
Minimal Preconditions for Timing
Anomalies in WCET Calculations

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Christoph Martinek
Matrikelnummer 0425174

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.-Prof. Dipl.-Ing. Dr. tech. Peter Puschner

Wien, 20.04.2011
(Unterschrift Verfasser/in) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Christoph Martinek, Leobendorferstrasse 69/3, 2105 Unterrohrbach

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
– einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 20.04.2011,

Abstract

In real-time systems it has an important relevance to analyse the worst-case-execution-
time (WCET). With the knowledge of the maximum execution time it is possible to predict
the behaviour of time-critical systems. To get a detailed analysis of the timing behaviour,
it is necessary to know about the control flow of a program in modern real-time systems,
in which different cache- and pipeline-architectures are used. So called timing anomalies
could get analysed with the information of the control flow and the instructions. Along with
this, necessary conditions for their appearance could be determined. If timing anomalies
occur, the attribute proportionality in timing behaviour is violated during an execution.

In this thesis the most important timing anomalies are characterized and techniques to calcu-
late the WCET are presented. There are series timing anomalies, which appear on a number
of different paths along an execution, and parallel timing anomalies, where the timing-
relevant dynamic computer state (TRDCS) is partitioned into different hardware compo-
nents.
It is necessary for a strong analysis to investigate timing anomalies in cache- and pipeline-
architectures. Timing anomalies combined with the cache replacement strategies FIFO,
pseudo round robin and pseudo LRU are observed. Also pipeline-architectures like simple
scalar-, scalar-, superscalar in-order and superscalar out-of-order-pipelines in association
with timing anomalies are explored. For timing anomalies, which occur in these architec-
tures, preconditions are elaborated. To classify a specific processor with a potential timing
anomaly a checklist is created.

i

Kurzfassung

Bei Echtzeitsystemen ist die Analyse der Worst-Case-Execution-Time (WCET) von
entscheidender Bedeutung. Die Kenntnis über diese maximale Ausführungszeit führt zu
einer notwendigen Vorhersage des Zeitverhaltens bei zeitkritischen Systemen. Um eine de-
taillierte Untersuchung des Zeitverhaltens eines Programms durchzuführen, ist in modernen
Echtzeitsystemen, in denen unterschiedliche Cache- und Pipeline-Architekturen vorkom-
men, das Wissen über den Verlauf einer Ausführung von Wichtigkeit. Mit diesen In-
formationen können Besonderheiten, nämlich sogenannte Zeitanomalien, analysiert und
notwendige Bedingungen dafür hergeleitet werden. Beim Auftreten von Zeitanomalien
wird im Verlauf einer Ausführung die Eigenschaft Proportionalität im zeitlichen Verhal-
ten verletzt.

In dieser Diplomarbeit werden die wichtigsten Zeitanomalien charakterisiert und Metho-
den vorgestellt, mit denen sich gewisse Anomalien bezüglich der Berechnung der WCET
berechnen lassen. Darunter fallen serielle Zeitanomalien, welche über eine Anzahl von
unterschiedlichen Pfaden auftreten können, und parallele Anomalien, bei denen der timing-
relevant dynamic computer state (TRDCS) in unterschiedliche Hardwarekomponenten auf-
geteilt wird.
Für eine aussagekräftige Analyse ist eine genaue Erforschung von Zeitanomalien in ver-
schiedenen Cache- sowie in Pipeline-Architekturen erforderlich. Es werden hier die Cache-
Ersetzungsstrategien FIFO, Pseudo Round Robin und Pseudo LRU genauer betrachtet. Bei
Pipeline-Architekturen werden Simple Scalar-, Scalar-, Superscalar In-Order und Super-
scalar Out-of-Order-Pipelines untersucht. Es werden Vorbedingungen für Zeitanomalien
ausgearbeitet, die in diesen Architekturen auftreten können. Darüber hinaus wird gewis-
sermaßen eine Checkliste erarbeitet, mit der Prozessoren betreffend der eintretenden Zei-
tanomalien eingestuft werden können.

iii

Contents

Abstract i

Kurzfassung iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Real-time computing . 1
1.2 Structural Organization . 2

2 Basic Concepts and Related Work on Timing Anomalies 3
2.1 Overview . 3
2.2 WCET Analysis . 3
2.3 Timing Relevant Dynamic Computer State . 3
2.4 Notation . 4
2.5 Related Work on Timing Anomalies . 5
2.6 Fundamental Definition of Timing Anomalies 6
2.7 Timing Anomaly Definition by Lundqvist and Stenström 6
2.8 Timing Anomaly Definition by Reineke et al. 7
2.9 Series Timing Anomalies . 7
2.10 Parallel Timing Anomalies . 10

3 Pipeline Architectures 21
3.1 Overview . 21
3.2 Simple Scalar Pipelines . 21
3.3 Scalar Pipelines . 23
3.4 Superscalar In-Order Pipelines . 24
3.5 Superscalar Out-Of-Order Pipelines . 25

4 Cache Architectures 27

v

CONTENTS

4.1 Overview . 27
4.2 Structure of Caches . 27
4.3 Associativity . 28
4.4 Cache Replacement Policies . 28

5 Timing Anomalies in Pipelines 31
5.1 Overview . 31
5.2 Timing Anomalies in Simple Scalar Pipelines 31
5.3 Timing Anomalies in Scalar Pipelines . 32
5.4 Timing Anomalies in Superscalar Pipelines 40
5.5 Timing Anomalies in Superscalar Out-Of-Order Pipelines 48
5.6 Summary . 51

6 Timing Anomalies in Caches 53
6.1 Overview . 53
6.2 Definition of Timing Anomalies on Caches 53
6.3 Timing Anomalies in FIFO Caches . 55
6.4 Timing Anomalies in LRU Caches . 58
6.5 Timing Anomalies in PLRU Caches . 61
6.6 Summary . 65

7 Parallel Timing Anomalies 67
7.1 Overview . 67
7.2 Analysis of Parallel Timing Anomalies . 67

8 Conclusion 69

Bibliography 71

vi

List of Figures

2.1 Timing Relevant Dynamic Computer State . 4
2.2 First Definition of Timing Anomalies . 7
2.3 Definition of Timing Anomalies by Reineke et al. 8
2.4 Definition of Series Timing Anomalies . 11
2.5 Descending order of executions by hwA . 13
2.6 Example of TA-P-I and TA-P-A . 13
2.7 Example of TA-P-I, TA-P-A for the same b ∈ B and possible areas for no timing

anomaly . 14
2.8 Delta Composition principle . 15
2.9 Max Composition principle . 17

3.1 Concept of Pipelines . 22
3.2 Simple Scalar Pipeline . 22
3.3 Structural Hazard . 23
3.4 Data Hazard . 23
3.5 Merged Instructions illustrated as Blocks . 24
3.6 Scalar Pipeline . 24
3.7 Superscalar In-Order Pipeline . 25

4.1 4-way PLRU Tree . 29

5.1 Abstraction of Simple Scalar Pipeline . 32
5.2 Abstraction of Scalar Pipeline . 33
5.3 Better pipeline visualization of complex pipeline processes 34
5.4 Scalar pipeline with no timing anomaly . 35
5.5 Scalar pipeline with TA-S-I and 4 instructions . 36
5.6 Scalar pipeline with TA-S-A and 4 instructions 36
5.7 Scalar pipeline with TA-S-I and 3 instructions . 37
5.8 Scalar pipeline trying to construct a TA-S-A with 3 instructions 38
5.9 Scalar pipeline trying to construct TA-S-I and TA-S-A timing anomalies with 2 in-

structions . 40
5.10 Superscalar pipeline with TA-S-A and 5 instructions 42
5.11 Superscalar pipeline trying to construct a TA-S-A with 4 instructions and I1 can be

executed at both function units . 43

vii

LIST OF FIGURES

5.12 Superscalar pipeline trying to construct a TA-S-A with 4 instructions and I1 can
only be executed at FU0 . 43

5.13 Superscalar pipeline with TA-S-I and 4 instructions 44
5.14 Superscalar pipeline trying to construct a TA-S-I with 3 instructions and I0, I1 and

I2 can be executed at each function unit . 45
5.15 Superscalar pipeline trying to construct a TA-S-I with 3 instructions and I0, I2 can

be executed at each function unit . 46
5.16 Superscalar pipeline with trying to construct a TA-S-I with 3 instructions and I0, I1

can be executed at each function unit . 47
5.17 Pipeline visualization of complex out-of-order pipeline processes 48
5.18 Superscalar Out-Of-Order pipeline with TA-S-I and 4 instructions 49
5.19 Superscalar Out-Of-Order pipeline with TA-S-A and 4 instructions 50

6.1 Timing Anomalies of Cache Architectures . 54
6.2 4-way associative FIFO, TA-S-I cache timing anomaly 56
6.3 4-way associative FIFO, TA-S-A cache timing anomaly 56
6.4 2-way associative FIFO, TA-S-I cache timing anomaly 57
6.5 2-way associative FIFO, TA-S-A cache timing anomaly 58
6.6 4-way associative LRU, TA-S-I cache timing anomaly 59
6.7 4-way associative LRU, TA-S-A cache timing anomaly 59
6.8 2-way associative LRU, best try to achieve a TA-S-I cache timing anomaly 60
6.9 2-way associative LRU, TA-S-A cache timing anomaly 61
6.10 4-way associative PLRU, TA-S-I cache timing anomaly 62
6.11 4-way associative PLRU, TA-S-A cache timing anomaly 63
6.12 2-way associative PLRU, best try to achieve a TA-S-I cache timing anomaly 63
6.13 2-way associative PLRU, TA-S-A cache timing anomaly 65

viii

List of Tables

3.1 Superscalar Out-Of-Order Pipeline: Resource Allocation Table 26

4.1 4-way LRU cache: Filling with Age Update . 29
4.2 4-way PLRU cache: Filling with Tree Bits Update 30

5.1 Summary of Timing Anomalies on Pipelines . 51

6.1 Summary of Timing Anomalies on Caches . 66

ix

CHAPTER 1
Introduction

1.1 Real-time computing

In real-time systems there are deadlines in which a computation must be finished. These dead-
lines have to be satisfied within a specific time interval. The duration of this interval is irrelevant,
but it must know a priori. That means, a real-time system does not only make a right computa-
tion, but also it must be right in the time domain. Thus there is an additional distinction in hard-
respectively soft-real-time systems, based on the deadline restrictions.

Soft real-time systems

A soft real-time system can tolerate a missed deadline and admit a decreased service quality. An
example of such a system is a video conference, where a video frame or an audio sequence could
not be processed correctly. But those real-time systems should have an average load factor, that
the majority of calculations are processed within the deadline interval.

Hard real-time systems

In hard real-time systems the deadlines must be met. If computations not satisfy the deadline,
these computations are said to be failed. In this case such a failure can damage the whole sys-
tem and furthermore human lives and the environment threatened. An example of a real-time
system is the motor-management system of a car. In general hard real-time systems are applied
in embedded systems, which react within a closely connection to its environment.
If all necessary computations are known a priori, then the system could be designed time-
controlled. In this design style there are time slots for each computation. Thereby it is possible
to get a almost fully system load. But the computations must be finished within the allocated
time slot. To derive the duration of a computation it is necessary to assume the worst case.
Hence it is essential to calculate the worst-case-execution-time (WCET) of an instruction.

1

1.2. STRUCTURAL ORGANIZATION

1.2 Structural Organization

First we start with some basic concepts and definitions of timing anomalies in modern processor
architectures in Chapter 2. Furthermore the notation is defined in the chapter and additional
some composition techniques are explained.
In Chapter 3 the advantages of using pipeline architectures and the later analysed pipeline mod-
els are introduced.
The second part of the debated architectures, the caches, are presented in Chapter 4. Additional
the functionality and concepts are discussed.
In Chapter 5 and 6 series timing anomalies are analysed regarding pipeline and cache archi-
tectures. Furthermore we differ between inversion and amplification timing anomalies and the
minimal preconditions for their occurrence are under discussion.
In Chapter 7 the combination of the before treated architectures are in the focus of the parallel
timing anomaly analysis, where an execution in the cache affects the behaviour of the pipeline
execution.

2

CHAPTER 2
Basic Concepts and Related Work on

Timing Anomalies

2.1 Overview

In this thesis the concentration is on timing anomalies occurring in the calculation of the WCET.
Thus a short summary about the WCET calculation is presented first. Next the notation, which
is used along the thesis, is shown. Finally timing anomalies are described and some composition
techniques to compute the WCET are reported.

2.2 WCET Analysis

In modern processor architectures, where timing anomalies can appear in cache and pipeline
architectures, the estimation of the WCET can only be done at substantial expense, see [19, 8,
2, 4]. For this analysis it is necessary to determine the longest possible path through an execution
[6, 3]. This can be done with the control-flow analysis. With this we know a set of all possible
paths along an execution and can now study them. A clever method is to use the ’divide and
conquer’-concept, thus to derive the maximum duration of a statement and do this along the
execution in a bottom-up manner. Unfortunately this method leads not always to an appropriate
result for the WCET. This is due to the cache- and pipeline-architectures of modern processors.
With these components so called timing anomalies can occur, the discussed subject of this thesis.
These timing anomalies violate the notion of proportionality in the timing domain in a certain
manner.

2.3 Timing Relevant Dynamic Computer State

With the timing-relevant state model, which is introduced in [5], interesting computer states
can be examined. In this model several computer states are defined. The first one is the overall

3

2.4. NOTATION

computer state CS, which includes all states for different components like external data memory,
external cache, external code memory, input-, output-devices and of course the processor state.
A subset of the CS is the timing-relevant computer state TRCS. In this set all elements which are
relevant for the timing of an execution are combined. The next subset of the TRCS is the timing-
relevant computer configuration TRCC. Within this set are timing-relevant elements, but they are
constant. A graphical model of the definitions is presented with Figure 2.1. These definitions
bring us finally to the timing-relevant dynamic computer state TRDCS, which contains those
elements that are in the timing-relevant computer state, though they are not in the timing relevant
computer configuration.
Thus in all following chapters only states in the TRDCS state are of interest. Note that timing
anomalies, which are introduced in the next chapters, are trivial to produce in cases, where the
whole state space or timing irrelevant states are involved. Therefore the concentration of the
WCET analysis is only on the essential part of the Computer State, namely the TRDCS.

Figure 2.1: Timing Relevant Dynamic Computer State

2.4 Notation

For a detailed analysis it is necessary to get familiar with the formal definitions. The following
definitions and achievements are principal obtained by [6].

Defintion 2.4.1 T (I, s) is the execution time of an instruction sequence I (which can consists of
particular instruction I1 ◦ I2 ◦ I3 ◦ . . ., where the ◦ operator connect instructions in a sequential
manner) beginning from the initial state s ∈ TRDCS.

4

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK ON TIMING ANOMALIES

Defintion 2.4.2 Tmax(I, S) = max(T (I, s)|s ∈ S) is the maximum of all execution times for
instruction I with an initial state s of the set of potential initial states S.

Defintion 2.4.3 ∆(I, s, s′) = T (I, s′)− T (I, s) is the difference of execution times of instruc-
tion sequence I for different initial states s, s′ ∈ TRDCS.

Defintion 2.4.4 INI is the set of potential initial states of instruction I .

Defintion 2.4.5 INI,max = {s ∈ INI ∧∀s′ ∈ INI .T (I, s′) ≤ T (I, s)} is the set of initial states
of instruction I , where T (I, s) is maximal.

The following definitions apply to the partition of the TRDCS in hardware components of in-
terest for the timing of the instruction. These definitions imagine, that two different components
(like pipeline and cache) can analysed for itself and join the results for an overall analysis.

Defintion 2.4.6 ThwA
(I, a) is the execution time for instruction I of hardware component hwA

with the initial local state a ∈ A, where A is the set of initial states for the TRDCS compo-
nent hwA. When another component is in progress and consume execution time, but hardware
component hwA is not involved, then this does not count to ThwA

(I, a).

Defintion 2.4.7 ∆hwA
(I, a, a′) = ThwA

(I, a′) − ThwA
(I, a) is the difference of the execution

times for the instruction I for different initial states a and a′ ∈ A for the hardware component
hwA.

2.5 Related Work on Timing Anomalies

The first exploration of timing anomalies in association with WCET calculation is done by
Lundqvist and Stenström in [9]. They introduced a concept, where a cache miss results in a
decreasing execution time in an out-of-order pipeline and cache processor, namely a simplified
PowerPC architecture processor. Also they assert, that in in-order pipelines no timing anoma-
lies are appear, which was invalidated later. In this paper also a formal definition about timing
anomalies are given and examples of domino effects are shown. Additionally a simple code
modification method is displayed to inhibit timing anomalies.
In [1, 12] a more precise study on domino effects and the effect of an unbounded WCET. He
shows some examples with the pseudo least recently used (PLRU) cache replacement strategy.
A classification in scheduling-, speculating- (also [14]) and cache-timing anomalies are given
in [13]. Whereas the latter two classification classes can appear in in-order architectures.
In the paper of Wenzel et al. [18] they acquire the resource allocation criterion, which is a nec-
essary, but not a sufficient condition for the appearance of timing anomalies. With this criterion
it is possible to evaluate, if an anomaly can occur. But the resource allocation criterion limits
the occurrence of anomalies in that sense, that only one instruction can change the timing. Also
they provide, that timing anomalies can occur in simply models, like in-order architectures.
In [5] Kirner et al. presenting formal definitions of serial and parallel timing anomalies and
categorize them in amplification and inversion classes. Also they had shown some composition

5

2.6. FUNDAMENTAL DEFINITION OF TIMING ANOMALIES

techniques for parallel timing anomalies, in particular the delta- and max-composition, and the
series-composition for series timing anomalies. Furthermore parallel timing anomalies are de-
scribed more in detail in case of a simultaneously appearance.

2.6 Fundamental Definition of Timing Anomalies

Lundqvist and Stenström were the first, who explored the phenomenon of timing anomalies and
described them with the following words: "Previous timing analysis methods have assumed that
the worst-case instruction execution time necessarily corresponds to the worst-case behaviour.
We show that this assumption is wrong in dynamically scheduled processors." [9]. Furthermore
they explained that a cache miss can provide a shorter overall execution than a cache hit.
In [13], Reineke et al. described a timing anomaly as the circumstances, where a local worst-
case situation does not affect a global worst-case situation. Kirner et al. characterize a timing
anomaly as a case where the persistence properties of proportionality and monotony in the timing
behaviour invalidates the continuity characteristic in [6].

2.7 Timing Anomaly Definition by Lundqvist and Stenström

A first definition of timing anomalies was introduced by Lundqvist and Stenström in [9]. They
described it in the following manner.

"Consider the execution of a sequence of instructions. Let us study two different cases where
the latency of the first instruction is modified. In the first case, the latency is increased by i clock
cycles. In the second case, the latency is decreased by d cycles. Let C be the future change in
execution time resulting from the increase or decrease of the latency. Then:" ([9])

Defintion 2.7.1 "A timing anomaly is a situation where, in the first case, C > i or C < 0, or in
the second case, C < −d or C > 0." (Definition 1 in [9])

That means a timing anomaly does not happen as described in [9], if the future change of
the remaining execution C is in the interval 0 ≤ C ≤ i in the first case or −d ≤ C ≤ 0 in the
second case. In Figure 2.2 these definitions are explained in a graphical manner.

The duration of the first instruction M is represented as thick black line and the duration of
the overall execution I is indicated as a rectangle. The difference of the entire execution between
T (I, s0) and T (I, si) (with 1 ≤ i ≤ 4) is labelled as Ci.
In the first case, T (M, s1) and T (M, s2) need i more clock cycles for their executions than the
reference execution T (M, s0). But the difference C1 = T (I, s1) − T (I, s0) is greater than the
difference of the first instruction i = T (M, s1) − T (M, s0). This timing anomaly is discussed
later as amplification timing anomaly. The difference C2 = T (I, s2) − T (I, s0) < 0 brings us
to the timing anomaly we will later call inversion timing anomaly.
In the second diagram a decreased duration d = T (M, s3)−T (M, s0) of the first instruction M
between the reference execution T (M, s0) and T (M, s3) (resp. T (M, s4)) is presented. Hence
C3 = T (I, s3) − T (I, s0) is smaller than −d. This results again in an amplification timing

6

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK ON TIMING ANOMALIES

Figure 2.2: First Definition of Timing Anomalies

anomaly, but in a decreasing way. On the other hand C4 = T (I, s4) − T (I, s0) > 0 and leads
to an inversion timing anomaly.

2.8 Timing Anomaly Definition by Reineke et al.

Reineke et al. defined a program execution, where a path π is partitioned in three parts (πpre,
π|l and πpost), where l is a locally constraint for π|l in [13]. Following the non-local worst-case
path leads to a global worst-case path for the execution of π. In the Figure 2.3 this concept is
illustrated with a realization, where the first execution has the local worst-case path; however the
last execution (with the non-local worst-case path) is the crucial path for the WCET calculation.

2.9 Series Timing Anomalies

Timing anomalies which can be handled with the series decomposition technique (described
later) are labelled as ’series timing anomalies’. This category of timing anomalies is in general
observed, if an instruction sequence is split into two different streams (whereas an instruction
stream can be consists of only one instruction). Then the relation between the execution of the
first instruction stream and the whole instruction sequence is analysed and in case of a timing
anomaly, this situation is called a series timing anomaly. Within the definition of the series tim-
ing anomalies, all initial states are elements from the TRDCS. These definitions based on the

7

2.9. SERIES TIMING ANOMALIES

definitions of Lundqvist and Stenström [9] and extended by Kirner et al. in [6].
Series timing anomalies differ in their impact on the timing behaviour. In case of inversion se-
ries timing anomalies (TA-S-I) the execution time of the whole instruction sequence change in
an opposite direction than the first sequence. On the other hand if the execution of the whole in-
struction stream follows the direction of the alteration of the first instruction sequence execution
and amplifies this change, this is called an amplification series timing anomalies (TA-S-A). The
followed definitions are mostly obtained from [6].

Defintion 2.9.1 TA-S-I
Assume an instruction sequence I = M ◦ N , which consists of two non empty instruction
sequences M and N and the initial states s, s′ ∈ TRDCS. Then an inversion series timing
anomaly is a situation, where:
∃s, s′ ∈ INM .
∆(M, s, s′) > 0 ∧ ∆(I, s, s′) < 0

Defintion 2.9.2 TA-S-A
Assume the same instruction sequence I = M ◦ N as in the above definition and the initial
states s, s′ ∈ TRDCS. Then an amplification series timing anomaly is a situation, where:
∃s, s′ ∈ INM .
0 < ∆(M, s, s′) < ∆(I, s, s′)

The timing anomaly TA-S-I is also called ’strong timing anomaly’, because this anomaly
cannot be analysed with the series decomposition without problems. The TA-S-A timing anomaly
is named ’weak timing anomaly’, since a serious calculation of the WCET can be achieved with
the series decomposition technique.

Figure 2.3: Definition of Timing Anomalies by Reineke et al.

8

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK ON TIMING ANOMALIES

The next definitions highlight the cases, where series timing anomalies affect the calcula-
tion of the WCET. For that reason these timing anomalies are termed ’worst-case series timing
anomalies’. Worst-case inversion anomalies of this kind are labelled as TAW-S-I and worst-case
amplification anomalies as TAW-S-A.

Defintion 2.9.3 TAW-S-I
Assume an instruction sequence I = M ◦ N , which consists of two non empty instruction
sequences M and N and the initial states s, s′ ∈ TRDCS. Then a worst-case inversion series
timing anomaly is a situation, where:
∃s ∈ INM , ∀s′ ∈ INM,max.
∆(M, s, s′) > 0 ∨ ∆(I, s, s′) < 0

Defintion 2.9.4 TAW-S-A
Assume the same instruction sequence I = M ◦ N as in the above definition and the initial
states s, s′ ∈ TRDCS. Then an amplification series timing anomaly is a situation, where:
∃s ∈ INM , ∀s′ ∈ INM,min.
0 < ∆(M, s, s′) < ∆(I, s, s′)

The difference of the worst-case series timing anomalies and the ’normal’ series timing
anomalies is first the quantifier of s′ changes from ∃ to ∀ and second for TAW-S-I to ∀s′ ∈
INM,max and for TAW-S-A to ∀s′ ∈ INM,min. This causes a situation, in which the initial state
s′ is taken from the set INM,max (in case of TAW-S-I) and thus a more pointed setting is created.
In the case of TAW-S-A the initial state s′ is in the set INM,min and this results in a more precise
definition of an amplification anomaly due to the WCET calculation.

Series Decomposition

To analyse series timing anomalies, the straight forward technique series decomposition is pre-
sented in [6]. With this technique it is possible to approximate one worst-case state for each
control-flow node instead of k states for k input states and the maximum of two successive in-
structions is computed. This is an enormous advantage, because the number of collected states
is growing exponentially with the program size. If this is done for each control-flow node across
the entire execution, then the resulting maximum execution time is actual the WCET bound.

Defintion 2.9.5 Series Composition
Assume an instruction sequence I = M ◦ N , which consists of two non empty instruction
sequencesM andN and the initial state s ∈ TRDCS. Then the WCET of the series composition,
Tsc, is calculated in the following manner:
Tsc(M ◦N) = max

s∈INM,max

T (M ◦N, s)

Amplification timing anomalies do not invalidate this calculation technique and an upper
bound for the WCET is provided for this kind of timing anomalies with this technique.
The safeness of the series composition and a sufficient and necessary condition for a safe WCET
bound is presented in the next theorem. The proof of the theorem and the theorem itself is shown
in [6].

9

2.10. PARALLEL TIMING ANOMALIES

Theorem 2.9.6 Safeness of Series Composition
"Assuming that the program to be analysed is decomposed into connected control-flow nodes
and the set of possible subpathes (= sequences of control-flow nodes) of the program is denoted
by the set SP, then Series-Composition allows to provide a safe WCET bound on processor
hardware whose timing characteristics obey the following sufficient and necessary condition:
∀M ◦N ∈ SP, ∀s1 ∈ INM , ∃s2 ∈ INM,max.
∆(M, s1, s2) > 0→ ∆(M ◦N, s1, s2) ≥ 0" ([6] Theorem 4.1 and Proof A.1)

That means that s2 is taken from the set INM,max and this ensures, that the execution
time of the instruction M and so T (M, s2) is maximal. If the difference of T (M, s2) and
T (M, s1) is greater than zero, then the difference of execution time of the instruction sequence
of T (M ◦N, s2) and T (M ◦N, s1) must be also greater than or equal to zero.
If we take a precise look to the definition of the TAW-S-I timing anomaly one can notice that this
is an opposite definition of the safeness condition of the series composition. Even by this reason
the series composition can not ensure a serious WCET bound.

In Figure 2.4 the above definitions are explained graphically. In the first diagram the difference
∆(M, s0, s1) is greater than zero and the difference of the instruction sequence ∆(I, s0, s1),
with I = M ◦N , is also greater than ∆(M, s0, s1). This results in a series amplification timing
anomaly TA-S-A.
In the second diagram the difference ∆(M, s0, s2) is greater than zero (same as in the first di-
agram), but the difference ∆(I, s0, s2) is smaller than zero. This is an indication of a series
inversion timing anomaly TA-S-I.

If we compare the definitions of Lundqvist and Stenström with the definitions of Kirner et
al., then we can determine similarities. The number of increased clock cycles i in the definitions
of Lundqvist and Stenström correlates with ∆(M, s0, s1) (resp. ∆(M, s0, s2)) of the definitions
of Kirner et al. The difference of the overall execution times C1 and C2 are equivalent with
∆(I, s0, s1) and ∆(I, s0, s2). Furthermore the additional term C < −d or C > 0 of Lundqvist
and Stenström has been substituted by the permutation of the variables in the Delta-Term.

2.10 Parallel Timing Anomalies

The idea of clarify parallel timing anomalies is to partition the TRDCS state space, which was
introduced in Chapter 2.3, into two independent state spaces TRDCS = A∪B, e.g. like that from
caches and pipelines. Consider that each of the partition areas has a separate timing behaviour.
If we observe parallel timing anomalies, then we focus on the comparison of the component
latency ThwA

(I, a) of the instruction I of hardware component hwA (with a ∈ A) and the
overall execution time T (I, 〈a, b〉) with b ∈ B. The state 〈a, b〉 is taken from the initial state set
A×B. The definitions are obtained from Kirner et al. [6].

Defintion 2.10.1 TA-P-I
Assume an instruction sequence I and a TRDCS initial state space, which is partitioned in two

10

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK ON TIMING ANOMALIES

Figure 2.4: Definition of Series Timing Anomalies

non-empty sets A∪B with the component latency ThwA
(I, a) of hardware component hwA and

the overall execution time T (I, 〈a, b〉), with a ∈ A, b ∈ B. Then an inversion parallel timing
anomaly is a situation, where:
∃a, a′ ∈ A,∃b ∈ B.
∆hwA

(I, a, a′) > 0 ∧ ∆(I, 〈a, b〉, 〈a′, b〉) < 0

Defintion 2.10.2 TA-P-A
Assume an instruction sequence I with the same partitioning as in the above definition and the
identical execution times. Then an amplification parallel timing anomaly is a situation, where:
∃a, a′ ∈ A,∃b ∈ B.
0 < ∆hwA

(I, a, a′) < ∆(I, 〈a, b〉, 〈a′, b〉)

A more specific case for the above definitions, the worst-case parallel timing anomalies,
are shown in the next definitions, like for the series timing anomalies. There are more specific
situations indicate where the analysis with the parallel decomposition techniques (which will be
presented below) could be difficult to handle. First, some helpful sets are introduced.

Defintion 2.10.3
Amin = {a ∈ A | ∀a′ ∈ A. ThwA

(I, a′) ≥ ThwA
(I, a)}

Amax = {a ∈ A | ∀a′ ∈ A. ThwA
(I, a′) ≤ ThwA

(I, a)}
BA,max(a) = {b ∈ B | ∀b′ ∈ B. T (I, 〈a, b〉) ≥ T (I, 〈a, b′〉)}

11

2.10. PARALLEL TIMING ANOMALIES

The set Amin describes the set of initial states, which have a minimal execution time for
instruction I for hardware component hwA. The elements of the set Amax lead for instruction I
and hwA to a maximal execution time. Additionally the set BA,max(a) includes the initial states
b ∈ B, which achieve a maximal execution time T (I, 〈a, b〉).

Defintion 2.10.4 TAW-P-I
Assume an instruction sequence I and a TRDCS initial state space, which is partitioned in two
non-empty sets A∪B with the component latency ThwA

(I, a) of hardware component hwA and
the overall execution time T (I, 〈a, b〉), with a ∈ A, b ∈ B. Then a worst-case inversion parallel
timing anomaly is a situation, where:
∃a ∈ A,∃b ∈ B, ∀a′ ∈ Amax, ∀b′ ∈ BA,max(a′).
∆hwA

(I, a, a′) > 0 ∨ ∆(I, 〈a, b〉, 〈a′, b〉) < 0

Defintion 2.10.5 TAW-P-A
Assume an instruction sequence I with the same definitions as above. Then a amplification
parallel timing anomaly is a situation, where:
∃a ∈ A,∃b ∈ B, ∀a′ ∈ Amin,∀b′ ∈ BA,max(a′).
0 < ∆hwA

(I, a′, a) < ∆(I, 〈a′, b′〉, 〈a, b〉)

Thus the worst-case inversion parallel timing anomaly originates when the difference be-
tween the executions with the initial states a and a′, a′ ∈ Amax of instruction I at the hardware
component hwA is greater than zero and the difference of the overall execution times is less than
zero. Thus the characteristic of the execution of the overall execution proceeds in the opposite
direction than the execution at hwA. The fact, that a′ is taken from the set Amax invokes a sit-
uation in which the term ∆hwA

(I, a, a′) has a maximum value and the term ∆(I, 〈a, b〉, 〈a′, b〉)
reaches a minimal value.
For the worst-case amplification parallel timing anomaly TAW-P-A the term ∆hwA

(I, a′, a) (with
a′ ∈ Amin) depicts a value which is slightly greater than zero. And the difference of T (I, 〈a, b〉)
and T (I, 〈a′, b′〉) (which forces the maximum execution time for the initial state a′) is still
greater than the first term.

Illustration of Parallel Timing Anomalies

In Chapter 2.9 an illustration of timing anomalies has been introduced for series timing anoma-
lies. In the following the visualization for parallel timing anomalies is presented. First of all, the
instructions which are executed in hwA (with initial states ai, 0 ≤ i ≤ 4) are presented as black
thick lines and are followed by the executions for the other hardware component (with initial
states bi, with 0 ≤ i ≤ 4) as black thick lines.
To identify timing anomalies easier, we order the executions T (I, a) based on the required time
in descending order, Figure 2.5.

The initial states of the executions are relabeled with a′i. Next the execution times T (I, 〈a′i, b〉)
for all a′i ∈ A and one fixed b ∈ B are built. With this information timing anomalies can now be
identified immediately. In the Figure 2.6 a TA-P-I example is displayed on the left. If we take a
close look at the executions we can observe that ∆hwA

(I, a′4, a
′
3) > 0 and ∆(I, 〈a′4, b〉, 〈a′3, b〉) <

12

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK ON TIMING ANOMALIES

Figure 2.5: Descending order of executions by hwA

0 and this is equivalent to the definition of the TA-P-I. Furthermore we can find that ∆(I, 〈a′3, b〉, 〈a′2, b〉) <
0. Is this not also an TA-P-I? No, because the first term ∆hwA

(I, a′3, a
′
2) > 0 is not fulfilled. If

the difference of two executions at hwA is zero, then there is no anomaly.
On the right side we notice a TA-P-A timing anomaly, due to the fact that 0 < ∆hwA

(I, a′1, a
′
0)

and this is less than ∆(I, 〈a′1, b〉, 〈a′0, b〉).

Figure 2.6: Example of TA-P-I and TA-P-A

Of course it is possible, that a TA-P-I and TA-P-A timing anomaly for the same b ∈ B might
occur. On the left side in Figure 2.7 this case is shown.
Certainly we are interested in those cases where no timing anomalies occur. When the execution
times T (I, a′i) are in descending order, then no timing anomaly appears, if the execution times
of T (I, 〈a′i, b〉) are also in descending order or adjacent execution times are equal. Also no
timing anomaly appear, if we subtract the difference of time from the actual and the successive
execution of hardware component hwA from the actual overall execution time T (I, 〈a′i, b〉). For
executions with the same latency no timing anomaly can appear.

Composition Techniques for WCET Analysis

In this section some composition techniques are presented. There are helpful for calculating a
bound for the WCET analysis. The principle of partitioning the TRDCS state set into two sets
with their initial states a ∈ A, b ∈ B is needed for the shown techniques. The techniques assume

13

2.10. PARALLEL TIMING ANOMALIES

Figure 2.7: Example of TA-P-I, TA-P-A for the same b ∈ B and possible areas for no timing
anomaly

two TRDCS state sets A and B and calculate the overall execution time for the instruction I and
for each pair 〈a, b〉 from the set A×B.

Delta Composition

To get a WCET bound the following steps must be performed (visually represented at Figure
2.8):

1. ∆hwA,max = max
a,a′∈A

|ThwA
(I, a)− ThwA

(I, a′)|:

The maximum difference of execution times ThwA
(I, a) for hardware component hwA is

calculated.

2. Amin = {a ∈ A|∀a′ ∈ A.ThwA
(I, a′) ≥ ThwA

(I, a)}:
The set of initial states for hardware component hwA, where execution times ThwA

(I, a)
are minimal is computed.

3. T (I, 〈ahwA,min, b〉):
For all states, which are within the before calculated set Amin, the entire execution times
with fixed initial states ahwA,min are derived.

4. bdc,max ∈ BA,max(ahwA,min) = {b ∈ B|∀b′ ∈ B.T (I, 〈ahwA,min, b〉) ≥ T (I, 〈ahwA,min, b
′〉)}:

One element b from the setBA,max(ahwA,min), in which are initial states of setB that pro-
duce maximum overall execution times for the initial states ahwA,min of set A, is selected.

5. T (I, 〈ahwA,min, bdc,max〉) + ∆hwA,max:
The difference of the first step is added to the overall execution times of step four.

The above presented steps can be formalized with the next definition:

Defintion 2.10.6 Tdc(I) = max
a∈Amin,b∈B

T (I, 〈a, b〉) + ∆hwA,max

14

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK ON TIMING ANOMALIES

Figure 2.8: Delta Composition principle

In general the delta composition overestimates the WCET and if we analyse the steps defined
above, we can detect that the worst case for the calculation of Tdc is when all initial states
a ∈ Amin. But in this case there are no differences in the execution times and hence all states
a ∈ Amin are not part of the TRDCS. Thus the worst-case is |Amin| = |A|−1 and the calculation
for the delta composition requires O((|A|+ |Amin| ∗ |B|) ∗ |I|). This is explained by the search
of ∆hwA,max (step 1) and Amin (step 2) for |A|. The term |Amin| ∗ |B| can be declared by
the computation of the overall execution times T (I, 〈ahwA,min, b〉) and then multiplied by the
instruction |I|.

Theorem 2.10.7 Safeness of Delta Composition
Assume the definitions from 2.10.4 and an execution of I with a partitioned TRDCS, then the
following expression is sufficient and necessary for the safeness of the delta composition tech-

15

2.10. PARALLEL TIMING ANOMALIES

nique:
∀a ∈ A,∀b ∈ B, ∃a′ ∈ Amin,∃b′ ∈ BA,max(a′).
∆hwA

(I, a′, a) > 0→ ∆(I, 〈a′, b′〉, 〈a, b〉) ≤ ∆hwA,max ([6] Theorem 5.1 and Proof A.2)

That means, if the execution time of an instruction I for an arbitrary initial state a is greater
than for a′ (= ahwA,min), then the difference of the overall execution time between a pair of
random initial states 〈a, b〉 and 〈a′, b′〉 (b′ ∈ BA,max(a′)) must be less or equal to the maximum
difference of the execution times for hardware component hwA, ∆hwA,max. One can observe,
that this is the opposite of the definition of TAW-P-A. With this steps it is possible to calculate
a serious WCET bound in case of parallel inversion timing anomalies, because there is a local
best case (ahwA,min) and the difference to another initial state a (∆hwA

(I, ahwA,min, a)) must
be greater or equal than ∆(I, 〈ahwA,min, b

′〉, 〈a, b〉) (see Safeness of Delta Composition).
The delta composition is used to analyse TA-P-I timing anomalies.

Max Composition

In the previous section a composition technique was presented to compute a WCET bound for
TA-P-I timing anomalies. In this chapter the max composition technique for analysing TA-P-A
timing anomalies is shown. This can be done with the following steps (see Figure 2.9):

1. Amax = {a ∈ A|∀a′ ∈ A.ThwA
(I, a′) ≤ ThwA

(I, a)}:
The set of initial states for hardware component hwA, where execution times ThwA

(I, a)
are maximal is computed.

2. T (I, 〈ahwA,max, b〉):
For all states, of Amax, the entire execution times T (I, 〈ahwA,max, b〉) with fixed initial
states ahwA,max are derived.

3. bmc,max ∈ BA,max(ahwA,max) = {b ∈ B|∀b′ ∈ B.T (I, 〈ahwA,max, b〉) ≥ T (I, 〈ahwA,max, b
′〉)}:

One element b from the set BA,max(ahwA,max), in which are initial states of set B to pro-
duce maximum overall execution times for the initial states ahwA,max of setA, is selected.

The max composition offers a precise WCET bound and is specified with the following
definition.

Defintion 2.10.8 Tmc(I) = max
a∈Amax,b∈B

T (I, 〈a, b〉)

It seems that the worst-case for the calculation of Tmc is that all initial states a ∈ Amax.
But in this case there are no differences in the timing behaviour (like in the explanation of Tdc)
and hence it is not part of the TRDCS. Therefore |Amax| = |A| − 1 is the worst-case for the
calculation and it requiresO((|A|+ |Amax|∗ |B|)∗|I|). This computational cost is calculated as
stated above by the search of all states from A to get Amax and then derive the overall execution
times with the states from B multiplied with the number of instructions.

16

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK ON TIMING ANOMALIES

Figure 2.9: Max Composition principle

Theorem 2.10.9 Safeness of Max Composition
Assume the same definitions from def:TAW-P-I and an execution of I with a partitioned TRDCS,
then the following expression is necessary and sufficient for the safeness of the max composition
technique:
∀a ∈ A,∀b ∈ B, ∃a′ ∈ Amax, ∃b′ ∈ BA,max(a′).
∆hwA

(I, a, a′) > 0→ ∆(I, 〈a, b〉, 〈a′, b′〉) ≥ 0 ([6] Theorem 5.3 and Proof A.2)

That means, if the execution time of an instruction I for a′ (= ahwA,max) is greater than
for an arbitrary initial state a, then the difference of the overall execution time between 〈a′, b′〉
(b′ ∈ BA,max(a′)) and a pair of random initial states 〈a, b〉must be greater or equal to zero. One
can observe, that this is the opposite of the definition of TAW-P-I.
Thus the max composition technique calculates the maximum execution time for the combina-

17

2.10. PARALLEL TIMING ANOMALIES

tion of the sets A and B, the following statement is obvious.
The max composition is used to analyse TA-P-A timing anomalies.

With each of the introduced techniques it is possible to give a WCET bound without analysing
the whole state space A × B. If the two parallel anomaly types (TA-P-I and TA-P-A) occur in
one execution for different initial states b1, b2 ∈ B, then also a WCET bound can be computed,
even without searching the whole state space.

Defintion 2.10.10 TA-P-E
Assume an instruction sequence I and a TRDCS initial state space, which is partitioned in two
non-empty sets A∪B with the component latency ThwA

(I, a) of hardware component hwA and
the overall execution time T (I, 〈a, b〉), with a ∈ A, b ∈ B. Then an exclusive parallel timing
anomaly is a situation, where the next three properties are fulfilled:
∃a1, a2, a3, a4 ∈ A,∃b1, b2 ∈ B.
(b1 6= b2) ∧ (∆hwA

(I, a1, a2) > 0 ∧ ∆(I, 〈a1, b1〉, 〈a2, b1〉) < 0) ∧
(0 < ∆hwA

(I, a3, a4) < ∆(I, 〈a3, b2〉, 〈a4, b2〉)),

∀a1, a2, a3, a4 ∈ A,∀b ∈ B.
(∆hwA

(I, a1, a2) > 0 ∧ ∆(I, 〈a1, b〉, 〈a2, b〉) < 0 ∧ ∆hwA
(I, a3, a4) > 0)→

(∆hwA
(I, a3, a4) ≥ ∆(I, 〈a3, b〉, 〈a4, b〉)),

∀a1, a2, a3, a4 ∈ A,∀b ∈ B.
(0 < ∆hwA

(I, a1, a2) < ∆(I, 〈a1, b〉, 〈a2, b〉) ∧ ∆hwA
(I, a3, a4) > 0)→

(∆hwA
(I, 〈a3, b〉, 〈a4, b〉) ≥ 0).

The first expression shows, that a TA-P-I anomaly for state b1 and a TA-P-A anomaly for the
state b2 occur. And if there is a TA-P-I for one state b (in that case b1), then it is excluded, that a
TA-P-A can emerge for the same state b (second expression). In the third term the opposite case
is displayed; if a TA-P-A occur for b, then for this state a TA-P-I anomaly is precluded.
In this case it is possible to provide a WCET bound, because with the delta composition TA-P-I
and with the max composition TA-P-A timing anomalies could be analysed. If both techniques
are used concurrently and the maximum of the results is taken (Tdmc), then a precise bound can
be given. Observe that Tdmc(I) overestimates the WCET, resulting from the delta composition.

Defintion 2.10.11 Tdmc(I) = max(Tdc(I), Tmc(I))

If both types of timing anomalies can occur for the same state b ∈ B. Then an efficient
calculation of a safe WCET bound is not possible and the whole state space A × B must be
analysed (proof is shown in [6]). This is named a coupled parallel timing anomaly (TA-P-C).

Defintion 2.10.12 TA-P-C
Assume an instruction sequence I and a TRDCS initial state space, which is partitioned in two

18

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK ON TIMING ANOMALIES

non-empty sets A ∪ B with the component latency ThwA
(I, a) of hardware component hwA

and the overall execution time T (I, 〈a, b〉), with a ∈ A, b ∈ B. Then coupled parallel timing
anomaly occurs whene:
∃a1, a2, a3, a4 ∈ A,∃b ∈ B.
(∆hwA

(I, a1, a2) > 0 ∧ ∆(I, 〈a1, b〉, 〈a2, b〉) < 0) ∧
(0 < ∆hwA

(I, a3, a4) < ∆(I, 〈a3, b〉, 〈a4, b〉))

Parallel timing anomalies are studied between related hardware components, in this thesis
the interaction between different pipeline and cache architectures are analysed in Chapter 7 of
this thesis, where the effects of the execution of the cache influence the behaviour and timing of
the pipeline timing.

19

CHAPTER 3
Pipeline Architectures

3.1 Overview

In early years computer processors commonly executed instructions successively usually in the
following sense: fetching the instruction from the memory (IF), decoding it (ID), reading the
operands for the instructions from the registers and memory (RR), executing the instruction (EX)
and writing the results to the memory (MM) or the registers (WB). This strictly sequential exe-
cution is not very fast and it was improved in the way, that several instructions can now overlap.
That means, the first instruction reads its operands, the second instruction can be decoded and
the third instruction can be fetched in parallel. This concept increases the efficiency immense
(see Figure 3.1).
The instructions pass through a number of stages. Naturally an instruction must not go through
all pipeline stages. Additional there are several ways which stage an instruction can take. A
stage can be occupied by only one instruction, and after a stage is entered by an instruction the
appropriate step is processed and the instruction leaves the stage. However an instruction can
occupy a stage for more than one clock cycle. The flow of instructions is from the upper left to
the lower right corner, where the time scale is horizontal (divided in clock cycles) and the stages
are displayed vertically.

3.2 Simple Scalar Pipelines

A simple scalar pipeline is the simplest form of the presented pipelines. All stages are performed
in an in-order manner. The number of stages in modern processors varies between three and ten,
but in general there are five to seven stages. An example of a simple scalar pipeline is shown in
Figure 3.2.

An execution of an instruction can be delayed in a pipeline stage by some reasons. In case of
a structural hazard [16] a pipeline stage is blocked by an instruction and the next instruction is
stalled during this time. On the left side of Figure 3.3 two instructions are shown, where the first

21

3.2. SIMPLE SCALAR PIPELINES

Figure 3.1: Concept of Pipelines

instruction needs two clock cycles for the decode-stage and three clock cycles for reading the
registers. The instructions are executed successively. On the right side the instructions overlap
and thus the first instruction stalls the second instruction, which must pause in the IF- and ID-
stage.

Another kind of delay can result from data dependencies. More precisely, when a preceding
instruction generates some data, which is needed by the subsequent instruction and the genera-
tion is not complete until the next instruction is in the processing stage, then this next instruction
is stalled. In the Figure 3.4 an example shows an execution of two instructions within a pro-
gram, whereas on the left side the instructions are executed successively and on the right side
the maximal overlap is shown.
The first instruction adds the content from registers r2 and r3 and writes the result to register r1.

Figure 3.2: Simple Scalar Pipeline

22

CHAPTER 3. PIPELINE ARCHITECTURES

Figure 3.3: Structural Hazard

Thus this result in r1 is only available until termination in the WB-stage. The second instruction
needs the content of the register r1 for a further addition, the second instruction is stalled in the
RR-stage and waits until r1 can be read. Note that the MM-stage is not needed, because there is
no memory access.

Figure 3.4: Data Hazard

In the following context of this thesis instructions can be combined into blocks. This is
illustrated in Figure 3.5. Note that a single instruction could be also a block.

3.3 Scalar Pipelines

Within these pipelines the execution of an instruction can take different paths through the ex-
ecution units of the processor. The decision which pipeline stages an instruction has to pass

23

3.4. SUPERSCALAR IN-ORDER PIPELINES

Figure 3.5: Merged Instructions illustrated as Blocks

through depends on the type of the instruction. This concept is used to increase to efficiency of
the pipeline. A well known case of application is the segregation of integer and floating-point
operations. In Figure 3.6 an example of a scalar pipeline is illustrated. All instructions are
executed in in-order.

Figure 3.6: Scalar Pipeline

3.4 Superscalar In-Order Pipelines

Another more efficient pipeline is illustrated in Figure 3.7. In the IF-stage a number of in-
structions can be fetched within a clock cycle. The maximum number of instructions which are
fetched in one clock cycle corresponds to the number of stages that can be executed in parallel.
The SC-stage groups the previously fetched instructions and associates them with the subse-
quent stages, where the instructions are executed in-order. It is essential, that the instructions are
scheduled statically, not dynamical, in the SC-stage.

24

CHAPTER 3. PIPELINE ARCHITECTURES

Figure 3.7: Superscalar In-Order Pipeline

3.5 Superscalar Out-Of-Order Pipelines

In a superscalar out-of-order pipeline the selection of the processing instruction is done dynam-
ically. This makes the pipeline more efficient, because the instructions can be scheduled so that
delays by data dependencies and resource conflicts are reduced. In parallel the complexity of
the pipeline and the function units increase. These pipelines are used for applications, where a
high average-case performance is necessary, but the performance in the worst case is very hard
to predict.
There exists also a distinction for superscalar out-of-order pipelines; instructions can be fetched
and results written back in-order or out-of-order. If we consider in-order issue and in-order
completion (IOI/IOC) pipelines, then we can observe that these pipelines are working in the
same manner as superscalar in-order pipelines. In-order issue with out-of-order completion
(IOI/OOC) pipelines are able to process the in-order fetched instructions and wrote back the
results out-of-order.
To fetch and execute the instructions in an out-of-order manner an instruction buffer has to be
added. This ensures the selection of instructions in a way, that the available resources are op-
timally occupied. Also this must procure, that the program behaviour and data dependencies
are not affected. Thus the superscalar pipeline is perfectly utilised. The concept of processing
instructions in OOI/OOC pipelines is shown in the a resource allocation Table 3.1.

25

3.5. SUPERSCALAR OUT-OF-ORDER PIPELINES

Table 3.1: Superscalar Out-Of-Order Pipeline: Resource Allocation Table

26

CHAPTER 4
Cache Architectures

4.1 Overview

Because storage elements have a large access times, buffer elements (caches) are placed between
the main storage elements and the CPU. Caches contain copies of required data, therewith it is
possible to provide that data faster for future requests. If some data is needed, then an enquiry
on the caches is raised. If the cache contains the requested data, then this situation is called a
cache hit and the data is provided. If the requested data is not part of the cache storage, this situ-
ation is called a cache miss. The required data is fetched from the main storage element (which
takes some time) and it is saved for future requests. The cache replacement strategy decides
which cache block is being replaced if new data must be stored in the cache. In the next sections
several strategies are presented and discussed. With the may and must analysis [10] [7] the
knowledge of the contained cache blocks can be done. Some cache replacement policies, which
are responsible for the appearance of timing anomalies, are explored in [11] by Reineke et al.
For serious WCET calculations we need a prediction if a cache hit or cache miss causes timing
anomalies (and which timing anomalies) or not. This issue and an analysis of different replace-
ment strategies are explored in detail in the next chapters.

4.2 Structure of Caches

Caches are segmented into rows and each row consists of a cache line, which includes the re-
quired data memory blocks with b bytes. A valid bit indicates if a row contains valid data. The
address is split into an index (with length of dlog2(numberofcacherows)e), which indicates
the row of the main memory, an offset (with length of dlog2(numberofdatablocks)e), which
shows the especially block in the cache line and an tag (with length of totaladdresslength −
indexlength− offsetlength) and comprises the MSBs of the main memory address.
The length of a data block with b bytes times the total number of cache lines l indicates the cache
size s.

27

4.3. ASSOCIATIVITY

4.3 Associativity

The associativity (number of cache lines within one set) k can be computed by the number of
cache lines l divided by the number of sets. In fully-associative caches (k = l) there is only
one set with all l cache lines in it [15]. Each data block can contain each data from the main
memory. In case of a cache request it is necessary to check all tags; this makes only sense if
small caches are used.
In case of direct-mapped caches (k = 1) every cache line represents a set. Thereby every cache
block is directly mapped to data of the main memory and only this line has to be checked in case
of a request. Thus this is the best choice if large cache sizes are available.
If k > 1, then a replacement strategy selects the cache line in the set, which should be updated.
This should be done with the focus on decreasing the number of cache misses.

4.4 Cache Replacement Policies

FIFO

With the first-in first-out replacement strategy the cache uses only one pointer, which increases
its value sequentially modulo the sum of cache pages to select a cache line for updating. The
entries are saved in the order they were loaded. Thus this strategy is relative simple and easy to
understand. If some data is added to the last cache line, then afterwards the pointer has the value
zero and points to the first cache line. This strategy has a constant access time regardless of the
cache size.

Least Recently Used

This strategy updates the least recently used cache line, if the cache is full and a cache miss
appears. It requires a tracking of the age of cache lines. This can be done by several implemen-
tations. To abstract the cache as a linked list is one realization. A referenced page is put to the
head of the list. If a new element has to be saved, this element is added on the new head of the
list and the oldest page (tail of the list) is ejected.
In another method the ages of cache lines are tracked. In a k-way associative LRU cache the
most recently used line has the age 0 and the least recently used the age k − 1. In a cache miss
situation the line with the age k − 1 is ejected and then the line, which contains the new data,
gets the age 0 and all other increase their ages by 1. If a line of age a is accessed, then the age
of the this page is set to 0 and the lines of age 0 to a − 1 increase their ages by 1. An example
is shown in Table 4.1 for a 4-way LRU cache. Note that least recently used caches with greater
than 4-way associativity are uncommon.

Pseudo Least Recently Used

The pseudo least recently used cache replacement strategy is using a tree-based approach for the
replacing within a cache set. The average-case performance is comparable with LRU, neverthe-
less the worst-case performance is worse. It needs a less complex update logic. The constructed

28

CHAPTER 4. CACHE ARCHITECTURES

tree in 4-way PLRU caches consists of inner nodes, which contain state bits t0 to tk−2 (for a
k-way PLRU cache). The content of the leafs L0 to Lk of the constructed tree include the data.
The content of the inner nodes are state bits t0 to tk−2 (for a k-way PLRU cache), which point
to the subtrees of them (in our case 0 to the left and 1 to the right subtree). Thereby it is possible
to build a path from the root to every leaf. In case of a cache miss the content of the leaf, with
the state bits of the tree pointing to it, is updated with the new one and this state bits are flipped.
In case of a cache hit, the state bits to the accessed content are changed in that way that they
are pointing away from this most recently used content. In practice 8-way PLRU is common
(same update logic, but 7 state bits) and a 2-way PRLU equals a 2-way LRU. In Figure 4.1 the
tree-based approach for the PLRU strategy for a 4-way PRLU is shown. An update example is
shown in Table 4.2.

Figure 4.1: 4-way PLRU Tree

Table 4.1: 4-way LRU cache: Filling with Age Update

29

4.4. CACHE REPLACEMENT POLICIES

Table 4.2: 4-way PLRU cache: Filling with Tree Bits Update

30

CHAPTER 5
Timing Anomalies in Pipelines

5.1 Overview

In Chapter 3 some pipeline architectures have been presented. In this chapter the introduced
pipelines are discussed in detail with regard to timing anomalies and the types of timing anoma-
lies. In the next sections the complexity of the pipeline models is extended.
If a real program is assumed and this is considered as a sequence of single instructions, then the
mutual influence of those instructions can be analysed. The argumentation, theorems and defi-
nitions are mainly taken from [17]. For simplicity, pipelines are considered as isolated parts of
a processor regarding the analysis of series timing anomalies. As in the preceding chapters the
result of an instruction is available until this instruction is performed in the associated pipeline
stage. An instruction sequence can every time be analysed in a way, that the observation-window
begins with the time-varying instruction I0.

5.2 Timing Anomalies in Simple Scalar Pipelines

If we abstract the pipeline model from Section 3.2 to a model, where the ID-, RR- and EX-stages
are summarized to an explicit function unit (=FU) and the MM- and WB-stage are combined
to a single WB-stage, then we get a model which consists of three stages; namely the stage for
fetching the instructions (IF), an explicit function unit (FU) and a write back stage (WB). This
is possible (within the scope of timing anomaly analysis), because all stages are in-order units
and by the strict processing-sequence this abstraction is possible (see Figure 5.1).

We know from the definition of timing anomalies that for an occurrence a dynamic behaviour
is necessary. In the simple scalar pipeline model all instructions are fetched in-order in the IF-
stage and after fetching they run in the FU-stage, where the processing of an instruction can take
longer than one clock cycle. If the FU-stage is occupied, then no other instruction is fetched.
After the execution in the function unit stage, the results are written back in the WB-stage in-
order. That means for every instruction of an instruction sequence:

31

5.3. TIMING ANOMALIES IN SCALAR PIPELINES

1. There is at most one instruction to be fetched within one clock cycle.

2. The duration of an instruction in the FU-stage can be greater than one cycle, but there is
only one instruction inside it.

3. The results are written back in-order.

Is it possible that structural or data hazards may generate timing anomalies in this pipeline
model? This is not feasible, because an instruction is processed identically and has the same
duration in every execution.
We know from [17] that even in in-order resources timing anomalies appear. But in this model
no partially overlapping resources exist and we know that timing anomalies only appear if a
pipeline model is composed of in-order resources and at least two of them are partially overlap-
ping.

Theorem 5.2.1 In simple scalar pipelines no timing anomalies can occur.

Proof The proof is trivial. All stages proceed in an in-order manner and there are no partially
overlapping units. If there is a change in the execution time of the first instruction I0, then this
leads to the same variation for the whole execution ∆(I0, s0, s1) = ∆(I, s0, s1). Thus no timing
anomaly can take place.�

5.3 Timing Anomalies in Scalar Pipelines

In Section 3.3 scalar pipelines were introduced. For an accurate analysis of timing anomalies in
scalar pipelines a small modification is necessary. Instructions are processed in different function
units after the fetching stage, depending on the instruction type. The integer and floating-point
operation units are now called function units (FU0 and FU1). In the WB-stage the results are
written back to their destinations in-order. A model of these types of pipelines is shown in Figure
5.2

Scalar Pipelines without Overlapping Function Units

Assume that the existing function units FU0 to FUn (in this case n = 1) can only process in-
structions c, which are in the instruction sets c ∈ ISi (with 0 ≤ i ≤ n). In scalar pipelines

Figure 5.1: Abstraction of Simple Scalar Pipeline

32

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

without overlapping function units the instruction sets are completely disjunct. That means that
ISj ∩ ISk = ∅, with 0 ≤ j, k ≤ n.
In this case the IF-stage fetches the instructions in-order and distributes the instructions to the
appropriate function unit. Timing anomalies as a result of data dependencies are not possible,
because the fetching process is stalled until the dependencies are solved. In addition the write
back-stage guarantees that the results are delivered in program order; more precisely, if a sub-
sequently fetched instruction is faster in a particular function unit than the previously fetched
instruction, then this (subsequently fetched) instruction is stalled until the result of the other
instruction is committed. That means for every stage:

1. There is at most one instruction to be fetched in an in-order manner within one clock
cycle.

2. If a subsequent instruction is faster than the actual executed instruction in a function unit,
then the subsequent instruction is stalled until the actual executed instruction is finished
with its execution.

3. The results are written back in-order.

Theorem 5.3.1 In scalar pipelines without overlapping instructions sets of the function units
no timing anomalies can occur.

Proof The proof is similar to the proof of the simple scalar pipeline. All stages proceed in an
in-order manner and there are no partially overlapping instruction sets of the function units. If
there is a local change ∆l in the execution time (caused by a longer duration in the FU-stage or a
structural- or data-hazard), then this leads to the same variation ∆l in the global timing, because
the WB-stage ensures that the results are written back in-order. If a local change ∆l happens in
a function unit and the execution of a subsequent instruction in the other function unit is faster
than the actual, then the WB-stage stalls the faster, subsequent instruction. The only difference
to simple scalar pipelines is that the execution time decreases due to the fact that two operations
can be processed simultaneously and this is done in-order.�

Figure 5.2: Abstraction of Scalar Pipeline

33

5.3. TIMING ANOMALIES IN SCALAR PIPELINES

Scalar Pipelines with Overlapping Function Units

For the next explanations it is useful to introduce some definitions and abstractions. Figure
3.2 provides a diagram for the visualization of the workload of a pipeline. From now on, the
visualization is lightly modified so that more complex processes are better understandable. The
IF-stage and the WB-stage are excluded and only the stages that are necessary for the analysis are
shown. Furthermore the numbering of clock cycles is changed. We start counting clock cycles
when a function unit is occupied the first time. The preceding operations during the fetching
phases are not numbered, see Figure 5.3.

Figure 5.3: Better pipeline visualization of complex pipeline processes

Scalar pipelines could have several function units that can process the same instruction.
Thus the instruction sets of these units are overlapping. That means that for n function units the
instruction sets intersect each other ISj ∩ ISk 6= ∅ (with 0 ≤ j, k ≤ n) and in this thesis we
assume that the instruction set IS0 of FU0 can execute more instructions than the instruction
set IS1 of FU1, |IS0| ≥ |IS1|. This is the minimal form of overlapping instruction sets. To
simplify the analysis of these pipelines some restrictions are defined:

1. Only two function units are considered.

2. One instruction is fetched every clock cycle and in detail the instruction Il is dispatched
in the clock cycle l + 1.

3. The execution time of exactly one instruction (I0) is changed.

4. If both function units are not occupied and an instruction could be dispatched to either
unit, then function unit FU0 has a higher priority than FU1.

This minimal form of overlapping function units is called ’Minimal Overlapping FUs’ in the
course of this thesis.

In the next figures the instructions are listed on the left side with their duration and the
function unit, which is able to perform the instruction. On the right side an example of the
pipeline for an instruction sequence I = I0 ◦ I1 ◦ I2 ◦ I3 is shown. With the specific durations
of the instructions and the execution options, Figure 5.4 shows an example, where no timing
anomaly appears. Also assume two different executions E, with initial state s0, and F , with
initial state s1.

34

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

In the diagram in the upper half of Figure 5.4 instruction I0 is first fetched and the function
unit FU0 is not busy at this time in E. Thus the instruction I0 occupies FU0 for its duration,
namely two clock cycles. Instruction I1 is dispatched before clock cycle 2. It stalls, because
FU0 is occupied by I0 at this point of time. Hence I1 using FU0 at clock cycle 3 for further two
clock cycles. At the same time I2 is fetched and occupies function unit FU1 until clock cycle
6, because FU0 is reserved. The instruction I3 is stalled until clock cycle 5 and is processed at
FU0 afterwards.
In the lower diagram of Figure 5.4 the duration of I0 is decreased by one clock cycle and as a
result the entire execution is decreased by one clock cycle also in F . Thus no timing anomaly
appears (∆(I0, s1, s0) > 0 ∧ ∆(I, s1, s0) = ∆(I0, s1, s0)).

Scalar Pipelines with Overlapping Function Units Execution 4 Instructions

In Figure 5.5 a TA-S-I timing anomaly is displayed, where in the above diagram the instruction
I1 is forced to be executed at FU0 due to the restriction that the preferred function unit is FU0

and thereby the global execution in E is faster than in F , whereas the instruction I0 has an
increased execution time in E against in F . This leads to a series inversion timing anomaly
(∆(I0, s1, s0) > 0 ∧ ∆(I, s1, s0) < 0).

Assume two different executions E, with initial state s0, and F , with initial state s1. A
decreased execution time of I0 in E in Figure 5.6 leads to a change of the processing function
units for instruction I1 and I2 in F . Thus the faster instruction I1 is processed in function
unit FU0 in place of I2, which has a longer duration. In this way a series amplification timing
anomaly is constructed, with 0 < ∆(I0, s1, s0) < ∆(I, s1, s0).

How are these timing anomalies created? If the execution time of an instruction is changed
and the succeeding instructions can be assigned to one function unit out of a set of function units,
then a replacement of the executing function unit of instructions could be reached and thereby

Figure 5.4: Scalar pipeline with no timing anomaly

35

5.3. TIMING ANOMALIES IN SCALAR PIPELINES

Figure 5.5: Scalar pipeline with TA-S-I and 4 instructions

timing anomalies occur. With the restriction from above, that a specific function unit is preferred
and an instruction is fetched at this point, this unique situation is created. We can determine for
every stage:

1. There is at most one instruction to be fetched in an in-order manner within one clock
cycle.

2. Instructions could be executed at several function units.

3. The results are written back in-order.

Theorem 5.3.2 In scalar pipelines with Minimal Overlapping FUs and executing 4 instructions
TA-S-I and TA-S-A timing anomalies can occur.

Figure 5.6: Scalar pipeline with TA-S-A and 4 instructions

36

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

Proof Assume two different executions E, with initial state s0, and F , with initial state s1. If
the duration of I0 is decreased/increased (against an reference execution) and it is processed in
the function unit FUi in E, then it is possible, that the succeeding instruction (which can be
realized at more than one function unit and is processed in function unit FUj /FUi) is forced to
be executed at FUi/FUj in F , this could result in a longer/shorter duration than in E (TA-S-I).
If at least two succeeding instructions Il, Im can be executed at more than one function unit and
one of these instructions Il is processed at the same function unit in E, as instruction I0 and
T (Il, s) > T (Im, s)/T (Il, s) < T (Im, s) and the instructions Il, Im change the function units in
F , then this situation could lead to a shorter/longer duration of the overall execution (TA-S-A).�

Scalar Pipelines with Overlapping Function Units and Executing 3 Instructions

We observed one only has to construct a TA-S-I anomaly, where an instruction is ’squeezed’ into
the timing relevant function unit (in case if the execution time of the relevant instruction I0 is
decreased and I0 is processed at the timing relevant function unit, seen in Figure 5.5).

In case of 3 instructions this behaviour is also simple to construct. Merely the constant fac-
tor of instruction I3 is missing, which has no effect on the occurrence of TA-S-I anomaly, see
Figure 5.7.

Figure 5.7: Scalar pipeline with TA-S-I and 3 instructions

Theorem 5.3.3 In scalar pipelines with Minimal Overlapping FUs and executing 3 instructions
TA-S-I anomalies can occur.

Proof Assume two different executions E, with initial state s0, and F , with initial state s1. If
the duration time of I0 is decreased/increased (against an reference execution) and it is processed
in the function unit FUi in E, then it is possible, that the succeeding instruction (which can be
realized at more than one function unit and is processed in another function unit FUj / the same
function unit FUi) is forced to be executed at FUi/FUj in F , this could result in a longer/shorter
duration time than in E (TA-S-I).�

37

5.3. TIMING ANOMALIES IN SCALAR PIPELINES

Now the occurrence of TA-S-A anomalies in scalar pipelines with Minimal Overlapping
FUs and 3 instructions are analysed. We have learned from the above subsection, that TA-
S-A anomalies are easiest to construct, if the execution time of the reference instruction I0
decreases/increases and two instructions Il, Im with T (Il, s) > T (Im, s)/T (Il, s) < T (Im, s)
and Il is executed at the timing relevant function unit are interchanged on the function units and
the instruction Im is afterwards executed at that function unit which is relevant for the overall
execution time. For simplify the explanations let us concentrate on the case, where I0 has a
decreased execution time.
To construct such a timing anomaly we have to interchange two instructions on their function
units. To force one instruction (in our case I1) to be executed at the timing relevant function
unit (in this case FU0), it is advisable to decrease the execution time of I0 to 1 clock cycle. The
length for instruction I2 is 3 clock cycles. The instructions I1 and I2 can be executed at both
function units. Now this case is illustrated in Figure 5.8.

Figure 5.8: Scalar pipeline trying to construct a TA-S-A with 3 instructions

This is the best case to construct a TA-S-A anomaly for that kind of pipeline and 3 in-
structions. Thus I1 and I2 are starting from the same point in E and F and hence no TA-S-A
anomaly can occur. Note that a longer duration time for I0 in E causes that a more decreased
entire execution time must be realized in F .

Theorem 5.3.4 In scalar pipelines with Minimal Overlapping FUs and executing 3 instructions
TA-S-A anomalies can not occur.

Proof Informal proof on the facts collected before:
Assume two different executions E, with initial state s0, and F , with initial state s1. Best
preconditions for I0 to create a TA-S-A:

• I0 has to be executed at FU0.

• Execution time of I0 has to be 1 clock cycle in E, to force that I1 is performed at FU0.

38

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

• Execution time of I0 has to be 2 clock cycles in E, to minimize the requirements for a
TA-S-A.

To create an amplification series timing anomaly, I1 needs a duration time of 2 clock cycles,
to obtain a realization of I2 at FU0 in E and at FU1 in F .
The best circumstances are created for an occurrence of TA-S-A, however the instruction I1
(resp. I2) and of course I0 starts from the same point in both executions. Thus no variation
in the overall execution time can be achieved and the criteria for TA-S-A anomalies can not be
satisfied.�

Scalar Pipelines with Overlapping Function Units and Executing 2 Instructions

Is it possible, that in scalar pipelines with overlapping function units (with the requirements,
which are defined above) timing anomalies can occur, if only 2 instructions are executed? Re-
member that in this kind of pipeline timing anomalies appear, if at least one instruction changes
the function unit, in which it is executed. To force an execution of instruction I1 to be realized at
the function unit FU1 in F instead at function unit FU0 in E, the duration time of instruction I0
has to decrease to 1 clock cycle, so that I1, which is fetched after the first clock cycle, can change
its function unit, Figure 5.9. One can observe, that no timing anomaly with two instructions at
this sort of pipeline can occur.

Theorem 5.3.5 In scalar pipelines with Minimal Overlapping FUs and executing 2 instructions
TA-S-A and TA-S-I anomalies can not occur.

Proof Informal proof on the facts collected before:
Assume two different executions E, with initial state s0, and F , with initial state s1. Best
preconditions for I0:

• I0 has to be executed at FU0.

• Execution time of I0 has to be 1 clock cycle in s1, to force that I1 is performed at FU0.

Instruction I1 is starting from the same clock cycle in both executions E and F .
If a TA-S-A anomaly should created and the execution time of I0 in F is decreased, then the
overall duration in E has to decrease more than in F in order to obtain a TA-S-A anomaly. This
is not possible, because I1 starts from the same point in both executions.
If a TA-S-I anomaly should created and the execution time of I0 in F is decreased, then the
overall duration in E has to increase in order to obtain a TA-S-I anomaly. This is not possible,
because I1 starts from the same point in both executions and T (I0, s1) has to be one clock cycle
to achieve the change of I1 to FU0 in F .�

39

5.4. TIMING ANOMALIES IN SUPERSCALAR PIPELINES

5.4 Timing Anomalies in Superscalar Pipelines

The main difference between scalar pipelines and superscalar pipelines is that in superscalar
pipelines more than one instruction can be fetched within one clock cycle. Hence this results in
a more packed and faster execution along the pipeline stages. Over the course of the following
sections the factors that encourage timing anomalies becoming exacerbate.

Superscalar Pipelines with Dual-Issue and Dual-Complete

Based on scalar pipelines at most two instructions can be fetched within one clock cycle and at
most two instructions can complete within one clock cycle. All stages have an in-order execution
behaviour. That means for every stage of this type of superscalar pipeline:

1. There are at most two instructions to be fetched in an in-order manner within one clock
cycle.

2. If a subsequent instruction is faster than the actual executed instruction in a function unit,
then the subsequent instruction is stalled until the actual executed instruction is finished
with its execution.

3. There are at most two results, which are written back in-order within one clock cycle.
More detailed, within an instruction stream I = I0 ◦ I1 ◦ I2 ◦ ... an instruction Ik (with
k ∈ N must enter the WB-stage before Ik+1.

Theorem 5.4.1 In superscalar pipelines without Minimal Overlapping FUs and with the prop-
erty that at most two instructions can be fetched and at most two results are written back within
one clock cycle no timing anomalies can occur.

Figure 5.9: Scalar pipeline trying to construct TA-S-I and TA-S-A timing anomalies with 2
instructions

40

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

Proof The proof is similar to the proof for scalar pipelines without overlapping function units.
Though that maximal two instructions can be fetched, this can not result in different execution
times, because this is done in-order and there is no dynamical resource allocation. Additionally
the fact that the results are written back in-order (third point of the description above) achieves
that no timing anomaly can occur.�

Superscalar Pipelines with Overlapping Function Units and 5 Instructions

In this subsection the pipeline is enhanced with overlapping instruction sets as described see 5.3.
Since the minimal preconditions should be analysed also only two function units are considered
and therefore at most only two instructions can be fetched within one clock cycle. This implies
for every stage of this type of superscalar pipeline:

1. There are at most 2 instructions to be fetched in an in-order manner within one clock
cycle.

2. Several function units exist with overlapping instruction sets (defined in 5.3). Instructions
could be executed at several function units.

3. There are at most 2 results within one clock cycle.

In this case that means, that I0 and I1 are fetched before clock cycle 1 and I2 and I3 are
dispatched before clock cycle 2. If a function unit is not occupied and this function unit is able
to execute an instruction, then the instruction is processed immediately. But if the function unit
is busy, then the instruction is stalled.

To construct a TA-S-A anomaly the execution of two different instructions have to interchange
the function units in different executions E and F . One way to obtain this is to vary the execu-
tion time of instruction I0, that in one case (in E) I2 has to be realized at FU1, because FU0 is
busy at this point of time and in another case (in F) the instruction I2 has to be executed at FU0,
because both function units are not required and FU0 has a higher priority (in case that I1 can
be processed in either function units). An additional restriction to I4 causes that this instruction
has to run at FU0. Thereby the executions of I2 and I3 change their function units and the faster
instruction is performed at the timing relevant function unit, shown in Figure 5.10. Thence it
is not necessary to choose a greater difference ∆(I0, s0, s1), because this would only lead to
constant shift in the anomaly criteria.

Theorem 5.4.2 In superscalar pipelines with Minimal Overlapping FUs and executing 5 in-
structions TA-S-A anomalies can occur.

Proof Assume two different executions E, with initial state s0, and F , with initial state s1.
Because the first two instructions are fetched simultaneously, an interchange of the function
units (which is need for the occurrence of a timing anomaly) of two instructions is possible, if
(T (I0, s0) − T (I1, s0)) ≥ 0 ∧ (T (I0, s1) − T (I1, s1)) ≤ 0 ∧ ∆(I0, s1, s0) > 0 (this implies
decreasing duration time of I0) or (T (I0, s0) − T (I1, s0)) ≤ 0 ∧ (T (I0, s1) − T (I1, s1)) ≥

41

5.4. TIMING ANOMALIES IN SUPERSCALAR PIPELINES

0 ∧∆(I0, s1, s0) < 0 (this implies increasing duration time of I0), if I1 can be executed in both
function units.
If the duration of I0 is decreased/increased (against an reference execution) and at least two
succeeding instructions Il, Im can be realized at more than one function unit and one of these
instructions Il is executed at the same function unit inE then the faster/slower instruction I0 and
T (Il, s) > T (Im, s)/T (Il, s) < T (Im, s) and the instructions Il, Im change the function units.
This situation could lead to a shorter/longer execution time for the whole instruction sequence
(TA-S-A).

For this scenario it is important, that the last instruction is restricted to a function unit.�

Superscalar Pipelines with Overlapping Function Units and Executing 4
Instructions

In the above subsection it was shown that TA-S-A anomalies can occur in this kind of pipeline
for 5 instructions. With 4 instructions amplification series timing anomalies are not possible.
This is displayed in this subsection. For that reason we have to discuss two different cases, the
first, where I1 can be executed at either function unit:
To obtain a TA-S-A anomaly we know from the above sections that an interchange of two in-
structions has to occur. But the difference ∆(I0, s1, s1) can only achieve a shift of the beginning
point in time of the instruction I3 with the same value as the difference for the whole instruction
sequence execution. This ensures only a constant offset at the TA-S-A criteria. Furthermore in-
struction I2 begins at the same clock cycle in both executions and no amplification series timing
anomaly can occur, see Figure 5.11.

Now we analyse the second case, where I1 can only run at function unit FU0:
In this situation I1 is stalled and has to wait until I0 has terminated. Instruction I2 can be
stalled, because it can only be scheduled earliest at the same point where I1 is processed, because
with the in-order execution property the instructions must be processed in ascending order. An

Figure 5.10: Superscalar pipeline with TA-S-A and 5 instructions

42

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

Figure 5.11: Superscalar pipeline trying to construct a TA-S-A with 4 instructions and I1 can be
executed at both function units

example is shown in Figure 5.12. One can see, that the starting points of the three instructions
I1, I2 and I3 are shifting in all executions with the same value as the difference ∆(I0, s1, s1).
Thus no TA-S-A anomaly can occur.

Figure 5.12: Superscalar pipeline trying to construct a TA-S-A with 4 instructions and I1 can
only be executed at FU0

Theorem 5.4.3 In superscalar pipelines with Minimal Overlapping FUs and executing 4 in-
structions TA-S-A anomalies can not occur.

Proof If I1 can be executed in either function unit:
Because the first two instructions are fetched simultaneously, an interchange of the function units
of the executions of two instructions is possible if (T (I0, s0) − T (I1, s0)) ≥ 0 ∧ (T (I0, s1) −
T (I1, s1)) ≤ 0 ∧∆(I0, s1, s0) > 0 (this implies decreasing the duration of I0) or (T (I0, s0) −

43

5.4. TIMING ANOMALIES IN SUPERSCALAR PIPELINES

T (I1, s0)) ≤ 0 ∧ (T (I0, s1) − T (I1, s1)) ≥ 0 ∧∆(I0, s1, s0) < 0 (this implies increasing the
execution time of I0) if I1 can be executed in either function unit.
The difference ∆(I0, s1, s1) can lead to a shift of the starting point of I3 with the same value as
the difference. Due to the TA-S-A criteria, this does not lead to an anomaly.
If I1 can only be performed in FU0:

• I0 runs at FU0.

• I1 is stalled until I0 has terminated.

• I2 can be stalled until I1 start its in-order execution.

The starting points of I0, I1 and I2 differ by the difference ∆(I0, s1, s1). Due to the TA-S-A
criteria, this does not lead to an anomaly.�

Now we analyse if TA-S-I anomalies for this kind of pipeline and 4 instructions can occur.
For this sort of anomaly it is only necessary that one instruction changes the function unit on
which it is executed. In Figure 5.13 one way to create such an timing anomaly is presented
on which I2 changes its executing function unit from FU1 to FU0. Along to the above defined
criterion for this kind of pipeline, the execution of these two instructions interchange the function
units for the durations of I0 and I1, this is used to force the execution of I2 in the other function
unit, but reduce the instruction set of FU1, so that I3 can only be realized at FU0. This leads to
an inversion series timing anomaly.

Figure 5.13: Superscalar pipeline with TA-S-I and 4 instructions

Theorem 5.4.4 In superscalar pipelines with Minimal Overlapping FUs and executing 4 in-
structions TA-S-I anomalies can occur.

Proof Assume two different executions E, with initial state s0, and F , with initial state s1. Be-
cause the first two instructions are fetched simultaneously, an interchange of the function units

44

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

of the executions of two instructions is possible if (T (I0, s0) − T (I1, s0)) ≥ 0 ∧ (T (I0, s1) −
T (I1, s1)) ≤ 0 ∧∆(I0, s1, s0) > 0 (this implies decreasing the duration of I0) or (T (I0, s0) −
T (I1, s0)) ≤ 0 ∧ (T (I0, s1) − T (I1, s1)) ≥ 0 ∧∆(I0, s1, s0) < 0 (this implies increasing the
execution time of I0) if I1 can be executed in either function unit.
If the execution time of I0 is decreased/increased (against a reference execution) and it is pro-
cessed in the function unit FUi in E, then it is possible that the succeeding instruction (which
can be executed at either function unit and is processed in another function unit FUj / the same
function unit FUi) is forced to be executed at FUi/FUj in F , this could result in a longer/shorter
execution time than in E (TA-S-I).

For this scenario it is important that the last instruction is bound to a specific function unit.�

Superscalar Pipelines with Overlapping Function Units and Executing 3
Instructions

In the previous subsection it was shown that TA-S-A anomalies can not occur executing 4 in-
structions in this sort of pipeline, but it is possible, that TA-S-I anomalies can appear. In this
subsection we analyse the situation with 3 instructions. To create a TA-S-I anomaly different
resource allocation for two executions have to be done. For this purpose it is necessary to distin-
guish three situations. Note that in each case it is not essential, that I0 can be processed at either
function unit, because it is fetched before the first clock cycle and by the in-order execution.

First, it is feasible for each instruction to be executed at either function unit:
Instruction I0 is dispatched before the first clock cycle and is executed at FU0. Thereby instruc-
tion I1 is also fetched before the first clock cycle and is performed at FU1. Both instructions are
executed in this order, regardless of the durations. Thus it is only possible that the execution of
I2 interchanges the function unit. But it is obvious, that the start point of I2 can maximally shift
by the same value as ∆(I0, s0, s1), see Figure 5.14.

Figure 5.14: Superscalar pipeline trying to construct a TA-S-I with 3 instructions and I0, I1 and
I2 can be executed at each function unit

45

5.4. TIMING ANOMALIES IN SUPERSCALAR PIPELINES

Second, both, I0 and I2, are allowed to execute on either function unit. I1 is bound to a fixed
function unit, FU0:
Instruction I0 runs at FU0 in the first clock cycle. I1 is stalled until I0 terminates, because it has
to be executed at FU0 also (Figure 5.15). That means that instruction I2 must be processed at
FU1 in every execution, because T (I0, s) + T (I1, s) ≥ 2 and I2 is fetched before clock cycle
2 and FU1 cannot be busy at this point of time. The starting point of I1 and I2 depends on the
duration of I0. Then the overall duration varies by the same value as I0 does.

Figure 5.15: Superscalar pipeline trying to construct a TA-S-I with 3 instructions and I0, I2 can
be executed at each function unit

Third, both, I0 and I1, are allowed to execute on either function unit. I2 is bound to a fixed
function unit, FU0:
Again, instruction I0 is performed at FU0 in the first clock cycle. If I1 can be realized at either
function unit and it is fetched before the first clock cycle and FU0 is occupied by I0, instruction
I1 runs at FU1. Regardless of their durations both instructions are executed in this order and
they have the same starting point in each execution. Thereby I2 can only be executed at FU0

after the termination of I0. As a result the starting point of I2 varies also with the same value as
the difference ∆(I0, s1, s1) (example see at Figure 5.16).

Theorem 5.4.5 In superscalar pipelines with Minimal Overlapping FUs and executing 3 in-
structions TA-S-I anomalies can not occur.

Proof Note that in each case it is not essential, that I0 can be processed at both function units,
because it is fetched in the first clock cycle.
We have to distinguish the before introduced three cases: I0, I1, I2 can be executed at either
function unit:

• I0 is performed at FU0 in the first clock cycle in every execution.

• I1 is performed at FU1 in the first clock cycle in every execution.

46

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

Figure 5.16: Superscalar pipeline with trying to construct a TA-S-I with 3 instructions and I0, I1
can be executed at each function unit

• I2 can be executed either at FU0 or at FU1 but the start point of I2 can shift at most by
the same value as ∆(I0, s1, s1), hence no TA-S-I.

I0, I2 can be executed at each of the two function units:

• I0 is executed at FU0 in the first clock cycle in every execution.

• I1 is executed next to the termination of I0 at FU0 in every execution.

• I2 must be executed at FU1, because T (I0, s) + T (I1, s) ≥ 2 and I2 is fetched before
clock cycle 2 and FU1 cannot be busy at this point of time and FU0 is occupied. Then
the overall execution time varies by the same value as I0 does. Thus there is no TA-S-I
anomaly.

I0, I1 can be executed at each of the two function units:

• I0 is performed at FU0 in the first clock cycle in every execution.

• I1 is performed at FU1 in the first clock cycle in every execution.

• I2 must be executed at FU0 after the termination of I0 and the start point from I2 varies
with the same value as the difference ∆(I0, s1, s1). Thus there is no TA-S-I anomaly.

�

47

5.5. TIMING ANOMALIES IN SUPERSCALAR OUT-OF-ORDER PIPELINES

5.5 Timing Anomalies in Superscalar Out-Of-Order Pipelines

In this section the occurrence of timing anomalies in out-of-order pipelines are analysed. In
consideration of the definitions in Section 3.5 the stages consists of a DI-stage (dispatcher), the
execution stage with the function units FU-stage and the WB-stage (write back), whereby the
DI-, FU- and WB-stages could be divided into more stages of the same type.
To analyse the minimal preconditions, some restrictions are defined for each stage:

1. There is at most one instruction to be fetched within one clock cycle.

2. The instruction sets of the function units are disjunctive, but more than one function unit
with the same instruction set is permitted, more precisely: Assume that the existing func-
tion units FU0 to FUn (in this case n = 1) can only process instructions c, which are in
the instruction sets c ∈ ISi (with 0 ≤ i ≤ n). That means for superscalar out-of-order
pipelines (ISj ∩ ISk = ∅) ∨ (ISj = ISk), with 0 ≤ j, k ≤ n. Instructions could be
executed out-of-order at several function units.

3. At most n results are written back out-of-order within one clock cycle.

Suppose that the DI-stage can contain only one instruction and as a result at most one in-
struction can be dispatched. Additionally assume enough write back-stages where all results can
be written back in the clock cycle after they have been executed in the function units. With all
this, it is possible to omit some stages to make the figures easier to understand, see Figure 5.17.

Figure 5.17: Pipeline visualization of complex out-of-order pipeline processes

Superscalar Out-Of-Order Pipelines and Execution 4 Instructions

Suppose that every clock cycle one instruction is fetched and data dependencies between in-
structions exist. Then the execution sequence depends on the execution time of the instructions.
The potential that a timing anomaly occurs is also a subject of the execution order of the in-
structions. In the next diagrams data dependencies are marked by arrows, where the end point of
an arrow shows the instruction that requires operands from the instruction where the arrow starts.

If we suppose that the instructions I0 and I3 can only be performed at the function unit
FU0 and the instructions I1 and I2 can only be processed at the function unit FU1 and data

48

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

dependencies exist between I0 → I1 and I2 → I3, then it is possible that a TA-S-I anomaly
can occur, see Figure 5.18. This is due to the fact that I1 cannot begin its execution in E at the
point when it is fetched, because I0 has not finished then and there exists a data dependency. As
a result I2 occupies FU1 at clock cycle 3 and I1 can be executed only after I2 at FU1. At the
same point I3 can start its execution at FU0, because it was stalled due to a data dependency.
In F the duration of I0 is decreasing to 1 and thereby I1 can start from the earliest point. In this
situation I2 is stalled and I3 can start its execution only after the execution of I2. Thus a TA-S-I
anomaly occurs (∆(I0, s1, s0) > 0 ∧ ∆(I, s1, s0) < 0).

Figure 5.18: Superscalar Out-Of-Order pipeline with TA-S-I and 4 instructions

Theorem 5.5.1 In superscalar out-of-order pipelines and executing 4 instructions TA-S-I anoma-
lies can occur.

Proof A TA-S-I timing anomaly with executing 4 instructions in superscalar out-of-order pipelines
can be achieved in the following way: Suppose that the starting point of an execution of an in-
struction Ij is termed as SP (Ij) . The preconditions of a TA-S-I anomaly in this pipeline are:

• At least two instructions Ij , Ik changing their execution order in one function unit, more
precisely: If SP (Ij) < SP (Ik) in E, then in F SP (Ij) > SP (Ik).

• The instruction Ij has a data dependency to another instruction Il 6= Ij , Ik, in the way
Ij → Il.

With these preconditions TA-S-I anomalies can occur with executing 4 instructions in this kind
of pipeline.�

Is it also possible that TA-S-A anomalies occur in such a pipeline with 4 instructions? If
we suppose that instruction I0 and I3 could only be realized at FU0 and the instructions I1 and
I2 could only be performed at FU1 and data dependencies I0 → I1, I1 → I3 exist, then the

49

5.5. TIMING ANOMALIES IN SUPERSCALAR OUT-OF-ORDER PIPELINES

execution of I1 is stalled in E, because I1 can only be processed after I0 due to the dependency
between I0 and I1 and I2 can be executed before I1 at FU1. Then the instruction I3 can be
executed after the termination of I1 due to the dependency in E. If the execution time of I0 is
decreased, I1 is not stalled in F and I2 and I3 could begin their execution after the termination
of I1, see Figure 5.19. This leads to a TA-S-A anomaly, 0 < ∆(I0, s1, s0) < ∆(I, s1, s0).

Figure 5.19: Superscalar Out-Of-Order pipeline with TA-S-A and 4 instructions

Theorem 5.5.2 In superscalar out-of-order pipelines and executing 4 instructions TA-S-A anoma-
lies can occur.

Proof A TA-S-A timing anomaly with executing 4 instructions in superscalar out-of-order pipelines
can be achieved in the following way: Suppose that the starting point of an execution of an in-
struction Ij is termed as SP (Ij). The preconditions of a TA-S-A anomaly in this pipeline are:

• At least two instructions Ij , Ik changing their execution order in one function unit, more
precisely: If SP (Ij) < SP (Ik) in E, then in F SP (Ij) > SP (Ik).

• The instruction Ik has a data dependency to another instruction Il 6= Ij , Ik, in the way
Ik → Il.

With these preconditions TA-S-A anomalies can occur with executing 4 instructions in this kind
of pipeline.�

Superscalar Out-Of-Order Pipelines and 3 instructions

In this subsection an analysis for this kind of pipeline with 3 instructions within an execution is
done.

Theorem 5.5.3 In superscalar out-of-order pipelines and executing 3 instructions TA-S-I and
TA-S-A anomalies cannot occur.

50

CHAPTER 5. TIMING ANOMALIES IN PIPELINES

Proof The proof from [17] can be applied.�

5.6 Summary

Table 5.1 gives an overview of the timing anomalies, that can occur on pipeline architectures.
One can see, that overlapping instruction sets of the function units or/and out-of-order execution
are necessary for the appearance of a timing anomaly. If a timing anomaly occurs in a specific
type of pipeline with k instructions that this timing anomaly also appears with more than k
instructions. Otherwise, if a timing anomaly is not possible in an execution of k instructions,
then this timing anomaly is also not achievable with less than k instructions. If the reader is
interested in the occurrence of timing anomalies in other pipeline architectures then the models
in [17] should be consulted.

Table 5.1: Summary of Timing Anomalies on Pipelines

51

CHAPTER 6
Timing Anomalies in Caches

6.1 Overview

For simplicity we consider caches as isolated parts of a processor in this chapter. If we assume a
real program which consists of a sequence of instructions then each instruction is able to require
some data blocks (usually between zero to two) of the main memory. Before execution these
data blocks are searched in the cache to accelerate the data access. Thus it is possible to abstract
a real program to a series of cache accesses of data blocks. In the course of this thesis this ab-
straction is used. If we consider two different executions and a cache/memory access is required,
then a cache hit at an instruction in the first execution leads in contrast to a cache miss at the
same instruction to a variation of the execution duration of this instruction or/and an instruction
sequence.
Furthermore series timing anomalies that can occur in cache architectures are discussed and
analysed in this chapter.
The structure and the functionality of caches have been presented in Chapter 4. Now some cache
replacement strategies are discussed with regard to timing anomalies. Some new definitions con-
cerning timing anomalies in caches are presented. Next, the influence of replacement strategies
on the occurrence of timing anomalies is analysed.

6.2 Definition of Timing Anomalies on Caches

To analyse timing anomalies on caches a precise definition for anomalies is needed. In Chapter
5, in which timing anomalies on pipelines are studied, the behaviour of an initial timing situa-
tion (the execution of the first instruction in pipeline architectures) is compared with a timing
situation after the execution of some instructions in a pipeline.
If this concept is applied to caches, the timing of an initial cache situation must be matched
with a timing situation, where some cache accesses of several instructions are processed. If we
assume two different executions, then in an initial timing situation the execution time on the first

53

6.2. DEFINITION OF TIMING ANOMALIES ON CACHES

same cache access is changing in both executions. More precisely if the first cache access in one
execution results in a cache hit/miss then in the second execution a cache miss/hit occur.
If a timing situation after some instructions or cache accesses can be observed then the focus
is on the number of hits/misses during the execution of these instructions. From the number of
hits/misses the execution time can be derived. This leads to the definition of timing anomalies
for caches:

Defintion 6.2.1 ∆(MB, s, s′) = T (MB, s′) − T (MB, s) is the difference of execution times
(respective difference between cache hits and cache misses) for a cache access for memory block
MB for different initial states s, s′ ∈ TRDCS, where a cache hit corresponds to zero clock cycles
and a cache miss amounts k clock cycle. For simplicity we assume that k = 1 in this thesis.

Defintion 6.2.2 TA-S-I
Assume an instruction sequence I , with cache accesses CA = M0 to Mn and the initial states
s, s′ ∈ TRDCS. Then an inversion series timing anomaly is a situation, where:
∃s, s′ ∈ TRDCS.∆(M0, s, s

′) > 0 ∧ ∆(CA, s, s′) < 0

Assume two different executions E with initial state s0 and F with initial state s1. That means,
that for an inversion series timing anomaly it is necessary that at least three hits happen in one
execution while at the same cache accesses three misses appear in another execution. Because
if the initial cache access in E is a hit and in F this access leads to a miss, then in E at least
two more misses than in F should happen so, that the overall duration of E becomes longer than
the duration of F . There are the minimum preconditions that such an anomaly occurs. A pair

Figure 6.1: Timing Anomalies of Cache Architectures

54

CHAPTER 6. TIMING ANOMALIES IN CACHES

of hit/miss shall be understood as a hit in one execution and a miss in another execution for the
same cache access. If a hit (or miss) occurs in an execution and a hit (or miss) appears in another
execution for the same memory access, this does not lead to a change in the difference of the
execution times.

Defintion 6.2.3 TA-S-A
Assume an instruction sequence I , with cache accesses CA = M0 to Mn and the initial states
s, s′ ∈ TRDCS. Then an amplification series timing anomaly is a situation, where:
∃s, s′ ∈ TRDCS.0 < ∆(M0, s, s

′) < ∆(CA, s, s′)

Let us assume two different executions, E with initial state s0 and F with initial state s1. For the
occurrence of an amplification series timing anomaly only two pairs of hits/misses are essential.
Because if initially a cache hit happens in E and a cache miss appears initially in F , then only
one additional hit must occur in E for another miss in F to achieve such an anomaly. If this
situation appears, the overall duration of E is shorter than the execution time of F and the
difference of the overall durations is greater than the difference at the initial cache access. These
are the minimal preconditions of such a timing anomaly.

In Figure 6.1 a graphical representation of these definitions is illustrated.
If we assume two executions, E with the initial state s0 and F with the initial state s1,

then these initial states can only differ in the initial cache content. Note that also the state bits
are included in the initial cache state in case of the PLRU replacement strategy. The order of
the memory accesses to the cache is the same in both executions, because the memory accesses
arise from instructions, which need data from the memory for the executions. Note that in PRLU
caches also the state bits of the virtual tree are important for the occurrence of timing anomalies.
In the next figures cache blocks that are accessed are named with a number-index, whereas cache
blocks that are not needed during the regarding execution are labelled with a character-index.

6.3 Timing Anomalies in FIFO Caches

In Section 4.4 the FIFO replacement strategy was explained. Now timing anomalies with the
before explained definition are analysed for this kind of cache architecture. If a data block is
referenced and it is not part of the cache content, then the memory block is taken from the main
memory and is saved in the first cache line and the last cache line (related to the associativity) is
removed. If a cache hit happens, then the cache content remains unchanged.

4-way associative FIFO Caches

Theorem 6.3.1 In 4-way associative FIFO caches TA-S-I timing anomalies can occur.

Proof For a TA-S-I anomaly the number of misses must be greater in E than in F , although
in E a cache hit takes place instead of a cache miss in F . In this kind of caches it is trivial to
construct such an anomaly. One possibility is that the first needed block is in the initial state
s0, however the initial state s1 does not contain this required block. And two other subsequent

55

6.3. TIMING ANOMALIES IN FIFO CACHES

Figure 6.2: 4-way associative FIFO, TA-S-I cache timing anomaly

accessed blocks are in the initial state s1, instead these blocks are not in cache in s0. An example
of such a TA-S-I cache timing anomaly is shown in Figure 6.2. �

Theorem 6.3.2 In 4-way associative FIFO caches TA-S-A timing anomalies can occur.

Figure 6.3: 4-way associative FIFO, TA-S-A cache timing anomaly

Proof For a serial amplification timing anomaly it is essential to receive more misses in F than
in E and initially in E a cache hit happens as opposed to F , where a miss happens. This can
be achieved, if the initial state s0 contains at least two blocks, which are accessed initially and
these are not in the initial state s1 or they are overwritten. Thus the definition of a TA-S-A cache
timing anomaly is fulfilled, with an example in Figure 6.3. �

56

CHAPTER 6. TIMING ANOMALIES IN CACHES

2-way associative FIFO Caches

There is no difference in the replacement strategy for 2-way than in 4-way associative FIFO
caches, except that of course two cache lines can be chosen. In this subsection also the occur-
rence of series inversion and amplification timing anomalies for this kind of caches are analysed.

Theorem 6.3.3 In 2-way associative FIFO caches TA-S-I timing anomalies can occur.

Figure 6.4: 2-way associative FIFO, TA-S-I cache timing anomaly

Proof Assume two different executions, E with initial state s0 and F with initial state s1. To
construct a serial inversion timing anomaly it is necessary that in the execution where initially a
hit takes place the overall execution time is longer than in the execution where initially a miss
happens. An example to construct such an anomaly is that in E the first required data block is
initially in the cache, while in F this data block is not in s1 and a miss occurs. If the next cache
query leads to a miss in E in contrast to a cache hit in F , then the caches have the same content.
When the next access is a miss in both executions and the cache line with age 1 in E is different
from the cache line with age 1 in F , then an additional cache request to the content of the cache
line with age 1 in F leads to a hit and a miss in E. Thus the conditions of a TA-S-I anomaly are
fulfilled. An example is shown in Figure 6.4. �

Theorem 6.3.4 In 2-way associative FIFO caches TA-S-A timing anomalies can occur.

Proof For a serial amplification timing anomaly it is essential to get more misses in F than in
E and initially in E a cache hit happens as opposed in F , where a miss happens. If a second
required data block is in the cache content in E, but this block is not in the cache content in F ,
this produces a second hit in E, whereas the second access is a miss in F and the definition of a
TA-S-A cache timing anomaly is fulfilled, see Figure 6.5. �

57

6.4. TIMING ANOMALIES IN LRU CACHES

6.4 Timing Anomalies in LRU Caches

In Section 4.4 the functionality of LRU caches is presented. If a cache miss happens, then the
new cache element is put in the cache line with age 0 and all other cache lines increase their ages
by 1, except the cache line with age k − 1, because the content of this line is ejected, in k-way
associative LRU caches.
In case of a cache hit the age of the needed cache line (say Mi with age a) is set to 0, all cache
lines with age 0 to a− 1 increase their age by 1.

4-way associative LRU Caches

Theorem 6.4.1 In 4-way associative LRU caches TA-S-I timing anomalies can occur.

Proof Assume two different executions, E with initial state s0 and F with initial state s1. A
TA-S-I anomaly can be reached, if the required data of the first cache query is contained in the
initial state in E, but it is not hold in the initial state in F . But the next at least two data blocks
are not covered in the initial state s0, however these blocks are present in the initial state s1. An
example of such a TA-S-I cache timing anomaly is shown in Figure 6.6. �

Theorem 6.4.2 In 4-way associative LRU caches TA-S-A timing anomalies can occur.

Proof Assume two different executions, E with initial state s0 and F with initial state s1. Then
this kind of an anomaly can be reached in 4-way associative LRU caches, if at least two hits
happen in E (e.g. the first two needed data elements are in the initial state s0) and at the same
accesses two misses occur in F (e.g. the required data blocks are not in the initial state s1). Thus
the definition of a TA-S-A cache timing anomaly is fulfilled, with an example in Figure 6.7. �

Figure 6.5: 2-way associative FIFO, TA-S-A cache timing anomaly

58

CHAPTER 6. TIMING ANOMALIES IN CACHES

Figure 6.6: 4-way associative LRU, TA-S-I cache timing anomaly

Figure 6.7: 4-way associative LRU, TA-S-A cache timing anomaly

2-way associative LRU Caches

Theorem 6.4.3 In 2-way associative LRU caches TA-S-I timing anomalies can not occur.

Proof Assume two different executions E, with initial state s0 and F with initial state s1. To
construct a serial inversion timing anomaly it is necessary that in the execution, where initially
a hit takes place, say E with initial state s0, the overall execution time is longer than in the
execution, where an initial miss happens, say F with the initial state s1. We know from above,
that such an anomaly can only occur if at least three hit/miss-pairs can occur. In this proof it will
be shown, that this is impossible for 2-way LRU caches.
After the first cache access the cache line with age 0 has the same content in every execution.
This is shown with the next four possibilities for two executions:

59

6.4. TIMING ANOMALIES IN LRU CACHES

• hit in E and F : the required data is situated in the cache line with age 0 after the hit in
both executions.

• miss in E and F : the required block is contained in the cache line with age 0 after the
miss in both executions.

• hit in E and miss in F : the required block was in the cache in E and is now in the cache
line with age 0 similar to F after the miss.

• miss in E and hit in F : the required block was in the cache in F and is now in the cache
line with age 0 similar as in E after the miss.

For the next cache request also four cases are possible: (Note that after the first access the
cache line with age 0 is the same in every execution.)

• hit in E and F : If the required data is in the line with age 0 in E, then we know from
above that this data is also in the line with age 0 in F . The state of the cache is the same
as before the hit in both executions. If the required data is in the line with age 1 in E, then
this data have to be also contained in the line with age 1 in F and after the hit the cache
state is equal in both executions.

• miss in E and F : the new data is put into line 0 in both executions. The data that had age
0 before the miss must be equal in both execution (fact from above) and increase the age
by one. Thus the cache states are equal in every execution.

• hit in E and miss in F : in E the required data is put in the line with age 0 and the data
element that had age 0 before (must be equal with data element with age 0 in F) increases
the age to 1. In F the new data causes a miss and is put into line 0 and the data with age
0 increases the age to 1. Thus the resulting cache states are equal in every execution after
two cache accesses.

Figure 6.8: 2-way associative LRU, best try to achieve a TA-S-I cache timing anomaly

60

CHAPTER 6. TIMING ANOMALIES IN CACHES

• miss in E and hit in F : in F the required data is put in the line with age 0 and the data
element that had age 0 before (must be equal with data element with age 0 in F) increases
the age to 1. In E the new data causes a miss and is put into line 0 and the data with age
0 increases the age to 1. Thus the resulting cache states are equal in every execution after
two cache accesses.

Thereby only a hit in E and F after the first request where the needed data is contained in
line with age 0 leads to a state, that is the same as before the hit. But it is obvious, that maximal
two hit/miss-pairs are necessary to achieve the same cache state. At this point it is impossible
to reach another hit/miss-pair. Thus ∆(CA, s, s′) ≤ 2 and inversion series timing anomalies are
not possible in 2-way LRU caches, see the best try in Figure 6.8. �

Theorem 6.4.4 In 2-way associative LRU caches TA-S-A timing anomalies can occur.

Figure 6.9: 2-way associative LRU, TA-S-A cache timing anomaly

Proof We know from the proof above that maximal two hit/miss-pairs are possible in these kind
of caches. For an amplification series timing anomaly this is sufficient if two hits happen in one
execution while at the same cache accesses two misses appear in another execution. An example
is illustrated in Figure 6.9. �

6.5 Timing Anomalies in PLRU Caches

The functionality of PRLU caches is described in Section 4.4. In case of a cache update or a
cache hit the tree state bits are modified after the cache request. The state bits, that are on the
path to the accessed cache line are all set to point away from the path to the current cache line.
In this kind of caches the state bits of the virtual tree belong to the initial state.

61

6.5. TIMING ANOMALIES IN PLRU CACHES

4-way associative PLRU Caches

In 4-way associative PLRU caches the virtual tree consists of three state bits. The state bits affect
the decision which cache line is updated.

Theorem 6.5.1 In 4-way associative PLRU caches TA-S-I timing anomalies can occur.

Figure 6.10: 4-way associative PLRU, TA-S-I cache timing anomaly

Proof In contrast to 2-way caches, in 4-way PLRU caches TA-S-I anomalies are possible. It is
easy to obtain such an anomaly; assume two different executions, E with initial state s0 and F
with initial state s1. Then let the first data access resulting in a cache hit in E, but the next two
required data blocks are not included in the initial state s0 of E or they are overwritten before
the request. However the first needed data is instead contained in the initial cache state s1, but
the next two required data blocks are not in cache in s1. Due to this, the execution F is faster
than the execution E, whereas initially a miss occurs in F as opposed to an initial hit in E. Thus
the conditions of a TA-S-I anomaly are fulfilled. An example is shown in Figure 6.10. �

Theorem 6.5.2 In 4-way associative PLRU caches TA-S-A timing anomalies can occur.

Proof Assume two different executions, E with initial state s0 and F with initial state s1. An
anomaly is simple to generate, if two required cache blocks are in cache in the initial state s0
(this results in two hits in E), but the same needed cache blocks are not in cache in s1 or are
overwritten before they were accessed and this leads to two misses in F . Thus the conditions of
a TA-S-A timing anomaly are fulfilled. An example for a serial amplification timing anomaly is
shown in Figure 6.11 �

62

CHAPTER 6. TIMING ANOMALIES IN CACHES

Figure 6.11: 4-way associative PLRU, TA-S-A cache timing anomaly

2-way associative PLRU Caches

Theorem 6.5.3 In 2-way associative PLRU caches TA-S-I timing anomalies can not occur.

Proof Almost the same proof as for the non-existence of TA-S-I anomalies in 2-way LRU
caches can be used. Assume two different executions, E with initial state s0 and F with ini-
tial state s1. To construct a serial inversion timing anomaly it is necessary that in the execution,
where initially a hit takes place, say E with initial state s0, the overall execution time is longer
than of the execution, where initially a miss happens, say F with the initial state s1. We know
from above, that such an anomaly can only occur if at least at three cache accesses three hits

Figure 6.12: 2-way associative PLRU, best try to achieve a TA-S-I cache timing anomaly

63

6.5. TIMING ANOMALIES IN PLRU CACHES

appear in one execution in contrast to another execution where three miss appear. In this proof
it will be shown, that this is impossible for 2-way PLRU caches.
After the first cache access at least one cache line has the same content and the state bit pointing
away from that cache line in every execution. This is shown with the next four possibilities for
two executions:

• hit in E and F : the required data is found in cache in both executions and according to
the PLRU strategy the state bit is pointing away from that cache line after the access.

• miss in E and F : the needed data is not contained in cache in both executions. This data
is put into a cache line, pointed by the bit, and after the access the state bit points away to
the other line of the associated set.

• hit in E and miss in F : the required block was in the cache in E and is inserted in a cache
line in F . In both executions the state bit points away from that data block after the cache
access.

• miss in E and hit in F : the required block was in the cache in F and is inserted in a
cache line in E. In both executions the state bit points away from that data block after the
memory access.

Note that after the first cache query one cache line in E and F is equal. Assume that these
equal cache lines are named CLEE

in E and CLEF
in F . The cache lines that are potentially

not equal are called CLPNEE
in E and CLPNEF

in F . Also the state bit points away from
CLEE

(CLEF
) to CLPNEE

(CLPNEE
). For the next requests also four cases are possible:

• hit in E and F : there are also two cases; first this access requires data from CLEE
and

CLEF
. Then in both executions the content of the caches do not change and the state

bits refer to CLPNEE
and CLPNEF

. Second this cache access does not make use of the
same data as the first access. In this case the cache contents CLPNEE

and CLPNEF
are

equal in both executions and after the final memory access the state bit points to the same
element in both executions.

• miss inE and F : after this access the required data is included in CLPNEE
and CLPNEF

and both state bits refer to CLEE
and CLEF

. Thus the cache content is similar in both
executions and both state bits refer to the same line.

• hit in E and miss in F : the new data must be put into CLPNEF
in F and it was contained

in CLPNEE
in E. Then also both executions have the same content and both state bits

pointing to CLEE
respectively CLEF

after this access.

• miss in E and hit in F : the new data must be put into CLPNEE
in E and it was contained

in CLPNEF
in F . Then also both executions have the same content and both state bits

pointing to CLEE
respectively CLEF

after this access.

64

CHAPTER 6. TIMING ANOMALIES IN CACHES

Thereby only a hit in E and F after the first request, where the needed data is contained
in CLEE

and CLEF
leads to a state that is the same as before the hit. But it is obvious, that

maximal two hits at two cache accesses in one execution in contrast to two misses at the same
two accesses in another execution leads to the same cache state afterwards. If the cache content
is equal and the state bit points to the same cache line in two executions at a specific point in
time then it is impossible to observe a different access behaviour related to cache hits or misses.
Thus inversion series timing anomalies are not possible in 2-way PLRU caches, see the best try
in Figure 6.12. �

Theorem 6.5.4 In 2-way associative PLRU caches TA-S-A timing anomalies can occur.

Figure 6.13: 2-way associative PLRU, TA-S-A cache timing anomaly

Proof For amplification series timing anomalies at most two hits at two cache accesses in one
execution in contrast to two misses at the same two accesses in another execution are possible.
Assume two different executions, E with initial state s0 and F with initial state s1. Then a
TA-S-A anomaly can be achieved, if in the initial state s0 the data blocks that are required in the
first two memory accesses are in the cache, but these are not in the cache content of s1. Due to
the fact that in F two more misses happen than in E, a TA-S-A timing anomaly is observed, see
Figure 6.13. �

6.6 Summary

In Table 6.1 an overview of the timing anomalies, that can occur on cache architectures, is
given. After the analysis of cache timing anomalies, one can observe that in 2-way LRU and
PLRU inversion series timing anomalies can not occur, because after two two hits at two cache
accesses in one execution in contrast to two misses at the same two accesses in another execution

65

6.6. SUMMARY

the same cache state is reached in every execution. Additional one can see that timing anomalies
in 8-way associative caches can appear if they are possible in 4-way associative caches.

Table 6.1: Summary of Timing Anomalies on Caches

66

CHAPTER 7
Parallel Timing Anomalies

7.1 Overview

In the last two chapters series timing anomalies both at pipelines and caches have been analysed.
In this chapter a compound of these architectures and the resulting parallel timing anomalies are
treated. In Section 2.10 these kind of anomalies have been presented and defined. In the analysis
of parallel anomalies a sequence of instructions is no longer split into individual instructions, but
the sum of whole instruction sequences are discussed. Parallel timing anomalies are assessed on
the difference of the execution times of an instruction sequence at a hardware component hwA

and the difference of the sum of the overall execution times for an instruction sequence for two
hardware components.

7.2 Analysis of Parallel Timing Anomalies

Remember first the definitions of parallel timing anomalies:

• TA-P-I:
∃a, a′ ∈ A,∃b ∈ B.
∆hwA

(I, a, a′) > 0 ∧ ∆(I, 〈a, b〉, 〈a′, b〉) < 0

• TA-P-A:
∃a, a′ ∈ A,∃b ∈ B.
0 < ∆hwA

(I, a, a′) < ∆(I, 〈a, b〉, 〈a′, b〉)

In case of parallel timing anomalies it is necessary to observe the interaction between two
hardware components, the mutual interference and the effects. In the analysis two different ini-
tial states a, a′ of hardware component hwA and only one initial state b of hwB , which includes
the impact of the previous execution at hwA, are consulted.

67

7.2. ANALYSIS OF PARALLEL TIMING ANOMALIES

If we assume that the cache of a processor represents the hardware component hwA and the spe-
cific pipeline expressed the hardware component hwB , then it is useful to observe the interfer-
ence from the cache behaviour to the pipeline. That means that differences of cache accesses in
a particular instruction can result in a variation of the duration of this instruction in the pipeline
(achieved by additional misses in the cache). Thus the analysis of parallel timing anomalies
with cache and pipeline architectures requires the knowledge of the possibility that the cache
behaviour in two different executions can lead to a situation where the timing of an instruction
in the pipeline permits a timing anomaly.

Theorem 7.2.1 Parallel timing anomalies, where hwA represents the cache of a processor and
hwB the pipeline, can occur in combination of 2- and 4-way associative FIFO, LRU and PLRU
replacement strategies with the same pipeline architectures, in which series anomalies can ap-
pear.

Proof From Chapter 6 it is evident, that in every presented cache replacement strategy at least
two hits can happen in one execution while at the same cache accesses two misses can appear in
another execution and thereby at least two additional misses are feasible. Additionally we know
from Chapter 5 that if a series timing anomaly in a pipeline can occur, then this is achievable
with at most a difference of two clock cycles in the first instruction (in this thesis I0). As a
result of these two facts we can summarize, that a parallel timing anomaly can occur, if it also
can appear in the series anomaly perspective at pipelines combined with every presented cache
replacement strategy. �

Thus the Table 5.1 of series timing anomalies at pipelines can also be applied for paral-
lel timing anomalies, where the combination of caches and pipelines are observed. Note that
this result originates from a completely different approach, nevertheless this leads to the same
consequence than in the study of series timing anomalies.

68

CHAPTER 8
Conclusion

The presence of timing anomalies is very important for the Worst-Case Execution Time calcu-
lation. Thus it is essential to perform a precise analysis of timing anomalies. The subject of this
thesis was to find the minimal preconditions for the occurrence of series respectively parallel
timing anomalies and to investigate them. A short characterisation about RTS has been done.
Also some basic concepts, few definitions and important notations have been presented, which
are needed for the analysis of timing anomalies. Also the techniques ’series composition’ (for
series timing anomalies), ’delta composition’ and ’max composition’ (for parallel timing anoma-
lies) have been displayed, which are mainly taken from [6]. Then the basic concept of pipeline
architecture have been demonstrated and the differences and characterization of simple scalar-,
scalar-, superscalar in-order- and superscalar out-of-order-pipelines have been done. Next the
principle of cache architectures and the functionality of the cache replacement strategies FIFO,
least recently used and pseudo least recently used have been explained.
Then pipeline architectures have been analysed with respect to series timing anomalies. The
definitions and findings are mainly taken from [17], but in that thesis the segmentation between
series and parallel timing anomalies is not elaborated. The minimal preconditions for the occur-
rence in the presented pipeline architectures of series timing anomalies are minimal overlapping
function units or/and out-of-order execution.
Some adapted definitions of series timing anomalies in cache architectures have been imple-
mented. Based on that definitions a detailed analysis was possible and thus the existence of
series inversion timing anomalies in 2-way associative LRU respectively PLRU cache architec-
tures can be excluded. In all other presented cache architectures the existence of inversion and
amplification series timing anomalies has been demonstrated.
In the analysis of parallel timing anomalies the knowledge of the occurrence of timing anoma-
lies in the presented pipeline architectures are linked with the knowledge of the occurrence of
timing anomalies in the presented cache architectures. The result of this analysis for parallel
timing anomalies is the same as for series anomalies in pipeline architectures in combination
with all presented cache architectures.
Thus the analysis of the occurrence of timing anomalies in the presented pipeline and cache

69

architectures is finalised. With the result of this thesis it is possible to categorize a specific pro-
cessor by reference to the potential series and parallel timing anomalies and a WCET bound can
be given.

Future Research
The occurrence of timing anomalies in other pipeline and cache architectures can be analysed.
Also more precise techniques for calculating a WCET bound can explored.
The investigation of replacement strategies for caches that the occurrence of timing anomalies
forbid can be helpful, because in all presented replacement strategies timing anomalies can ap-
pear in 4-way (and of course in 8-way) associative caches.
Maybe it is achievable to program tools that provide information about the potential timing
anomalies if specific instructions are given.
Finally discussions of developing processors that have predictable timing behaviour have to be
done.

Keywords
Series Timing Anomalies, Parallel Timing Anomalies, Worst-Case Execution Time, WCET
Analysis, Pipeline Architectures, Cache Architectures

70

Bibliography

[1] Christoph Berg. Plru cache domino effects. In Frank Mueller, editor, 6th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis, Dagstuhl, Germany, 2006. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[2] Christopher A. Healy. Integrating the timing analysis of pipelining and instruction caching.
In In IEEE Real-Time Systems Symposium, pages 288–297, 1995.

[3] Christopher A. Healy, Robert D. Arnold, Frank Mueller, David B. Whalley, and Marion G.
Harmon. Bounding pipeline and instruction cache performance. IEEE Transactions on
Computers, 48:53–70, 1999.

[4] Reinhold Heckmann and Christian Ferdinand. Worst-case execution time prediction by
static program analysis. In In 18th International Parallel and Distributed Processing Sym-
posium (IPDPS 2004, pages 26–30. IEEE Computer Society.

[5] Raimund Kirner, Albrecht Kadlec, and Peter Puschner. Precise worst-case execution time
analysis for processors with timing anomalies. In ECRTS ’09: Proceedings of the 2009
21st Euromicro Conference on Real-Time Systems, pages 119–128, Washington, DC, USA,
2009. IEEE Computer Society.

[6] Raimund Kirner, Albrecht Kadlec, and Peter Puschner. Worst-case execution time analysis
for processors showing timing anomalies. Research Report 01/2009, Technische Univer-
sität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
2009.

[7] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Wcet analysis of multi-level set-
associative data caches. In Niklas Holsti, editor, 9th Intl. Workshop on Worst-Case Execu-
tion Time (WCET) Analysis, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Germany. also published in print by Austrian Computer Society (OCG)
with ISBN 978-3-85403-252-6.

[8] Thomas Lundqvist. A wcet analysis method for pipelined microprocessors with cache
memories. Technical report, 2002.

[9] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled micro-
processors. In Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS ’99,
pages 12–, Washington, DC, USA, 1999. IEEE Computer Society.

71

BIBLIOGRAPHY

[10] Jan Reineke. Caches in WCET Analysis. PhD thesis, Universität des Saarlandes, November
2008.

[11] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Predictability of cache
replacement policies. In Reports of SFB/TR 14 AVACS 9, SFB/TR 14 AVACS, 2006.

[12] Jan Reineke and Rathijit Sen. Sound and efficient wcet analysis in the presence of tim-
ing anomalies. In Niklas Holsti, editor, 9th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Germany. also published in print by Austrian Computer Society (OCG) with
ISBN 978-3-85403-252-6.

[13] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen
Eisinger, and Bernd Becker. A definition and classification of timing anomalies. In
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis, Dagstuhl, Germany,
2006. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl.

[14] Christine Rochange and Pascal Sainrat. Difficulties in Computing the WCET for Proces-
sors with Speculative Execution . In 2nd Intl. Workshop on Worst Case Execution Time
Analysis , Vienne, 18/06/02, pages 68–71. University of York, juin 2002.

[15] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise wcet pre-
diction by separated cache and path analyses. Real-Time Syst., 18:157–179, May 2000.

[16] Stephan Thesing. Safe and Precise WCET Determination by Abstract Interpretation of
Pipeline Models. PhD thesis, Universität des Saarlandes, 2004.

[17] Ingomar Wenzel. Principles of timing anomalies in superscalar processors. Master’s thesis,
Technische Universität Wien, Institut für Technische Informatik, 2003.

[18] Ingomar Wenzel, Raimund Kirner, Peter P. Puschner, and Bernhard Rieder. Principles of
timing anomalies in superscalar processors. In QSIC, pages 295–306, 2005.

[19] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Muller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS), April 2008.

72

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Real-time computing
	Structural Organization

	Basic Concepts and Related Work on Timing Anomalies
	Overview
	WCET Analysis
	Timing Relevant Dynamic Computer State
	Notation
	Related Work on Timing Anomalies
	Fundamental Definition of Timing Anomalies
	Timing Anomaly Definition by Lundqvist and Stenström
	Timing Anomaly Definition by Reineke et al.
	Series Timing Anomalies
	Parallel Timing Anomalies

	Pipeline Architectures
	Overview
	Simple Scalar Pipelines
	Scalar Pipelines
	Superscalar In-Order Pipelines
	Superscalar Out-Of-Order Pipelines

	Cache Architectures
	Overview
	Structure of Caches
	Associativity
	Cache Replacement Policies

	Timing Anomalies in Pipelines
	Overview
	Timing Anomalies in Simple Scalar Pipelines
	Timing Anomalies in Scalar Pipelines
	Timing Anomalies in Superscalar Pipelines
	Timing Anomalies in Superscalar Out-Of-Order Pipelines
	Summary

	Timing Anomalies in Caches
	Overview
	Definition of Timing Anomalies on Caches
	Timing Anomalies in FIFO Caches
	Timing Anomalies in LRU Caches
	Timing Anomalies in PLRU Caches
	Summary

	Parallel Timing Anomalies
	Overview
	Analysis of Parallel Timing Anomalies

	Conclusion
	Bibliography

