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Abstract
Guidance has b d as a conceptual fr k to understand how mixed- visual analytics approaches can

actively support users as they solve analytical tasks. While user tasks received a fair share of attention, it is still not completely
clear how they could be supported with guidance and how such support could infiuence the progress of the task itself. Our
observation is that there is  research gap in understanding the effect of guidance on the analytical discourse, in particular,
for the knowledge generation in mixed-initiative approaches. As a consequence, guidance in a visual analytics environment
s usually indistinguishable from common visualization features, making user responses challenging to predict and measure.
To address these issues, we take a system perspective to propose the notion of guidance tasks and we present it as a typology
closely aligned to established user task typologies. We derived the proposed typology directly from a model of guidance in the
knowledge seneration process and llutrate its implications for guidance design. By discussing tree case stuies, we show how

our typology can be applied

argue that with ideration of the system

perspective, the analysis of tasks in mixed-initiative approaches is incomplete. Finally, by analyzing matchings of user and
‘guidance tasks, we describe how guidance tasks could either help the user conclude the analysis or change its course.

1. Introduction

In the traditional visual analytics (VA) process, knowledge is gen-
erated by users from data by exploiting visualizations, interaction,
and the modelling capabiltis of VA environments [SSS*14]. Users’
domain knowledge is distilled into goals and hypotheses that are
fed to the interactive system as actions. The result of the machine
processing is shown back o the user, who interprets it into useful
insights and integrates it as new knowledge that can be used for
decision-making [KKEM10]. The conventional information visual-
ization process has begun to be expanded into what are known as
o ees s,

tive role in the analytical discourse through the it
ferent degrees of agency. Guidance [CAS*18; CGM*16; CGM19a;
SIB*21] has been developed as a mmy w0 unmma..d and encapsu-

building blocks of higher-order intellectual processes in VA. How-
ever, interaction tasks describe only one part of the story, as they
only depict user intentions and interactions. System-side intelligent
agents are left out of this narrative as well as their supporting role
in human decision-making [DS21] and the proactive guidance they
provide to the user. This makes it difficult to understand the complex
behavior that arises when both human and system interact [STB+20].
Thus, we are left with the following questions: (1) How can we clas-
sify the system’s intentions and tasks? (2) How does guidance con-
iribute o the knowledge generation process? (3) How are the ana-
and the user’s tasks affected by the guidance’

In this paper, our aim is to answer these questions from a theoret-
ical perspective. To accomplish this, we frst extend the Knowledge
Generation Model by Sacha et al. [SSS*14] by taking into account

late this phenomenon which goe: visualization
and s at the core of the VA pvrolm:e.

Guidance in VA i an active dds

o th ion of insights

and knowledge. We show that at the crossroad of human and ma-

chine agency, the analytic discourse can take different paths. We
int

“knowledge gaps” of the users that hinder their analytical progress
by identifying them and providing orienting, directing, and prescrip-
tive guidance [CGM*16). This dimension, namely the “guidance
degree”, has been identified over single- and mixed-initiative sys-
tems (CGM19a], proving to be an effective model to analyze sys-
tems with active user-supporting (ie., guiding) capabilities.

Additionally, taxonomies of interaction tasks have had an impor-
tant role in the design and of interac-

eraction between human and machine inten-
tons using the modelprovided by Brehumes and Munzoer [BMI1),

as it succinetly
o ver scion, W the imoduce the noion of ,mdam tasks and
derive our own typology of guidance actions. We illustrate in sev-
eral case studies the application of our typology to show how it can
be used to decompose the analysis into a series of user and system
tasks by making explicit the role of guidance in VA.

tive visualization systems [BM13], as user tasks are considered the
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the following: (1) on of the Knowled,
Generation Model in guidance-enriched VA environments showing
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the interaction between user and guidance systems, from which we
derive (2) a model of guidance degrees and how they relate to user
tasks, which we call perspective change dynamics; (3) a typology
of system guidance tasks covering the why, how, what, and when
of guided interactions, whose use is demonstrated through (4) three
case studies.

2. Related Work

To arrive at a better understanding of the role of guidance in the
VA discourse, we first review the literature on guidance, analytic
‘models, and analytical tasks.

Guidance. The term guidance was first introduced by Schulz etal. to

Loop and the Sensemaking Loop [PC05]. The computer part of the
Knowledge Generation Model (see center part of Fig. 1) was first
introduced by Keim et al. [KKEM10] showing how data, visualiza-
tion, and model connect o human knowledge. Extending this sim-
ple model with the ideas from Norman’s model and the Sensemak-
ing model, we retrieve the main structure of the Knowledge Genera-
tion Model, where user interaction is found in the Exploration Loop,
which is controlled by the hypotheses and insights gained in the
Verification Loop. The outermost loop, the Knowledge Generation
Loop, includes the internalization and socialization of new knowl-
edge [SSS*14]. In section 3, we describe a similar nested structure
for what we call the "Guidance Process”.

Analytical Tasks. The concept of nalytical tasks i o umost im-

unify under a common framework tems as * tems”,
“user support” and “assistance” within VA [SSMT13]. Cencdact
al. define guidance as “a computer-assisted process that aims to
actively resolve a knowledge gap encountered by users during an
interacive visual analytics session”(CGM*16, p. 2]. Several aspects
of guidance have been characterized and used to classify the existing
literature [CGM* 18], and to describe mixed-initiative approaches,
in which both the user and the VA system are considered to have an
active role in analysis [CGM19b] and adapt to each other [SJB*20;
SIB*21]. The study of guidance has led to novel VA techniques
[SBS*18] and guidelines for design [CAA*20]. Different types of
knowledge and their importance for guidance have been described
[CAS*18; FWR*17). What is still missing, though, is a deeper
understanding of the role of guidance in the way insights are gained
from the data and in analytical processes.

Models of Analytic Discourse. Models of analytic discourse
(knowledge generation, sense-making, information retrieval, etc.)
have up to now dealt only with user-initiative systems, ., systems
‘where the computer plays no role apart from executing the user’s
explicit actions. To arrive at an understanding of the interactions be-
tween user and system, we must extend these models to consider a
higher degree of freedom in the computer, i.e., a system initiative.

Our model, which will be presented in the following sections, ex-
Ige Generation Model proposed by Sacha et al.
[SSS*14]. We chose it because it captures many preceding mod-
el and is, 10 the best of our knowledge, the most VA-specific. This
‘model shows data-driven knowledge acquisition by users as a struc-
i penc composid by h computer (i il sy
tem) loopsvh tbuild ther. This model
isnota slandra.lone piece and we can trace ts elements back to pre-
Vious medels. The coars srctral foundaion canbe found already
in Norman's model for cognitive engineering that pictures how the
human actor interacts with the computer (or any physical system)
by leaping twice through the gulf that separates them:
lating goals into actions (the gulf of exccution) and then back by
interpreting the feedback of the system into something meaningful
(the gulf of evaluation) [Nor86]. Norman's model is not specific to
data-driven research, but it captures the challenges any human un-
dergoes when becoming a “user”.

‘The idea that there is more than one process at work in the cog-
nitive effort of the user, an interaction-intensive low-level loop and
2 more intellectual high-level loop, can be found 20 years later in
Pirolli and Card's Sensemaking Process consisting of the Foraging

portance for VA [CCI*15], as VA has been de-
scribed as a task-driven process [KAF*08; MA14]. Amar et al. ar-
gue that, for the design of effective systems, tasks must prime over
representtion [AES05]. The analytical discourse has been modelled
as a hierarchical structure, where low-level actions are derived from
high-level goals [GZ09; RAW*16], hinting that the opposite (deriv-
ing goals from actions) is possible, although this might be very chal-
lenging [BWD*19). Furthermore, open-ended exploration in visual
analysis has been empirically characterized as task-driven [BH19].

Work describing visualization tasks is abundant and special-
ized (e.g., for biological pathways [MMF17], network evolution
[APS13], genomic data [NHG19]), however, the first to traverse the
gap between high- and low-level tasks was Brehmer and Munzner's
multi-level task typology [BM13]. This general typology also al-
Tows the construction of complex task structures. Similarly, a simpli-
fied schema of Norman's cogaitive engineering model [Nor86] has
been used to elicit complex skill chains in computer games [Coo21;
HCD17). This model consists of four steps (Thinking, Action, Sys-
tem, Feedback) that form a “skill atom”, which is a single piece of

owledge about the game mechanics acquired through the success-
ful completion of an interaction loop.

Until now, analyncd(ashhmebemmmedformamm
Iysts, as only
makers [DS21]. We do not intend to challenge this, however, the
role of guidance is to support analysis and, consequently, it takes
partin the decision-making process. Thus, it s necessary to comple-
‘ment user’s tasks models with guidance.

3. Model of Knowledge Generation in Guided VA

As we have seen, guidance and s role in the analysis are not
typically considered when describing how knowledge is gener-
ated. Hence, in this section we provide an expanded version of
the knowledge generation process, with the inclusion of guidance.
‘We performed this expansion after analyzing existing guidance ap-
proaches [CGM19a]. We chose as a base for our discussion the
Knowledge Generation Model described by Sacha et al. [514]
because it provides a fine-grained view of the analysis process,
matching well with the visualization tasks perspective, and for it be-
ing a fundamental inspiration for this work. The User Side is kept
the same as in the original model (see top portion of Fig. 1), Our ex-
pansion considers the addition of a “Guide Side™ (bottom portion of
Fig. 1), opposed to the User Side, which interacts with the Computer

©2022 The Aubort)
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Abstract

Guidance has been proposed as a conceptual framework to understand how mixed-initiative visual analytics approaches can
actively support users as they solve analytical tasks. While user tasks received a fair share of attention, it is still not completely
clear how they could be supported with guidance and how such support could influence the progress of the task itself. Our
observation is that there is a research gap in understanding the effect of guidance on the analytical discourse, in particular,
for the knowledge generation in mi; i Asa guidance in a visual analytics environment
is usually indistinguishable from common visualization features, making user responses challenging to predict and measure.
To address these issues, we take a system perspective 1o propose the notion of guidance tasks and we present it as a typology
closely aligned to established user task typologies. We derived the proposed typology directly from a model of guidance in the
knowledge generation process and illustrate its implications for guidance design. By discussing three case studies, we show how
our typology can be applied to analyze existing guidance systems. We argue that without a clear consideration of the system
perspective, the analysis of tasks in mixed-initiative approaches is incomplete. Finally, by analyzing matchings of user and
guidance tasks, we describe how guidance tasks could either help the user conclude the analysis or change its course.
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Figure 3: Typology of system guidance tasks. It spans the three dimensions of the multi-level visualization task typology [BM13] plus a new

bt
levels(aim, firs- and second-onder degree),also with

) the suggestion (how?) in terms of

data manipulations and means of communication; and the information inputs and type of output relative to the targeted user task (what?).

Figure 1: The Model of Knowledge Generation in Guided VA show-
ing how guidance contributes 10 the progress of the analysis. The dif-
wodel ber

tween User
(bottom). Downstream (User-to-Guide) and Upstream (Guide-to-
User) arrows signal the two directions in which information can
flow. The model s an expansion of the well-known Knowledge Gen-
eration Model. [SSS*14].

8. Conclusion

We have presented a typology of system guidance tasks that enables
a joint analysis of user and guidance task interdependence, illustrat-
ing it with different examples. We have also shown the effects of
guidance over user tasks and vice versa, deriving finer-grained guid-
ance degrees in the process. This is supported with a model of guid-
ance within the VA knowledge generation process. Our typology ap-
pears to serve well the purpose of describing, abstracting, and gen-
eralizing VA systems with mixed-initiative approaches, providing
succinct representations that we hope will enrich the incursion into
guidance design and improve the communication of results, stimu-
lating the production of guidelines that, with time and testing, may
expand design considerations in VA.
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Guidance has been proposed as a conceptual framework to understand how mixed-initiative visual analytics approaches can
actively support users as they solve analytical tasks. While user tasks received a fair share of attention, it is stll not completely
clear how they could be supported with guidance and how such support could influence the progress of the task itself. Our
observation is that there is a research gap in understanding the effect of guidance on the analytical discourse, in particular;
for the knowledge generation in mixed-initiative approaches. As a consequence, guidance in a visual analytics environment
is usually indistinguishable from common visualization features, making user responses challenging to predict and measure.
To address these issues, we take a system perspective to propose the notion of guidance tasks and we present it as a typology
closely aligned 1o established user task We derived the d typology directly from a model of guidance in the
knowledge generation process and illustrate its implications for guidance design. By discussing three case studies, we show how
our typology can be applied to analyze existing guidance systems. We argue that without a clear consideration of the system
perspective, the analysis of tasks in mixed-nitiative approaches is incomplete. Finally, by analyzing matchings of user and
suidance tasks, we describe how guidance tasks could either help the user conclude the analysis or change its course.
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8. Conclusion

‘We have presented a typology of system guidance tasks that enables
a joint analysis of user and guidance task interdependence, illustrat-
ing it with different examples. We have also shown the effects of
guidance over user tasks and vice versa, deriving finer-grained guid-
ance degrees in the process. This is supported with a model of guid-
ance within the VA knowledge generation process. Our typology ap-
pears to serve well the purpose of describing, abstracting, and gen-
eralizing VA systems with mi initiative approaches, providing
succinct representations that we hope will enrich the incursion into
guidance design and improve the communication of results, stimu-
lating the production of guidelines that, with time and testing, may
expand design considerations in VA.
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Users consistently choose directing guidance over no guidance, followed by prescriptive
guidance, as giving the best results.
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Conclusion

* We have proposed a high-level model of guidance

* We have proposed the low-level model of perspective change

* We have proposed the concept of guidance tasks and a typology for them

* We have shown the applicability of guidance tasks in the analysis of mixed-initiative

systems

54



Thanks!

A Typology of Guidance Tasks in Mixed-Initiative Visual

Analytics Environments
|. Pérez-Messina, D. Ceneda, M. El-Assady, S. Miksch and F. Sperrle

Universitat ==
Konstanz i

TURR

ETH Al CENTER



Takeouts

e There are guidance tasks
* Guidance tasks affect and change user tasks

* We can generalize results from mixed-initiative VA systems using guidance task analysis
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Visual Analytics Environments
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Visual Analytics Environments
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Guidance Phase Space
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Using the typology

Composition rules

1. UTs and GTs are first described
independently of one another.

2. UTs and GTs are assigned to analytical
objectives.

3. Each GT must target at least one UT.

4. A targeting relation can be observing,
providing, or co-adaptive, indicating
the direction of the information flow.

5. Produce tasks may only be targeted by
observing relations.
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user task

why
search

query
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What do a Typology, a Model of Knowledge
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What do a Typology, a Model of Knowledge

Generation and a Task Schema have in common?
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‘ perspective change
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