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Hydrogen permeation 
through steel during cathodic 
polarization of lubricating 
oils in a modified 
Devanathan–Stachurski cell
Tz. Boiadjieva‑Scherzer1*, L. Mirkova2, G. Fafilek3, J. Reinbold3, H. Kronberger3, H. Stache4, 
G. Bodesheim4 & M. Monev2

In lubricated tribo-contacts, hydrogen ingress in steel is possible due to chemical reactions of lubricant 
components like base oils or additives, and/or contamination upon service particularly water, and/
or corrosion processes, and/or electrostatic fields or current flow. Absorbed by the metal, atomic 
hydrogen may cause serious deleterious effects on the physical–chemical and mechanical properties, 
reducing the material’s ability to withstand the design loads. The present research work is focused 
on analyzing the influence of electric field on lubricating oils in contact with steel surface. In order to 
evaluate the possibility of atomic hydrogen generation and permeation into the steel under cathodic 
polarization of lubricating oils the electrochemical permeation technique developed by Devanathan 
and Stachurski is used. The input cell of a Devanathan–Stachurski set up is appropriately modified 
by realizing a very close distance between the working electrode (steel membrane) and a Pt counter 
electrode with the oil between. This significantly increases the sensibility of the set up and allows the 
application of larger voltage and higher temperature to enable hydrogen generation from lubricating 
oils. The complex effects of cathodic polarization, temperature, additives and presence of water in 
model lubricating oils on atomic hydrogen permeation into steel is discussed.

Hydrogen permeation into metals may cause very serious deleterious effect, well known as “hydrogen embrit-
tlement”, on their physical–chemical, structural and mechanical properties. This phenomenon has stimulated 
studies of various aspects aimed to its understanding, prediction and prevention.

Hydrogen embrittlement is caused by penetration of H atoms into metals. The hydrogenation of the metals 
leads to decrease in the ductility of the metal, deformation under applied stress, cracking and blisters. Hydrogen 
can be incorporated in the metal during various stages of manufacturing processes as well as during its use. The 
problem is most important in the case of iron and steel constructions1.

The phenomenon “hydrogen embrittlement” is widely investigated mainly in aqueous media2–5. The kinetics of 
hydrogen permeation into metals depends on many factors such as the nature of the metals and their surface state, 
especially the presence of oxides, applied potential or current density in the case of electrochemical charging, pH, 
chemical composition of the solution and additives which may inhibit or promote the hydrogen permeation1,3,6–14.

Various experimental methods for evaluation of the hydrogen coverage, respectively hydrogen permeation 
into metals are proposed in the literature. Among them, the electrochemical technique, derived by Devana-
than–Stachurski is widely used15,16. It provides rapid, reliable and precise information about hydrogen absorption 
and diffusivity. Suitable modifications of Devanathan–Stachurski cell were also developed to investigate hydrogen 
permeation through metals at different hydrogen entry conditions.

The phenomenon “hydrogen embrittlement” of steel constructions used in non-aqueous media is also 
investigated.
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It is reported that the steel bearings used in various machines, in particular in power trains, often suffer from 
a short service life due to flaking caused by the structural changes. Various factors are proposed as a cause of 
the problem of the brittle flaking accompanying peculiar structural changes in steel during the rolling contact. 
Among them are vibration17, bending stress18, chemical composition of the lubricant19,20 and current flow through 
the bearings21,22.

To answer what is the source of hydrogen in bearings and which factors prevent or promote hydrogen 
ingress, several hypotheses are proposed. Some of them support the basic idea that this phenomenon occurs 
when hydrogen formed after the decomposition of the lubricating oils by a tribochemical reaction diffuses into 
the steel bearings19,20. According to other authors23, in normal bearing operation, hydrogen is considered to 
come mainly from the reaction of water (as water contaminants from the air humidity) at the bearing surface 
along with the decomposition of the lubricant. It is found in this study that the fatigue life of the steel bearings 
is inversely proportional to the hydrogen content of the steel. Possible source of hydrogen could be also the dif-
fusion of hydrogen absorbed during the bearing manufacturing process.

In the modern industry of lubricating oils, substances that are a complex mixture of organic compounds 
(base oil and additives) are commonly used. Some of the additives provide antioxidant, anti-corrosion, anti-wear, 
anti-friction and water-resistant properties24.

A mechanism of formation of atomic hydrogen from decomposition of lubricant molecules, additives or con-
taminants via tribochemical reactions under the tribological contact during surface friction is proposed as a result 
of investigations with a space lubricant under vacuum conditions25. After adsorption of the lubricating oil on the 
steel surface, the cleavage of C–C bonds follows, which results in the release of hydrogen and hydrocarbon gases.

It is suggested that the oils, composed of hydrocarbons, decompose under conditions of high temperature and 
repeated stress caused by rubbing contact and generate hydrogen23,25. Thus, hydrogen ingress into the steel occurs 
due to changes within the oil composition upon service. As a result, flaking of the steel bearings is observed. 
Thermal decomposition of chemisorbed water and surface contaminants participating in the tribochemical 
processes occurring at the interface are the other possible sources of hydrogen evolution25. The effect of the high 
temperature on the stability of the oil substances, formation of hydrogen and following micro structural changes 
of the steel induced by the hydrogen embrittlement is established and well described in Ref.26. Controlling the 
diffusion of hydrogen can effectively prevent the flaking and provide long bearing life.

To evaluate the hydrogen uptake from a lubricated tribo-contact into bulk steel, in-situ hydrogen detection 
methods are developed by suitable modification of the Devanathan–Stachurski set up27–29. By replacing the charg-
ing side of the conventional cell with a “lubricated rubbing” device, and by recording H-permeation transients 
on the detection side, the effect of commonly used additives and water contamination of the lubricating oils on 
hydrogen permeation into steel is investigated28.

Early bearing failures, well known as white etching cracks (WEC), are observed when the rolling contact is 
subjected to so-called additional load such as electrical currents flowing through the bearings, in addition to 
the pure rolling load21,22,30,31. WEC are networks of cracks below the surface of the raceway in the white etching 
areas. This phenomenon is one of the undesirable side effects during the operation of bearings. It leads to a drastic 
reduction in the bearing service life. The influence of small currents passing through the rolling bearings on 
formation of WEC is investigated in detail in Ref.32. On the basis of the results, the failure hypothesis “cathodic 
WEC fatigue” is suggested as follows: a direct current flow through a rolling bearing causing a small voltage drop 
can lead to very strong electrical fields (> 10 kV/mm) due to the extremely thin lubricating gaps. Relatively low 
current densities (10–6–10–4 A/mm2) could be sufficient for this. Depending on the lubricant composition and 
a sufficient voltage, electrochemical reactions take place and possibly also the formation of solvated hydrogen 
cations (protons). According to the bearing tests, a voltage drop across the bearing of approximately 1 V seems 
to be sufficient. At critical hydrogen concentrations of less than 1 ppm WEC formation begins.

No reports in the literature on the effect of external polarization of lubricating oils on the hydrogen permea-
tion in in situ measurements were found.

It could be assumed that depending on the electrical currents passing through the rolling bearings and the 
lubricant composition, electrochemical reactions take place. As a result, formation and permeation of hydrogen 
into the steel bearings can be expected. The present work was motivated to study the influence of electric current 
on lubricating oils in contact with steel surface. The objectives of this work are:

•	 Development of a modification of the Devanathan–Stachurski cell for detection and analysis of the hydrogen 
permeation into steel membrane in contact with lubricating oils subjected to cathodic polarization.

•	 Investigation of the influence of the cathodic polarization on the hydrogen permeation behaviour of various 
oil compositions (including water contamination) at room temperature and upon heating.

Model oil compositions, including commonly used in lubricating oils additives as Calcium Sulfonate (CaSulf) 
and/or Zinc-dialkyldithiophosphate (ZDDP) were chosen for the method validation. Based on literature, it is 
considered that both CaSul and ZDDP are critical in driving WEC formations, as one specific factor is the effect 
of the additives’ chemistry on the generation and diffusion of hydrogen20,30–32.

Experimental
Preliminary investigations of the hydrogen permeation into steel membrane in the presence of lubricating oils 
using the conventional Devanathan–Stachurski set up showed the necessity of a suitable modification of the input 
(charging) cell in order to facilitate the passing of the charging current or voltage through the oil and to increase 
the hydrogen permeation sensibility. The reason is the low conductivity of the lubricating oils.
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The input side of the conventional Devanathan–Stachurski cell was redesigned to achieve very close distance 
between the working electrode (steel membrane) and Pt counter electrode of the input cell33. In this modified 
version, the output (detection) cell is the same as in the classical version.

The working electrode and Pt counter electrodes are placed between two polymer rings, which after assem-
bling form a large ring (modified input cell). To establish a close distance between the steel membrane and the 
Pt counter electrode, a thin spacer of filter paper (blue line, with a thickness of 130 µm) impregnated with the oil 
is used. The experiments were performed under room temperature or upon heating. At the experiments upon 
heating, the input cell was connected with a heating device through the Pt counter electrode.

Schematic representation of the modified Devanathan–Stachurski cell with a close steel/Pt connection in the 
input cell is given in Fig. 1.

The "model compositions” of Base oil and additives tested by the modified Devanathan–Stachurski cell in 
order to demonstrate its application for investigation of the hydrogen permeation process into a steel membrane 
under cathodic polarization are presented in Table 1.

The chemistry of the model oil compositions is common for lubricants. Bis(nonylphenyl)amine is a typical 
antioxidant. ZDDP is widely referred as extreme-pressure/anti-wear additive and CaSulf as detergent/rust pre-
ventative. The concentrations of ZDDP and CaSulf are significantly higher than that in industrial oils aiming to 
clearly distinguish possible effects of the additives on the hydrogen generation and permeation.

In order to achieve high sensitivity in the detection of diffusible H generated by polarization of the oils, 
mild steel with a thickness of 25 µm (Metall-Folien GmbH, Main, Germany) was chosen instead of bearing 
100Cr6 steel. The thickness of the steel electrodes is a critical parameter. 100Cr6 steel in the desired quality in 
bearings, i.e. heat treated, 62 ± 1 HRC with a specified roughness, surface flatness, thickness and dimensions for 
the hydrogen permeation setup is not commercially available. It could be assumed, that the different hydrogen 
trapping sites and the different hydrogen diffusivity of the two steels should not greatly affect the conclusions 
on the effect of cathodic polarization of lubricating oils on their ability to generate hydrogen as well as for the 
method validation.

Before experiments, the steel electrodes, prepared from a mild steel foil with a thickness of 25 µm were 
cleaned by degreasing in NaOH solution and acetone, followed by etching in aqueous solution of HCl (1:1). The 
working surface area was 1 cm2.

Figure 1.   Schematic representation of the modified Devanathan–Stachurski cell. RE reference electrode, CE 
counter electrode, WE working electrode.

Table 1.   Model oil compositions and water content determined by Karl Fischer titration.

Oil composition Abbreviation Water content/ppm

Ester base oil (Trioctyl trimellitate) BOil 318

BOil + 1% Bis(nonylphenyl)amine (Antioxidant, AO) BOil + AO 361

BOil + 15%Zinc-dialkyldithiophosphate (ZDDP) BOil + ZDDP 2800

BOil + 15% Calcium Sulfonate (CaSulf) BOil + CaSulf 1800

BOil + 1%AO + 2%ZDDP + 15%CaSulf CombOil 778

BOil + 1%AO + 2%ZDDP + 15%CaSulf + H2O CombOil + H2O 6516



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18662  | https://doi.org/10.1038/s41598-022-21941-7

www.nature.com/scientificreports/

The spacer of filter paper was preliminary dried (at 150 °C for 30 min in a laboratory oven) and placed on 
the platinum counter electrode. Thereafter, the filter paper was impregnated with the oil tested (0.5 ml). After 
assembling the input cell, the exit side of the steel membrane was electroplated with a thin (nearly 2 µm) pal-
ladium layer.

0.1 M NaOH solution was introduced into the output cell. Constant positive potential of 0.28 V vs. Hg/HgO 
was applied on the exit side of the steel membrane. The detected oxidation (permeation) current I2 is proportional 
to the amount of diffusing hydrogen through the steel membrane. By a computerized system, the current I2 at 
the exit side of the steel membrane was recorded against time as a measure of the hydrogen penetrated into the 
steel membrane (hydrogen permeation transient).

Before recording the permeation transient, a positive potential of 0.28 V vs. Hg/HgO was applied on the exit 
side of the steel membrane for a sufficiently long time to oxidize hydrogen resulting from its prior treatment 
(manufacturing process, Pd plating) and to get a residual anodic current density (I2

res) less than 2 µA/cm2.
In the case of experiments at room temperature, when reaching I2

res less than 2 µA/cm2, a voltage of 30 V 
(Fig. 1, U1) was applied on the entry side of the membrane by a programmable power supply Instek, PSP-405. 
The 30 V polarization is in agreement with reports in the literature (the bearing voltage can reach ~ 30 V34 and 
be higher than 70 V22). The reference value of the current at 30 V polarization at room temperature is in the 
15–20 nA range, while at heating the current value is within the 0.8–1.7 µA range, depending on the oil compo-
sition and temperature. Upon heating, at first the heating device was switched on, set to 70 or 100 °C. After at 
least 40 min (which time was sufficient the system to be heated), the voltage of 30 V was applied. At the end of 
the experiment, first the voltage was switched off and then the heating device. The temperature was measured 
close to the platinum counter electrode, using a thermo-couple mounted within the input cell. Generally, in 
application the bearing temperature in lubricated contact can be 60–90 °C, though localized flash temperatures 
can be much higher31. In the present work the effect of temperature of 70 °C (within the operational range) and 
of 100 °C (upper temperature limit due to evaporation of the electrolyte in contact with the steel at the exit side 
of the membrane) on the hydrogen permeation was investigated. The increase of the temperature affects the 
viscosity and the electrical conductivity of the oil, depending on its composition and greatly affects the hydrogen 
diffusion through steel.

Karl Fischer titration was used for determination of the water content in the BOil and in the oil compositions 
at room temperature. Both additives, ZDDP and CaSulf are known to have hygroscopic properties. Artificially, 
water was added to the BOil and the CombOil to investigate its effect on hydrogen permeation and electrical 
conductivity of the substances.

Electrochemical impedance spectroscopy (EIS) was employed to measure the electrical resistance (imped-
ance) of the steel membrane/oil interface within the 5–2 MHz range of frequencies. The results obtained in EIS 
for the low-frequency region were used to evaluate the effect of the water content on the oils resistance. The EIS 
measurements were performed in 2-electrode configuration at room temperature. Electrodes of mirror polished 
stainless steel with a distance in-between of 50 µm (defined by PTFE foil) and working area of 1 cm2 (exposed 
to the oil) were used.

Ethical approval.  Each author certifies that his or her institution approved the study protocol and all inves-
tigations were conducted in conformity with ethical principles of research.

Results and discussion
Hydrogen permeation measurements with base oil (BOil). Influence of the temperature.  The 
transient of BOil, obtained at room temperature and under constant voltage of 30 V is shown in Fig. 2a. As soon 
as the residual current I2

res reached the value of about 2 μA, the steel membrane was subjected to polarization. 
No rise of the permeation current is observed. On the contrary, the permeation current continues to decrease. 
Upon heating at 70 °C or 100 °C (Fig. 2b), the corresponding transients of BOil begin with a sharp increase of 
the permeation current I2. After this peak, the voltage of 30 V was applied. There is no influence of the polariza-
tion on the permeation current at 70 °C. However, upon heating at 100 °C, the transient shows an increase of 
I2 of about 0.8 μA. This effect can be related to the simultaneous impact of both factors: heating (influencing 
the oil conductivity, and the dissociation, surface and diffusion kinetics) and polarization (formation of atomic 
hydrogen) on the hydrogen permeation behavior.

It should be noted that all the permeation transients obtained upon heating begin with such a sharp increase 
of the hydrogen permeation current I2 further named “temperature peak”, because of its attribution only to the 
increased temperature. The initial “temperature peak” depends on the temperature and it is higher at 100 °C 
compared to 70 °C.

Concerning the nature of the “temperature peak”, it can be associated with release of residual trapped hydro-
gen already present in the steel membrane from its manufacturing process and hydrogen resulting from the 
preliminary treatment of the steel membrane (etching and Pd plating). Such a peak was not registered when 
experiments with Pd working electrode were carried out, suggesting that the maximum is due to hydrogen, which 
is not evolved from the steel membrane at room temperature prior heating of the system. A part of the hydrogen 
(diffusible hydrogen) diffuses and oxidizes due to the applied positive potential at the exit side of the membrane 
at room temperature, reaching I2

res value of about 1–2 μA. The subsequent increase of the temperature, on one 
hand changes the concentration of diffusible hydrogen by the exchange reaction with the traps in the steel; on 
the other hand, the value of the diffusion coefficient increases. Both effects contribute separately to the measured 
increase of the hydrogen oxidation current I2.

It is well known that metallic materials have defects in their atomic lattice structure, e.g. due to the manu-
facturing process. After absorption, hydrogen diffuses into the microstructure of the metal lattice and there, 
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it is distributed in two forms: diffusible and trapped hydrogen. The trapped hydrogen is incorporated in the 
micro-structural in-homogeneities (interfaces, voids, grain boundaries, dislocations, micro-cracks and blisters)35. 
Depending on the binding energy of hydrogen to the trapping sites, trapped hydrogen can be classified as revers-
ible or irreversible36–38. Hydrogen trapping and hydrogen diffusion, both processes are temperature dependent.

Hydrogen permeation measurements with combined oil (CombOil). Influence of the tempera‑
ture.  Similar to BOil, in the case of CombOil, a decreasing trend of of I2 is observed on the hydrogen permea-
tion transient recorded under voltage at room temperature (Fig. 3a). Compared to BOil the current transient of 
CombOil shows slightly more noise.

On the transients of CombOil obtained upon heating at 70 °C or 100 °C (Fig. 3b), an increase of I2 is observed 
on both transients after applying the voltage. Compared with BOil, the transient of CombOil shows an increase 
of I2 under voltage even at the lower temperature of 70 °C. Comparison between the transients of CombOil and 
BOil upon heating at 100 °C shows higher increase of I2 under voltage (about 2 μA) at the transient of Com-
bOil, i.e. more than twice than that registered on the transient of BOil. The observed additional increase in the 
permeation current on the transient of CombOil under polarization can be related to the presence of additives 
(and/or water contamination) in the CombOil. Therefore, in the case of CombOil, simultaneous action of the 
three factors (polarization, heating and additives) on hydrogen permeation behavior of the oil is registered.

Influence of individual additives to the base oil on the hydrogen permeation current upon 
heating.  The transient corresponding to BOil shows the lowest activity of the oil in regard to the hydrogen 
permeation under polarization (Fig. 4). However, all the combinations of BOil with the individual additives 
show some increase of the hydrogen permeation current I2 under the applied voltage.

The addition of the antioxidant (AO) to the BOil slightly increases the hydrogen permeation activity of the 
BOil. The presence of the additives ZDDP or CaSulf into the oil compositions (BOil + ZDDP or BOil + CaSulf) 
leads to very strong increase of the hydrogen permeation current I2 immediately after applying polarization, the 
effect being more pronounced in the case of BOil + CaSulf. The trends of hydrogen permeation transients for 
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BOil + CaSulf and BOil + ZDDP are also different. For BOil + CaSulf the permeation current slightly decreases 
with time, while that of BOil + ZDDP remarkably decreases with time. These suggest differences in the mecha-
nism of action of the additives regarding the hydrogen permeation in steel.
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Considering the water contamination as an only source of hydrogen under polarization does not explain the 
higher permeation current registered for BOil + CaSulf, the composition with a lower water content than that of 
BOil + ZDDP (Table 1). Therefore, an effect of the chemical composition of the additives is to consider, as well.

It could be proposed that the presence of sulfur in the CaSulf additive greatly influences the rate of hydrogen 
permeation into the steel for BOil + CaSulf. As rust preventative additive, it could be assumed that CaSulf is pre-
sent at the steel surface. Cathodic polarization might lead to partial reduction of the sulfonate to R–S− species30. 
Sulfur at the steel surface is a poison for the recombination of atomic hydrogen to molecular, which would 
increase the surface concentration of atomic hydrogen. The hydrogen permeation current is proportional to the 
absorbed hydrogen and in correlation with the hydrogen concentration gradient (the hydrogen concentration 
at the surface at the entry side of the membrane and the concentration at the exit side of the membrane, which 
is zero due to the applied positive potential). It is widely discussed in the literature that the hydrogen poison-
ing sulfur can promote hydrogen permeation by inhibiting molecular hydrogen recombination in aqueous 
systems1,3,6–14 and non-aqueous20,30,31 systems.

The ZDDP additive contains both critical for hydrogen absorption elements, sulfur and phosphorous. This 
suggests similarity in the course of the permeation transient for BOil + ZDDP to that of the BOil + CaSulf, if the 
same mechanism is assumed. However, the relatively high permeation current reached shortly after the polari-
zation of BOil + ZDDP is followed by a decay. Formation of a layer at the steel surface inhibiting the hydrogen 
absorption could be a possible reason for this. Research on ZDDP highlights that ionic species formed during 
redox reactions will tend to be insoluble in non-aqueous liquids and, unless removed physically, will tend to 
block the electrochemical processes30. At the condition of cathodic polarization, discharge of Zn ions and local 
deposition of Zn on the steel surface could also take place. Zn metal is unable to adsorb hydrogen atoms to 
any great extent40 and would serve as an effective barrier to hydrogen absorption, resulting in a decrease of the 
permeation current. Preliminary SEM and EDX analysis of the steel surface performed after hydrogen permea-
tion tests in this research showed formation of a discontinuous layer and presence of Zn at the steel surface [in 
the range of 1–6 mass % (integral analyses)] among Fe, O, C, S and P. The images and the data from the surface 
analyses obtained after the permeation tests and their comparison with the penetration currents will be a subject 
of a separate manuscript.

By in situ H-detection setup, developed on the basis of dynamic modification of Devanathan–Stachurski 
cell, the anti-wear additive ZDDP is confirmed to play a role of promoter on hydrogen uptake into steel during 
lubricated tribo-contact27,28. It is supposed that ZDDP exerts inhibition effect on the recombination of hydrogen 
atoms to hydrogen gas. As a result, the concentration of absorbed atomic hydrogen in the metal is increased. 
According to Refs.28,39,41, the products formed by hydrolytic decomposition of ZDDP (Alkyl sulphides and Zinc-
polyphosphates) have a role of protection of the engine, but they promote the hydrogen permeation process.

The influence of the temperature is demonstrated by the hydrogen permeation measurements with the com-
position BOil + CaSulf under polarization at room temperature as well as upon heating at 70 °C or 100 °C (Fig. 5).

Very low activity of the oil is registered at room temperature. Strong increase of the hydrogen permeation 
current under voltage is registered upon heating, the effect being more pronounced at 100 °C. This could be 
related to a release of water from hydrates of the hygroscopic CaSulf at elevated temperatures. It is well known, 
that at temperatures above 60 °C weakening of the hydrogen bonds in hydrates takes place.

Both, Ca-sulfonate and Zinc dialkyl-dithiophosphate have a hygroscopic effect. Data for the promoting effect 
of water contamination in lubricants are published in Refs.27,28. It is proven in Ref.28, that hydrogen entry into the 
steel plate is strongly promoted by the additives or water in the lubricant PAO at a lubricated rubbing contact. 
In addition, a synergistic effect between ZDDP and water is observed—the promoting effect of ZDDP + H2O is 
twice more than that of ZDDP or H2O separately. Two hypotheses are stated for the promoting effect of water: 
the surface protective layer formed from ZDDP is removed by water or water promotes surface corrosion and 
accelerates hydrogen formation as a corrosion product.

The effect of artificially added water to the lubricating oil is demonstrated in the next section.
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Influence of water content in the CombOil on the hydrogen permeation current.  Water con-
tamination of lubricating oils is considered as one of the prime sources of hydrogen in a lubricating tribo-system. 
The water enters the lubricating oil during operation of the bearing either from humid air in contact with the 
lubricant or by condensation of the water in the system. The water absorbing capacity of the lubricant varies 
depending on its chemical composition.

Deleterious effects of water contamination on the bearing fatigue life were well studied23,27,28,42–45. According 
to the literature data, even low water concentrations are sufficient to dramatically reduce the service life of steel. 
It was established that the lubricant transports the water directly to the steel surface where it dissociates due to 
the heat released by the friction46. The dissociated water is reduced to hydrogen at the nascent steel surface and 
additionally promotes the oxidative decomposition of lubricants25. The hydrogen diffuses into the steel matrix, 
causing the initiation of hydrogen embrittlement and WEC.

In the present work, the influence of water (hydration water, associated with the oil composition or artificially 
added) for the CombOil on the hydrogen permeation into steel membrane subjected to cathodic polarization 
was investigated.

Figure 6 shows the compared transients of CombOil and CombOil + H2O recorded upon heating at 70 °C 
(Fig. 6a) and at 100 °C (Fig. 6b).

At both temperatures, the increased water content in the oil substance leads to an increase of the hydrogen 
permeation current. As seen, the increase of the hydrogen permeation current at 100 °C is higher than that 
measured at 70 °C.

The effect of water addition on the hydrogen permeation transients is not as significant as expected. On the 
one hand, the water is a source of hydrogen and on the other hand, affects the electrical conductivity of the sub-
stance. Therefore, electrochemical impedance spectroscopy was employed for investigating BOil, BOil + H2O 
and CombOil, CombOil + H2O at room temperature (Fig. 7). As seen in Fig. 7 in the range of the low frequencies 
the modulus of the impedance for the CombOil and CombOil + H2O are similar, while these values are about 
three orders of magnitude lower than that for BOil and BOil + H2O. This indicates much stronger effect of the 
additives (and the associated hydration water) on the electrical conductivity, then that of water content itself.
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Summary
A modification of the Devanathan–Stachurski cell is developed, aimed to achieve very close distance between 
the working electrode (steel membrane) and Pt counter electrode in the input cell using a spacer of filter paper. 
By this way, the ohmic resistance of the input cell is lowered sufficiently to allow in situ hydrogen permeation 
experiments with lubricating oils. Investigations are performed under constant voltage of 30 V at room tempera-
ture or upon heating with various oil substances.

The following regularities are found:

•	 Subjecting the lubricating oils to cathodic polarization results in generation of hydrogen diffusing through 
the steel membrane. At a higher temperature, a stronger effect of polarization of the oils on the permeation 
current is observed.

•	 Under polarization and upon heating, the hydrogen entry into the steel membrane is promoted by the addi-
tives tested (especially ZDDP or CaSulfonat) as well as by the presence of water in the lubricating oils. The 
effect of the additives on the hydrogen permeation and on the electrical conductivity of the oils is much 
stronger than that of water content itself.

The phenomenon hydrogen permeation into steel membrane from lubricating oils subjected to cathodic 
polarization is obviously related to the complex impact of several factors—temperature, additives and presence 
of water in the oil substances.

The modified Devanathan–Stachurski setup can be used as a method for in situ evaluation of the lubricating 
oils (and ingredients) in respect to their ability to generate hydrogen under cathodic polarization. This finding is 
fundamental for further investigations on the effect of external polarization of lubricants on hydrogen generation 
and permeation in steel in a lubricated tribo-contact. By further modification of the set up the tribological load 
of the lubricants will be also examined.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request and with permission of Klüber Lubrication München GmbH & Co. KG.
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