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Kurzfassung

Das Industrial Internet of Things (IIoT) ist eine neue Entwicklung, die immer mehr Geräte
miteinander vernetzt. Es konzentriert sich auf die Erfassung von Daten in industriellen
Prozessen und Verarbeitungsanlagen. In den genannten Bereichen gehören Feldbusse,
wie das Controller Area Network (CAN) und Profibus, zu den am weitesten verbreiteten
Netzwerktechnologien. Ihnen fehlt leider die Bandbreite für die Datenerfassung, die
für das IIoT und Industrie 4.0 benötigt wird. Um diesen Anforderungen gerecht zu
werden, werden immer mehr Ethernet-basierte Protokolle verwendet. Eine Lösung ist
beispielsweise Time-Sensitive Networking (TSN). Ethernet ist das Rückgrat der modernen
Informationstechnologie (IT) und ein weit verbreiteter Standard. Was diese Technologie
für das IIoT interessant macht, ist, dass moderne Ethernet-Geräte im Gegensatz zu
Feldbussen, wie beispielsweise CAN, signifikant höhere Übertragungsgeschwindigkeiten
ermöglichen. Des weiteren sind Ethernet-Komponenten vergleichsweise kostengünstig
durch ihrer Verbreitung in der IT.

Diese Arbeit befasst sich mit verschiedenen Herausforderungen, die bei der Implemen-
tierung einer TSN-Endstation auftreten. Zunächst wurde ein Taktsynchronisationsalgo-
rithmus implementiert, der es der Endstation erlaubt, sich mit dem TSN-Netzwerk zu
synchronisieren. TSN organisiert dann die Ethernet-Pakete entsprechend ihrer Priorität
in verschiedenen Warteschlangen. Daher wurde ein echtzeitfähiges Speicherverwaltungs-
system implementiert. Des Weiteren wurde eine Netzwerkschnittstelle entwickelt, um
Nachrichten präzise zu vordefinierten Zeitpunkten zu übertragen. Alle diese Aspekte
wurden einzeln bewertet und dann in einem echtzeitfähigen TSN-Netzwerkstack kombi-
niert. Wir haben das System für die T-CREST Patmos-Plattform entwickelt, die eine
Ausführung in Echtzeit ermöglicht. Sie ermöglicht außerdem eine Worst-Case Execution
Time (WCET) Analyse für maximiale Laufzeit des von uns vorgeschlagenen Systems.
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Abstract

The Industrial Internet of Things (IIoT) is an emerging development, connecting an ever
increasing number of devices. It focuses on the collection of data in industrial processes
and processing facilities. In these areas, field buses like Controller Area Network (CAN)
and Profibus, belong to the most common networks, but they lack the bandwidth required
for broader data collection. To satisfy this demand, more and more Ethernet-based
protocols are used. Ethernet is the backbone of modern Information Technology (IT)
infrastructure and a widely used standard. What makes this technology interesting for
the IIoT is that modern Ethernet devices have transport speeds of multiple Gigabits
per second (Gbit/s). That is several orders of magnitude higher than CAN, where
speeds reach a maximum bandwidth of around one Megabit per second (Mbit/s). The
process of integrating Ethernet-based technologies from IT into the production facilities,
which are also called Operational Technology (OT), is typically referred to as the IT/OT
convergence. As standard Ethernet cannot provide any real-time guarantees, Time-
Sensitive Networking (TSN) was developed. However, only a very limited number of
devices currently exist, particularly regarding TSN end stations.

This thesis addresses several challenges that arise when implementing a TSN end station.
First, a clock synchronization algorithm had to be implemented, allowing the end station
to synchronize with the TSN network. Second, TSN organizes Ethernet packets in
different queues according to their priority. Therefore, a real-time memory management
system was implemented. Third, a network interface was developed to transmit messages
precisely at pre-defined points in time. All these aspects were individually evaluated and
then combined in a real-time capable TSN network stack. We created the system for
the T-CREST Patmos platform, which allows time-predictable execution. This platform
allows the Worst-Case Execution Time (WCET) analysis of our proposed system.
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CHAPTER 1
Introduction

As the Internet of Things (IoT) continues to evolve, the number of interconnected devices
grow along in an unprecedented way. This development is not limited to households and
offices, but also takes place in industrial automation. IoT in this context is often referred
to as the Industrial Internet of Things (IIoT) which focuses on the collection of data in
industrial processes and processing facilities. Traditionally field buses like Controller Area
Network (CAN) and Profibus [1] are common network protocols in the industry, however,
they lack bandwidth for broader data collection. Therefore, recent developments focused
on introducing more bandwidth in industrial networks while preserving the high reliability
of traditional field buses. The most promising solution is Time-Sensitive Networking
(TSN), which is based on the Ethernet protocol [2]. To satisfy this demand, more and
more Ethernet-based protocols are used, one solution is TSN.
Ethernet is the backbone of modern Information Technology (IT) infrastructure and
a widely used standard. Reasons for its broad usage are the relatively low prices for
equipment and that it is easy to expand existing networks. What makes this technology
interesting for the IIoT is that modern Ethernet devices have transport speeds of multiple
Gigabits per second (Gbit/s). That is several orders of magnitude higher than CAN,
where speeds reach a maximum bandwidth of around one Megabit per second (Mbit/s).
The process of integrating Ethernet-based technologies from Information Technology (IT)
into the production facilities, which are also-called the Operational Technology (OT), is
typically referred to as the IT/OT convergence [3][4].
The IT/OT convergence describes the transformation of the automation pyramid into
the automation pillar [3][5], which is depicted in Figure 1.1. On the left side is the
automation pyramid, which consists of multiple layers. It spans from the Field Level
containing sensors and actuators, over the Control Level mainly built from Programmable
Logic Controllers (PLCs), the Supervisory Level providing Supervisory Control and Data
Acquisition (SCADA) applications, the Planning Level for the Manufacturing Execution
System (MES), to the Management Level with its Enterprise Resource Planning (ERP)
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1. Introduction

software. On the right side the so-called automation pillar is depicted, which shows the
goal of this transition: separating industrial automation into a distributed automation
layer and an automation cloud connected by the high speed-low latency network TSN. A
reason for this transition is to ease the interaction between the layers as IT and OT start
operating on the same network and reduce the complexity.

High Bandwidth  
Low Latency

TSN
Communication

Backbone

Management Level

Planning Level

Supervisory Level

Control Level

Field Level

Factory Backbone

Virtualisation of PLCs

Distribution of Control Functions

Centralisation of Supervision
Increasing Domain Interaction

Increasing Number of Devices
Increasing Computational Power

Virtual
PLC

Field I/O

MES

ERP

SCADA

Figure 1.1: Transition from automation pyramid to automation pillar, adapted from [5]

TSN is an open protocol that builds upon standard Ethernet to allow easy integration
with Commercial of the Shelf (COTS) IT systems. This is in direct contrast to most
Ethernet-based protocols used in industrial automation, like ProfiNET [6] or Ethernet
Powerlink [7], which require dedicated hardware to participate in the network. Like
other protocols used in industrial automation, TSN provides transmission capabilities for
Real-Time (RT) and non-RT traffic. TSN is standardised by the Institute of Electrical
and Electronics Engineers (IEEE), which provides the benefit that no single vendor has
sole control over the specification. This prevents a vendor lock-in where only one or a
small group of suppliers provide certified devices. Nevertheless, having a proprietary
protocol is not a drawback. If specifications are only controlled by a single company,
the standard is often quite stable. Nonetheless, the state of the art changes and new
requirements will manifest, therefore, specifications need to be adapted and added. As
TSN is published by IEEE, manufacturers and technical partners can steer the standard
development and improve the documents to be more relevant for future uses.
Figure 1.2 depicts an example network utilising TSN so end stations can communicate
with each other and the management clients. The network allows transmitting RT and
non-RT messages over the same infrastructure. In the case of TSN, a network-wide
schedule [8] defines when each member is allowed to transmit data. As frames with
mixed criticality use the same communication medium, the single members need to
synchronise with each other. Therefore, each member has to synchronise its clock to
achieve consensus on who can access the medium. To communicate with each other,
every member requires certain network functionalities, which the network stack manages
and provides to the various applications running on an end stations. Central tasks of it
are serialising and deserialising protocol data and distributing the received data to the
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1.1. Problem Statement and Aim of the Work

applications. The network stack interacts with the driver of the TSN network interface
to access the transmission medium. The driver configures the interface and manages
the interface’s memory to store incoming and outgoing messages. Further, it assigns the
messages to their queues.
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Actuator
Interface

TSN End Station TSN End Station

Application
Application
Application
Application

Application
Application
Application
Application

Management Clients
(e.g., SCADA and MES
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TSN  Network
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Figure 1.2: Example industrial application setup using TSN communication

1.1 Problem Statement and Aim of the Work
As TSN is still a relatively new protocol, building demonstration networks helps to
evaluate the current state of the art and investigate different approaches. Most of
these networks focus on the network hardware like switches [9] or creating network
schedules [10][11], but seldom on the connected end stations. As TSN end stations are
essential to provide deterministic transmission, they can also be the source for blocking
the network with best-effort traffic if TSN is not implemented correctly.

Implementing TSN on an end station can be done in hardware or software. However,
hardware solutions are more common nowadays [9], and software implementations have
not yet received much attention from industry or academia [12]. A benefit of a software
implementation is its flexibility on different platforms and the possibility of adjustments
if required. Within this thesis, the focus lies on software-based TSN end stations and
their implementation and configuration.

Therefore, the aim of this thesis is to identify time-critical elements of a software-based
TSN end-system and investigate a suitable network-stack architecture and its limitations.
A specific interest lies in the evaluation of the Worst-Case Execution Time (WCET)
behaviour the time-critical elements of the proposed network stack architecture.
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1. Introduction

The thesis shall answer the following research questions:

RQ1: How shall a network stack be structured to support real-time and non-real-time
traffic?

RQ2: What accuracy can be expected from a clock synchronisation algorithm partly
implemented in software?

RQ3: What buffer management algorithm provides the optimal trade-off between time
complexity and memory overhead?

RQ4: What limitations occur when realising a software-based TSN network interface?

1.2 Delimitations
There are further building blocks for the implementation of a TSN end station that are
not part of this thesis. One of them is the implementation of Stream Reservation Protocol
(SRP), which can be utilized to dynamically reserve network resources for streams.
SRP can be used as the basis for dynamically allocating time slots or reconfiguring
traffic shaping algorithms to guarantee lower latency or better throughput for certain
streams. Another topic is Frame Replication and Elimination for Reliability (FRER) [13],
which is used to improve reliable transport by utilizing redundant paths in the network.
Maryam Pahlevan and Roman Obermaisser [14] further investigated the usage of FRER.
Elements like Path Control and Reservation (PCR) [15], Cyclic queuing and forwarding
(CQF) [16] and Per-Stream Filtering and Policing (PSFP) [17] are not included, as these
elements are related to the network hardware like routers and switches and not to end
stations. Additionally, device configuration via Network Configuration (NETCONF) and
implementation of a YANG model are out of scope.

1.3 Contribution
Beyond answering the above research questions, this thesis provides several concrete
scientific and engineering contributions in the context of TSN end stations. They are
grouped by topic and briefly summarized in the following paragraphs.

Contributions in the area of real-time network stacks primarily have an engineering
character. They include the design of a network stack supporting RT and non-RT
traffic, a comprehensive WCET analysis of all relevant functions, and the corresponding
evaluation that verifies that the theoretical upper bounds are valid.

Regarding time synchronization, the thesis provides a generalized Precision Time Protocol
(gPTP) implementation in the form of a time synchronization service for the T-CREST
platform. It enables clock accuracy of about 40 µs. Furthermore, it supports the Best
Master Clock Algorithm (BMCA).

4
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Several of our contributions address buffer management in RT systems. We extend
existing classifications of memory management approaches as well as summarize and –
where lacking – deduce the limiting behaviour regarding computation time and memory
overhead of dynamic storage allocation algorithms in big O notation. Furthermore, we
optimize the data structures used by the Two-Level Segregated Fit (TLSF) algorithm
and provide the corresponding WCET analysis and evaluation.

Finally, we provide an implementation of a TSN driver for the T-CREST platform that
primarily focuses on the traffic scheduling mechanisms defined in IEEE 802.1Q. The
implementation includes a discussion of space-optimized data structures and is WCET
analysed and evaluated.

During the creation of this thesis, several code constructs were designed and implemented.
All code constructs, the programs used for evaluation and the implementation can be
accessed via git [18]. This includes a fully functional RT network stack and a service
for time synchronisation. In addition to a standard Ethernet interface, it provides a
functional TSN network interface. Both interfaces can be configured to utilise a dynamic
memory management system.

In addition, this repository holds a hardware configuration for the used evaluation platform
T-CREST [19] (Patmos [20]). This configuration adds a second network interface. Further,
it adds a dedicated timer that is required for correct operation of the TSN interface.

1.4 Structure of the Work
The remaining thesis is structured in the following chapters:

• Chapter 2: State of the Art
In this chapter, we give a brief introduction to the technical background required
for this thesis. This covers Real-Time Systems (RTS), WCET analysis, T-CREST
Patmos and TSN. Further, we provide an overview of scientific work related to this
thesis.

• Chapter 3: Methodological Approach
In this chapter, we provide the methodological approach we have applied.

• Chapter 4: Time Predictable Network Stack Design
In this chapter, we focus on the principals of designing and implementing a network
stack. This covers the various layers of the networking models and protocols
belonging to them. Further, we investigate how such a network stack can be made
WCET analysable and what is required for RT operation. In addition, we present
our design, evaluate it, and discuss our findings.

• Chapter 5: Time Synchronisation
This chapter focuses on the realisation of time synchronisation in a deterministic
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1. Introduction

network. We take a look at the definition of gPTP as this is used for TSN. Further-
more, we provide a design for a time synchronisation service, which synchronises
the end station and provides accurate time readings to the application. Finally, we
evaluate the design and discuss the results.

• Chapter 6: Buffer Management
A fundamental task when working with network interfaces is to provide temporary
buffers to store data for incoming and outgoing messages. Therefore, this chap-
ter focuses how such a mechanism can be realised for an RTS. We introduce a
classification of such systems and algorithms used for Dynamic Storage Allocation
(DSA). Further, we design and implement a buffer management system for our
proposed time predictable network stack. We evaluate this system using static
WCET tooling and runtime analysis.

• Chapter 7: Time-Sensitive Networking
In this chapter, we provide a deeper introduction to TSN. Derived from the
specification we design our TSN interface and implement a driver for it. We test
the interface and analyse it using a static WCET calculation methods. Finally, we
present the gathered results.

• Chapter 8: Conclusion
In this chapter, we conclude the findings of the previous chapters and discuss them
in the context of the above research questions.

6



CHAPTER 2
State of the Art

In this chapter, we provide the initial technical background relevant for this thesis. This
includes the introduction of essential terms which the individual chapter build upon. We
introduce the core concepts of RTSs, in Section 2.1. A fundamental tool for designing
RTSs is the timing analysis, the basics of it get established in Section 2.2. Further, we
introduce T-CREST and Patmos in Section 2.3, which is the used processor to realise this
thesis. As stated in Chapter 1, this thesis focuses on the design of a deterministic TSN
end station and initial introduction to TSN is given in Section 2.4. In Section 2.5, we
provide related work around the usage of TSN in various environments and technologies
supporting TSN and deterministic RTSs.

Since the single topics discussed in this thesis build up on each other, but are not
intertwined, we decided to introduce additional information when required. Therefore,
the individual chapters provide further details on the technical background and related
work of the topics.

2.1 Real-Time Systems
According to the definitions provided by Kopetz [21], a RTS is a computer system that
changes its behaviour over time based on the stimuli from the environment. The change
of the behaviour may depend on a physical process, e.g., the RTS may control a chemical
reaction. Such processes dictates that the RTS has to act within certain intervals, also
referred to as deadlines, in order to keep the technical process under control. If a required
result has meaning after a deadline has passed, then this is a soft deadline. If the result
has no meaning after a deadline has passed, then its called a firm deadline, and if severe
consequences result from a missed deadline then this is called a hard deadline. If a system
contains at least one hard deadline, it is called a hard RTS or safety critical system.
Otherwise, such a system is typically referred to as a soft RTS. It should be noted that
the design procedures for hard and soft RTSs are fundamentally different.

7



2. State of the Art

2.2 Timing Analysis and Worst-Case Execution Time
Typically, RTSs have stringent timing requirements, which are commonly dependent
on the technical processes that is being controlled by them. Determining the upper
bound of the execution time of control algorithms and other tasks is not trivial as many
factors need to be considered and maybe restricted. The program or task that shall be
analysed needs to be analysable at first, therefore, it is required that the program always
terminates. In order for hard RTSs to be able to adhere to this, only restricted forms of
programming are allowed, e.g., endless loops are forbidden.

In Figure 2.1, a possible runtime distribution is depicted. On the horizontal axis the
application runtime is depicted and on the vertical axis how often said runtime occurs.
The lowest observable execution time is the Best-Case Execution Time (BCET) and the
highest observable execution time is the WCET. The highest possible upper bound is
the WCET bound and is a theoretical value for the longest possible execution time. The
WCET boundary largely depends on the worst case input for an application or task.

Application Runtime

Fr
eq

ue
nc

y

WCETBCET WCET Bound

Figure 2.1: Application runtime distribution

These timing values can be determined by various approaches, Wilhelm et al. [22]
summarised used techniques as well as tools for timing analysis. Commonly, measurement-
based analysis is employed, but in general, this over-estimates the BCET and under-
estimates the WCET. Unfortunately, these approaches are not appropriate for hard RTSs
and therefore, for such systems static WCET analysis methods are employed. These
techniques analyse the program flow as well as the possible behaviour and state of the
hardware to provide a WCET bound by either inspecting the source code, machine code
or an intermediate output format from the used compiler. In addition, the precision of
the calculated upper bound is also dependent on the knowledge of the worst case input
size, which may be hard to derive.

2.3 T-CREST and Patmos
Since embedded systems influence more and more areas of the industry and get used in
safety-critical applications, new technologies were required to guarantee dependability.
Such systems get used in aerospace and space programs as well as in the automotive and
manufacturing industries. Therefore, universities across Europe worked together and
founded the T-CREST [19] project to design a new hardware architecture for such systems.
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2.4. Time-Sensitive Networking

This group has designed the Patmos processing core [20] to build a time-predictable
multicore processor. It is Reduced Instruction Set Computer (RISC) based, which means
that it utilises simpler instructions which can be executed faster. The RISC-V Instruction
Set Architecture (ISA) is based on this philosophy as well as Central Processing Unit
(CPU) cores designed by ARM®. In contrast, a Complex Instruction Set Computer
(CISC) uses more complex instructions that execute operations at once, like loading a
word from memory, adding add another word to it and storing it again in memory. Intel
uses CISC as the basis of their x86 CPU architecture.

The T-CREST project ported the llvm compiler, commonly referred to as the Patmos
compiler [23], for the used ISA. In Figure 2.2 the workflow of the build toolchain is
depicted. The system uses C application code as well as user and system libraries as
an input. These are compiled and linked to create an elf file that the Patmos CPU
can execute. In addition, the compiler toolchain can create a pml file, which contains
additional metadata. This file is used by platin for execution time analysis. Amongst
the visualisation and flow facts that can be used for further analysis, the tool can export
static WCET analysis data.

Application Code
Application CodeApplication Code 

(*.c, *.h)

User Library
User LibraryUser Library

(*.a, *.c, *.h, *.so)

System Library
System LibrarySystem Library

(*.a, *.c, *.h,  *.so)

Patmos LLVM
Compiler

Linked Bitcode (*.elf)

Metainfo File (*.pml)

Platin
 LLVM Timing Toolkit

Flow Facts

WCET Report

Control Flow Graph
Visualisation

Figure 2.2: Patmos WCET tool-workflow

2.4 Time-Sensitive Networking
Time-Sensitive Networking (TSN) is a communication technology that builds upon
Ethernet, which is the de-facto standard for wired communication. In contrast to other
technologies building on Ethernet [2], like Time-Triggered Ethernet (TTEthernet) [24] or
ProfiNET [6], TSN is compatible with standard Ethernet and can be used together with
COTS components found in an IT department. Therefore, leading manufacturers and
researchers see it as the technology to bridge the IT and OT, often referred to as the
IT/OT convergence [4].

One of TSN’s goals is to reduce latency and jitter between end stations. Therefore, TSN
employs traffic scheduling techniques like rate limitations and time triggered-traffic [8].
This is part of the Media Access Control (MAC), which takes care of accessing a physical
medium. The MAC of Ethernet implements Carrier-Sense Multiple Access with Collision
Detection (CSMA/CD) [2] to control the access. As CSMA/CD is only able to detect
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collisions but not resolve or avoid them, no real-time guarantees can be provided. In
other words, standard Ethernet only provides Best Effort (BE) traffic guarantees. To
overcome this deficiency, TSN was developed, which employs Time-Division Multiple
Access (TDMA) instead. Therefore, a network schedule is required, which defines when
each network device is allowed to send data. Protocols like TTEthernet [24] use so-called
Virtual Links (VLs), which define precisely send windows for each application. TSN uses
a simpler concept by assigning each frame to one of eight traffic classes, and the schedule
defines which traffic classes are allowed to send.

For schedules to work as intended, time synchronisation is employed to establish a time
base across a network. Therefore, a specialisation of Precision Time Protocol (PTP) [25]
defined in IEEE 802.1AS [26] called gPTP is used to establish a global notation of
time in a network. PTP is a decentralised protocol, which provides accuracy in the
sub-microsecond range. Each network has a master clock, called the grandmaster, and
all the clocks in the network synchronise with it.

2.5 Related Work
A small set of companies has already implemented TSN Hardware [27]1,2,3. They provide
the basic functionalities required to build a TSN network. TSN Intellectual Property
Cores (IP-Cores) based on Intel Field-Programmable Gate Arrays (FPGAs) are also
available4. To provide means for rapid and flexible customisation, Wei Quanet et al. have
implemented OpenTSN [9]. This project provides an open-source IP-Core for a Network
Interface Card (NIC) and a switch interface. The authors used Verilog to realise the
design for the Xilinx Zynq FPGA line. In addition to the interface design, it provides a
simple management protocol to configure the TSN interfaces.

One of the backbones of the transition from the automation pyramid to the automation
pillar [3] is the usage of TSN [5]. Smart manufacturing is one of the key technologies of
Industry 4.0, which requires interconnected devices of the IT and OT world. An existing
open-source standard for safety-related applications is openSAFETY. This standard can
be integrated on top of any network with deterministic behaviour. Gent et al. [28] showed
that this is also possible utilising TSN.

An essential part of smart manufacturing is to adapt production facilities dynamically.
This dynamic reconfiguration can optimise manufacturing steps or completely reconfigure
the items produced. An aspect that shall be addressed is the safety of the system.

1https://www.tttech-industrial.com/wp-content/uploads/TTTech-Industrial_M
FN-100.pdf, last accessed 6.12.2022

2https://www.br-automation.com/en/products/networks-and-fieldbus-modules/
opc-ua-over-tsn/switch/0acst0521/, last accessed 6.12.2022

3https://hirschmann.com/de/Hirschmann/Hirschmann-News/Hirschmann_Managed_B
OBCAT_Switches/index.phtml, last accessed 6.12.2022

4https://www.intel.com/content/www/us/en/industrial-automation/programmab
le/applications/automation/tsn.html, last accessed 6.12.2022
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Therefore, Etz et al. [29] have defined a design guideline for engineering self-organising
safety systems. The essential thought behind this system is to dynamically detect devices
joining a network and derive a configuration for the network which allows safe operation.
A human operator shall check the dynamically generated configuration to guarantee the
correctness of said configuration. To prove the system’s viability, the authors used TSN
as the communication backbone as it provides RT guarantees. Again a vital element of
this work is to build upon a vendor-neutral platform.

As already established, the IIoT and the IT/OT convergence lead to drastic changes in
industrial automation. A newly established technology in this area is Open Platform
Communication Unified Architecture (OPC UA), which is a service-oriented architecture
for industrial automation5. One of the stepping stones to fully establishing OPC UA
in this field is to provide end-to-end real-time machine-to-machine communication.
Denzler et al. [30][31] investigated the WCET for network transmissions and the required
adjustments for industrial applications. Both publications use TSN as the underlying
communication network to guarantee deterministic traffic.

OPC UA is not the only used communication middleware, e.g., Data Distribution
Service (DDS), Message Queue Telemetry Transport (MQTT), and Robot Operating
System (ROS) are also widely adopted. These communication middlewares have various
application fields. For instance, ROS is commonly used in robotics applications, whereas
MQTT is typically found in building automation and IoT environments. Profanter et
al. [32] provide an evaluation how these technologies compare.

Stricter control is required when switching from standard Ethernet to an RT-capable
Ethernet protocol. Therefore, Wang et al. looked into defining a model for TSN-based
Ethernet interfaces [12]. In the case of TSN, the interface driver needs to be able to obey
a schedule. Since TSN uses traffic classes and transmission gates, it is not guaranteed
that a frame will be transmitted instantly even if the communication channel is free.
Therefore, the application layer and the driver need to work together. Frames ready
to send shall not be modified further to guarantee correct transmission. Therefore, the
application layer, specifically the application, has to lock the data to signal the driver
what can be transmitted.

Another direction for control of the network is Software-Defined Networking (SDN). SDN
is an approach to configure networks in a more dynamic fashion. The goal is to centralise
processes and separate the processes of forwarding network packets and routing them.
Silva et al. [33] investigated how SDN and TSN compare. Further, the authors analysed
how these technologies satisfy the requirements imposed by Industry 4.0. Said et al. [34]
further investigated this topic and propose how SDN can be utilised to configure and
manage TSN networks.

In addition to the schedules, a central element of TSN is time synchronisation. Therefore,
Kyriakakis et al. [35] designed a hardware timestamping unit for the Patmos ecosystem.

5https://opcfoundation.org/about/opc-technologies/opc-ua/, accessed 6.12.2022
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The engine deserialises the Ethernet frames received and transmitted via the RX and TX
channels of the Media Independent Interface (MII) connected to a Physical-Layer (PHY)
chip. When the hardware detects a PTP message, a timestamp is generated that can
be used to synchronise the clocks. The authors managed that two FPGAs with Patmos
synchronise with an offset not exceeding 200 ns.

TSN is not the only RT Ethernet protocol, others are ProfiNET and EtherCAT. TTEth-
ernet is another protocol for RT communication based on Ethernet. Therefore, Frühwirth
et al. [36] designed a software-based end station for TTEthernet. The design is based
on the AUTOSAR classic platform. The authors present an Ethernet stack to transmit
mixed-criticality traffic over the same interface and network. Since TTEthernet is not
only used in the automotive industry, Kyriakakis et al. [37] presented a time-predictable
TTEthernet end-system for Patmos. The authors provide an open-source TTEthernet
stack that can be WCET analysed.

12



CHAPTER 3
Methodological Approach

In this chapter, we introduce the used methodological approach within this thesis (cf.
Section 3.1). In Section 3.2, we show how we applied our selected methodological
approach. Finally, Section 3.3 lists the time and effort invested in composing this thesis.

3.1 The Design and Creation Research Strategy
In this thesis, we aim to contribute knowledge to computer science and computer
engineering. Therefore, we use the design and creation research strategy [38]. The core
of this strategy is to develop a new IT product, commonly referred to as an artefact [39].
The definition of an artefact is quite broad. Such an artefact can be as simple as defining
a new symbol or vocabulary, deriving new methods and models, or creating a program or
prototype to solve a problem [40]. New knowledge and insights are derived by extensively
analysing the created artefacts and critically evaluating their outputs. In contrast to
product development, this research strategy provides explanations and justifications for
the artefact.

3.2 Design and Creation of a Software-Based TSN End
Station

As already introduced in this chapter, the design and creation research strategy aims
to create new artefacts and derive new insights [41]. For instance, incorporating a new
theory in an IT application can result in new insights during the usage or creation of
the artefact. Within the scope of this thesis, we want to produce the artefact of a
software-based TSN end station. Figure 3.1 depicts the artefacts we defined to produce
and the knowledge outputs we expected.
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Figure 3.1: Artefact and knowledge output of this thesis

In Figure 3.1, on the left side, we have depicted the TSN end station, which is the
overarching artefact we wanted to produce. This artefact requires time synchronisation
and a RT network stack, where the former builds on the latter. From the time syn-
chronisation, we want to get insights into the significance of the drift of our used clock
and how accurate our defined time synchronisation is. The RT network stack requires a
TSN-capable interface to provide TSN functionality. From the design and creation of
this interface, we wanted to learn how capable a software implementation of TSN is and
where the limitations lay. Due to the definition of TSN, a frame might get sent after
a period of time. Hence it requires some buffer management. From this artefact, we
retrieved knowledge about various approaches available and which are suitable for RTSs.
In order to use our artefact of an RT-capable network stack in an RTS, it and all its
sub-artefacts need to be WCET analysable.

The design and creation research strategy builds on various tools and development prin-
ciples. The commonly used elements are awareness, suggestion, development, evaluation,
and conclusion [42]. These principles are executed iteratively and revisited several times
when new insights appear. Most work is part of the development phase of research
focusing on computer-based systems. Therefore, this phase consists of the steps: analysis,
design, implementation, and testing. Again these steps are executed iteratively with
several executions of them. We used requirements imposed by underlying standards and
software development best practices to derive our system design and implementation.

The thesis devotes a chapter dedicated to each artefact depicted in Figure 3.1. Each
chapter consists of a section providing an introduction, the technical background, and
related work of the covered topic. Further, each chapter has sections covering the design,
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3.3. Thesis Effort

Topic Task Duration (days)
Time Predictable literature study 9
Network Stack system design and implementation 15

evaluation 3
sub-total 27

Time Synchronisation literature study 6
system design and implementation 6
evaluation 3
sub-total 15

Buffer Management literature study 22
system design and implementation 13
evaluation 3
sub-total 38

Time-Sensitive literature study 5
Networking system design and implementation 11

evaluation 1
sub-total 17

Thesis Document finalisation 19
total 116 days

Table 3.1: Estimated effort to create this thesis

implementation, and additional findings revealed during the development process. Based
on the developed artefact, the single chapters provide a section evaluating the created
artefact. Combining the results from the single evaluations, we provide a conclusion of
the gathered knowledge and insights in Chapter 8.

3.3 Thesis Effort
In this section, we give an insight into the work conducted for this thesis. Table 3.1 lists
the efforts broken down into single topics. To better track the time invested, we have
split the efforts for each topic into three significant blocks.

• Literature study: gathering literature and published information about the given
topic

• System design and implementation: deriving a design that is usable independent
from the underlying use case of this thesis; create the code constructs derived from
the system design

• Evaluation: creating an evaluation setup, conducting the evaluation, and assessing
the results

15





CHAPTER 4
Time Predictable Network Stack

Design

The network stack, sometimes referred to as the protocol stack, provides the interaction
capabilities to collaborate with networks connected to a device or services via the
Internet. Typically a layered architecture is used, where each layer has its purpose and
works together with the neighbouring layers to allow communications between processes
running on different devices. The tasks start at the bottom with access to the physical
communication fabric. It continue with the translation of protocols and ends with the
representation of information to the user. Given the more and more connected world,
network stacks providing Internet Protocol (IP) connectivity to RTSs are common and
need to adhere to certain RT requirements. In the following section, we focus on the
overall architecture and design of an RT and WCET analysable network stack for an
RTS.

Starting with Section 4.1, we introduce the different network layer models. Afterwards,
we establish the individual layers with their most prominent protocols based on a generic
network stack design in Section 4.2. With the different layers and protocols provided, we
introduce our RT network stack architecture in Section 4.3. We used a static WCET
analysis and runtime measurements to evaluate our proposed design. Section 4.5 provides
the results of our measurements and interprets the gathered data. Finally, to wrap up
this chapter, Section 4.6 summarises the chapter’s contents.

4.1 Layered Network Architecture
There are multiple standards for defining computer networks. The majority follows
one of two models, the OSI reference model or the so-called Internet protocol suite.
The International Telecommunication Union Telecommunication Standardization Sector
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(ITU-T) defines the OSI reference model, which is standardised inside the ISO/IEC 7498
part 1 [43]. It defines seven layers in ascending order, starting at the hardware and going
up to the application. Protocols in higher layers mainly depend on protocols located in
the layer beneath but never on a protocol in a higher layer.

1. Physical layer : It is closely connected to the hardware, taking care of the actual
physical connection of devices.

2. Data link layer : Its purpose is to transmit data between nodes of a network segment.
Other duties are handling physical layer access and detecting or even correcting
errors. Protocols found in this layer are Ethernet and the Address Resolution
Protocol (ARP).

3. Network layer : It takes care of forwarding and routing packets through a network
and to other network segments. The most prominent members of this layer are the
Internet Protocol (IP) and the Internet Control Message Protocol (ICMP).

4. Transport layer : It takes care of handling End-to-End (E2E) communication
between applications using protocols like the Transmission Control Protocol (TCP)
and the User Datagram Protocol (UDP).

5. Session layer : It handles the opening, closing, and managing sessions between
end-user applications.

6. Presentation layer : It takes care of transforming data between different representa-
tions.

7. Application layer : It specifies the shared communication protocols and application
interfaces. Members of this layer are protocols like the Domain Name System
(DNS) and Secure Shell (SSH).

The OSI reference model is quite a detailed model. Therefore, implementations of network
stacks commonly prefer simpler models. The other widely used model is the Internet
protocol suite, often referenced as the TCP/IP stack or the Internet reference model. It
represents the view on the Internet from the Internet Engineering Task Force (IETF),
which is the driving force behind the Internet as we know it today. The Request for
Comments (RFC) 1122 [44] and RFC 1123 [45] provide the definitions for this reference
model. From the viewpoint of the IETF, the model consists of four layers:

1. Link layer : It handles lower-level protocols like Ethernet and handles medium
access.

2. Internet layer : It handles routing and forwarding packets in local networks or to
foreign networks.
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3. Transport layer : This layer handles End-to-End (E2E) communication between
processes.

4. Application layer : This layer covers the tasks of layers five to seven from the OSI
reference model.

Figure 4.1 illustrates how the layers from the OSI reference model and the Internet
protocol suite are related. The figure shows the layers from the OSI reference model on
the left side and on the right, the corresponding layers from the Internet protocol suite.
From hereon, we will mainly focus on the Internet protocol suite as our reference model,
as it sufficiently describes the layers involved in the time-predicable network stack.
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Figure 4.1: Comparison of the layers from the OSI reference model and the Internet
protocol suite

4.2 A Generic Network Stack Architecture
In Section 4.1, we have introduced two referenced models of the layered network ar-
chitecture. In this section, we want to outline an example of a generic network stack
architecture based on the Internet protocol suite. Significant literature is available about
the network stack of the Linux kernel, e.g., by Christian Benvenuti [46], which we used
as input for this chapter.

In an Operating System (OS), the network stack allows communication with other
entities, be it inside the device, another entity in the same network, or a service on the
Internet. Therefore, each communicating application requires an interface to the network
stack. Furthermore, the stack should provide a management interface for functionalities
unrelated to communication, such as configuration and error handling. In addition, the
stack has to interact with the communication channel to communicate with the outside
world. Figure 4.2 depicts a generic network stack with the layers from the reference
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model and necessary interfaces. The following sections elaborate further on the members
of the individual layers and their interfaces.

Application layer

Transport layer

Internet layer

Link layer

Communication
interface

Management
interface

Network  
stack

Figure 4.2: General architecture of a network stack

4.2.1 Link Layer

The link layer takes care of accessing a shared medium and handling communication via
a single link. Most protocols for this layer use definitions based on the OSI reference
model instead of the Internet protocol suite because it does not further specify access to
a physical medium. The Internet protocol suite generally assumes that an underlying
operational network infrastructure exists. Therefore, protocols like Ethernet and other
IEEE protocols use the OSI reference model as a reference.

The main task of this layer is to handle point-to-point communication between two hosts
connected to the same shared media. Protocols like Ethernet or Wireless Local Area
Network (WLAN) provide this functionality. Upper-layer addressing is not applicable for
this layer, so protocols like Address Resolution Protocol (ARP) query the corresponding
link-layer addresses. A link-layer address is a property of the used communication
hardware and can be considered immutable in the general case. In contrast, an upper
layer address changes when the host changes to another network.

4.2.1.1 Ethernet

Ethernet is now the predominant technology used for wired networks – standardised first
in 1981 as IEEE 802.3 [2]. One of the main reasons for its success was the very low price
of a NIC. Another was that it was comparably easy to increase the transmission rates in
contrast to competing technologies, starting at around 3 Mbit/s and now going up to
400 Gbit/s when using a medium like fibre optic cables.

Ethernet operates on a shared medium, called the ether, on which frames get exchanged.
Therefore, it uses CSMA/CD to detect if two or more nodes try accessing the same com-
munication medium simultaneously. Nowadays, most networks use switches, significantly
reducing the probability of colliding messages. Still, the protocol has unreliable data
transfer, as there is no data exchanged between the communication peers if a received
frame is valid.
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Ethernet uses the so-called hardware-dependent MAC addresses for addressing. Typically,
the hardware provides these addresses, which generally cannot be modified. Nowadays,
these addresses are called Extended Unique Identifiers (EUIs). These consist of six octets
with a total length of 48 bits, typically represented in a hexadecimal format. No separator
is defined to split the octets, but spaces, dashes and colons are often used. For example,
a MAC address can look as follows: 12:34:56:78:9A:BC.

The header of an Ethernet frame is quite simple, consisting only of the destination and
source address and an identifier for the encapsulated protocol. In addition, the header
may include an optional VLAN extension header. A VLAN separates a Local Area
Network (LAN) into multiple logical networks. Ethernet uses a field called Frame Check
Sequence (FCS) to detect corrupted frames. It is a 32-bit Cyclic Redundancy Check
(CRC), which gets appended at the end of the frame.

An Ethernet frame has a minimum length of 64 bytes. If a frame is shorter than this,
the sender shall append padding bytes to the data encapsulated in the frame. The
maximum length of the data encapsulated in a frame is 1500 bytes. The Ethernet
header has a length of 14 bytes but Ethernet extensions like VLAN can add additional
headers. These extension headers do not affect the amount of user data encapsulated by
Ethernet. For instance, an Ethernet frame can be tagged with up to two VLAN headers
adding additional 8 bytes to the total length. In addition, Ethernet appends after the
encapsulated data a 4 byte FCS. Therefore, an Ethernet frame is always between 64
bytes and 1526 bytes long.

The design for the required interfaces is pretty straightforward. Generally, we require
one function for creating the header and one for reading the header. The communication
hardware may not support the calculation of the FCS. Therefore, an implementation in
software for the calculation may also be required. Additionally, a function for creating
and interpreting the VLAN tags may be defined to simplify the process.

4.2.1.2 Address Resolution Protocol

The Address Resolution Protocol (ARP) queries the hardware address for a given protocol
address and is standardised in RFC 826 [47]. The addresses get stored in an object called
the ARP table. If a host does not find the corresponding hardware address inside this
table, ARP sends a request to the connected network devices, asking who has the given
protocol address. The connected devices either respond or forward the request to their
neighbours. In practice, the only use case for ARP is querying the MAC address for a
given Internet Protocol Version 4 (IPv4) address.

4.2.1.3 Driver interfaces

Now leaving the territory of protocols, the device drivers are the last step before entering
the hardware domain. The development of such drivers is a well-known topic with freely
accessible literature, e.g., by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-
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Hartman [48]. These software constructs provide an interface to the system for interacting
with the hardware.

One of the tasks of a device driver is to expose the configuration options of the hardware
to the system. Another task is to hand over data to the hardware to send out network
frames. Additionally, the driver has to take over frames received by the communication
hardware. Local buffers inside the device get used to store said frames. Therefore, a
driver needs to perform at least a minimum amount of buffer management, whether inside
the hardware or the (system’s) memory. Further, the driver configures the network device
via registers also located in the device, e.g., for setting the sending rate and selecting full
or half duplex transmission. Such devices generally have special registers called Buffer
Descriptors (BDs). The content of these registers defines the location of frames inside
the device’s memory and other vital data like length and possible transmission issues.

The interaction with the hardware is generally quite heterogeneous as different commu-
nication interfaces get used depending on the environment. Most systems use one of
two methods to interact with the network interfaces. First, a network interface can be
integrated into the chip or connected via an external memory bus. So-called Systems on
a Chip (SoCs) typically employ the former method. Such systems commonly integrate a
CPU and various Input/Output (IO) devices into a single chip. An external memory
bus connects devices directly to the CPU core. Peripheral Component Interconnect
Express (PCIe) is one of the broadest used memory buses for such a task. Both methods
interact with the system’s memory bus, which reads and writes to and from the device.
This paradigm is called memory-mapped IO and allows µs to stay on an abstract level
simplifying further explanations. As a third option, embedded devices that do not have
an on-chip Ethernet MAC or PCIe support use buses like Inter-Integrated Circuit (I2C)
and Serial Peripheral Interface (SPI) for interaction.

In the case of TSN, the Ethernet interface has some further requirements for accessing
the shared medium. For instance, it requires the device to adhere to a schedule and stay
synchronised with the network. A device may provide this functionality. If not, this has
to be done by the device driver.

4.2.2 Internet Layer
We are continuing with the next higher layer in our architecture, the Internet layer. The
primary protocol of this layer is the Internet Protocol (IP). Its primary purpose is to
route packets from one host to another across one or more networks.

4.2.2.1 Internet Protocol

The Internet Protocol (IP) is the central protocol of the Internet protocol suite as one
of its fundamental principles is Everything over IP and IP over everything. As already
established, this protocol routes packet through a network and between networks. There
are two major versions of IP, namely IPv4 and Internet Protocol Version 6 (IPv6). RFC
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791 [49] defines IPv4, and RFC 2460 [50] first introduced IPv6, which was later obsoleted
by RFC 8200 [51].

As the primary task of IP is to communicate between hosts, it uses an addressing format
which is independent of the lower layers. Therefore, it employs so-called IP addresses to
route packages between nodes. In IPv4, this address is written in dotted decimal format
and is in total 32 Bit long, e.g., 123.45.67.89. In IPv6, the address is extended to
128 Bit and written as colon-separated hexadecimal values, which are groups of four digits.
To simplify these addresses, once a block of zeros can be shortened by using a double colon.
Therefore, an IPv6 address can look as follows: 2001::1234:5678:9ABC:DEF0.

The header of IPv4 provides the source and destination IP addresses for routing. The
protocol field defines what upper layer protocol IP encapsulates in this packet, and for
error detection, IP uses a 16-bit checksum. Additionally, the protocol header has a
time-to-live field, which defines how many router hops a packet stays alive in a network.
This field prevents packets from looping indefinitely in a network. The underlying
communication channel may not allow arbitrarily long messages. Hence, IP takes care of
fragmenting packets to fit into the Maximum Transmission Unit (MTU). Therefore, the
fragment offset field defines the offset in bytes from the first frame for the reassembly of
the packet.

Regarding the interface design for a network stack, two functions are sufficient for the
implementation because of the stateless nature of IP. One function covers serialising the
header, and another one covers the deserialising. The former sets the relevant fields and
calculates the header checksum, whereas the latter has to validate the header and check
for additional fragments.

4.2.2.2 Internet Control Message Protocol

RFC 792 [52] defines the Internet Control Message Protocol (ICMP) with its primary
purpose of exchanging control messages between hosts. The most prominent function
of this protocol is the ping functionality. Thereby, one node sends out an echo request
and waits for another host to send a reply message. Another commonly used task of this
protocol is to notify a host if a packet could not be delivered and why. ICMP datagrams
get encapsulated in IP packets.

4.2.3 Transport Layer
The transport layer gets used for E2E communication between applications. In most,
cases more than one application requires access to the network. Therefore, this layer
needs to multiplex the network access. This multiplexing is done by using ports and
allows the addressing of applications inside a host.

This layer provides the means for reliable data transfer, flow and congestion control.
These functionalities require more complex services which are connection-oriented and
have a stateful design. Protocols like TCP support this, but its implementation needs to
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track the state of each of its connections. Nonetheless, there are also simpler protocols on
this layer, like User Datagram Protocol (UDP), which is stateless and does not provide
reliable data transfer.

4.2.3.1 User Datagram Protocol

The IETF defined the User Datagram Protocol (UDP) in RFC 768 [53]. UDP uses
datagrams that provide connectionless communication, which means that no earlier
interaction between two nodes is required to exchange data. Therefore, UDP does not
provide reliable data transfer, as the protocol does not offer feedback to the sender about
whether the message was received successfully. Additionally, it cannot guarantee that
packages are not reordered or duplicated. Nonetheless, UDP uses a 16-bit checksum to
check the received datagrams against corruption.

Many applications use UDP and accept the weaknesses like unreliable data transfer as it
has less protocol overhead compared to protocols with reliable data transfer. Regarding
the context of this thesis, RTSs commonly use UDP because of this property. In such
cases, dropping packets is preferred over waiting for delayed retransmission, as the
additional time required to receive the retransmitted packet may interfere with the
remaining execution time of a task. In order to tolerate the dropping of packets, relevant
data gets sent more frequently than actually required by the corresponding task.

Regarding the network stack’s design, the interface for UDP can be held quite simply.
In general, we require only two functions, one that creates the header and calculates
the checksum and a second function deserialisation of the header and validation of the
checksum. The inputs for the checksum calculation are the UDP header itself, the
encapsulated user data, and the source and destination IP addresses.

4.2.3.2 Transmission Control Protocol

The Transmission Control Protocol (TCP) was defined by the IETF in RFC 793 [54].
In contrast to UDP, TCP is a connection-oriented protocol that requires establishing a
connection between applications before exchanging data is possible. Therefore, TCP has
the so-called three-way handshake, which defines how a client can connect to a server.
Its purpose is to exchange sequence numbers to check which messages were received
successfully. The three-way handshake consists of the following steps:

1. The client sets the SYN flag of the first message and transmits a random sequence
number A to initiate the setup of a connection.

2. The server sets the SYN-ACK flag in its response message. Additionally, it sets the
acknowledge value to A+1 and the sequence number to a random value B.

3. Finally, the client sets the ACK flag in its response message, the received acknowl-
edgement number to B+1 and the sequence number to A+1.
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The sequence number gets incremented after each transmission by the number of bytes
transmitted. Its purpose is to determine if this message is in the correct order. Addition-
ally, it indicates if this message is a duplicate or if a message is missing. Messages may
be received out-of-order. Therefore, the TCP header includes the number of transmitted
bytes to reconstruct the message. When a message is successfully received, the acknowl-
edgement number is calculated by adding 1 to the received sequence number and sent
back to the sender. This message then acknowledges all data received so far and informs
the sender about the next expected sequence number by the receiver. A system can
also acknowledge multiple messages at once. Therefore, the protocol uses the sequence
number of the last successfully received message. If an incorrect message is detected, the
acknowledge message shall take the sequence number of the last valid message before the
invalid message. The sender then retransmits every message starting with the one after
the last valid received message. The retransmission may create repeated transmissions of
valid packets because an earlier one was not received or the header was invalid.

Additional features of TCP are flow and congestion control. The former handles that
a receiver does not get overloaded with new messages, i.e., that the receive buffer does
not overflow. The latter takes care of not overburdening the network itself. Typical
measures used to implement are reducing the sending rate and limiting packets currently
in transfer.

Regarding the interface design for a TCP implementation, we require at least two
functions. One function is creating the header and calculating the checksum. The second
function is validating received frames. In addition, we need to store data like sequence
numbers and transmitted bytes for each connection to validate the reception of frames.
Furthermore, the network stack has to store outgoing messages until it receives the
acknowledgement. If the network stack does not receive the acknowledgement in time, a
timeout mechanism has to retransmit the unacknowledged messages.

4.2.4 Application Layer
The next higher layer is the application layer, which is the top layer in our network model.
It is home to various applications and services, like a web server or a file server. These
applications commonly use application layer protocols which are out of the scope of this
thesis. Nonetheless, these protocols depend on an interface to communicate, which has
to be provided by the network stack. Therefore, the stack provides the communication
interface, further described in Section 4.2.5.

4.2.5 Communication Interface
The network stack’s Application Programming Interface (API) is the main point for
interaction with the application layer. It provides the required interfaces for sending
and receiving data to and from the connected networks. The main goal is to have a
simple enough interface that is easily integrable but still provides enough freedom to work
with most protocols. This is essential for integrating functionality into an application
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or service. A commonly used implementation of such an interface is the socket API
provided by the Linux kernel. Michael Kerrisk [55] published a book on how sockets
work and their usage. The following explanations for the communication interface follow
the concept of sockets.

The general procedure of transmitting a message consists of four steps:

1. get configuration data

2. set input data for protocols

3. perform protocol serialisations

4. hand the message over to the network interface

The second step takes the configuration data of the communication interface and the
network stack, as well as the provided address, to generate the inputs required for serial-
ising the individual protocol layers. Thereby, serialisation is the process of transforming
data structures into an array of bytes. The main tasks handled in the serialisation
are generating the protocol headers with the gathered information and calculating the
protocol checksums. Finally, the buffers with the serialized protocol data and the user
data are handed over to the communication interface driver.

When thinking of communication, we want to send out data and receive messages from
the network. The reception process consists of the following four steps:

1. take over the frame from the network interface

2. deserialise the frame

3. execute header and user data checks of used protocols

4. provide the received data to the application

After a network interface has received a frame, the data is provided to the communication
interface to start the deserialisation. The starting point of the procedure depends on
the kind of hardware interface data, e.g., if the Ethernet NIC has received the frame,
it is treated like an Ethernet frame. Most transmission protocols have a checksum or
CRC to validate the correctness of the received data. If such a check fails, the received
data is invalid, and the stack stops processing the frame. After each protocol layer,
the communication interface checks whether there is a configuration which matches the
deserialised header or not. If the deserialised header data matches a configuration, the
communication interface forwards the encapsulated data to the corresponding application.
Otherwise, the frame is either further processed by the next higher layer or discarded if
the network stack does not support the protocol.
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4.2.6 Management Interface

Figure 4.2 shows a large block on the right side called Management Interface. This
entity handles the configuration of the individual layers and provides input data to the
communication interface. One of the essential tasks of the network management is setting
up the communication device drivers. Amongst other duties, this includes, if required,
configuring hardware addresses and device capabilities.

Another vital task is to provide information about the used communication devices to
the communication interface or other system services. As a system can have multiple
network interfaces, the communication interface requires this information to generate the
correct protocol headers. Depending on the interface, the single protocols need further
information for serialisation and deserialisation.

An additional network management task is to initiate the deserialisation of frames
received by the various network interfaces. This task is either done periodically or
upon the reception of a new frame. Each frame is copied from the network interface
into a temporary buffer and then provided to the communication interface to start the
deserialisation. Additionally, it provides information about the kind of frame located in
the buffer to the communication interface.

4.3 Real-Time Network Stack Architecture
Based on the interfaces and protocols introduced in the previous sections, we designed
a software architecture for an RT-capable network stack, depicted in Figure 4.3. The
individual layers already discussed in Section 4.1 are illustrated as green boxes. The grey
box defines the boundaries of our design. Everything outside of the box is not part of
our network stack.

At the bottom is the link layer, which is the layer with the most tasks. It provides
protocols like Ethernet for media access and hosts the device drivers required to interact
with the hardware. As there is a large set of communication channels, e.g., Bluetooth
and WLAN, we restricted the link layer to Ethernet for this thesis. Further details on
the tasks of the link layer got introduced in Section 4.2.1. Buffer management, which
is essential for the operation of this layer, is used to provide storage for incoming and
outgoing frames. Figure 4.3 depicts it on the right side next to the link layer. For further
information on this topic, please have a look at Chapter 6. Additionally, on this layer
are the driver interfaces introduced in Section 4.2.1.3. For an example of a TSN driver
design and implementation, please look at Chapter 7.

The next higher layer in our network model is the Internet layer, which hosts the Internet
Protocol (IP). In Section 4.2.2, we provide further details on this layer. As the top
layer inside the network stack, the transport layer is home to the protocols used by
most applications. Notable examples of such protocols are TCP and UDP, which were
introduced in further detail in Section 4.2.3.
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Figure 4.3: Overall architecture of the RT network stack

The generic applications illustrated at the top of Figure 4.3 exemplify how applications
can interact with the network stack. These applications either use application layer
protocols or directly interact with the network stack. Therefore, we defined our socket
interface, which abstracts the inner workings of the network stack from the application
layer. We decided to orientate the design on the principles of the sockets provided by
the Linux kernel for two main reasons. Firstly, because it is a widely known and applied
concept, which simplifies migrating existing applications to the proposed RT network
stack architecture. Secondly, the interface has a simplistic design, which is a good starting
point for integrating more complex protocols on top of it. An additional goal was to have
the possibility to interact with the network from each layer, e.g., communicate directly
via a link or Internet layer protocol. For further details on the application interface,
please look at Section 4.2.5.

Section 4.2.6 states that a configuration and management interface is essential for a
network stack. This interface acts not by interacting with the communication channels
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but by changing the network stack’s configuration parameters and the used hardware.
General tasks like setting protocol addresses require this functionality so that the device
is reachable from the network. In our design, we defined the net_mgmt module to handle
these tasks.

4.4 Further Findings and Reflections
The scope of this thesis is limited, some protocol requirements were not satisfied, and
we managed only to implement a subset of all protocol features. The stack has further
limitations imposed by the constraints of the hardware used for this thesis. Therefore,
we discuss the limitations of network stack implementation in this section.

4.4.1 ICMP, IPv6 and TCP Support
The focus of the network stack is RT communication which is not dependent on Internet
Control Message Protocol (ICMP) support. The main focus of ICMP is the exchange of
control messages, e.g., checking if a host or a port is reachable. In an RT network, the
endpoints need to know their communication peers in advance, and there is typically no
response to their messages. The additional exchange of ICMP messages would add load
to the network, which is an undesired side effect.

This thesis focuses on already established automation networks, which primarily only
support IPv4. Therefore, we excluded IPv6 from the thesis. Nonetheless, many topics
discussed for IPv4 apply to IPv6 as well, with minor adaptations.

TCP sends out requests and waits for their responses which requires storing a state. The
network stack design focuses on a stateless operation to be easily fully WCET analysable.
Therefore, we excluded TCP from the implementation.

4.4.2 IP Fragmentation
One crucial part of packet-based communication is the transmission over different networks
with varying MTUs. Switching from an Ethernet link to a connection with a lower MTU
requires that frames are separated. In IPv4, this separation gets executed by each router
hop if the MTU changes to a lower value. As we always assume an Ethernet MAC layer
and no frames from a different network, this functionality is out of scope. Therefore,
frames with a length greater than 1518 bytes get rejected by the stack and will not be
transmitted. Received frames with a set fragmentation flag will be dropped on reception.

4.4.3 Hardware Offloading
Protocols like TCP and UDP use a 16-bit checksum to check if the received data is valid.
Its calculation uses the whole user data and specific header fields and is a relatively simple
iterative calculation. Nonetheless, many NICs have functions to offload this calculation
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to free the host’s CPU. As the used underlying Ethernet MAC does not provide such a
feature, the checksum calculation got implemented in software.

The used hardware does not contain a so-called Direct Memory Access (DMA) controller.
A DMA offloads the copy operations between memory locations and frees the CPU
from this task. As Patmos does not have such a controller, the process gets executed in
software, which is inefficient in comparison. Implementing these functions in hardware
could significantly improve the performance of the network stack.

4.4.4 WCET Analysability Boundaries
As the RT network stack shall provide a generic implementation, some processes are
hardly WCET analysable. For instance, an Ethernet frame has a variable length that
ranges from 64 bytes up to 1518 bytes. Therefore, for each frame, the maximum length
has to be assumed.

A more problematic boundary to determine is the number of received frames when
extracting the data from the driver. We can determine a potential upper bound via
the link speed. Nonetheless, the processor’s speed may also limit this, i.e., how fast
the driver can handle a frame. Another limiting factor is the memory space available
inside the Ethernet MAC and the queue length of the received frames. Except for the
queue length, the other parameters are hardware-dependent and require understanding
the full hardware specifications to determine an upper bound. The WCET is further
impacted by how often the stack executes the process of parsing frames. Such parameters
get defined by the integrator integrating the stack into an application. I.e., reading the
frames from the driver in a tighter interval reduces the number of frames stored in the
device’s memory but increases the load on the CPU.

If we start looking at the transmission of frames, the question resides about the boundary
between the call to send and the actual frame sending. The process of handing over user
data for header creation and finally transferring it to the driver can be analysed. If the
driver is currently free, the transmission on the wire may start immediately, but if a
frame is already waiting for transmission or the Ethernet MAC is currently busy, the
frame gets queued. To determine an upper bound until the frame is transmitted, one has
to know the maximum duration an Ethernet frame takes between starting and finishing
a transmission. The transmission duration further depends on the link speed, the used
Ethernet MAC and the PHY chip that handles the transmission over the wire.

4.4.5 WCET Analysability of the Reception
The first approach for handling the reception was to call a callback function when the
frame was successfully parsed and then hand over the data. This approach has the
downside that it uses function pointers, which get resolved during runtime. Therefore,
a tool relying on a static code analysis cannot calculate the WCET. To allow WCET
analysis of the entire reception of the frame, we decided to decouple the network stack
operations from the receiving application. Therefore, the application has to provide
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some memory space to the network stack to store buffers for the packets until the
application reads them. This approach has the downside that the frame has to be copied
multiple times, first from the memory space of the network interface to a temporary
buffer inside the network stack’s memory. Second, when the stack has identified the
receiving application the data gets copied into the memory space from the application.
Finally, the frame has to be copied a third time when the application reads out the
message from the socket interface.

4.5 Evaluation
To evaluate the design of the proposed network stack, we decided to employ static WCET
analysis to determine the worst-case scenarios and paths inside the network stack. We
also decided to evaluate the average runtime it takes to hand over a packet to the network
stack. This path includes creating the different headers for each layer and handing over
the data to the Ethernet MAC driver.

4.5.1 Static WCET Analysis
Except for correct operation, the main focus is WCET analysability of the whole stack for
usage in combination with RT applications. Since not all frames sent via the network are
a maximum Ethernet frame of 1518 bytes, we decided also to analyse frames of a smaller
size. We selected a frame length of 64 bytes, which is the minimum size of an Ethernet
frame, since embedded systems tend to send shorter frames. Table 4.1 depicts the results
of the static WCET analysis for both cases, 1518 and 64 bytes length. The WCET
tooling used provides the worst-case runtime results in cycles. For better readability, we
converted these values based on the clock frequency of our target system, which is 80
MHz. The table has two sections, the upper half represents the sending portion of the
network stack, and the lower half represents the receiving portion.

When sending frames, we see that the most prominent contributors are the network_send
and the system_send functions. Thereby, network_send handles handing over the just
created frame to the driver interface. For more information on this, see Chapter 7. Next,
system_send is a wrapper function for messages sent by the system and not meant for an
application, e.g., sending ARP requests to retrieve the MAC address of the communication
peer. Another significant contributor to the WCET is the udp_build_datagram, or
rather its sub-function udp_compute_checksum. The system does not have any hardware
accelerators to take over the calculation of the UDP checksum. Therefore, this has a
significant impact on the WCET. As IP fragmentation is not supported, the loop boundary
for the WCET analysis got derived from a maximum UDP payload size of 1472 bytes. As
seen in Table 4.1, this still requires a decent amount of computation. In comparison, the
checksum calculation for the IPv4 frame (ipv4_compute_checksum) has significantly
less impact since IPv4 calculates the checksum only over the header and not the user data.
Additionally, the function for building an Ethernet frame with or without the VLAN
extension header is relatively fast. This is due to the usage of the hardware-accelerated
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WCET 64 bytes
Function cycles at 80 MHz cycles at 80 MHz

socket_send () 738914 9.24 ms 293255 3.67 ms
arp_build_request () 4013 50.16 µs 4013 50.16 µs
system_send () 286158 3.58 ms 107070 1.34 ms

network_send () 272132 3.4 ms 93044 1.16 ms
udp_build_datagram () 92781 1.16 ms 5298 66.23 µs

udp_compute_checksum () 91399 1.14 ms 3916 48.95 µs
ipv4_build_datagram () 7693 96.16 µs 7693 96.16 µs

ipv4_compute_checksum () 2814 35.18 µs 2814 35.18 µs
ethernet_build_frame () 2097 26.21 µs 2097 26.21 µs
ethernet_build_vlan_frame () 2523 31.54 µs 2523 31.54 µs
network_send () 272132 3.4 ms 93044 1.16 ms

socket_handle_frame () 1246441 15.58 ms 515770 6.44 ms
socket_handle_mac_layer () 772407 9.66 ms 450813 5.64 ms

ethernet_handle_frame () 2590 32.38 µs 2590 32.38 µs
ethernet_handle_vlan_frame () 582 7.28 µs 582 7.28 µs
arp_handle_message () 65200 815 µs 65200 815 µs
system_send () 286158 3.58 ms 107070 1.34 ms
socket_copy_to_receive_buffer () 329488 4.12 ms 7894 98.68 µs

socket_handle_network_layer () 18684 233.55 µs 18684 233.55 µs
ipv4_handle_packet () 6013 75.16 µs 6013 75.16 µs

ipv4_verify_checksum () 2556 31.95 µs 2556 31.95 µs
socket_handle_transport_layer () 447678 5.6 ms 38601 482.51 µs

udp_handle_datagram () 93328 1.17 ms 5845 73.06 µs
udp_verify_checksum () 91468 1.14 ms 3985 49.81 µs

socket_copy_to_receive_buffer () 329488 4.12 ms 7894 98.68 µs

Table 4.1: WCET analysis values for sending and receiving frames

CRC calculation provided by the Ethernet MAC. Therefore, the Ethernet-FCS calculation
can be offloaded and reduces runtime.

Next, we take a look at the handling of received frames. We can see that the MAC layer and
the network layer require significant time to process a frame. The most significant contrib-
utor is the copy function to the sockets receive buffer (socket_copy_to_receive_buffer).
Significant improvements are achievable with better copy mechanisms. At the time of
writing, the data is copied byte by byte, which is relatively inefficient. With a pretty
optimistic assumption, an improved version can finish the process in about a quarter of
the time used. Another significant contributor to the WCET is the verification of the
UDP checksum, as it requires the same computational power as the checksum calculation.
Again, the required computational time is significantly less for the IPv4 checksum. As the
Ethernet MAC verifies Ethernet-FCS, we do not need to take care of this since erroneous
frames get discarded by the hardware. For certain requests, e.g., ARP requests, the
stack itself generates the appropriate response. Therefore, the system_send function
also occurs in the receiving portion of the network stack.

32



4.6. Summary

4.5.2 Runtime Analysis
As already described, in addition to the worst case, we want to analyse the average case
by measuring the time it takes to hand over a packet to the network stack. Therefore, we
use two frame sizes, like for the WCET analysis. First, we create a packet that results in
an Ethernet frame of maximum size. This maximum frame uses 14 bytes for the Ethernet
header, 4 bytes for the FCS, and 1500 bytes of data. The available space gets filled with
a UDP datagram which requires the UDP header (8 bytes) and the IPv4 header (20
bytes). In addition, we configured the VLAN tagging for the interface, which requires
another 4 bytes for the extension header. Therefore, the remaining space (1472 bytes)
was filled with a random string. We also ran the same test using an Ethernet frame of
only 64 bytes with 18 bytes of UDP user data.

We executed our test 800 times and our measurements have shown that we have an
approximately consistent runtime to execute socket_send. For sending an Ethernet
frame with 64 bytes of data, we measured an average runtime of 829 µs, with deviations
less than 2 µs. For the measurements with 1500 bytes of data, the average runtime is
1732 µs, with less than 2 µs of deviation.

4.6 Summary
In this chapter, we have introduced in Section 4.1 the layered design, which describes
the communication patterns of networks. Based on these definitions, we described the
various members of said layers from Section 4.2.1 to Section 4.2.4. Using these definitions,
we designed an RT-capable network stack. We depicted the design in Section 4.3 and
discussed its boundaries in Section 4.4. The network stack was then evaluated based
on static WCET analysis and runtime measurements in Section 4.5. Based on these
two sections, we have achieved our set goals, but there is still room for improvement
in various sections. Be it by extending the stack with features of the Internet Protocol
(IP) like fragmentation, the addition of protocols like ICMP and TCP, or optimising its
general operation.
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CHAPTER 5
Time Synchronisation

In almost any computer network, the individual devices have some local clock to keep track
of the current time. Due to temperature variations, differences in voltage, imprecisely
manufacturing of quartz crystals, and other physical constraints, these clocks will tick
with slightly different frequencies and eventually drift apart. Time synchronisation, also
commonly referred to as clock synchronisation, is employed to increase the accuracy of
the system’s time.

The chapter starts with introducing the topic of time synchronisation in Section 5.1. In
Section 5.2, we introduce gPTP, which TSN employs to synchronise the communication
peers. With gPTP introduced, in Section 5.3, we introduce the time synchronisation
service, an application that provides time synchronisation. Rounding up the implementa-
tion, in Section 5.4, we provide delimitations, limitations and pitfalls encountered during
design, implementation and usage. Further, we evaluated our time synchronisation service
in Section 5.5. Lastly, in Section 5.6, we summarise the contents of this chapter.

5.1 Introduction to Time Synchronisation
To get a common understanding of this chapter, we introduce the following definitions:

• A clock is a device that ticks at a specific rate and modifies a counter value.

• The time is the counter value of the clock converted into seconds or any other time
unit.

• A timestamp is a snapshot of the time.

In this section, we introduce synchronisation and the less commonly used syntonisation,
see Section 5.1.1 To get a common notion of time across a network, various protocols
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are in use. The most prominent protocols used are Network Time Protocol (NTP), see
Section 5.1.2, and PTP, see Section 5.1.3.

5.1.1 Synchronisation and Syntonisation
The process of time synchronisation is the distribution of time to other devices. Its goal
is that every synchronised device shall have the same notion of time. In the case of
pure time synchronisation, if a new timestamp is received, the local clock’s time will
be adapted to this value, but the tick rate will stay the same. A protocol like NTP
synchronises the time of computers in a network to a centralised time source.

Time syntonisation, on the other hand, means that two clocks shall have the same tick
rate. In other words, e.g., a second shall be the same time interval in both clocks. To
syntonise two clocks, the tick interval is constantly updated to achieve the same tick
rate. Syntonisation does care about the actual time value inside the clock. Protocols like
PTP use it in combination with time synchronisation to reach sub-microsecond accuracy,
which control systems require.

5.1.2 Network Time Protocol
NTP is one of the most widely used protocols to distribute the current time in computer
networks. It uses a client-server architecture on top of UDP to synchronise the computer
to the Universal Time Coordinated (UTC). It provides accuracy within tens of milliseconds
to the UTC over the Internet. In a LAN, this can improve to within a millisecond.

NTP uses the so-called Stratum model, where the system consists of multiple levels called
Stratum. The root of this hierarchical structure is a set of time servers, which provide the
time reference for the network. This level is called Stratum 0. These devices synchronise
themselves to a so-called primary time source. This reference can be an atomic clock, a
Global Navigation Satellite System (GNSS), e.g. Global Positioning System (GPS) or any
other radio clock. The next layer is Stratum 1, which distributes the time information
to other network devices. Members of this level are directly connected to a device from
Stratum 0 to get accurate time information for distribution. These computers are called
primary time servers. Stratum 1 devices distribute their time information to Stratum 2
devices and so on up to Stratum 15. Additionally, servers of the same Stratum may also
synchronise with each other for sanity checking and backup. The clients then synchronise
their local clock by polling multiple time servers.

5.1.3 Precision Time Protocol
In general, time synchronisation in the range of milliseconds or tens of milliseconds is
sufficient for most applications. For control systems or RTSs, this is different. There are
higher degrees of synchronisation required. Therefore, protocols with higher accuracy,
like PTP, which can provide sub-microsecond accuracy, get used. IEEE standardises it in
IEEE 1588 [25]. The standard IEEE 802.1AS [26] defines the generalized Precision Time
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Figure 5.1: Example gPTP network

Protocol (gPTP). It uses a subset of PTP and can be seen as a configuration rather than
a standalone protocol. In this thesis, we focus on TSN, which employs gPTP. Therefore,
we provide a detailed introduction to gPTP.

5.2 The generalized Precision Time Protocol
PTP defines various ways to handle synchronisation, but gPTP only uses a subset.
In PTP, various transport layers are available, but gPTP defines the use of Ethernet.
Additionally, the Peer-to-Peer (P2P) delay mechanism shall be used instead of the E2E
delay mechanism.

To understand the processes of time synchronisation in gPTP, we introduce the following
terms:

time-aware system: a system that is aware that there exists a network time and has one
or more PTP instances

grandmaster : the clock source of the network, which all members synchronise to

time-aware bridge: a time-aware system which distributes timing information to other
time-aware systems and may also be the grandmaster

time-aware end station: a time-aware system, which either is the grandmaster of the
network or a receiver of timing information

A time-aware end station can be either a complete system like a Microcontroller Unit
(MCU) with a single interface that supports hardware synchronisation. It can also be
a system with multiple NICs or a SoC with multiple Ethernet interfaces for redundant
access. In such cases, each interface synchronises independently, establishing separate
PTP instances. Nonetheless, only one interface shall be the source to synchronise the
system’s clock.
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Figure 5.1 depicts an example gPTP network. The figure shows three types of ports:
master, slave and passive. A master port is the time reference for a connection. If the
connected peer is a slave port, then the time-aware system uses this port to synchronise
the system. If the port is a passive port, it synchronises with the network but does not
synchronize the system clock to the connected master port. Each time-aware system
can only have one slave port as it can only synchronise to one master. In Figure 5.1,
the grandmaster device is in the middle of the figure. The grandmaster is typically
assigned using the BMCA based on factors like the local clock source quality and the
location inside the network. The grandmaster provides the reference time for the whole
network and has only master ports. In this example network, the time-aware bridges
at the bottom and the top have redundant connections. These time-aware bridges will
always have a passive port since the direct connection to the grandmaster is preferred.

5.2.1 Peer Delay Measurement
Figure 5.2 depicts an example of the P2P delay measurement. For simplicity reasons, we
omit further correctional values of the messages transmitted. The single steps of the peer
delay calculation are as follows:

1. The initiator sends a peer delay request message to a slave and stores the time t1.

2. The responder stores the time of reception as timestamp t2.

3. The responder sends a delay response message with the timestamp t2 as its payload
and stores the time of sending as t3.

4. The initiator stores the time of reception as timestamp t4.

5. The responder then sends a follow-up message which includes the timestamp t3 as
its payload.

6. The initiator can now calculate the path delay with the following equation:
meanPathDelay = (t4−t1)−(t3−t2)

2 .

5.2.2 Offset Calculation and Correction
In periodic intervals, the master port will send synchronisation messages to the slave port.
Figure 5.3 depicts an example how this messages get exchanged. With the calculated
path delay, the slave port can calculate the time offset from the master and adjust its
local port clock.

1. The master port sends a sync message and stores the time as its precise origin
timestamp.

2. When the slave receives the sync message, it creates the sync ingress timestamp.
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Figure 5.2: Peer delay measurement procedure, adapted from [26]

3. The master sends a follow-up message with its precise origin timestamp as the
payload.

4. The slave can now calculate the offset and the corrected time at the master as
follows:
offset = syncIngressT imestamp−preciseOriginT imestamp−meanPathDelay
correctedMasterEventT imestamp = preciseOriginT imestamp+meanPathDelay.

The slave then uses the calculated offset to adjust the local clock to syntonise with the
master. The adaptation can be setting the time to the calculated corrected master time
if the clocks have drifted too far away or the two clocks establish synchronisation for the
first time. If this is not the case, the tick intervals of the clock shall be corrected. With
this approach, it is possible to gain sub-microsecond accuracy between the clocks in a
network.

5.2.3 Port State Decision Procedure
Figure 5.4 depicts the simplified port decision state machine for gPTP. This state
machine is from PTP and has the configuration of gPTP applied to it, yielding a reduced
diagram. The initial state Power Up indicates the power up of the system. It triggers the
initialisation of the port in state Initialising. Per default, the port assumes the master
role until a State Decision Event is triggered. Then the state machine switches into
an intermediate state, depicted with a dashed outline. Section 5.2.4 explains the inner
workings of the State Decision Algorithm, which provides a recommended Port State.
That recommendation can either be BMC Master to switch into the master state, BMC
Slave to act as a slave port or BMC Passive to enter passive operation. Additionally,
the port can be disabled using a Designated Disabled event and enabled again via a
Designated Enabled event.
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Figure 5.4: Port state decision state machine, adapted from [25]

5.2.4 Best Master Clock Algorithm
The BMCA is used inside gPTP networks to calculate what time-aware system shall be
the master clock, commonly referred to as the grandmaster. Via this algorithm, gPTP
creates a time synchronisation tree over a network. These algorithms are decision trees
that operate on three different data sets. The first is the Default Data Set (defaultDS),
also referred to as D0, which is the data set of the system clock. Additionally, the data
set Erbest references the best external data set received on port r and the data set Ebest

is the best data set received on all ports. The following subsections introduce the State
Decision AlgorithmState decision algorithm.
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Figure 5.5: BMCA state decision algorithm, adapted from [25]

Figure 5.5 depicts the algorithm for the state decision. Ports distribute information
about their local clock and their grandmaster using announce messages. If not defined
otherwise in the configuration, each device sees itself as the grandmaster. Therefore,
the algorithm checks first if the system has already received an announce message, i.e.,
if the system has already calculated an Ebest data set. If this is still empty, the state
shall not be changed, i.e., the system shall stay in its default state. The next step is
to check if the port’s clock has a class between 1 and 127, i.e., if its time source is a
primary time reference, e.g., a GNSS. The grandmaster of a network is preferably a
device with a high-accuracy time source. By definition, only one of these devices can be
the grandmaster. Therefore, only one of these systems will synchronise with the network.

If the system’s clock class is above 127, the decision algorithm compares the defaultDS
with the best data set received on any port (Ebest). Section 5.2.4.1 explains the algorithm
to compare two data sets. If the defaultDS is better than Ebest, then all ports will be
configured as master ports, i.e., it is the grandmaster. If not, the port shall either receive
timing information or distribute the timing information of another system.

Assuming port r received the data for the Ebest data set, i.e., Ebest = Erbest, this port
connects to the best master port. Then this port r shall set itself into the slave state
and synchronise to the connected time-aware system. Given that another port received
Ebest, i.e., Ebest = Erbest, the algorithm has to decide if Ebest is better than Erbest or if
it is only better by topology. If Ebest is only better by topology, it indicates that both
data sets have the same grandmaster, and only the path differs. Therefore, the port shall
switch into the passive state. Given now that Ebest is better than Erbest, the port shall
switch into the master state in order to distribute the timing information of Ebest.
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Figure 5.6: Data set comparison algorithm, adapted from [25]

5.2.4.1 Data Set Comparison Algorithm

Figure 5.6 shows the decision flow to compare two data sets. In general, this diagram
consists of two halves. The left part compares two datasets with two grandmasters and
determines which is the better data set. The right part compares two data sets with the
same grandmaster and determines which data set has the better path to the grandmaster.

As already introduced, a PTP network typically has only a single grandmaster, but this
is not true in some situations. For instance, when all the network members just started
and all the devices see themselves as the grandmaster, or if the old grandmaster went
offline. Therefore, a comparison algorithm is required to select the best grandmaster
among two candidates. The comparisons use the members defined in Table 5.1.

Assuming that both data sets refer to the same grandmaster, the decision algorithm
selects which path to select. Which path to select can be resolved via the steps removed
value. If the difference between the number of steps is less or equal to one, it is unclear
which path to select. In this case, the algorithm selects the path based on the lower
identity values.
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Properties used in Figure 5.6 Explanation
GM priority1 Priority values, lower values take precedence.
GM priority2
GM Identity A unique identifier for, clocks typically derived from the
Identity of Sender EUI 48
Identity of Receiver MAC address
GM class Defines capabilities of a clock
GM Accuracy Accuracy of the clock
GM offsetScaledLogVariance An estimate of the clock drift in logarithmic scale
Steps Removed How many hops the grandmaster is removed
Port Number of Receiver The port number where the message was received

Table 5.1: Definitions of the values used for the data set decision algorithm.

5.3 Time Synchronisation Service
We decided to implement time synchronisation as a service which we will refer to as the
time synchronisation service from now on. One of the two main reasons for this design
decision was the location of gPTP, or rather PTP, inside the application layer. The
other reason was that the network stack design has statelessness in its mind, and gPTP
requires that states get stored internally.

Generally, a time-aware end stations could provide multiple Ethernet interfaces for
redundant network access. Since this thesis does not focus on redundancy, we decided
to design and implement the time synchronisation service only for a single interface.
Therefore, the BMCA state decision algorithm from Figure 5.5 gets simplified as there is
no difference between Erbest and Ebest. Nonetheless, the design allows easy extendability
for redundancy. Therefore, one has to extend the update routine to query multiple
sockets and extend the implemented design to be equivalent to Figure 5.5.

The time synchronisation service accesses the network interface driver to get and set
data of the Real-Time Clock (RTC), e.g., the current time and message timestamps. The
service uses this data internally to calculate offsets and mean path delays. With the
calculated offset, the driver can manipulate the Ethernet MAC’s RTC. This modification
can be done by using the offset and letting the clock adjust its tick intervals. Alternatively,
the service can also set the value of the RTC if the current time differs significantly.

As it is essential to synchronise with other devices on the network, applications may also
require the current time. This use case may be especially relevant for TSN to allow the
Real-Time Operating System (RTOS) to synchronise the execution of an application
to the schedule. Therefore, the time synchronisation service provides an interface
allowing applications to retrieve the current network time. Since gPTP communicates
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its timestamps via a logical value in seconds and nanoseconds, the interface does not
provide a conversion to a human-understandable wall clock format.

In addition to the system clock, each Ethernet port has its dedicated RTC, which can be
adjusted to synchronise with another device. Therefore, two mechanisms were introduced,
setting the time directly and configuring an offset calculated according to Section 5.2.2.
The RTC takes an offset as input and tries to correct itself towards zero offset. Therefore,
the size of the timer value increment is adapted based on the size of the offset, e.g., if
the offset is positive, the RTC is running too fast. Therefore, the tick increment value
gets reduced to slow the clock down. The inverse is applied if the offset value is negative,
i.e., the clock is too slow. Kyriakakis et al. [35] implemented a hardware timestamping
engine to improve the accuracy. This engine deserialises the RX and TX channels of the
MII, which connects the Ethernet MAC to the PHY chip. The engine samples the MII
channels and parses the received and transmitted frames. If the frame is a PTP frame,
the engine issues a timestamp. This timestamping procedure is executed independently
for RX and TX channels.

5.4 Further Findings and Reflections
In this section, we want to point out some findings we discovered during the implementa-
tion and testing of the time synchronisation service. For instance, we discovered that the
used hardware implementation suffers from aliasing and that we require a qualification
of timestamps.

5.4.1 Frame Sampling and Aliasing
The Ethernet MAC runs with an 80 MHz clock, but the MII has a specified clock for
100 Mbit/s of 25 MHz. Since the system’s base clock is not a harmonic of the MII clock,
effects like aliasing can occur when sampling the RX and TX channels. While analysing
the provided hardware implementation, we have discovered that not all transitions get
detected correctly, e.g., the hardware reads a bit as one, but its correct value is zero.
This flawed detection mechanism impacts the operation of the time synchronisation
service, as calculations cannot access the correct timestamp. Therefore, many frames
and calculation results get discarded due to erroneous values.

This reduced generation of timestamps is inconvenient, but the time synchronisation still
works. The downside is a negative impact on the time synchronisation service’s accuracy.
One can discard mean path delay values that exceed a maximum threshold, but this is
not applicable regarding the offset calculation. A wrongly calculated offset can lead to a
significant deviation between the two systems trying to synchronise.

5.4.2 Qualification of Timestamps
While testing and evaluating our proposed time synchronisation service, we discovered
irregular values in the timestamping process. Seemingly at random, the calculated
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offset between two timestamps differed by multiple milliseconds, in extreme cases going
up to hundreds of milliseconds. Therefore, we evaluated the used implementations
for fixed-point arithmetic and concluded that the issue either lies at the receiving or
transmitting side. Given the assumption that we used Linux PTP, a well-known project
that implements PTP, we assume that the root cause lies somewhere in the used hardware
implementation.

We implemented a qualification mechanism to counter the identifiably wrong timestamps
if a calculated offset shall be applied or discarded. If the last offset is within a certain
threshold, e.g., 100 µs, and the newly calculated offset is also within this threshold, the
time synchronisation service applies this new offset. The offset will not be applied if the
last offset is within this threshold and the new offset exceeds the threshold. If only a
single timestamp is wrong, this only discards the one wrong value, but this issue can
occur subsequently. Therefore, we implemented a counter, which allows the acceptance
of new offsets since the clock drift could exceed the threshold.

We use a simpler form of a fixed threshold to calculate the mean path delay. If the
calculated value exceeds the threshold, we discard the value. In contrast to the offset
offset, the mean path delay is not directly related to the master clock. Therefore, we
decided not to implement a similar mechanism and only used the fixed threshold.

During testing we detected that the Ethernet link only operates in half duplex mode
instead of full duplex. This can be backtracked to the Ethernet MAC of Patmos, which
only supports 100 Mbit, but our grandmaster device only has a Gbit interface. Initially,
we assumed that the half duplex mode causes increased collisions and bus arbitrations
errors, hence Linux PTP may send incorrect timestamps. Further investigation using a
100 Mbit interface, which allowed full duplex operation, contradicted our theory.

5.5 Evaluation
Based on our use case, we implemented a test program which forces the device to act
as a gPTP slave clock. For the master clock, we selected a Raspberry Pi Model 3b,
which runs Linux PTP. We selected the Raspberry Pi as it provides a 100 Megabit
(Mbit) interface, and the used Patmos Ethernet MAC only supports 100 Mbit. We used
the gPTP configuration of Linux PTP, except the maximum propagation delay was
adapted. This configuration specifies a sync message interval of 125 ms and a path delay
calculation once every second. We focused our evaluation setup on how well the system
stays synchronised with the master clock. Therefore, we did not further evaluate the
mean path delay.

We configured Patmos to have two interfaces with PTP support to measure the significance
of the clock drift. For the measurement, we synchronised one interface with a master
clock and set the second interface’s time once the first interface was synchronised. Given
the assumption that the same implementation on the same silicon behaves equally, we
can determine how far the local clock drifts away from the master clock. Figure 5.7

45



5. Time Synchronisation

samples (n)

of
fs

et
 fr

om
 m

as
te

r(
us

)

-1000

0

1000

2000

3000

4000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Offset from Master Clock Drift

Synchronised vs Unsynchronised Clock

Figure 5.7: Measured clock drift

offset (us)

sa
m

pl
es

 (n
)

0

250

500

750

1000

1250

-5
0.

00
-4

8.
00

-4
6.

00
-4

4.
00

-4
2.

00
-4

0.
00

-3
8.

00
-3

6.
00

-3
4.

00
-3

2.
00

-3
0.

00
-2

8.
00

-2
6.

00
-2

4.
00

-2
2.

00
-2

0.
00

-1
8.

00
-1

6.
00

-1
4.

00
-1

2.
00

-1
0.

00
-8

.0
0

-6
.0

0
-4

.0
0

-2
.0

0
0.

00
2.

00
4.

00
6.

00
8.

00
10

.0
0

12
.0

0
14

.0
0

16
.0

0
18

.0
0

20
.0

0
22

.0
0

24
.0

0
26

.0
0

28
.0

0
30

.0
0

32
.0

0
34

.0
0

36
.0

0
38

.0
0

40
.0

0
42

.0
0

44
.0

0
46

.0
0

48
.0

0
50

.0
0

Offset Distribution

Figure 5.8: Offset from the master clock

depicts the results of our measurement. One can see that the measured clock drift over
10.000 samples is around 4 ms. Such a significant drift would invalidate the operation of
a TSN schedule.

In Figure 5.8, we depict how well the slave clock stays synchronised. We see a cluster
around the 0 µs mark. The outer edges of the offset are around +/- 40 µs and the
standard deviation is 10.36 µs. There is still room for improvement as gPTP allows
synchronisation in the sub-microsecond domain, but for this thesis, this is sufficient.

5.6 Summary
This chapter introduced the basics of time synchronisation and syntonisation and the
most prominent protocols to synchronise devices on a network. Please have a look at
Section 5.1 for more information. In Section 5.2, we gave a detailed introduction to
gPTP, its delay measurement and decision algorithms. Based on these definitions, we
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implemented the time synchronisation service, which we introduced in Section 5.3, with
its limitations listed in Section 5.4. We evaluated the accuracy of our time synchronisation
in Section 5.5.

47





CHAPTER 6
Buffer Management

Due to its indeterministic behaviour, DSA is rarely used in RTSs. Nonetheless, buffer
management is one of the core elements of many network stacks as it temporarily stores
incoming and outgoing frames. One of the most important roles is reserving the required
memory space for a frame and ensuring safe access to it. There are many different
management strategies with varying complexity, various pros and cons, which will be
studied in this chapter.

In the following sections, we will take a closer look into different approaches for mem-
ory management, see Section 6.2, and algorithm types applying said approaches, see
Section 6.3. The different types of algorithms will be compared to each other regarding
worst case complexity and space requirements in Section 6.4. Finally, in Section 6.5, we
present the design of our buffer management system and in Section 6.6 we discuss at the
limitations of the presented design.

6.1 Introduction to Memory Management
Memory management is the process of overseeing the resource usage of a system’s memory.
This memory can either be the main memory, often referred to as system Random Access
Memory (RAM) or the memory of a peripheral device, which needs some management.
In general, its tasks are providing memory space dynamically to an application that
requests it. Further, it cleans up the memory when the application returns it. For
example, a client requires space to send a message to a server. Abraham Silberschatz et
al. [56] introduce how OSs use memory management for concepts like virtual memory
and paging.

Generally speaking, there are two types of memory management: manual and automatic.
The former requires the application to request memory actively and free that memory
again, whereas this is done automatically in the latter case. The runtime environment

49



6. Buffer Management

does automatic memory management. For instance, it allocates memory on the stack
to store variables when the program calls a subroutine. This memory is then released
automatically when the routine is left again. In programming languages like Java, the
runtime automatically allocates memory when the program initiates the creation of a
new object. To clean up unused objects, the so-called garbage collector is used, which
searches for such unused objects, and frees the memory space used by them.

In the remaining chapter, we focus on manual memory management, which can be split
into static and DSA. The former defines that the memory is allocated in a static fashion,
e.g., assigned at compile time. The latter defines that allocation is done dynamically
during the program’s runtime. For more information on the approaches to memory
management see Section 6.2.

Finding free memory space is a job taken over by a so-called Allocator. It searches in the
managed memory space for an unused area, which can be allocated for an application.
One or more instances of Free-Lists typically handle the references to such accessible
areas. Their task is to provide the allocator with a fast and efficient way to find a memory
block with a matching size.

To correctly detect what portion of memory is actually free, many allocators use so-called
Boundary-Tags. These tags are small data structures placed inside the managed memory
either at the beginning and/or the end of a buffer. A Boundary-Tag typically has a
reference to the start addresses of the next and the previous buffer as well as a reference
to whether it is currently free or allocated.

Additionally, Boundary-Tags are useful helpers for splitting and coalescing buffers. If a
free block of memory is larger than requested, it can be split into multiple chunks to
improve memory utilisation. When the said block is freed again, the Boundary-Tags
can be used to easily determine the boundaries of the neighbouring memory chunks and
merge them together if they are also free. This is done to reduce fragmentation of the
memory.

Fragmentation is a severe challenge regarding dynamic memory management. In general,
it describes that the memory gets scattered into many distinct blocks. If the memory is
not managed well, these scattered blocks limit the size of the largest chunk allocatable.
In other words, there may be sufficient free memory in a system for a larger request, but
this memory is not one continuous block and, therefore, cannot be allocated.

In Figure 6.1, the general structure of a memory management system is depicted. The
Allocator spans over the whole memory, as it is the element which accesses the actual
memory. The Free-List is a part of the allocator, as it stores the references to the free
memory space. It points to Boundary-Tags which are not allocated. Said tags are located
inside the memory and have references to their neighbouring memory spaces.
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Figure 6.1: General overview of a memory management system

6.2 Manual Memory Management Approaches
There are various ways of managing memories. Typically, these mechanisms are split into
static and dynamic memory allocation approaches. The former definition is quite narrow,
but the latter defines a broad range of mechanisms. For the introduction to the topic of
memory management, we introduce a more fine-grained separation of DSA approaches.
These are further divided into buffers with uniform sizes, buffer classes with fixed and
flexible sizes, and buffers with freely selectable sizes. The hierarchy of these algorithms is
depicted in Figure 6.2. The further right a memory management approach is located,
the more freedom of buffer sizes is provided, which generally indicates a more complex
memory management algorithm but also improves utilisation.
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Figure 6.2: Different schemes of memory management mechanisms, extended from [57]

6.2.1 Static Memory Allocation
There are two common ways of statically reserving memory, either during compile time
or during system initialisation. The former is done by defining elements in the program
code, requiring the compiler to reserve memory space for them. In the simplest form, this
is a global variable. The benefit of this method is that after the program compilation, one
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knows how much memory the application requires, and no other memory management
routine is necessary.

The second method, allocating memory space during initialisation, is often used when
the system has multiple modes of operation that may have different applications to run.
This can lead to a smaller memory footprint, as the system does not need to allocate
memory for applications that are not being executed. As this is handled during the
start-up procedures and no further dynamic memory allocation takes place, one can
consider allocated memory as static. Furthermore, as the procedure is executed during
the initialisation phase, the buffer management commonly does not need to adhere to
RT requirements.

Additionally to the lower overhead, these two methods are not impacted by fragmented
memory areas, i.e., the memory space used does not need to be continuous or the same
type of memory. Nonetheless, reserving buffers for all applications can impact lower-end
systems, as insufficient memory might be available.

6.2.2 Dynamic Memory Allocation
As the name already implies, dynamic memory allocation or Dynamic Storage Allocation
(DSA) allocates memory space dynamically during runtime. The size of the buffers can
be fixed, a set of different values, or completely free. The primary benefit of dynamic
over static memory management is that applications can reserve memory temporarily
and free it again, reducing the required memory in general. Nonetheless, it requires more
complex approaches and may introduce indeterminism.

6.2.2.1 Blocks with Uniform Size

The simplest form of a DSA approach is to split the managed memory into uniform
blocks or chunks with a fixed size and dynamically distribute them. An algorithm of
this class must check if a buffer is available to allocate a buffer. No searching is required
as all buffers have the same fixed size. This approach is a quite basic form of dynamic
memory allocation and can be implemented with quite simple data structures reducing
the total complexity.

The downsides of such algorithms come from the simplicity itself. Because all buffers are
the same size, much unusable memory will be created when the buffer is significantly
larger than the requested size. This unusable memory has been allocated to a buffer but
is not used by the application which allocated it. Therefore, it cannot be used for any
other application.

6.2.2.2 Blocks with Different Sizes

The next step is to use multiple classes of buffers, to improve on the issues of uniform
buffers. Each class defines a certain fixed block size, and the managed memory space is
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split up so that each class has at least one buffer exists. These fixed-size classes improve
memory space utilisation and reduce the amount of unusable space created.

This additional task comes at the cost of more complex management algorithms to handle
the memory space and manage the buffers assigned for the given classes. These DSA
algorithms generally want to return a buffer as close as possible to the requested size.
Therefore, the algorithm must first find a suitable size buffer class and then find a free
buffer of said class or of a bigger class.

The steps introduced by this class greatly improve utilisation and reduce the amount of
unusable space. Nonetheless, if the matching class has no free buffer left, the next larger
free buffer has to be used. This again creates unusable space, which shall be avoided.

6.2.2.3 Blocks with Flexible Size

To improve further on the issue of unusable blocks, the next step, which can be taken, is
to split up memory at runtime. In this case, the managed memory space is split up into
blocks of the largest class. When a buffer is requested, the algorithm searches for a class
with free buffers of at least the requested size and allocates it. If the buffer size is larger
than the requested size, the buffer will be split into buffers of smaller classes.

This category has less added complexity in comparison to the fixed-size blocks as the
used data structures can largely stay the same. The only additional step is the splitting
and coalescing of buffers. This small addition largely improves utilisation and greatly
reduces the amount of unusable space, but it is highly dependent on the defined classes. If
these buffer classes are not well selected, there can still be quite large blocks of unusable
memory, or the number of buffers can explode. This can happen if there is a large gap
between two buffer classes, e.g., having the classes 100 and 1000, requesting a buffer of
size 100 generates 10 buffers.

6.2.2.4 Blocks with Freely Selectable Sizes

Freely selectable buffer sizes can be used instead of predefined classes for further utilisation
improvements. In this case, the managed memory space will be defined as one large
buffer and every time a buffer shall be allocated, the requested amount is taken from
that buffer. In general, this now provides the means of having ideal memory utilisation
and no unusable memory.

Nonetheless, an algorithm for this approach may be pretty complex without classes or
any predefined size. Such an approach requires a data structure which can efficiently
manage the various class sizes. When a buffer is requested, the algorithm may search
through the whole memory space to find a matching buffer. This can lead to quite a long
runtime for allocating and freeing buffers.
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6.3 Dynamic Storage Allocation Algorithm Types
Now, we look closely at types of algorithms based on the approaches introduced in
Section 6.2. Puaut [58] and Awais et al. [57] investigated a set of commonly used DSA
algorithms regarding worst case complexity and Worst-Case Execution Time (WCET). In
the following sections, common algorithm types as well as their benefits and drawbacks
are discussed. Furthermore, at least one commonly used algorithm of each type are
presented. Additionally, we sketch the worst cases scenarios, and give a rough estimation
for worst case complexity and space allocation.

6.3.1 Sequential Fits
Simple algorithms and data structures are sufficient to realise sequential fit buffer
allocation strategies. As the name implies, searching for a matching buffer is done by
iterating sequentially over a so-called Free-List, which holds all free buffers. The following
four strategies are commonly employed:

• First Fit: returns the first buffer with sufficient size

• Next Fit: an extension to first fit that searches for a buffer with sufficient size in
the Free-List, starting after the position of the last allocated buffer

• Best Fit: tries to find the best fitting buffer to the requested size, with as little
overhead as possible

• Worst Fit: tries to find the largest available memory block

Figure 6.3 depicts an example for allocating a buffer of 16 bytes. The double-ended
arrows indicate the doubly linked list relation between the individual buffers. The arrows
on top depict which buffer is returned depending on the strategy. Given the First Fit
strategy, the first buffer is taken, which has a size of 20 bytes. If the Worst Fit strategy
is used, the largest available buffer is taken, which has a size of 48 bytes in this case.
Using the Best Fit strategy, the first buffer with 16 bytes is used as it fits exactly the
requested size. Assuming the Next Fit strategy is used, the dashed arrow indicates the
last returned buffer element. Therefore, the algorithm returns the other free 16 bytes
buffer.

Sequential fits are relatively simple, but the worst case complexity depends on the number
of buffers in the Free-List. The worst case for allocating a buffer would be if the managed
memory alternates between busy and free buffers of minimum size Bmin. Therefore,
the worst case complexity is O(n) where n is the length of the Free-List, which is not
constant. The maximum length of the Free-List can be calculated as follows n = M

2∗Bmin
,

where M is the total size of the memory and Bmin the minimum buffer size. Therefore,
the maximum length of the Free-List grows with the available memory space, yielding
O(M).
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Figure 6.3: General structure of a sequential fit

In contrast, freeing a buffer is as simple as adding an entry to a queue, which can be done
in constant time O(1). The worst case for deallocating a buffer is when its neighbouring
blocks are free. Given the assumption of immediate merging, up to three blocks may be
coalesced after freeing a buffer.

The size of a linked list grows linearly based on the number of elements stored in it.
Therefore, the size of the Free-List also grows linearly based on the number of free buffers.
Since the size of the memory limits the number of free buffers, we can derive that the
required space grows with O( M

2∗Bmin
), which can be simplified to O(M).

6.3.2 Bitmap Fits
As the name already implies, bitmap fits use bitmaps to keep track of which portion
of the managed memory is already allocated. One of the key benefits of this type of
algorithm is that the information is encoded in small pieces, typically a vector with 32 or
64 boolean values. In other words, a single integer value. This reduces the probability
of having a cache miss and, therefore, improves the general responsiveness of this class
of algorithms. With a simple bitwise operation, one reads out which buffer classes have
buffers available or which do not.

6.3.3 Segregated Fits and Indexed Fits
Segregated fit algorithms use independent data structures for the different buffer classes,
e.g., having a linked list for each buffer size. The blocks of the separate Free-Lists are
only segregated logically but not physically.

The indexed fits can be seen as an extension to the segregated fits, as they use more
complex data structures, such as trees, to manage the several Free-Lists. The tree nodes
represent the different buffer classes, and each node is linked to a Free-List managing the
free buffers. Common algorithms for the indexed fit class are:

• Ordered binary tree best-fit: As the name already implies, the base data structure
is a binary tree, which is sorted based on the size of the buffer class. Each node
has a linked list storing the free buffer entries, which are removed when a buffer is
allocated and added again when it is freed.
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Figure 6.4: General structure of a binary tree indexed fit

• Fast-fit [59]: This variant uses a Cartesian tree as the underlying data structure,
with the buffer address as its primary key and the size of the buffer as its secondary
key. Acquiring a buffer is done by traversing the tree until a matching buffer size is
found. The primary key is used when a block is freed again.

Figure 6.4 depicts the underlying data structure of the ordered binary tree best-fit
algorithm. Each node represents a class of buffers and has a Free-List associated with
it. When a buffer is requested, the tree is traversed to find the matching node and an
element is removed from the associated Free-List.

In the following paragraphs, we will take a look at the worst case behaviour of the ordered
binary tree best-fit algorithm. Initially, we assume constant class sizes. Therefore, the
tree is a predefined structure and it can be assumed that it is balanced. The worst case
for allocating a buffer is when the requested size belongs to the smallest class and only
buffers of the largest class are available. Assuming that an inner node has no knowledge
of the Free-Lists of its child classes, the algorithm may be required to check all k classes
to find a free buffer. This results in a worst case complexity of O(k).

The algorithm can be optimised by providing information of its children to each inner
node, which reduces the worst case complexity to O(log2(k)). Freeing a buffer has the
same worst case as a requesting a buffer, as the same steps have to be taken, i.e., locating
the correct buffer class. Given the constant class sizes, freeing a buffer again, i.e., inserting
an element into the tree, has also a worst case complexity of O(log2(k)).

Extending the current case with splitting and merging, the worst case complexity is
not impacted significantly. After a buffer has been split, the newly created buffer has
to be added to a Free-List, which has the same worst case complexity as finding the
corresponding buffer class for allocating a buffer. The same is applicable for freeing a
buffer. As merging a buffer and removing an entry from a doubly linked list can be
done in O(1), this does not effect the worst case complexity. Therefore, the worst case
complexity is still O(log2(k)).
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We are now extending the algorithm to define buffer classes during runtime. Hence, we
cannot use a predefined tree, and one can no longer assume a balanced tree. Therefore,
in the worst case, the tree leans entirely to one side; in other words, it forms a linked
list. The worst case for requesting or freeing a buffer is when the buffer size belongs to
the leaf of the tree. Accessing a leaf node requires the traversal of the whole tree up
to n elements. This results in a worst case complexity of O(n). Nonetheless, this case
can be improved by using self-balancing binary search trees such as a red-black tree by
Bayer [60], which has a worst case complexity of O(log(n)) for finding, inserting and
removing an element.

Given that the buffer count n is not a constant, we take a closer look at its upper bound.
We define the smallest buffer as Bmin and M for the size of the managed memory. To
generate the maximum tree, M needs to be split into distinct values starting with Bmin
up to M , where a buffer of minimum size separates each buffer. This can be written
as Equation 6.1 1 and solved for the maximum number of free buffers n, as seen in
Equation 6.2 2.

M =
n

Bmin

i + Bmin = −1
2(Bmin − n − 1)(3 ∗ Bmin + n) (6.1)

n = 1
2( 16B2

min − 8Bmin + 8M + 1 − 2 ∗ Bmin − 1) (6.2)

One can assume that the smallest buffer is in the region of a couple of bytes and the
size of the managed memory is in the range of multiple kilobytes, hence Bmin M .
Therefore, n is bounded with the available memory size O(

√
M). Inserting this bound

into the worst case search time of the self balancing binary tree yields O(log(
√

M)).

We are now taking a look at the space requirements for the underlying data structure.
As each node corresponds to a buffer class which holds a Free-List, two cases need to
be considered: the first case for having a tree of maximum size and the second case
for having a linked list of maximum length. Both structures, the binary tree and the
linked list, grow linearly with the number of elements stored n. Given the calculation
for the maximum size of the tree from Equation 6.2, this grows with O(

√
M). Taking a

look at the latter case, the Free-List has maximum length, when the memory consists
of buffers with minimum size alternating between free and allocated state. Therefore,
the maximum length of the Free-List is n = M

2∗Bmin
, which grows linearly with O(n) and,

therefore, faster than O(
√

M).

1https://www.wolframalpha.com/input?i2d=true&i=M%3Dsum+i+%2Bb%5C%2844%29+i
%3Db+to+n, accessed 20.4.2022

2https://www.wolframalpha.com/input?i=M+%3D+-1%2F2+%28b+-+n+-+1%29+%283+b
+%2B+n%29%2C+solve+for+n, negative sign ignored as only a positive count of buffers exists, accessed
20.4.2022
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Figure 6.5: General structure of a binary buddy system

6.3.4 Buddy Systems
The buddy system algorithm type was first presented by Knowlton [61] and uses recursive
subdivision to calculate the buffer sizes. First, a the memory area is split into buffers of
maximum size, which all build the root of a tree. When a new buffer shall be allocated,
the size is rounded up to the next possible block size. The Free-Lists will be checked for
a buffer of the matching size. If the smallest available buffer is larger than the requested
size, the buffer will be split according to the underlying policy. The newly created nodes
are called buddies or mates and one of these will be added to the corresponding Free-List.
The other one is either returned as buffer or subdivided further until matching the size
for the requested buffer. When a node is freed again, it can only be merged with its
buddy and only if none of the buddy’s children are allocated. Therefore, the buddy
system suffers a lot from fragmentation, creating up to 50% unused blocks when using a
binary tree as the base data structure.

An example for the structure of a binary buddy tree is depicted in Figure 6.5, where
red nodes depict allocated buffers, green nodes free buffers, and yellow nodes are entries,
where at least one child is allocated. Given that a buffer of size 4 is requested, the
currently free node of size 8 is split into 2 nodes. If the buffer of size 4 on the left side of
the tree is freed again, it cannot be merged as its buddy has at least one allocated child.

The amount of nodes created at each step of the tree depends on the size of the memory,
the size of the buffer entries, and the concrete implementation of the algorithm itself. In
general, for all realisations, the worst case of allocating a buffer, is when there are only
entries of the maximum size and the requested space is of minimum size. The following
argumentations will assume the binary buddy system, where all buffer sizes are powers
of two.

When a buffer is requested and an existing buffer has to be split, one buddy is added to
the total number of buffers, and the other buddy will be split further if required. This is
repeated k − 1 times and creates k buffer entries, which is equal to the number of buffer
classes and the height of the tree. As all classes are a power of two apart, a tree can
always be split into the minimum buffer. Given now that Bmin is the smallest buffer
and Bmax is the largest buffer, one can calculate the number of leafs by l = Bmax

Bmin
. The

tree can be maximised if the maximum buffer Bmax is set to the size of the memory M
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Figure 6.6: General architecture of Half-Fit, adapted from [62]

yielding l = M
Bmin

. Based on this, the maximum number of classes are k = log2( M
Bmin

) + 1,
and therefore, the allocation of a buffer grows with O(log2( M

Bmin
)). If a buffer of minimum

size is freed, it may be merged with up to k other buddies. Therefore, the deallocation
has also a worst complexity of O(log2( M

Bmin
)).

The tree for the buddy system does not only need to store free elements, but also allocated
ones. The worst case regarding the spacial allocation is if the allocated buffers are all of
minimal size. With each new layer in a binary tree, the number of new leafs is the double
of the previous leafs of the last layer. Therefore, the total number of nodes inside the
tree can be calculated with n = 2 ∗ M

Bmin
− 1 and the required space grows with O( M

Bmin
).

6.3.5 Hybrid Allocators
Commonly, a single type of algorithm does not satisfy all requirements. Therefore, many
new algorithms are a hybrid out of at least two types. In this section we will look at
Half-Fit and TLSF, which have a constant worst case complexity. These algorithms use
concepts from the segregated and bitmapped fit to achieve this.

6.3.5.1 Half-Fit

Half-Fit was proposed by Ogasawara [62] and separates the buffer classes into sizes which
are a power of two. The algorithm uses a bitmap to track which Free-List has free
buffers available and which does not. An example of this is depicted in Figure 6.6. The
section from bit 4 to bit 10 is taken out and the corresponding Free-Lists are depicted.
For instance, bit 4 is set. Therefore, there are buffers linked inside the corresponding
Free-List. In contrast, bit 5 is cleared. Therefore, the corresponding Free-List is empty.

The Half-Fit algorithm assumes all buffer classes are powers of two, allowing easy
calculation of the buffer class, as one has to find the highest bit set in the requested
buffer size. Many processors have instructions for that operation, making it possible
to have constant worst case complexity when allocating a buffer. In general however,
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this cannot be assumed. Therefore, in the worst case one has to iterate over all k buffer
classes to find a free buffer. Nonetheless, optimisations exist to count leading zeros with
a constant worst case complexity. Freeing a buffer requires the determination of the class
it belongs to and adding it to a queue. Both steps have a worst case complexity of O(1).
Therefore, allocating and freeing a buffer have a worst case complexity of O(1).

We are now taking a look at the space required for managing the data structures behind
the Half-Fit algorithm. As the Free-Lists are linked lists, their size grows linearly
by the number of elements stored. Therefore, the worst case is having a fragmented
memory, where all buffers are of minimum size Bmin and the state is alternating between
allocated and free. This yields a maximum buffer count n = M

2∗Bmin
. Therefore, the space

requirements grow with the size of the managed memory O(M).

Osagaware stated in the Half-Fit algorithm presentation that the problem of incomplete
memory usage exists. Blocks which exceed the base size of their corresponding Free-List
are not used for requests that are one byte larger than the base size of the Free-List. This
is due to the handling of the separation into the different classes for the Free-Lists. The
Free-List with index i has members in the size range 2i, 2i+1 − 1 , which is used to serve
request in the range 2i−1 + 1, 2i . Given the Free-List with index i = 7 holds buffers of
27, 28 − 1 , 27 + 1 is out of its range as it is only serving 26 + 1, 27 . Assuming a request

was issued for 27 + 1 bytes, it would fail as it requires a buffer of the class 27 + 1, 28 ,
even if a buffer of size 28 − 1 would be available in the smaller class. In the worst case
this can yield a fragmentation of up to 50%.

6.3.5.2 Two-Level Segregated Fit

A more sophisticated member of this type of algorithms is the Two-Level Segregated Fit
(TLSF) introduced by Masmano et al. [63], where the array of Free-Lists is organized
in two levels. This structure is depicted in Figure 6.7. The first level provides k classes
which are all powers of two. The second level then subdivides these classes linearly into
additional l sub-classes. The state of the second level is encoded in a bitmap and provided
to the first level to determine if the second level has free buffers available. The classes
and sub-classes do not relate to distinct sizes for the buffers but size ranges, e.g., a class
manages all buffers in the size range of 24, 25 − 1 , its sub-class holds the Free-Lists for
the ranges [16, 19] and [20, 23].

In the following paragraph, we will take a closer look at the TLSF algorithm. First,
we will assume that no splitting and merging are done. Therefore, the worst case for
allocating a buffer is when a buffer of the smallest size is required, but all first level
Free-Lists are empty except for the largest class. Therefore, the algorithm needs to first
calculate the First Level Index (FLI) for the requested buffer size by calculating the
highest set bit. This can be done by counting the leading zeros, which can be executed
in constant time. One can optimise the second level buffer sizes for calculation of the
Second Level Index (SLI) by using a subdivision which is a power of two, e.g., splitting
each first level class into 2, 4, 8, . . . second level classes. Calculation of the SLI can then
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Figure 6.7: Segregated Free-Lists of TLSF, adapted from [63]

be as simple as masking out a set of bits from the size to get the index, which again
can be executed in constant time. The same procedure can be applied when freeing a
buffer again. Acquiring a buffer with the FLI and SLI calculated is now as simple as
removing the first element from a linked list. Freeing a buffer is as trivial as it only
requires appending an entry at the end of linked list. Both operations can be executed in
constant time. Therefore, the algorithm has a worst case complexity of O(1).

Extending the algorithm with splitting and coalescing, we need to calculate the FLI and
SLI for the desired buffer size, which can be accomplished in constant time. Given that
no buffer with a matching size is available, the FLI and SLI of the next bigger free buffer
need to be calculated. This can be done by looking for the lowest set bit in the Free-List
bitmaps, which can be executed with a constant worst case complexity. If the larger
buffer exceeds the space required of a minimal buffer, it needs to be split. The newly
created buffer needs to be added to its corresponding Free-List. As already introduced,
the calculation of FLI and SLI as well as adding a buffer to a Free-List can be performed
in constant time. In the worst case a buffer will be merged with up to two other buffers
when it is freed. Removing these two buffers from their corresponding Free-Lists can be
done in constant time. Therefore, the worst case complexity is still O(1).

Finally, we are taking a look at the worst case space consumption for TLSF. It has a
comparable worst case to the other presented algorithms, where the memory is fragmented
into buffers of minimal size, which alternate between free and allocated state. Therefore,
in the worst case, TLSF has a space consumption of n = M

2∗Bmin
and the size of the linked

list grows with O( M
2∗Bmin

).

As already introduced in Section 6.3.5.1, Half-Fit suffers from an inefficient classification
scheme of the buffer sizes. Therefore, TLSF introduced a second level of Free-Lists,
which subdivides the first layer again. Based on this, TLSF has a lower fragmentation
overhead [64] and does not suffer from incomplete memory usage.
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Uniform Buffer Fixed Size Flexible Sized Freely Definable
Algorithm Type Sizes Classes Classes Buffer Sizes

Sequential Fits X X X X

Ordered binary tree best-fit X X X

Buddy Systems X

Half-Fit X X X

Two-Level Segregated Fit X X X

Table 6.1: Mapping between DSA approach and type

6.4 Comparison of Memory Management Algorithms
In this section, we present a mapping between manual memory management approaches
and the types of algorithms as well as a comparison between the different algorithms
regarding worst case complexity and space requirements. In Table 6.1, a mapping
is presented, showing how each of the algorithms introduced in Section 6.3 can be
implemented with the approaches presented in Section 6.2.

The first type are Sequential Fits, which are rather trivial in comparison to the others and
therefore, have the least requirements. In general, such an algorithm can be implemented
with every DSA approach. The reason for this is, that an algorithm of this type is simply
iterating over the memory and search for a matching buffer. The next type is the ordered
binary-tree best-fit which uses a tree as its base data structure. Therefore, the approach
with uniform buffers is not reasonable as the binary tree data structure would consist of a
single node with a Free-List. The binary buddy system uses also a binary tree as its base
data structure, but how the buffer classes are split is pre-defined, e.g., in powers of two
or the Fibonacci sequence. Therefore, having a uniform or fixed classes has no benefit for
this type of algorithm. Additionally, freely definable buffer sizes are not implementable,
as how the memory is separated is pre-defined. Half-Fit and TLSF were designed to
operate with freely definable memory sizes, but use classes to speed up the location of a
Free-List. Therefore, both types can also be used with fixed and flexible buffer sizes, as
their allocation strategy is quite efficient. Only a uniform buffer class is not suitable, as
these two algorithms add unnecessary overhead with their sophisticated class calculation.

Table 6.2 shows an overview how the different algorithms compare in terms of worst
case complexity and space allocation. One can see that algorithms of the sequential fits
type, as well as the ordered binary tree best-fit and the binary buddy system, have a worst
case complexity growing with the size of the managed memory M . Depending on the
deployment of these algorithms, M can be considered constant, as the size of the physical
memory does not change during runtime. Nonetheless, when managing memory space
for a thread, it may be required to allocate further memory from the OS which changes
the size of M . In contrast, the Half-Fit algorithm and TLSF have constant worst case
complexity independently of the size of the managed memory.
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Worst Case Complexity Worst Case Space
Algorithm Allocation Deallocation Allocation
Sequential Fits O( M

2∗Bmin
) O(1) O( M

2∗Bmin
)

Ordered binary tree best-fit O(log2(
√

M)) O(log2(
√

M)) O( M
2∗Bmin

)
Binary Buddy System O(log2( M

Bmin
)) O(log2( M

Bmin
)) O( M

Bmin
)

Half-Fit O(1) O(1) O( M
2∗Bmin

)
Two-Level Segregated Fit O(1) O(1) O( M

2∗Bmin
)

Table 6.2: Comparison between different memory management algorithms

As already explained in Section 6.3.5.1, the Half-Fit algorithm suffers from incomplete
usage of memory. TLSF drastically reduces this problem with its two-level approach
for the Free-Lists and rounding to the next Free-List size. In comparison, Half-Fit has
non-external memory fragmentation of up to 50 %, whereas TLSF has around 3 % [64].
Fragmentation could be further reduced by sorting the entries of a Free-List by their
memory address, but then the constant worst case complexity no longer holds. For
instance, a sorted list has a worst case complexity of O(n) for insertion, and a red-black
tree has O(log2(n)). Based on this evaluation, we decided to use TLSF for the further
implementation in our buffer management.

6.5 Buffer Management Design and Implementation
This section discusses the design and implementation of our manual memory management
system. As our use case is related to managing buffers inside a network stack, from now
on, this is referred as Buffer Management instead of (manual) memory management. We
focus on configuration parameters and used data structures in the following section. We
also describe how we optimised our version of the TLSF algorithm and how it operates.

6.5.1 Configuration Parameters

The parameter fl_lowest_cls defines the smallest memory unit that shall be man-
aged. This value is interpreted as an exponent to calculate a power of two, e.g.,
fl_lowest_cls=5 represents 25. Additionally, the parameter fl_cls_cnt defines
how many different first level classes shall be used. The configuration value sl_cls_cnt
defines the number of second level classes for each first level class. Again this value is
interpreted to be an exponent of a power of two. Additionally, the buffer management
requires configuration options which define where the memory that shall be managed
is located. Therefore, the parameter start_address defines where managed memory
starts and the parameter end_address defines the last usable address. In Listing 6.1,
the full configuration structure is depicted. Additionally, this structure holds the Free-
Lists and the availability masks required for the inner workings of TLSF. Further details
can be found in Section 6.5.2.
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Listing 6.1: Runtime configuration structure
typedef struct {

unsigned char fl_lowest_cls;
unsigned char fl_cls_cnt;
unsigned char sl_cls_cnt;
unsigned short fl_free;
void *start_address;
void *end_address;
unsigned short *sl_free;
block_header_free_tlsf_t **free_list_first;
block_header_free_tlsf_t **free_list_last;

} tlsf_runtime_config_t;

6.5.2 Management Data Structures
The algorithms presented in Section 6.3 do not factor in the required overhead for
managing the memory. We assume the space needed for management is located inside
the memory, which is under the control of the buffer management. Considerations for the
space requirements of these management structures are not negligible, as an inefficient
architecture can drastically decrease the useable memory space. Therefore, when defining
these structures, one must factor in the managed space’s size and the minimum buffer
size. The algorithms presented in Section 6.3 require a dynamic data structure, which
provides the Free-Lists. The memory space required to store the members of these data
structures has to be reserved when the buffer management initialises the memory.

The Free-Lists are typically implemented as linked lists. In general, an entry of a linked
list consists of at least a reference to the next element, to the previous element or to both
elements. Additionally, it has a reference to the data which is managed by that linked
list. Without a dynamic memory management system, one has to reserve space for up to
the desired maximum number of entries of said list. Given the implementation of a DSA
itself, one can integrate the pointers required for operation into the Boundary-Tag of a
free buffer. The additional space required does not affect the memory overhead, as it is
not needed to manage an allocated buffer. Nonetheless, it requires a minimum buffer
size of at least the size required for the pointers.

Additionally, the system has to track which memory areas are already allocated and
which are not. During the design of the buffer management component, we came across
two commonly used methods for organising these management structures. The first uses
a dedicated array for tracking which fragments of the managed memory are allocated,
the second uses so-called Boundary-Tags. Regarding the former variant, the managed
memory space is separated into fragments of the minimum buffer size, where each buffer
is a group of fragments. For each fragment, an entry in a management structure is
required that tracks the allocation state and a reference to the buffer that owns this
fragment. The benefit of this method is that the full space required for managing a
memory space can be reserved when the mechanism is initialised. The downsides of
this approach are that the fragmentation structure grows with the size of the managed
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Listing 6.2: Original block header of TLSF
by Masmano et al. [63]
typedef struct block_header{

uint32_t size : 30;
uint32_t alloc : 1;
uint32_t last_block : 1;
blocker_header_t *prev_phy;

} block_header_t;

typedef struct bh_free{
block_header_t bh;
blocker_header_t *prev;
blocker_header_t *next;

} block_header_free_t;

Listing 6.3: Size-optimised block header for
the Ethernet MAC use case
typedef struct block_header{

uint16_t reserved : 2;
uint16_t size_prev : 14;
uint16_t alloc : 1;
uint16_t last_block : 1;
uint16_t size : 14;

} block_header_t;

typedef struct bh_free{
block_header_t bh;
blocker_header_t *prev;
blocker_header_t *next;

} block_header_free_t;

memory and the time required for marking the fragments as allocated negatively impacts
the buffer management’s responsiveness. Additionally, this limits the sizes of the buffers,
as they always have to be a multiple of the minimum buffer size.

The second method, using Boundary-Tags introduced in Section 6.1, has the benefit that
the structures solely grow with the desired maximum number of buffers that shall be
managed. Such a Boundary-Tag is added in before or after a buffer entry, indicating the
allocation state and its size. Alternatively, the tag can be a reference where the data
is stored. The usage of Boundary-Tags makes the selection of buffer classes a bit more
complex, as one has to consider the additional space required for these tags. Nonetheless,
this is in general a better method as it requires less space in contrast to the fragmentation
structure. This mechanism can yield a better response time depending on the used
fragment size.

The goal of the buffer management was to be applicable on a wide range of use cases as
well as for our usage inside a network stack. Therefore, we build up on the presented
data structures TLSF introduced by Nasmano et al. [63]. In Listing 6.2, a block header
is depicted which is used to track memory blocks. The structure block_header_t
consists of a size member to read out the size of this block, an alloc flag to indicate
the allocation status of the buffer and a last_block flag to indicate if it is the last
physical block. Additionally, for tracking a free block block_header_free_t has
pointers to the previous and the next element of the corresponding Free-List. The
block_header_free_t structure requires 16 bytes of memory, but as the pointers
are only used for tracking free blocks, the management overhead is only the size of the
block_header_t structure, which requires only 8 bytes.

As the address space of the Ethernet MAC is limited to 16 bits, we decided to design
an optimised form of the block header. The memory addresses of our system are 32 bit
word-aligned addresses, which means that load and store operations typically access 4
bytes at a time. We want to have the memory addresses aligned with this memory word
barrier for more efficient memory access. Therefore, the lowest two bits of an address
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Listing 6.4: Entries to read out availability of free buffer entries
uint16_t fl_free;
uint16_t sl_free[fl_cnt];

are always cleared, and we can omit these in our management structure without losing
information. Additionally, as already introduced, our address space is limited to 16 bit;
therefore, we require only 14 bit to model all possible buffer sizes. As a result, we defined
the structure depicted in Listing 6.3, which generates only 4 bytes of overhead for a used
block.

6.5.3 Algorithm Data Structures
For managing allocated and free buffers, we use the data structures already defined in
Section 6.5.2. To manage the buffers, we need to define the data structure required by
TLSF. As our block_header_free_t data structure provides references to the next
and previous entries of the containing Free-List, we require only a reference to the list’s
first and last buffer entry. Therefore, our free_list data structure has two simple
arrays holding the indices to the corresponding buffer entries. The required size for the
free_list is the number of first level classes multiplied by the number of second level
classes.

To optimise the process of acquiring new buffers, bitmaps are used to indicate the state of
each level. The complete memory space of the Ethernet MAC is 57344 bytes. Therefore,
a first level class for representing 215, 216 − 1 is required by the definition of TLSF.
The bitmap representing the first level requires a size of 16 bit. To give the user more
freedom when configuring the second level, we decided to allow up to 16 second level
classes. Therefore, the maximum number of first and second level classes is limited to 16
entries which fit into an 8 bit data type. If the bit corresponding to the buffer class is set
in the bitmap, a free buffer entry to be acquired exists. The bits marking availability
inside the mask correspond to the FLI and SLI. The data types used are depicted in
Listing 6.4.

6.5.4 Memory Overhead
In Table 6.3, we calculated the memory space required to fit our algorithm and man-
agement structures. The table depicts which member of what structure requires how
much space and how much space the entire structure in the required amount takes.
As the base of our calculation, we used the following configuration, see Section 6.5.1:
fl_lowest_cls=5, fl_cls_cnt=11, sl_cls_cnt=2. We chose fl_lowest_cls=5,
as the smallest frame the network stack is able to send is an ARP message, which requires
34 bytes. To have a buffer with the remaining size of the Ethernet MACs memory, we
require the full 16 bit address space and, therefore, fl_cls_cnt=11. Finally, for the
subdivision of the second level we decided to use sl_cls_cnt=2. This has the benefit
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Structure Member Size (bytes) Count Total (bytes)
Runtime 28
Configuration fl_lowest_cls 1 1

fl_cls_cnt 1 1
sl_cls_cnt 1 1

Padding 1 1
fl_free 2 1

Padding 2 1
start_address 4 1

end_address 4 1
sl_free address 4 1

free_list_first address 4 1
free_list_last address 4 1

Bitmaps 88
sl_free 2 44

Free 352
Lists free_list_first 4 44

free_list_last 4 44
block_header_t 4 255 1020

reserved 2 bit 1
size 14 bit 2
alloc 1 bit 1

last_block 1 bit 1
Total space required 1488

Table 6.3: Memory space consumption of TLSF, configuration: fl_lowest_cls=5,
fl_cls_cnt=11, sl_cls_cnt=2, assuming 255 buffers are in use

of producing less overhead when dealing with smaller buffers. In the last row of Table 6.3,
one can see that the total memory space required is 1488 bytes. In our environment
with the Ethernet MAC, we have 57344 bytes of memory available. Therefore, our
management structures use about 2.59% of the overall managed memory space.

6.5.5 Calculation of First and Second Level Index

A crucial step of TLSF is to calculate the First Level Index (FLI) and Second Level
Index (SLI) to which the buffer size belongs. As the classes of the first level are all
powers of two, one has to find the highest bit set in the given size value. This can be
done by calculating the log2, but this requires using floating point operations. As our
target does not have a Floating Point Unit (FPU), executing floating point operations
is quite inefficient. Most modern CPUs have instructions to find the highest bit set.
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Listing 6.5: Calculate the highest bit set, Henry Warren’s “Hackers Delight” [65]
uint32_t nlz(uint32_t x) {

uint32_t n = 32;
if ((x>>16) != 0) { n=n-16; x = x>>16; }
if ((x>>8 ) != 0) { n=n- 8; x = x>> 8; }
if ((x>>4 ) != 0) { n=n- 4; x = x>> 4; }
if ((x>>2 ) != 0) { n=n- 2; x = x>> 2; }
if ((x>>1 ) != 0) { return n-2; }
return n - x;

}

Unfortunately, this is also not supported by our target CPU. Therefore, we decided to
adapt a method presented by Henry Warren in the Book “Hackers Delight” [65], seen
in Listing 6.5. The return value of the nlz function is the count of leading zeros of a
binary number. Subtracting this value from the size of the underlying data type yields
the position of the highest set bit. For instance, if we call nlz with 15 as input, the
function returns 28 since the binary representation of 15 is 1111 and the used integer is
32 bits wide. Subtracting 28 from 32 yields 4, i.e., the 4th bit is the highest set bit. With
that, we can easily calculate the FLI. We selected this approach as it is more efficient
than iterating over the number and checking for the highest bit set.

In order to improve the access time of our TLSF implementation, the algorithm was
changed to an algorithm presented by EmbeddedGurus3 depicted in Listing 6.6. It uses
a lookup table, which is used to simplify the five if-conditions from Listing 6.5 to three
if-conditions, where two will be taken at maximum. It searches for the highest byte where
a bit is set and the value of said byte is extracted, which will then be used as an index
for the lookup table. Reducing the value from the table by the shift amount provides the
number of leading zeros. The original version requires 930 cycles the improved version
only requires 312 cycles.

For easier calculation of the SLI, we decided to limit the number of second level classes
to be a power of two. Listing 6.7 shows how the value can be calculated using arithmetic
and bitwise operations. First, the size value is shifted to represent the SLI value inside
the least significant bits. The shift amount is the FLI decremented by the bits required
for the SLI. Afterwards, all bits except the ones for the SLI are cleared. This approach
has the benefit that it does not require any branching or looping to determine the SLI.

If there is no free buffer for the determined FLI and SLI, new indices have to be calculated.
There are two possible cases: either a larger buffer exists in the Free-List for the calculated
FLI, or no buffers are left for this FLI. In the former case, we have to adapt the SLI to
find the next larger second level Free-List of the calculated FLI that is not empty. The
process is depicted in Listing 6.8. Therefore, we create a mask that clears all second level
buffer entries with a lower SLI from the availability mask. In the next step, we determine

3https://embeddedgurus.com/state-space/2014/09/fast-deterministic-and-por
table-counting-leading-zeros/ last accessed 11.07.2022
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Listing 6.6: EmbeddedGurus optimised implementation of calculating the highest bit set
uint32_t nlz(uint32_t x) {

static uint8_t const clz_lkup[] = {
32U, 31U, 30U, 30U, 29U, 29U, 29U, 29U, ...

};
uint32_t n;
if (x >= (1U << 16)) {

if (x >= (1U << 24)) {
n = 24U;

}
else {

n = 16U;
}

}
else {

if (x >= (1U << 8)) {
n = 8U;

}
else {

n = 0U;
}

}
return (uint32_t)clz_lkup[x >> n] - n;

}

Listing 6.7: Calculate the Second Level Index (SLI) from initial FLI
fli = 16 - nlz(size);
uint16_t shift_amount = (fli - sl_cls_cnt);
uint16_t tmp = size >> shift_amount;
sli = tmp & ((1 << sl_cls_cnt));
fli -= fl_lowest_cls;

Listing 6.8: Calculate the adapted SLI
uint16_t tmp = sl_free[fli] & ~((1 << (sli+1)) - 1);
tmp &= (~tmp)+1;
sli = 16 - nlz(tmp)-1;

the two’s complement and use it to mask away all set bits except the lowest set. From
this Free-List, we shall take our buffer. As for calculating the FLI, we can use the nlz
function to get the number of leading zeros and calculate the set bit position.

As already introduced, no buffer may be available inside the calculated FLI. Therefore,
a new FLI and new SLI has to be calculated. To get the new FLI, we adapted the
procedure presented in Listing 6.8. Therefore, we first mask away all bits lower than our
calculated FLI. Afterwards, the two’s complement is determined to mask away every bit
except for the lowest set. To get the new SLI, we use the same approach with the two’s
complement to get the lowest set bit. The adapted process is depicted in Listing 6.9.
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Listing 6.9: Calculate the adapted FLI and SLI
uint16_t tmp_fli = fl_free & ~((1 << (fli+1)) - 1);
tmp_fli &= (~tmp_fli)+1;
fli = 16 - nlz(tmp_fli)-1;
uint16_t tmp_sli = config->sl_free[fli] & ((~config->sl_free[fli]) +1);
sli = 16 - nlz(tmp_sli)-1;

Listing 6.10: Calculate the adapted FLI and SLI
void * tlsf_malloc(size){

fli, sli = get_next_free_fli_sli(size);
buffer = remove_buffer_from_free_list(fli, sli);
if(buffer->size > size + min_siz)
{

new_buffer = split_buffer(buffer, size)
add_buffer_to_free_list(new_buffer);

}
return buffer;

}

6.5.6 Getting a Buffer

With the FLI and SLI calculated as described in Section 6.5.5, we have calculated the
required indices to access the data structures introduced in Section 6.5.2 and Section 6.5.3.
In Listing 6.10, a simplified code version of the following steps is depicted. If the calculated
FLI and SLI point to a buffer larger than the required size, the buffer may be split.
Therefore, the buffer has to be at least the required size plus the minimum buffer size
and the space required for the Boundary-Tag. Additionally, the newly created buffer
needs to be added to its corresponding Free-List.

6.5.7 Freeing a Buffer

A simplified coded version of the following steps is depicted in Listing 6.11. When freeing
a buffer, the relative address of the buffer to be freed and its physically next and previous
buffer have to be calculated. If any of these buffers are not allocated, a merge of buffers
will happen, which may merge up to three buffers. The merged buffer is then added to
its corresponding Free-List.

6.6 Further Findings and Reflections

As this thesis has a certain scope, not all cases applicable to a memory management
algorithm can be handled. This section discusses the limitations and delimitations of our
design and implementation. Additionally, we describe some pitfalls regarding the used
hardware and its software side.
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Listing 6.11: Freeing a buffer and merging it if neighbours are not allocated
void tlsf_free(buffer){

next_buffer = buffer + buffer->size;
prev_buffer = buffer - buffer->prev_size;
if(next_buffer->alloc = 0)
{

remove_buffer_from_free_list(next_buffer);
merge_buffers(buffer, next_buffer)

}
if(prev_buffer->alloc = 0)
{

remove_buffer_from_free_list(prev_buffer);
merge_buffer(prev_buffer, buffer);
buffer = prev_buffer;

}
add_buffer_to_free_list(buffer);

}

6.6.1 Usage inside 64-Bit Systems

The presented solution can generally be used for 64-bit systems without adaptions,
but some points need to be considered beforehand. Given that the system has a 64-
bit word boundary, the presented structures in Section 6.5.2 are suboptimal. The
block_header_t structure still requires 4 bytes in size, but when it is used inside
the block_header_free_t, padding is inserted by the compiler. This is done, as the
pointers prev and next require 8 bytes, and the compiler tries to have optimal memory
access. Having the members aligned with the word boundaries only requires a single
memory access instead of two if the member crosses word boundaries. With the added
padding and the twice-as-long pointer address, the structure now requires 24 bytes in
memory instead of 12 bytes. Due to the increased memory size, the minimal buffer space
has to be set to 32 bytes as otherwise the structure block_header_free_t would not
fit inside the free buffer. Another way to solve this issue is to adapt the block header
to 8 bytes instead of 4. Then the smallest possible buffer can still be 16 bytes, but this
would double the memory overhead for the block header.

Additionally to the larger required buffer, the memory access generally is worse than
with the 32-bit system. As already introduced, the block_header_t requires only 4
byte, which is less than a word. The implemented TLSF algorithm now returns a buffer
address, which is aligned to a half word and not to full word. This can lead to a drop
in memory bandwidth if the compiler expects a word align memory address from the
buffer management. In general, this is less of a problem for our use case, as this is mainly
relevant when working with data which uses 64-bit numbers.

The calculations presented in Section 6.5.4 focus on a 32-bit system and are not applicable
to the 64-bit system. Assuming a block header is used to get optimal memory access
and the pointers take twice the space, the required memory space for storing the data
structures nearly doubles.

71



6. Buffer Management

6.6.2 Security Concerns

Due to the RT nature of the use case, no clearing of the memory space has been
implemented, i.e., when a buffer is reused, the old data is still in the buffer. This is not
an issue for our dedicated use case in a network stack, as no buffer is provided to an
application. If this memory management implementation is used to manage main memory,
this could lead to leaking encryption and decryption keys. As clearing a buffer depends
on its size and cannot be done in constant execution time, this was not implemented.

6.6.3 Delimitations Regarding Multicore and Multithreaded Systems

All the buffer management systems from Section 6.3 rely on data structures to ease the
location of free memory space as well as splitting and merging buffers. In multicore
and multithreaded environments, these data structures must be accessible to multiple
consumers and producers. An RTS requires synchronisation mechanisms without locks,
starvation and deadlocks. Such an object or algorithm is called wait-free, which is
the strongest non-blocking guarantee regarding an actor’s progress. Such structures
require atomic access to the memory, typically handled with hardware instructions like
Compare-and-Swap (CAS) or Load-Link/Store-Conditional (LL/SC). These instructions
check whether the desired memory area contains the expected value and modify it, only if
another actor did not modify the expected value. Unfortunately, the underlying hardware
platform Patmos [20] does not support the required atomic instructions. Therefore, an
implementation of a such a wait-free queue is not feasible.

6.6.4 Patmos Address Spaces

The CPU architecture of Patmos uses different typed store and load functions depending
on the location of the memory. Into which memory space a pointer points must be
communicated to the compiler when the program is compiled. By default, a pointer
always points to the main memory, but an IO device is located in a different address
space requiring a different load/store instruction. Therefore, the used pointers inside the
TLSF implementation need an additional attribute _IODEV. Otherwise the access does
not work. To use this implementation also for main memory, the code has to be copied
and said attribute must be removed.

6.7 Evaluation

In this section, we elaborate how we evaluate our proposed buffer management. Therefore,
we take a look into two aspects: first, how it performs in a static Worst-Case Execution
Time (WCET) analysis, second, we measure the average time to allocate a buffer.
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WCET
Function n cycles at 80 MHz

buffer_management_malloc () 19609 245.11 µs
tlsf_malloc () 18850 235.62 µs
get_buffer () 9473 118.41 µs
get_next_free_fli_sli () 3625 45.31 µs
remove_buffer_from_free_list () 3874 48.43 µs

split_buffer () 3219 40.24 µs
add_buffer_to_free_list () 3659 45.74 µs
get_fli_sli () 1547 19.34 µs

buffer_management_free () 20734 259.18 µs
tlsf_free () 20151 251.86 µs
merge_buffers () 17662 220.78 µs
remove_buffer_from_free_list () 3874 48.43 µs
add_buffer_to_free_list () 3659 45.74 µs

add_buffer_to_free_list () 3659 45.74 µs
get_fli_sli () 1547 19.34 µs

Table 6.4: WCET analysis values of main functions and their major sub-functions

6.7.1 Static WCET Analysis

The main task of the buffer management is taking care of the allocation and deallocation
of buffers. Therefore, we take a look at tlsf_malloc to determine how long the
allocation of a buffer can take at maximum. Finally, we will also look at tlsf_free as
it takes care of deallocating and merging buffers. The results of the WCET analysis for
these functions and their major sub-functions are listed in Table 6.4.

The static WCET analysis reveals that, at worst, the buffer allocation takes 232.3 µs. This
includes the actual allocation of a buffer (get_buffer) by calculating the next best class,
which has a buffer large enough to satisfy the request (get_next_free_fli_sli)
and removing the buffer from the Free-List (remove_buffer_from_free_list).
Additionally, this may require the buffer to be split (split_buffer) if the overhead is
larger than the space required for a minimal buffer. This newly created buffer has to be
added to the corresponding Free-List (add_buffer_to_free_list), which requires
the calculation of the buffer class affiliation (get_fli_sli).

If we want to free an allocated buffer again, this takes up to 251.86 µs in the worst case.
The largest contributor to this worst case is the possibility of being required to merge
up to three free buffers, which is executed by merge_buffers. The main components
of these functions are removing buffers that shall be merged from their corresponding
Free-Lists (remove_buffer_from_free_list) and adding the newly created buffer
to its corresponding Free-List.
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6.7.2 Average Runtime
A worst case complexity of O(1) does not imply a constant runtime. Therefore, we
investigate how long allocation and deallocation of buffers take on average. We have
written a test program that measures how long these functions take for different buffer
sizes. We decided to probe the following scenarios:

1. a buffer already exists for each class

2. an empty memory pool

3. another buffer already exists

In the first case, we evaluate how efficient the process of allocating and freeing buffers is
if no splitting or merging is required. In the second case, we can evaluate if all buffer
classes take the same effort to split. In the third case, we can track how merging with up
to two buffers instead of one can affect the runtime.

For the measurements, we used the same configuration values as shown in Table 6.3:
fl_lowest_cls=5, fl_cls_cnt=11, sl_cls_cnt=2. Therefore, we have a total of
44 buffer classes to check for these scenarios. To improve the readability of the charts, we
group the four second level classes of each first level class. This reduces the charts from
44 columns to 11, i.e., the horizontal axis depicts the First Level Index (FLI) from zero
to ten. Since the memory space of our test environment is not large enough to test all
classes, the largest two classes could not be tested. For the box plots seen in Figure 6.8,
100 samples were taken for each class an each test case.

In Figure 6.8, the measurements of the three defined scenarios are depicted. Figure 6.8a
and Figure 6.8c depict the measurements for allocations and Figure 6.8b and Figure 6.8d
the corresponding measurements for the deallocations.

In Figure 6.8a, we can see the mean time to allocate a buffer. The individual second
level classes are grouped and named as the corresponding first level class index, i.e., the
FLI. We can see that an allocation where no split of a buffer is required, takes between
96.5 µs and 101.5 µs. When taking a look at the times from the single classes, we can
see that the maximum values come from the largest second level classes. When a buffer
shall be allocated, a buffer from the next larger class is taken as it is guaranteed that the
buffer is large enough for the requested size. If we allocate a buffer of the SLI 3 it has
to check the next FLI for a buffer. In Figure 6.8b, the mean time to free a buffer that
does not get merged with a neighbouring buffer is depicted. We can see that this takes
between 62.5 µs and 63.5 µs. The minor fluctuations can be backtracked to the different
paths taken for the calculation of the FLI and SLI.

In Figure 6.8c, we have depicted the mean time to allocate a buffer, if the managed
memory pool is empty. In other words, each allocation needs to split the buffer into two
buffers. We can see that the mean allocation time is between 153 µs and 158 µs. The
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Figure 6.8: Allocation and deallocation measurements for various buffer sizes and scenarios

outliers of FLI 0 and the runtime of the whole class FLI 10 shows some unexpected
behaviour which requires further investigation.

In Figure 6.8d, the mean time to free buffer and merge it with its neighbouring buffers
is depicted. As the scenario always forces three buffers to merge, the runtime is fairly
steady between 145 µs and 146 µs. The classes starting with FLI 6 have significantly
larger maximums, in relation to the classes until FLI 5. Some further investigation into
the behaviour would be required to find the root cause of the spikes.

6.7.3 Runtime over Time
Additionally to the isolated measurements, we tracked how allocations and deallocations
perform over longer periods. A test program decides at random if a buffer shall be
allocated or freed. If the program shall allocate a buffer, a random buffer size is used
and added to an array storing all buffers allocated by the test program. If a buffer shall
be freed, a random entry from the prior mentioned array is taken and handed over to the
buffer management to be freed. For the measurement, we additionally track the amount
of used memory.

Figure 6.9a depicts how long a buffer allocation takes distributed over the current
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allocation state of the managed memory. One can identify two denser populated time
intervals in the chart. The spots at around 100 µs overlap with the measurements
from Figure 6.8a, where we measured the mean allocation without splitting a buffer.
Additionally, at around 150 µs we have overlaps with Figure 6.8c, where we have taken
a look at allocations where it is required to split a buffer. The variance is a side effect
of the calculations of the FLI and SLI if no free buffer is available for the originally
calculated indices.

In Figure 6.9a, the distribution of the time it takes to free a buffer over the current
allocation state of the memory is depicted. In the chart one can see three denser intervals,
where the lowest at around 60 µs to 65 µs overlaps with the measurements depicted in
Figure 6.8b, which correspond to a freed buffer that is not merged with another buffer.
For the time intervals from around 130 µs to 150 µs overlap with the measurements
depicted in Figure 6.8d, where each buffer is merged with two other buffers. Therefore,
the denser spots starting at 110 µs up to around 120 µs show buffers which are only
merged with one other buffer. At around 150 µs there are numerous outliers, which hint
that this is the same underlying behaviour that was already encountered at the runtime
measurements depicted in Figure 6.8d. It should be noted that this is still within the
WCET which is 251.86 µs. These measurements further confirm our findings that the
TLSF algorithm has a worst-case complexity of O(1).

6.8 Summary
In this chapter, we introduced the subject of memory management and its main building
blocks, see Section 6.1. Based on this, we provided an extended categorisation of
approaches used in manual memory management in Section 6.2. Derived from the
approaches, we introduced commonly found algorithm types used for Dynamic Storage
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Allocation (DSA) with their benefits and drawbacks, as well as rough estimations for their
worst case complexity, see Section 6.3. In Section 6.4, we compared the various algorithm
types to each other and examined how they fit into the categories from Section 6.2.
Based on the comparison, we selected Two-Level Segregated Fit (TLSF) as the algorithm
we want to use for the buffer management in our software-based TSN end station. In
Section 6.5, our design and implementation of TLSF is presented with its delimitations
and limitations listed in Section 6.6. Our implementation was evaluated using a static
WCET analysis and runtime measurement. The results can be found in Section 6.7.

77





CHAPTER 7
Time-Sensitive Networking

As already introduced in Section 4.2.1.1, Ethernet [2] is one of the broadest used network
standards. Unfortunately, this protocol is not applicable for RT applications due to its
indeterministic timing behaviour. Therefore, the standards for TSN define mechanisms
like traffic scheduling to improve Ethernet for establishing determinism.

In this chapter, we provide an introduction to the basics of TSN in Section 7.1. From the
standards defining TSN, we derive the central elements for the design of our TSN network
interface, see Section 7.2. Based on these essential elements, we design and implement
our TSN-aware driver in Section 7.3. In Section 7.4, we outline further findings during
the implementation of the driver.

7.1 Introduction to TSN
TSN is a set of standards developed by the Time-Sensitive Networking task group of
the IEEE. Audio Video Bridging (AVB) [66] provides the fundamentals IEEE uses to
specify TSN. It is not a single standard, but a set of standards and amendments to
already existing ones. Most specifications relevant to this thesis are amendments to IEEE
802.1Q [67], which focuses on network bridges and bridged networks.

TSN generally has three basic building blocks: time synchronisation, traffic scheduling
and network configuration. Time synchronisation via gPTP [26] establishes a common
notion of time. Since we already gave a detailed introduction to this topic, please
refer to Chapter 5 for more information. Time Synchronisation is vital as all network
members with schedules should be synchronised. This synchronised state is relevant as
the schedules running on the individual devices shall be well aligned. See Section 7.1.1
for further information. The schedules shall be adaptable when a new network member
joins or an application starts. Therefore, network configuration utilities are required,
which get introduced in Section 7.1.2.
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7.1.1 Traffic Scheduling

Ethernet’s design centres around multiple devices accessing the same transmission medium,
called the ether. Ethernet uses CSMA/CD [2] to handle access to the ether without
guarantees regarding successful transmission. CSMA/CD senses if there is currently a
frame in transmission. The sender may only start transmitting if this is not the case.
Nonetheless, multiple senders could sense that there is no frame on the wire and start
their transmissions simultaneously. When a sender detects a collision, the transmission
will stop and restart after a random time interval. Modern Ethernet networks use switches
to connect multiple devices. Therefore, only two devices have a physical connection,
drastically reducing the collision probability. Modern switches have routing tables, VLAN
support, and more functionalities, which add delays and do not guarantee transmission.
This transmission mode is commonly known as BE.

TSN provides multiple types of traffic scheduling to improve the latency and guarantee
for RT traffic. It defines three traffic types, the already introduced BE traffic, time
triggered, and rate-constrained traffic [8]. To limit a stream which may transmit large
amounts of data such that there is enough bandwidth left for the remaining streams, one
may configure this as rate-constrained traffic. TSN provides this functionality using the
credit-based shaper algorithm or the Enhanced Transmission Selection Algorithm. In
order to provide RT guarantees to a stream, TSN also provides time-triggered traffic.
Therefore, the network devices or a single entity creates a schedule when which traffic
class can send data. These traffic classes isolate the various forms of traffic such that BE
traffic cannot affect rate-constrained or time-triggered traffic.

7.1.2 Network Configuration

The term network configuration is quite broad and includes many different types and
possibilities. Looking at the Dynamic Host Configuration Protocol (DHCP), which allows
one to dynamically configure a host’s IP address and distribute various information. This
data includes Domain Name System (DNS) server addresses which can be used for name
resolution to find services on the Internet. Another protocol for this task is the Simple
Network Management Protocol (SNMP), which originated in the domain of network
management and monitoring. Configuration of it is pretty cumbersome. Nowadays, its
primary use is for monitoring reasons.

NETCONF [68] is a new standard to overcome the shortcomings of SNMP. For con-
figuration, NETCONF exchanges XML-encoded messages via Remote Procedure Call
(RPC) over a Secure Shell (SSH) tunnel. Using SSH adds an encryption layer to protect
messages from malicious third parties on the network. Typically, YANG [69] models
provide the underlying means to define what interface parameters are configurable. The
TSN working group of the IEEE is constantly working on defining and improving models
to configure TSN devices. Table 7.1 includes amongst other standards, the amendments
regarding NETCONF and YANG models.
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Short-Title Title Ref.

IEEE 802.1AS 2020 Timing and Synchronization for Time-Sensitive Applications [26]

IEEE 802.1AB 2016 Station and Media Access Control Connectivity Discovery [70]

IEEE 802.1ABcu 2021 Amendment: YANG Data Model [71]

IEEE 802.1ABdh 2021 Amendment: Support for Multiframe Protocol Data Units [72]

IEEE 802.1AX 2020 Link Aggregation [73]

IEEE 802.1BA 2021 Audio Video Bridging (AVB) Systems [66]

IEEE 802.1CB 2017 Frame Replication and Elimination for Reliability [74]

IEEE 802.1CBcv 2021 Amendment: Information Model, YANG Data Model and Management Information [75]
Base Module

IEEE 802.1CM 2018 Time-Sensitive Networking for Fronthaul [76]

IEEE 802.1CMde 2020 Amendment 1: Time-Sensitive Networking for Fronthaul [77]

IEEE 802.1CS 2020 Link-local Registration Protocol [78]

IEEE 802.1Q 2018 Local and Metropolitan Area Networks–Bridges and Bridged Networks [67]

IEEE 802.1Qbu 2016 Amendment: Frame Preemption [79]

IEEE 802.1Qbv 2015 Amendment: Enhancements for Scheduled Traffic [8]

IEEE 802.1Qca 2015 Amendment: Path Control and Reservation [15]

IEEE 802.1Qch 2017 Amendment: Cyclic Queuing and Forwarding [16]

IEEE 802.1Qci 2017 Amendment: Per-Stream Filtering and Policing [17]

IEEE 802.1Qcc 2018 Amendment: SRP Enhancements and Performance [80]
Improvements

IEEE 802.1Qcp 2018 Amendment: YANG Data Model [81]

IEEE 802.1Qcr 2020 Amendment: Asynchronous Traffic Shaping [82]

IEEE 802.1Qcx 2020 Amendment: YANG Data Model for Connectivity Fault Management [83]

Table 7.1: List of relevant IEEE standards and amendments for TSN

7.1.3 Base Standards and Contributing Standards

As already introduced, TSN is not a single standard but a large set of standards and
amendments forming it. Table 7.1 lists all standards contributing to TSN. One can see
that there is a large variety of functionality defined here. Generally, the standards consist
of two larger groups, the functionality behind TSN and configuring TSN networks. This
thesis focuses on the IEEE 802.1AS and IEEE 802.1Qbv, as these standards define the
base functionality of TSN.

7.2 TSN Network Interface Design
In the following section, we focus on the elements of a TSN-capable network interface.
Typically, this is referred to as a port instead of an interface. A port commonly refers to
the hardware elements like the PHY chip and the MAC. A network interface also refers
to the virtual representation, like the driver and the representation inside the network
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Figure 7.1: Example network interface with traffic scheduling

stack. Since this thesis focuses on a software-based implementation, we decided to use
the term interface in this chapter. A TSN interface design includes the basic architecture
of a network interface. In addition to the architecture, each interface gets managed by a
small set of state machines.

7.2.1 Interface Architecture
To provide low latency network transmission over standard Ethernet, TSN uses traffic
scheduling as introduced in Section 7.1.1. Figure 7.1 depicts an example of a network
interface with the components defined by TSN for traffic scheduling. Each interface has
between one and eight traffic classes. With these classes, one can isolate specific traffic
or impose priorities, e.g., safety-related signals or set bandwidth limitations. Limiting
the bandwidth can be helpful to prevent streams from cannibalising the link’s bandwidth
and provide applications with guarantees about the available bandwidth.

Each queue has a set of Transmission Selection Algorithms (TSAs) available. These
algorithms manage whether the queue will forward frames to the transmission gate or
not. Three types of TSAs defined: strict priority algorithm, credit-based shaper algorithm
and Enhanced Transmission Selection Algorithm. The strict priority algorithm adds
no further logic at the end of a queue and lets everything through. It simply defines
that the queue with the highest priority gets sent out first, which is taken over by the
traffic selection. The credit-based shaper algorithm and Enhanced Transmission Selection
Algorithm manage that a queue has allowed bandwidth and transmission rate. If a queue
exceeds its limits, the TSA blocks new frames from the transmission and waits for a new
interval.

After the TSA, the transmission gate is the next step, which acts like a valve that is
either opened or closed. This queue will send no message if the gate is closed. If the gate
is open, messages may get removed from the queue. Which transmission gate shall be
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Figure 7.2: State machines of a TSN interface

opened or closed is determined by the Gate Control List (GCL) and when the state shall
change. It holds each gate’s state over the schedule’s timespan.

When a transmission has finished, the transmission selection has to select which frame
to send next. It selects the next frame based on the transmission gate state and which
queues contain frames. From all open queues, the transmission selection takes a frame
from the queue with the highest priority containing at least one frame. The priority is in
ascending order. Therefore, a higher queue number yields a higher priority. For example,
if queues 0 and 5 are both open, a frame will be taken from queue 5 because of its higher
priority. If queue 5 does not contain a frame, the transmission selection will take a frame
from queue 0, if available.

7.2.1.1 Interface State Machines

Additionally to the components in Figure 7.1, each interface shall have three state
machines: the cycle timer state machine, the list execute state machine and the list config
state machine. Figure 7.2 depicts simplified versions of these state machines and how
they interact with each other. The coloured text with arrows indicates variables, blue
identifies configuration input, green marks inputs for the general operation, orange is for
internal variables of the state machine, and black indicates values exchanged between
the state machines.

The GateEnabled identifier defines whether the whole process shall be active or not.
The CurrentTime variable provides the current local time of the interface to the state
machines. A derivative from that is the Tick variable, which is a boolean variable and gets
set every nanosecond. Additionally, most variables have one of two prefixes: Admin or
Oper. Oper specifies an operational variable, i.e., it is used during operation. The prefix
Admin defines an administrative value and is a temporary configuration variable. When
the configuration gets updated, these variables get copied to their Oper counterpart.

83



7. Time-Sensitive Networking

The List Config State Machine updates the operational values used by the other two state
machines. AdminControlList and AdminControlListLength provide the new definition to
update the currently used GCL. In contrast, AdminCycleTimeExtension provides how
long the system is allowed to extend its cycle time to update the GCL.

When the ConfigChange input gets set, the list config state machine initiates a con-
figuration change. Afterwards, it sets the ConfigPending variable to indicate that the
configuration change is in progress. If the provided AdminBaseTime is later than the
CurrentTime, then the ConfigChangeTime will be set to the AdminBaseTime. If not,
the state machine calculates the ConfigChangeTime by adding the AdminCycleTime
to the AdminBaseTime until it exceeds the CurrentTime. When CurrentTime reaches
ConfigChangeTime, the Admin variables get copied to their Oper counterparts. After
this step, the ConfigPending and ConfigChange variables get cleared again.

The next block is the Cycle Timer State Machine. Its main task is to calculate the next
CycleStart timestamp to start the subsequent execution of the operational GCL. If no
configuration change is pending, the state machine calculates the next CycleStartTime by
adding OperCycleTime to OperBaseTime until it exceeds the CurrentTime. Suppose a
configuration change is pending, and there is enough time left until CurrentTime reaches
ConfigChangeTime. In that case, the state machine continues using the old schedule. If a
configuration change is pending, and there is not enough time left until CurrentTime
reaches ConfigChangeTime, then the new CycleStartTime is ConfigChangeTime. When
CurrentTime exceeds the calculated CycleStartTime, the variable CycleStart gets assigned
and triggers the List Execute State Machine.

The final block is the List Execute State Machine, which handles the execution of the GCL
and controls the transmission gates. It has two internal variables, the ListPointer and the
TimeInterval. The ListPointer is the index of the current entry of the OperControlList,
and the TimeInterval variable holds the duration of the current GCL entry. If no GCL is
available, the state machine uses the AdminGateStates configuration. When the CyclStart
variable gets set, the state machine starts with the execution of a new cycle. It reads
the OperControlList and OperControlListLength provided by List Config State Machine
and resets the ListPointer. Additionally, it copies the duration of the first entry of the
OperControlList into TimeInterval. Every time the Tick variable gets set, it decrements
the TimeInterval. If it reaches zero, it increments the ListPointer and loads the next entry
of the OperControlList. If the ListPointer reaches the value of OperControlListLength,
the state machine stops further execution. Afterwards, the state machine waits until the
CyclStart variable gets set again.

7.3 Implementation of a TSN-aware Driver
Chapter 4 focused on designing and implementing an RT network stack’s protocol elements
and application interfaces. In this section, we focus on the implementation of a TSN driver.
The following section discusses the elements required for operation as defined in IEEE
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Listing 7.1: Queue entry structure
typedef struct
{

void *buffer_address;
unsigned short padding;
unsigned short frame_length;

} queue_entry_t;

Listing 7.2: Queue structure
typedef struct
{

queue_entry_t *queue;
unsigned char read_ptr;
unsigned char write_ptr;
unsigned short length;

} queue_t;

802.1Q [67]. We assume for the remaining chapter that time synchronisation is already
established. For further information on time synchronisation, please see Chapter 5.

7.3.1 Traffic Queues
TSN requires separate queues for the individual traffic classes to provide traffic scheduling.
Therefore, we defined the structures defined in Listing 7.1 and Listing 7.2. Each queue
consists of a set of entries, which the structure queue_entry_t provides. It holds
the address where a frame is stored and the length of the frame. We added an addi-
tional padding field, which reserves memory and can be used in the future if required.
Nonetheless, the compiler would add an implicit padding field for better memory access.
In order to prevent the cannibalisation of the whole memory of the Ethernet MAC by a
single traffic class, the individual queues got implemented as ring buffers. The structure
queue_t stores all configuration values to manage a queue. The read_ptr defines
what entry to read next and write_ptr into where to write next. The length field
defines how many frames fit in the queue.

The queue determines whether an entry is used by checking the length value. If the
length is greater than zero, the entry is in use. If it is zero, the entry is free. The
read_ptr and write_ptr are equal if either the queue is empty or the ring-buffer is
full. These two cases can be distinguished via the length field. If the length field is
zero, no frames are in the queue. If it is greater than zero, the queue is full.

7.3.2 Schedule Configuration
A schedule configuration requires the following elements: the duration of the cycle, the
GCL and the length of the GCL. In general, the GCL is a list of entries of gate states
and a time value. We defined the structure from Listing 7.3 to handle this. We limited
the duration of one entry to 56 bits such that this structure fits into 64 bits. The selected
time range still allows a timeslot longer than two years, which should exceed all possible
requirements for any slot size. With the remaining 8 bits, the structure provides the
space required to store the gate states.

For a more straightforward configuration of the Admin and Oper schedules, we defined the
structure tsn_schedule_config_t depicted in Listing 7.4. An entry of the schedule
requires two fields, one for the gate states (gate_state) and one for the duration of this
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Listing 7.3: Schedule entry
typedef struct
{

uint64_t gate_state :8;
uint64_t slot_duration :56;

} tsn_gcl_entry_t;

Listing 7.4: Schedule configuration
typedef struct {

uint32_t gcl_length;
tsn_gcl_entry_ptr_t gate_control_list;
uint32_t cycle_time;
uint32_t guard_band;
time_stamp_t update_time;

} tsn_schedule_config_t;

slot (slot_duration). Additionally, the cyle_time member configures the duration
the schedule takes. It is common practice in RT networks that a schedule has a short
silence period at the end, commonly called a guard band. Therefore, the structure has
the member guard_band to store the minimum value for this duration. A schedule is
valid if the sum of the timeslots and the guard band does not exceed the base_time
value. The base_time member defines when the following schedule shall start. If an
update for the schedule is pending, cycle_extension defines how long the driver can
extend the cycle.

7.3.3 Runtime Configuration

We decided to store these values inside the memory of the Ethernet MAC we are using.
Therefore, we designed the tsn_runtime_config_t structure. Listing 7.5 shows a
reduced version of this structure. All configuration variables regarding a schedule need
to exist two times, once in their Admin variants and once in their Oper variants. The
runtime configuration structure references the operational and administrative data as
pointers. We decided to use pointers to simplify updating the configurations. Therefore,
only the pointer addresses of admin_schedule and oper_schedule get switched to
update the schedule.

The traffic_queues member stores the configurations for the individual queues,
one queue for each traffic class. Additionally, the member receive_queue stores
the references to received frames. The list_pointer stores which schedule entry is
currently active. The current_gate_state member stores the transmission gate
state of the currently active schedule entry. The time_interval member is used to
track the remaining time in ticks of this schedule entry.

7.3.4 Executing the Schedule

As already introduced, a schedule consists of multiple time slots, each with a defined
time interval. A dedicated timer creates an interrupt when a slot has ended. Therefore,
we configured our Patmos target with an additional timer, which only the TSN driver
uses. When a time slot has ended, the driver loads the following schedule entry and
calculates the timestamp for the next interrupt.
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Listing 7.5: Reduced runtime configuration
typedef struct {
...

tsn_schedule_config_ptr_t admin_schedule;
tsn_schedule_config_ptr_t oper_schedule;
uint64_t time_interval;
time_stamp_t cycle_start;
uint64_t tick_length_ns;
uint64_t slot_end_time_stamp;
uint32_t list_pointer;
uint8_t current_gate_state;

...
} tsn_runtime_config_t;

7.3.5 Starting a New Schedule
When the last entry of a TSN schedule finishes its execution, the driver needs to calculate
when the following schedule shall start. Therefore, the driver needs to find a point in
time which is larger than the current time, and the difference is dividable by the duration
of a schedule. In other words, the following equation has to be solved:

next_cycle_start = cycle_start + N ∗ schedule_duration ∧

current_time > cycle_start + (N − 1) ∗ schedule_duration ∧
next_cycle_start > current_time

This calculation is a relatively simple operation, as one can calculate N by executing a
division, a multiplication, a subtraction and two additions. Unfortunately, this requires
64-bit divisions, which cannot be WCET analysed, as the Patmos compiler uses library
functions that are not annotated. Listing 7.6 shows the algorithm behind said calculation
avoiding operations that are not WCET analysable.

The algorithm calculates the difference between the current time and the last cycle start.
From now on, we reference this as the delta time. Now there are two cases to consider: is
delta time larger or equal to one second or less than one second? If the delta time is less
than a second, the calculation only uses the nanoseconds portion. Since the nanosecond
portion of the timestamp is only 32 bits, we can use division, and the code stays WCET
analysable.

If the delta time is larger or equal to one second, the execution of the following steps
is required. First, the algorithm calculates how many cycles are required to exceed one
second. The amount exceeding one second gets stored, and we reference it from now
on as the overhang. Next, the algorithm repeatedly halves the seconds and subtracts
the overhang multiplied by the number of seconds we subtract. The algorithm repeats
this step until the number of seconds multiplied by the overhang no longer exceeds the
nanosecond portion of the delta time.
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If the seconds portion of delta time multiplied by the overhang no longer exceeds the
nanoseconds portion, this guarantees that the calculated value of delta time will stay
positive. Therefore, we approximate the value by repeatedly halving the delta time.
Since the multiplication of the overhang and the seconds portion no longer exceed the
nanosecond portion, we can execute the prior calculation without halving the seconds
first. After this step, the delta time is less than one second.

In this algorithm, we have a loop which requires a corresponding upper bound for the
number of execution cycles. We assumed the loop would be executed up to 22 times,
corresponding to a time difference of 48 days. Such an extensive delta time would indicate
a significant time shift in the network. That indicates a failure of the systems, which
requires a restart of the system.

7.4 Further Findings and Reflections

During design and implementation, we came across specific topics out of the scope of
this thesis. Further, we found some topics where we have to acknowledge derivations
from the standard. For instance, we need to adhere to minimum timeslot durations and
consider the limitations of 64-bit operations.

7.4.1 Minimum Timeslot Duration

The standard IEEE 802.1Q [67] defines that the timer ticks shall be in 1 ns second intervals.
The used platform has a maximum clock frequency of 80 MHz, which corresponds to a
clock period of 12.5 ns. Therefore, we cannot comply with the standard due to limitations
in our hardware.

Since we execute the schedule handling inside an interrupt, we also have to consider this.
Amongst other interrupt sources, the Ethernet MAC might block the interrupt for too
long when handling incoming frames or cleaning up after transmitted ones. Given the
platform and its limitations, we decided to use an interval of 1 ms instead.

7.4.2 Schedule Synchronisation

The local clock of the network interface synchronises using gPTP, unlike the system’s
main clock, which cannot be adapted. Therefore, we use the system clock to generate our
timer ticks to execute the schedule. As hardware does not support executing interrupts
based on the network clock, it cannot trigger subsequent executions of schedule entries or
start the execution of a new cycle. Therefore, we sample the network clock periodically
until it reaches the new cycle start time, which limits the accuracy of the execution of
the schedule further.

88



7.4. Further Findings and Reflections

Listing 7.6: Algorithm to calculate the next cycle start
time_stamp_t cycle_start = config->cycle_start;
time_interval_t delta;
delta.seconds = netw_clk_time.seconds;
delta.nanoseconds = netw_clk_time.nanoseconds;

delta.seconds -= cycle_start.seconds;
delta.nanoseconds -= cycle_start.nanoseconds;
if(delta.nanoseconds <= -SEC_TO_NS || (delta.nanoseconds< 0 && delta.seconds !=0))
{
delta.seconds--;
delta.nanoseconds+=SEC_TO_NS;

}

if(delta.seconds>0)
{
uint32_t cycles_per_second = SEC_TO_NS / config->oper_schedule->cycle_time;
if(cycles_per_second *config->oper_schedule->cycle_time < SEC_TO_NS)
{
cycles_per_second++;

}
uint32_t overhang_per_second_ns=cycles_per_second*config->oper_schedule->cycle_time;
overhang_per_second_ns-= SEC_TO_NS ;
uint32_t overhang_per_second_ms = overhang_per_second_ns / MS_TO_NS;

uint32_t overhang_delta_ms=0;
// Iterate that overhang does not exceed nanosecond portion
// approximate by halving seconds
// loopbound 22, assuming clocks are not more than 48 days apart
#pragma loopbound min 0 max 22
while (delta.seconds*overhang_per_second_ns > delta.nanoseconds)
{
overhang_delta_ms = (delta.seconds>>1) * overhang_per_second_ms;

delta.seconds -= (delta.seconds >>1)+overhang_delta_ms/SEC_TO_MS;
delta.nanoseconds -= (overhang_delta_ms % SEC_TO_MS)*MS_TO_NS;

if(delta.nanoseconds <= -SEC_TO_NS || (delta.nanoseconds< 0 && delta.seconds !=0))
{

delta.seconds--;
delta.nanoseconds+=SEC_TO_NS;

}

}
// overhang does no long exceed nanosecond portion, therefore
overhang_delta_ms = delta.seconds * overhang_per_second_ms;
delta.seconds -= delta.seconds + overhang_delta_ms/SEC_TO_MS;
delta.nanoseconds -= (overhang_delta_ms % SEC_TO_MS)*MS_TO_NS;

}
// delta is now less then a second
uint32_t cycles = delta.nanoseconds/config->oper_schedule->cycle_time;
cycles++;
delta.nanoseconds = config->oper_schedule->cycle_time*cycles-delta.nanoseconds;

cycle_start.seconds = netw_clk_time.seconds;
cycle_start.nanoseconds = netw_clk_time.nanoseconds + delta.nanoseconds ;
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7.4.3 Network Configuration
As NETCONF adds a significant implementation amount to the thesis, we decided to
exclude this topic. NETCONF requires an underlying SSH client-server architecture,
which relies on TCP, which is out of the scope of the network stack. Furthermore, SSH
requires an encryption library that is not available for the used environment.

7.4.4 Hardware Implementation
Various ways exist to implement the queues for the individual traffic classes, the trans-
mission gates, and the transmission selection. In this thesis, we focused on designing
and implementing these features in software. Implementing certain elements in hardware
may yield performance improvements. For instance, if the hardware takes over applying
the schedule to the transmission gates, this would yield the possibility of having shorter
timeslots. Shorter timeslots allow for faster rotation between traffic classes, giving more
flexibility for creating schedules and allowing more, e.g., safety-related traffic in between.

It would be attractive to this topic to compare our design against this implementation.

7.4.5 Portability
An essential thought that arose during design and implementation is portability. In
general, the used driver allows reuse in driver implementations for other network interfaces.
Most elements do not require modifications, but the configuration procedure and buffer
descriptor handling need to be adjusted. This aspect shows that most hardware is capable
of running a software TSN implementation. Therefore, many already deployed devices
can be reused with TSN networks reducing the need for new hardware.

7.5 Evaluation
To evaluate the design of the TSN driver, we did a static WCET analysis of the main
functions inside the driver. Additionally, to verify the correct operation, we executed a
runtime analysis. This checks if the frames sent out by the driver interface adhere to the
defined schedule.

7.5.1 Static WCET Analysis
The main functions used by the network stack are the send function (tsn_mac_send_nb)
to hand over frames and the receive function (tsn_mac_reveive_nb) to read out
received frames. Further, the driver requires two functions to keep the Ethernet MAC
operational. First, tsn_mac_update_transmission handles handing over frames
ready to send to the Ethernet MAC and removing already transmitted frames. The
function tsn_mac_update_reception checks if frames were received, adds them to
the receive queue and frees memory not required to store the frame. Further, it allocates
new memory in order to store new frames. Finally, the function handle_tsn_schedule
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Function WCET
cycles at 80 MHz

tsn_mac_send_nb () 252039 3.15 ms
buffer_management_malloc () 19609 245.11 µs
mmio_wr_block () 97673 1.22 ms
enqueue_frame () 1892 23.65 µs
buffer_management_free () 20734 259.18 µs

tsn_mac_update_transmission () 32128 401.6 µs
buffer_management_free () 20734 259.18 µs
dequeue_frame () 1869 23.36 µs

tsn_mac_reveive_nb () 170498 2.13 ms
mmio_rd_block () 144363 1.8 ms
buffer_management_free () 20734 259.18 µs

tsn_mac_update_reception () 259157 3.24 ms
buffer_management_realloc () 16820 210.25 µs
buffer_management_malloc () 19609 245.11 µs

handle_tsn_schedule () 62799 784.99 µs
tsn_mac_update_transmission () 32128 401.6 µs
buffer_management_free () 20734 259.18 µs
dequeue_frame () 1869 23.36 µs

Table 7.2: WCET analysis values for sending and receiving frames inside the TSN driver

updates the current schedule entry and starts a new cycle. Another task of it is switching
between operational and administrational schedules when required.

When we look at tsn_mac_send_nb, we see one major contributor to the WCET:
mmio_wr_block. It gets executed twice, making up a large chunk of the execution
time. The significant WCET is because this function copies data to the Ethernet MAC in
software. The same applies to tsn_mac_reveive_nb, where the major time-consuming
step is copying a received frame.

When comparing the two update functions (tsn_mac_update_transmission and
tsn_mac_update_reception), one can see that the reception may take significantly
longer. The higher WCET is due to a loop checking each BD reserved for reception. The
used configuration uses a maximum of 5 such BDs.

7.5.2 Runtime Analysis
To check if the driver operates correctly, i.e., if frames obey their time slots, we create a
small test program which keeps the driver interface fed with frames. It creates a socket
for each traffic class and sends 10.000 UDP datagrams for each class. We defined a
schedule where each traffic class has a time slot of 1 ms, and the schedule has a total
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Figure 7.3: Distribution when frames were sent in relation to the schedule

duration of 10 ms. We recorded the reception of the frames using Wireshark. Based on
the gathered data, we created a histogram of when our target received the frames in
relation to the schedule. Figure 7.3 depicts the results of this measurement.

The histogram from Figure 7.3 depicts how many frames were received during which
time interval of the schedule. We can see that all frames related to a single traffic class
got received within a one millisecond timespan. This chart shows that the second column
is typically higher than the first column, contrary to our initial assumption that the first
column should be the highest. This effect is a result of the software implementation of
the TSN functionality. One reason is that it takes some time to initiate the transmission
of a frame. In addition, the interrupt execution may get delayed, adding some further
delay. Multiple messages may get sent in the same time slot depending on how many
frames are inside the driver queues. Therefore, there exists a second smaller peak for
each traffic class.

7.6 Summary
In this chapter, we introduced the standards TSN builds upon and its main building
blocks, see Section 7.1. Based on this, we designed a TSN-aware driver for the used
Ethernet MAC. Section 7.3 presents the design, implementation, and Section 7.4 discusses
further findings. Section 7.5.1 evaluated how the driver performs in terms of a static
WCET analysis. Section 7.5.2 evaluates if the implementation actually adheres to a
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TSN schedule. These two sections show that our design and implementation for TSN’s
scheduled-traffic works. Nonetheless, there is still room for improvement and extension
of the feature set, e.g., adding configuration mechanisms based on NETCONF or the
credit-based shaper algorithm and improving the size of time slots.

93





CHAPTER 8
Conclusion

In this chapter, we want to conclude what we achieved in this thesis. In Section 8.1,
we revisit our defined research questions and provide our gathered insights for them.
Section 8.2 provides an outlook of possible future work regarding the artefacts created
by this thesis.

8.1 Gathered Knowledge and Insights
In this thesis, we strived to expand our knowledge about Time-Sensitive Networking
(TSN), especially end stations using it. Therefore, we defined in Section 1.1 a set of
research questions we wanted to answer. In the following paragraphs, we will revisit the
individual questions and summarise the knowledge we gathered during the work on this
thesis.

RQ1: How shall a network stack be structured to support real-time and non-
real-time traffic? In Chapter 4, we investigated what features a network stack shall
provide. Further, we looked into supporting Real-Time (RT) traffic in this chapter. Based
on this, we designed a network stack that supports the transmission of mixed-criticality
traffic. We employed Worst-Case Execution Time (WCET) analysis for the stack’s single
elements to guarantee our artefact’s deterministic behaviour. We further evaluated our
stack using runtime measurements to validate the results of the static code analysis.

In general, the structure of a network stack shall align with a network model like the
OSI reference model or the Internet protocol suite. Using such a network model as
the underlying structure eases extension of the single layers with further protocols.
Further, this separation into the individual layers allows the isolation of processing steps.
In addition to the protocols required for operation, a network stack needs to further
provide Application Programming Interfaces (APIs) for applications and the system. A
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communication interface is required such that the application can communicate with
the outside world. A management interface must also be provided to configure network
interfaces and other parameters.

The structure of a network stack needs to be designed such that the transmission and
reception are WCET analysable. Therefore, mainly static programming patterns have to
be used, which comes at the cost of some runtime optimisations like functional pointers.
This limitation also prohibits notifying applications about newly received data via callback
functions. Therefore, additional buffers are required such that data can be stored until
the receiving application processes them. Further, each loop requires bounds so the
WCET tooling can analyse the code. If this is not automatically inferable, the loop
bounds must be calculated manually and provided to the used WCET tooling.

RQ2: What accuracy can be expected from a clock synchronisation algorithm
partly implemented in software? In Chapter 5, we looked into the process of
synchronising the clock of our end stations with the network by utilising hardware and
software. Based on the requirements of TSN, we selected generalized Precision Time
Protocol (gPTP) to syntonise and synchronise the devices. We measured how significantly
a clock drifts away from the network without further adjustments. When enabling time
synchronisation, we managed to keep the offset from the master port within +/-40 µs.

RQ3: What buffer management algorithm provides the optimal trade-off
between time complexity and memory overhead? In Chapter 6, we analysed a
set of well-known algorithms for memory management. We investigated the worst case
for each algorithm and how it impacts the runtime when requesting or freeing memory.
In addition to the execution time analysis, we sketched the worst case for the space
requirements of each algorithm.

Based on the gathered knowledge, we concluded that Two-Level Segregated Fit (TLSF)
is the best option to realise our RT buffer management for our TSN interface, as it has a
constant upper bound for the runtime. For our use case, we further optimised the TLSF
to reduce the required memory space to allow the management of a greater number of
buffers. We executed a WCET analysis on our implementation to validate the assumed
time complexity, which showed that a constant worst-case complexity exists. To validate
the correctness of the WCET analysis, we executed runtime tests, which showed that
there is no internal element falsifying the WCET.

RQ4: What limitations occur when realising a software-based TSN network
interface? In Chapter 7, we designed a driver for a standard Ethernet interface that
supports TSN scheduled traffic. The interface supports multiple queues for various types
of traffic and uses the buffer management introduced in Chapter 6. The design shows
that existing end stations can utilise TSN without needing new interfacing hardware.

However, the implementation revealed several limitations of a software-based approach.
We managed to support schedule entries with a length as small as 1 ms. Given the
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assumption that the hardware provides all functions, the TSN network interface could
run at a significantly higher speed allowing for shorter time slots. Our work shows that
large timeslots are the main drawback of a software-based end station. Therefore, the
main bottleneck is the used processor, whose clock speed significantly impacts how fast
functions can be executed. Since we used a single-core Central Processing Unit (CPU),
the available computational power has to be shared with applications running on the
system.

A side-effect of the longer minimum timeslot duration is that the cycle intervals also
tend to take longer. In other words, a schedule with the same number of entries requires
more time using our software-based end station. The standard IEEE 802.1Qbv [8] defines
that the duration of a timeslot shall not depend on the network time but only on the
local clock. Therefore, only the start of a new cycle is aligned with the network. Since
the schedule duration requires additional time, the drift of the local clock may require
consideration.

As the efficiency of processing frames is directly dependent on the host’s CPU, bandwidth
limitations also have to be considered. In hardware, many operations can be executed
more efficiently, e.g., updating timeslots and calculating the next cycle start. In software,
these steps are performed by the CPU, requiring more time. Therefore, the driver needs
to add more safety margin when estimating the transmission time of a frame in order
to obey the schedule. These reduced transmission windows inside a timeslot affect the
actual usable bandwidth.

8.2 Future Work
In this thesis, we proposed our implementation of a software-based TSN end station.
This thesis provides a foundation for further investigations into this topic. The proposed
network stack implementation lacks some functions like Transmission Control Protocol
(TCP), Internet Protocol (IP) fragmentation and Internet Protocol Version 6 (IPv6)
support. These topics are relevant for the general operation and the future of network
technologies.

A possible further use for the proposed network stack would be the integration within an
Open Platform Communication Unified Architecture (OPC UA) system. For complete
operation, OPC UA requires the implementation of TCP. Nonetheless, this network stack
guarantees safety-related applications exclusive access to the communication fabric.

In addition, the proposed buffer management implementation does not support multicore
or multithreaded access. Therefore, future work could improve the design to allow the
usage in multi-consumer and multi-producer environments. Further, there is still potential
for improvement in this implementation to provide lower WCET values.

The proposed proof-of-concept suffers from an inefficient copy mechanism. We assume
significant performance improvements with technologies like Direct Memory Accesss
(DMAs) that handle hardware memory operations. Currently, we handle the checksum
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calculation in software, but with dedicated hardware blocks taking over these calculations.
This offloading could yield significant runtime improvements.

We designed the proof-of-concept with portability in mind. Therefore, it would be
attractive to port this network stack to other chips like RISC-V and evaluate it on them.

The used Ethernet Media Access Control (MAC) provided easy access to control mech-
anisms to enforce TSN. A survey of other Network Interface Cards (NICs) and driver
interfaces would be interesting to determine if this approach is easily portable. In addition,
it would be interesting to see how to implement a driver for a NIC that already provides
queues and traffic gates defined by TSN.
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Glossary

ARM® ARM is a processor architecture mostly used for mobile devices and embedded
devices. ARM stands for “Advanced RISC Machines”. 7

AUTOSAR A standardisation consortium for automative manufacturers and suppliers.
10

Bluetooth A wireless protocol used for Personal Area Networks, defined in IEEE
802.15.1. 25

Boundary-Tag A small data structure at the beginning or the end of memory area,
signalling its boundaries. 46, 60, 61, 66

C is a general purpose programming language, often used embedded systems or pro-
gramming of Operating Systems. 7

credit-based shaper algorithm The credit-based shaper algorithm, is a traffic se-
lection algorithm, which defines that queued frames shall only be sent if the
transmission rate was not exceeded. 76, 78

end station A device attached to a local area network (LAN) or metropolitan area
network (MAN), which acts as a source of and/or destination for data traffic carried
on the LAN or MAN. [74]. 2, 3, 5, 10, 101

end-system A system attached to a network that is an initial source or a final destination
of packets transmitted across that network. [74]. 2, 4, 8, 10

Enhanced Transmission Selection Algorithm The Enhanced Transmission Selec-
tion algorithm, is a traffic selection algorithm, which defines that queued frames
shall only be sent if the allocated bandwidth was not exceeded. 76, 78

Ethernet Is a protocol which operates on the layer 2 of the OSI reference model. It
is defined standard IEEE 802.3 [2]. 1, 7–10, 16, 18–20, 24, 25, 27–31, 35, 41, 42,
61–63, 75, 76, 78, 81, 82, 86, 88, 97

Free-List A list representing free/unallocated buffer entries. 46, 50–62, 64, 66, 69, 70,
91
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grandmaster The time-aware system that contains the best clock, as determined by
the best master clock algorithm (BMCA), in the generalized precision time protocol
(gPTP) domain. [26]. 8, 35, 37–40

Industry 4.0 The fourth industrial revoltuion with focus on interconnectivity and smart
automation. 2, 9, 10

Internet protocol suite a model for the protocol layers of the internet defined by the
Internet Engineering Task Force (IETF). 15–18, 20, 91

IT/OT convergence The IT/OT convergence defines the process of integrating Infor-
mation Technology (IT) into systems with Operational Technology (OT). 1, 8,
9

Java java is java. 46

Linux Linux is the superset of open-source operating systems based on the Linux kernel.
17, 24, 26

Linux PTP Linux PTP is an open-source project which implements the Precision
Time Protocol (PTP) for Linux-based Operating Systems (OSs), see https:
//linuxptp.sourceforge.net/ last accessed 9.12.2022. 42

llvm Is a widely used compiler and toolchain ecosystem. 7

middleware A software block that abstracts the communication from applicationss. 9

OSI reference model Open Systems Interconnection model, a model which standard-
ises functions between telecommunication and operating systems. 15–18, 91, 99

Patmos Patmos is a time-predictable very-long instruction-word (VLIW) processor. It
is intended as a processor for embedded real-time systems. [20]. xv, 2, 3, 5, 7, 10,
28, 68, 83, 91

Profibus Process Field Bus, is a field bus developed, by the German department of
education and research, for industrial automation. 1

ProfiNET ProfiNET is a Ethernet based Standard from Siemens, which is mainly used
in industrial auotmation. 7, 10

RISC-V RISC-V is an Instruction Set Architecture (ISA) thas was designed within a
project of the UC Berekly.. 7

router A router is a device which is located on OSI-Layer 3. Routers handle the routing
of packets between networks. 2
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RX Short form for reception. 10, 41, 42, 86

SSH Secure Shell provides a protection layer to access services securly on unsecure
networks. Typically used for remote command execution or login into devices. In
general, SSH can be added to any network service.. 16, 76

strict priority algorithm The strict priority algorithm, is a traffic selection algorithm,
which defines that the frames queued in the highest priority traffic class shall be
sent first. 78

switch A switch has multiple network ports, where each port provides bridge function-
ality. 2, 9, 18, 76

time-aware bridge A Bridge that is capable of communicating synchronized time
received on one port to other ports, using the IEEE 802.1AS protocol. [26]. 35

time-aware end station An end station that is capable of acting as the source of
synchronized time on the network, or destination of synchronized time using the
IEEE 802.1AS protocol, or both. [26]. 35

time-aware system A time-aware Bridge or a time-aware end station. [26]. 35, 37

traffic class A classification used to expedite transmission of frames generated by critical
or time-sensitive services. Traffic classes are numbered from zero through N-1,
where N is the number of outbound queues associated with a given Bridge port, and
1 <= N <= 8, and each traffic class has a one-to-one correspondence with a specific
outbound queue for that port. Traffic class 0 corresponds to nonexpedited traffic;
nonzero traffic classes correspond to expedited classes of traffic. A fixed mapping
determines, for a given priority associated with a frame and a given number of
traffic classes, what traffic class will be assigned to the frame. [67]. 8, 10, 76, 78,
81, 82, 87, 88, 101

transmission gate A gate that connects or disconnects the transmission selection
function of the forwarding process from the queue, allowing or preventing it from
selecting frames from that queue. The gate has two states, Open and Closed. [67].
10, 78–80, 86

TTCAN Time Triggered Controller Area Network is a time aware extension to the well
known Controller Area Network (CAN) bus.. 10

TX Short form for transmission. 10, 41, 42

VLAN The closure of a set of MAC Service Access Points (MSAPs) such that a data
request in one MSAP in the set is expected to result in a data indication in another
MSAP in the set. [67]. 19, 29, 31, 76
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Wireshark is a packet analyzer, which is often used for troubleshooting and network
analysis. 87

x86 Is a Complex Instruction Set Computer (CISC) based CPU architecture from Intel..
7

XML Extensible Markup Language, a markup-language which defines rules for encoding
to be human and machine-readable. 76

YANG YANG (Yet another next Generation) is a modelling language, in combination
with Network Configuration (NETCONF) it is used for modelling configurations..
3, 76
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Acronyms

API Application Programming Interface. 23, 24

ARP Address Resolution Protocol. 16, 18, 19, 29, 30, 63

AVB Audio Video Bridging. 75

BCET Best-Case Execution Time. 6

BD Buffer Descriptor. 20, 86

BE Best Effort. 8, 76

BMCA Best Master Clock Algorithm. 35, 37–39, 41, 91

CAN Controller Area Network. 1, 101

CAS Compare-and-Swap. 3, 68

CISC Complex Instruction Set Computer. 7, 101

COTS Commercial of the Shelf. 7

CPS Cyber-Physical System. 5

CPU Central Processing Unit. 7, 20, 28, 64, 68, 101

CQF Cyclic queuing and forwarding. 3

CRC Cyclic Redundancy Check. 19, 24, 30

CSMA/CD Carrier-Sense Multiple Access with Collision Detection. 8, 18, 76

DDS Data Distribution Service. 9

defaultDS Default Data Set. 37, 38

DHCP Dynamic Host Configuration Protocol. 76
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DMA Direct Memory Access. 28

DNS Domain Name System. 16, 76

DSA Dynamic Storage Allocation. 4, 45–50, 58, 60, 73, 93

E2E End-to-End. 16, 21, 35

ERP Enterprise Resource Planning. 2

EUI Extended Unique Identifier. 19, 40

FCS Frame Check Sequence. 19, 30, 31

FLI First Level Index. 56, 57, 62, 64–66, 70–72, 97

FPGA Field-Programmable Gate Array. 8–10

FPU Floating Point Unit. 64

FRER Frame Replication and Elimination for Reliability. 3

Gbit/s Gigabit per second. 1, 18

GCL Gate Control List. 79–81

GNSS Global Navigation Satellite System. 34, 38

GPS Global Positioning System. 34

gPTP generalized Precision Time Protocol. xv, 4, 8, 11, 33, 35–37, 39, 41, 75, 84, 91

I2C Inter-Integrated Circuit. 20

ICMP Internet Control Message Protocol. 16, 21, 27, 31

IEEE Institute of Electrical and Electronics Engineers. 1, 8, 18, 35, 75, 77, 81, 84, 93,
99

IETF Internet Engineering Task Force. 16, 22, 100

IIoT Industrial Internet of Things. 1, 2, 9

IO Input/Output. 20, 68

IoT Internet of Things. 1, 9

IP Internet Protocol. 15, 16, 20–22, 25, 27, 29, 31, 76

IP-Core Intellectual Property Core. 8, 9
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IPv4 Internet Protocol Version 4. 19–21, 27, 29–31

IPv6 Internet Protocol Version 6. 20, 21, 27

ISA Instruction Set Architecture. 7, 100

IT Information Technology. 1, 2, 7–9, 100

ITU-T International Telecommunication Union Telecommunication Standardization
Sector. 15

LAN Local Area Network. 19, 34

LL/SC Load-Link/Store-Conditional. 3, 68

MAC Media Access Control. 8, 19, 20, 27–30, 40–42, 61–63, 81, 82, 86, 88, 97, 101

Mbit/s Megabit per second. 1, 18, 42

MCU Microcontroller Unit. 35

MII Media Independent Interface. 10, 41, 42

MQTT Message Queue Telemetry Transport. 9

MTU Maximum Transmission Unit. 21, 27

NETCONF Network Configuration. 3, 8, 76, 86, 88, 102

NIC Network Interface Card. 9, 18, 24, 27, 35

NTP Network Time Protocol. 34

OPC UA Open Platform Communication Unified Architecture. 9

OS Operating System. 17, 45, 58

OT Operational Technology. 1, 2, 8, 9, 100

P2P Peer-to-Peer. 35, 36

PCIe Peripheral Component Interconnect Express. 20

PCR Path Control and Reservation. 3

PHY Physical-Layer. 10, 28, 41

PLC Programmable Logic Controller. 2

PSFP Per-Stream Filtering and Policing. 3

111



PTP Precision Time Protocol. 3, 8, 10, 34, 35, 37, 39, 41, 42

RAM Random Access Memory. 45

RFC Request for Comments. 16, 19, 21, 22

RISC Reduced Instruction Set Computer. 7

ROS Robot Operating System. 9

RPC Remote Procedure Call. 76

RT Real-Time. 4, 9, 10, 15, 25–29, 31, 48, 68, 75, 76, 81, 91

RTC Real-Time Clock. 41

RTOS Real-Time Operating System. 41

RTS Real-Time System. xv, 3–6, 10, 15, 22, 34, 45, 68

SCADA Supervisory Control and Data Acquisition. 2

SDN Software-Defined Networking. 10

SLI Second Level Index. 57, 62, 64–66, 70–72, 97

SNMP Simple Network Management Protocol. 76

SoC System on a Chip. 20, 35

SPI Serial Peripheral Interface. 20

SRP Stream Reservation Protocol. 3, 8

SSH Secure Shell. 16, 76, 86, Glossary: SSH

TCP Transmission Control Protocol. 16, 22, 23, 25, 27, 31, 86

TDMA Time-Division Multiple Access. 8

TLSF Two-Level Segregated Fit. 55–64, 67, 68, 73, 91, 93, 97

TSA Transmission Selection Algorithm. 78

TSN Time-Sensitive Networking. xv, xvi, 1–5, 7–11, 20, 25, 33, 35, 41, 75–81, 83, 86–88,
91, 93

TTCAN Time Triggered Controller Area Network. 10, Glossary: TTCAN

TTEthernet Time-Triggered Ethernet. 7, 8, 10
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TTP Time-Triggered Protocol. 10

UDP User Datagram Protocol. 16, 22, 25, 27, 29–31, 34, 87

UTC Universal Time Coordinated. 34

VHDL Very High Speed Integrated Circuit Hardware Description Language. Glossary:
VHDL

VL Virtual Link. 8

WCET Worst-Case Execution Time. xv, 2–4, 6, 7, 9, 10, 15, 27–31, 50, 69, 72, 73, 83,
86–88, 91, 93

WLAN Wireless Local Area Network. 18, 25
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