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Kurzfassung

In dieser Diplomarbeit stellen wir drei Algorithmen vor, mit denen wir das Mapping
Problem zwischen Knoten aus kartesischen Graphen und physischen Prozessoren eines
Clusters lösen. Prozesse in diesem rechteckigem, kartesischen Gitter kommunizieren
miteinander entlang von festgelegten Mustern, sogenannten Stencils. Die Problemstellung
ist nun ein Mapping zu finden, bei dem diese Kommunikation möglichst oft zwischen
Prozessen passiert, die auf der gleichen Maschine sind und daher über den schnellen
Arbeitsspeicher anstatt dem langsameren Netzwerk kommunizieren können. 2018 konnte
Gropp mit seinem Ansatz im Vergleich zum Standard-Verhalten vom Message Passing In-
terface (MPI) zeigen, dass eine gute Mapping-Strategie zu Performance-Gewinnen führen
kann. Wir vergleichen unsere Ergebnisse daher nicht nur mit MPIs Standardverhalten,
sondern auch mit Gropps Algorithmus. Unser Hauptbeitrag zu diesem Mapping Problem
ist jedoch die breitere Anwendbarkeit auf inhomogene Systeme und nicht primär ein
Performancegewinn im Vergleich zu Gropp.

Um die Qualität der unterschiedlichen Mappingstrategien zu vergleichen, stellen wir
zwei Optimalitätskriterien vor, die die bereits erwähnte Annahme, dass Kommunikation
über den RAM schnell ist, verkörpern. Für unsere Messungen verwenden wir die nicht-
blockierenden MPI_Irecv und MPI_Isend Funktionen. Unsere Ergebnisse zeigen, dass
alle 3 unserer vorgestellten Algorithmen, im Gegensatz zu Gropp, für alle Situationen
Mappings finden konnten. Für Instanzen in denen auch Gropps Algorithmus funktioniert,
können wir mit unseren Ansätzen gleich gute oder sogar bessere Laufzeiten feststellen.

Der erste unserer Algorithmen teilt das kartesischen Grid rekursiv inzwei. Diese Graphen
Partitionierungsstrategie ist weit verbreitet und ermöglicht uns auch hier, eine logarith-
mische Laufzeit in der Anzahl der Prozesse zu erzielen. Unsere Implementierung erlaubt
es uns außerdem, eine obere Schranke, bezüglich der Qualität der gefundenen Lösungen
zu definieren. Mit einer abgewandelten Form dieses Algorithmus, zeigen wir, dass auch
andere Stencils beim Mapping bedacht werden können. Hierbei wird das Grid mit einer
Priorität auf gewisse, Stencil-abhängige Dimensionen gespaltet.

Der dritte Algorithmus ist aus Beobachtungen hervorgegangen, wo das Standardverhalten
von MPI unter gewissen Bedingungen sehr gute Mappings liefert. Hierbei wird das Grid
in rechteckige Streifen geschnitten, welche dann mithilfe des Standard Algorithmus befüllt
werden. Obwohl die theoretische Oberschranke dieses Algorithmus schlechter ist, als die
des Ersten, liefert dieser Ansatz oft kompaktere Mappings.
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Abstract

In this thesis we introduce different algorithms for mapping physical processes to Cartesian
grids. We assume that processes within this grid communicate with certain neighboring
processes as defined by a given stencil. We show that this mapping problem is already
NP-complete for two dimensional grids and a very simple isomorphic neighborhood. We
compare the current state of solutions in the field of High Performance Computing,
specifically the Message Passing Interface (MPI). With his algorithm from 2018, W.
D. Gropp showed promising performance, which is why we compare our approaches to
his work, as well as MPI’s standard behaviour. For qualitatively comparing concrete
mappings, we define fitting optimality criteria, based on the core concept of minimiz-
ing inter-computation-node communication. We benchmarked using MPI_Irecv and
MPI_Isend and show that our algorithms can find mappings, where Gropp cannot and
that we could match or improve upon his resulting mappings in terms of quality and
runtime.

The first algorithm, which we present is similar to other graph partitioning approaches,
since it utilizes recursive splitting in order to guarantee a logarithmic runtime wrt. the
number of vertices in the Cartesian grid. We also guarantee a quality bound for this
algorithm, which becomes better with increasing number of dimensions. In another
implementation-variant, we adapted this algorithm for accommodating differently shaped
stencils by weighting dimensions before the recursive splitting depending on how much
communication happens across them.

The third approach attempts to find hyperrectangular strips within the Cartesian grid,
which are then filled similar to MPI’s default row-major rank assignment. Although the
theoretical bound of this approach is not as good as the first, this assignment strategy
yielded the most compact mappings most of the time. Its main shortcoming, however, is
its inability to adapt these strips, depending on different stencils.
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CHAPTER 1
Introduction

Many High Performance Computing (HPC) problems are structured as n-dimensional
Cartesian grids. The performance of the implied, sparse data exchange is problem-specific
and depends on multiple factors. On distributed memory systems these factors include
not only the scheduling of the messages themselves, but also the placement of virtual
processes to physical processors. Often the desired communication follows some structural
patterns, such as stencils. This means that processes communicate with other processes
along fixed relative offsets within the given n-dimensional grid. Examples for such
patterns can be found in the field of Computer Graphics, such as edge detection filters,
which have been implemented in MPI by Aithal et al. [1] or in various iterative methods
for solving linear systems, such as Jacobi- or Gauss-Seidel stencils [24].

The Message Passing Interface (MPI) [19] offers various functionality to support such
communication, as well as the interface to allow for process remapping, however, current
implementations do not leverage these possibilities. Gropp [7] presented an overview
over some systems and whether they utilize the process remapping features of the
MPI_Cart_create function. In Table 1.1, it can be seen that none of the surveyed
systems currently leverage the remapping feature. The current MPI interface also does
not cover the majority of common use-cases but offers either too specific interfaces that
have a very narrow applicability or too general methods that cannot convey the structural
properties of the given stencil operation.

Another problem that hinders novel approaches from becoming widely-spread is the fact
that currently there are next to no benchmarks that would make different implementations
comparable. Conversely, this is probably due to the lack of current implementations
that leverage these features. This problematic duality shows that it would be necessary
and important to offer not only an interface or algorithm to solve said structured
communication problems, but also to offer the means to compare these approaches to
other solutions.

1
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1. Introduction

Table 1.1: None of the surveyed systems remap the processes. MPICH and Open MPI
were included, as they are in use on many systems. Taken directly from Gropp [7].

Name System Type MPI Cart Remaps

Blue Waters Cray XE6/XK7 Cray MPI No
Theta Cray XC40 (KNL) Cray MPI No
Piz Daint Cray XC40/XC50 Cray MPI No

(Open Source) MPICH 3.2.1 No
(Open Source) Open MPI 3.1.0 No

1.1 Problem Description

P6 P7 P8

P3 P4 P5

P0 P1 P2

Switch

Node
C0 C1 C2

Node
C3 C4

Node
C5 C6 C7 C8ph

ys
ica

l to
po

log
y

Ca
rte

sia
n 

gr
id

Figure 1.1: A visualization of the problem description. Each computation node’s pro-
cessing cores have to be assigned to the processes of the application specific Cartesian
grid. The task lies within finding such an assignment (dotted line), such that the overall
communication time is minimized.

The machines and clusters, which are typically used in High Performance Computing
have a setup, where different physical cores may have varying connections to other
cores. Latency and bandwidth are traditional performance indicators that are accounted
for when analysing different connections. A priori, one might conclude that two given
communicating cores have a higher bandwidth and a lower latency when they are located
in the same processor, compared to two cores that are not located on the same socket or
not even on the same machine. Not every HPC cluster is set up with the same network
connectivity, so the resulting hardware-topologies may differ between setups. With that
in mind, each physical core can be visualized as a node in the topology, where the
(weighted) edges between the nodes correspond to the differently performing connections
between any two cores.

2
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1.2. Optimality Criterion

On the other hand, there are the applications, which run on these clusters. Some
applications contain communication patterns that favour different physical topologies
more than others, depending on the use case. In this thesis, the focus lies on programs that
contain stencil computation, where an application-wide, strictly defined communication
pattern is followed by every process. Additionally, we restrict the processes to be arranged
in Cartesian grids, meaning that every process is assigned a coordinate within a fixed
rectangular grid, not allowing any deviations in shape. We can now visualize each process
as a node in this virtual communication graph, where each edge corresponds to an entry
to the defined communication pattern.

Now we essentially have two different graph-views of the problem instance, which is
visualized in Figure 1.1. One with the physical machine setup and one with the applica-
tion’s communication pattern in mind. The obvious question now is: How can we map
the virtual processing cores from the application-communication-graph onto the actual
physical-topology, so that the communication time - and therefore the overall runtime - is
minimized? Gropp [7] showed with his experimental work that there is a lot of potential
in efficiently mapping these two graphs, but before we analyze his findings, we have to
define which properties an efficient mapping should have.

1.2 Optimality Criterion

In later sections, we prove some properties our algorithms, but in order to be able to do
that, we have to define what these algorithms want to achieve. In the real world, there
are small variations in communication-speed between any two cores. Constructing a fully
connected graph, where every edge corresponds to the link between these cores, would
therefore probably be the most accurate representation. However, we will simplify this
aspect and only differentiate between cores that can communicate directly over shared
memory and cores that have to communicate over the network. In other words, cores that
are seated on the same machine are assigned the same partition. Communication within
the same partition is viewed as efficient and any communication between two different
partitions is deemed inefficient. This assumption is shared by Tan et al. [29], where the
authors even state their opinion about finding good process distributions, depending
on the network’s bandwidth, or Mamidala et al. [15] who show their findings for their
InfiniBand setup.

In HPC, the runtime of an application corresponds to the longest runtime of any
participating process. The “bottleneck” process, therefore, is responsible for the whole
application’s runtime. Similarly, we propose one optimality criterion being as follows:

1. For each partition p, calculate the sum of all communications between processes
within p and other processes from other partitions.

2. Take the maximum of these numbers, as it represents the “bottleneck”-partition.

3
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1. Introduction

Another criterion, which we propose in addition to the bottleneck, is the sum of all
communications between different partitions. Similarly to the first criterion, we calculate
it as follows:

1. For each partition p, calculate the sum of all communications between processes
within p and other processes from other partitions.

2. Sum up these numbers, as they represent all inefficient communication in the
network.

Partition 1
(12 edges)

Partition 2
(12 edges)

Partition 3
(12 edges)

Partition 4
(18 edges)

Figure 1.2: A simple example where the edges between these 4 partitions are visualized and
counted for evaluation. Note that in this case, communication across both grid-borders
is allowed.

For a visualization of these criteria, see Figure 1.2, where 4 partitions with 9 cores each
have been mapped to a 4 by 9 grid (Only edges between different partitions are visualized
here with the dotted lines.) In this case the application-wide communication scheme only
includes communication with direct neighbours along the horizontal and vertical axis
(5-point stencil), however, communication across borders is allowed (periodicity across
both axes). The quality of this mapping wrt. the first condition would be 18 according
to the long, bottom partition. The quality wrt. the second criterion would be 54 as it is
the sum of all partitions’ outgoing edges (3 · 12 + 18). Both of these criteria are quite
similar and solutions with a good “bottleneck” value will not be bad with respect to the
other criterion and vice versa. Given the previous assumptions and simplifications from
the real world topology, both criteria are expected to be similarly performing indicators.

1.3 Related Work

There are two different aspects, which this thesis focuses on. The first one being the
implementation of algorithms for the mapping problem. We will start with more general
mapping solutions for MPI, which work for general graphs and proceed to look into
more specific approaches. The other aspect is the theoretical approach, including the
complexity analysis. This topic is not directly connected to MPI implementations, but
rather to mathematics in general.
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1.3. Related Work

1.3.1 Mapping Problems in HPC

Hoefler and Snir [8] present heuristics for how to map application communication patterns
to the underlying network topology. Their algorithm works for heterogeneous networks,
meaning that they allow for differently sized computation nodes. They defined perfor-
mance metrics, based on worst-case graph congestion and the average dilation, which
essentially is the sum of all lengths of paths between two nodes times the frequency that
they communicate with each other. They briefly showed the NP-completeness of their
problem, assuming however that the input is given in an uncompressed manner. This is
completely fine for their approach for general graphs, but their NP-completeness proof is
unfortunately not directly applicable to Cartesian grids. They presented three different
mapping strategies, one of them being a greedy algorithm. Another, more scalable
approach is their recursive bisection algorithm - a strategy, which is commonly used for
graph partitioning. They used the SCOTCH package [21] and METIS library [27] for that.
Their third approach attempts to shape the adjacency matrices of the communication
graph and the network graph as similarly as possible with their algorithm. Their results
show that it heavily depends on the underlying system, which of their three approaches
yields the smallest congestion.

In their paper “Improving MPI Applications Performance on Multicore Clusters with
Rank Reordering”, Mercier and Jeannot [17] also work with general graphs and specifically
look into the workings of MPI_Dist_graph_create - an MPI function, where the user
may define edge weights between processes within the given MPI communicator. They
distinguish between binding processes to specific cores, which is application independent
and has to be done by the user and rank reordering, which is application specific and
transparent to the user. Both aspects have their pros and cons, but since libraries should
generally aim to be portable, the latter approach is preferred here. They used their own
algorithm called TreeMatch [10], which recursively partitions the graph, depending on
multiple layers of the system’s memory hierarchy. For their benchmarks, the authors
tried two different performance metrics - one being the communication frequency and
one being the message size - and benchmarked the resulting mappings for both of them.

Both of the previously presented works already show promising results for general graph
mapping and there are many others, which focus on different aspects. However, there
is little literature in the specific field that this thesis targets, as was earlier emphasised
with Table 1.1, where Gropp [7] had shown the scarce (or non-existing) realization of the
reorder mechanism for Cartesian grids.

Gropp [7] presented a simple approach for using node information to implement Cartesian
topologies. This is very similar to the goal of this thesis, however, his presented factoriza-
tion method only works for equally sized nodes and he did not present a formal proof for
guaranteeing a certain quality of his solution. His excellent experimental results, however,
are one of the motivations for this thesis and will be compared against. His algorithm
works by performing two-level-decomposition of the grid - a prime factorization for both
the size of the computation nodes, as well as the grid’s dimensions. The partitions’
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1. Introduction

prime factors are then distributed over the dimensions so that the partitions’ dimensions
become as square as possible. The workings of his algorithm will be explained in greater
detail in a dedicated Chapter 4, where we will also analyze its runtime and quality. An
important difference between Gropp’s and this thesis’ benchmarking is Gropp’s inclu-
sion of halo-exchange algorithms. This approach is commonly used in iterative stencil
computation for reducing the number of required communication rounds. While this
approach certainly is sensible in real-world applications, it is not the primary goal of
this work, where the focus lies on purely reducing the communication and communicator
construction time.

In a very recent work, Niethammer and Rabenseifner [20] showed a more theoretically
sophisticated approach than Gropp with the same core idea and very promising results.
In their approach, the authors made the grid dimensions themselves variable, in order to
find better mappings. However, we regard the choice of dimensions as part of the user’s
responsibilities, rather than the algorithm’s degree of freedom. Similarly to the already
mentioned approach of Mercier and Jeannot [17], the authors’ mapping strategy considers
multiple layers of communication. Although their algorithm uses a similar multi-level
decomposition approach to Gropp, Niethammer and Rabenseifner could sometimes find
even bigger improvements, since the grid’s dimensions themselves were variable. The
impressive experimental results aside, the authors did not provide an upper bound to the
quality of their solution.

We distinguish ourselves from these two publications by allowing for differently sized
partitions and different stencils. We argue that this improvement is necessary in order
for the solutions to replace MPI’s current standard behaviour.

Stencil computation itself has also been refined over the years, as parallel, shared memory
algorithms were needed to leverage modern GPUs’ potential. In the field of HPC, Roth
et al. [23] showed optimizations that can be done to the stencil code itself when compiling
Fortran applications. However, the focus of this thesis does not lie on efficient stencil
computation itself, but on mappings that favour stencil computation in general.

1.3.2 Similar Combinatorial Problems

In the following chapter, we will perform a complexity analysis of our mapping problem,
so we compare similar combinatorial problems in this section. At its core, our problem
resembles the quadratic assignment problem (QAP), which has been introduced by Lawler
[13]. In the QAP, the task is to assign n facilities or factories to n different locations,
with a given demand between any pair of facilities and a given weight between any
two locations. In our case, the facilities would correspond to the application’s virtual
Cartesian topology, where the demands are represented by the stencil. The locations
and the weights between them correspond to the physical cores and the hardware-links
between them. This problem has been shown to be NP-hard by Sahni and Gonzalez [25].
In 1996, Burkard et al. [3] introduced a library called QAPLIB for solving some instances
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1.3. Related Work

of this assignment problem. Back then, they limited their solution to only work for a
maximum of 256 nodes, due to the difficulty of the problem.

Although the QAP is well explored, it is unfortunately not directly connected to our
special case. We restrict our “facilities” (processes) to regular, isomorphic Cartesian grids,
which intuitively reduces the complexity and space requirements. Additionally, we restrict
the “locations” (cores) to either be within the same node or only accessible over the
network, which restricts the weights to 0 or 1. A priori, we do not know, whether these
restrictions make the problem easier or harder to solve, which is why further analysis is
needed.

In an earlier stage of this work, we attempted to solve the problem geometrically and
only considered 5pt-stencils. Our assumption - which we will not prove here - was that
any optimal mapping, wrt. the sum of outgoing communication edges will only contain
connected partitions. With this in mind, we looked at a variety of packing problems.
In 2001, Lodi et al. [14] presented an excellent comparison between two-dimensional
bin- and strip-packing problems and their connectedness. These problem definitions
allow for differently sized rectangles, which is great for our case where computation
nodes do not necessarily have to have the same sizes. Unfortunately, the restriction to
rectangular shapes is problematic, since we only surely know each partition’s size and not
the dimensions of the bounding rectangle. We do not even know, if the optimal mapping
consists of rectangular partitions or more irregular shapes, as we will see in later sections.

Since each partition’s shape is variable, we attempted to express our problem as a
scheduling problem with malleable tasks. Although there are many variations to the
problem statement, generally the difficulty lies within finding the optimal number of
machines that concurrently execute any given task and arranging them so that the overall
computation time of all tasks is minimized or does not exceed a given deadline. Mounié
et al. [18] discuss different approaches for solving this scheduling problem. In one of their
approaches, they utilize the knapsack problem, another famous combinatorial problem,
which is commonly used for showing algorithmic complexity. Unfortunately, there are
a few dissimilarities between the scheduling and our problem again. Even though we
can now model the varying sizes of the partitions’ rectangles by changing the number of
machines assigned to the corresponding task, we still are limited to rectangular shaped
partitions. Additionally, we would have to formulate our optimality criterion into some
sort of scheduling constraint, which is usually not possible with a linear expression and
therefore quite costly.

A different problem, which allows for non-rectangular shapes is the stock-cutting problem,
as explained by Burke et al. [4]. It is often used in the textile and metal-working industry,
where irregular shapes have to be cut out of a given stock, ie. a roll of cloth or a sheet
of metal, with as little wasted material as possible. In our case, the irregular shapes
correspond to the shapes of our partitions, which are now not restricted to rectangles
anymore. However, we lost the ability to vary the shapes as part of the problem definition,
which means that we would have to know each partition’s optimal shape beforehand.
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1. Introduction

All in all, there are multiple combinatorial problems, which share some aspects of our
mapping problem. However, we could not find any variations, where we could allow for
malleable, irregularly shaped partitions, while still being able to somehow encode our
optimality criterion.
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CHAPTER 2
Definitions

In this chapter, we will cover some technical and theoretical definitions, which will be
the basis for future chapters.

2.1 Message Passing Interface (MPI)

The Message Passing Interface (MPI) [19] is a commonly used standard in the field of
High Performance Computing. As the name implies, it offers various communication
routines so that the user does not have to worry about the connectivity specifics. While
this thesis focuses on the algorithmic aspect of the mapping problem, which will be
explained in the following sections, it is still important to have a basic understanding of
MPI in order to be able to follow the implementation and experimental results.

MPI is used for multi-threaded, distributed memory workloads. An MPI application is
comprised of multiple processes, which usually correspond to a single hardware thread or
processing core. This is not strictly necessary, since cores may be oversubscribed, which
allows for multiple processes running on the same core, however, for performance reasons
this is usually not the case. After the MPI library is initialized, every process accesses its
own system memory, meaning that if data from another process is required, it must be
transferred via one of MPI’s functions.

All communication happens across a communicator [19, Section 6.1], which essentially
is an ordered collection of processes. Within such a communicator, every process has
a unique identifier, called rank, which may be extracted from a communicator with
MPI_Comm_rank. The total number of processes within a communicator may be
extracted via MPI_Comm_size. All point-to-point communication [19, Chapter 3], like
the classical non-blocking MPI_Send and MPI_Recv or the non-blocking MPI_Isend

and MPI_Irecv [19, Section 3.7], have to be on the same communicator and the sending
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2. Definitions

side has to declare the target’s rank, while the recipient has to listen for an incoming
message from a specific source rank with a matching receive call.

MPI also offers helpful collective communication procedures [19, Chapter 5]. They can
be used to either distribute (e.g. MPI_Bcast or MPI_Scatter) or collect data (e.g.
MPI_Gather) from all participating processes. Common map-reduce scenarios such
as summation or min/max operations are already implemented and can be used with
e.g. MPI_Reduce. In this thesis, we will not need most of these operations and the
benchmarking will be done using the non-blocking point-to-point functions.

In order to construct a new communicator, MPI_Comm_split may be used. As the
name suggests, this function can create multiple sub-communicators from the calling one,
but it can also be used to create a new communicator that describes the same collection
of processes, but with a different ordering. As a starting point, MPI offers a default
communicator, which contains all processes, called MPI_COMM_WORLD. The presented
algorithms in this thesis will, therefore, use MPI_Comm_split for altering the ordering
of this default communicator in order to increase performance.

Another important feature of MPI is the possibility to describe certain topologies, such
as graphs and grids. We will specifically look at MPI_Cart_create, which enables the
user to describe Cartesian grids with specific dimensions. The reorder flag can be used
to allow the MPI implementation to undertake optimizations during this mapping phase.
In the introductory Chapter 1 we will further look at the poor reception of this flag.

2.2 Proofs

In the following chapters, we will analyze the algorithmic complexity of multiple problems.
Specifically, we want to find out whether our problems may be solved in polynomial time
or not. See Figure 2.1, which was directly taken from a survey by Laudis et al. [12], for a
visual overview of the complexity classes that we will focus on. This chapter will explain
the methodology used for these proofs and how we can show their correctness.

2.2.1 Decision Problems

Problems deal with different domains. For example, the problem of finding a clique in
a graph may be described with an instance, containing a graph structure and a result,
containing a collection of vertices. Another problem, 3-SAT, has an instance containing
a logical formula and a truth value assignment for each variable as output. Therefore,
comparing these two problems directly is not sensible or possible1. Our reductions only
work for so-called decision problems.

1In the literature, it can often be observed that some authors claim that a specific optimization
problem is NP-complete. As we know, an optimization problem cannot be in the class of NP, since we
cannot define it as such. However, this phrasing is often used to colloquially say that a computationally
equivalent decision problem is NP-complete. Sometimes it can even be seen that full NP-completeness
proofs are done using the optimization variant, which is not logically sound.
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2.2. Proofs

Figure 2.1: A simple diagram showing how two commonly mentioned complexity classes
(P and NP) compare to each other. Taken directly from Laudis et al. [12].

Decision problems still have problem-specific instances (graphs or formulae), but they
only check for one condition and have a true or false answer. For example, we can now
create a decision problem, based on our previous largest clique optimization problem, by
changing the task from “Find me the largest clique of graph G.” to “Is there a clique of
size at least k in the given graph G?”. To make this rephrasing easier, we introduced
another input parameter k (which is common, but not strictly necessary). We can take
for granted that every decision problem also delivers a so-called witness when the return
value is true. If we ask in our example, if a clique of at least size 10 exists and the answer
is yes, then we would also be able to get such a clique. We do not know if the returned
clique is the biggest or the only one, we just know that it satisfies the condition.

Another necessary step is to show that the newly introduced decision problem is not
unrelated to the optimization problem. This can be done by showing that one can be
constructed by using the other in polynomially many steps, wrt. the input size of the
optimization problem. Using the clique problem as an example again, we can construct
the decision problem by calling the optimization problem for finding the largest clique
C and then just check, whether |C| ≥ k holds or not. Conversely, we can construct the
optimization problem, since we know that the largest clique has to be of size [0 . . . |G|].
We can then call the decision problem for each possible size (or even in logarithmically
many steps, if we iterate [0 . . . |G|] in a binary search). After constructing the decision
problem, we can then proceed by proving its complexity.

2.2.2 Proving Complexity

We chose to perform our proofs by using Turing reductions. More concretely, we will
be using Many-one reductions, which are special cases of Turing reductions, presented
by Post [22] in 1944.
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2. Definitions

The idea is similar to any other reduction. Let us suppose we know the complexity of
a well-known decision problem A and want to show that our problem B has the same
complexity. We can reduce problem A to B - written A ≤m B - by defining a procedure
that would solve A by using B e.g. as a subroutine. We can then argue that B cannot
be easier to solve than A, since if it would be, then we would have found an easier way
of solving A using the reduction, contradicting our assumption of A being in a known
complexity class.

When proving NP-hardness, we have to be mindful of the runtime of the reduction process
as well. For example, if A were an NP-hard problem and we want to show the same for
B, then a reduction that calls B exponentially many times does not prove anything. The
reason is, that it may very well be that problem A can be solved using exponentially
many steps that individually have polynomial runtime (3-SAT for example). We therefore
restrict ourselves to polynomial reductions - written as A ≤p B - which means that within
the reduction, problem B may only be used polynomially many times wrt. the input of
problem A. These reductions, which use B as a subroutine polynomially many times, are
also known as Karp reductions.

As already mentioned, we will not use these Karp reductions, but rather Many-one
reductions. The difference is that instead of writing a hypothetical algorithm for A using
B as a subroutine, we will only transform the instances of problem A to an instance of
problem B. As a consequence, we can show that instances of A may be solved by an
algorithm for B in just one call (which, of course, is still polynomial). This instance
transformation has to adhere to two rules. Firstly, the new, transformed instance has
to be polynomially bounded by the size of the old instance. Otherwise, we could cheat
again and move some of the algorithmic complexity to the instance creation phase itself.
Secondly, for NP-completeness proofs, it has to be possible to verify whether a given
solution to a specific instance is indeed a valid solution or not. This restriction might
have an impact on the instance transformation as well.

After defining such a reduction, we have to verify that the instance transformation
IA →p IB is correct. Therefore, we have to prove that B returns true on a given instance
IB if and only if A returns true on IA. The best and easiest way to do that depends on
which problems were used for the reductions. This may be a direct proof for showing
A(IA) ≡ B(IB) or by showing the implications individually. There are multiple, logically
equivalent ways of doing so, for example (A(IA) ⇒ B(IB)) ∧ (¬A(IA) ⇒ ¬B(IB)) or
(A(IA) ⇒ B(IB)) ∧ (B(IB) ⇒ A(IA)).

2.3 Cartesian Graphs with Isomorphic Neighbourhoods

A graph G = (V, E) is comprised of a set of vertices, V , and a set of edges between those
vertices, E ⊆ V 2. In this thesis, we will restrict ourselves to the simpler Cartesian graphs
or grids. Cartesian grids only have vertices within a n dimensional Hyperrectangle. Given
any list of dimension sizes D = {d1, d2, . . . , dn}, where di ∈ N

+ denotes the size of the
ith dimension, we can construct V unambiguously using the Cartesian product
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2.3. Cartesian Graphs with Isomorphic Neighbourhoods

V =
n
∏

i=1

{0, . . . , di − 1}.

In grid- or lattice graphs, each vertex v is connected to a set of other vertices, U , via a
regular tiling. In future, we will call these connected vertices U neighbours of v, hence
the name “isomorphic neighbourhood”. Similar to these grids, we define our isomorphic
Cartesian graph neighbourhood with a bijection relation between the neighbourhood of
each vertex v ∈ V to the same graph H [9, 28, 30]. We will not explicitly define this
relation; instead, we will be using stencils for that.

2.3.1 Stencils

In a stencil computation, matrix elements are updated according to a pattern, which
is fixed for every element. This pattern is called stencil. Usually, each step in this
computation is comprised of simple, arithmetic operations, such as addition or multipli-
cation, however, in this thesis, we focus on the pattern itself, not the actual computation.
Figure 2.2 shows 6 different simple, exemplary stencils. Later on, we will describe stencils
as a list of vectors for mathematical discussions or as a flat integer array in code. The
5-point (5pt for short) stencil, visualized in Figure 2.2, for example, can be written as
S = [(1, 0), (−1, 0), (0, 1), (0, −1)] or in a flat integer array as S = [1, 0, −1, 0, 0, 1, 0, −1].

In Figure 2.2 we visualized all 6 stencils with directed edges, originating from the center
node. This directionality can be read as “Node x requires data from node y”. This
behaviour can be symmetric, as is the case with the 5pt-stencil for example. Each node
requires data from, e.g., its right neighbour, but its right neighbour also requires data
from the original node, as it is the right node’s left neighbour. The asymmetric stencil
shows a counterexample to that, where the top-right neighbour does not require data
from the center one since the stencil contains no outgoing edge to the bottom-left node.
This notation of symmetry of directionality is different to how we view it in MPI, where
we have to consider the whole data-flow. If we look at the asymmetric stencil again,
the top right neighbour has to know that it will need to send data to its bottom left
neighbour, although this connection is not directly part of the stencil. We could therefore
argue, that modelling asymmetric stencils is not sensible, but we will keep them in for
completeness sake.

Stencils are commonly comprised of weighted vectors, indicating their impact on the
computational kernel. The horizontal edge detection filter from Figure 2.2, for example,
usually weights the two horizontal edges with 2 and the diagonal edges with 1, indicating
that the horizontal neighbours’ values are twice as important for the computation as
the others. There is an important distinction between this weight and the same term
when it is used in conjunction with MPI or graph mapping in general. Niethammer and
Rabenseifner [20], for example, proposed an algorithm where the edges’ weights impact
the mapping by prioritizing a clustering of nodes, which are connected with higher edge
weights. These weights, however, focus on the different amounts of data, which have
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2. Definitions

5-pt stencil 9-pt stencil horizontal edge
detection filter

simple asymmetric stencil stencil with hopscomponent
stencil

Figure 2.2: 6 different stencils. The 5- and 9-point stencils are most commonly referred to
and are often used for averaging out elements in matrices. The horizontal edge detection
filter is used in computer graphics as a part of the Sobel filter[26]. The other three
stencils show that patterns do not have to be symmetric and may even split the graph
into multiple components, as is the case with the presented component stencil.

to be transmitted, not on the importance of the values themselves. In the case of the
horizontal edge detection filter, for example, Niethammer and Rabenseifner’s weighting
approach would not make sense, since while the horizontal edges transmit more important
values, the transmitted amount is the same for all neighbours.

2.3.2 From Stencils to Cartesian Graphs

Given a set of nodes V and a stencil S, containing |S| n-dimensional vectors s1, . . . , s|S|,
we can now construct the edges of our graph G as follows:

E = {(v, v + s)|v ∈ V, s ∈ S, v + s ∈ V }

Note that this construction does not treat edge nodes differently from nodes within the
grid. The last condition, v + s ∈ V , simply ensures that all edges in E are between
actual nodes in V . Any given problem usually not only demands a specific stencil but
also dictates the behaviour along the edges. Sometimes a default value, like 1 or 0, is
assumed or the edges two vertices from opposite sides of the grid, forming a torus shape.
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2.3. Cartesian Graphs with Isomorphic Neighbourhoods

This special treatment also does not have to be equal for all edges. For example, in a 2D
grid we could have edges across borders on the first dimension, but not on the second.

At the beginning of this section, we already presented a method for constructing the
graph’s vertex set V from a list of n dimensions. We still have to describe the bijective
relation between each vertex’s neighbourhood and H, where H is a helper graph, induced
by the stencil. Given a stencil S, containing |S| n-dimensional vectors s1, . . . , s|S|, we
can formally construct this graph H with

H = (V ′, E′), V ′ = {s|s ∈ S} ∪ {0}n, E′ = {0}n × {s|s ∈ S}.

Disregarding the distinction of different edge cases, we can now construct the bijective
relation for all vertices of our graph G = (V, E) and the helper graph H = (V ′, E′). This
bijection directly follows from the previous construction of our edge set E.

∀v ∈ V, ∀(v, u) ∈ E : v 7→ u − v

A visualization of this process can be seen in Figure 2.3. In this example, the simple
2D component stencil was used to induce the visually similar helper graph H and the
bijection relation between a selection of nodes of G and said helper graph is visualized
using the curvy edges.

(0,1)

(0,0)

(0,-1)

(5,4)

(5,3)

(5,2)

... ...

stencil
S = [(0,1), (0,-1)] H

G

Figure 2.3: The interaction between a simple stencil, the induced helper graph H and its
isomorphic properties are shown here for a portion of the graph G.

In this section we not only explained what Cartesian grids and graphs are but also how
we can construct them, given a list of dimensions D and a stencil S. This is important
for later chapters since we will only describe the graphs implicitly with these variables,
instead of enumerating the vertex and edge sets explicitly. While this notation makes the
graph representation more compact, this also means that proofs regarding algorithmic
complexity will become more complicated. This is because the number of vertices within
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2. Definitions

the graph is not polynomially bounded by the number of dimensions but by the sizes of
each dimension. These complexity pitfalls will be further analyzed in Chapter 3
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CHAPTER 3
Complexity Analysis

In general, graph partitioning or graph embedding problems are NP-hard, as shown
by Bokhari [2]. However, in the context of this thesis, the given graphs and partitions
adhere to many restrictions, which could make some aspects of the problem easier to
solve. Not only does easier mean that some NP-hard problems may become polynomial
in complexity, but also that - in the case of NP-hard sub-problems - approximation
algorithms may either become more accurate or faster. In this chapter, the focus lies on
defining different sub-problems and restricting their properties, followed by the respective
complexity analysis.

These restrictions should not be made arbitrarily, so for each sub-problem, the scope of
possible patterns, partitions and dimensions, as well as the optimality criterion have to be
well defined. Note that, for example, to show that a problem is NP-hard for any dimension,
it suffices to show that it is NP-hard for two dimensions. Additionally, the problem at
hand is an optimization problem, with the goal of finding the best possible mapping of
processes to partitions. It therefore cannot be NP-complete, since NP-membership is
only defined for decision problems and has to be used carefully in reductions. For this
sake, a practically equivalent decision problem will be defined.

3.1 Formal Problem Definition

The formal definition of the partitioning problem allows for well structured proofs. The
optimization variant, is defined as follows:
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3. Complexity Analysis

GRID-PARTITIONING

INSTANCE: A stencil S, which is a list containing n-dimensional vectors that
serve as the communication pattern between processes.
The dimensions D, which is an array of length n, consisting of the sizes of the n
dimensions of the grid.
A list of partition sizes P that contains all positive integer sizes for the partitions
that have to be filled. P is st.

∑

p ∈ P = Πd ∈ D
A list of boolean variables T of length n, consisting of the periodic behaviour
along dimensions. t ∈ T is false (or 0) iff no communication is accounted for
around the grid border, true (or 1) otherwise.

QUESTION: Find the optimal mapping of processes in the grid to partitions,
subject to a) the bottleneck partition, b) the sum of off-node communications.

An example instance could be GRID-PARTITIONING(S = [(−1, 0), (1, 0)], D =
[5, 4], P = [10, 10], T = [0, 0]). In words this instance means that we are working with a 5
by 4, two-dimensional grid (defined by D) which has to be mapped to two partitions,
both having size 10. An optimal mapping has then to be found with respect to the given
stencil S, which in this case only defines communication along the first dimension and
only to the direct neighbours. Colloquially speaking, every process communicates with
its left and right neighbour.

For this instance, a possible mapping of processes cx,y to partitions pi could be:
p0 = {cx,y|x ∈ {0..4}, y ∈ {0..1}}, p1 = {cx,y|x ∈ {0..4}, y ∈ {2..3}},
which colloquially speaking translates to assigning the bottom two rows to one partition
and the top two rows to the other. A visualization of this instance and mapping is shown
in Figure 3.1.

In order for reductions to be formally correct, let the corresponding decision problem be
formulated as follows. Note that only the parameter Q was added to the instance, in
order to describe the target quality of the solution, with respect to the defined optimality
criterion.
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3.1. Formal Problem Definition

5

4

p0

p1

Figure 3.1: A feasible solution to the partitioning instance
GRID-PARTITIONING(S = [(−1, 0), (1, 0)], D = [5, 4], P = [10, 10], T = [0, 0]).
This mapping’s costs, wrt. the two optimality criteria is 5 for the bottleneck and 10 for
the sum of all communication edges.

BETTER-GRID-PARTITIONING

INSTANCE: A stencil S, which is a list containing n-dimensional vectors that
serve as the communication pattern between processes.
The dimensions D, which is an array of length n, consisting of the sizes of the n
dimensions of the grid.
A list of partition sizes P that contains all positive integer sizes for the partitions
that have to be filled. P is st.

∑

p∈P p =
∏

d∈D d
A list of boolean variables T of length n, consisting of the periodic behaviour
along dimensions. t ∈ T is false (or 0) iff no communication is accounted for
around the grid border, true (or 1) otherwise.
An integer Q that stands for the target quality of the solution (wlog. less is
better).

QUESTION: Does there exist a mapping of processes in the grid to partitions,
whose quality (with regard to the defined optimality criterion a or b) is less than
or equal to Q?

To show that this decision problem is practically equivalent to the optimization problem,
we define both using the respective other one. The optimization problem has some known,
trivial bounds for the solution quality Q, depending on the optimality criterion. For
example, Q could be between 0 and the size of the biggest partition times the stencil
size. Then the BETTER-GRID-PARTITIONING problem can be called in a binary
search fashion until the best “yes” instance is found. Conversely, the decision problem
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3. Complexity Analysis

Table 3.1: An overview of the complexity classes of different variations of the mapping
problem. We show that for two dimensions and a simple component stencil, the problem
becomes NP-hard already.

Partition Sizes Dimensions Stencil Periodicity NP-hard NP membership

any 2 component any X X
equal 2 component any X
equal 2 5pt any ? ?
any any any any X ?

can be formulated using the optimization problem, by simply calling it and comparing the
resulting quality Qbest to the given parameter Q and returning “yes” or “no” accordingly.

6 3 3 2 2 2S:

6

3 3

2 2 2

s1:

s2:

s3:

Grid-Partitioning:

6

3

3

2

2

2

3-Partitioning:

3

18
 / 

3

Figure 3.2: A positive 3-way-Partitioning instance S = {6, 3, 3, 2, 2, 2} is visualized as an
optimal Grid-Partitioning. Each integer i corresponds to one partition p, where the size
of p is equal to i. The cost wrt. the sum of all edges is 6.

In the following sections we will use these definitions for proving the complexity of
different sub-problems. Table 3.1 presents an overview of the different complexities.
Most importantly, the first line states that the mapping problem is already NP-hard
for two dimensions and a simple, one-directional component stencil, which we already
presented in Section 2.3.1. The proof for this can be seen in Section 3.2. From this, we
can derive that the mapping problem has to be NP-hard in general. Additionally we show
in Section 3.3 that further simplifications allow us to solve the problem in polynomial
time, if the partition sizes are restricted to having equal sizes.
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3.2. Any Partition, Two Dimensions, Up-Down Pattern

3.2 Any Partition, Two Dimensions, Up-Down Pattern

In this section, we will show that for two dimensions and a very simple pattern, the
problem is already NP-complete. Additionally, it can be shown that the complexity
does not change, regardless of periodicity, with some adaptations to the proof, which
can be seen in Section 3.2.1. This is shown via a reduction from 3-way-Partition, an
NP-hard problem, which has been presented by Korf [11], to our BETTER-GRID-

PARTITIONING decision-problem1. To start with, let us define an optimal solution
as the one, where the sum of all connections leaving any partition has to be minimized. A
similar proof can be found for minimizing the maximum number of outgoing connections
per partition - the bottleneck value so to say. See Figure 3.2 for a visualized example of
mapping a positive 3-way-partition instance to a grid-partitioning instance, which makes
following the proof easier.

Recall that 3-way-Partition is the task of dividing a multi-set of integers into three
subsets, that have to have an equal sum of elements. More formally, the problem can be
formulated as follows:

3-WAY-PARTITION

INSTANCE: A list, or (multi-)set S of integers. Note that for simplicity’s sake,
the trivial negative case where

∑

s ∈ S is not divisible by 3 is immediately
discarded, since that makes a 3-way-partitioning impossible.

QUESTION: Can S be partitioned in 3 sub-sets s1,2,3 where
∑

x1 ∈ s1 =
∑

x2 ∈ s2 =
∑

x3 ∈ s3 holds.

Theorem 3.2.1. The GRID-PARTITIONING problem is NP-hard, when restricted
to two dimensions, a one-dimensional component stencil [(−1, 0), (1, 0)] and no periodicity.

Proof. Given an arbitrary instance S′ of 3-WAY-PARTITION(S′) we construct an
instance of BETTER-GRID-PARTITIONING(S, D, P, T, Q) as follows:
S = [(0, 1), (0, −1)] (In words, S consists only of the two-dimensional up and down
vectors.),

D = [3,

∑

x∈S′ x

3 ] (In words, there are two dimensions, one being 3 wide. The rectangle
constructed by these two dimensions has the area required for fitting all partitions
exactly.),
P = {p|p ∈ S′} (In words, every element s in the multi-set S correlates to the size p of a
partition in P .),
T = [0, 0] (In words, there is no periodicity),
Q = 2 · |S| − 6

1The 3- or multi-way partitioning problem is often confused with the well-known, strongly NP-
complete problem 3-Partition, which has been classified by Garey and Johnson [5]. In this problem, a
multiset containing 3m integers has to be divided into m triplets, which have to have the same sum.
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3. Complexity Analysis

A yes instance of 3-WAY-PARTITION is now corresponding to a yes instance of
BETTER-GRID-PARTITIONING. The simple up and down stencil makes it so
that an optimal partition has the shape of a strip, only stretching across the second
dimension and being 1 wide in the first dimension. Such a partition has exactly 2 outgoing
connections, one at the bottom and one at the top of the partition. Since there is no
periodicity, the top and bottom edges of the rectangular grid, result in every optimal
partition touching them having only 1 outgoing connection instead.

We know for a fact that it is possible to find such an optimal mapping because a positive
3-way-partition instance allows us to construct such a mapping by assigning every node
across the first index in the first dimension to the partitions that correlate to the values
in the 3-way-partition subset s1. Nodes along the second and third index are put into
the partitions that correlate to the values in s2 and s3 respectively.

Furthermore, we know that such a mapping always has a quality of 2 · |P | − 6, since
only optimally shaped partitions occur in the best solution, for which we showed the
number of outgoing connections earlier. Since this value is equal to Q, which we passed
as a parameter to BETTER-GRID-PARTITIONING, we successfully constructed
a positive instance.

With a similar argument, the other direction can be shown, where a yes instance
of BETTER-GRID-PARTITIONING corresponds to a yes instance of 3-WAY-

PARTITION. If there exists a mapping with a quality less than or equal to 2 · |S| − 6,
then that means that every partition is optimally shaped into a vertical strip that only
spans the second dimension. Since such a one-wide strip cannot span multiple indices
in the first dimension, we know for sure that it can be unambiguously assigned to the
corresponding subset si, where i denotes the index of the first dimension that the partition
is in. Since the collective height of all partitions for one index within the first dimension
is exactly equal to a third of the sum over all integers in S′, we know that all subsets
s1,2,3 are equal in size, by construction.

From this proof, we can formally conclude that not only this restricted problem is NP-
hard, but that the Grid-Partitioning problem, in general, is NP-hard as well. Nevertheless,
it may be interesting to explore other harder or even easier sub-problems.

3.2.1 Added Periodicity

The proof in the previous section was done without allowing communication to wrap
around the edges of the constructed rectangle. Using the same reduction as before, it
can be easily seen that adding periodic communication to the first dimension does not
change the problem statement since the pattern only foresees communication along the
second dimension. In this case, T would simply be changed to [1, 0] and the rest of the
proof remains unchanged.

For the second dimension, however, the proof has to be adapted, when periodicity is added
(T = [_, 1]). For the same optimality criterion (the sum of all outgoing connections),
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3.2. Any Partition, Two Dimensions, Up-Down Pattern

the change is that Q is no longer set to 2 · |S| − 6, but 2 · |S|. Additionally, the allowed
integers in the 3-way-partition multi-set have to be restricted to being strictly smaller

than a third of all the values; or expressed more formally: ∀x ∈ S : x <
∑

S

3 .

This restriction only removes some trivial cases, since if a single value x would be bigger
than a third of the total sum, there would not be a possible 3-way-partitioning anyway,
since the partition containing x is already bigger than the other two partitions. Would x
be equal to a third, then this value would have to be in its own partition, since there
would be no room for other integers. The rest of the problem could be solved with an
analog reduction from the partition problem, where only two, equal-sized partitions have
to be found, using the multiset S\x.

Still, this restriction is necessary, because when looking at the example in Figure 3.2, we
can see that the formula 2 · |S| does not hold. The partition with size 6 does not have
any vertical neighbours and therefore 0 outgoing edges. Other than that, the rest of the
proof becomes easier instead, since every optimally shaped partition now has exactly 2
outgoing communications, regardless of the top and bottom edges.

Furthermore, the proof has been done with the sum of all outgoing communications as
the optimality criterion. However, with the added information about periodicity, we can
express a similar proof, where the number of outgoing connections in the worst partition
is minimized. The reduction is analog to how it was done in Section 3.2, but T = [0, 1]
and Q = 2. Since we know that an optimally shaped partition always has exactly two
outgoing edges and more than that otherwise, the correctness of the reduction can be
shown trivially. The NP-hardness of the problem without using the periodicity property
is also possible using a similar argument, but not as straight forward, since more case
distinctions need to be made.

Corollary 3.2.1. Regardless of periodicity, the GRID-PARTITIONING problem is
NP-hard, when restricted to two dimensions and a one-dimensional component stencil
[(−1, 0), (1, 0)].

3.2.2 NP-Completeness Proof

There are multiple ways for showing NP-membership of a problem. Traditionally one has
to argue that a possible witness solution for a given problem is polynomially balanced in
the size of the input and that it can be verified in polynomial time. Since BETTER-

GRID-PARTITIONING only describes the grid implicitly with its dimensions, such
a witness may blow up exponentially, since every node is assigned a partition, not every
dimension. For example, a problem instance with three dimensions, each of size 10, implies
that the grid has 103 nodes, which then have to be assigned to partitions. Describing
such an assignment explicitly - meaning to enumerate every mapping in the solution -
therefore would not result in a polynomially balanced representation of a witness. This
does not automatically mean that our problem is not in NP, it just means that we have
to find another way.
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3. Complexity Analysis

Instead of the trivial enumeration, it may be possible to utilize some other properties
of the problem. Let us recall the optimization criterion of the problem: “Does there
exist a mapping of processes in the grid to partitions, whose quality (with regard to
the defined optimality criterion) is less than or equal to Q?”. We asked this question
where optimality meant minimizing the sum of all outgoing connections per partition
and the periodicity was not important. Let us assume (for simplicity’s sake) that we
want vertical periodicity by setting T to [0, 1]. We now know that the optimal solution
to this mapping problem has at best Q = 2 · |S|, as already explained in the two previous
sections. We also know that optimally shaped partitions are one-wide, long strips. If that
is not possible, these strips will wrap around the edges and continue in the next index of
the same dimension. This increases the number of outgoing connections by two, since
the strip is no longer 1 wide, but 2. Should the strip still not fit and beginning a new
column is needed, no further outgoing connections are added since the middle column is
solely occupied by the same partition and does not introduce any new communication.
Figure 3.3 represents these different mappings.

start start

start

start start

startstart

start start

Figure 3.3: Possible instances for the simplified sub-problem, where only vertical commu-
nication is allowed across a 2-dimensional grid. Even though the partition sizes may be
different, the different possible mappings are still manageable.

Looking at these different mappings, it can be seen that a given partition can be sufficiently
described only with the first node together with the partition’s size. This representation
now is a lot more compact and, in fact, polynomially bounded in the size of the input -
concretely in the sizes of partitions P . An example of this representation can be seen for
the problem instance BETTER-GRID-PARTITIONING(S = [(0, −1), (0, 1)], D =
[3, 5], P = [2, 3, 4, 6], T = [0, 1], Q = x) in Figure 3.4. The compact representation of this
possible solution can be written as Sol = [(1, 2), (0, 4), (0, 0), (1, 4)], where the tuple at
index i corresponds to the starting point of the partition, whose size is described at P [i].

We now also have to check, whether this polynomially bounded representation can be
verified in polynomial time. Colloquially speaking, we have to calculate, whether this
given witness results in “Yes” or “No” for the decision problem in polynomial time.
This can be done by calculating the number of edges that will be created when the ith
partition, with size P [i], starts at Sol[i]. The details of this calculation will be omitted
since it just contains a sequence of simple divisions and modulo operations.
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3.3. Equal Partitions, Two Dimensions, Up-Down Pattern

start
(0,0)

start
(1,2)

start
(0,4)

contd contd

start
(1,4)

Figure 3.4: A possible solution to the problem instance GRID-PARTITIONING(S =
[(0, −1), (0, 1)], D = [3, 5], P = [2, 3, 4, 6], T = [0, 1]) together with the starting points of
the compact representation.

We have now shown that this restricted version of our decision problem is NP-complete.
However, this does not mean that the general problem (with unrestricted stencils) is
NP-complete as well. In fact, since such a compact solution cannot be found easily, would
suggest that this problem is outside of NP.

3.3 Equal Partitions, Two Dimensions, Up-Down Pattern

In the previous section, the NP-hardness of the sub-problem that allows any partition size
was shown. In this section, the problem is further simplified, by allowing only partitions
with equal sizes of p. With the previous reduction in mind, it might not come as a surprise
that this problem is in fact solvable in polynomial time. For simplicity, let us look at
the optimality criterion where the number of outgoing connections of the worst partition
(bottleneck) is minimized when vertical periodicity is allowed. Similar arguments can be
made when periodic communication is not permitted or other optimization criteria are
chosen, but more case distinctions are necessary in this case.

Let us make the following case distinction, which is also visualized in Figure 3.5:
Case 1: The second dimension d2 is a multiple of p; or more formally: d2modp≡ 0.
Case 2: The second dimension d2 is not a multiple of p and p < d2.
Case 3: The second dimension d2 is not a multiple of p and p > d2.

The first case is trivially solvable in polynomial time, regardless of the optimality criterion,
since every partition can be optimally shaped into a long strip again and greedily packed
along the second dimension. Every partition then has two outgoing communications,
with small exceptions depending on the periodicity across the top and bottom edge of
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3. Complexity Analysis

p3

p2

p1

p6

p5

p4

p1

p2

p2

p3

p1

p1

p2

p2

p3

p3

p1

p2

p2

p1

Case 1
Q = 2

Case 2
Q = 4

Case 3
Q = 4

Case 3
Q = 2

6

2 2

6

4

6

3

6

Figure 3.5: Possible instances for the simplified sub-problem, where only vertical communi-
cation is allowed across a 2-dimensional grid. The quality Q of each instance is calculated
as the bottleneck value of outgoing connections, according to the case distinction.

the rectangle. The number of outgoing connections of the worst partition (bottleneck Q)
is 2, in this case.

The second case is not so trivial since it is not possible to form only optimally shaped
partitions. Q therefore has to be strictly greater than 2. It must have been impossible for
some partition x to be optimally shaped and filled into a strip along the second dimension.
However, by filling the partition with all remaining processes from one index in the first
dimension (along a strip) and filling the partition with as many processes as needed
from the next index in the first dimension, we can minimize the damage. Since p < d2,
we know that partition x spans exactly two different indices across the first dimension,
leaving us with a bottleneck value Q of 4.

The third case is similar to the second one, with the difference that every partition spans
at least two indices across the first dimension. Since all processes along any index in the
first dimension are distributed across at most two partitions and all partitions have at
most two indices that are not solely occupied by themselves, the bottleneck value Q is
bound by 2 · 2 = 4 as well. If it is possible, however, that all partitions only occupy one
index that is shared with another partition, then Q is equal to only 2. This case happens
if (2 · p)%d2 = 0 is satisfied.

With this algorithm, we have shown that a previously NP-hard problem becomes easy to
solve by changing just one property of the problem definition. This emphasizes the need
to be exact when defining the given problem.

Lemma 3.4. The GRID-PARTITIONING problem can be solved in polynomial time
wrt. the input, when restricted to two dimensions, a one-dimensional component stencil
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3.5. Equal Partitions, Two Dimensions, 5-Point Stencil

[(−1, 0), (1, 0)] and equal-sized partitions.

3.5 Equal Partitions, Two Dimensions, 5-Point Stencil

This section deals with the first practically relevant case, which is a mixture between
the ones, which were analyzed in the previous sections. We keep the partitions sizes
restricted, as we did in Section 3.3 for making the problem easier. However, we do not
restrict the stencil to just span one direction, but we allow communication along both
axes. Formally, the stencil can be defined as S = [(1, 0), (−1, 0), (0, 1), (0, −1)]. This
problem is the same one as Gropp [7] attempted to solve in his work (restricted to two
dimensions).

Previously, we could leverage the fact that the simple stencil only communicates along
one axis, allowing for easier quality Q analysis. Now the optimal shape of a partition
is no longer defined by a simple, long strip, but rather by a shape that resembles the
most compact rectangle. Even worse, depending on the dimensions and partition sizes,
the most optimal partition shape might not even be a rectangle. Unfortunately, it now
becomes apparent that similar proof techniques will not work as easily as they did before.

What we are left with, is a problem with similar properties to common packing problems,
such as the strip packing problem, which is known to be strongly NP-hard [16]. Lodi
et al. [14] have compiled an excellent survey on common 2D-packing problems and
compare various properties. Unfortunately, all these known problems mostly deal with
rectangles or items of fixed, unmodifiable shapes. Even though our specific variation,
where partitions may be reshaped if needed, does not necessarily mean that the problem
becomes harder, all evidence so far point towards our problem instance also being at least
NP-hard, if not even harder. The intuition behind this argument would be that more
possible partition shapes must be regarded when finding a good mapping, ultimately
enlarging the search space.

3.6 Problem Difficulty Assessment

In Section 3.2 we show that a restricted version of the problem is NP-hard. From this,
we can derive that the unrestricted mapping problem also has to be NP-hard, since it
partially consists of an NP-hard sub-problem, as proven with Theorem 3.2.1.

Corollary 3.6.1. The unrestricted GRID-PARTITIONING problem is NP-hard.

We also show that for equal sized partitions and the same component stencil, there exists
an algorithm, which solves the problem in polynomial time. In Section 3.5 we argue
that the addition of the 5pt stencil probably increases the difficulty, but could not prove
NP-hardness.

Conjecture 3.6.1. The GRID-PARTITIONING problem is NP-hard, when re-
stricted to two dimensions, 5pt stencil and equal-sized partitions.
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3. Complexity Analysis

From this point on, we will proceed under the assumption that the problem is already
NP-hard for equal-sized partitions and 5pt stencil.
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CHAPTER 4
Gropp’s Algorithm

Due to the expected NP-hardness of the general problem, the focus of this work will
now shift towards analyzing different heuristics. We will start by analyzing the exist-
ing proposition by Gropp [7], whose good experimental results were one of the main
motivations for this thesis. Note that Gropp does not account for differently shaped
stencils, but assumes square-like shapes. Therefore his solution does not correspond
to the unrestricted GRID-PARTITIONING problem, but to the version, which is
restricted to 5pt stencils and equal sized partitions.

4.1 Algorithm Description

Since a precise explanation of the algorithm can be found in Gropp [7, Section 2], this
section will focus on the intuitive idea behind the approach. Keep in mind that this
algorithm was designed to work for equally sized partitions and 5pt-stencils.

The idea is that a partition’s communication performance corresponds to its mapping’s
circumference since these edges are responsible for communicating with other partitions.
Gropp allows only rectangular partitions, so the partition’s circumference decreases if
the rectangle’s side-lengths become more similar - in other words, more square-like. This
is achieved by calculating a prime factorization for both the partition size and the grid’s
dimensions. The partition’s prime factors (descending in size) are then assigned to the
dimension, whose prime factorization can still accommodate the partition’s prime factors.
This approach guarantees that if there exists a good mapping, where every partition is
shaped and oriented in the same rectangular shape, it will be found.

A complexity analysis for this algorithm is not easy. In short, the algorithmic complexity
is bounded by the prime factorization, which is proven to be NP-hard and even expected
not to be NP-complete [6]. Practically speaking, this factorization is done for usually
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4. Gropp’s Algorithm

small numbers, as partition sizes are (in this context) bounded by the core count of the
machines in use and the dimension sizes are bounded by the number of machines in use.

Let us denote the number of prime factors of the partition size p with primep with
|primep| ≪ p and the dimensions’ D prime factors as primeD[i] with |primeD[i]| ≪ D[i].
Further, let us denote the number of all dimensions’ prime factors as primesD where

primesD =
∑|D|

i=1 |primeD[i]|. Since every factor in primep has to be compared to each
dimension’s factors, the overall runtime can be approximated with Θ(|primep| ·primesD),
when disregarding the runtime for the factorization completely.

4.2 worst-case Quality

While the algorithm’s idea looks very promising, the generated mappings are not guar-
anteed to be optimal. This should not come as a surprise since the overall problem is
expected to be NP-hard. In this sections we will show that Gropp’s algorithm can become
arbitrarily bad by showing a method for constructing worst-case instances of any scale. I
will focus on 2D examples, but the procedure works for any number of dimensions - it
even becomes more effective, with increasing dimension count.

The main drawback of the algorithm is that it relies on partition and dimension sizes
to have well behaved prime factorizations. Let us now choose a partition size p, where
p is a prime number. Gropp’s algorithm, therefore, has no choice, but to assign the
partition along one dimension in the shape of a 1-wide strip, since there are no other
prime factors, except for p itself. This would lead to the rectangle’s circumference being
2p + 2. Assuming that a square-like shape is the most optimal for any partition, we can
optimistically approximate an optimal solution’s quality with the circumference of the
square with the same surface area as the one-wide rectangle 4

√
p. The ratio between

these two qualities can be calculated with

2p + 2

4
√

p
=

p + 1

2
√

p

and we can observe that this ratio becomes infinitely bad, the bigger the partition size
becomes. Gropp’s algorithm, therefore, does not have a bound regarding any optimality
guarantees.

lim
p→∞

p + 1

2
√

p
= ∞

Similarly, we can assume that one of the two (or both) partition sizes is a prime
number. Wlog. let us assume that D[1] is prime, which results in two case distinctions:
D[1] ∈ primep and a factor of primep will be assigned to D[1] or D[1] /∈ primep. If
D[1] ∈ primep and a factor of primep will be assigned to D[1], then the partition will
be at least D[1] long. Similarly to before, as D[1] becomes larger in comparison to p, the

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.2. worst-case Quality

ratio to the optimal solution becomes worse. If D[1] /∈ primep, then we know for sure
again that all partitions will be shaped in 1-wide strips, as they cannot span D[1], due to
no common prime factors.

11

2

p2

p1

Gropp's Mapping

11

2 p2p1

Optimal Mapping

Figure 4.1: This exemplary mapping shows how Gropp’s [7] algorithm performs when
the partition sizes do not have well behaved prime factorizations. The other mapping is
optimal wrt. a 5pt-stencil and both proposed optimality criteria.

A simple example of this construction can be seen in Figure 4.1 where the two partitions
have a size of 11, meaning that they have to be arranged in 1-wide, 11-long strips. Note
that the partitions do not necessarily have to be indivisible. For example, a partition size
of 22 still forces the rectangles to be at least 2-wide strips, which can result in sub-optimal
mappings as well. Another inherent drawback is that the algorithm was only designed
for stencils that favour square-like partitions - in particular, 5- and 9-point-stencils. If
the user wants to use other patterns, then the quality heavily depends on the stencil’s
asymmetry and may become worse.
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CHAPTER 5
k-d Tree Algorithm

In the previous chapter, we presented Gropp’s approach for solving the restricted version
of the GRID-PARTITIONING problem, where only 5pt stencils and equal-sized
partitions are allowed. To increase the applicability of our algorithm, we propose an
algorithm for approximately solving the partitioning problem also for differently-sized
partitions in this chapter. In addition to the algorithm description itself, a runtime and
worst-case quality analysis will be given, similarly to the previous approach.

5.1 Algorithm Description

The idea for this algorithm is based on a data structure called k-d tree, which is useful
when multidimensional data needs to be ordered or queried. It works similarly to a
binomial tree, however, the decision variable, which is responsible for deciding whether
to traverse the left or the right side, changes for each layer. Usually with k-d-trees, each
layer corresponds to a different dimension, alternating in a round-robin like manner. In
order to construct a more balanced tree, this implementation always finds the biggest
dimension k, which is then split in half. The left side then only contains nodes with
coordinates c for which c[k] ≤ ⌊D[k]

2 ⌋ and the right side contains the remaining nodes.
Listing 5.1 shows the pseudocode for the algorithm which recursively halves the biggest
dimension, until the desired coordinate is reached. Figure 5.1 shows a simple example
with two dimensions D[1] = 10, D[2] = 3.
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5. k-d Tree Algorithm

i <= 15 i > 15, c[1] += 15

D[1]

i <= 6 i > 6, c[1] += 6

D[1]

D[1]

i <= 2 i > 2, c[2] += 2

D[2]

D[1]

i <= 1 i > 1, c[1] += 1

D[1]

(1,0)(0,0)

D[1]

D[1]=10
D[2]=3

Nodes with c[1] > 15

Nodes with 6 < c[1] <= 15

Nodes with
c[1] <= 6, c[2] > 2

10

3

(1,0)

(0,0)

Figure 5.1: The traversal of a 10 by 3 grid can be seen here. Each side of the tree on
every level corresponds to one half of the parent node’s search space. It can be seen how
node (0, 0) can be found by always choosing the left side and (1, 0) by choosing the right
side once in the very end.

Listing 5.1: The pseudocode for the k-d tree algorithm’s coordinate calculation. The
simple recursion shows that the coordinate calculation is always done for the biggest
dimension. Note that this exact approach modifies the dims array, so a copy should be
made before.

1 void find_coordinates(

2 int *dims /* array dimensions */,

3 int *coord /* coordinates so far */,

4 int elements /* number of elements in dims */,

5 int target_index /* desired rank */

6 ) {

7 int k = index_of_largest_dim(dims);

8 if (dims[k] <= 1) {

9 return;

10 }

11 int left_size = (elements / dims[k]) * (dims[k] / 2);

12 if (target_index < left_size) {

13 dims[k] = dims[k] / 2;

14 find_coordinates(dims, coord, left_size, target_index);

15 } else {

16 dims[k] -= dims[k] / 2;

17 coord[k] += dims[k] / 2;

18 target_index -= left_size;

19 find_coordinates(dims, coord, elements - left_size,

20 target_index);

21 }

22 }
34
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5.2. Runtime Analysis

This algorithm requires all processes of the same partition to have an ascending target
index. If not, then each process must calculate its correct target index first. In MPI this
is usually achieved for free since the standard rank of MPI_COMM_WORLD is commonly
already assigned that way. This may depend on the systems scheduler settings or on
other environment factors.

Note that this algorithm therefore also works for differently sized partitions, since the only
information needed for calculating the coordinate is the process’ index in this ordered
list - aka its MPI rank on the world communicator. This means that in a 10 by 10 grid,
for example, the process with rank 17 will always get the same coordinate, regardless of
how many partitions there are and what sizes they have. Additionally, all calculations
may be done locally and no communication is required throughout the entire algorithm.

5.2 Runtime Analysis

Each iteration the currently biggest dimension has to be found (Line 7 in Listing 5.1).
This may be improved by some priority queue, where the split dimension’s new size may
be re-appended, however, let us assume the cost to be linear wrt. |D| in every iteration.
The remaining calculations within the function are simple arithmetics and may be done
in constant time.

The recursion ends when there is only one node within the current sub-tree. Since every
iteration splits the biggest dimension in half (±1 due to integer division), the number of
remaining nodes in the search space is always halved. The k-d tree’s depth, therefore, is
limited to ⌈ log2(n)⌉, where n is the number of nodes. Again, a slight improvement may
be to end the recursion whenever the target_index reaches 0, which would ultimately
not change the complexity since the last rank has to be waited for anyway.

The overall complexity for calculating the rank’s coordinate within the grid is O(log2(n) · |D|).
Note that the necessary time for creating an actual MPI communicator is not regarded
as being part of the algorithmic complexity.

5.3 worst-case Quality

For examining the quality wrt. the bottleneck partition, let us specify some arbitrary,
but fixed properties. Let n denote the total number of processes, P denote the set of
partitions, resulting in |P | denoting the number of partitions and P [i] the size of partition
i. Similarly, let D denote the set of dimensions and D[i] denote the size of dimension i.
In the first split, the processes’ indices are divided into the lower half and the upper half
of the currently biggest dimension’s indices. Let us denote this biggest dimension’s index
with k.

Since the algorithm itself does not directly account for partition sizes, three possible
cases might have occurred. Firstly, no partition was split in two, which happens if the
splitting index is the last element of a partition. This is the optimal case, but no concrete
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5. k-d Tree Algorithm

computations can be made yet for the bottleneck partition. Another case might be that
a partition a was split, but one side is completely occupied by a part of a’s processes
and the other side is only partially occupied by a, while the rest might be filled with
processes of possibly multiple other partitions. A small example for that would be a 10
by 10 grid with two partitions a = P [1] = 55 and P [2] = 45. The first split will divide
the 10 × 10 grid into two sides, each containing 50 nodes. P [1]’s first 50 processes will
occupy the left half completely, with the remaining 5 occupying parts of the second half.
In this case, the bigger part a′ of a will form a perfect hyperrectangle, with the number
of nodes being equal to the volume of the hyperrectangle

V (D, k) =
D[k]

2
·

∏

i∈{1..|D|}\k

D[i] =

∏|D|
i=1 D[i]

2

or more briefly, with a modified D′ st. D′[k] = D[k]
2

V (D′) =

|D′|
∏

i=1

D′[i].

The number of outgoing edges are equal to the surface area of the hyperrectangle, namely

A(D, k) = (

|D|
∏

i=1,i6=k

D[i]) + (2

|D|
∑

i=1,i6=k

|D|
∏

j=1,j 6=i,j 6=k

D[j])

or more briefly, with a modified D′ st. D′[k] = D[k]
2

A(D′) = 2

|D′|
∑

i=1

|D′|
∏

j=1,j 6=i

D′[j]).

The processes on the other side of the split point will now - by construction - be on the
edge of future splitting operations. Let them be denoted by a′′. This sub-partition a′′

will now be subject to these two splitting cases in future - it either fills a hyperrectangle
perfectly, terminating this recursive behaviour or it will be split again, where one side
(the one on the edge of the previous splitting operation) will fully occupy a rectangle
and the other side will have to share the space with other partitions. A key observation
is that these recursively created sub-partitions will always be connected to the bigger
partition on the other side of the split point.

The third case is a special case of the second one. A partition a is split, but both
sides are not completely occupied by processes of a. This is the worst possible scenario
since the two sub-partitions a′ and a′′ might not even be connected anymore, increasing
the number of outgoing connections drastically. However, these two partitions are now
certainly at the edge of future split points, similarly to the behaviour in the previous
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5.3. worst-case Quality

case. Therefore, this third case, which completely separates two partitions, may only
occur once per partition.

Per hyperrectangle, the worst possible ratio of outgoing edges versus the number of nodes
can be achieved by maximizing A(D,k)

V (D,k) , which can be done by skewing the dimensions’
ratio and by lowering the number of dimensions. This is not surprising, as intuitively
a long, 1-dimensional strip has a worse surface to volume ratio than an equal-sided
3-dimensional (or n-dimensional) cube.

5.3.1 Smallest Partition to fill any Rectangle

The worst possible ratio of a whole partition is then made up by maximizing the area of

all sub-partitions’ rectangles and the partition’s size

∑

a′ina
area(a′)

|a| . This may be achieved
by creating a polygon within the rectangle that has the maximum surface area with the
smallest volume. The fact that obviously differently sized polygons can have the same
perimeter can be seen in Figure 5.2, where all of the shown, green figures within the
rectangle have the same surface area.

Figure 5.2: All these green polygons have the same surface area despite having different
volumes.

The key to achieving the smallest polygon is to attempt to span every dimension completely
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5. k-d Tree Algorithm

whenever a split happens. In other words, at every split, we ask the question: “Do we
need to go into the right side of the tree, in order to fill the rectangle?”. Figure 5.3
visualizes this procedure.

1

2

3

4

5
7

6

Figure 5.3: The procedure for deciding the required sub-rectangles when trying to achieve
the smallest number of nodes.

The first step has to be handled carefully since we always only want to take one half
of the rectangle (Rectangle 1). When the first rectangle is chosen, we already cover
all dimensions, except for the largest one, where we made the cut. After the second
split, we can see that this one cuts across another dimension, meaning that attempting
to reach for rectangle 2 would only give us the possibility to cover dimensions that
we already have covered anyway. We, therefore, chose not to overextend and continue
splitting the bottom rectangle. After the third split, we cut across our original dimension
again, meaning that we need to cover the right half of the decision tree as well. This
procedure goes on recursively until the last, single element has been picked. Note that
this algorithm behaves similar for an arbitrary number of dimensions - only the original
splitting dimension is the one, where the right side of the tree is chosen.

The number of covered nodes therefore depends on when the cuts across the original
dimension happen. Let us suppose that cuts happen across the first dimension three
times in a row, then we at least need 1

2 + 1
4 + 1

8 = 7
8 nodes already - compared to only

1
2 + 1

8 = 5
8 when the second cut is across another one. However, we can prove that once

another dimension was halved, the original dimension k and i will be split in alternation.
Let us suppose that the last split, where k was halved was at iteration x, then we have

D[k]

2x
≥ D[i] >

D[k]

2x+1
.

In the next iteration D[i] will be halved, leaving us with 2D′[i] = D[i].
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5.3. worst-case Quality

D[k]

2x
≥ 2D′[i] >

D[k]

2x+1
=

D[k]

2x+1
≥ D′[i] >

D[k]

2x+2

We now know that our previous remainder of D[k] after x splits is now larger again than
the newly created D′[i], proving that the splitting will now alternate between the two
dimensions. We can compute after which iteration this behaviour will occur, by solving
the equation for x:

D[k]

2x
≥ D[i] >

D[k]

2x+1
= log2

(

D[k]

D[i]

)

≥ x > log2

(

D[k]

D[i]

)

− 1 =⇒ x = log2

D[k]

D[i]

In order to find out, what happens when another dimension becomes smaller than both
D[k] and D[i], we could modify the formula again, but that is beside the point. We could
successfully illustrate that a heavily skewed rectangle increases the number of nodes
required to fill it. If it were a perfect hyper-square, then the alternation between splitting
dimensions would start immediately, minimizing the number of nodes required.

We can calculate the number of nodes n needed since we know how often the rectangle is
halved in one dimension. The remaining space is then split, alternating between both
dimensions a and b. Wlog. we can assume that a > b.

x =

ld( a
b

)
∑

i=1

1

2i
, y =

ld(b2)
2
∑

i=0

1

2
· 1

4i
, n = (x + (1 − x) · y) · ab

where x denotes the number of nodes that will be reserved until the splitting will alternate
between a and b and y denotes the splitting of the square-like part of the rectangle.
However, this formula is hard to work with and becomes even more complicated for
multiple dimensions. Since we are only interested in the worst-case scenario, we will
not calculate the minimum required nodes exactly, but just approximate it. There are
two aspects that come into play here. Firstly, the fact that we always need at least one
half of the rectangle and secondly that the second half will be iteratively split between
the participating dimensions at some point. However, since we are working with integer
numbers, this repetitive quartering is not so straight forward to anticipate, which is why
we will pessimistically ignore this part. The resulting approximation of the number of
required processes is

n =
ab

2
.

Now that we can approximate the smallest number of processes, which are required to fill
the given hyperrectangle, we can perform the worst-case analysis. Note that the acquired
bound will not be tight, because of the relaxations we made.
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5. k-d Tree Algorithm

5.3.2 Unconstrained Worst-Case

For the absolute worst-case, we would need to introduce an example, where the third case,
which splits the partition in the middle, happens. Let us say that the two sub-partitions
are completely disconnected and look at an example for just two dimensions. For one side
of the split, we know that the area is 2a + 2b and the volume to be at least ab

2 . For two
disconnected rectangles we, therefore, have a total area of 4a + 4b and ab nodes. If these
ab could be arranged optimally, then they would form a perfect square with the four
sides having the length 4 ·

√
ab. The optimality ratio between our algorithm’s solution

and the potential worst-case therefore would be:

4a + 4b

4 ·
√

ab
=

a + b√
ab

Since we assumed wlog. that a ≥ b, we can express a as a = b · s where s denotes the
rectangle’s skew, which has to be greater or equal to 1.

bs + b√
bs · b

=
s + 1√

s

What we can see here is that our optimality ratio becomes worse with an increasing skew
s. In the best case of s = 1, the resulting ratio would be 2, meaning that the worst
possible solution is two times worse than what could be possible in the optimal case.
Note that this bound is not tight, since we completely omitted assigning the right half of
the rectangle.

We can modify this formula to accommodate an arbitrary amount of dimensions as well.
di will denote the ith rectangle’s side length and n the number of dimensions.

4
∑n

i=1

∏n
j=1,j 6=i dj

2n n
√
∏n

i=1 di
n−1 =

2
∑n

i=1

∏n
j=1,j 6=i dj

n n
√
∏n

i=1 di
n−1

For example, when n = 3, d1 = 10, d2 = 8, d3 = 6 then we would get a ratio of

2 · 8 · 6 + 2 · 10 · 6 + 2 · 10 · 8

3 3
√

10 · 8 · 6
2 =

376

183.914...
= 2.044...

5.3.3 Constrained worst-case

Previously we saw that the more the hyperrectangle is skewed, the bigger the optimality
ratio becomes. However, what would it mean for the largest rectangle’s side dk to be more
than a factor 2 off of any other dimension di? Since the procedure only ever halves the
largest dimension, di cannot have been halved even once yet. If it would have been, then
2di ≥ dk must have held at some point, but we just assumed that dk > 2di. 2di > 2di
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5.4. Skewed k-d Tree Algorithm

clearly contradicts our assumption, meaning that the rectangle’s current dimension i
must be equal to what we started with D[i]. This, in turn, means that our optimal
solution cannot be a square with a sidelength bigger than di, meaning that our solution’s
di dimension is in fact optimally chosen (as big as it can go).

What does that mean for our worst-case scenario? The biggest skew any dimension can
have, compared to the biggest dimension is between 1 and 2. Again, wlog., let us assume
that d1 is the biggest dimension, then in the worst-case ∀i∈{2..n}d1 = 2di holds. We can
now simplify the general ration formula to match this worst-case:

2

(

(

d1
2

)n−1
+ (n − 1)d1 ·

(

d1
2

)n−2
)

n n

√

d1

(

d1
2

)n−1
n−1 =

2
(

d1
2

)n−1
(1 + 2(n − 1))

n
(

d1
2

)n−1
n
√

2
n−1

=
4n − 2

n n
√

2
n−1

The resulting formula can be used to calculate the bound for the worst possible optimality
ratio of the algorithm. For n = 2 that would be 3√

2
= 2.12... and 2.09... for n = 3. This

number converges towards 2 for increasing dimensions.

While this algorithm could improve upon Gropp’s [7] restrictions by working for any
partition size and having a bounded worst-case, it still favours square-shaped hyper-
rectangles. Optimal communication patterns are therefore limited to 5- or 9pt-stencils
again. In an attempt to alleviate this problem, we propose a slight change to this k-d tree
algorithm, in the following section.

5.4 Skewed k-d Tree Algorithm

The previously presented k-d tree algorithm was designed with 5-point stencils in mind.
The quality of any solution may, therefore, become arbitrarily bad if the stencil, which was
chosen by the user, differs from the ideal. Instead of aiming for square-like hyperrectangles
during the splitting phase, the partitions’ target shape will be influenced by the given
stencil.

In line 7 of the previous pseudo code in Listing 5.1 we can see that the split-dimension is
chosen solely by the remaining size of the dimension. Instead, we will introduce another
function that weights the dimensions’ remaining size by the inverse of how often the
dimension is communicated along. Listing 5.2 shows the code for calculating the index of
the largest, weighted dimension.
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5. k-d Tree Algorithm

Listing 5.2: This function replaces the previously trivial method of finding the biggest
dimension. The factors array contains the weight for each dimension, which is then
inversely used, so that dimensions are preferred if there is less communication across
them.

1 int skewed_max_index(

2 const int *dims,

3 int num_dims,

4 int stencil_size,

5 int *stencil

6 ) {

7 double *factors = malloc(num_dims * sizeof(double));

8 double m = -1;

9 int max_index = -1;

10 double skewed_entry;

11
12 /* calculate each dimension’s weight */

13 for (int d = 0; d < num_dims; d++) {

14 factors[d] = 0;

15 for (int i = 0; i < stencil_size; ++i) {

16 /* if the stencil points somewhere in that direction */

17 if (stencil[(i * num_dims) + d] != 0) {

18 factors[d]++;

19 }

20 }

21 }

22
23 for (int i = 0; i < num_dims; i++) {

24 skewed_entry = dims[i];

25 if (skewed_entry > 1) {

26 /* always prefer to split dims wo. communication */

27 if (factors[i] == 0) {

28 skewed_entry = INT_MAX;

29 } else {

30 skewed_entry /= factors[i];

31 }

32 } else {

33 skewed_entry *= -1;

34 }

35 if (skewed_entry > m) {

36 m = skewed_entry;

37 max_index = i;

38 }

39 }

40 return max_index;

41 }

The recursions termination condition is only slightly adapted since the new function
returns −1 if all dimensions are already of size 1 and cannot be split any further. The
rest of the algorithm, namely the splitting and traversing of the tree, remains unchanged.
The algorithmic complexity, therefore, is not impacted negatively, even though better
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5.4. Skewed k-d Tree Algorithm

results may be achieved for some stencils. Note, however, that wildly asymmetric stencils
still will not be mapped optimally, since the targeted shape remains a hyperrectangle.
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CHAPTER 6
Squarest Strips Algorithm

During the implementation of the k-d-tree algorithm, we found some small, disheartening
examples where the standard behaviour of MPI found better solutions than both Gropp’s
algorithm or the k-d-tree approach. Figure 6.1 shows a very simple example where it can
be seen that the k-d-tree algorithm creates jagged edges due to the recursive splitting
in the two left-most partitions. MPI’s standard behaviour, on the other hand, finds the
optimal solution for this instance. The approach that we present in this chapter was
inspired by this example. Note that the aim of this solution is to find square-like partitions
again, therefore, this algorithm solves the restricted GRID-PARTITIONING problem
for 5pt stencils.

6.1 Algorithm Description

Before describing the algorithm, we want to analyze, why the standard behaviour of
MPI performs so well for these instances. The partitions from the example of Figure 6.1
are all of size 11. If they would be arranged in a perfect square, then the side length of
said square would be

√
11 = 3.316.... We only have integers to our disposal, so the side

lengths have to be between 3 and 4. A 3 × 4 rectangle would contain 12 processes, which
is pretty close to our partition size of 11. MPI’s standard behaviour assigns processes
starting with the first dimension (row-major). In this case, this dimension is only 4 wide,
which coincides with one of the side-lengths of a pretty good bounding rectangle. The
resulting partitions are therefore arranged quite compactly with only one to two jagged
corners. Obviously, this approach only works if the grid size corresponds to the optimal
side-length of the bounding rectangle, which is why the standard behaviour only performs
so well for these small instances.
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6. Squarest Strips Algorithm

4

11

k-d-tree mapping

4

11

Gropp's mapping

4

11

MPI standard behaviour

Figure 6.1: A simple 4 × 11 grid with 4 partitions, where three different mappings can
be seen (Gropp, k-d-tree and the standard behaviour of MPI). Note how the standard
behaviour is better wrt. the bottleneck partition than both other approaches.

6.1.1 Variation with Disjoint Partitions

In this section, the algorithm’s concept will be explained with the help of a simple example.
In its basic form, the squarest strips algorithm may produce multiple disjoint partitions,
which is no good. The final, more complicated version requires some adaptations and
will be presented in the following section, however, the core idea stays the same and will
be discussed here.
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6.1. Algorithm Description

For the n-dimensional case, the squarest strips algorithm works by calculating the nth
root of the partition size p as the target width of a single strip. The first dimension
is then divided by this target width, which gives us the number of strips within this
dimension. Since neither the dimension has to be divisible by the nth root nor does the
root have to be an integer, the actual strip width is then calculated. This width is then
assumed to be one of the bounding rectangles side-lengths. The following dimensions’
strip widths are then not calculated using the nth root, but rather using the already
calculated, actual strip widths in mind. The formula for the ith strip width can be
expressed as

strip_width(i) = n−i

√

p
∏i−1

j=0 strip_width(j)
∀i ∈ {0 . . . (|D| − 1)}.

This calculation is done for every dimension, except for the largest one (The actual
implementation is not recursive, but iterative and linear in time wrt. the number of the
dimensions). This largest dimension is chosen to be iterated along, similarly to how the
standard approach iterates over the grid in a row-major fashion.

Similarly to the k-d-tree approach, every process can locally compute its new rank, since
the current rank corresponds to the index of the coordinate in the new grid. This can be
done by iterating over all dimensions and calculating the strip width. We then also know
how many processes fit into each strip, meaning that each process can compute to which
strip it belongs. For an easier explanation, let us look at an example for calculating the
coordinate of process 70 if there is a 3D grid of size 5 × 4 × 8 and a partition size of 16.
We know that for the first dimension one strip is 2 high ( n

√
p = 3

√
16) and the other 3.

The first strip of height 2 contains 2 · 4 · 8 = 64 processes, which means that our process
70 falls into the second strip, where it is the 70 − 64 = 6th one. The second dimension
also has two strips, both having a size of 2. These strips contain 3 · 2 · 8 = 48 nodes each,
which means that strip 1 is sufficient for fitting rank number 6. As already mentioned,
the assignment across the last dimension is handled differently. In order to be able to
re-use the algorithm, a strip width of 1 is assumed here, meaning that all 8 strips have
the same dimensions of 3 · 2 · 1 and therefore contain 6 processes each. Our process with
rank 6 (0 based) is therefore in the second strip, where its new rank would be 0.

We now know that the process, which originally had rank 70 falls within the 2nd strip
along the first, the 1st strip along the second and the 2nd strip along the third dimension,
where it has a new relative rank of 0. Within this strip, all that is left to do is to assign
a coordinate in the same way as the default behaviour would have done - row-major,
however with the rows not being the dimension, but the strip dimensions.

After doing so, we now know that the coordinate assignment is rather compact within
one strip, since the standard behaviour always operates within an appropriately sized
bounding rectangle. However, every partition that spans more than one strip may be
split into two components. Let us assume that in our previous example, our rank 70 is
in the same partition as rank 60 - after all, the assumed partition size was 16. These
two processes would be in two completely different strips, which do not even share one
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6. Squarest Strips Algorithm

common edge. This issue will be addressed in the following section, where a slight
adaptation guarantees partition connectedness.

6.1.2 Connected Partitions

Strip 2

Strip 1

Simple Squarest Strips

Strip 2

Strip 1

Improved Squarest Strips

strip assignment direction

strip assignment direction

strip assignment direction

strip assignment direction

Figure 6.2: A simple example mapping where the simple squarest strips algorithm would
split one partition in two. Due to the adapted assignment direction, the improved version
does not do so.

The squarest strips algorithm in its final form is presented in this section and addresses
some of the problems that could be seen previously, which can be seen in Figure 6.2.
For the two dimensional case, we can see that the assignment direction may simply be
corrected by alternating it every strip. However, for the three or n dimensional case, the
setting becomes more difficult, as can be seen in Figure 6.3. Each strip’s assignment
direction depends on the previous strip choice.

Figure 6.3: For more than two dimensions it becomes harder to keep track of repeated
assignment-direction changes, since one depends on the other.
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6.1. Algorithm Description

Listing 6.1: The pseudocode for the squarest strips algorithm shows the convoluted
process of finding connected strips.

1 compute_strip_coordinate(/* args */) {

2 bool flip_next = false;

3 /* wlog. the last is the largest dimension */

4 for (int curr_dim = 0; curr_dim < num_dims; curr_dim++) {

5 int small_strip_height = /* nroot plus remainder */;

6 int num_small_strips = /* number of "normal sized" strips */;

7
8 // number of nodes in a single row within one strip

9 int nodes_per_row = total_nodes / current_dim_size;

10 int big_strip_nodes = ((small_strip_height + 1) * num_big_strips * nodes_per_row);

11 int small_strip_nodes = total_nodes - big_strip_nodes;

12
13 if (!flip_next) {

14 // assuming that we start by filling the bigger strips

15 bool small_strips_required = target_rank >= big_strip_nodes;

16
17 if (small_strips_required) {

18 // we know for sure that our rank surpasses all big strips

19 target_rank -= big_strip_nodes;

20 // calculate in which small strip we are

21 int small_strip_index = target_rank / (small_strip_height * nodes_per_row);

22 target_rank -= small_strip_index * small_strip_height * nodes_per_row;

23 coord[curr_dim] += /* surely occupied strips */;

24 strip_coord[curr_dim] = num_big_strips + small_strip_index;

25 } else {

26 // we know for sure that our rank is somewhere within the big strips

27 int big_strip_index = target_rank / ((small_strip_height + 1) * nodes_per_row);

28 target_rank -= big_strip_index * (small_strip_height + 1) * nodes_per_row;

29 coord[curr_dim] += /* surely occupied strips */;

30 strip_coord[curr_dim] = big_strip_index;

31 }

32 } else {

33 // start by filling the smaller strips, since the direction is flipped

34 bool big_strips_required = target_rank >= small_strip_nodes;

35
36 if (big_strips_required) {

37 // we know for sure that our rank surpasses all small strips

38 target_rank -= small_strip_nodes;

39 // calculate in which small strip we are

40 int big_strip_index = target_rank / ((small_strip_height + 1) * nodes_per_row);

41 target_rank -= big_strip_index * (small_strip_height + 1) * nodes_per_row;

42 coord[curr_dim] += /* surely occupied strips */;

43 strip_coord[curr_dim] = (num_big_strips - (big_strip_index + 1));

44 } else {

45 // we know for sure that our rank is somewhere within the small strips

46 int small_strip_index = target_rank / (small_strip_height * nodes_per_row);

47 target_rank -= small_strip_index * small_strip_height * nodes_per_row;

48 coord[curr_dim] += /* surely occupied strips */;

49 strip_coord[curr_dim] = num_big_strips + (num_small_strips - (small_strip_index + 1));

50 }

51 }

52 if (strip_coord[curr_dim] % 2 == 1) {

53 // alternate the assignment for the next strip, if this one was odd

54 flip_next = !flip_next;

55 }

56 total_nodes = (total_nodes / dims[curr_dim]) * strip_sizes[curr_dim];

57 }

58 return coord and strip_coord;

59 }
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6. Squarest Strips Algorithm

The assignment direction not only impacts the last phase, where the row-major coordi-
nate calculation happens, but also the strip choices themselves. Additionally, for each
dimension, not every strip must have the exact same width, meaning that the whole
assignment process has to account for either starting from the side, where the bigger
strips are located or the side where the smaller strips are located. This rather convoluted
process can be seen in Listing 6.1. The flip_next boolean is responsible for deciding
where the strip assignment starts from. The same boolean is later used for the row-major
assignment, so each iteration’s value is stored in an array for later use (not shown in
pseudo-code). The strip_coord array contains the indices of the strips themselves,
not the process coordinates directly, additionally, all strip dimensions are kept track of
in another array (not shown in pseudo-code). After the strip coordinate has been found,
another function is responsible for calculating the final coordinates, based on the strip’s
dimensions and flip_next array, shown in Listing 6.2.

Listing 6.2: The processes relative position within a strip is added to the already known
strip coordinate.

1 compute_coord(int target_rank,

2 const int *strip_dimensions,

3 int *coord, const bool *flipped_dim) {

4 for (int curr_dim = 0; curr_dim < num_dims; curr_dim++) {

5 int coord_component = target_rank;

6 int strip_size = strip_dimensions[curr_dim];

7
8 for (int rem_dim = num_dims-1; rem_dim > curr_dim; rem_dim--) {

9 coord_component /= strip_dimensions[rem_dim];

10 }

11
12 if (flipped_dim[curr_dim]) {

13 // the numbering starts from the strip’s end

14 coord[curr_dim] += strip_size - ((coord_component % strip_size) + 1);

15 } else {

16 coord[curr_dim] += coord_component % strip_size;

17 }

18 }

19 }

6.2 Runtime Analyisis

As already shown in Listing 6.1, the main procedure loops over each dimension exactly
once. Finding the largest dimension and modifying the dimension array accordingly
was also done linearly wrt. the number of dimensions. All hidden computation, such as
the calculation of the base strip height, was done in constant time. Since the for loop
contains no recursive elements, this procedure runs in O(|D|). With a few modifications
to the code, many arrays, including the coordinate and the strip coordinate, can be
replaced by directly modifying the target rank. This reduces the real-world runtime and
memory usage, but does not change the theoretical complexity. The final coordinate
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6.3. worst-case Quality

computation, which was shown in Listing 6.2, also loops over all dimensions. Within each
loop, however, the remaining dimensions are also iterated over, increasing the theoretical
runtime to O(|D|2).

This is an important improvement over all previously presented algorithms in this thesis.
The runtime is independent of the number of processes, the number of partitions, the
partition sizes and of the individual dimension sizes. Due to the way it was implemented,
it only depends on the number of dimensions.

6.3 worst-case Quality

Regarding the solution’s quality, we have to consider two factors. The first one is how
close a strip’s dimensions actually come to being a perfect hypercube. Secondly we have
to consider the impact of partitions whose processes span over multiple strips. Similarly,
to previous chapters, we will only consider the bottleneck partition here. Recall the
recursive definition of the strip width calculation as

strip_width(i) = n−i

√

p
∏i−1

j=0 strip_width(j)
∀i ∈ {0 . . . (|D| − 1)}.

However, this is only the base strip width, disregarding the fact that this number is not
an integer and the remaining nodes still have to be distributed. For example, in two
dimensions and a partition size of 16, the base strip width of the first strip should be
2
√

16 = 4. However, if the first dimension is 7 long, then there will only be space for one
strip, instead of two. This one strip will then span the whole dimension and have a width
of 7. We can modify the formula accordingly to accommodate this change.

s(i) =





























di












di

n−i

√

p
∏i−1

j=0
s(j)









































The (n−i)th root still represents the desired strip width. By dividing the actual dimension
size by this value, we get the number of strips that will be present in this dimension
(rounded down). By doing seemingly the same division again, we get the actual strip
width as indicated by the number of strips present, instead of the desired strip width.
This value may still be off by 1 since some strips may be a little bit larger than others, so
the result is rounded up. After calculating all strip widths, we need to find out how far
this bounding rectangle may span across the last, largest dimension. Coincidentally, this
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6. Squarest Strips Algorithm

calculation is equivalent to the calculation which we already performed in the denominator
of the previous calculation.

Since we want to calculate the worst possible outcome regardless of specific dimensions,
we will relax this formula to be more pessimistic. We will assume that every strip height
is actually twice as big as it would optimally be (minus one). This gets rid of integer
divisibility issues and leaves us with the following formula.

s′(i) =























2 ·
⌊

n−i

√

p
∏i−1

j=0
s′(j)

⌋

− 1, if i < |D| − 1
⌈

p
∏i−1

j=0
s′(j)

⌉

+ 1, if i = |D| − 1

We can now express the surface area of the bounding rectangle as

A(rect) = 2

|D|−1
∑

i=0

|D|−1
∏

j=0,j 6=i

s′(j)

and the optimality ratio between this area and a perfect hypercube as

2
∑|D|−1

i=0

∏|D|−1
j=0,j 6=i s′(j)

2n n
√

pn−1 =

∑|D|−1
i=0

∏|D|−1
j=0,j 6=i s′(j)

n n
√

pn−1 .

Since the non-trivial, recursive definition of s′ makes it hard to find the worst-case
scenario for our algorithm, Table 6.1 shows the numerical evaluations for partitions with
a size of up to 32 and 10 dimensions. It can be seen that all of these values are below
1.9, which is a theoretical improvement over the k-d tree algorithm with a quality bound
of ∼ 2.12.

In order to formally calculate an optimality bound, we could further relax this expression
to be non-recursive. The recursion was implemented in order to balance out strip widths,
which might have been skewed in previous dimensions. By removing this behaviour, we
can then assume that the strip has twice the optimal width on every dimension, which
can be expressed as

2 n
√

p − 1.

Accounting for the last dimension’s strip width, this results in a total bounding hyper-
rectangle area of

2n (2 n
√

p − 1)n−2

⌈

p
(

2 n
√

p − 1
)n−1

⌉

< 2n (2 n
√

p)n−2

(

p
(

2 n
√

p
)n−1 + 1

)

.
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6.3. worst-case Quality

Table 6.1: This table shows the numerically evaluated worst-case scenarios for the squarest
strips algorithm, when compared to the area of a perfect hypercube. Note that all values
are below 1.9.

p 2 dims 3 dims 4 dims 5 dims 6 dims

2 1.4142 1.4699 1.4865 1.4933 1.4966
3 1.7321 1.7627 1.7548 1.7440 1.7347
4 1.1667 1.2787 1.2964 1.2975 1.2949
5 1.1926 1.4060 1.4455 1.4533 1.4530
10 1.2649 1.1730 1.2152 1.2151 1.2069
12 1.2702 1.2083 1.3184 1.3424 1.3450
14 1.2829 1.2433 1.4047 1.4450 1.4539
16 1.3214 1.2774 1.4792 1.5307 1.5433
18 1.3132 1.3104 1.5448 1.6043 1.6189
20 1.3097 1.3421 1.6037 1.6689 1.6842
25 1.3556 1.3126 1.7292 1.8021 1.8164
30 1.3389 1.3465 1.1702 1.2241 1.2339
32 1.3356 1.3603 1.1892 1.2625 1.2807

However, this simplification already assumes the calculated strip widths to be so wrong,
that it would not make sense to continue this calculation. It would lead to an optimality
bound of O(2n), which is not representative. For example, let us assume a 3D grid and a
partition size p of 27. This simplification assumes the first two dimensions’ strip widths to
both be 6, resulting in the last dimension’s strip width of 1. In actuality, the worst-case
would result in a maximum strip width of 5 for the first, 3 for the second and 2 for the
last dimension, which is a much better result even in the worst-case scenario. For the
interested reader, we present this formula nevertheless:

2n−1n n
√

pn−2 + n n
√

pn−1

2n n
√

pn−1 =
1

4

(

2np−1/n + 2
)

The second aspect we want to consider is the impact of partitions whose processes span
over multiple strips. We could already see in Figure 6.2 that the improved version of the
algorithm keeps the partitions connected, but they are still stretched. The stretching
dimension is never the last one since it is responsible for iterating over within a strip.
Let us suppose there is no periodicity across the edge, where the partition has to stretch
along. In that case, one of the partition’s two stretched edges does not contribute to
any inter-node communication. This property actually reduces the number of inter-node
edges. Let us look at the following formula of the hyperrectangle’s surface area, where k
denotes the dimension, which is stretched.
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6. Squarest Strips Algorithm

Table 6.2: The numerically evaluated worst-case scenarios for the squarest strips algorithm,
when a partition might stretch across a second strip. The comparison here is between
the non-periodic case and the perfect hypercube. Since one edge of the hypercube is
subtracted, it might occur that the ratio for this stretched case is better than for the
non-stretched ratio, since no edge is subtracted for the perfect hypercube.

p 2 dims 3 dims 4 dims 5 dims 6 dims

2 1.0607 1.4699 1.6352 1.7230 1.7772
3 1.4434 2.0832 2.3031 2.4084 2.4686
4 1.1667 1.4992 1.8856 2.0672 2.1699
5 0.9690 1.1020 1.3209 1.4165 1.4675
10 1.1068 1.4363 1.5412 1.7962 1.9244
12 1.1258 1.5263 1.7061 2.0273 2.1856
14 1.1492 1.0903 1.1168 1.2674 1.3368
16 1.1964 1.2074 1.5938 1.5162 1.6150
18 1.1953 1.3104 1.8023 1.7232 1.8437
20 1.1979 1.4024 1.9826 1.8995 2.0366
25 1.2556 1.1566 2.3479 2.2488 2.4130
30 1.2476 1.4155 1.5992 1.6585 1.8803
32 1.2473 1.4706 1.6475 2.0333 1.9674

s′′(i)















2 · s′(i), if i = k

s′(i) − 1, if i = |D| − 1

s′(i), otherwise

, A′(rect) =



2

|D|−1
∑

i=0

|D|−1
∏

j=0,j 6=i

s′′(j)



−
|D|−2
∏

i=0

s′′(i)

The left term in A′ is similar to the unstretched formula, where both sides on the
stretched dimension are accounted for. The right term then removes the nodes, which are
guaranteed to lie on an edge. In the periodic case, this term would be omitted. The new
definition of the strip width s′′ contains two important case distinctions. The second case
denotes the reduction in the size of the last dimension. Note that the intuitive assumption

of s′(i)
2 does not hold, since the distribution of nodes between the two occupied strips

does not have to be balanced.

The newly calculated worst-case optimality ratios can be seen in Tables 6.2 and 6.3 for
the non-periodic and the periodic case respectively. Note that for the non-periodic case,
the ratio sometimes is better than for unstretched partitions. The reason for that is
that while for the squarest strips’ hyperrectangle’s surface area one edge is subtracted,
the optimal hypercube surface area does not account for that. Interestingly, we can
observe that for one case where p = 5 and n = 2 the worst-case hyperrectangle has even
fewer outgoing edges than the perfect hypercube when it is not subjected to periodic
communication across the stretched edge. Note that this is a realistic assumption, since
we may argue that the grid has to be big enough that at least one partition is not able
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6.3. worst-case Quality

Table 6.3: The numerically evaluated worst-case scenarios for the squarest strips algorithm,
when a partition might stretch across a second strip. The comparison here is between
the periodic case and the perfect hypercube.

p 2 dims 3 dims 4 dims 5 dims 6 dims

2 1.4142 1.6799 1.7838 1.8379 1.8708
3 1.7321 2.2435 2.4128 2.4915 2.5353
4 1.9167 1.8961 2.1508 2.2652 2.3274
5 1.6398 1.4440 1.5452 1.5821 1.5983
10 1.8974 2.0826 1.9413 2.0815 2.1446
12 1.8475 2.0986 2.0551 2.2739 2.3747
14 1.8174 1.6068 1.4277 1.4853 1.5032
16 2.0714 1.6799 1.8750 1.7121 1.7638
18 2.0203 1.7472 2.0598 1.9014 1.9786
20 1.9805 1.8096 2.2205 2.0633 2.1601
25 2.1556 1.7414 2.5491 2.3859 2.5156
30 2.0692 1.9334 2.1258 2.0138 2.1447
32 2.0428 1.9666 2.1492 2.3708 2.2180

to touch an edge. In this case, the correct worst-case ratio is the maximum value from
Tables 6.1 and 6.2.

Another observation, which is especially visible in Table 6.3, is that the optimality is
no longer smaller than what we have proven for the k-d-tree algorithm. When we look
at specific partition sizes, for example, p = 3, the bound seems to increase with higher
dimensions. In practice, however, a small partition of size 3 will, in the worst-case,
always be arranged in a 1-wide, 3-long strip, regardless of the number of dimensions.
The increasing ratio can be explained with the optimistic estimation of the optimal
arrangement since the perfect hypercube’s surface area is not restricted to integer
divisibility.

To summarize the findings, we show a recursive procedure for calculating the worst-case
ratio, which can be used to numerically approximate an upper bound for the quality
of any solution. The theoretical bound of O(2n) is unfortunately not tight enough for
realistically estimating the quality of mappings. The numerical evidence suggests that a
much more realistic, tighter bound would be O(3), however, we could not find a thorough
proof for that bound yet.
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CHAPTER 7
Experimental Evaluation

In order to evaluate the presented algorithms, we implemented all approaches in MPI [19],
theoretically analyzed the quality of the resulting mappings and measured the communi-
cation times with a custom microbenchmark. Similarly to Gropp’s [7] communication
measurements, we will benchmark the runtime with non-blocking MPI_Isend and
MPI_Irecv calls.

7.1 Setup

In this section, we describe the hard- and software setup that was used to conduct the
benchmarks as well as how we chose to implement our testing framework.

7.1.1 Cluster Setup

All measurements were taken on our cluster Hydra, which has 36 Intel Skylake OmniPath
computation nodes, each containing two Intel Xeon Gold 6130 CPUs. Each node,
therefore, has 32 cores, running at 2.1GHz and 94GB of memory. On the cluster, we
used Open MPI 4.0.1 and compiled with gcc version 8.3.0 and O3 optimization flags. We
relied on Slurm’s default process mapping for numbering cores within the same node
consecutively1, in order to speed up the benchmarking process.

1To be precise, we configured our first distribution method with block, so that consecutive tasks
share a node. The second parameter is set to cyclic so that both processors within a node are utilized
equally. The tasks are distributed in a round-robin fashion between the two sockets. For more details, see
the possible configurations for SBATCH_DISTRIBUTION on https://slurm.schedmd.com/sbatch.

html.
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7. Experimental Evaluation

7.1.2 Test Suites

In order to isolate the impact of specific factors, we defined our test-suites in a structured
manner. We looked at both the theoretical problem definition from Section 3.1 and
actual application parameters of our reference implementation and identified the defining
test-variables. For each test-suite, we choose one of these test-variable and fixed all other
parameters as best as possible. The identified test-variables were:

• Number of partitions
• Partition sizes
• Number of dimensions
• Dimension sizes
• Stencil size
• Stencil skew/shape
• Message size

The basic a priori hypothesis for each test-suite was the same. We expected Gropp’s
algorithm to perform well for cases where prime factorizations yield well-behaved factors,
followed by the squarest strips algorithm due to the compact, consecutive assignments,
followed by the two different k-d-tree implementations. Obviously, we also aspired
to outperform MPI’s standard behaviour, as well as grids with a randomly shuffled
assignment. We will especially look into deviations from these expectations in the
following sections for the specific test-suites.

Note that many measurements will be missing for Gropp’s algorithm since we also
conducted tests for which his algorithm is not eligible. For example, when fixing the grid
size to be 15 × 15 and iterating over the number of partitions p, then it might happen
that not all partitions have the same size if p does not divide 15 · 15 = 225. In these
cases, we simply omitted the measurements for Gropp’s algorithm and focused on the
other ones.

Aside from the test-suite, which explicitly tests different message sizes, we ran all instances
with message sizes of 1KB and 1MB respectively. We choose the comparatively large
size of 1MB in order to get statistically significant results, without having to measure
a high number of iterations, reducing the overall benchmarking time. The tests with
1KB were chosen since we also wanted to get some results for smaller instances. An
additional benefit of testing two different sizes is the potential difference in favouring
bandwidth (1MB) versus latency (1KB). A priori we predict that our metric, which
favours communication over shared memory, is beneficial for reducing both bandwidth
and latency. This means that a mapping, which performs well for 1MB, should also
perform similarly well for 1KB when compared to the other solutions.
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7.1. Setup

7.1.3 Implementation Details

Before any Cartesian communicators are instantiated, the configuration for a specific test
run is loaded and distributed to all processes. Listing 7.1 shows the exposed configuration
properties that are available to all processes. Note that we also conducted tests where
not all computation nodes required the same number of processes. After distributing the
configuration, each process, therefore, decided whether it is actually a part of the test
or not. If not, then both CONFIG_assigned_partition and CONFIG_world_comm

are set to MPI_UNDEFINED.

For example, let us suppose that we want to conduct a test with one partition con-
taining only 5 processes and one partition of 10 processes. We would then start the
job with two computation nodes, both having at least 10 processes assigned. The
first node will then correspond to the first partition and will only assign 5 processes
to assigned_partition 0 - the other 5 processes will have an undefined partition.
The second node will assign all 10 processes and set their assigned_partition to 1.
The new CONFIG_world_comm will only consist of the 15 assigned nodes. This newly
created communicator will be used by all algorithms as the base communicator.

Listing 7.1: All implemented approaches could access these exposed configuration vari-
ables.

1 extern int CONFIG_num_dims;

2 extern int* CONFIG_dims;

3 extern int* CONFIG_periods;

4 extern int CONFIG_stencil_size;

5 extern int* CONFIG_stencil;

6 extern int CONFIG_num_parts;

7 extern int* CONFIG_part_sizes;

8
9 // these two flags are often used in conjunction

10 extern bool CONFIG_use_real_memory_nodes;

11 extern bool CONFIG_only_analysis;

12
13 extern int CONFIG_num_communication_rounds;

14 extern int CONFIG_bytes_per_round_neighbour;

15 extern int CONFIG_bench_iters;

16
17 // this value is used for counting inter-node communication

18 // rather than MPI’s shared memory flag

19 extern int CONFIG_assigned_partition;

20 // a modified copy of MPI’s world communicator

21 extern MPI_Comm CONFIG_world_comm;

Should the test-suite call for partition sizes greater than our physical node size, then the
CONFIG_use_real_memory_nodes flag is used and set to false. Processes from multi-
ple, physical nodes may then be used to be assigned to a common assigned_partition.
While this allows us to produce virtual mappings that surpass our hardware limitations,
it does not make much sense to actually benchmark the communicator’s performance as

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

7. Experimental Evaluation

it does not represent our actual hardware anymore.

We then implemented a wrapper function with the same signature for all our algorithms,
which constructs the Cartesian communicators. Since not all algorithms benefit from all
parameters in the configuration, the wrapper is responsible for feeding the correct values
to the actual implementation and storing the produced communicator. Our benchmarking
suite then simply takes a list of these wrappers and measures the communication times
for each of them. After all measurements have been taken, the raw, non-cumulated values,
as well as every rank’s position within the grid, are exported to a file in JSON format for
each approach.

We will compare the mappings of all algorithms to the mappings that are produced, when
calling MPI_Cart_create, with the reordering flag set to true. As Gropp states in his
work, we could also not observe any change in the mappings whenever this reordering
flag was set to true or false. In both cases, MPI’s default coordinate assignment is a
row-major assignment over the dimensions in their given order. Note that MPI, therefore,
benefits from our assumption that processes on the same physical node are consecutively
numbered. In future, we will refer to this row-major assignment as MPI’s standard
mapping algorithm or simply the standard algorithm.

As already mentioned, we benchmarked our communication durations similarly to Gropp,
using the non-blocking MPI_Isend and MPI_Irecv calls. The required amount of data
is defined in the configuration in bytes per neighbour, so we used the MPI datatype
MPI_BYTE for the communication and char for the allocation in C. Listing 7.2 shows
the code snippet that was used for benchmarking. Before each iteration, MPI_Barrier
is performed and after each measurement (aka after each call of this function) the send
and receive buffers are verified for correctness. This verification process is not included
in the time measurement, but serves the purpose of testing our implementations for
correctness (non-exhaustively) and prevents the compiler from potentially optimizing out
any writes to the receive buffer. For each iteration, we then call MPI_Allreduce to find
the maximum duration of the communication procedure over all participating processes.
Note that when we refer to average or minimum runtimes in the future, we refer to the
average or minimum with regard to the measured maximum durations (ignoring the first
five warmup runs).
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7.2. Experimental Results

Listing 7.2: The communication procedure that was used for benchmarking. The
backward- and forward neighbours array was computed prior to the runtime measurement.

1 void communicate(MPI_Comm comm, int elems, const char *send_buffer,

2 char *recv_buffer, const int *forward_neighbours,

3 const int *backward_neighbours) {

4 MPI_Request requests[CONFIG_stencil_size * 2];

5 for (int i = 0; i < CONFIG_num_communication_rounds; ++i) {

6 for (int j = 0; j < CONFIG_stencil_size; ++j) {

7 MPI_Irecv(&(recv_buffer[elems * j]), elems, MPI_BYTE,

8 backward_neighbours[j], 1, comm, &(requests[j * 2]));

9 }

10 for (int j = 0; j < CONFIG_stencil_size; ++j) {

11 MPI_Isend(&(send_buffer[elems * j]), elems, MPI_BYTE,

12 forward_neighbours[j], 1, comm, &(requests[j * 2 + 1]));

13 }

14 MPI_Waitall(CONFIG_stencil_size * 2, requests, MPI_STATUSES_IGNORE);

15 }

16 }

7.2 Experimental Results

We present the results for each test-suite separately and discuss the observations accord-
ingly. If not stated otherwise, each measurement was performed with 1MB per neighbour
with 100 iterations (discarding the first few). For a few particularly striking runs, we will
also take a deeper look into the specific mappings and the statistical significance of the
measurements. Since we performed hundreds of runs in total, we only discuss a selection
of tests. Graphs for the complete test-suites can be found in the appendix. In Section 7.3
we discuss the algorithms’ behaviour for smaller message sizes, as the observations yield
surprising results.

7.2.1 Partitions

For the first suite we choose to fix the dimensions (number and size) as well as the
stencil, but vary the partition number |P | and sizes to fit within the fixed constraints.
We performed this benchmark on a 15 × 15 (2D), a 20 × 10 (2D) and a 6 × 6 × 6 (3D) grid
with a simple 5pt-stencil. We let |P | go from 2 to 30 in steps of 2 and then calculated each
partition’s size so that the specified grid could be filled. To fill the grid, some partitions
are 1 bigger than others. Note that for some measurements Gropp’s algorithm, therefore,
is not able to run, due to its partition size constraint. Figures 7.1 show the absolute
runtimes of the measured algorithms on a 15 × 15 grid, while Figure 7.2 shows both
optimality metrics. We can see that, in general, the differences in both metrics correlate
with the runtime differences for all approaches. Interestingly, the k-d-tree algorithms
often outperformed the squarest strips algorithm, even though they were a little worse
wrt. the optimality criteria. Gropp’s approach was not compatible with any tested
partition configuration on a 15 × 15 grid. For the other approaches, it can be seen that
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7. Experimental Evaluation

Figure 7.1: The minima of all measured maximum runtimes for a 15 × 15 grid, 5pt-stencil
and 1MB of data per neighbour. The grid was not changed, but the partition sizes
were (uniformly) adapted according to the varying number of partitions. Unfortunately,
Gropp’s algorithm was not compatible with any of these configurations and therefore
cannot be seen here.

they indeed perform as expected. The random process assignment, as well as MPI’s
standard behaviour, did not yield good mappings, while the squarest strips algorithm is
very comparable to the two k-d-tree approach for the most part. The only two significant
exceptions are the speed-up of the squarest strips algorithm for 26 and its noticeable
shortcoming for 28 partitions.

For the case with 26 partitions, we can explain this behaviour, since the grid is split into
17 partitions of size 9 and 9 partitions of size 8. The squarest strips algorithm succeeds
in mapping all 17 9-big partitions into perfect 3 × 3 squares while still maintaining an
acceptable shape for the 8-sized partitions. The squarest-strips’ worse performance for
28 partitions can be explained similarly. Since there is only one partition of size 9 and 27
partitions of size 8, the algorithm wrongly tunes the strip-size to the biggest partition of
size 9. Had it tuned for size 8, then the target bounding rectangle would be 2 × 4, which
would probably have been preferable in this case. The mappings for all algorithms for
these instances can be seen in Figures 7.3 and 7.4 respectively.

The results for the 20 × 10 grid showed a less obvious trend, which can be seen in
Figure 7.5. This time, Gropp’s algorithm was able to find solutions for multiple runs.
Generally speaking, the same observations still hold true, but for 20 and 26 partitions, the

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

7.2. Experimental Results

Figure 7.2: The two graphs show the maximum (left) and total (right) off-node com-
munication edges for the test setup for a 15 × 15 2D grid with an increasing number of
partitions. For the most part, the previously shown differences in runtime correlate with
both the total and maximum number of outgoing edges, however, it can be seen that
even though the squarest-strips algorithm had the best optimality metrics in both cases,
it was often outperformed by the k-d-tree algorithm in terms of runtime. Note that both
k-d-tree approaches had the exact same mappings since the stencil was not skewed.

standard algorithm performed better than other approaches. We can see the mapping for
the more pronounced case with 20 partitions in Figure 7.7. Since the grid was arranged
favourably for the standard algorithm, we can see that it assigned each 10 × 1 partition
to its own row. The squarest strips, as well as the k-d-tree algorithms, did not manage
to find rectangular partitions but managed to find quite compact mappings nevertheless.
Gropp’s algorithm yielded the intuitively best result of arranging the partitions in 2 × 5
rectangles, however, performed worse than the other approaches. With only 14 maximum
outgoing edges for the bottleneck partition, Gropp’s and the squarest strips algorithm’s
mapping are not only intuitively good, but better than the standard algorithm’s mapping,
which has 20 outgoing edges from its bottleneck partition. Note that our metrics did
not predict this behaviour, as can be seen in Figure 7.6, where the standard algorithm
performs unusually well, but never outperforms the squarest strips approach. To show
that this is no accident, Figure 7.8 shows boxplots for all approaches’ measurements.
Interestingly, while Gropp’s mapping did not yield the best result, its consistent nature
appears to result in a very small variance in measurements. We discuss this paradox
observation further in later sections.

Secondly, we fixed the number of partitions and dimensions but varied the dimension
and partition sizes. In other words, we let the grid grow (in the shape of a hyper-square)
proportionally to the growth of the partitions. We did this for 5, 10 and 30 partitions
and for 2 and 3 dimensions. We let the dimensions grow from 4 to 16 in steps of two
and calculate the partition sizes in the same manner as before. The main difference, in
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7. Experimental Evaluation

Figure 7.3: The different algorithms’ map-
pings on a 15 × 15 grid with 17 partitions
of size 9 and 9 partitions of size 8. It can
be seen that the squarest strips algorithm
manages to fit all 9-sized partitions into
3×3 squares, while still being able to accom-
modate the 8-sized partitions appropriately.
While the k-d-tree approaches yield overall
quite compact results, it can be seen that
multiple partitions are split into two disjoint
components.

Figure 7.4: The different algorithms’ map-
pings on a 15 × 15 grid with one partition
of size 9 and 27 partitions of size 8. Since
the squarest strips algorithm adapts its strip
size to the biggest partition, it therefore does
not account for the fact, that the majority
of the participating partitions are actually
smaller (8 instead of 9). The k-d-tree ap-
proach, on the other hand, appears to make
the cuts along edges, which mostly result in
two disjoint, but individually square com-
ponents.

comparison to the first test-suite, is that we do not change the parameters in a way where
inherently different mappings are expected between runs. Since partitions and dimensions
are scaled up at the same rate, we expect an algorithm that performs well for one run, to
perform similarly for another one. Figure 7.9 shows the measurements for the instance
with 10 partitions on a 2D grid. As expected, all approaches show a clear trend and
the runtime scales with the number of processes. Interestingly, the 10 × 10-grid instance
shows very similar runtimes for the standard, squarest strips and k-d-tree algorithms,
but a good performance for Gropp. Looking at the mapping for this 10 × 10 instance in
Figure 7.10, we can see Gropp’s 2 × 5 rectangles again, this time performing better than
the standard algorithms 1-wide partitions.

Lastly, we fixed the partition sizes and the number of dimensions and varied the dimension
sizes and partition number. This is very similar to the second suite, but we are not
changing the size of the partitions, but the number of partitions instead. Even though
we assume a fixed partition size, it may still vary by 1, since the grid has to be filled
exactly. Figure 7.11 shows the results for a 2D grid and a fixed partition size of 10. Here,
the two k-d-tree approaches perform consistently well, only rarely being outperformed by
Gropp or the squarest strips algorithm.
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7.2. Experimental Results

Figure 7.5: The minima of all measured
maximum runtimes for a 20 × 10 grid, 5pt-
stencil and 1MB of data per neighbour. The
grid was not changed, but the partition
sizes were (uniformly) adapted according
to the varying number of partitions. In-
terestingly, the standard algorithm found
very well-performing mappings for multiple
instances.

Figure 7.6: The maximum number of offn-
ode communication edges for the instance
with a 20×10 grid and 5pt-stencil. It can be
seen that the standard algorithm performs
similarly to the k-d-tree approaches.

Figure 7.7: The different algorithms’ mappings on a 20×10 grid with 20 partitions of size
10. Interestingly, the standard behaviour’s row-major mapping yielded the best runtime,
while Gropp’s seemingly compact solution performed not as good as the bottom three
approaches.
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7. Experimental Evaluation

Figure 7.8: The different algorithms’ runtimes on a 20 × 10 grid with 20 partitions of
size 10. It can be seen that the standard algorithm performed best, followed by the
squarest-strips and k-d-tree algorithms. Gropp’s algorithm, while not performing as well
as the others, yielded the most consistent runtime measurements.

Figure 7.9: The minima of all measured maximum runtimes (left) and the maximum
number of offnode communications (right) for a square-like grid, 10 partitions, 5pt-stencil
and 1MB of data per neighbour. It can be seen that all algorithms’ runtimes scale as
expected with increasing partition sizes. Gropp’s approach only worked for the 10 × 10
grid, where he outperformed all others.
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7.2. Experimental Results

Figure 7.10: The different algorithms’ mappings on a 10 × 10 grid with 10 partitions of
size 10.

7.2.2 Dimensions

In the previous section, we already varied over some aspects of the grid’s dimensions.
However, these changes were always made in reaction to modifications to the partitions.
Here we will focus on changes with respect to the dimensions. We start by fixing the
partitions and stencil and vary the number of dimensions while still accommodating the
same partitions as best as possible. If necessary, partition sizes will be off by 1 again.
We performed these tests with 10 or 30 partitions, each having sizes of 10 and 30. We
increased the number of dimensions and calculated the desired grid size.

Figure 7.12 shows that - contrary to previous test-suites - the squarest strips algorithm
seldom performs best. It was to be expected that the k-d-tree algorithm performs good
for higher dimensions since we proved an increasingly better optimality ratio for higher
dimensions in Section 5.3.3. Unfortunately, we currently cannot explain why the random
communicator performed so well for 5 dimensions, leaving the squarest strips algorithm
behind, since our optimality metrics, which can be seen in Figure 7.13, always predict
the standard and random assignments to perform worse.

The other suite fixed the partitions and stencil and varied the dimensions’ sizes. We ran
these tests with 10 or 30 partitions, each having sizes of 10 and 30 on grids of 2 and 3
dimensions. Since the grid’s size is already constrained by the partitions and number
of dimensions, this test-suite tests different dimension skews. The x-axis in Figure 7.14
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7. Experimental Evaluation

Figure 7.11: The minima of all measured maximum runtimes for a square-like grid,
varying partitions of size 10, 5pt-stencil and 1MB of data per neighbour. Again, the run
for the 10 × 10 grid is an outlier. For this one run, the standard approach outperforms
the other algorithms.

therefore shows the ratio between the first and the second dimension.

Looking at the optimality comparison in Figure 7.15, we could predict that the squarest
strips algorithm consistently performs best, followed by either the k-d or the standard
algorithm. However, for most runs in Figure 7.14, we can see that both k-d-tree variants
perform best most of the time, followed by the squarest strips and standard algorithm.
Interestingly, we can see that for skews of 2.9, 3 and 3.1, the standard algorithm performs
well, especially compared to Gropp’s approach. For the case with 3.1, the reason most
probably is the 10x31 grid with 10 partitions of size 312. Since 31 is a prime number,
Gropp’s algorithm has no other choice, but to arrange the partitions into 1-wide strips,
while the standard algorithm benefits from the comparatively narrow first dimension.
The row-major assignment, therefore, results in a compact bounding rectangle of roughly
10 × (4 ± 1). In the instance for a skew of 3, the mappings were created for a 10 × 30
grid. The standard behaviour’s row-major assignment managed to create perfect 10 × 3
rectangular partitions, while Gropp’s algorithm chose to go with 2×15 rectangles instead,
hindering the performance. Interestingly, the squarest strips algorithm managed to find
5 × 6 partitions - the best possible solution wrt. the bottle-neck value - but still managed

2We originally generated this suite with partitions of size 30 in mind. A test run where all partitions
have size 31 is the result of fitting 10 partitions of size 30 into a 10 × 31 grid as best as possible.
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7.2. Experimental Results

Figure 7.12: The minima of all mea-
sured maximum runtimes for 30 partitions,
roughly of size 10 and 1MB of data per
neighbour.

Figure 7.13: The maximum number of
offnode communications for 30 partitions,
roughly of size 10. It can be seen that
while the differences are small, the standard
and random approaches are always outper-
formed by the squarest-strips and k-d-tree
approaches.

Figure 7.14: The minima of all maximum
communication times for 10 partitions of
roughly size 30 on a 2D grid. It can be
seen that, most of the time, the k-d-tree
approaches perform best. For the runs with
skew 2.9, 3 and 3.1 the standard algorithm
performed better than usual, while Gropp’s
approach falls behind in these cases.

Figure 7.15: The maximum number of offn-
ode communications for 10 partitions of
roughly size 30 on a 2D grid. It can be
seen that, the squarest strips algorithm con-
sistently performs best. the standard algo-
rithm managed to get better mappings than
the k-d-tree approaches for some instances
with a comparatively high dimension skew.
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7. Experimental Evaluation

to perform worse than the standard algorithm in terms of communication time. These
mappings can be seen in Figure 7.16.

Figure 7.16: The different algorithms’ mappings on a 10 × 30 grid with 10 partitions of
size 30.

7.2.3 Stencils

In this section, we benchmarked the effect of different stencils on grids that were already
tested in previous suites. Firstly, we fixed both the partitions and dimensions and
increased the stencil’s size uniformly in all directions. The resulting stencils, therefore,
should be unskewed and all algorithms are expected to perform according to previous
results. Listing 7.3 shows the Python code, which was used to generate these stencils.
The index parameter indicates the recursion depth and therefore how many vectors are
added to the stencil.

Listing 7.3: The helper function that was used for generating increasingly big stencils,
while maintaining skew. Written in Python 3.

1 def get_symmetric_stencil(index, num_dims):

2 if index < 0:

3 return []

4 stencil = [0] * (num_dims * 2)

5 dim = index % num_dims

6 val = (index // num_dims) + 1

7 stencil[dim] = val

8 stencil[dim + num_dims] = -val

9 return get_symmetric_stencil(index - 1, num_dims) + stencil

As already mentioned, the stencil grows uniformly in all directions, except for odd
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7.2. Experimental Results

Figure 7.17: The minima of all measured
maximum runtimes for a 15 × 15 grid, 10
partitions of size 22 and increasing stencil
size. The difference between the skewed and
unskewed k-d-tree algorithms can be seen
for sizes, which are not multiples of 4.

Figure 7.18: The minima of all measured
maximum runtimes for a 8 × 8 × 8 grid,
30 partitions of size 17-18 and increasing
stencil size. Note that the skewed-k-d-tree’s
runtime converges with the default k-d-tree
algorithm for stencil size multiples of 6 in 3
dimensions.

indices3. For these cases, we expect a slight, but noticeable performance boost for the
skewed-k-d-tree algorithm, especially for smaller stencil sizes. Figures 7.17 and 7.18
support these assumptions.

In Figure 7.17 we can see that the instances where the stencils’ size is not a multiple of
4, the skewed-k-d-tree performs better than the default k-d-tree approach. The effect
is most visible for a stencil size of 2, which corresponds to the simple, one-dimensional
component stencil, but still pronounced for sizes of 6 and 10. Most notably, all runtimes
seem to converge for larger stencil sizes, which is to be expected, since after a certain
point, a partition’s number of outgoing edges far surpasses the number of nodes within a
partition, for any given algorithm. Figures 7.19 and 7.20 show the mappings for both of
these cases.

Figure 7.18 shows similar results for the 3-dimensional case. The skewed version of
the k-d-tree outperforms its non-skewed counterpart for all instances where the stencil
size is not a multiple of 6. These differences aside, in both the 3D and 2D case, the
squarest-strips algorithm outperformed the others for many instances.

In order to truly test the impact of a skewed stencil, the following test-suite ran different
stencils on the same 2D grid and partition configuration. In order to increase the stencil’s
skew, we added communication edges in an unbalanced way. We started with an unskewed

3Odd is only the correct term for 2D-grids. More correctly, the stencil has a slight skew if the
index + 1 does not divide the number of dimensions.
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7. Experimental Evaluation

Figure 7.19: The mapping for the 2-stencil-
size instance, where the two k-d-tree ap-
proaches’ difference was most pronounced.
Since the stencil is just a one-dimensional
strip, the skewed version attempts to elon-
gate all partitions as much as possible, by
weighting the corresponding dimension in-
finitely higher than the other one.

Figure 7.20: In comparison to Figure 7.19,
the only difference in setup is a slightly
larger stencil (size 6). The comparatively
smaller skew results in slightly vertically
stretched partitions for the skewed-k-d-tree
approach in comparison to the default one.

5pt-stencil and progressively added more edges to the second dimension or replaced
existing edges in the first dimension, with diagonals. Figure 7.21 shows the last, most
skewed stencil, which was tested.

Figure 7.21: The most skewed stencil, which was used for the stencil-skew test-suite. For
each step in increasing the skew, either horizontal edges were added, or vertical edges
replaced by diagonal edges, starting from a 5pt-stencil.

In Figure 7.22 we can see that the most consistently best-performing algorithms are the
skewed-k-d-tree, squarest strips and Gropp’s approach. The latter two are interesting since
they do not explicitly take the different stencils into account and still perform similarly
to the skewed-k-d-tree version. As expected though, the skewed version consistently
outperforms the unskewed k-d-tree variant.
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7.3. Results for smaller Message Sizes

Figure 7.22: 15 partitions on a 2D grid with an increasing, non-balanced stencil-size. As
expected, the skewed k-d-tree approach consistently outperforms the unskewed version
here. Gropp’s mappings’ runtimes are very comparable to the squarest strips algorithm’s.
Both manage to outperform the other approaches in some instances, even though they
do not explicitly take the stencil into account.

7.3 Results for smaller Message Sizes

So far, all presented results have been for comparatively large message sizes of 1MB per
neighbour. For the sake of comparison, we will present some graphs that were already
shown in Section 7.2, as well as their 1KB counterparts. Note that - besides the message
size - every other aspect of the test configuration is the same, meaning that all mappings
(except for the random communicator) will be equal for 1MB and 1KB benchmarks.

7.3.1 Comparison with existing Results

Figure 7.23 shows a comparison between the measurements for 1MB (left) and 1KB
(right) on a 15 × 15 grid and increasing partition numbers. It becomes apparent that good
mappings, by the definition of our optimality criteria, perform well for 1MB, but badly
for the other tests. This phenomenon is not restricted to this specific test-suite but could
be observed during all tests. For example, Figure 7.24 shows another comparison, where
Gropp’s approach is also represented. Again, the random rank assignment consistently
outperforms all other approaches.
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7. Experimental Evaluation

Figure 7.23: The two graphs show the same test setup for a 15 × 15 2D grid with an
increasing number of partitions. The only difference is the number of bytes transferred
per neighbour, which is 1MB for the left and 1KB for the right side. It can clearly be
seen that the algorithms, which performed well for one side perform badly on the other.

Figure 7.24: The two graphs show the same test setup for a 20 × 10 2D grid with an
increasing number of partitions. As before, the only difference is the number of bytes
transferred per neighbour, which is 1MB for the left and 1KB for the right side.
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7.3. Results for smaller Message Sizes

Figure 7.25: The minima of all measured
maximum runtimes for a 44 × 24 grid, 33
partitions of size 32 and 5pt-stencil. Note
that both axes are logarithmic in this graph.

Figure 7.26: The minima of all measured
maximum runtimes for a 12 × 11 × 8 grid
with 33 equal-sized partitions, each having
32 processes. Note that both axes are loga-
rithmic in this graph.

7.3.2 Varying Message Sizes

After the surprising results from the previous section, we formulated a new hypothesis
before conducting another test-suite. We assumed that there must be some point, at
which a mapping’s predicted quality starts to correlate with the actual runtime. For that
reason, we created a large test instance, which saturates all processes on our cluster with
200 repetitions in order to ensure statistical confidence and that no other test-instances
could be running at the same time.

The first test was conducted on a 44 × 24 grid with 33 equal-sized partitions, each having
32 processes. We used the 5pt-stencil in order to get results where all algorithms perform
as intended. Figure 7.25 shows the communication times for increasing message sizes.
Note that both the x- and y-axes are logarithmic for this test. Although the graph is
quite busy, it can clearly be seen that all measurements with fewer than 1000 bytes per
neighbour favour the random mapping, instances between 103 and 104 bytes favour the
k-d-tree algorithms and instances with even bigger message sizes perform well when using
Gropp’s or the squarest strips mapping.

The second test was conducted on a 12 × 11 × 8 grid with 33 equal-sized partitions,
each having 32 processes. We used a 7pt-stencil - the three-dimensional pendant to
the two dimensional 5pt-stencil - in order to get results where all algorithms perform
as intended. Figure 7.26 shows the communication times for increasing message sizes.
Again, both the x- and y-axes are logarithmic. Similarly, we can see that the random
algorithm performs best for smaller message sizes and the k-d-tree algorithms after that.
For this instance, however, the squarest strips algorithm does not outperform the others
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7. Experimental Evaluation

for message sizes beyond 104 bytes. This is especially surprising since the maximum
offnode communication with 64 for the squarest-strips algorithm is smaller than the 71
and 80 for the k-d-tree and Gropp’s approaches respectively. The cumulated number of
outbound communication edges is also lower with 1522 for the squarest strips, compared
to the 1928 and 2272 for k-d-tree and Gropp. A possible conclusion from these results is
that the squarest-strips algorithm might have overtaken the others after increasing the
message sizes even further, but we will reflect on these possibilities in the conclusion.

7.4 Communicator Construction Times

In this thesis, we focused on two performance indicators of the mapping problem, which
we discussed in each algorithm’s separate chapter. The communication time when using
the constructed communicators, as well as the time it takes to create them. In this
section, we will focus on the latter aspect. After having done a complexity analysis
for each algorithm, the expected result would normally be that the squarest-strips
algorithm outperforms both k-d-tree approaches, followed by Gropp’s algorithm. Since
Gropp’s algorithm requires some inter-node communication during construction, we
hypothesise his performance to be the worst. However, since the k-d-tree algorithm is
beautifully compact and more memory efficient, we predict it to perform better than the
squarest-strips algorithm, which contains a maze of if/else branches.

We measured the time it takes each process to calculate its new coordinate without
the actual construction of the Cartesian communicator with MPI_Cart_create. The
reason for leaving out this call was that it is equal for all algorithms and takes a long
time, compared to the algorithmic work. As a result of this assumption, we only have
measurements for both k-d-tree approaches, the squarest strips algorithm as well as
Gropp. The standard algorithm and the random assignment have no prior algorithmic
work to do and therefore have an additional computation time of 0.

In contrast to the experiments from Section 7.2, we have not repeated these measurements
sufficiently many times for each test instance. Even though the inputs are slightly different,
we cumulated the communicator construction time measurements from whole test-suites
to reduce the variance. Figure 7.27 shows a boxplot over all creation times for more than
800 different test instances. We can see that all 3 of our algorithms performed quite
similarly, with no statistically relevant difference to be seen for the average runtimes.
We can, however, see that the squarest strips algorithm appears to perform the most
consistent, as its fences are the narrowest of all. This is expected since its runtime is
only directly dependent on the number of dimensions, which has stayed the same for
most test-suites. Gropp’s algorithm, on the other hand, suffered from the fact, that
two separate communication rounds have to be conducted. We believe that the prime
factorization, which is responsible for the comparatively bad algorithmic complexity, is
not the culprit here, as the involved prime numbers are quite small and never exceeded
the two-digit range.
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7.4. Communicator Construction Times

Figure 7.27: The communicator creation times for over 800 different test instances. All 3
of our algorithms outperformed Gropp’s creation time on average.
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CHAPTER 8
Discussion

In this chapter, we first summarize our contributions to the mapping problem and the
results of our presented approaches in general. After that, we give an overview of potential
future work, based on some interesting observations during the experimental phase of
this thesis.

8.1 Conclusion

In this thesis, we attempted to solve the mapping problem from Cartesian grids to
physical cores. After having defined our optimality criteria, we showed NP-hardness by
reducing multi-way-partitioning to the mapping problem in Chapter 3. We analyzed
Gropp’s algorithm with its strengths and shortcomings in Chapter 4 and proved that the
mappings that his algorithms produce may become arbitrarily bad for some instances.
In an attempt to introduce an upper bound to the quality of possible mappings, we
presented three different algorithms - the k-d-tree approaches and the squarest strips
algorithm - which improve on Gropp’s algorithm in terms of applicability, runtime and
in some cases even quality with respect to our criteria.

Our experimental results from Chapter 7 show our improvements for many different
test-suites. In addition to the expected results, we could also observe cases, where the
runtimes did not directly correlate with the mappings’ qualities - or at least only to a
certain degree. Section 7.3 shows interesting differences in relative runtimes, just by
altering the transmitted amount of data per neighbour.

8.2 Future Work

We discovered multiple aspects that should be improved in the future, starting with the
MPI standard itself. The current interface for constructing Cartesian communicators
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8. Discussion

is very basic. It offers no possibility for defining (weighted-) stencils or any other way
for defining a preferred remapping strategy. As we discover in Section 7.3, defining the
amount of data per neighbour should also impact the mappings.

Our approaches do not focus on layered hardware architectures as, for example, Ni-
ethammer and Rabenseifner [20] did. Since the k-d-tree algorithms implicitly harness
consecutively numbered processes, regardless of inter-node, inter-rack, etc. properties, we
somehow covered layered architectures already. We would, therefore, like to benchmark
the algorithms as they are on multi-tier machines and tweak them accordingly. In
order to be able to do so, the current MPI standard should offer more possibilities of
identifying a process’ hardware properties. Currently, the only working, standardized
distinction is MPI_COMM_TYPE_SHARED, which only differentiates between intra- and
inter-node communication. The OpenMPI implementation offers 12 more flags, such as
OMPI_COMM_TYPE_L3CACHE, -_SOCKET or -_CLUSTER, but we could not get any of
them to work1.

Another thing that should be explored in future, is the assumption that intra-node
communication is good and fast and inter-node communication is slow. While this black
and white assumption seems to hold for larger message sizes of 1MB, there were multiple
exceptions to it. For smaller message sizes, this assumption clearly does not to hold
anymore. Also note that while messages of 1KB may be small for benchmarks, these
message sizes are not unreasonable for some applications. We recommend surveying the
impact of different message sizes on different systems and defining a more fitting model
for describing a mapping’s quality.

Due to the broad, unrestricted applicability, good runtime-scaling and the lightweight
implementation of our presented approaches, they could be used by MPI implementations,
if the remapping flag is set, since they outperformed the current standard behaviour in
almost every instance. Both k-d-tree approaches should work out of the box since they
require no additional information about the hardware or any special setup.

1These flags have existed since OpenMPI 3.0. The interested reader can try out these flags themselves.
A full list can be found on the man page for MPI_Comm_split_type under https://www.open-mpi.
org/doc/v3.0/man3/MPI_Comm_split_type.3.php#toc8.
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List of Figures

1.1 A visualization of the problem description. Each computation node’s pro-
cessing cores have to be assigned to the processes of the application specific
Cartesian grid. The task lies within finding such an assignment (dotted line),
such that the overall communication time is minimized. . . . . . . . . . . 2

1.2 A simple example where the edges between these 4 partitions are visualized
and counted for evaluation. Note that in this case, communication across
both grid-borders is allowed. . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 A simple diagram showing how two commonly mentioned complexity classes
(P and NP) compare to each other. Taken directly from Laudis et al. [12]. . 11

2.2 6 different stencils. The 5- and 9-point stencils are most commonly referred to
and are often used for averaging out elements in matrices. The horizontal edge
detection filter is used in computer graphics as a part of the Sobel filter[26].
The other three stencils show that patterns do not have to be symmetric and
may even split the graph into multiple components, as is the case with the
presented component stencil. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The interaction between a simple stencil, the induced helper graph H and its
isomorphic properties are shown here for a portion of the graph G. . . . . 15

3.1 A feasible solution to the partitioning instance GRID-PARTITIONING(S =
[(−1, 0), (1, 0)], D = [5, 4], P = [10, 10], T = [0, 0]). This mapping’s costs, wrt.
the two optimality criteria is 5 for the bottleneck and 10 for the sum of all
communication edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 A positive 3-way-Partitioning instance S = {6, 3, 3, 2, 2, 2} is visualized as
an optimal Grid-Partitioning. Each integer i corresponds to one partition p,
where the size of p is equal to i. The cost wrt. the sum of all edges is 6. . 20

3.3 Possible instances for the simplified sub-problem, where only vertical commu-
nication is allowed across a 2-dimensional grid. Even though the partition
sizes may be different, the different possible mappings are still manageable. 24

3.4 A possible solution to the problem instance GRID-PARTITIONING(S =
[(0, −1), (0, 1)], D = [3, 5], P = [2, 3, 4, 6], T = [0, 1]) together with the starting
points of the compact representation. . . . . . . . . . . . . . . . . . . . . . 25
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3.5 Possible instances for the simplified sub-problem, where only vertical commu-
nication is allowed across a 2-dimensional grid. The quality Q of each instance
is calculated as the bottleneck value of outgoing connections, according to the
case distinction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 This exemplary mapping shows how Gropp’s [7] algorithm performs when
the partition sizes do not have well behaved prime factorizations. The other
mapping is optimal wrt. a 5pt-stencil and both proposed optimality criteria. 31

5.1 The traversal of a 10 by 3 grid can be seen here. Each side of the tree on
every level corresponds to one half of the parent node’s search space. It can
be seen how node (0, 0) can be found by always choosing the left side and
(1, 0) by choosing the right side once in the very end. . . . . . . . . . . . . 34

5.2 All these green polygons have the same surface area despite having different
volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 The procedure for deciding the required sub-rectangles when trying to achieve
the smallest number of nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 A simple 4 × 11 grid with 4 partitions, where three different mappings can
be seen (Gropp, k-d-tree and the standard behaviour of MPI). Note how the
standard behaviour is better wrt. the bottleneck partition than both other
approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 A simple example mapping where the simple squarest strips algorithm would
split one partition in two. Due to the adapted assignment direction, the
improved version does not do so. . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 For more than two dimensions it becomes harder to keep track of repeated
assignment-direction changes, since one depends on the other. . . . . . . . 48

7.1 The minima of all measured maximum runtimes for a 15 × 15 grid, 5pt-
stencil and 1MB of data per neighbour. The grid was not changed, but the
partition sizes were (uniformly) adapted according to the varying number of
partitions. Unfortunately, Gropp’s algorithm was not compatible with any of
these configurations and therefore cannot be seen here. . . . . . . . . . . . 62

7.2 The two graphs show the maximum (left) and total (right) off-node commu-
nication edges for the test setup for a 15 × 15 2D grid with an increasing
number of partitions. For the most part, the previously shown differences in
runtime correlate with both the total and maximum number of outgoing edges,
however, it can be seen that even though the squarest-strips algorithm had
the best optimality metrics in both cases, it was often outperformed by the
k-d-tree algorithm in terms of runtime. Note that both k-d-tree approaches
had the exact same mappings since the stencil was not skewed. . . . . . . 63
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7.3 The different algorithms’ mappings on a 15 × 15 grid with 17 partitions of
size 9 and 9 partitions of size 8. It can be seen that the squarest strips
algorithm manages to fit all 9-sized partitions into 3 × 3 squares, while still
being able to accommodate the 8-sized partitions appropriately. While the
k-d-tree approaches yield overall quite compact results, it can be seen that
multiple partitions are split into two disjoint components. . . . . . . . . . 64

7.4 The different algorithms’ mappings on a 15 × 15 grid with one partition of
size 9 and 27 partitions of size 8. Since the squarest strips algorithm adapts
its strip size to the biggest partition, it therefore does not account for the
fact, that the majority of the participating partitions are actually smaller (8
instead of 9). The k-d-tree approach, on the other hand, appears to make the
cuts along edges, which mostly result in two disjoint, but individually square
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.5 The minima of all measured maximum runtimes for a 20 × 10 grid, 5pt-stencil
and 1MB of data per neighbour. The grid was not changed, but the partition
sizes were (uniformly) adapted according to the varying number of partitions.
Interestingly, the standard algorithm found very well-performing mappings
for multiple instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.6 The maximum number of offnode communication edges for the instance with
a 20 × 10 grid and 5pt-stencil. It can be seen that the standard algorithm
performs similarly to the k-d-tree approaches. . . . . . . . . . . . . . . . . 65

7.7 The different algorithms’ mappings on a 20 × 10 grid with 20 partitions of
size 10. Interestingly, the standard behaviour’s row-major mapping yielded
the best runtime, while Gropp’s seemingly compact solution performed not as
good as the bottom three approaches. . . . . . . . . . . . . . . . . . . . . 65

7.8 The different algorithms’ runtimes on a 20 × 10 grid with 20 partitions of
size 10. It can be seen that the standard algorithm performed best, followed
by the squarest-strips and k-d-tree algorithms. Gropp’s algorithm, while
not performing as well as the others, yielded the most consistent runtime
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.9 The minima of all measured maximum runtimes (left) and the maximum
number of offnode communications (right) for a square-like grid, 10 partitions,
5pt-stencil and 1MB of data per neighbour. It can be seen that all algorithms’
runtimes scale as expected with increasing partition sizes. Gropp’s approach
only worked for the 10 × 10 grid, where he outperformed all others. . . . . 66

7.10 The different algorithms’ mappings on a 10 × 10 grid with 10 partitions of
size 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.11 The minima of all measured maximum runtimes for a square-like grid, varying
partitions of size 10, 5pt-stencil and 1MB of data per neighbour. Again, the
run for the 10 × 10 grid is an outlier. For this one run, the standard approach
outperforms the other algorithms. . . . . . . . . . . . . . . . . . . . . . . 68

7.12 The minima of all measured maximum runtimes for 30 partitions, roughly of
size 10 and 1MB of data per neighbour. . . . . . . . . . . . . . . . . . . . 69
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7.13 The maximum number of offnode communications for 30 partitions, roughly
of size 10. It can be seen that while the differences are small, the standard
and random approaches are always outperformed by the squarest-strips and
k-d-tree approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.14 The minima of all maximum communication times for 10 partitions of roughly
size 30 on a 2D grid. It can be seen that, most of the time, the k-d-tree
approaches perform best. For the runs with skew 2.9, 3 and 3.1 the standard
algorithm performed better than usual, while Gropp’s approach falls behind
in these cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.15 The maximum number of offnode communications for 10 partitions of roughly
size 30 on a 2D grid. It can be seen that, the squarest strips algorithm
consistently performs best. the standard algorithm managed to get better
mappings than the k-d-tree approaches for some instances with a comparatively
high dimension skew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.16 The different algorithms’ mappings on a 10 × 30 grid with 10 partitions of
size 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.17 The minima of all measured maximum runtimes for a 15×15 grid, 10 partitions
of size 22 and increasing stencil size. The difference between the skewed and
unskewed k-d-tree algorithms can be seen for sizes, which are not multiples of
4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.18 The minima of all measured maximum runtimes for a 8 × 8 × 8 grid, 30
partitions of size 17-18 and increasing stencil size. Note that the skewed-k-d-
tree’s runtime converges with the default k-d-tree algorithm for stencil size
multiples of 6 in 3 dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.19 The mapping for the 2-stencil-size instance, where the two k-d-tree approaches’
difference was most pronounced. Since the stencil is just a one-dimensional
strip, the skewed version attempts to elongate all partitions as much as
possible, by weighting the corresponding dimension infinitely higher than the
other one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.20 In comparison to Figure 7.19, the only difference in setup is a slightly larger
stencil (size 6). The comparatively smaller skew results in slightly vertically
stretched partitions for the skewed-k-d-tree approach in comparison to the
default one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.21 The most skewed stencil, which was used for the stencil-skew test-suite. For
each step in increasing the skew, either horizontal edges were added, or vertical
edges replaced by diagonal edges, starting from a 5pt-stencil. . . . . . . . 72

7.22 15 partitions on a 2D grid with an increasing, non-balanced stencil-size. As
expected, the skewed k-d-tree approach consistently outperforms the unskewed
version here. Gropp’s mappings’ runtimes are very comparable to the squarest
strips algorithm’s. Both manage to outperform the other approaches in some
instances, even though they do not explicitly take the stencil into account. 73
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7.23 The two graphs show the same test setup for a 15 × 15 2D grid with an
increasing number of partitions. The only difference is the number of bytes
transferred per neighbour, which is 1MB for the left and 1KB for the right
side. It can clearly be seen that the algorithms, which performed well for one
side perform badly on the other. . . . . . . . . . . . . . . . . . . . . . . . 74

7.24 The two graphs show the same test setup for a 20 × 10 2D grid with an
increasing number of partitions. As before, the only difference is the number
of bytes transferred per neighbour, which is 1MB for the left and 1KB for the
right side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.25 The minima of all measured maximum runtimes for a 44×24 grid, 33 partitions
of size 32 and 5pt-stencil. Note that both axes are logarithmic in this graph. 75

7.26 The minima of all measured maximum runtimes for a 12 × 11 × 8 grid with
33 equal-sized partitions, each having 32 processes. Note that both axes are
logarithmic in this graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.27 The communicator creation times for over 800 different test instances. All 3
of our algorithms outperformed Gropp’s creation time on average. . . . . 77

List of Tables

1.1 None of the surveyed systems remap the processes. MPICH and Open MPI
were included, as they are in use on many systems. Taken directly from Gropp
[7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 An overview of the complexity classes of different variations of the mapping
problem. We show that for two dimensions and a simple component stencil,
the problem becomes NP-hard already. . . . . . . . . . . . . . . . . . . . 20

6.1 This table shows the numerically evaluated worst-case scenarios for the
squarest strips algorithm, when compared to the area of a perfect hyper-
cube. Note that all values are below 1.9. . . . . . . . . . . . . . . . . . . 53

6.2 The numerically evaluated worst-case scenarios for the squarest strips algo-
rithm, when a partition might stretch across a second strip. The comparison
here is between the non-periodic case and the perfect hypercube. Since one
edge of the hypercube is subtracted, it might occur that the ratio for this
stretched case is better than for the non-stretched ratio, since no edge is
subtracted for the perfect hypercube. . . . . . . . . . . . . . . . . . . . . 54
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6.3 The numerically evaluated worst-case scenarios for the squarest strips algo-
rithm, when a partition might stretch across a second strip. The comparison
here is between the periodic case and the perfect hypercube. . . . . . . . 55
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