if
11: if x ∈ XG then
12: return SUCCESS
13: end if
14: for all u ∈ U(x) do
15: x′ ← f(x, u)
16: d← x.dist+ dist(x, x′)
17: if d < dist(x′) then
18: Q← Q ∪ x′
19: x′.dist← d
20: x′.pred← x
21: end if
22: end for
23: end while

Transformation of the CS
Independent from the strategy, a discretized motion planning algorithm can never be complete

or optimal in general. To illustrate this fact, consider a WS with a narrow passage. Furthermore,
assume that the WS is transformed to a discrete WS such that there is no state within this passage.
Thus, a path in the original system exists but no path in the discrete system. However, if the
density of the states is increased, the possibility that a path is found increases but there is no
limit for the narrowness.

In practice, the choice of the strategy is very important for the quality of the transformation
and the performance of the search algorithm. Consider the case where lots of obstacles exist in
one part of the CS but no obstacle is located in the rest of the CS. Obviously, the density of states
in the constrained portion of the space should be higher than in the free space. A uniform dense
state lattice will lead to a bad performance of the search algorithm but a coarse state lattice can
lead to an incomplete SS.

Transformation of the transition function
Another challenging task is the transformation from a parametric differential transition func-

tion to a discrete transition function. The problem is that such a discretization can lead to integral
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Algorithm 3 A* Algorithm
1: ∀x ∈ X\xinit : x.dist←∞
2: xinit.dist← 0
3: ∀x ∈ X : x.pred← NIL
4: Q← {xinit}
5: while Q 6= ∅ do
6: x← {q′ ∈ Q|q′.dist ≤ q′′.dist ∀q′′ ∈ Q}
7: Q← Q\x
8: if x.dist =∞ then
9: return FAILURE

10: end if
11: if x ∈ XG then
12: return SUCCESS
13: end if
14: for all u ∈ U(x) do
15: x′ ← f(x, u)
16: d← x.dist+ dist(x, x′) + h(x,XG)
17: if d < dist(x′) then
18: Q← Q ∪ x′
19: x′.dist← d
20: x′.pred← x
21: end if
22: end for
23: end while

errors which change the system behavior immanently. Thus, it is possible that this behavior leads
to infeasible paths.

However, these problems are out of the scope of this thesis since they are avoided by all fur-
ther mentioned motion planning approaches. In Chapter 4, a few special methods are presented
where discrete methods are used to solve continuous motion planning problems.

3.3 Motion planning based on roadmaps

Roadmap based motion planning approaches belong to the most common motion planning ap-
proaches. Intuitively, a roadmap is constructed considering the environment including obstacles.
After a roadmap is constructed, it is easy to find a path using common methods (e.g., graph
search).

As mentioned in the previous section, discretized motion planning approaches are not com-
plete or optimal in general. However, roadmap based approaches can be complete and possibly
optimal. The reason is that if a CS is discretized, arbitrary configurations are sampled (e.g., state
lattice). In case of roadmap based approaches, the CS is decomposed and the configurations are
sampled using special approaches.
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3.3.1 Visibility graph method

Consider a two-dimensional WS with arbitrary rigid obstacles. Assume that the WS equals
the CS. All of the obstacles are represented by simple polygons. Note that a finite CS can be
expressed by a set of obstacles surrounding the CS. A naive approach is used to connect every
vertex (including the start and goal vertex) with each other if and only if there is no obstacle
between them. This method is called visibility graph method. An example of such a visibility
graph is shown in Figure 3.1. Finally, a graph search algorithm can be used to find a possibly
optimal path between the initial state and the goal state.

Figure 3.1: Example of visibility graph (taken from [2])

This algorithm can also be used for higher dimensional WS and CS. In this case, the algo-
rithm does not provide an optimal solution. Hence, it is not suitable for higher dimensions as
mentioned in [7].

If the target system has non-holonomic constraints (i.e.,W 6= C), these constraints have to
be considered and therefore the visibility graph has to be extended. For example, if the CS is
defined as C = R2 × [0, π[ and W = R2 then the third dimension must be discretized to n
different values. For every node in the visibility graph, n nodes are added to the search graph.
Finally, an edge between two states in the search graph is added, if and only if an edge between
the two corresponding nodes exists in the visibility graph and the edge is feasible w.r.t. the non-
holonomic constraints. Since the third dimension of the CS is discretized, no complete algorithm
exists as mentioned in Section 3.2.2. Thus, it is not guaranteed that a solution can be found even
if one exists.

3.3.2 Retraction approach

Another roadmap based approach uses Voronoi diagrams ([3]) to construct a roadmap. Given a
set of n states in an Euclidean space, a Voronoi graph is a partition of the space into n+1 different
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regions. The regions are limited by straight line segments. Every given state is the center point of
one Voronoi region or Voronoi cell and so all line segments have the maximum possible distance
to the center points. This kind of Voronoi diagram determines regions defined by straight line
segments around points. An example of a Voronoi diagram is shown in Figure 3.2. However,
Voronoi diagrams can also be extended to generalized Voronoi diagrams. In contrast to simple
Voronoi diagrams, the regions are based on convex polygons which are represented by vertices
and edges. In this case, the Voronoi regions are limited by straight lines and parabolic arcs.
Based on a generalized Voronoi diagram, a path graph can be computed as shown in Figure 3.3.
Further details about Voronoi diagrams can be found in [3, 18].

Figure 3.2: Example of a simple Voronoi diagram (taken from [3])

After constructing the Voronoi graph, a path from the initial state to the closest element of the
Voronoi graph and a path from the Voronoi graph to the goal state has to be found as described
in [2]. If the WS does not change, the Voronoi diagram has to be calculated only once. Thus,
this algorithm is well suited for multiple query applications.

3.3.3 Cell decomposition

Another motion planning concept is cell decomposition. Assume that a finite CS exists and all
obstacles are represented by simple polygons. The idea is to partition the free space Cfree in
convex polygons. Based on these polygons, a roadmap can be constructed and a free path can
be found by simple graph search.

The CS is limited to C = R2 for the following motion planning approaches for simplicity but
it is possible to use these approaches also for higher dimensional CS (e.g., C = R3). In this case,
polygonal obstacles are replaced by polyhedral obstacles. Furthermore, it is assumed that only
point-like robots are considered. If polygonal robots are considered, the CS must be extended.

However, two different types of methods exist. One possibility is to partition the CS in exact
cells. Thus, this method is called exact cell decomposition. The other method is to partition the
CS in predefined segments (e.g., rectangles) depending on the CS. The latter method is called
approximate cell decomposition.
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.

q
init

q
goal

Figure 3.3: Example of a Voronoi based path graph (taken from [2])

Exact Cell Decomposition
As mentioned before, the CS is divided into convex polygons as shown in Figure 3.4. This

method is basically intended for C = R2 but it is possible to generalize this method to higher
dimensional spaces. However, the following subsection concentrates on a two dimensional CS.
Based on this cell-partition, a sequence of adjacent cells has to be found from the initial cell to
the goal cell. Obviously, the initial cell contains the initial configuration qinit and the goal cell
contains the configuration qgoal. This can be done by constructing a graph where every vertex
represents a cell and two vertices are connected with an edge if and only if the corresponding
cells are adjacent. Based on this graph, a graph search algorithm can be used to find a sequence
of cells. If an optimal path is desired the edges have to be weighted (e.g., with the Euclidean
distance). In addition an optimal graph search algorithm has to be used (e.g., A*) to determine
a sequence of nodes.

Based on such a sequence, a path can be found as follows. The cut between two adjacent
cells is a non-zero line segment which is also called borderline or face. A feasible path can be
generated, if all borderlines of the consecutive cells are bisected and these states are connected
in the same order as the corresponding graph nodes. Finally, the initial state and the goal state
have to be connected. Since all cells are convex by assumption and the path starts and ends at
the border of the appropriate cell, no obstacle can be in between. One possible but not necessary
optimal path is shown in Figure 3.4.

Since this partition of the WS is very inefficient, another approach can be used to partition
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Figure 3.4: Example of path generated by exact cell decomposition (taken from [2])

a WS. This approach is computational efficient and can be used in practice. One drawback of
this approach is that the partition is not optimal. The approach is based on a sweep line line
algorithm. The decomposition of a WS is shown in Figure 3.5.

Figure 3.5: Exact cell decomposition using sweep line algorithm (taken from [2])

This algorithm uses a sweeping line which moves over the WS with a straight frontier and
stops at each vertex of an obstacle polygon. The resulting polygons are either triangles or trape-
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zoids in case of a two dimensional space. In Figure 3.5, these segments are marked green.
Similar to the above method, a search graph is computed. Furthermore, a path can be created by
bisecting the intersecting lines between two consecutive cells.

Approximate Cell Decomposition
In contrast to the exact cell decomposition, the approximate cell decomposition divides the

WS into rectangloid subsegments. Since it is not possible to delimit the free space of the WS
from the obstacles exactly, three different types of cells can be distinguished:

• EMPTY cell
An empty cell lies completely in the free space of the WS.

• FULL cell
A full cell is a cell which lies completely within an obstacle.

• MIXED cell
A part of a mixed cell lies in the free space of the WS and obviously the other part of the
cell is a part of an obstacle.

If it possible to find a sequence of adjacent EMPTY cells (i.e., from the cell containing the initial
state to a cell that contains the goal state) such that only free cells are passed, a feasible path
can be generated and the algorithm succeeds. If no such sequence can be found, mixed cells
have to be decomposed to smaller rectangloid segments. These segments are characterized as
enumerated above. Subsequently, it is checked again if a sequence of empty cells from the initial
state to the goal state exists and so on. Thus, the algorithm starts from a single mixed cell and
iteratively decomposes mixed cells until a path is found.

The method described above constructs a hierarchical structure of the CS. This structure
can be expressed by a hierarchy tree as shown in Figure 3.6 (the corresponding WS is shown
in Figure 3.7). Since it is not necessary to decompose empty or full cells, only mixed cells are
decomposed and therefore only these cells can have children in the hierarchy tree. Note that
by convention every mixed cell is decomposed to a fixed number of rectangloid segments. In
general, it is not possible to exactly decompose a cell such that only full and empty cells remain.
Thus, the resolution of the decomposition is limited. This limitation corresponds with the height
of the hierarchy tree. Nevertheless, it is assumed that most of the cells of Figure 3.6 can be
decomposed exactly and only two mixed cells reach the resolution limit.

3.4 Motion planning using potential fields

Most of the previous mentioned motion planning approaches tried to decompose the WS and
deduce a search graph. In this section, another approach is presented which maps the WS to a
potential field to find a feasible path based on a gradient field as introduced in [2]. To simplify
the explanation of this method, the CS is restricted to C = R2. However, it is possible to use
this method also in higher dimensional CS. Furthermore, it is assumed that a point-like robot or
a robot with fixed orientation is considered.
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FULL cell

EMPTY cell

MIXED cell

MIXED cell (terminated)

Figure 3.6: Decomposition tree

Figure 3.7: Decomposition of a two-dimensional WS

Based on a scalar field (i.e., a potential field U : Rn 7→ R), a gradient vector can be defined
for each configuration in the CS. This vector determines the slope of the actual configuration
in the scalar field as length of the vector. Furthermore, the vector directs to the maximum slope
of the scalar field. Thus, a gradient field is a function on the scalar field and defines a gradient
vector for every point in the field. Formally, a gradient field is denoted by ∇ which is also
known as the nabla operator. Consider a scalar field based on R2 that is defined as U(x, y). The
gradient field which is denoted by∇U(x, y) is defined as

∇U(x, y) =

(
∂U(x,y)
∂x

∂U(x,y)
∂y

)
. (3.1)

To use this concept for motion planning, the WS has to be mapped to a scalar field fulfilling
the following constraints:

1. The goal configuration must have the lowest value in the WS i.e., U(xgoal, ygoal) <
min(U(x, y)) ∀x, y : x 6= xgoal ∧ y 6= ygoal.
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2. Furthermore, the obstacle regions must have much higher potential than the free regions.

3. Finally, U(x, y) must decrease towards the goal state.

Moreover, it is necessary that the resulting function is piecewise differentiable.
Until now, only a two dimensional CS was considered for simplicity. However, in the fol-

lowing paragraphs the CS is generalized. Therefore, a state within the CS is denoted by q ∈ C.
To fulfill these conditions, the resulting scalar field can be computed as the combination of two
different scalar fields.

• Attractive potential
The attractive potential field does not consider the obstacle regions. It simply reduces the
potential towards the goal configuration.

Uatt(q) =
1

2
· ξ · ρ2

g(q) (3.2)

In Equation 3.2, ρg(q) represents the Euclidean distance between q and qgoal, i.e., ρg(q) =
‖q − qgoal‖. Furthermore, ξ represents a positive scaling factor. An example of an at-
tractive potential function is shown in Figure 3.8. In this example, the configuration
q = (10, 40) represents the goal configuration. Note that the potential function fulfills
condition (1) and (3) as desired above.
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Figure 3.8: Example of an attractive potential function
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• Repulsive potential
In contrast to the attractive function, the repulsive function does not consider the goal
configuration and is only based on the obstacles. Formally, this function is defined as:

Urep(q) =

{
1
2η( 1

ρob(q) −
1
ρ0

)2 if ρ(q) ≤ ρ0

0 if ρ(q) > ρ0

(3.3)

In this equation, ρob(q) represents the minimum distance from q to any obstacle, i.e.,
ρob(q) = minq′∈O‖q−q′‖ whereO represents the obstacle regions of a CS. Furthermore,
η represents a positive scaling factor and ρ0 represents a constant threshold.

This function evaluates to zero, if the distance to the next obstacle is greater than a given
threshold. Otherwise the function increases quadratically. If the distance is zero (i.e., a
configuration within an obstacle), the function evaluates to a constant value. Figure 3.9
shows an example of a repulsive potential function with three circular obstacles. Note that
this function suffices condition (2).
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Figure 3.9: Example of a repulsive potential function

Finally, these two potential fields are combined to a resulting potential field U = Urep+Uatt
fulfilling all conditions ( (1)-(3) ) as mentioned before. Based on Figure 3.8 and Figure 3.9, the
resulting potential function is shown in Figure 3.10.

Based on the definition of U(q), a vector function F can be defined as the inverse gradient
field of U : F (q) = −∇U(q). The inversion is necessary, since the vector of a gradient field
points to the highest slope in general.
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Figure 3.10: Example of a complete potential function base on an attractive and a repulsive
function

After computing the gradient field based on a potential field as described above, a motion
planning approach is desired that uses this gradient field to find a path to the goal configuration
qgoal. In the following paragraph, two basic approaches are presented to find a path from an
arbitrary initial configuration qinit to a goal configuration defined by the potential field qgoal.

• Depth-first planning
Since the inverse gradient field provides a vector for each configuration which points to
the state with the lowest slope, intuitively a path can be created by following the direction
of these vectors.

Starting from any given state qinit, the gradient vector ~t of any state q can be defined as

~t =
~F (q)∥∥∥~F (q)

∥∥∥ =


t1
· · ·
tj
· · ·
tm

 (3.4)

where ~t represents the normalized unit vector, pointing to the lowest slope of U . Conse-
quently, the next state qi+1 can be determined by

xj(qi+1) = xj(qi) + δtj(qi) (3.5)

where tj , 1 ≤ j ≤ m is the j’th component of the m-dimensional vector ~t and xj(q)
represents the j’th component of the state q. Since ~t has unit length (i.e., ‖~t‖ = 1), the
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variable δ represents the size of a step, i.e., the distance between two states qi and qi+1.
If this approach is continued, qi successively converges to qgoal. However, since δ is
not infinitely small, the goal configuration will not be exactly reached. Therefore, a set
Xgoal = {X ⊆ C|x ∈ X ∧ ‖q − qgoal‖ < ε} has to be defined which specifies a subset of
the CS around the goal configuration. If qi ∈ Xgoal, the algorithm terminates.

This method is quite feasible, if there are only convex obstacles in the CS. However, if
there are non-convex obstacles in the CS, it is possible that the gradient field yields into a
trap. This is the case when a local minimum is reached where the planner possibly rotates
around a local minimum. However, a systematic approach to overcome this problem is
quite difficult. Therefore, another strategy is presented which solves this problem.

• Best-first planning
In contrast to the previous approach, this method discretizes the potential field by a grid
such that the initial state and the goal state are elements of the discrete SS. Furthermore,
a p-neighborhood is defined such that two states only diverge in p different dimensions
where 0 ≤ p ≤ m and m denotes the number of dimensions. Hence, it is clear that a
state q has 2m 1-neighbors and further 3m−1 m-neighbors. Normally, the algorithm only
considers only 1-neighbors. Due to the discretization of the CS, it is assumed that if two
adjacent states are in free space, the path between them is also in free space. Furthermore,
it is assumed that the CS is mapped to a finite subset. The algorithm constructs a tree
starting at qinit. It explores all unexplored neighbors of the leaf with the least potential
in the discrete potential field. In case of a non-convex obstacle, it first explores all states
within the trap. If all states within the trap (i.e., around the local minimum) are explored, it
continues with the next state outside the trap with the least potential. Finally, the algorithm
terminates if the goal state is reached. Since the algorithm stores the parent node in each
node, it is easy to track the path back to the initial state. The overall complexity of this
algorithm isO(m ·rm · log(r)) where r is the number of discrete points in one dimension.
Due to this upper bound, the algorithm is only practical for CS with less dimensions (e.g.,
up to r = 4).

Note that a few other motion planning approaches based on potential fields exist. Since this
section only presents the basic concepts of potential field planning, the reader is referred to [2]
for further information.

3.5 Probabilistic motion planning

In Section 3.3, a few roadmap based motion planning strategies were presented. These strategies
provide systematic and deterministic methods to solve motion planning problems. This section
introduces probabilistic approaches to solve motion planning problems. These approaches are
not complete in general but they provide a pretty good average performance in practice.
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3.5.1 Probabilistic roadmaps

In this section, a probabilistic roadmap based approach is presented which can also be used
in practice for high dimensional CS. The method called Probabilistic Roadmap (PRM) can be
divided into two different phases. In the preprocessing phase, the roadmap is established. This
step has to be performed only once for a given WS. In the second phase, the previously computed
roadmap is used to find a feasible path from an initial state to a goal state. This can be done by
using graph search algorithms. In this phase (query phase), a path can be computed very fast.

Preprocessing phase
The preprocessing phase generates a roadmap based on the CS and the obstacles as shown

in Figure 3.11. However, the initial and the goal state are not considered in this phase. The
roadmap is represented by an undirected graph similar to Section 3.3. The nodes represent
valid configurations in the CS and the edges between them represent feasible paths between
two adjacent states. Informally, the roadmap is constructed by iteratively adding random con-
figurations within the free space of the CS. Furthermore, it is tried to connect every random
configuration with its neighbors by a local planner. More formally, Algorithm 4 describes the
construction strategy of the roadmap. In this case, the roadmap is represented by an undirected
graph G = (V,E) where the weight of each edge E has to be defined in advance. In gen-
eral, the Euclidean distance can be used in case of an Euclidean CS. Algorithms to construct a
roadmap are presented in [19, 4]. The more illustrative and detailed algorithm of [4] is presented
in Algorithm 4 (with a few modifications).

Figure 3.11: Example of a PRM with a possible path between two configurations (taken from
[4])

The function D(q, q′) represents the distance function between two configurations which
is defined as Cfree × Cfree 7→ R+. This function can either represent the Euclidean distance
between two configurations or the result of a local planner connecting these configurations.
Moreover, the function ∆(q, q′) : V × V 7→ {true, false} evaluates to true if the local planner
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Algorithm 4 Constructing G = (V,E)

1: V ← ∅
2: E ← ∅
3: while |V | < n do
4: q ← random configuration ∈ Cfree
5: V ← V ∪ q
6: end while
7: for all q ∈ V do
8: Vq ← the k closest neighbor of q ∈ V
9: for all q′ ∈ Vq in order of increasing D(q, q′) do

10: if ¬(Π(q, q′) ⊆ E) ∧∆(q, q′) then
11: E ← E ∪Π(q, q′)
12: end if
13: end for
14: end for

has found a feasible path between two nodes and false otherwise. Furthermore, the function
Π(q, q′) represents a set of edges computed by the local planner. In some cases, local planners
use existing edges for computing a path and therefore the planner does not necessarily return
only one edge. Hence, the algorithm from [4] was adapted in Line 10 and 11.

The performance of this algorithm strongly depends on the local planner which is used to
connect two configurations q and q′. To realize such a planner, different methods exist which
can be distinguished between complete deterministic or incomplete local planners. Complete
local planners always find a solution, if one exists and otherwise they return a failure. However,
most of these planners are computational expensive. On the other hand, simple local planners
exist that possibly do not find a solution even if one exists. However, these simple local planners
can be implemented very efficient.

Since a complete deterministic planner finds a solution in each case, the number of random
points can be reduced and therefore also the number of executions of this planner. If a non-
deterministic but fast planner is used, it is obvious that much more random points are necessary
to find a feasible path. In this case, the planner is also executed more frequently. Thus, a trade
off has to be found between these extrema. Consider, for example, that a quite simple local
planner connects two configurations by a straight line. This planner can be implemented very
fast but in many situations this approach will fail.

The strategy presented above has a drawback, if the CS contains narrow passages. In this
case, only less random points or even no one is generated within such a passage. Hence, it could
be possible that two unconnected subgraphs arise even if the CS is connected. To overcome
this drawback many strategies exist that increase the density of random points within narrow
passages. One possible strategy uses a post-processing step after the roadmap construction.

In general, it is very difficult to determine the narrowness of a region in the CS. One pos-
sibility to approximate this probability function is to consider the number of neighbors within a
given distance of a node. This is a metric for the narrowness because a node in a narrow passage
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has less neighbors than a node in a free region of the CS. Another possibility is to consider the
failures of the local planner as an indicator for narrowness. In this case, the failure ratio of a
node q can be defined as

rf =
f(q)

n(q) + 1

where f(q) denotes the failures of the local planner and n(q) denotes the number of neighbors
(|Vq|). Further the probability of a node can be defined as

ω(q) =
rf (q)∑

a∈V
rf (a)

. (3.6)

where ω(q) represents the relative narrowness of a configuration. Thus, the density of random
configurations is increased in narrow regions according to ω(q). This extension mechanism is
called node enhancement.

Query phase
If a roadmap was created, queries can be executed which ask for a path between the initial

configuration qinit and the goal configuration qgoal. Since the roadmap uses only random config-
urations, it is nearly impossible that any random configuration q is equal to qinit or qgoal. Hence,
a path between qinit and the closest state in the roadmap q′init ∈ V and further between qgoal
and q′goal ∈ V has to be computed. If these paths were found, a graph search algorithm can be
used to find a feasible path.

First, the two nodes q′init, q
′
goal ∈ V have to be specified. One possibility is to choose

the node qi ∈ V with the smallest Euclidean distance to q′init or q′goal. To compute the path
between qgoal and q′goal ∈ V the local planner as described in the previous paragraph can be
used. However, if a complete and slow local planner is used, it is possible that a query takes
a long time. If a fast and incomplete local planner is used, it is possible that no path is found
and therefore the next nearest node q ∈ V is declared as q′init or q′goal respectively and the local
planner is executed once again.

Finally, the path can be computed by the concatenation of the following segments:

Π(qinit, q
′
init) ◦ shortest_path(q′init, q

′
goal) ◦Π(q′goal, qgoal)

Lazy PRM
If the CS often changes (e.g., in case of moving obstacles) or only single queries are per-

formed, the approach described above has an enormous drawback. In some cases, the prepro-
cessing phase has to be performed for every query phase and since the preprocessing phase is
computational expensive, the approach is quite inefficient for such purposes.

The reason for the possibly high computational effort is the collision check which has to be
performed for every node v ∈ V . A Lazy Probabilistic Roadmap (LPRM) which is introduced
in [5] is an adaption of the PRM approach which reduces the number of collision checks. The
basic idea is to compute random configurations q without considering the obstacles. Similar to
the basic PRM approach, a roadmap is constructed. In this step, the obstacles are also neglected.
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After computing the roadmap, a shortest path algorithm is performed (e.g., A* as described in
Section 3.2) and finally the nodes of the resulting path are checked for collisions. If colliding
nodes appear, these nodes are removed from the graph V := V \Vc where Vc is the set of
colliding nodes of the path. Afterwards, the shortest path algorithm is performed again.

If no path can be found either in the original roadmap or due to the removal of a node,
new nodes have to be inserted. This method is called node enhancement. To avoid confusion,
this technique is different to the one of the previous paragraph. The idea of this concept is to
add a set of nodes Nenh around a given state called seeds. These seeds should basically be
in narrow passages or difficult regions of the CS. One possibility is to use a state which is
the intersection between an obstacle and a previously removed edge of the shortest path. This
strategy guarantees that the seed state is close to the obstacles and near to the shortest path. To
guarantee probabilistic completeness, it is necessary to add uniformly distributed random points
over the whole CS. If this step is performed iteratively, a cluster of nodes around the seeds
arises and the other regions are neglected. To overcome this drawback only uniformly generated
random points can be used as basis for the seeds. The new random points around the seeds can
be distributed in many different ways. An overview about this approach is given by the flow
chart in Figure 3.12.

Since collision checks are only performed for complete paths and not for every random point,
it turns out that this method is more practical for single queries or for CS with moving obstacles.
However, this approach can also be used for multiple queries instead of basic PRM. Another
PRM based approach is presented in Section 4.4 where non-holonomic systems are considered,
especially for CLRs.

3.5.2 Motion planning based on rapidly-exploring random trees

Another probabilistic motion planning approach uses a special kind of random trees exploring
the CS called Rapidly-exploring Random Tree (RRT). The special property of RRTs in contrast
to conventional random trees is that the RRT rapidly discovers the whole CS. This property is
very useful to find a path over large distances. The difference between a conventional tree and an
RRT is shown in Figure 3.13. The left tree is constructed using a conventional approach where
a local cluster arises. On the right side of this figure, the tree rapidly explores the whole space.
Despite from the previous mentioned approaches, RRT can be used for high dimensional CSs.
As described in Section 3.5.1, PRM based approaches are only suitable for 4-5 dimensions. In
contrast to PRM based approaches, RRT approaches do not need any preprocessing and therefore
they are well suited for single query purposes. Another interesting property is that either a path
in the WS or even the whole trajectory can be computed.

The construction algorithm of an RRT is quite easy to implement. Starting from an arbitrary
configuration in the CS, the algorithm selects a random state within the free portion of the
space. Subsequently, it searches for the closest state in the current tree using an arbitrary metric.
Furthermore, the algorithm uses a local planner to get towards the random state. In a predefined
or random distance from the nearest node, the algorithm generates a new node, if the path and
the new state do not collide with obstacles.

Algorithm 5 shows the construction of an RRT with a size of k nodes. It uses the function
RANDOM_STATE() to get a random point in the free portion of the space. It is very important
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Figure 3.12: Flow chart of the LPRM approach (taken from [5])

that the random states are uniformly distributed to guarantee probabilistic completeness of the
motion planning algorithm. Since it is quite difficult to generate random states from the free
portion of the space in general, random numbers are chosen from the whole space and colliding
nodes are rejected.

Furthermore, the function NEAREST_NEIGHBOR(x,T ) is used to find the nearest neigh-
bor of x in the tree T . This function needs a metric to estimate the distance or the costs between
two states. For example, in the Euclidean space without obstacles, the Euclidean distance can
be used. However, if there are obstacles within the space or the space is high-dimensional, it is
quite difficult to find a good metric. Since this step is executed frequently as described in the al-
gorithm, it is very important to find a fast metric. In a high dimensional CS including obstacles,
the problem of finding an exact metric can be as hard as the motion planning problem itself [6].
Therefore, in most cases heuristics are used to estimate the costs between two states.

Finally, the function NEW_STATE(...) generates a new node xnew between the nearest
node xnear and the actual random node xrand connected to xnear. The new point must be reach-
able from the nearest point considering all constraints of the system. Therefore, a local planner
can be used to move towards xrand. However, it is not necessary that the planner computes the
whole path to xrand. It is sufficient that it computes a feasible path towards the random state
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Figure 3.13: Comparison between a conventional tree and an RRT in two-dimensional space
(taken from [6])

(with a fixed or random length). If the new state is within an obstacle area the state is rejected
and a new random state is chosen. The steps described above are visualized in Figure 3.14.

Since collision checking is necessary for RANDOM_STATE() and for NEW_STATE(...),
it is very important that this step is executed very fast. The quality and the computation time im-
manently depend on the distance metric and the local planner. Obviously, it is nearly impossible
that Line 5 of the function EXTEND() in Algorithm 5 is satisfied, especially in the case of a
continuous CS. Thus, it is practical to define a function which checks if ‖xnew − xgoal‖ ≤ ε for
a constant ε. However, if ε is chosen too large, it has to be determined if the path between xnew
and xgoal is feasible and whether a path between these nodes has to be computed. This step has
to be implemented very efficient (e.g., using a heuristic), since it has to be executed for every
new node.

Algorithm 6 shows a simple adaptation of the basic RRT algorithm. In additional to Algo-
rithm 5, it is checked if a new node is connectable to the goal node. In this case, the algorithm
returns the final path using the function PATH(T ,x) which simply iterates from the matching
node xnew ∈ Xgoal back to the root xinit. If the tree reaches a size of k nodes without finding a
path, it returns a failure.

Bidirectional RRT
In the previous part of this section, an RRT was described which starts from xinit and termi-

nates if one node of the tree is close to xgoal. However, this approach can be improved, if two
trees are computed simultaneously, where one tree starts at xinit and the other tree starts at xgoal.
If a new node is added to one tree, it is checked if any node of the other tree is close enough to
the new node. Algorithm 7 describes this approach. Note that the function EXTEND(T ,x) is
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Algorithm 5 Basic algorithm for RRT generation (taken from [6])
BULID_RRT (xinit)

1: T .init(xinit)
2: for k = 1 to K do
3: xrand ← RANDOM_STATE ()
4: EXTEND (T , xrand)
5: end for
6: Return T

EXTEND(T , x)
1: xnear ← NEAREST_NEIGHBOR (x,T )
2: if NEW_STATE(x, xnear, xnew, unew) then
3: T .add_vertex (xnew)
4: T .add_edge (xnear, xnew, unew)
5: if xnew = x then
6: Return Reached
7: else
8: Return Advanced
9: end if

10: end if
11: Return Trapped

Algorithm 6 Planning algorithm using an RRT (taken from [6])
RRT_PLANNER (xinit, xgoal)

1: T .init(xinit)
2: for k = 1 to K do
3: xrand ← RANDOM_STATE ()
4: if not EXTEND (T , xrand) = Trapped then
5: if EXTEND (T , xnew) = Reached then
6: Return PATH(T )
7: end if
8: end if
9: end for

10: Return Failure
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Figure 3.14: Visualization of function EXTEND() (taken from [6])

the same as in Algorithm 5.
The function CONNECT (Tb, x) uses a greedy approach to connect the new node with

the other tree. For simplicity it is also possible to use the EXTEND (Tb, x) function instead
of CONNECT (Tb, x) in Line 6 of RRT_CONNECT_PLANNER from Algorithm 8.

Algorithm 7 Bidirectional planning algorithm using an RRT (taken from [6])
RRT_CONNECT_PLANNER (xinit,xgoal)

1: Ta.init(xinit)
2: Tb.init(xgoal)
3: for k = 1 to K do
4: xrand ← RANDOM_STATE ()
5: if not EXTEND (Ta, xrand) = Trapped then
6: if CONNECT (Tb, xnew) = Reached then
7: Return PATH(Ta, Tb)
8: end if
9: end if

10: SWAP (Ta, Tb)
11: end for
12: Return Failure
CONNECT(T , x)

1: repeat
2: S ← EXTEND (T , x)
3: until not (S = Advanced)

Guided RRT
In [10], an interesting approach is presented which can increase the performance and quality

of RRT based planning algorithm dramatically. Especially in presence of narrow passages in the
CS, this method provides much better and faster solutions.

The basic idea is to use an auxiliary path to guide the RRT planner. This auxiliary path
is based on other motion planning approaches e.g., roadmap based approaches as described in
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the beginning of this chapter. The question is: why is it desirable to use two different planning
approaches? Most of the described approaches are only suitable for low-dimensional spaces
without differential constraints but RRT approaches are well suited for these problems.

Therefore, an auxiliary path is computed in the CS without considering any constraints.
Furthermore, many of these algorithms provide a high quality path. This path is used to guide
the RRT search as described in Algorithm 8. It is assumed that the auxiliary path is represented
by a list of states which is stored in P [ ]. Moreover, the distance from the nearest node in the
tree to the corresponding state in P [i] is stored in D[i]. Note that this list has to be updated
after each iteration. Furthermore, the temporal goal t is initialized to the first element of the
path. The algorithm checks in each iteration, if any node of the tree has reached the temporal
goal t and if so, a new temporal goal is elected based on the distance of elements of P [ ] by
the function NEXT(). In contrast to the basic RRT approach, the random node is set to the
temporal goal t for every nbias iteration in Line 9 to 13 of the algorithm. It is also necessary to
select random states as in the basic RRT to guarantee probabilistic completeness. If an auxiliary
path exists which is not feasible for a constrained system, the performance decreases. However,
after escaping this trap, the algorithm tends to go back to the auxiliary path.

In Line 20, the algorithm updates the distances from each point of the auxiliary path to the
tree. The rest of the algorithm is quite similar to the basic RRT approach.

Algorithm 8 RRT-Path (taken from [10])
RRT_PATH (xinit, xgoal)

1: T .add(xstart)
2: P [ ]← prepare auxiliary path from xinit to xgoal
3: D[ ]← distances between points in P [ ] to the nearest point in tree T
4: t← FIRST(P [ ])
5: for k to K do
6: if EXTEND (T ), t = Reached then {Evaluates to true if t is reached by a node of T }
7: t← NEXT (P [ ],D[ ])
8: end if
9: if k mod nbias 6= 0 then

10: xrand ← t
11: else
12: xrand ← RANDOM_STATE ()
13: end if
14: {Similar to RRT_PLANNER}
15: if not EXTEND (T , xrand) = Trapped then
16: if EXTEND (T , xnew) = Reached then
17: Return PATH (T )
18: end if
19: end if
20: UPDATE_DISTANCE(D[i]) ∀i
21: end for
22: Return Failure
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Analysis
Since the RRT approach is a non-deterministic algorithm, it is obvious that it cannot be com-

plete. This means that it is not guaranteed that the algorithm finds a solution even if one exists.
Moreover, the algorithm cannot determine if a solution exists or not. In practice, the algorithm
provides a quite good average performance and it can be assumed that no path exists if the
algorithm does not find one after a sufficient number of steps.

This interesting property leads to a term called probabilistic completeness. This means that
if the size of the tree increases, the chance to find a solution increases proportionally. If the tree
size converges to infinity, a solution will eventually be found if one exists. In [20], a proof is
presented which shows that the RRT approach is probabilistic complete.

3.6 Feedback motion planning

In classical control theory, trajectory planning and system control are different tasks. The classi-
cal approach in control theory is to plan a feasible trajectory in the first step. In the second step
a state controller is used to keep the system on the desired trajectory.

This approach has many drawbacks. A state controller is able to keep the system on the
desired trajectory but the controller is only able to lead the system back to the trajectory if
it is within an ε-environment around the trajectory. In the most cases, ε can be denoted as
d = ‖x(t) − xd(t)‖ ≤ ε. The control loop is only stable, if the system does not leave the ε-
environment. Due to uncertain events (e.g., sensor errors of real systems), it is possible that the
system leaves this environment and gets uncontrollable.

To overcome this drawback, another approach is presented. This approach merges the plan-
ning and the control task to one single closed loop task. Assume that the actual state of an
arbitrary system is xinit. Further let xgoal be the desired goal position. In the first step, a motion
planning algorithm is used to plan a feasible trajectory from xinit to xgoal. If the motion plan-
ning algorithm also computes the input vector of the system, this vector can directly be used as
input for the system. After the system was executed a given period of time, the system reaches
the state x1. Not that x1 can be arbitrary. From this state, the motion planning algorithm is
used again to plan a feasible trajectory form x1 to xgoal. These steps can be continued for states
x2, ..., xn−1 until xn ∈ Xgoal is reached. As one can see, no trajectory tracking controller is
necessary. Thus, uncertain behavior can not destabilize the system controller.

Due to these properties, one will ask why this approach is not used for every task in practice.
The main drawback of this approach is the performance. As mentioned before, the motion
planning algorithm has to be performed periodically during runtime. Since these algorithms are
inefficient or even non-deterministic, it is not possible to execute these algorithms in the desired
interval. However, if the time interval between two sampling states xi and xi+1 is too long, this
can lead to an inefficient path or a collision.

In the case of a predefined CS, motion planning approaches can be used which are optimized
for multiple queries (e.g., roadmap based approaches or potential field approaches) to reduce the
effort of a query. In the following part of this section, concrete feedback planning approaches
either for discrete or for continuous systems are introduced.



3.6. Feedback motion planning 45

3.6.1 Discrete approach

In this paragraph, only motion planning problems on discrete CSs are considered. Since real
systems are continuous in general, the continuous system has to be discretized. In Section 3.2,
the formal definition of a discrete motion planning problem was presented. The definition for a
feedback motion planning problem is quite similar with the exception that the discrete CS and
also the input space are finite. An example of a finite discrete CS is given in Figure 3.15.

The idea is to define a not necessary optimal but feasible plan π from every state xi ∈ C to
xgoal ∈ Xgoal ⊆ X . This plan consists of a sequence of actions vectors πi = (u0

i , u
1
i , ..., u

k
i ).

Since the CS is finite and known in advance, it is possible to compute a plan πi for every state
xi ∈ X in advance. Hence, it is not necessary to execute a motion planning algorithm during
runtime. If the system starts in an arbitrary state xi of the CS X , it executes the first action u0

i of
the plan πi. Due to the state transition function, this results in a state xj = f(xi, u

0
i ). However,

if an uncertain event arises, the system resides in state xl instead of state xj . Fortunately, this is
no problem for the algorithm. Since all states consist of a feasible plan to the goal, the system
executes u0

j or u0
l respectively. If the system reaches xgoal the algorithm stops and holds the

system.

As one can see from the above description, only the first action u0
i of a plan πi is executed.

Therefore, the subsequent actions u1
i , ..., u

k
i are not necessary for the algorithm and so a lot of

memory can be saved.

Hence, a feedback motion plan can be reduced to a function which maps every state xi to
one action ui. Thus, the function π can be redefined as π : X 7→ U in contrast to Section 3.2.

Until now, only not necessary optimal paths were considered. However, this approach can
also be used, if optimal paths are desired. In this context, Dijkstra’s algorithm is reconsidered.
In Section 3.2, this algorithm was used to find a shortest path between two nodes of a weighted
undirected graph. However, this algorithm has a few side effects which are very useful for
feedback motion planning. Assume that xgoal is the start node for Dijkstra’s algorithm and that
the goal node can never be reached (i.e., the algorithm terminates if all nodes are processed). In
this case, Dijkstra’s algorithm calculates for every node (state) a cost value which represents the
costs to xgoal. Furthermore, every state (node) contains a pointer to the next state on the path to
the start node (xgoal). This exactly represents the behavior of the function πi for a state xi.

Figure 3.15 shows an example of a grid based two-dimensional CS. In this case, each node
represents a state in the CS. The red nodes denote the states which are within obstacles –
therefore they are not connected. The target state xgoal is represented by the green node in
the figure. Furthermore, it is assumed that the distance between two adjacent nodes (states) is
one. The value within a node represents the costs-to-go functions which denotes the costs to
the goal node. The arrows point to adjacent nodes with the least costs to the goal state. The
arrow represents the action which the system has to execute next. Hence, this arrow can also be
interpreted as the function πi as described above. The presented example is very similar to the
example in [7].
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Figure 3.15: Example for a feedback plan over a 2D CS with obstacles (taken from [7])

3.6.2 Continuous approach

Due to the complexity of the theory behind this concept, only the basic ideas of continuous
feedback motion planning are presented. The interested reader is referred to [7]. One con-
cept is based on a hierarchical approach combining the potential field method as introduced in
Section 3.4 and the method of cell decomposition as described in Section 3.3.

Preprocessing Phase
Consider a continuous but finite CS. This CS can possibly contain polyhedral obstacles.

• The first step is to decompose the CS into a cell complex. This means that the CS is divided
into polyhedral obstacles. In case of C = R2, these objects are triangles ([18]). These cells
are denoted as W = {w0, ..., wm−1}. One distinguished cell wgoal exists which contains
the goal configuration xgoal. Based on this cell decomposition, an undirected weighted
graph G = (V,E, c) where c is the cost function is constructed as follows. Every node in
the graph represents a cell in the CS (W 7→ V ), the corresponding node of the cell wgoal
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which contains the goal state xgoal is denoted as goal node vgoal. Furthermore, two nodes
of the graph are connected if and only if the corresponding cells are adjacent (i.e., they
share the same edge). The costs of an edge can be defined differently. One possibility is
to define the weight as the Euclidean distance between the center of two adjacent cells. In
case of wgoal, the goal configuration xgoal is considered instead of the center point. The
resulting partition is shown in Figure 3.16.

xG

Figure 3.16: Example of a triangle cell decomposition (taken from [7])

Once such a graph is computed, the algorithm of discrete feedback motion planning is
applied on the graph. This means that Dijkstra’s algorithm is applied to this graph starting
from vgoal. This results in a graph where every node (or cell) consists of a cost value.
Furthermore, every node contains an action which directs the system to an adjacent cell
(or node). In case of C = R2, this can be illustrated as shown in Figure 3.16. The arrows in
every cell denote the action. The action of each cell specifies one face or edge (depending
on the dimension) to an adjacent cell. Informally, one can say that the system must exit the
actual cell over this face. Hence, this face or edge is called exit face. This step describes
the global feedback plan of the system. It must be guaranteed that a system which resides
in a cell exits this cell over the exit face.

• To define a local plan for each cell which guides the system over the exit face, a gradient
field is defined for every cell. This method is quite similar to the potential field approach
as described in Section 3.4. The gradient field should be defined such that every integral
curve (i.e., trajectory) ends at the exit face. Figure 3.17 shows a cell where the vectors
point to the exit face (or edge). Since the goal cell wgoal does not have an exit face, the
potential field must be defined such that every trajectory ends in the goal configuration
xgoal.
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Repulsive vertex

Exit edge

Figure 3.17: Gradient field within a triangle cell (taken from [7])

Execution Phase
Once the gradient fields were computed, the preprocessing is done and the algorithm can be

executed as follows. Starting from an arbitrary configuration xi ∈ wa, the corresponding action
trajectory derived from the gradient field is applied to the system for a given time interval.
After this execution step the system resides in the configuration xj . It is not necessary that xj
exactly follows the aimed trajectory because of the basic properties of feedback motion planning.
Subsequently, the action trajectory w.r.t. the gradient field is applied to the system starting from
xj .

The time interval in which the system executes without any feedback can lead to a prob-
lematic behavior. Ideally, the time interval should be near to zero. In this case, it is nearly
impossible that the system leaves Xfree. However, this is not possible in practice because the
feedback planner needs a few time to calculate the next input curve for the system and therefore
a compromise has to be found.

A few motion planning concepts for continuous systems exist but the above described method
is only one illustrative approach. Note that the above approach is complete but not optimal. In
[7], algorithms are presented which are optimal or possibly probabilistic.

3.7 Comparison of motion planning approaches

Table 3.1 summarizes the presented approaches based on the properties: completeness, opti-
mality, and performance. Additionally, the table provides an overview about the benefits and
drawbacks of each approach.
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Table 3.1: Comparison of the presented motion planning approaches





CHAPTER 4
Motion planning for car-like robots

4.1 Overview

In the previous chapter, a few basic motion planning approaches were presented. Until now, no
system specific behavior was considered discussing these approaches. This chapter focuses on
special systems called CLR starting with the system model. Afterwards, a few motion planning
algorithms are introduced which are adapted from Chapter 3 to satisfy the requirements of CLRs.
The end of this chapter deals with an application specific problem for CLRs. Based on the basic
motion planning algorithms, strategies were developed to cover special application scenarios for
CLRs (e.g., for mowing and harvesting).

4.2 System model of a car-like robot

This section introduces simplified system models for CLRs. While the system model for a CLR
is a continuous system model, discrete models for CLRs which are more or less discretizations
of the appropriate continuous models are examined, too. The basic models only consider the
kinematic properties of a CLR. However, more complex models which consider dynamic prop-
erties (e.g., side acceleration, slip of the tires) exist, too. These models are very important, if
the speed of the CLR is high and the dynamic properties strongly influence the behavior of the
CLR. If the speed of the robot is low enough, these properties and forces can be neglected and
the system model can be reduced to the kinematic single-track model. Figure 4.1 shows the geo-
metric model of a CLR. The model reduces the car to a single track which behaves as a bicycle.
Thus, this model is also called bicycle model.

• The coordinates (x, y) represent the two-dimensional position of the CLR w.r.t. the coor-
dinate system.

• The angle θ denotes the course of the CLR. It is also referred to as heading.

• The angle φ represents the steering angle of the CLR w.r.t. its main axis.

51
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• L denotes the length of the CLR.

The CLR follows a circle with radius ρ, if the steering angle φ is constant. Furthermore, it is
obvious that the steering angle is limited to predefined boundaries φ ∈ [−φmax, φmax]. The
parametric system model for CLR is defined in Equation 4.1.

(x ,y )0 0

Θ0

y

x

Φ0

L

ρ

Figure 4.1: Visualization of the singe-track model for a CLR
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ẋ
ẏ

θ̇
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cos(θ)
sin(θ)
tan(φ)
L
0

 · v1 +


0
0
0
1

 · v2 =


cos(θ) 0
sin(θ) 0
tan(φ)
L 0
0 1

 · (v1

v2

)
(4.1)

The input vector [v1, v2]T in Equation 4.1 contains the speed of the CLR along the main axis
of the CLR (v1) and the angular velocity v2. The CS1 consists of the cartesian coordinates x, y
and the heading θ of the main axis w.r.t. the coordinate system. The last dimension of the CS
represents the steering angle φ of the CLR w.r.t. the main axis of it. Obviously, the steering

1Since the system model of a CLR has only kinematic constraints, CS = SS.
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angle φ is limited by |φ| ≤ φmax < π. Based on this description, the CS can be defined as
follows.

C = R× R× [0, 2π[×[−φmax, φmax]

This model considers the change rate of the steering angle (φ̇). If the speed of the CLR is
low compared to the steering velocity, it can be assumed that the steering angle changes fast
enough. Thus, the constraint on the steering velocity can be neglected and the system model
reduces to a three dimensional CS. Equation 4.4 specifies a simplified model for a CLR. In this
model, the input vector contains the speed of the CLR along the main axis and the steering angle
of the CLR in contrast to Equation 4.1.

q̇ =

ẋẏ
θ̇

 =

cos(θ) 0
sin(θ) 0

0 1

 · (ν
ω

)
(4.2)

Note that the input variable of Equation 4.2 is defined as follows.

ω =
v

L
· tan(φ) (4.3)

.
For simplicity, this model can also be expressed as shown in Equation 4.4.

ẋ = ν · cos(θ)
ẏ = ν · sin(θ)

θ̇ = v
L · tan(φ)

(4.4)

4.2.1 Trajectory of a car-like robot

In the case of a CLR, a two-dimensional geometric path is sufficient to describe the movement
of the CLR. It is also interesting that the third dimension of the CS (the heading) is determined
by the geometric path. The heading of the CLR is exactly the tangent angle of the geometric
path. The only information which is not specified by the geometric path is the time information
i.e., the speed of the CLR. Thus, in general, it is sufficient to plan the geometric path for the
CLR and to choose a constant speed.

4.2.2 Optimal paths for car-like robots

Since two arbitrary configurations of the CS of a CLR can not be connected by a straight line
because of the non-holonomic constraints, the question for a shortest path between two configu-
rations comes up. The non-holonomic constraint restricts the path to a curvature constraint path.
In general, a few models exist which are able to connect two arbitrary configurations by a short-
est path but only in an infinite CS without any obstacles. In the following paragraphs, two similar
models are presented which describe a path between two configurations as a concatenation of
line and arc segments.

Furthermore, complete algorithms exist to determine the optimal path using these models.
Since no real CS is unbounded and without obstacles, these algorithms are not for practical use.
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Dubins’ car
This model provides a method to connect two arbitrary configurations of a curvature constraint

system by a shortest path. [21] proved that such an optimal path can be found by a concatena-
tion of at most three different line or arc segments. The arc segments have constant curvature.
However, it is assumed that the CS is unbounded and contains no obstacles.

An important property of this model is that it is based on a unicycle model as described
previously. Therefore, a Dubins’ curve is geometric smooth but not curvature smooth i.e., the
car has to stop after each motion.

A Dubins’ curve can be denoted by three different primitives. The first possible primitive
is a straight line which is denoted by S. Furthermore, arcs with a constant curvature (e.g., the
highest possible curvature of the robot) exist. Such an arc can either turn right R or turn left
L. Based on these three types of primitives, a Dubins’ curve can have one of the following
structure.

{LRL,RLR,LSL,LSR,RSL,RSR}

Since the radius of the arc segments is defined, a Dubins’ curve can be exactly defined by
specifying the length of the straight segment S or the angle of the arcs in case of either R or L.
Furthermore, C can be defined as C = {R,L}. Thus, a Dubins’ curve can be generalized as
follows:

{(Cα, Cβ, Cγ), (Cα, Sd, Cγ)} (4.5)

An additional restriction is necessary to guarantee that the specified path is optimal. If and
only if α, γ ∈ [0, 2π[, β ∈]π, 2π[ and d ≥ 0 then the definition of Equation 4.5 describes an
optimal and unique Dubins’ curve [21]. An example of such a curve is shown in Figure 4.2.

α

γ

d
Rα

Sd

Lγ

qGqI
α

γ
Rγ

Rα

qG
qI

Lβ
β

Figure 4.2: Example of two Dubins’ curves (taken from [7])

Once the basic structure is defined, the question is how to find such a path. A naive approach
is to try all seven possible combinations and select the shortest one. A more feasible approach is
to partition the environment of a configuration to seven distinct areas according to the different
motion combinations (cf. Figure 4.3). Once a goal configuration is in an area, the basic combi-
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nation is determined. Furthermore, it is necessary to determine the parameters (α, β, γ, d) of a
path. This can be done by linear programming approaches.

y

x

LSR RSL

RSL LSR

LSL

RSR

LRL

RLR

Figure 4.3: Partition of the space according to the seven basic motions (taken from [7])

Based on such a path, a simple control set for a CLR can be computed. Since only three dif-
ferent types of motions are available, obviously only three different controls φ = {0, φmax,−φmax}
exist. Since the steering angle can not be changed in zero time, a CLR has to stop after each
segment to change its steering angle. Consider for example the segments Lα, Sd, Rγ . In this
case, the control set for the steering angle can be defined as shown in Equation 4.6.

u(t) =


−φmax if t0 < t ≤ t1
0 if t1 < t ≤ t2
−φmax if t2 < t ≤ t3

(4.6)

Reeds and Shepp Car
The Reeds and Shepp Car (RSC) ([22]) is an extension of Dubins’ car. In contrast, the RSC

allows also backward motion. Similar to Dubins’ car a lot of basic combinations exist. Since
forward and backward motions are allowed, the number of basic combinations increases to 48
in contrast to 7 in case of Dubins’ car. For a complete description of the basic combinations,
the reader is referred to [22]. An example of such a path is shown in Figure 4.4. This example
shows a Rα|Lβ|Rγ path. Note that the constraints of the paragraph mentioned before are not
applicable in this case.
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α

γ

qG
qI

β

R+α R+γ
L−β

Figure 4.4: Example of a Reeds and Shepps curve (taken from [7])

4.3 Discrete motion planning for car-like robots

The approach of discrete motion planning was introduced in Section 3.2. Since a CLR is a
continuous system, the system has to be discretized. A naive method of discretion is based on
regular rectangular grid. All discrete states are arranged in a grid as shown in Figure 4.5(a).
Furthermore, it is possible to arrange the states in a diamond lattice as shown in Figure 4.5(b).
Another method is to choose uniform random configurations of states as shown in Figure 4.5(c).

(a) (b) (c)

Figure 4.5: Different types of state lattice

Since the CS for a CLR is a three- or four-dimensional space, all dimensions (including the
angles) must be discretized.

Naive Approach
Once a discrete CS is constructed, the states have to be connected, if they are feasible. Starting

from a central point of the CS, all immediate neighbors are checked for feasibility. Note that the
term point denotes all states with equal positions but different headings or steering angles in this
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context. If a node of the center point can feasibly be connected to an adjacent node with arbitrary
heading, the two states are connected by an edge. Two nodes can be connected, if the appropriate
configurations can be connected by a concatenation of a straight line and an arc with a maximum
curvature as shown in Figure 4.7. Note that a Dubins’ curve is not suitable in this case, since
a Dubins’ curve computes a path with a constant curvature for every two configurations. Thus,
this method can not be used for a feasibility check. If all possible neighbor configurations are
connected, they are marked as done. Furthermore, they are connected to all their neighbors and
so on.

This approach explores all reachable neighbors w.r.t. the initial configuration. Obviously,
this approach requires a function which checks the feasibility between two states. Furthermore,
it has to perform a collision check.

After the creation of the search graph as described before, the edges can be weighted either
by the Euclidean distance between the corresponding nodes or by the path length generated by
a local planner. Furthermore, a graph search algorithm can be used to find a feasible or even
optimal path (w.r.t. the discretized CS) between two arbitrary states in the CS.

The drawback of this approach is the large number of states. If a fine resolution of states
is required to guarantee a pretty optimal and complete solution, the number of states increases
dramatically. If a coarse resolution is used, it is possible that a path can not be found, even if
one exists.

Decomposition Approach
Another approach presented in [23] tries to find an optimal path in a state lattice as shown in

Figure 4.5(a), by decomposition of paths starting from an initial point. Similarly to the previous
approach, the immediate neighbor (i.e., 1-neighborhood) is checked if a feasible connection
exists. In this case, the two nodes are connected.

In the second step, nodes in 2-neighborhood are considered. If the central point can be
connected to a nodes in distance two, the computed path is checked if it is sufficiently close
to any adjacent node of the central point. In this case, the node is obviously connected to the
central point in the previous step. Thus, the new path is decomposed to two different segments.
After this step, the 3-neighborhood is considered and so on.

Every path is decomposed to shorter segments as long as it is possible. After exploring and
decomposing the k-neighborhood, the algorithm explores the (k + 1)-neighborhood in a circle
around the central point.

Note that this approach assumes that a local planner exists which connects two different
configurations. Furthermore, a function is necessary which checks, if a path passes any state
sufficiently close. In contrast to the naive approach, less edges are necessary. However, the
possibly high amount of states remain.

4.4 Motion planning for car-like robots based on probabilistic
roadmaps

In Section 3.5.1, a motion planning approach called PRM was introduced. However, the de-
scribed approach is well suited for holonomic systems. Hence, non-holonomic systems were
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not considered in those section.
In this section, motion planning concepts were introduced for non-holonomic systems par-

ticulalary for CLR which are based on PRM. As described in the previous sections, the challenge
of motion planning for non-holonomic systems is to meet the non-holonomic constraints.

In [24], an approach is presented how to adapt the basic PRM-concept for non-holonomic
system. This algorithm consists of three different phases as described below.

• Control roadmap
The control roadmap is constructed similarly to the basic PRM without considering the
kinematic constraints of the system. Figure 4.6 shows an example of a control roadmap
(i.e., the black graph). The control roadmap is constructed in a two dimensional space
W = R2 without considering the course of the robot. It is assumed that the robot can
be modeled as a disc and therefore the heading can be neglected. Thus, random nodes in
the free space of the WS are computed. Furthermore, each node is connected by a local
planner to its neighborhood, if there is no collision between them. This step is similar to
the basic PRM, too.

Control roadmap

Approximate roadmap

(x,y)

(x,y,Θ)

Figure 4.6: Computation of the approximate roadmap based on the control roadmap

The resulting control roadmap is represented by a graph G = (V,E) which stores the
connectivity of the free space but it does not consider any constraints.

• Approximate roadmap
Based on the control roadmap, the approximate roadmap represented by a graph G′ =
(V ′, E′) is constructed as follows. Figure 4.6 shows an example of an approximate
roadmap (i.e., the green graph). In contrast to the control roadmap, the approximate
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roadmap considers the heading of the CLR. Thus, each node represents a state in C =
R2 × [0, 2π[. For every edge e ∈ E of the control roadmap, a node v′ ∈ V ′ exists in the
approximate roadmap. This mapping can be described by a bijective function l : E 7→ V ′

which is defined as follows. The plane coordinates of a node v′ are based on the bisection
of the corresponding edge in the control roadmap. The third dimension of a node in the
approximate roadmap represents the course of the robot which is equal to the geometric
angle of the edge of the control roadmap.

Two nodes v′1 = l(e1), v′2 = l(e2) ∈ V ′ are connected by an edge if and only if the cor-
responding edges e1, e2 ∈ E are adjacent. Therefore, every node in the control roadmap
G is mapped to an edge in the approximate roadmap which is denoted by the following
function l′ : V 7→ E′. In graph theory, this mapping G′ = L(G) is called line graph of G.

Since the kinematic constraints were not considered until now, it is clear that not every
connection e′ ∈ E′ = (v′1, v

′
2) between two configurations v′1 and v′2 is feasible for a

CLR. Therefore, a local planner is used to check the feasibility of an edge considering the
curvature constraints. If an edge is infeasible for a CLR, it is removed from the roadmap
G′.

The local planner can use a simple geometric model to connect two configurations of G′.
A connection consists of a straight line segment in combination with an arc as shown in
Figure 4.7. This figure shows the projection of two points of the roadmap on the plane
where the third dimension of the configuration is represented by the angle of each state
(similar to a vector field). Every node can be written as v′ = (r, θ) where r = (x, y)T

represents the point in the WS and θ the orientation of the robot. For every two nodes
such a connection can be defined uniquely. To check the feasibility of such a connection,
only the curvature of the arc has to be considered. The relation between the radius of the
arc and the curvature can be defined as

κ =
cot(α2 )

min(a, b)
(4.7)

where a = ‖r1 − rx‖ and b = ‖r2 − rx‖. α denotes the angle difference between the two
configurations. Note that v′x is not a node of the graph.

Based on the maximum curvature of the CLR κmax, edges which do not fulfill this require-
ment can be removed. After this step the resulting graph G′′ = (V ′, E′\{e ∈ E′|κe >
κmax}) represents a feasible roadmap for a CLR.

Based on the reduced approximate roadmap, a graph search algorithm (e.g., A*) can be
performed to find a path from qinit to qgoal. If another CLR with another maximum curvature is
used, only the last step has to be repeated.

However, this path is not yet feasible for practical use since curvature of the computed path
is not continuous. If a CLR follows this path it has to stop after each arc or line segment and to
change its steering angle.

To generate a curvature continuous path based on a sequence of arcs and lines, path smooth-
ing approaches like cubic B-Splines can be used.
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Figure 4.7: Geometric connection between two nodes of the approximate roadmap

4.5 Motion planning for car-like robots based on rapidly-exploring
random trees

RRT based motion planning approaches can be used for different purposes. Famous participants
of the DARPA Urban Challenge2 use this approach to plan a route for their CLRs [25]. Some-
times the RRT approach is used in combination with feedback motion planning as described in
Section 3.6.

This section examines the RRT approach in combination with the forward simulation of
the system model of a CLR. Starting from the configuration qinit and qgoal, two trees are con-
structed, where every path between the root and any other node of the tree is feasible.

Remember the RRT algorithm of Section 3.5.2 (cf. Algorithm 9). The RRT approach for
CLRs is based on the bidirectional RRT approach. Since this algorithm is a high level descrip-
tion, it is necessary to specify the functions of the algorithm as follows.

• RANDOM_STATE()
This function is used to generate a random state out of the CS. The CS for a CLR depends
on the used system model. The simple system model only considers the position and the
heading of the car and therefore it can be defined as C = R2 × [0, 2π[. If in addition
to the simple system the steering angle is considered as state variable, the CS looks like
C = R2 × [0, 2π[×[−φmax, φmax].

It is important that the random function generates a uniform random number in every
dimension to guarantee probabilistic completeness. Furthermore, this function must also
perform a collision check, to avoid that the random state is inside obstacles.

• EXTEND(T , xrand)
This function extends the tree by a node based on a given random configuration. At
the beginning, the function searches for the nearest neighbor of the given random state.
Therefore, the distance of every node of the tree to the random state has to be computed

2More information available at http://www.darpa.mil/grandchallenge/
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Algorithm 9 Bidirectional planning algorithm using an RRT (taken from [6])
RRT_CONNECT_PLANNER (xinit,xgoal )

1: Ta.init(xinit)
2: Tb.init(xgoal)
3: for k = 1 to K do
4: xrand ← RANDOM_STATE ()
5: if not EXTEND (Ta, xrand) = Trapped then
6: if CONNECT (Tb, xnew) = Reached then
7: Return PATH(Ta, Tb)
8: end if
9: end if

10: SWAP (Ta, Tb)
11: end for
12: Return Failure
CONNECT(T , x)

1: repeat
2: S ← EXTEND (T , x)
3: until not (S = Advanced)

EXTEND(T , x)
1: xnear ← NEAREST_NEIGHBOR (x,T )
2: if NEW_STATE(x, xnear, xnew, unew) then
3: T .add_vertex (xnew)
4: T .add_edge (xnear, xnew, unew)
5: if xnew = x then
6: Return Reached
7: else
8: Return Advanced
9: end if

10: end if
11: Return Trapped
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and the shortest one is chosen. However, the exact computation of the real distance (or
costs) between two configurations can be as hard as the motion planning problem itself.
Since it is not necessary to know the exact distance, it is sufficient to estimate the distance
using a heuristic or simply the Euclidean distance.

One fast method is to consider only the Euclidean distance of the projection in R2 but this
is not optimal. Consider the case of two configurations with nearly the same coordinates
in R2 but two different headings. The Euclidean distance between the two configurations
is nearly zero but the real distance is much higher since the CLR has to turn.

To overcome this drawback, a local planner can be used. However, a local planner is more
complex than the calculation of the Euclidean distance.

If the nearest neighbor is determined, a path has to be generated towards the random
configuration. Note that it is not necessary that the new configuration reaches the random
configuration. It is only necessary that the path from the nearest node to the new node is
feasible. It is possible to use the result of a local planner and to compute the new node in
a fixed or random distance from the nearest node. Additionally, a collision check along
the whole path has to be performed to avoid collisions.

Another possibility is to simulate the system model in combination with a system con-
troller. In this case, the system model as mentioned before can be used and possibly
discretized. Furthermore, a controller is used to move the system towards the random
configuration. In this case, the system can also stop in a fixed or random distance from
the nearest node. Obviously, a collision check for the whole path is necessary. The advan-
tage of this approach is, that an action trajectory is generated implicitly. Furthermore, the
path must be feasible, if the system model behaves as the real system. Details about this
approach are presented in Chapter 5.

If this function reached the random state directly, it returns reached. If it computed a new
node advanced is returned.

• CONNECT(T , xnew)

This function is used to check if the new node computed by EXTEND can be feasibly
connected to some node of the rest of the tree. The function has to decide whether two
configurations are feasible considering their heading and the obstacles of CS. Further-
more, the system model of the CLR has to be considered (i.e., the curvature constraint).
For this purpose, it is possible that a local planner is used to connect two configurations.
Next, a collision check has to be performed.

• PATH(T , T )
Based on two distinct configurations of the two trees, the PATH function computes a path
from qinit to qgoal. If every node of a tree stores the path to its predecessor, it is easy to
compute a path from the connecting nodes to the root. Furthermore, both paths must be
combined with the result of the local planner to return the complete path.
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4.6 Hybrid approach based on rapidly-exploring random trees

Since the above approach may take a large number of nodes in presence of narrow passages
or large CSs, a new approach developed in the context of this thesis can be used to overcome
this drawback. Remember the guided RRT approach from Section 3.5.2. This approach uses an
auxiliary coarse grained path to guide the random search.

This method also uses an auxiliary path which does not suffice the constraints of the system.
In contrast to the guided RRT, this approach uses a special distribution of the random points. In
addition to the uniform distribution of the random points which guarantees probabilistic com-
pleteness, a normally distributed channel around the auxiliary path is generated. Within this
channel the density of random configurations is much higher than in other regions. However,
the normally distributed function guarantees that the density in the center of the channel is higher
than in the outer regions of the channel.

Figure 4.8 shows a sketch of a WS. In this figure, the auxiliary path is marked red. Fur-
thermore, the density around this path is high. The orange areas in the figure denote a medium
density and the yellow areas denote a low density. Finally, the white region denotes the uni-
formly distributed area where the density is lower than in all other regions. The blue curves
along the path sketch the normal distribution of the random points along the path. Note that the
density decreases continuously.

High

Medium

Low

Normal

Density of random configurations

Obstacle

Figure 4.8: Visualization of the density of random configurations in a CS

In the most cases, this approach computes a path very fast and of high quality in contrast to
the basic RRT approach. However, there are some CS in which this approach takes quite longer
than the conventional approach. Consider for example a CS with a long narrow and infeasible
passage. This approach will try to find a path along this passage, even if no one exists. Since the
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density of random configurations in other regions is quite lower, this approach will take a longer
time to find a feasible path.

4.7 Application-specific problems for car-like robots

In the previous sections, the basic motion planning problem was discussed and different solu-
tions were presented. In this section, another problem is addressed based on the solutions of
the previous sections. The problem is to find a path which completely covers a predefined area
within the WS as claimed in Section 1.3. To simplify this problem, it can be assumed that a
motion planning algorithm exists, which is able to find a path for the CLR from any initial con-
figuration to an arbitrary goal configuration. There are many different ways of covering a field
depending on its contour. However in practice, a field is covered in parallel lanes where turn
maneuvers are performed at the end of each lane.

4.7.1 Covering an area by solving the traveling salesman problem

One possibility to cover a field is to discretize the CS and create a feasible search graph as
described in Section 4.3. Furthermore, all states outside the area are deleted from the graph.
Thus, the graph results in a discrete representation of the field in the WS. If all states of the graph
are visited, it can be assumed that the whole area was completely covered. The formulation of
this problem is similar to the Traveling Salesman Problem (TSP) problem. In contrast to the
TSP problem, not every node has to be visited. In the graph a lot of nodes with the same planar
coordinates but different heading exist. Thus, it is sufficient to visit at least one node of such a
group. If such a node is visited, all other nodes of the group are set visited. Solving this problem
does not guarantee that the whole area is covered. Since the TSP cannot be solved in polynomial
time, this concrete problem can not be solved efficiently, too. However, heuristic algorithms
exist which are able to solve the TSP problem very efficiently but they are not complete. Further
information about this approach can be found in [26, 27].

If the motion planning problem in this section is solved with such an algorithm, it is possi-
ble that the CLR has to perform permanent turning maneuvers. This fact can lead to possible
instabilities and cause a lot of load for the mechanical system.

4.7.2 Covering an area in parallel lanes

A more feasible solution is to cover the working area in parallel lanes is shown in Figure 1.3
of Section 1.3. Since the CLR has a limited turn radius it is not practical to pass one lane after
the other. Assume for example that the CLR has a turn radius of 5 meters and the distance
between two lanes is 2 meters. If the CLR should pass two subsequent lanes, it has to perform
complicated maneuvers. In many cases, it is necessary to change the direction of the CLR a few
times. These maneuvers consume much time and cause a lot of load for the mechanical parts
of the system, too. If the working area is covered in parallel lanes, it is possible that the path
is longer than a TSP approach. However, it is possible that a real CLR takes less time to cover
the area by using parallel lanes. One reason can be that a CLR is able to drive faster, if it drives
straight forward.
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To calculate an efficient path for the CLR it is necessary to consider the turn radius and the
distance between two lanes. The distance between two subsequent lanes on the path of the CLR
should be at least twice the turn radius of the CLR.

To simplify the problem, it is assumed that the working area has the form of a rectangle
where exactly n lanes with equal length are covering the working area. The lanes within the
field are numbered from 0 to (n − 1). One possible representation of a working area is shown
in Figure 4.9. Depending on the physical constraints of the CLR and the distance of the lane,
the CLR can not pass the first k neighbors on its left and right side without moving backwards.
Furthermore, assume that the costs of each lane are equal to the length of the lane. The costs
of a maneuver from one lane to another equals also the distance between these two endpoints
multiplied with a constant factor which represents the effort of the maneuver. A maneuver from
one lane to another within the k-neighborhood has constant but high costs.

In many agricultural tasks, it is necessary that two subsequent lanes are passed in alternating
directions. Consider for example that a soccer field should be mowed. In this case, obviously
the lanes are mowed in alternating directions. A scheme of such a simplified field is shown in
Figure 4.10.
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Figure 4.9: Simplification of a working area as rectangle. The maneuvers with low costs are
marked green, where the maneuvers with high costs are marked red.

Finding a strategy using a decision tree
Based on the definition as mentioned before, a strategy is desired which computes a sequence

of lanes. One possibility to find an optimal path in the described environment, is to build a
decision tree. Assume that the field contains n lanes, then the root node of the decision tree
has at most n − 1 children. Hence, each node in distance l from the root has at most n − l
children and the tree has a depth of n. Since subtrees with costs greater than the best found
solution are neglected during graph search, the number of iterations can be reduced. However,
the number of nodes in the decision tree remains high. If an optimal solution is found, it can
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Figure 4.10: Simplification of a working area as rectangle. Each lane should be passed in a
predefined direction denoted by the arrows. The maneuvers with low costs are marked green,
where the maneuvers with high costs are marked red. The blue maneuvers are not allowed.

not be immediately determined as optimal until the whole tree is explored. Since the tree size
is exponential in general and the number of lanes in a field is quite high, this approach is not
feasible for practical use.

In case of a strategy where the directions of the lanes are considered, the decision tree can
be built quite similar. In contrast to an undirected strategy, the size of the tree reduces, since half
of the possible decisions are not allowed. Thus, the number of children of the root is (n/2)− 1
and the depth of the root is n/2. However, the tree has exponential size and therefore it can not
be used in practice.

Finding a strategy using a set of rules
In contrast to a complete decision tree, another quite easy approach can be used to find a

sequence of lanes. This approach is based on a set of rules which specify a local approach. In
contrast to global approaches, the decision about the next lane is only based on a set of rules.
Furthermore, once a decision is made, it can not be changed (i.e., no backstepping).

This approach obviously does not compute an optimal solution in general but the difference
between the computed solution and the optimal solution decreases, if the amount of lanes in-
creases. These rules can be defined either for a directed strategy or for an undirected strategy. In
case of a directed strategy, a few more rules are necessary.

• One possible set of rules is listed below. These rules neglect the direction of the lanes. In
this example, it is assumed that the amount of lanes is denoted by n. The current position
of the CLR is denoted by i where 0 ≤ i < n.

– If lanes j0, j1, ..., jl < i − k that have not been visited exist, choose the lowest j as
next lane.
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– Otherwise choose the lowest following line j > i+ k which was not yet visited.

– If the first two rules do not match, choose the predecessor j < i with the lowest
index as next lane.

– If the first 3 rules do not match, take the successor j > i with the lowest following
as next lane.

• In contrast to the rules mentioned before, the following set of rules provides the possi-
bility for covering directed lines. The additional rules guarantee the completeness of this
approach. However, the application of the two last rules indicate a very poor strategy. Nor-
mally, these rules are only applied in the last few steps and therefore they can be neglected
for the overall performance in case of a large number of lanes.

Since the direction is considered in this case, the definition of the problem has to be ex-
tended by a function d(i) 7→ {−1, 1}, 0 ≤ i < n which represents the different directions
of each lane.

– If lanes j < i − k and d(j) 6= d(i) that have not been visited yet exist, choose the
lowest j as next lane.

– Otherwise choose the lowest following line j > i + k that has not been visited yet
where the condition d(j) 6= d(i) holds.

– If the first two rules do not match, choose the predecessor j = i− k− 1 as next lane
if it exists.

– If the first three rules do not match, choose the predecessor j < i fulfilling condition
d(j) 6= d(i) with the lowest index as next lane.

– If all other rules do not match, take the successor j > i fulfilling condition d(j) 6=
d(i) as next lane.

– If no rule matches, take the lane with the smallest index.

The result of such an algorithm is a sequence of lanes and the desired direction of each lane.
However, this result can not directly be used for a real area. Therefore, an approach has to be
found which uses this result to compute an overall path covering the whole polygonal area.

Covering an arbitrary polygonal area
The result of the algorithm mentioned before is a sequence of lanes and the desired direction

of each lane. Based on this algorithm, a feasible plan for a CLR has to be computed which
covers an arbitrary polygonal field which possibly contains obstacles. Before a strategy can
be computed the amount of lanes has to be determined. This can be done by counting the
intersections of parallel lanes with the border of the working area and the obstacles. The number
of intersection points of a lane can be interpreted as follows:

• If a lane has no intersection point, it is outside the working area and therefore it is not
considered anymore.
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• If a lane has exactly two intersections it is within the working area and crosses no obstacle.
Thus, the number of lanes is increased by one.

• If a lane has exactly 2k intersections, it is inside the working area and crosses k − 1
obstacles. Thus, k − 1 paths have to be computed to avoid the obstacles. Obviously, the
number of lanes is increased, too.

Once a strategy is computed (either directed or undirected), the first lane is retrieved from
the result list and is added to the overall path. If the lane crosses one or more obstacles, a
path is computed between two adjacent intersection points. Next, the second lane is retrieved
from the result list and a path between the first and the second lane is computed. If the lane
crosses obstacles, paths are computed to avoid them and so on. To illustrate the concept of this
algorithm, Figure 4.11 shows the computation of the overall path. Details about surrounding of
obstacles are presented in Section 5.5.
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Figure 4.11: Construction of the overall path



CHAPTER 5
Implementation

5.1 Requirements

In the previous chapters, basic concepts of motion planning were introduced and motion plan-
ning approaches were presented especially for CLRs. This chapter describes a proof-of-concept
implementation of such a motion planning algorithm for a CLR as claimed in Section 1.3. The
implementation provides a Graphical User Interface (GUI) to edit the elements of the WS and
to visualize the motion planning process.

5.1.1 Development environment

The implementation is realized in Java, since it provides a comfortable environment for devel-
oping platform independent GUIs. Another advantage of Java is that programs can be easily
parallelized using threads. Thus, the following implementation tries to parallelize the path com-
putation as far as possible. Moreover, the system is implemented in a way that it can be easily
ported to a real system. However, this is out of focus of this thesis.

5.1.2 Target system

Since it is desired to implement the motion planning application for practical use, the whole
implementation is based on a real-world lawn mower1. This vehicle has the steering mechanism
on the rear axis. Thus, it is similar to a backward driving CLR. However, the CLR is able to
drive forward, too. The distance between front and rear axis is about 2 meters (i.e., the length
of the CLR w.r.t. the system model). The maximum speed of the desired vehicle is 10 km/h.
The steering angle can be directly set w.r.t. the main axis of the CLR. The maximum steering
angle is about +/-20 degree. This results in a turn radius of about 5 meters. It is assumed that
the steering velocity is high enough to control the CLR at maximum speed. The desired speed

1e.g., Gianni Ferrari GT Range cf. http://www.gianniferrari.com/
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of the car can be directly set using a low-level speed controller. Thus, the inputs of the system
are the speed (including the direction) and the steering angle.

The vehicle is equipped with a precise single frequency RTK-GPS2. Thus, the position of
the vehicle can be determined with an accuracy of less than 0,2 meters, i.e., at least 95% of all
measured values are within a distance of 0,2 meters from the actual point. Furthermore, the
heading of the vehicle is estimated with a digital compass3. This compass has an accuracy of
+/-1 degree.

5.1.3 Working environment

As mentioned in Section 1.3, the working environment consists of three different types of poly-
gons. The definition area limits the operating area of the vehicle. It is the outmost polygon and
contains the working area and the obstacles. The size of this area is about 500× 500m but also
larger areas are allowed. Thus, an ordinary definition area is about 200.000− 300.000m2. Note
that in case of a larger area, the computation time for a path increases dramatically.

5.1.4 Assumptions

For simplicity, it is assumed that the robot is a single point object. Thus, it is not necessary to
consider the shape of the CLR. To ensure that no part of the robot gets out of the definition area
or touches any obstacle, safety areas have to be defined as shown in Figure 5.1. Such a safety
area can be realized by an offset shape of the corresponding polygons. Section 5.3.5 introduces
an algorithm which computes an offset shape of a polygon based on straight skeleton.

5.1.5 Motion planning approach

Since the definition area is large and an accuracy of less than one meter is aimed, a conventional
motion planning approach is not suitable. Consider for example a definition area with a size of
500× 500 meters. Furthermore, assume that a grid of 1 meter is desired. The resulting 2D grid
contains 250.000 nodes. However, this is not enough since the heading of the vehicle has to be
considered, too. If the heading dimension is discretized into 60 different angles the number of
nodes increases by a factor of 60. The search graph of this example would contain about 15
million nodes. Obviously, neither the construction of this graph nor a search in this graph is
realizable in feasible time.

Since an RRT based motion planning algorithm promises good performance, this approach
is used for the path computations of this implementation. To increase the quality of the path and
the performance of the computation, a hybrid RRT approach (as introduced in Section 4.6) is
used to find a feasible path between two configurations within the definition area.

Since the hybrid RRT approach is used, an auxiliary path is necessary. A method to find
such a path is described in Section 5.4.1.

2Septentrio AsteRx1 PRO Sensor with RTK extension
3Honeywell HMR3300
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Figure 5.1: Definition area with obstacles

5.2 Data structures

Before the implementation of the motion planning algorithm is described, the basic data struc-
tures have to be specified which are used to map the physical environment to the motion planning
application. First, the basic geometric data structures are addressed. Next, based on these defi-
nitions the representation of the workspace is shown. Since an object oriented approach is used,
these data structures contain basic methods, too.

5.2.1 Geometric data representation

Point
The basic unit for geodetic computations is the representation of a point. As described in Sec-

tion 2.1, a point can be defined by specifying the longitude, latitude and height. This definition
is unique if it is assumed that the WGS84 ellipsoid model is used. Thus, a class GPSPoint as
shown in Figure 5.2 can be used to represent a point using its geodetic coordinates. As men-
tioned in Section 2.2.2, it is assumed that the desired area (i.e., definition area) is flat enough and
so the height w.r.t. the sea level is neglected. Thus, it is not stored in the class PlanePoint.

The basic operation between two points is the computation of the distance. Furthermore, an-
other important operation is the computation of the heading between two points. The definition
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GPSPoint

-MinutePoint: double []

-ReferencePoint: static GPSPoints

+GPSPoint(LatitudeMinute:double,LongitudeMinute:double)

+GPSPoint(ThisPoint:PlanePoint)

+GPSPoint(RefPoint:GPSPoint,XDistance:double,YDistance:double)

+GPSPoint(Latitude:String,Longitude:String,EastWest:String,NorthSouth:String)

+getCourseDistance(PointA:GPSPoint,PointB:GPSPoint): static double []

+getCourseDistance(PointA:GPSPoint): double []

+getPlanePoint(): PlanePoint

+getNewPoint(distance:double,course:double): GPSPoint

+getCoordinates(): double []

+setReferencePoint(latitude:double,longitude:double)

+getDistanceXY(): double []

Figure 5.2: Class diagram of the GPSPoint class

of the heading is shown in Figure 5.3. Note that the heading angle is computed w.r.t. the y-axis
(i.e., the north-south axis). To compute the distance and the heading between two points, the
class GPSPoint contains appropriate methods. These methods use the approach presented in
[14] to compute the distance and the heading. Figure 5.2 provides an overview of the class.

Figure 5.3: Definition of the heading between two GPS Points

As the distance computation is the most used function in this motion planning application,
the poor performance of the approach presented in [14] would compromise the overall perfor-
mance of the motion planning application and the real-time capability of a motion controller.

To overcome this problem, the representation of all points is changed. Based on an arbitrary
but fixed reference point, all points can be defined by specifying the heading and the distance
to the reference point. Since the reference point is known, this representation is unique, too.
However, it is possible to use the distance along the north-south axis and the distance along
the west-east axis as a unique representation of the point. For simplicity, the north-south axis
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is denoted as the y-axis and the west-east axis is denoted as the x-axis. Thus, every point can
be defined in a cartesian coordinate system. Note that the reference point is in the origin of
the coordinate system. To store a plane point in the application, the class PlanePoint (cf.
Figure 5.4) is used to store its x-y-coordinates w.r.t. the reference point. To determine a unique
point, the class contains a static attribute which specifies the position of the reference point.
This reference point is represented by an instance of the class GPSPoint. If a point is imported
which is represented by geodetic parameters, it is converted to a planar representation w.r.t. the
reference point by the constructor of the class PlanePoint. An overview about this class is
provided in Figure 5.4 where the class diagram is shown.

PlanePoint

-x: double

-y: double

-ReferencePoint: static GPSPoint

+PlanePoint(XCoordinate:double,XCoordinate:double)

+PlanePoint(ThisPoint:GPSPoint)

+getCoordinates(): double []

+getCourseDistance(PointA:PlanePoint,PointB:PlanePoint): static double []

+getCourseDistance(PointA:PlanePoint): double []

+getGPSPoint(): GPSPoint

+getNewPoint(distance:double,course:double): PlanePoint

Figure 5.4: Class diagram of the PlanePoint class

In some cases, it is necessary to know the geodetic coordinates of a point. Thus, the class
PlanePoint contains a method which is able to convert every instance to an instance of
GPSPoint. Based on the statically stored reference point and the plane coordinates, the geode-
tic coordinates of the desired point can be computed. To achieve this computation, an approach
presented in [14] is used. This approach is able to compute a desired geodetic point based on
distance and the heading from the reference point. Since the position of the desired point is
determined by cartesian coordinates w.r.t. the reference point, the distance and the heading from
the reference point to the desired point can be determined. Thus, the geodetic coordinates of
the desired point can be determined by converting the cartesian coordinates to polar coordinates
using the approach of [14].

Note that the conversion between PlanePoint and GPSPoint has no influence on the
desired point in theory. However, due to the limited precision of the data representation, con-
versions between these representations decrease the accuracy of a point. Thus, they are only
converted if it is absolutely necessary.

Line
If lines are considered precisely, it turns out that a few different types of lines exist. An

overview about these different types is shown in Figure 5.5.

• A straight line can simply be defined by specifying two points (the definition points A
and B) but these points do not delimit the line. Thus, a straight line is infinite in both
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Figure 5.5: Different types of lines

directions w.r.t. the definition points. An intersection between two lines exists, if they are
not parallel. Figure 5.5(a) shows an example of a straight line.

• In contrast to a straight line, a ray is only infinite in one direction. In Figure 5.5(b), an
example of a ray is presented. If a ray is defined by two points similarly to a straight line,
only one of them delimits the ray and therefore it is called the endpoint (A). The other
point is only used to determine the direction of the ray and is called the definition point
(B). A ray can also be defined by specifying the endpoint (A) and the direction (θ) of it.

• As shown in Figure 5.5(c), a line segment is usually defined by two points similarly to the
straight line. These points delimit the line segment and therefore they are called endpoints.
Note that a line segment can be specified by other parameters, too. However, this requires
more than two parameters and therefore it is impractical.

A class Line represents all different types of lines. In Figure 5.6, the corresponding class
diagram is presented. Since every line-type can be specified by two points, the class contains
two attributes of type PlanePoint to specify a line. To determine the type of the line, the
class contains also an attribute which specifies the line type. The type of the line is important
especially for the method which intersects two different types of lines. More details about the
implementation of intersections are presented in Section 5.3.1.

Polygon
A polygon is represented by the class Polygon as shown in Figure 5.7. The main attribute

of this class is a linked list of PlanePoint objects. This list contains the vertices of the
polygon. Due to this data structure, it is easy to insert or remove points. The points in this
list are stored either in clockwise or counter-clockwise order. This order is very important for
further computations (e.g., straight skeleton). Since either polylines or polygons are represented
by this class, an attribute is used which determines whether the polygon is ”open” or ”closed”.

One of the most important operations in this context is collision checking. Thus, this class
contains the method isInside() to determine whether a point is inside a polygon or not. The
approach used by this method is described in Section 5.3.4.
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Line

-PA: PlanePoint

-PB: PlanePoint

-Type: Integer

+Line(PointA:PlanePoint,Course:double,Type:Integer)

+Line(PointA:PlanePoint,PointB:PlanePoint,Type:Integer)

+cut(LineA:Line,LineB:Line): static PlanePoint

+cutCircle(CenterPoint:PlanePoint,Radius:double): PlanePoint[]

+getCourse(): double

+getDistance(ThisPoint:PlanePoint)

+getLength(): double

+getPoints(): PlanePoint []

Figure 5.6: Class diagram of the line class

Furthermore, this class contains the method cut() to compute the intersection with lines
represented by the class Line. This method is used by the line intersection method of Line to
successively check every segment of the polygon for intersection.

Moreover, the method getDirection() is provided which determines the direction of
the stored polygon. This method is based on the computation of the cross product between two
adjacent segments (i.e., three consecutive points). A detailed description is presented in [18].

Polygon

+ArrPoints: LinkedList<PlanePoint>

-isClosed: Boolean

+Polygon(FileName:String)

+Polygon(PointList:LinkedList<PlanePoint>,IsClosed:Boolean)

+addPoint(ThisPoint:PlanePoint)

+changeDirection(direction:Boolean)

+cut(CutLine:Line): LinkedList<PlanePoint>

+exportFile(FileName:String,Type:String)

+getDirection(): Boolean

+insertPoint(ThisPoint:PlanePoint,index:Integer)

+isInside(PointA:PlanePoint)

+removePoint(index:Integer)

Figure 5.7: Class diagram of the polygon class

5.2.2 Representation of the workspace

As described in Section 1.3, the workspace contains the definition area, the working area and
a set of obstacles. These areas are represented by simple polygons, i.e., instances of the class
Polygon. Since the definition area contains an undefined amount of obstacles, these obstacles
are stored in a linked list of polygons.
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As safety areas have to be defined to avoid violations of forbidden areas (e.g., inside an
obstacle or outside the definition area), a method is used to compute an offset shape of the
definition area and the obstacles.

This class also contains the methods setDynamicObstacle() and resetDynamic
Obstacle() to add and remove a dynamic obstacle, respectively. These methods are used to
model an obstacle which is detected by the safety sensors of the vehicle during runtime. Since
the contour of this object can not be determined, it is assumed that the dynamic obstacle is a
rectangloid object. Based on this obstacle, a bypass route is computed which surrounds this
obstacle and goes back to the original path. If the vehicle is back on the original path, the
dynamic obstacle is removed. Details about this method are described in Section 5.6.

Since an RRT approach is used and the computation of random points is computational
expensive, a set of random configurations is computed before a path can be computed by the
method generateRandomPoints(). This method is a preprocessing step and has to be
done only once for the workspace.

Furthermore, the method getPath() is used to compute a path based on two points in the
plane with corresponding headings. This method is the most challenging part of this implemen-
tation. Details about the implementation of this method are presented in Section 5.4.

The method calcLanes computes the lanes within the working area. As aimed in the
introduction, the distance between two lanes and the direction of the lanes can be defined. Based
on this method, a complete path can be computed.

The method calcCompletePath computes a path which covers the whole working area.
Based on the previously called method calcLanes and the method getPath, a feasible path
is computed. A detailed description of this method is presented in Section 5.5.

Workspace

-DefArea: Polygon

-WorkArea: Polygon

-Obstacles: LinkedList<Polygon>

-SaveDefArea: Polygon

-SaveObstacles: LinkedList<Polygon>

-DynObstacle: Polygon

-RandomPoints: PlanePoint[]

+Workspace(DefArea:Polygon,WorkArea:Polygon,Obstacles:LinkedList<Polygon>)

+calcCompletePath(): Polygon

+calcOffset(DefArea:Polygon,Obstacles:LinkedList<Polygon>,OffsetDistanc:double)

+getPath(PointFrom:PlanePoint,HeadingFrom:double,PointTo:PlanePoint,HeadingTo:double): Polygon

+resetDynamicObstacle()

+setDynamicObstacle(dynObstacle:Polygon)

-calcLanes(LaneHeading:double,LaneDistance:double)

-generateRandomPoints()

Figure 5.8: Class diagram of the workspace class
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5.3 Geometric operations

5.3.1 Line intersection

Intersection is one of the most important operations between two line segments. Therefore two
different approaches are presented to compute the intersection. Note that it is assumed that a line
(any type) is presented by two points (i.e., class Point) and that all of these three presented
line types can be represented by this class.

A naive method to compute the intersection between two lines is to use a linear equation.
Based on

ya = kaxa + da
yb = kbxb + db

(5.1)

where the slopes ka, kb and the y-deviations da, db are given, the intersection point can be simply
computed by setting ya = yb and xa = xb. However, this method fails if one of the lines is
parallel to the y-axis.

A quite better approach uses trigonometric functions to compute the intersection [28]. The
first step is to compute the distance between a definition point of a line and the intersection
point. In the second step, the relative position of the intersection point w.r.t. the definition is
calculated and finally the absolute position is computed based on the position of the definition
point. The following equations show how the intersection point can be calculated using four
definition points. Figure 5.9 illustrates the variables of Equation 5.2. Note that the variable s
denotes the distance between the two points in the subscript.

sa1p = sa1b1 ·
sin(γ−β)
sin(γ−α)

yp = ya1 + sa1p · cos(α)
xp = xa1 + sa1p · sin(α)

(5.2)

To check the intersection between line segments or rays, it has to be checked if the computed
intersection point is on the line or ray. This can be done by computing the heading of the end-
point(s) to the intersection point. If the heading is equal with the heading from the appropriate
endpoint to the other endpoint or the definition point, the point is on the line. Note that in case
of a line segment, this check has to be performed for each endpoint.

5.3.2 Line-circle intersection

Another important operation is the intersection of a line with a circle with given center point and
radius. In general, a line has either no intersection point or two intersections with a circle. The
case that the line is a tangent of the circle is neglected because of the computational inaccuracy.
Note that if a line segment or a ray is considered instead of a line, it is possible that only one
intersection exists.

According to Figure 5.10, the pointH is computed by the intersection of the given line and a
ray starting in the center point of the circle and orthogonal to the given line. Since the distances
sCH and the radius r = sCQ = sCP are known, the distance sHP = sHQ can be calculated.
Finally, the two points can be calculated by specifying the distance and the angle between H
and the desired points P and Q.
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Figure 5.9: Intersection between two lines

5.3.3 Polygon intersection

Another basic geometric operation is the intersection between two polygons. Before intersection
algorithms are examined, it has to be determined whether the polygons are convex or not. If the
polygons are convex, it is possible to determine the intersection points in linear time.

Convex polygons
Let P and Q be two convex polygons where P = (p0, ..., pn−1) and Q = (q0, ..., qm−1). The

determination of the intersection points between two polygons P andQ takes at leastO((n+m))
[29]. In [30], an algorithm is presented which computes the intersection points between two
polygons P and Q. This approach fails if at least one polygon is not convex.

Arbitrary polygons
In case of arbitrary polygons, no efficient algorithm exists. Thus, the simplest method to

intersect two polygons P and Q is to test every edge of P with every edge of Q for intersection.
Obviously, the complexity of this approach is O(nm) [29].

5.3.4 Point in polygon

To check whether the CLR is within the definition area or within an obstacle, it is necessary
to determine if a given point is within a polygon. Based on the line intersection algorithm of
Section 5.3.1, it can be determined if a point is within a polygon or not.
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Figure 5.10: Intersection between a line and a circle

Consider a ray starting from the desired point with an arbitrary direction. Furthermore,
assume that only simple polygons are considered. Obviously, the ray intersects the polygon if it
is inside. In case of a convex polygon, this is a sufficient condition. In general, (i.e., in case of a
non-convex polygon), this is a necessary but not a sufficient condition.

A sufficient condition for the general case is found by counting the number of intersections
of the polygon with the ray. If the number of intersections is even, the point is outside the poly-
gon. The point is inside the polygon if the number of intersections is odd. To illustrate this
method, Figure 5.11 shows two examples of points. The red point (A) is outside the polygon
and intersects 4 times. In contrast, the green point (B) is within the polygon and has three inter-
section points.

5.3.5 Polygon offsetting

Another important geometric method is polygon offsetting. This means that a shape of a simple
polygon is computed in a given distance. This can be used to realize safety areas for the defini-
tion area (inside offset) or for obstacles (outer offset). An example of such a contour is shown in
Figure 5.1. To compute an offset contour, a straight skeleton of a polygon has to be computed
[3].

In [8], a detailed algorithm is presented which constructs a straight skeleton of simple poly-
gons. The presented algorithm can be used to compute a straight skeleton of a simple polygon
including holes. However, the considered polygons used by this implementation are only simple
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Figure 5.11: Example of points in polygons

polygons without holes but the definition area may contain simple polygons (i.e., the obsta-
cles). Thus, the obstacles within the definition area are interpreted as the holes of the polygon.
Figure 5.12 shows the straight skeleton of a simple polygon containing a hole.

Figure 5.12: Example of a straight skeleton for a polygon with holes (taken from [8])

5.4 Path computation using a rapidly-exploring random tree
approach

Based on the previously described environment, the RRT motion planning approach was im-
plemented. This motion planning approach uses random configurations to construct a tree of
feasible paths. To compute a path between two points, two trees are constructed (one from
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the goal configuration and one from the initial configuration). Since Java supports threads, the
construction of these trees can be parallelized. If the construction is parallelized, the different
threads have to be synchronized because each thread accesses the tree of the other thread.

Before an RRT algorithm can be implemented, a random configuration generator has to be
implemented. Furthermore, a distance metric has to be introduced which estimates the distance
between two configurations. Finally, the construction of the random tree has to be specified.

To take advantage of multi threading, it is also possible to construct different pairs of trees
with different strategies in parallel. Thus, for example, it is possible that a conventional RRT
algorithm is used beside a hybrid RRT algorithm. Finally, a faster or even the better result can be
used. Details of the multi threading approach and the synchronization mechanism are presented
in Section 5.4.5.

5.4.1 Auxiliary path

Since the hybrid RRT approach was implemented an auxiliary path is necessary. The auxiliary
path only guides the RRT search. It is not necessary to meet the constraints of the CLR or provide
a complete solution. Thus, a simple grid based approach is used as shown in Figure 5.13. This
grid only considers the planar coordinates of the system and neglects the heading information.
A state is only sampled if it is inside the definition area and not within an obstacle. After the
computation of the nodes, they are connected to their adjacent neighbors as illustrated by the
blue points in Figure 5.13.

Figure 5.13: Example of an auxiliary based on a state lattice

The graph is constructed by using the class Node which contains the plane coordinates of
the node (i.e., an instance of the class PlanePoint). Furthermore, the class contains four
static pointers to the adjacent neighbors. All nodes are stored in a two dimensional linked list
according to their position in the grid.

To find a path between two arbitrary configurations within the definition area, the nearest
node in the graph of the initial configuration and the goal configuration has to be determined.
The nearest node is found by simply checking the Euclidean distance of all nodes. Obviously,
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this is not an optimal solution but the effort can be neglected, compared to the effort of the whole
task.

If a path is computed, the nearest node in the graph w.r.t. the initial and goal state is de-
termined. Based on these two nodes in the graph, an implementation of Dijkstra’s algorithm is
used to find a path between them. It is assumed that the distance between all adjacent nodes is
equal to simplify the search.

Based on the resulting path of this process (cf. Figure 5.13), a normally distributed channel
can be computed.

5.4.2 Random point generation

This section presents methods to generate random configurations. As it is shown in the following
section, the distance metric uses only the plane coordinates. Therefore, it is sufficient to compute
a random plane point and so the heading of the CS can be neglected.

Since a hybrid RRT approach is used in the described implementation, it is necessary to
compute two different types of random points. On one hand, uniformly distributed random
configurations have to be computed to cover the whole definition area. On the other hand,
normally distributed random configurations along a given auxiliary path have to be computed.

Uniformly distributed random points
Since it is difficult to compute random points within a polygon (i.e., a random number has

to be mapped to an element in an arbitrary set), random numbers are generated over the whole
bounding area. The bounding area is delimited by the maximum horizontal and vertical expan-
sion of the definition area as shown in Figure 5.14.

X ref

y
ref

Figure 5.14: Bounding area of a definition area

Based on the horizontal (xref ) and the vertical size (yref ) of the bounding area, two indepen-
dent uniformly distributed random numbers are generated using a Java standard library (xrand =
U(0, xref ), yrand = U(0, yref )). Based on these two values, an instance of PlanePoint is
computed which represents a random state.
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However, it is possible that this random state is either within an obstacle or outside the
definition area. Thus, it is has to be verified, if the plane point is within the free portion of the
definition area. To achieve this, the method presented in Section 5.3.4 is used.

If a point is not valid, it is discarded and another random state is computed until a valid
random state is found. If a random sample of the whole CS is desired, it is possible to extend
this method by computing a random number between 0 and 2π. This random number represents
the third dimension (i.e., the heading) of the CS.

Normally distributed random points along the auxiliary path
In contrast to the computation of a uniformly distributed random state, this method requires

an auxiliary path in addition to the definition of the WS.
First, the length L of the auxiliary path is determined. Furthermore, a uniformly distributed

random number l = U(0, L) is computed. In addition to this random number, another uniformly
distributed random number α is defined as α = U(0, 2π). Subsequently, a normally distributed
random number (d = N (µ, σ2)) is computed. The mean µ is chosen as zero and the variance is
chosen as σ2 = (D2 )2 where D represents the aimed width of the channel.

The computation of a random configuration on the channel can be computed by the following
steps. Figure 5.15 illustrates this construction phase.

1. First, a point on the auxiliary path in distance l from an endpoint has to be found. Denote
this point as Q. Since l is uniformly distributed, it does not matter which endpoint is
chosen.

2. Next, starting from Q a ray with angle α is constructed.

3. The desired random point Q′ is defined as a point on the ray in distance d from Q.

Note that this approach does not compute an exact normally distributed channel along the
auxiliary path. However, this approach is quite sufficient for this purpose and can be imple-
mented efficiently.

5.4.3 Distance metric

One of the most important functions used by the RRT approach is the distance metric. This
function is used to estimate the distance (or even the costs) between two configurations in the
CS. Since the performance of the whole algorithm strongly depends on this function, it has to be
implemented efficiently. There are lots of possibilities to estimate the distance. A few methods
are described in the following:

• Local planner
As mentioned in Section 4.2.2, a local planner based on Dubins’ car can be used. This
approach provides a method to compute the optimal distance between two configurations.
If obstacles between these configurations occur, the planner fails.

Since the effort for computing a Dubins’ curve is high, this algorithm is not used as dis-
tance metric for the RRT approach.
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Figure 5.15: Computation of a random point on the auxiliary channel

• 3D Euclidean distance
Another approach uses the Euclidean distance. This metric can be computed efficiently.
Since the third dimension of the CS represents the heading of the vehicle in an interval
[0, 2π], it is necessary to scale the value according to the other dimensions (i.e., plane
coordinates). The easiest method is to use the size of the average value of the bounding
area (Figure 5.14) as reference value for the direction. Thus, the adapted direction z can
be computed as z = θ

2π ·
xref+yref

2 where xref and yref represent the size of the bounding
area.

• 2D Euclidean distance
Furthermore, it is possible to simply use the Euclidean distance of the plane coordinates.
Obviously, the heading of the CLR is neglected. Since a precise estimation is not abso-
lutely necessary, this method can be used in practice.

To evaluate the impact of the distance metric, the latter two methods were tested. It turned
out that the distance metric using the heading has an average runtime, poorer than the distance
metric using only plane coordinates. The tree which uses the 2D distance metric explores quite
faster than the other distance metric.

It also was tried to vary the scaling factor of the heading dimension. It turned out that the
speed of the path computation decreases if the scaling factor of the heading is increased.

5.4.4 Tree expansion

To successively extend the tree, a function is necessary which enlarges the tree.Based on the
random configuration and the distance metric, the nearest node in the tree is determined. To
achieve this the distance between the random configuration and every node of the tree is suc-
cessively checked. After every node was checked, the nearest one is selected. Starting from the
nearest configuration of the tree, a feasible path has to be computed which moves the vehicle
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towards the random configuration. Figure 5.16 illustrates the expansion of a tree node. In this
case, the tree node has two successors (X1

new and X2
new) which are computed based on the two

random configurations X1
rand and X2

rand. Note that the path between Xi
new and Xi

rand is not
a part of the tree because the tree is only expanded a constant or random distance towards the
random configuration.

X rand
1

X rand
2 X new

1

X new
2

Figure 5.16: Expansion of the tree based on a local planner

To realize a method which computes a path towards the random configuration, different
approaches can be used:

• One possibility is the use of a local planner based on Dubins’ car or reeds and sheps car.

• Another possibility is to use straight line segments with restricted angles to expand the
tree.

• Finally, a simulation of the desired system can be used to compute a feasible path. In this
case, a combination of a system model and a controller is used to compute a path.

Since the last method is very flexible and can be efficiently implemented, it is used to com-
pute the path within the described application. Figure 5.17 shows the concept of this approach.
The system starts simulating from the nearest configuration in the tree. The input of the con-
troller is the desired random point. A feedback loop between the controller and the virtual
system is used to move the vehicle towards the random point. The most important property of
this process is that the virtual system model generates a feasible trajectory.

Since time discrete models are used, the control process is iterated a given number of steps.
The last output of the system model is defined as the new node of the tree. The following two
paragraphs describe the system model and the controller as shown in Figure 5.17.
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Desired
random point

(x,y)

System
controller

System model
for a CLR

(x,y,Θ)(x,y) (v,Φ) Path towards
the random point
(Path recording)

Figure 5.17: Block diagram of the trajectory generator

Simulation model
Basically, the simulation model is a discretization of the simplified single track model as

described in Section 4.2. Thus, the time discrete model is defined as follows:

Xn+1 = Xn + (v ·∆t) · cos(θn + ψ·∆t
2 )

Yn+1 = Yn + (v ·∆t) · sin(θn + ψ·∆t
2 )

θn+1 = θn + (ψ ·∆t)
(5.3)

Obviously, this system of equations computes the next state (i.e., Xn+1, Yn+1, θn+1) based
on the speed v, the steering angle φ, and the previous state (i.e., Xn, Yn, θn). Note that ψ instead
of φ is used in the equation. However, ψ can be determined as

ψ =
v

L
tan(φ). (5.4)

Since this model describes a rear wheel driven car and the vehicle normally moves backwards,
the speed variable is set to a negative value in general.

Depending on the time interval ∆t, the model behaves differently. If the time interval is too
large, the system may gets unstable.

Controller
While the system model simulates a real system (i.e., the CLR), the system controller is used

to move the vehicle towards the desired point (i.e., the random point). Generally, lots of motion
controllers for CLR exist. A detailed overview about system controllers for CLRs is presented
in Section 6.3. For this purpose a controller called pure pursuit controller is used. Figure 5.18
shows the geometric model of the vehicle and the concept of the controller. Based on the angle
η (which is the angle between the line segment and the main axis of the CLR), the steering angle
is computed. However, the distance between the point on the path and the vehicle depends on
the speed. Note that this controller does not control the speed of the vehicle. It requires only
that the speed is constant.

To use the pure pursuit controller for this purpose, it has to be adapted since no path or
trajectory is given. Thus, the line segment is computed between the CLR and the desired static
point. Similar to the conventional pure pursuit controller, the steering angle is computed. Equa-
tion 5.5 defines the corresponding control rule for the system. Note that only the steering angle
is controlled, the speed of the vehicle has to be constant.
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φ = − arctan(
L sin η

Lrv
2 + lrv cos η

) (5.5)

The length lrv represents the distance covered by the vehicle until a steering command
changes the heading of the vehicle. This value corresponds to the response time of the system.
Since it can be assumed that the speed of the car is slow this parameter can be neglected.

X rand

kk+1

   

 

   

φ

Figure 5.18: Pure pursuit controller which moves the vehicle towards Xrand (taken from [9])

5.4.5 Optimizations

Since state-of-the-art personal computers have at least two processor cores and the Java Virtual
Machine (JVM) executes threads as native threads, it is possible to parallelize the path compu-
tation. This increases the utilization of resources and the performance of the execution. The
following optimizations are possible and have been implemented:

• Since the path computation uses at least two random trees, each of them can be executed
as one thread. To avoid race conditions, it must be ensured that one tree does not change
while the other tree checks for intersection.

• Another possibility to increase the performance of the algorithm is to compute a number
of tree-pairs simultaneously. Since these are independent instances of the algorithm (pos-
sibly with different parameters), it is not necessary to synchronize them. However, it is
necessary to terminate all threads, if a feasible path was found by one tree-pair.

In the proposed solution, the following approach is used: First, a method is used which initializes
and starts all threads. Additionally, it initializes an instance of a sync class. This so called sync
object is responsible for synchronizing all threads. Thus, the sync object contains all running



88 Chapter 5. Implementation

tree-threads. Furthermore, this object contains flags which indicate that a feasible path was
found. Before any thread starts with the expansion phase of its tree, it uses a method to check if
another tree-pair has found a path. In this case, the thread terminates.

If a tree-pair has found a path, it stores the result in the sync object and calls a method which
indicates that a path was found. Finally, this method wakes up the main thread and terminates
its own thread.

Since the resulting path is stored in the sync object, it can not be overwritten by another
thread which was not terminated yet.

The method which initialized and started all threads (including the sync object) sleeps until
a path is found. If a path was found, this thread is waken up and it is able to read the resulting
path from the sync object.

It is also possible to compute a number of possible paths which are stored in the sync object.
This means the computing threads are only terminated if a given number of paths were found or
if a given time threshold was reached. Obviously, this variation of the sync object calculates a
better path (w.r.t. the length) but also results in a longer runtime.

5.5 Construction of the overall path

In the previous section, the implementation of an algorithm was described which is able to find
a path between two arbitrary points in the definition area. This section describes an extension
to this implementation which is able to cover a working area as claimed in Section 1.3. In
Section 4.7, a strategy was presented to compute an ordered set of lanes which cover predefined
area. However, this section describes the implementation of this strategy.

Given a desired heading and a desired lane distance, a method was implemented which
simply computes an ordered set of points and headings. Figure 5.19 illustrates the construction
of this list.
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Figure 5.19: Construction of a path covering the working area
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• Before a strategy can be computed, the number of lanes has to be determined which are
necessary to cover the area. Starting from an arbitrary point within the working area,
an infinite lane is computed with a given heading. Based on this lane, offset lanes are
computed in both directions. This is continued until an offset lane does not intersect with
the working area.

• Once the number of lanes is determined, a sequence of lanes is computed based on the
strategy of Section 4.7. Since this algorithm is only based on a set of rules, it can be
implemented in a simple way. The result of this algorithm is a strategy representing an
order of lanes. In addition to the order, the aimed direction is specified. In Figure 5.19,
this sequence is denoted by the numbers of the next lanes. Furthermore, the direction of
each lane is denoted by the arrow.

• Based on this strategy, the intersection points of the first lane are computed w.r.t. the
desired direction. Subsequently, the next lane (defined by the strategy) is selected and
the intersections are computed iteratively. All these intersections are stored in an ordered
list of points. Furthermore, the heading of each intersection point is determined by the
heading of the lane and the desired direction. If this process is continued for all lanes
(specified by the strategy), a list of points and headings is computed. In Figure 5.19, every
intersection point is denoted by IP x.y where x denotes the lane number and y denotes
the order of intersections of one lane. All these intersection points are stored in an ordered
list according to their names.

• As be seen see in the figure, a path is only necessary from an odd item to an even item
of the ordered list. The path from the even items to the odd items is determined by the
lane. Note that this is independent from the amount and the shape of the working area
or obstacles. Thus, based on the these points and the appropriate headings, the method
getPath() is used to determine a path.

• One can see, that it is not always possible to compute a feasible path around obstacles
(e.g., IP7.1 − IP7.2 in the figure). Thus, a simple try and error approach is used to
compute a feasible path. After the computation of a path failed, the initial and the goal
points are redefined. Since every computed path starts at an end of a lane and ends at the
beginning of a lane, these lanes are simply shortened. The intersection points IP7.1a and
IP7.2a in Figure 5.19 illustrate this approach. The distance between the original and the
new intersection points depends on the length of the whole lane. However, this distance
has a predefined minimum and maximum length. If the path computation fails again, this
step is repeated.

5.6 Dynamic collision avoidance

At the beginning of this section, it was mentioned that methods were implemented to avoid
collisions with dynamic obstacles (e.g., people, vehicles, equipment). If an obstacle occurs
in front of the vehicle, a mechanism is necessary that computes a path which surrounds the
unexpected obstacle and continues driving on the original path.
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Since the vehicle does not know the shape of the obstacle, it has to estimate the size and the
contour of it. In the presented approach, it is assumed that the obstacle looks like a rectangle
with a predefined size. Furthermore, it is assumed that the obstacle is immediately in front of
the vehicle. Based on the position and the heading of the vehicle, the corresponding polygon is
computed and stored in the Workspace object.

In contrast to the normal path computation, this method has to be executed during runtime.
Thus, the performance of the chosen method is very important. In contrast to the normal plan-
ning method, this approach must allow backward motion because the obstacle is in front of the
vehicle. Since the change of the driving direction is a time consuming process (i.e., change
gears), the amount of direction changes has to be kept low.

Since the RRT approach is also suitable for this task, the implementation of this method
is based on the RRT implementation described in Section 5.4. Note that the expansion step
based on a simulation is used for this dynamic case, too. However, it is not possible to use the
previously described implementation directly. The adaptions and extensions of the previously
described implementation are described as follows:

• The used method constructs only one tree because no explicit goal position is desired. If
a path from the actual position to the original path is found, the tree expansion terminates.
To avoid that the computed bypass route directly leads to the end of the original path, a
cost function is introduced. This cost function is based on the length of the bypass route
and the path length between the actual position and the position where the bypass route
meets the original path. Every path with a length above a given threshold is dropped. As
mentioned in the previous section, threads can be used to compute multiple instances of
the algorithm to decrease the computation time.

• Since forward and backward motions are allowed, it has to be decided whether the vehicle
moves forward or backward towards the random configurations. This decision can simply
be done by determining the heading of the random point w.r.t. the heading of the vehicle.
Figure 5.20 shows the actual position of the vehicle and four random positions where
the algorithm decides to move forward for the upper points and backwards for the lower
points. However, it is possible that one direction is not allowed as mentioned below. In
this case, the CLR can only move in the allowed direction.

forward motion

backward motion

Figure 5.20: Direction of the motion based on the random point
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• If the expansion of the tree is not restricted, it is possible that a path changes the direction
after each node. To avoid this behavior, an additional restriction is necessary. This restric-
tion ensures that the direction is only changed after a predefined number of nodes. This
can be realized by storing the direction and a counter in each node. This counter contains
the number of consecutive predecessor nodes with the same direction. The direction can
only be changed if the counter is above a given threshold.





CHAPTER 6
Simulation

6.1 Simulation overview

Based on the results of the motion planning application, a simulation is used to verify the feasi-
bility of the computed path. This simulation is also implemented in Java and is integrated in the
motion planning application as described in the previous chapter.

Before details about the simulation are described, the basic structure of the framework has
to be determined. Figure 6.1 shows a block diagram of the simulation process. The input
of the simulation is a simple geometric path. In contrast to a trajectory tracking controller, the
controller uses a static path as input. Based on the actual state of the system, the controller has to
estimate the desired position on the path. Furthermore, the controller has to set the input values
of the system to keep the system on the path. To prevent the use of an Ordinary Differential
Equation (ODE) solver, a time discrete system model is used.

The system is controlled by a lateral controller which only actuates the steering angle. The
speed value is not handled by the controller but it is used as input variable to determine the
steering angle. Thus, it is assumed that the speed value is constant.

Figure 6.1: Block diagram of the simulation process

93
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6.2 System model

Based on the simplified system model as described in Equation (4.4) of Section 4.2, a time
discrete system model can be derived as follows:

Xn+1 = Xn + (v ·∆t) · cos(θn + ψ·∆t
2 )

Yn+1 = Yn + (v ·∆t) · sin(θn + ψ·∆t
2 )

θn+1 = θn + (ψ ·∆t)
(6.1)

Note that ψ is defined as:
ψ =

v

L
tanφ (6.2)

The step size (i.e., ∆t) can be chosen arbitrarily. However, if the step size is too large, the
simulated system diverges from the continuous system model. Hence, it is possible that the over-
all system gets instable. A feasible step size for the desired system is about 50 milliseconds. This
model is an idealized system model which does not consider any uncertain events or inaccura-
cies. As real-world reference vehicle, the target system described in Section 5.1.2 is considered.
Thus, the presented system model is extended to consider positioning errors, heading errors, and
errors of the steering angle .

Positioning errors
Since a high accurate positioning system is used, the positioning error is small in contrast to

low cost positioning systems. However, the used GPS-RTK system (cf. Section 5.1.2) has an
accuracy of d = ‖pm − pref‖ = 0, 05 − 0, 2m where pm represents the measured value and
pref represents the reference value. The accuracy of a positioning system is defined such that
the distance of 95% of all measured values are smaller than d. Moreover, it is assumed that the
measured values are normal distributed, since the supplier does not provide further information.
Remember that a normal distributed random number is defined as x = N (µ, σ2), where µ
represents the mean and σ2 represents the variance. Note that the standard deviation is defined
as σ =

√
σ2. Furthermore, the density function can be defined as f(x, µ, σ). The parameter σ2

of a normal distributed random number is defined in a way that the distribution function suffices
the following equation:

F (−d; 0, σ2) = 0, 025 (6.3)

This claim is equivalent with the following demand based on the density function:∫ d

−d
f(x; 0, σ2)dx = 0.95 (6.4)

Since the result can not be computed analytically, tables are used to determine the desired
result. Thus, σ is determined as σ ≈ 0.5 · d. Considering these facts, positioning errors can be
defined as

pe =

(
xe
ye

)
=

(
xref
yref

)
+

(
A · sinα
A · cosα

)
(6.5)

whereA is a random variable which represents the distance error and is defined asA = N (0, 0.5d)
and α is a uniform distributed random variable which represents the heading and is defined as
α = U(0, 2π).
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Figure 6.2: Error simulation of a plane point

Heading errors
Since the accuracy of the used electronic compass (cf. Section 5.1.2) is only specified by one

value without specifying the error model, it is assumed that this value determines the standard
deviation of a normal distributed random number. Thus, the error function of the heading can be
specified as

θe = θref +N (0,
π

180
). (6.6)

Steering angle errors
In contrast to the previous mentioned errors, this error can not be modeled by a normal dis-

tributed or a uniform distributed error function. The error of the steering angle depends on the
difference between the last steering angle φn and the new steering angle φn+1.

6.3 System controller

In the previous chapters of this thesis, only motion planning problems were considered. In
general, a controller is necessary to keep the system on the desired path or trajectory. Since this
chapter deals with the simulation of a CLR moving along a path, a controller is necessary which
keeps the vehicle on the path.

6.3.1 Survey of control approaches

In literature, a lot of approaches for controlling a CLR can be found in [31]. In [32], a sur-
vey is presented which informally explains the benefits and drawbacks of a number of control
approaches.

Considering control approaches for CLRs, it can be distinguished between two different
types of controllers based on the type of their input:

• Trajectory tracking controller
The input of such a controller is a trajectory of the SS. It is possible that a controller
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only needs a state trajectory to control the system (e.g., (x, y, θ)T ). Furthermore, it is
possible that a controller depends on the whole trajectory of a system i.e., the input- and
state trajectory (e.g.(x, y, θ, φ)T ).

• Path following controller
A path following controller uses only the geometric path instead of a trajectory to control
the system. Thus, it considers only the deviation between the desired path and the actual
position of the vehicle. Note that a path tracking controller is only a lateral controller.
Speed control has to be done by another controller or is even set to a constant value.
However, in general a path tracking controller is not independent of the speed of the CLR.
Thus, fast changes of speed can destabilize the behavior of the path tracking controller.

The pure pursuit controller is one example of a feasible path following controller. It is used
within the simulation framework. Details about this controller are described next.

6.3.2 Pure pursuit controller

The pure pursuit controller as introduced in [9, 32], is a very simple and robust path following
controller. Moreover, it requires only a non-smooth geometric path.

The controller intuitively acts as a human driver. It visualizes a point on the path in a given
distance depending on the speed of the vehicle. The steering command is based on the angle
between the main axis of the vehicle and the angle of the point w.r.t. the vehicle. The geometric
model of the controller is shown in Figure 6.3.

The computation of the control rule requires only one trigonometric function and, thus, it
is computational efficient. One challenge of this controller is to track the desired Look-Ahead
Point (LAP). Furthermore, the angle η has to be determined based on the position of the vehicle
and the LAP. This computation requires also the use of a few trigonometric functions.

To determine the point on the path in front of the vehicle, a geometric function is used
which computes the intersection between a line (i.e., a subset of the desired path) and a circle
where the radius represents the look-ahead distance. This method is described in Section 5.3.2.
The approach is feasible if only one intersection is found. In general, a lot of intersections are
possible and the point can not be determined exactly. However, this problem can be solved by
intersecting only a subset of the path with the circle around the car. If this subset is chosen such
that only one intersection occurs, the LAP can be determined exactly.

Figure 6.4 shows the determination of the LAP. Since the simulation is time discrete, a LAP
is computed in every step. Thus, the new LAP is in front of the previous LAP w.r.t. the path.
Since it is assumed that the vehicle moves with a known and constant speed, the range of the
vehicle between two steps can be estimated. Considering these two facts, a subset of the path
can be defined such that it starts at the previous LAP. Furthermore, the length of this segment
can be determined by the range of the CLR between two steps (including an uncertainty factor).
The red line in Figure 6.4 denotes the segment which is intersected with the circle around the
CLR.

Once the LAP is determined, the motion rule as defined in Equation 6.7 can be used to
compute the steering angle. Figure 6.3 illustrates the meaning of the variables of the motion
rule.
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Figure 6.3: Geometric representation of a pure pursuit path tracking controller (taken from [9])

Figure 6.4: Determination of the LAP using the pure pursuit approach

φ = − arctan(
L sin η

Lrv
2 + lrv cos η

) (6.7)

Note that it is not feasible that the controller is called after each simulation step, since the
real-world system is not able to change the steering angle within 50 milliseconds. Thus, the
steering angle can only be changed in an interval of at least one second. If it is assumed that the
step size is 50ms, then the steering angle can be updated after 20 steps.





CHAPTER 7
Results

7.1 Path computation results

To evaluate the path computation, an example WS with three obstacles was defined as shown in
Figure 7.1. The definition area of this WS is about 350×300m. To visualize the size of the WS,
an orange reference line is drawn in the left bottom corner. The line is exactly 100m long and is
divided into 10 segments.

Figure 7.1: Example of a definition area created with the motion planning application
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(a) Conventional RRT (b) Hybrid RRT

Figure 7.2: Comparison of the random point generation between the conventional and the new
hybrid RRT approach

Since the conventional RRT approach and the hybrid RRT approach were implemented,
these two approaches are compared in the following sections. To evaluate the described test
series, the test application was executed on a Sun Java JVM_x64 with Windows 7 64bit operating
system. The hardware platform is based on a dual core CPU (Intel R©Core TM2 Duo E8400,
2x3.0GHz, 4GB RAM).

7.1.1 Exploration of the definition area

Random point generation
As described in Section 5.4, the hybrid RRT approach despites from the conventional RRT

approach in the generation of the random points. The conventional RRT approach distributes
2.000 random points over the whole definition area as shown in Figure 7.2(a). In contrast to the
conventional approach, the hybrid approach computes a channel of normally distributed random
points in addition to the uniformly distributed random points. Figure 7.2(b) shows an example
of a WS with 2.000 random points. Note that two of three points are normally distributed along
the channel and the others are uniformly distributed over the whole area. The magenta points
represent the random points along the channel (i.e., 1.333 points) and the cyan points illustrate
the uniformly distributed random points (i.e., 667 points).

Tree exploration
In the previous paragraph, the result of the random point generation was illustrated. However,

this is not sufficient to guarantee a rapidly exploring tree. Thus, in Figure 7.3(a) it is shown
that the conventional RRT approach explores the whole definition area except the obstacles.
As shown in Figure 7.3(b), the hybrid approach explores the whole definition area area, too.
However, it is also possible to continue the tree expansion in order to get shorter paths.
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(a) Conventional RRT (b) Hybrid RRT

Figure 7.3: Comparison of the tree exploration between the conventional and the hybrid RRT
approach

Note that the trees in both figures contain exactly 2.000 points.Obviously, a path can be
found with less than 2.000 nodes but these figures illustrate the coverage of the tree.

7.1.2 Performance and quality of the path computation

To show the quality and the performance of the new hybrid RRT approach, a quantitative analysis
of the runtime and the length of the computed path was made. This analysis is based on a fixed
WS and fixed initial and goal configurations. To increase the significance of this analysis, 50
executions of the same but independent problem instance were examined. Thereby once the
conventional RRT approach was used and once the hybrid RRT approach was taken. Note that
the Euclidean distance between the initial and the goal state is 197m.

Based on this test series, the mean value and the standard deviation are listed in Table 7.1.
The hybrid RRT approach provides a much shorter path length than the conventional RRT. An-
other important advantage is that the standard deviation of the length is much smaller using the
hybrid approach. This means that the hybrid RRT approach computes paths with constant qual-
ity. The hybrid RRT approach has also a better performance than the conventional RRT despite
the fact that the hybrid has to compute a guideline in advance. Obviously, the runtime of the
algorithm strongly differs for every run using the conventional approach.

To visualize the path computation, Figure 7.4 shows the computation of 50 paths with the
same initial and goal configuration. The left figure shows the computation using the conventional
approach and the right figure shows the paths computed by the hybrid approach.
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7.1.3 Overall path

Based on the implementation of the RRT approach, a path can be computed which covers the
whole working area. Figure 7.5 shows the construction phase of a path which covers the green
area in the figure. The distance between two lanes in the figure is three meters. Note that for
special application scenarios (e.g., mowing) the vehicle is able to lift the tools for a turning
maneuver and therefore it is allowed to use the green area for turning maneuvers, too.

7.2 Simulation results

As described in the previous chapter, a simulation is used to evaluate the feasibility of a path. To
evaluate the quality of the path and the robustness of the controller, the distance of the simulated
vehicle to the computed path is determined. Since different schemes to measure the distance
between the vehicle and the desired path exist, Figure 7.6 illustrates the used method. To visual-
ize the analysis, Figure 7.7 shows the simulated path. In this case, a typical path was simulated
which was created by the RRT planner.

The simulated CLR has a length of 3 meters. Furthermore, the speed is 2m/s. The distance
to the LAP as described in Section 6.3 was set to 7m. The step time is 50 milliseconds and the
controller updates the steering angle every second. Furthermore, the LAP of the pure pursuit
controller, is set to 7 meters. However, the quality of the path can possibly be improved by
varying this parameter.

To visualize the behavior of the controller, Figure 7.8 shows a diagram of the distance error
(i.e., the distance between the desired path and the CLR). In fact, the distance error remains
always under 1m. In addition to the distance error, the slope of the heading is shown in the
figure. Thus, it can be observed that the distance error is only high, after the heading of the CLR
was changed fast.

Note that the simulation of the overall path reduces the average distance error due to the
straight lanes. However, since the positioning and heading errors are also simulated, the distance
error can not be eliminated completely.
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(a) Conventional RRT (b) Hybrid RRT

Figure 7.4: Comparison of the conventional and the hybrid RRT approach computing 50 paths

Figure 7.5: Visualization of the overall path covering the green area
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* * * Conventional RRT Hybrid RRT
Duration Average ms 9030,86 8465,46
Duration Standard deviation ms 1532,59 624,94
Path length Average m 426,36 338,02
Path length Standard deviation m 66,71 26,65

Table 7.1: Comparison of the conventional RRT approach with the new hybrid RRT approach

D

ref path

Figure 7.6: Visualization of the distance determination

Figure 7.7: Visualization of the simulation process
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Figure 7.8: Diagram of the distance error depending on the time





CHAPTER 8
Conclusion and outlook

Given the problem statement of the introduction of this thesis, one could assume that this prob-
lem can be solved in an easy way. It seems that everything that is necessary is to calculate a few
lines, intersect them, and generate a path. However, if motion planning is studied intensively it
turns out that motion planning is one of the most challenging tasks in robotics. This is partic-
ularly true for finding paths in arbitrary workspaces which may contain arbitrary obstacles. A
number of well studied motion planning problems exist but in general no optimal and efficient
approach can be given.

Another quite challenging task is motion planning for CLRs. Especially, if an optimal path
is claimed, this problem is not solvable in polynomial time. Thus, practical approaches can not
be optimal, complete, and fast at the same time. Most of these planning approaches take samples
of the WS and use well know graph theoretic methods to solve the problem. Another important
group of motion planning algorithms is based on probabilistic methods. These methods provide
a good average performance but they are not complete in general.

Since the optimal motion planning problem for CLRs is not solvable in polynomial time, the
problem to cover a predefined area by an optimal path is quite harder. If one considers the well
known TSP problem, this problem itself is not solvable in polynomial time. If this problem is
restricted to curvature constraints path, the problem obviously gets harder.

At the beginning of this thesis, the problem statement was formulated and the basic terms
used in this thesis were defined. Summarizing, the problem is to find a feasible path for a CLR
which covers a predefined area in parallel lanes. Thus, a method to find a feasible path between
two arbitrary points is the basis to find a solution for the given problem.

Before motion planning approaches were examined, basic concepts of positioning systems
were introduced. Since this thesis also considers real applications the use of such systems is
immanent. As the low cost positioning systems are not sufficient to provide the required posi-
tion accuracy to control a real vehicle, high precision positioning systems were introduced. In
addition to the positioning systems, geodetic models were presented. These models are the basis
for all further computations.
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Since it is not possible to examine motion planning approaches without considering the
system properties, an introduction to system theory was given. This overview includes methods
to describe the system behavior and the constraints of the system. To evaluate the performance of
a motion planning approach, the lower bounds of a few fundamental motion planning approaches
were presented.

Once the basic concepts were introduced, a selection of motion planning approaches was
presented. These approaches are based on very different ideas. The simplest approach is the
discretization of the CS. Thus, graph theoretic methods can be used to solve the appropriate
motion planning problem. An important fact is that if a CS is discretized, no complete solution
exists to solve this problem in general. Another intuitive approach is the use of roadmaps.
However the challenge is the computation of the roadmap. The search within the roadmap can be
implemented efficiently. Since the complexity of motion planning problems is high, probabilistic
methods provide alternative concepts to solve hard problem instances. These approaches provide
a good average performance but they are not complete in general. In contrast to the conventional
approaches, another concept was presented which combines the motion planning algorithm with
the system controller. This approach provides a very robust method to control a system.

Based on the introduced motion planning approaches, few of them which can be applied
to CLRs were examined. First, a simple system model of a CLR was introduced. It turned
out that a CLR has non-holonomic constraints which complicates the motion planning task. A
naive approach was given which simply discretizes the CS and uses a graph search algorithm to
find a feasible path. Furthermore, roadmap based and probabilistic methods were introduced to
find feasible paths for a CLR. Especially one of these approaches called RRT promised a quite
good performance. This method is based on the concept of random rapidly exploring trees. In
addition to this approach, important improvements which made RRT feasible for practical use
were presented and developed in the context of this thesis.

Since the RRT approach promises a good performance, a proof-of-concept implementation
was performed. To improve the quality and the performance of this implementation, an exten-
sion to the basic RRT approach was developed in the context of this thesis. This hybrid RRT
approach uses an auxiliary path to modify the distribution of the random configurations. The
described implementation is able to find a path between two arbitrary configurations in the CS.
Furthermore, it is able to find a path which covers a whole area.

To evaluate the results of the system, the behavior of a real CLR was simulated. The sim-
ulation model considers positioning and heading errors. Furthermore, it is considered that the
steering angle can not be set exactly. To keep the virtual vehicle on the path, a controller was
necessary. Thus, a few different controllers were examined. Since the speed of the desired sys-
tem is low, dynamic constraints can be neglected and therefore a simple pure pursuit controller
was chosen to control the virtual vehicle.

Finally, the performance of the implemented motion planning approach was analyzed by
examining the runtime and the length of the path. The results showed that is possible to compute
a feasible high quality path for CLRs in an acceptable time. Furthermore, the simulation results
were analyzed. The quality of the simulation was determined by analyzing the distance between
the desired path and the position of the virtual vehicle. Results showed that the vehicle is able
to follow the path whereas overshooting is limited within acceptable bounds in case of narrow
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curves.

In a future step, another motion planning approach (e.g., PRM-based) could be implemented
to compare it to the RRT approaches. In contrast to them, PRM-based approaches can be ex-
pected to have a quite long preprocessing phase but queries will probably be executed fast in
general.

It would also be interesting to implement a feedback motion planning algorithm for CLR.
This approach makes the path tracking controller obsolete. However, due to the resource re-
quirement of the necessary algorithm, it will require a high performance computer to achieve
realtime capabilities.

It is also possible to realize a complete approach based on Dubins’ car especially for smaller
WS. If the coverage of the area in parallel lanes is not required, an algorithm based in the
curvature constraint TSP can be implemented. However, the use of this approach will only be
usable for small workspaces.

Based on the currently implemented application (including the simulation), the basic meth-
ods of this application can be ported to a real system. In this case, the real system replaces the
simulated system model. However, a real vehicle will require a precise positioning system and
low level controller to control the speed of the vehicle and the steering angle. Furthermore, the
brake and the gearshift have to be controlled based on the speed set-value.
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APPENDIX A
Acronyms and abbreviations

AGV Automated Guided Vehicle

CLR Car-Like Robot

CS Configuration Space

DARPA Defense Advanced Research Projects Agency

EGNOS European Geostationary Navigation Overlay Service

DGPS Differential GPS

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

HLR Human-Like Robot

JVM Java Virtual Machine

LAP Look-Ahead Point

LPRM Lazy Probabilistic Roadmap

MSAS Multi-functional Satellite Augmentation System

ODE Ordinary Differential Equation

PRM Probabilistic Roadmap

PS Phase Space
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RRT Rapidly-exploring Random Tree

RSC Reeds and Shepp Car

RTK Real Time Kinematic

SA Selective Availability

SBAS Satellite Based Augmentation System

SS State Space

TSP Traveling Salesman Problem

WAAS Wide Area Augmentation System

WGS84 World Geodetic System 1984

WS Workspace
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