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Abstract
The cornerstone for cluster analysis was already laid in the 19th century, when John
Snow investigated the cause of a Cholera outbreak in Soho, London. The COVID crisis
has shown, that today, more than 150 years later, the need for spatial cluster analysis
and hotspot detection is as relevant as ever. Rooted in geography, hotspot analysis is
often focused merely on the spatial aspect of the problem. But as the characteristics and
intensity of a hotspot may vary over time, it is just as important to include the temporal
aspect as well. Therefore, the need for spatio-temporal methods to investigate clustering
problems arises. Since there have been first approaches to tackle the problem on the plane,
the present thesis investigates these methods and their applicability to research problems
with data associated to networks.

To investigate the existing methodological toolkit, various approaches to spatial, temporal
and spatio-temporal statistics and methods are introduced that have primarily been
designed for research problems on the plane. To see if they can be validly transferred to
a network shaped problem, notions such as point patterns on networks, network spatial
autocorrelation and distance concepts on networks are examined. The proposed approach
to investigate spatio-temporal problems on networks is a two-stage process. First, the
time series for every link is split into time slices of equally sized time intervals. Then, for
each of those slices a spatial hotspot analysis is performed. This results in a time series for
each link, characterizing every time slice as no point of interest or hotspot / coldspot with
significance levels 1%, 5% or 10%. After that, for every link its corresponding time series is
subjected to a pattern detection process that includes a trend test to identify diminishing,
persistent and intensifying hotspots. In total, nine different patterns are defined that
can be detected this way. For the convenience of reducing the workload of investigation,
during this thesis a Python tool was developed, that handles the above-described process.
Another benefit, that results from the established tool is, that it offers to possibility for
visualisation of the results.

Finally, the proposed approach and the corresponding Python implementation were tested
in form of a case study on taxi movement data in the city of Vienna to investigate a possible
shift of hotspots caused by the launch of the new main train station Wien Hauptbahnhof.
The data was provided by the data owner ’Taxi 31300’ and the Austrian Institute of
Technology. The results showed that the implemented approach indeed identified points of
interested in terms of hotspot detection. On the other hand, the formulated hypothesis of
a hotspot shift could only be confirmed to some extent. Unfortunately, a couple of flaws
in the Python packages that were used for the implementation were discovered during the
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evaluation process. These were reported to and acknowledged by the developers.
In conclusion, it became apparent during the analysis of the case study, that the spatio-
temporal hotspot analysis tool can only assist and support the user by providing a
framework for their analysis. There are still certain parameters that have to be decided
on by the researcher and therefore are exposed to subjectivity. This may consequently
lead to a distortion of the results. The implemented tool for spatio-temporal hotspot
analysis represents a first prototype that aims at the analysis of a specific data source.
Additional work is necessary to enhance this prototype to a more sophisticated and user-
friendly implementation that can be made publicly available and be effectively used for
spatio-temporal hotspot analysis on networks.



Kurzfassung
Der Grundstein zur Clusteranalyse wurde bereits im 19. Jahrhundert gelegt, als John Snow
nach der Ursache eines Cholera Ausbruchs in Soho, London, suchte. Die COVID Krise
hat gezeigt, dass die räumliche Clusteranalyse sowie die Aufspürung von Hotspots, heute
so aktuell ist wie vor über 150 Jahren. Die Hotspot Analyse ist tief im Forschungsbereich
der Geographie verwurzelt und untersucht daher oft lediglich den räumlichen Aspekt eines
Forschungsproblems. Die Art und Intensität eines Hotspots kann sich jedoch im Lauf
der Zeit verändern, daher ist es von maßgeblicher Bedeutung auch die zeitliche Achse
des Problems mitzudenken. Darin begründet sich die Notwendigkeit zur Erforschung von
raum-zeitlichen Analysemethoden. Erste Versuche das Problem anzugehen, werden in der
vorliegenden Arbeit untersucht und auf deren Anwendbarkeit auf Forschungsprobleme
untersucht, deren Datenpunkte auf einem Netzwerk und nicht in der Ebene liegen.

Um einen Überblick über das existierende Methodenset zu bekommen, werden zu Beginn
räumliche, zeitliche und raum-zeitliche Statistiken und Methoden vorgestellt, welche für
die Anwendung auf der Ebene definiert wurden. Um eine valide Aussage zu treffen, ob
diese Methoden auch auf Netzwerke übertragen werden können, werden Konzepte wie
Punktmustern auf Netzwerken, räumliche Autokorrelation auf Netzwerken und Abstandsde-
finitionen auf Netzwerken betrachtet. Der vorgeschlagene Ansatz untersucht raum-zeitliche
Fragestellungen auf Netzwerken in einem zweiphasigen Prozess. Zuerst wird die Zeitreihe
einer jeden Kante in Zeitscheiben von gleichgroßen Zeitintervallen geteilt. Für jede dieser
Zeitscheiben wird dann eine räumliche Analyse des Netzwerks vorgenommen. Dadurch
ergibt sich für jede Kante eine Zeitreihe, welche für jeden Zeitschritt die Kennzeichnung
bekommt, ob es sich um einen Punkt von Interesse handelt bzw. werden Hotspots und
Coldspots von Signifikanzniveau 1%, 5% und 10% unterschiedlich bewertet. Die resul-
tierende Zeitreihe wird einem Prozess zur Musterfindung unterzogen, dieser beinhaltet
einen Trendtest, mit dessen Hilfe abnehmende, anhaltende und sich verstärkende Hotspots
kategorisiert werden können. Insgesamt können so neun verschiedene Muster unterschieden
werden. Um die Durchführung der obigen Analyse zu vereinfachen, wurde im Rahmen
der Arbeit ein entsprechendes Python Tool entwickelt. Dieses bietet außerdem den Vorteil
einer möglichen Visualisierung der Ergebnisse.

Der vorgeschlagene Ansatz, sowie dessen Implementierung wurde in Form einer Fallstudie
zu Taxi-Bewegungsdaten in Wien getestet, um eine etwaige Verschiebung von Hotspots
vom Wiener Westbahnhof zum 2015 neu eröffneten Hauptbahnhof zu überprüfen. Die
Taxidaten wurden von ihrem Eigentümer ‚Taxi 31300‘ und dem Austrian Institute of
Technology bereitgestellt. Die Ergebnisse der Fallstudie zeigten zum Einen, dass der
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vorgeschlagene Ansatz tatsächlich plausible Punkte als Hotspots identifiziert. Andererseits
konnte die aufgestellte Hypothese nur zum Teil bestätigt werden. Leider wurden im Zuge
der Auswertungen auch einige Defizite in den verwendeten Python Bibliotheken aufgedeckt.
Abschließend kann gesagt werden, dass durch die Analyse der Fallstudie erkannt wurde,
dass das entwickelte Python Tool zur raum-zeitlichen Analyse von Hotspots den For-
schenden zwar bei seinen Auswertungen unterstützen kann. Allerdings gibt es bei dem
vorgeschlagenen Ansatz Parameter, welche subjektiv vom Anwender festgelegt werden
müssen und daher zu einer Verzerrung der Ergebnisse führen können. Außerdem kann das
implementierte Tool lediglich als ein erster Prototyp verstanden werden, welcher für die
Analyse einer bestimmten Datenquelle entwickelt wurde. Um diesen Prototypen weiter
zu verbessern und öffentlich für die Anwendung zur raum-zeitlichen Hotspot Analyse auf
Netzwerken freizugeben, bedarf es noch zusätzlicher Arbeit und Weiterentwicklung.
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Chapter 1

Problem Analysis

The focus of traditional hotspot analysis is on identifying spatial clusters of a given
phenomenon. There is a wide range of its utilisation in various research fields. Hotspot
analysis finds its application for example in detecting hotspots in crime activity (Chainey
and Ratcliffe, 2005), disease outbreaks (Getis et al., 2003, Hinman, Blackburn, and Curtis,
2006) or tumor detection (Khan Niazi et al., 2014, McIntire et al., 2019). With that, it is
covering research fields such as geography, biology, medical science and criminology, to
name just a few. Still, the common trait among the above mentioned applications is that
a spatial clustering is to be detected.

In the present thesis hotspot detection in a geographical context is engaged. In specific,
hotspots in movement data on networks and corresponding spatio-temporal patterns will
be examined. Thanks to the development of GIS, the geographic information system,
problems of data scarcity mostly belong to the past. Further advances in positioning
technology led to large amounts of data collected every day with increasing accuracy. The
downside of this quick advance is, that it resulted in a lack of time to develop appropriate
methods to deal with and analyse this vast amount of available data (Dodge et al., 2016).
While hotspot detection is usually seen in spatial context, the present thesis intends to
make use of the huge quantity of available data and incorporate not only the spatial
but also the temporal aspect into the hotspot and pattern finding process. In hotspot
analysis approaches in geographical context, data of the phenomena to be examined are
traditionally aggregated over pre-defined polygons representing countries, districts or
roadblocks. But aggregating data that originally corresponds to a network structure into
polygons and using spatial methods for hotspot detection that were originally designed
for analysing events on a plane, can easily lead to false conclusions (Okabe and Sugihara,
2012). Therefore, the present thesis investigates an effective approach for spatio-temporal
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2 CHAPTER 1. PROBLEM ANALYSIS

hotspot analysis on networks. Furthermore, the implementation of a corresponding tool
using well-established open-source software, is proposed.

After presenting the motivation for the conduct of hotspot analysis, this chapter submits
the current state of the art. Thereafter, the research gap is outlined and research questions
are defined. Then, the scope and further structure of the present thesis is discussed.

1.1 Motivation
In 1854, the English physician and epidemiologist John Snow investigated a cholera
outbreak in Soho, London. He marked the residence of each casualty on a map of the
corresponding area, as well as plotting every water source. With this approach, he was
able to trace the outbreak back to its source, namely by identifying the water source
within the cluster that was responsible for the outbreak. He removed the handle of the
water pump and with that contributed extensively to the curtailment of the disease. The
approach of using the tools of cartography not only for visualisation of events such as
disease casualties but also to conduct a cluster analysis of these geographically dependent
phenomena was unique for that time. By this, Snow provided a cornerstone in modern
spatial analysis and the uses of geographic methodology in epidemiology (Stamp, 1964).

Today, more than 150 years later, the COVID-19 pandemic shows that the need for
spatial cluster analysis and hotspot detection is as relevant as ever. With the initial
outbreak in Wuhan, China, in November 2019, incidents soon spread over the whole
world causing the WHO, the World Health Organization, to categorise the outbreak as
a pandemic. Since the COVID-19 symptoms can range from none to life-threatening,
countermeasures to curtail the spread of the disease had to be taken all over the world.
One of the most important things when taking measures, is to convey the reasons that
led to certain decisions properly and verify them with the help of tools that make them
intelligible to the vast majority of the population. The usage of concise figures, maps
and other illustrations make a significant contribution to the clear communication of the
severity of the situation. Using spatial hotspot analysis on a more local level, say on
district or community level, would give on the one hand a lot of insight on whether a region
with high number of cases is simply that, a region with a high number of cases, or if the
numbers are statistically significant. On the other hand, the correlation of newly recorded
cases in neighbouring regions would be illuminated. Adding the temporal component
would give a statistically verified insight in whether a location is for example a new hotspot
with lower incidence rates in the past or whether it is an intensifying/diminishing hotspot,
i.e. a hotspot with increasing/decreasing incidence rates. So, doing a spatio-temporal
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hotspot analysis would lead to a much more profound conclusion than simply comparing
the number of emerging cases of the disease by hand. Therefore, it could be used as a tool
for further decision making, e.g. starting or ending a lockdown period.

So, while the tool that will be developed in the course of the present thesis includes the
possibility do do spatio-temporal analysis on networks using suitable methods, it will also
be applicable to data that needs the traditional approach of aggregating data points in
neighbouring polygons. In the second case, the tool will provide the possibility of bringing
only the added element of including the temporal aspect in its hotspot detection process.

1.2 State-of-the-Art
Hotspot analysis can be associated with many fields of study such as geography, biology,
epidemiology and many more. It is rooted in spatial analysis and aims at the identification
of statistically significant clusters of events scattered over the research area. The key
element in spatial hotspot analysis is that of spatial autocorrelation. It examines whether
the observation of some quality in one area is related to the occurrence of the same quality
its neighbouring regions. The study of spatial autocorrelation dates back to the 1950’s
when methods such as the Moran’s index (Moran, 1950) or Geary’s c (Geary, 1954) were
introduced. Both of these approaches offered a global measure of spatial autocorrelation
that gave insight on whether the examined data is autocorrelated as a whole. It wasn’t
until the publication of Cliff and Ord, 1973, that the subject gained in popularity. They
published a comprehensive work on spatial autocorrelation and introduced the idea of the
detection of spatial patterns. They further engaged in this topic in their dissemination
’Spatial Processes: Models & Applications’ (Cliff and Ord, 1981).

With the growth of data availability not only the need for appropriate theory for
analysing existing data but also suitable tools for illustrating results increased. At first, a
good deal of techniques that followed the ideas of Tukey, 1977, on exploratory data analysis
(EDA) were introduced. For example box plots, Chernoff faces, Tukey star diagrams or
scatterplot matrices were often used in spatial analysis. The downside of these newly
discovered proceedings was that they ignored the characteristics of spatial data such as
spatial autocorrelation. So, there was a growing call for an appropriate set of spatial
statistical methods (Cliff and Ord, 1973, Cliff and Ord, 1981, Cressie, 1993).

That’s when Getis and Ord first introduced a statistic that handled spatial autocor-
relation on a local scale, the Getis-Ord Gi statistic, and therefore offered a variety of
new possibilities for application (Getis and Ord, 1992). With the publication of their
second paper on the topic (Ord and Getis, 1995), the idea of a localized version of spatial
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autocorrelation methods was also addressed by Anselin, 1995, who introduced the notion
of a ’local indicator of spatial association - LISA’. In his paper, Anselin offered formulas
of a localized version of Moran’s index and Geary’s c. Taking the Morans’s index as a
starting point, Anselin, 1996, developed a simple tool for visualisation to easily assess the
degree of spatial association: the Moran scatter plot. With that a cornerstone for the
development of exploratory spatial data analysis (ESDA) was laid.

The 21st century brought many technological advances causing unprecedented amounts
of data being collected, for example through cheap geospatial technology embedded in
mobile phones, as well as the affordable computing power to process it. However, the
methodological tools employed by researchers often remain the same as in times when
available data was still scarce and with low temporal resolution (Arribas-Bel and Tranos,
2018). One such issue would be the incorporation of time into the toolkit of spatial data
analysis. In their paper ’Space-Time Analysis: Concepts, Quantitative Methods, and
Future Directions’ An et al., 2015, deal with the fact that in geographical context the
concepts of space and time tend to be treated as separate fields and not in a joint way
(Prasannakumar et al., 2011, Qi, Yang, and Jin, 2013, Gebru et al., 2019).

In recent years, there have been various attempts on modifying the spatial weight
matrix, that is needed for calculation of the Moran’s index and the Getis-Ord Gi statistic,
on the behalf of integrating the temporal component. The purpose of this modification
is that the newly designed spatio-temporal weight matrix includes not only the spatial
but also the temporal aspects of neighbourhood. One of the more popular approaches is
to define spatio-temporal distances that will form the spatio-temporal matrix needed for
further calculation (Huang, Wu, and Barry, 2010, Yu, 2014, Tang, Tseng, and Chan, 2019).
Lee and Li, 2017, noticed that this approach would lead to scaling effects when locations
and time where defined differently. They suggested another approach for modifying the
spatial weight matrix. They proposed to define a spatial weight matrix as well as a
temporal weight matrix and combine them via multiplication. So, the Hadamard product
of both matrices will result in a spatio-temporal weight matrix. In a later statement, Lee
and Li, 2018, emphasize the fact that space and time differ significantly in their structure
and the problem of space-time interaction has to be addressed very carefully. Based
on Lee and Li’s definition of a spatio-temporal Moran’s index, Arribas-Bel and Tranos,
2018, defined a novel approach that they called ’Space-Time Calendar’. After applying
the spatio-temporal Moran’s index to the study area, one can pick one region that is of
particular interest and inspect it more closely with help of the space-time calendar. It
offers a way to visually assess slow and fast dynamics of the given area within one map.
That way patterns could be revealed that would otherwise stay undetected.
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Other approaches include Kulldorff’s Scan statistic (Kulldorff, 1997) and its extension
to a space-time scan statistic, STSS (Kulldorff et al., 2005, Kulldorff, Huang, and Konty,
2009). The spatial scan statistic is a window statistic, that is designed to detect clusters in
multi-dimensional point processes within shapes like circles or ellipses. For the integration
of time, the detection window is extended to cylinders. It was originally designed for the
research field of epidemiology and was mainly used in this context (Rao, Shi, and Zhang,
2017, Kiani et al., 2021), but it has also found its way into hotspot detection on various
topics such as forest fires (Hudjimartsu, Djatna, Ambarwari, et al., 2017), event detection
within a Twitter dataset (Cheng and Wicks, 2014), Kang, 2010, used the space-time scan
statistic to detect agglomeration processes in economies and Cheng and Adepeju, 2014,
included the time component into the modifiable area unit problem, MAUP, by using the
space-time scan statistic.

Another way to work around the MAUP problem is to use kernel density estimation,
KDE. Originally, the kernel density estimation was a tool for estimating a smooth empirical
probability function (Silverman, 1986). Nowadays, it is a commonly employed spatial
analysis technique that is used to create heat maps to visually assess the results. By
regarding the relation between space and time as orthogonal, Brunsdon, Corcoran, and
Higgs, 2005, expanded the notion of the kernel density estimation to a space-time kernel
density estimation. In combination with point patterns, the kernel density estimation can
be applied for hotspot detection. A series of estimations is made over a grid that is placed
on the entire point pattern and detects high and low density areas. The disadvantage is,
that a bandwidth has to be set by the researcher. So, it is highly subjective but at the same
time will influence whether a hotspot is detected or categorised as arbitrary. That’s why
hotspots detected by the kernel density function are not statistically significant, therefore,
the KDE has to be used in combination with other hotspot detection techniques such
as the Getis-Ord Gi statistic (Kalinic and Krisp, 2018). Other researchers investigating
the usage of kernel density estimation in hotspot detection are Nakaya and Yano, 2010,
who investigated crime clusters and compared the results of the space-time kernel density
estimation and scan statistics. Hart and Zandbergen, 2014, examined the influence of
interpolation methods, grid cell size and bandwith on the kernel density estimation and
the corresponding hotspot mapping. Hu et al., 2018, suggested a different method to
extend the kernel density estimation to a space-time version than Brunsdon, Corcoran,
and Higgs, 2005. Milic et al., 2019 examined the influence of data classification methods
on the predictive accuracy of kernel density estimation hotspot maps.
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Pre-existing Tools
After having seen the current state-of-the-art methodology to deal with spatial and spatio-
temporal hotspot analysis, a view to existing open source implementation of such is
needed. Both programming languages R and Python offer packages for dealing with spatial
hotspot analysis. In case of R, a collection of methods for basic spatial point pattern
analysis and data exploration exists. It includes tools that can aggregate point data in
areas, x-y charts and histograms, heat maps created by kernel density estimation or the
Getis-Ord G∗

i statistic for hot- and coldspot detection (Minn, 2000–2021). All of these
methods and approaches to point pattern analysis have in common that they, for once,
are only considering the spatial component of the data not including the temporal aspect.
Furthermore, all of them aggregate points in polygon shaped areas which can lead to
misinterpretation if working with data that is collected on a network (Okabe and Sugihara,
2012). Actually, R also contains the package DRHotNet which stands for ’Differential Risk
Hotspots in a Linear Network’, that was released in July last year. It tackles the problem
of aggregation of events into areas, but its main focus is onto finding differential risk
hotspots, i.e. it offers procedures to detect hotspots of events that are closely linked to
other factors (Briz-Redón, 2021). For example factors such as age, obesity, blood pressure,
etc. being linked to the differential risk of having a stroke.

Python has its own assembly of tools in various packages. In the present context, the
most important one would be the community driven library PySAL, the Python spatial
analysis library, and in particular the packages ESDA, which stands for ’exploratory spatial
data analysis’ and spaghetti, a composition of ’Spatial Graphs: Networks, Topology,
& Inference’. ESDA deals with subjects such as global and local measures of spatial
autocorrelation, including the implementation of Moran’s I, Geary’s c and Getis-Ord
statistics. Furthermore, it provides joint count statistics for binary attributes. For all
these measures it offers analytical and permutation based approaches. spaghetti on the
other hand, addresses the problem of spatial analysis on networks. First of all it allows
to read in line data and generate a network/graph representation from it. It is possible
to extract contiguity weights and identify connected components. It is possible to snap
point pattern observations onto this network, calculate an all neighbour distance matrix,
calculate the Moran’s I with the help of observation counts on network segments as well as
network spatial weights. Additionally, point patterns can be simulated for cluster analysis
via the K function attribute. Apart from that, it is possible to do graph theoretic analysis
such as calculating the shortest paths, find the minimum/maximum spanning trees, etc
(Rey et al., 2015, Gaboardi et al., 2018, Gaboardi, Rey, and Lumnitz, 2021, Rey et al.,
2021).
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1.3 Research Gap
Dealing with hotspot analysis, the majority of studies still focuses merely on the spatial
aspect of the problem. Existing methods for spatio-temporal analysis and their suitability
to hotspot detection have to be examined more closely. Various approaches that include
the temporal component into former solely spatial methods, have been proposed. These
range from the integration of time as an additional dimension to forming the product of
spatially and temporally defined distances. Furthermore, these methods have in common
that they are supposed to be applied to surfaces. The applicability of existing methods to
data collected on a network still has to be explored.

So, the approach proposed in the present thesis has to acknowledge the importance
of both spatial and temporal aspects of the examined data. At the same time it has to
be applicable to a network shaped research area. Furthermore, there is also a practical
requirement, namely that an implementation of the approach using the well-established
open-source programming language Python is possible.

As seen in the previous chapter (1.2), the state-of-the-art approaches meet some of the
requirements but there is no technique that covers all of them. Due to these considerations,
the objective of the present thesis is to develop a suitable approach for spatio-temporal
hotspot analysis that is applicable to networks. To be more specific, the following research
questions are to be addressed by this work:

(i). Which method has to be chosen for spatio-temporal hotspot analysis that fulfills the
following requirements? It

• integrates the spatial and temporal aspects of the data,

• is applicable to data collected on a network,

• is based on methods implemented in well-established open-source programming
language Python.

(ii). How does the proposed approach perform compared to state-of-the-art approaches
from a conceptual perspective?

(iii). How can the proposed approach be realized and implemented as a Python tool for
spatio-temporal hotspot detection? Such that the proposed tool

• enables the output as dataframe,

• produces plots for visual assessment of the results,

• is transferable from network based data to surface based data.
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1.4 Scope and Structure of this Thesis
The present thesis evaluates existing approaches for spatial and spatio-temporal hotspot
analysis and their applicability to network structures. With that it contributes to fill the
gap in appropriate methods for spatio-temporal hotspot analysis on networks. Futhermore,
a Pyhton tool will be developed that realises the developed approach and will then be
published as an open-source Python package. The scope of this thesis is focused on data
represented in the form of point patterns within their geographic surroundings presented
in network shape.

The thesis is organised as follows: chapter 2 offers a conceptual view on spatio-temporal
hotspot analysis. Previously used state-of-the-art methods are discussed in more detail to
provide a sound basis for further discussion of the approach chosen for this thesis. Section 3
discusses analysis approaches for networks and with that offering the tools for development
of a spatio-temporal hotspot analysis approach that can be applied to networks. In
chapter 4 the pre-existing methodology is reviewed, compared and analysed concerning
their suitability for spatio-temporal hotspot analysis as well as their applicability on
network shaped data. Further, the implementation of a corresponding tool using Python is
discussed. In section 5 the approach is applied to a case study using taxi movement data
in Vienna to investigate the hotspot shift from Vienna’s former central railway station
Wien Westbahnhof to the restructured station Wien Hauptbahnhof in 2015. Last, chapter
6 concludes the present thesis by revisiting the defined research question and by giving an
outlook to potential future work.



Chapter 2

A Conceptual View on
Spatio-Temporal Hotspot Analysis

To perform spatio-temporal hotspot analysis, tools of spatial and temporal analysis need
to be united. As mentioned before, in the literature concerning geographical analysis
frequently only spatial analysis is performed, neglecting the aspect of time. There have
been a couple of approaches on spatio-temporal hotspot analysis but often for the purpose
of adding the temporal component, spatial analysis is carried out at two or more points
in time and then the particular results are compared. See, for example, GeoDa’s "Time
Editor" or "Map Movie" (Anselin and Li, 2022). From a statistical point of view this
approach isn’t a valid solution in terms of a time series analysis. Therefore, in the following
chapter not only former approaches to spatial and spatio-temporal hotspot analysis will
be examined but also trend analysis methods that could be combined with spatial analysis
tools for providing a valid two stage spatio-temporal analysis approach. So, the following
chapter will consist of three major topics, namely spatial hotspot analysis, trend analysis
and spatio-temporal hotspot analysis.

2.1 Spatial Hotspot Analysis

The concept of space is a central aspect in regional sciences. If the presence of some
property in a specific region makes it more or less likely that the same feature also
appears in the neighbouring regions we say that the phenomenon exhibits so-called spatial
autocorrelation. This quality might be a point-like object like plants in a field or cases of
a certain disease, but it is also possible to test for spatial autocorrelation among variate
values collected at certain points, such as rainfall values at various meteorological stations

9
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(Cliff and Ord, 1973). The analysis of spatial data and the necessary techniques to detect
spatial autocorrelation have received a lot of attention in the literature. By now, research
in the area of spatial dependency between observations has been conducted for more than
forty years (Lee and Li, 2017). Starting with a rather theoretical approach to spatial
science and because of the lack of effective ways to incorporate spatial aspects of data,
empirical work on this subject was rather limited. The inclusion of spatial aspects and
their applicability in data analysis was only achieved due to technological progress in the
field of geographic information system - GIS (Anselin and Getis, 2010).

2.1.1 Spatial Weight Matrix

By measuring spatial autocorrelation one assumes that all events are related to some
extent. Therefore, an approach is necessary that is able to quantify the relationship
between observations. This is done by defining a spatial weight matrix which can be
based on various criteria, most commonly distance or boundary conditions. The following
definitions are based on a section in the Encyclopedia of GIS by Smith, 2008.

Definition. The distance dij between two events i and j is defined as the Euclidean
distance, i.e.

dij =
√

(xi − xj)2 + (yi − yj)2

for (xi, yi) being the location of event i and (xj, yj) being the location of event j.

Definition. To define the spatial weight matrix W based on distance there are two possible
ways:

1) By pre-defining a distance threshold dθ. Then

wij =
((( 1 dij ≤ dθ

0 dij > dθ.

2) By using the First Law of Geography: "Everything is related to everything else,
but near things are more related than distant things." (Tobler, 1970). Then

wij = 1
dij

.

Then the spatial weights matrix is defined as

W =
∑

i

∑
j

wij.
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Distances are usually easily computed and therefore pose the advantage of distance
based spatial weights. On the other hand, it is also possible that shared boundaries
between spatial units are important. Hence, the spatial weight matrix can also be defined
based on boundaries.

Definition. Let bnd(i) be the set of boundary points of unit i. To define the spatial
weight matrix based on boundaries there are two most commonly used ways:

1) Queen contiguity weights: Here it is possible that the boundaries between unit i and
unit j share only a single point. Then the queen contiguity weights can be calculated
as follows

wij =
((( 1 bnd(i) ∩ bnd(j) /= ∅

0 bnd(i) ∩ bnd(j) = ∅.

2) Rook contiguity weights: Is a stronger version of the queen contiguity weights where
the length of the shared boundary between i and j has to be positive and is denoted
by lij. Then the rook contiguity weights are defined by

wij =
((( 1 lij > 0

0 lij = 0.

Then the spatial weights matrix is defined as

W =
∑

i

∑
j

wij.

For further elaboration on the subject, see for example Cliff and Ord, 1981 or Cliff
and Ord, 1973, where the importance of choosing the correct weights to avoid incorrect
correlation is stressed. Getis, 2009, illustrates the three types of spatial weight matrices,
namely from the theoretical, the topological and the empirical point of view.

In the following passages the most commonly used approaches to spatial autocorrelation
analysis will be introduced.

2.1.2 Moran’s Index

Moran’s Index (Moran, 1950), often simply called Moran’s I, for spatial autocorrelation
has found its application in many research fields. It is mainly used in geography and
geographic information science as a first step to detect spatial dependency in a set of
events. Usually these geographic objects are represented as polygons or points. Moran’s
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index measures the degree to which these geographic events show patterns like clustering
or dispersion. It represents the ratio of the covariance of attribute values of neighbouring
geographic objects and the covariance between all geographic objects in the study area
(Lee and Li, 2017).

Definition. Let n be the number of observations being analyzed, xi be the attribute value
of geographic object i, x be the mean of all xi and let wij be the spatial weight between
observation i and j. Then the global Moran’s I can be calculated as

I =
n

∑
i

∑
j wij(xi − x)(xj − x)∑

i

∑
j wij

∑
i(xi − x)2 .

Originally, the Moran index was designed as a global measure of spatial association
only. In 1995, Luc Anselin defined the so-called local indicator of spatial association -
LISA, which was a new category for measures of spatial autocorrelation. To be categorised
as a LISA, a measure of spatial association has to satisfy the following two requirements:

1) the LISA for each observation gives an indication of the extent of significant spatial
clustering of similar values around that observation;

2) the sum of LISAs for all observations is proportional to a global indicator of spatial
association.

That means on the one hand that a LISA is a measure of local spatial autocorrelation
and on the other hand there has to be a global spatial autocorrelation coefficient that
decomposes into its constituents of local indicators. Hence, it is possible to see how much
individual locations constitute to the global autocorrelation. For the Moran’s I to become
a local indicator of spatial association, Anselin defined a localized version (Anselin, 1995).

Definition. Based on Anselin (1995), the localized Moran’s I for the geographic object i

can be defined as
Ii =

zi
∑

j wijzj

σ2

where zi = (xi − x) and σ is the standard deviation.

With this definition, Moran’s index can be classified as a LISA with the sum of the
local Moran being proportional to the global Moran’s I.

Anselin further elaborated on and extended the Moran’s I, in 1996 he defined the Moran
scatterplot that has the form of a bivariate scatterplot that shows the linear association
between the original variable and its spatially lagged counterpart. It can be augmented
with a linear regression which has the slope of Moran’s I (Anselin, 1980, Anselin, 1996).
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The Moran’s I as well as its localized version found its application in many research
areas. Sokal, Oden, and Thomson, 1998, tested the applicability of the Moran’s I in
spatially distributed biological data. Griffith, 2005, discussed the effective geographic
sample size in presence of spatial autocorrelation. Chainey and Ratcliffe, 2005, worked
with the GIS and crime data, while Braithwaite and Li, 2007, explored the identification
of terrorism hotspots. Bucher et al., 2021, investigated ways to integrate reliability of
observations into Moran’s I estimates.

2.1.3 Geary’s c Statistic

Geary’s c statistic was originally suggested as a global measure of spatial autocorrelation.
It was designed to determine if neighbouring observations of the same phenomenon are
correlated (Geary, 1954). Basically, Geary’s c shares the same form of an autocorrelation
coefficient as Moran’s I by having a measure of covariance among the xi as a nominator
and a measure of variance as the denominator. But by calculating the squared difference
of the xi it opens room for new applications and interpretations (Cliff and Ord, 1981).

Definition. Let n be the number of observations, xi the attribute value at location i, x

the mean of all xi and W = (wij) the spatial weight matrix. Then the ratio of contiguity
c, typically called Geary’s c, is defined as

c =
(n − 1) ∑

i

∑
j wij(xi − xj)2

2 ∑
i

∑
j wij

∑
i(xi − x)2 .

At first, Geary’s c statistic experienced a lack of applications. This was mainly due to
time-consuming computations that had to be done by hand. With the introduction with
desk calculators and later on computers Geary’s c gained popularity (Jeffers, 1973).

In 1995, Anselin introduced the local version of Geary’s c and elaborated on it further
in his paper published in 2019. Analogous to the global form local Geary focuses on the
squared differences (Anselin, 1995, Anselin, 2019).

Definition. Let xi be the attribute value for observation i and W = (wij) the spatial
weight matrix. Based on Anselin (1995) the local Geary statistic for each observation i is
defined as

ci =
∑

j

wij(xi − xj)2.

In contrast to local Moran’s I and due to the approach via squared differences there is no
need to standardize x. The squared differences represent either similarity or dissimilarity.
Small values imply similarity and therefore positive spatial autocorrelaten while large value
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imply dissimlarity and hence negative spatial autocorrelation. As a result to the squared
differences approach Geary’s c statistic is able to detect patterns that go unnoticed by
local Moran and vice versa (Anselin, 2019).

Furthermore, local Geary’s c satisfies the two defining requirements of a LISA. Namely,
being a local measure of spatial association and having a global statistic that is proportional
to the sum of its local constituents.

Sokal, Oden, and Thomson, 1998, tested the applicability of Geary’s c to spatially
distributed biological data, Anselin, 2019, extended local Geary’s c to a multivariate
context, Magnussen and Fehrmann, 2019, and Magnussen et al., 2020, compared various
variance estimators, among them Geary’s c, under systematic sampling and evaluated
their results in a simulation study.

2.1.4 Getis-Ord Gi Statistic

The Getis-Ord Gi statistics was first introduced in 1992 by A. Getis and J.K. Ord and
further elaborated upon in their paper in 1995. At a time where geologists commonly used
globally applied statistics like Moran’s I and Geary’s c, they introduced a new statistics
for spatial autocorrelation on a local scale. With that Getis and Ord were among the first
ones to introduce a tool that provides the possibility to detect local "pockets" of spatial
dependence that wouldn’t display when only using global statistics (Getis and Ord, 1992).

Typically when measuring spatial dependency, statistical tests detect the similarities
between neighbouring regions. But it is possible that not only positive but also negative
dependence is apparent in the data. Therefore, Getis and Ord revised and enhanced their
Gi statistic such that it is able to detect both kinds of patterns. On the other hand, the
Gi statistic is, in contrast to other local statistics like local Moran or local Geary statistics,
not considering spatial outliers (Ord and Getis, 1995).

Getis and Ord defined two versions of the Gi statistic, one that considers only the
location’s neighbours in its calculation while the other does take the value of the specified
location into account.

Definition. Let n be the number of regions and i = 1, 2, . . . , n. Each region i is associated
with its attribute value xi. Then the Gi statistic for region i is defined as

Gi =
∑

j wijxj − Wix(i)

σ(i)

┌,,√(n − 1) ∑
j w2

ij − W 2
i

(n − 2)

, j /= i.



2.1. SPATIAL HOTSPOT ANALYSIS 15

where Wi = ∑
j /=i wij, x(i) =

∑
j

xj

(n−1) for i /= j and σ2(i) =
∑

j
x2

j

(n−1) − [x(i)]2.
And the G∗

i statistic for region i is defined as

G∗
i =

∑
j wijxj − W ∗

i x

σ

┌,,√n
∑

j w2
ij − W ∗2

i

(n − 1)

, ∀j.

where W ∗
i = Wi + wii and wii /= 0, x and σ denote the usual sample mean and standard

deviation.

The Gi and G∗
i statistic respectively measure the degree of spatial dependence that

is determined by the attribute value at location i and by the attribute values in its
neighbourhood (Hinman, Blackburn, and Curtis, 2006).

Furthermore, Getis and Ord defined a global version of the Gi statistic, the general G
statistic. But since the sum of local Gi statistics is not proportionally related to its global
counterpart it can not be categorised as a LISA (Anselin, 1995). The Gi statistic has
found various applications, to name just a few, Sokal, Oden, and Thomson, 1998, tested
its applicability in spatially distributed biological data, Getis et al., 2003, investigated the
spatial patterns of the yellow fever mosquito, Chainey and Ratcliffe, 2005, applied the Gi

statistic to crime data, Hinman, Blackburn, and Curtis, 2006, examined typhoid outbreaks
and Braithwaite and Li, 2007, detected terrorism hotspots with help of the Gi statistic.

Even though all three of the presented local statistics test the null hypothesis of spatial
randomness, each of them uses different criteria to detect deviations from the null. While
local Geary’s c calculates the squared difference, local Moran’s I is a product-moment
coefficient and the Gi and G∗

i statistics use a sum (Anselin, 2019). This provokes a
different interpretation of the respective results. Moran’s Ii measures the joint co-variation
of neighbouring areas. In case of a clustering of values of the same sign that deviate
significantly from the mean, the Ii is positive representing a positive spatial autocorrelation.
In case that the value of the i-th area has the opposite sign of its neighbouring regions
but still deviates strongly from the mean, the Ii is negative implying negative spatial
autocorrelation. As Geary’s c works with the squared differences between the values of
the pivot and its neighbourhood, high values of c denote negative spatial autocorrelation.
On the other hand, when the data values of an area and its neighbours are close to the
mean Geary’s c indicates positive spatial autocorrelation. At the same time this would be
marked as weak or zero autocorrelation by Moran’s Ii (Sokal, Oden, and Thomson, 1998).
When working with the Gi or G∗

i statistic, a postitive value implies a spatial clustering of
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high values while a negative value denotes a clustering of low values (Anselin, 1995). It is
important to keep in mind that while all three local statistics may reject the hypothesis of
spatial randomness, the interpretation differs between them. Therefore, the main purpose
of these statistics remains in data exploration (Anselin, 2019).

2.2 Trend Analysis
The central object of interest when doing trend analysis is a time series. A time series is a
sequence of observations that are monitored at equally distanced points in time. They
occur very frequently even in our every day life, for example a daily series of the maximum
degree in one’s hometown or a weekly series of the number of road accidents. They are used
in various fields such as economics, business, engineering, the natural sciences (especially
geophysics and meteorology), and the social sciences (Box, Jenkins, and Reinsel, 2008).
There are various stochastic and dynamic models that were developed for the analysis
of time series. We will focus on trend analysis which is part of the forecasting field of
research. Here, the goal is to model statistical dependence of time and previous values
of a temporally ordered metric feature to be able to make predictions on future values
(Eckstein, 2016). But trend analysis can not only be used for forecasting but also to detect
patterns in the data, which is the goal of the present thesis.

2.2.1 Autocorrelation

Autocorrelation in the context of time series analysis measures, as the term itself al-
ready indicates, the relationship between lagged values of a time series (Hyndman and
Athanasopoulos, 2018). It is an intrinsic feature of a time series suggesting that successive
observations are dependent on each other and therefore are of considerable interest (Box,
Jenkins, and Reinsel, 2008). For a process yt the autocorrelation coefficient ρ of lag k can
be defined as the k-th autocovariance divided by the variance

ρk = Corr(yt, yt−k) = Cov(yt, yt−k)√
V(yt)

√
V(yt−k)

.

The autocorrelation coefficients can then be visualised by an autocorrelation function {ρk}
which is a useful device to assess the behavior of a stationary process. The autocorrelation
function is dimensionless and independent of the scale of the measurement of the time
series (Box, Jenkins, and Reinsel, 2008).

If a trend is present in the data the autocorrelation coefficient will be large and positive
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for small lags in time and will decrease with the increase of the lag (Hyndman and
Athanasopoulos, 2018). Having a positive autocorrelation means that an unusually large
value of a process yt is expected to be succeeded by a value that is larger than the average
value of yt+1. On the other hand, a negative autocorrelation implies that a large value of
yt is likely to be followed by a small value at yt+1 (Hamilton, 2020).

A process that deserves special mention is the white noise process or often simply
called white noise. It is a stationary process {€}∞

t=−∞ that is a sequence of independent
and identically distributed random variables for which all autocorrelation coefficients are
zero (Lütkepohl, Krätzig, and Phillips, 2004).

2.2.2 Autoregressive Model

The autoregressive model belongs to the family of difference equations. It is a process
where the current value of a variable is a finite, linear combination of its past values
and a random shock (white noise) €t (Box, Jenkins, and Reinsel, 2008). As the term
autoregressive indicates, that means a new value is forecast based on a linear combination
of previous values of the variable (Hyndman and Athanasopoulos, 2018).

Definition. An autoregressive process of order p, short AR(p), is a process yt that is
a finite weighted sum of p previous deviations yt−1, . . . , yt−p of the process at equally
distanced points in time, plus a random shock €t. It can be written as

yt = α1yt−1 + · · · + αpyt−p + €t

where €t is an unobservable zero mean white noise process and αi, i = 1, . . . , p are fixed
coefficients (Lütkepohl, Krätzig, and Phillips, 2004, Box, Jenkins, and Reinsel, 2008).

For better readability one can define a lag operator L, as proposed by Lütkepohl,
Krätzig, and Phillips, 2004, as Ljyt = yt−j with L0yt = yt. So the lag operator specifies
the shift of time periods. Then the process can be written as

(1 − α1L − · · · − αpLp)yt = €t or simply α(L)yt = €t.

An alteration of the parameters αi, i = 1, . . . , p will produce different time series
patterns. At the same time the variance of the error term €t will change the scale of the
series but not the patterns itself (Hyndman and Athanasopoulos, 2018).

As mentioned above if a trend is present in the data then the autocorrelation for small
lags will be positive and large while it decreases with greater lags. That’s why the AR(1)
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process is often considered when doing trend analysis (e.g. Hamed and Rao, 1998, Hamed,
2009):

yt = α1 − yt−1 + €t or (1 − α1L)yt = €t with the lag operator.

Then the autocorrelation function is given by

ρk =
((( 1 k = 0

αk
1 k > 0.

2.2.3 Moving Average Model

In comparison to the autoregressive model, a time series can also be represented as a
process that is linearly dependent on a finite number q of previous white noise error terms
€t and can be used to forecast future values (Box, Jenkins, and Reinsel, 2008).

Definition. A process yt that consists of the weighted sum of the elements of a white
noice process and can be represented as

yt = €t + m1€t−1 + · · · + mq€t−q

with €t being a zero mean white noise and mi being the coefficients of the model, is called
a moving average process of order q or short MA(q) (Lütkepohl, Krätzig, and Phillips,
2004).

The moving average process is a stationary process, that means that its properties do
not depend on the time of observation. Again, as seen previously for the AR(p) model,
it that can be written more efficiently by defining a lag operator L as Ljyt = yt−j with
L0yt = yt. Then the process can be written as

yt = (1 + m1L + · · · + mqL
q)€t or yt = m(L)€t.

For uniqueness of the representation one has to make restrictions on the coefficients
mi, i = 1, . . . , q or m respectively (Lütkepohl, Krätzig, and Phillips, 2004). A change
in the parameters mi will result in different time series patterns. On the other hand
the variance of the error terms €t will change the scale of the series but not its patterns
(Hyndman and Athanasopoulos, 2018).

Following Hamed and Rao, 1998 who used the MA(1) model for trend detection we
will state its definition explicitly:

yt = €t + m1€t−1 or yt = (1 − m1L)€t with help of the lag operator.
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Then the autocorrelation function is given by

ρk =

(.(.(
− m1

1 + m2
1

k = 1

0 k > 1.

ARMA Model
Combing both autoregressive and moving average model, Whittle, 1951, described the
so-called ARMA model. These processes offer a very effective tool for describing the
dynamics of a time series.

Definition. The autoregressive moving average model of order p,q or short ARMA(p,q)
is a univariate process that is defined as

yt = α1yt−1 + · · · + αpyt−p + €t − m1€t−1 − · · · − mq€t−q.

Following the above notation, αi, i = 1, . . . , p, are the coefficients of the AR(p) process,
mi, i = 1, . . . , q, are the coefficients of the MA(q) process and €t is zero mean white noise.

Again a simplification with help of the lag operator is possible, therefore the ARMA
model can be represented more compactly as

(1 − α1L − · · · − αpLp)yt = (1 − m1L − · · · − mqL
q)€t

or even simpler as
α(L)yt = m(L)€t.

There are two possible ways to interpret the ARMA model. For once it can be seen
as a AR(p) process α(L)yt = €t with the white noise €t following a MA(q) process
€t = m(L)at. The second possibility is that the ARMA model can be described as a
MA(q) process yt = m(L)bt with bt following the AR(p) process α(L)bt = at such that
α(L)yt = m(L)α(L)bt = m(L)at. Furthermore a stationary and invertible ARMA(p,q)
process can be represented both as an infinite moving average process or as an infinite
autoregressive process (Box, Jenkins, and Reinsel, 2008).

In the course of time, various variations of the ARMA model were created. Among
them are the autoregressive integrated moving average model (ARIMA), the seasonal
autoregressive moving averagel mode (SARIMA) and the vectorautoregressive moving
average model (VARIMA) for multivariate analysis and many hybrid versions of these.
The ARMA model as well as its various variants have been widely used for modeling and
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simulation of meteorological phenomena such as precipitation data (Babu et al., 2011,
Valipour, 2015), water quality (Zetterqvist, 1991), stream flow (Carlson, MacCormick, and
Watts, 1970), wind speed (Liu, Tian, and Li, 2012) and many more. But it’s been used in
other fields as well such as the prediction of prices (Barrett, 2021), energy comsumption
(Barak and Sadegh, 2016, Yuan, Liu, and Fang, 2016), electricity forecasting (Bouzerdoum,
Mellit, and Pavan, 2013, Wesolowska, 2018) or motor vehicle crashes (Dezman et al.,
2016).

2.2.4 Mann-Kendall Trend Test

The Mann-Kendall trend test is a rank correlation test which measures the degree of
similarity between two observations and is therefore used to assess the significance of the
relation between them (Kendall, 1962).

In 1938, Kendall suggested a rank correlation coefficient τ for the purpose of having
an objective way to measure a subjectively given ranking by an individual. The coefficient
offers a way to compare two different rankings of a set. There are two possible scenarios
where the coefficient can be used. For once, if there is a natural ranking, a quality like
weight or height, and an observer who ranks the individuals or objects according to his
personal perception. In this case, the rank correlation coefficient gives information on how
reliable the observer’s judgment of some quality is. The second possibility is that there is
no objective ranking of some quality, so two observers rank it in order of their own liking.
For example, ranking a set of musical compositions according to individual preference.
Here, the coefficient τ measures the closeness of correspondence between the two given
rankings, in other words their compatibility. In the above example the coefficient would
give insight if the two observers share the same taste or if they are rather incompatible
within assigned limits of probability (Kendall, 1938).

Originally designed for psychological work, Mann extended the rank correlation coeffi-
cient τ given by Kendall. He picked up the idea of the statistic to confirm its usability for
tests of randomness against trend. Mann showed its practicability in case of independent
observations such as analysis of trends in time series (Mann, 1945).

Definition. Let X = x1, x2, . . . , xn be a set of observations captured at times t = 1, . . . , n.
Then the statistic S given by Kendall, 1962, is defined as

S =
∑
i<j

aij,
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where

aij = sgn(xj − xi) =

(...(...(
1 xi < xj

0 xi = xj

−1 xi > xj.

That means, whenever the observation’s value does correlate with its rank according to
its natural order (from our perspective: time), the value 1 is assigned and whenever they
aren’t ordered ascendingly, aij = −1.

The Mann-Kendall trend test is commonly used as a distribution-free test of trend in
time series. It is a non-parametric test which means that in comparison to parametric
tests it only needs the data to be independent, but the distribution of the data may
remain unknown. So, neither the power nor the significance of this test are affected by the
distribution of the data, this constitutes one of the main advantage of the Mann-Kendall
trend test. On the other hand, the test follows the basic assumption that the data is
random and identically distributed. That’s why, usually it is necessary to subject the data
a pre-whitening process to meet this requirement or to modify the test to admit serial
correlation in the data (Hamed and Rao, 1998, Hamed, 2009).

Given the null hypothesis that the observations x1, . . . , xn are randomly ordered, the
statistic S tends to normality for large n. Then the mean value and variance of S are
given by

E(S) = 0

V(S) = n(n − 1) (2n + 5)
18 .

Furthermore, Kendall points out the possible existence of ties in the data. If two obser-
vations are indistinguishable, i.e. they share the same value, they are said to be tied. In
this case the variance requires some modification. If ties of the extent t are given in the
observations then the variance is given by

V(S) = n(n − 1)(2n + 5) − ∑
t t(t − 1)(2t + 5)

18
(Kendall, 1962).

The Mann-Kendall trend test has been subject to many discussions because of its
condition of independent data. The effects of autocorrelation on it and its validity in
case of autocorrelated data are assessed by various researchers. The technique of reducing
the effect of autocorrelation, the pre-whitening process, was introduced by Von Storch,
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1999, and has among others been applied by Douglas, Vogel, and Kroll, 2000, Hamilton,
Whitelaw, and Fenech, 2001, Yue et al., 2002, Partal and Kahya, 2006. One of the earliest
studies on modifying the Mann-Kendall trend test itself to balance out autocorrelation was
done by Lettenmaier, 1976, who enlarged the variance of the Mann-Kendall trend test by
a factor depending on the first order autocorrelation parameter. Others who modified the
variance to decrease the impact of autocorrelation were Hamed and Rao, 1998, although
Yue et al., 2002, showed that even after the correction proposed by Hamed and Rao,
the rejection rate was still higher than it was supposed to be. Yue and Wang, 2004,
used the approach of effective sample sizes to eliminate the influence of serial correlation.
Hirsch and Slack, 1984, proposed a seasonal Mann-Kendall trend test that compensates for
autocorrelation due to seasonality in the data. This approach was among others applied
by Zetterqvist, 1991, Gocic and Trajkovic, 2013, Zhai, Xia, and Zhang, 2014, Ashraf
et al., 2021. The field of study where the Mann-Kendall trend test is most commonly
applied is in meteorological and hydrological settings such as water quality, precipitation
or temperature data and water flow data (Hamed, 2008, Gocic and Trajkovic, 2013).

2.3 Spatio-Temporal Analysis

With the development of GIS - the geographic information system - a massive amount
of spatio-temporal data was generated that is responsible for many geographic research
initiatives (Richardson, 2013). By now, many geographers and scholars in related fields
of study have recognized the importance of integration of time for understanding a wide
range of human experiences. Still, the majority of research methods are formulated in
static spatial terms and the variety of methods to assess spatio-temporal relations are
scarce (Kwan, 2013). Even when both, space and time, are considered, they are usually
treated like separate aspects. Statistical methods addressing space and time in the same
model and in geographic context are rather limited (Law, Quick, and Chan, 2014). In the
following a few examples on spatio-temporal approaches are given.

2.3.1 Spatio-temporal Moran’s Index

The central aspect when calculating the Moran’s I is the exogenous specification of a
spatial weights matrix. Yet, this matrix is usually defined in a spatial context only, even
though the explored data is collected over time. In 2013, Dubé and Legros introduced a
way of integrating the variable of time into the existing methods of geographical hotspot
analysis. They presented an extended version of Moran’s I for measuring spatio-temporal
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clustering of geographic events on a global scale. By integrating the temporal component
into the former spatial weights matrix and therefore transforming it to a spatio-temporal
weights matrix (Dubé and Legros, 2013). Attempts of formulating a space-time weight
matrix have previously been conducted by various researchers, e.g. Huang, Wu, and Barry,
2010, Wu, Li, and Huang, 2014. All of them have in common that they need estimates
for spatio-temporal autocorrelation which are computationally intensive. In 2017, Lee
and Li picked up Dubé and Legros’ idea of a spatio-temporal weights matrix and added a
localized version of spatio-temporal Moran’s I (Lee and Li, 2017).

Definition. Let W = (wij) be the spatial weight matrix as defined in 2.1.1 and let T = (tij)
be a temporal weight matrix that is defined analogous to the spatial weight matrix with dij

being the temporal distance between two observations. Then the spatio-temporal weight
matrix V is defined as the Hadamard product of W and T , i.e. V = (vij) with vij = wijtij .

Having the definition of a spatio-temporal weight matrix, global and local Moran’s I
can be calculated as defined in 2.1.2 with the spatio-temporal weight matrix taking the
place of the spatial weight matrix:

I =
n

∑
i

∑
j vij(xi − x)(xj − x)∑

i

∑
j vij

∑
i(xi − x)2 and Ii = zi

∑
j

vijzj

σ2 .

Analogous considerations of modifying the spatial weight matrix to a spatio-temporal
weight matrix have been made for the Getis-Ord Gi statistic. See for example Tang, Tseng,
and Chan, 2019 or Wang and Lam, 2020.

In their paper "Characterizing the Spatial Structure(s) of Cities ’on the fly’: the
Space-Time Calendar" Arribas-Bel and Tranos picked up this extension of Moran’s index
to establish the so-called ’Space-Time Calendar’. This novel approach manages to visualise
slow and fast dynamics in one map. Their goal was to be able to reveal patterns that
would usually be hidden by time aggregation. With the Space-Time Calendar it is possible
to visually assess the clustering within each day over a long period (months or even years)
at the same time. Spatio-temporal analysis is performed every day over the study period
and then recorded in temporal units on the y-axis. As can be seen in figure 2.1, hotspots
and coldspots are colored red and blue, respectively, while grey stands for non-significant
clustering, and spots without available data are left blank. Then several runs over a longer
period of time are stacked on the x-axis (Arribas-Bel and Tranos, 2018). The disadvantage
of the Space-Time Calendar though, is that only one location of the study area can be
inspected at a time. Furthermore, the temporal aspect is only considered within each day
itself and then those days are stacked together over a longer period without assessing time
over weeks or months in a statistical way.
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Figure 2.1: Example of a Space-Time Calendar for an intensifying Hotspot.

2.3.2 Space-Time Scan Statistic

Originally, the scan statistic was developed by Naus, 1965. It was a window statistic
that aims at finding the maximum size of a cluster of points on a line. In 1997, Kulldorff
proposed an extended and therefore more generally applicable version of this attempt for
the usage in spatial cluster analysis. While the prior approach focused on one-dimensional
analysis, Kulldorff extended the notion in various directions, namely by proposing a
multi-dimensional point process, by allowing the scanning window to vary in size while
moving along the observation area and by using either an inhomogeneous Poisson process
or Bernoulli process as a baseline for calculation (Kulldorff, 1997). The spatial scan
statistic is used for the detection of spatial clusters as well as their approximate location.
For the calculation a circular window is placed on the map. Then the center of the window
is moved over the observation area such that various locations include different sets of
neighbouring census areas. The observation window does not only change its position but
also its size. For each center of circles, the radius of it is varied from zero to a maximum
such that it never includes more that 50 percent of the total count of observations. So, an
extensive amount of different windows is created of which each is possibly containing a
cluster. With the help of maximum likelihood ratio, a Poisson or Bernoulli process and a
Monte Carlo hypothesis testing, the window that most likely contains a cluster can be
identified. By sorting the circles by their maximum likelihood it is possible to identify
secondary clusters as well (Kulldorff, 2001).

Kulldorff developed the spatial scan statistic mainly for epidemiological uses. In 2001,
he addressed the problem that doing solely spatial analysis over a longer period will make
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it less likely to detect recently emerging clusters of diseases. Therefore, he suggested a
space-time scan statistic. He proposed, that instead of using two-dimensional windows on
a planar study area, a cylinder is observed. So, the original circular window presents the
base of the cylinder and therefore still represents the original and merely spatial aspect
of the data. Time is represented as the third dimension and therefore constitutes the
height of the cylinder. Now, not only the base is moving and changing in size as in the
two-dimensional case, the starting date can vary as well. Both variations are independent
of each other. So, for each location not only the window size is varied but also the height of
the cylinder, considering various starting dates for possible clusters. Since in epidemiology
and disease outbreaks active clusters are most important, only cylinders that reach to
the end of the study period are considered in the final calculation. That way, historical
clusters are excluded (Kulldorff, 2001).

So, the space-time scan statistic by Kulldorff, 2001, is defined as follows:

Definition. Let [Y1, Y2] be the time interval for which data exists and let s and t be the
start and end dates of the cylinder, respectively. Then all cylinders Z with Y1 ≤ s ≤ t = Y2

are considered. Conditioned on the total number of cases N , the space-time scan statistic
is defined as the maximum likelihood ratio over all possible cylinders

S = maxZ{L(Z)}
L0

= maxZ

{L(Z)
L0

}
,

where L(Z) is the maximum likelihood for cylinder Z and L0 is the likelihood function
under the null hypothesis of randomness.

Let nZ be the number of cases within cylinder Z. For the Poisson model, let µ(Z) be
the expected number of cases under the null hypothesis such that µ(A) = N if A is the
whole study area. Then L(Z)

L0
can be calculated as

L(Z)
L0

=
( nZ

µ(Z)
)nZ ·

( N − nZ

N − µ(Z)
)N−nZ

,

if nZ > µ(Z) and L(Z)
L0

= 1 otherwise.

Analogous to the mere spatial case, Monte Carlo hypothesis testing and a ranking due
to the cylinder’s maximum likelihood can be executed for cluster detection.

Kulldorff also points out that in case of time periodic surveillance, for example for
disease surveillance, a highlighting of active clusters is needed. Therefore, he suggested
another adaption of the space-time scan statistic such that p-values of clusters, detected
after the time periodic surveillance began, are higher (Kulldorff, 2001). Kulldorff et al.,
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2005, developed a space-time permutation scan statistic. With the help of an underlying
probability model it should be possible to account for the lack of population-at-risk data for
epidemiological surveillance purposes. In 2006, Kulldorff et al. proposed a transformation
from a circular scanning window to an elliptic one. They suggested it as a special case
of the original spatial scan statistic, since the shape of the observation window has no
influence on the further calculations of the statistic. Unfortunately, they found that the
elliptic scan statistic of its own performed rather poorly. That’s why one has either to
restrict the calculation to small ellipses or when using a large number of elliptic shapes,
one has to combine them with an eccentricity penalty (Kulldorff et al., 2006). Kulldorff,
Huang, and Konty, 2009, proposed a scan statistic for continuous data based on the normal
probability model.

All versions of Kulldorff’s scan statistics were originally defined for epidemiological
purposes like detection of disease clusters, early detection of disease outbreaks, detection
of geographical clusters of continuous variables such as low birth weight (Dahly et al.,
2013, Rao, Shi, and Zhang, 2017, Kiani et al., 2021). But there have been applications for
hotspot detection in other research fields as well, such as hotspot detection of agglomeration
processes in economies (Kang, 2010), events on Twitter (Cheng and Wicks, 2014) or forest
fires (Hudjimartsu, Djatna, Ambarwari, et al., 2017).

2.3.3 Space-Time Kernel Density Estimation

The kernel density estimation (KDE) was originally defined by the statisticians Rosenblatt,
1956, and Parzen, 1962, as a non-parametric tool for estimating a smooth empirical
probability function of a random variable. It is commonly used in the fields of signal
processing and econometrics. In his book ’Density Estimation For Statistics And Data
Analysis’ Silverman, 1986, elaborated on density estimations in general before this method
made its way to spatial analysis. When using spatial data, a two-dimensional grid surface
is created covering the study area, then a small kernel matrix is systematically run over it.
The effects of observation points over their adjacent space is often visualised by heat maps.
That way, locations with a cluster of events are highlighted and hotspots can be detected
(Minn, 2000–2021). Brunsdon, Corcoran, and Higgs, 2005, picked up the idea of using
the kernel density estimation as a visualisation tool. They examined various visualisation
techniques as well as their effectiveness for spatio-temporal pattern and trend detection.
They analysed three different techniques and in the course of doing that, extended the
notion of the KDE to a space-time kernel density estimation.

Definition. Let n be the number of observations of the form (xi, yi, ti) for i = 1, . . . , n.
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Let k1(·, ·) be a probability function defined over a two-dimensional space (xi, yi) where
h1 is the bandwidth of the estimate and let k2(·) be a probability function defined over
time with bandwidth h2. Then the estimate of the probability density at point (xi, yi, ti)
is given by

f(x, y, t) = 1
nh2

1h2

n∑
i=1

k1
(x − xi

h1
,
y − yi

h1

)
k2

(t − ti

h2

)
.

The space-time kernel density estimation offers a new approach to examining space-
time events that are represented as point patterns. The value of the probability density
function f(x, y, t) describes the likelihood of an event happening at location (x, y) ad
time t. Unfortunately, the visualisation of the space-time kernel density estimation would
require a four-dimensional space, namely two dimensions for representing the geographical
space (xi, yi), a third dimension to display the time component and a fourth dimension
to map the density function. Brunsdon, Corcoran, and Higgs, 2005, suggested using an
isosurface as a way of visualising at least some aspects of the density function in three
dimensions. With that, patterns extending over a day or even a week can be seen at once.

Li and Racine, 2007, suggested an alternative and more general definition of a space-time
kernel density estimation, they called it the generalised product kernels:

Definition. Let n be the number of observations of the form (xi, yi, ti) for i = 1, . . . , n. Let
k(·) be an univariate kernel function that may vary with a specific dimension ∈ (1, . . . , q).
Then

f(x) = 1
nh1 . . . hq

n∑
i=1

K
(x − Xi

h

)
,

where
K

(x − Xi

h

)
= k

(x1 − Xi1

h1

)
× · · · ×

(xq − Xiq

hq

)
.

So, while Brunsdon et al. combine a bivariate kernel function k1(·, ·) for space with an
univariate kernel function k2(·) for time, the definition of Li and Racine use the product
of a univariate kernel function k(·) and is therefore expandable up to q dimensions.

Working with point patterns, the kernel density estimation can be used for hotspot
detection. The downside is that the bandwidth that has to be set by the researcher brings
in a highly subjective element to the calculation. Depending on how the bandwidth is
defined, hotspots are detected or categorised as arbitrary. That’s why hotspots detected
by the kernel density function are not considered statistically significant, therefore, the
KDE has to be used in combination with other hotspot detection techniques such as the
Getis-Ord Gi statistic (Kalinic and Krisp, 2018). Addressing the problem of subjectivity
on the bandwidth definition, Hart and Zandbergen, 2014, examined the influence of
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interpolation methods, grid cell size, and bandwidth on hotspot mapping via the kernel
density estimation.

Using the definition of a space-time kernel density estimation by Brunsdon et al.,
Nakaya and Yano, 2010, created a space-time cube for visualising crime clusters. Delmelle
et al., 2014, used it visualising the impact of space-time uncertainties on dengue fever
patterns. Li et al., 2020, analysed traffic violation behaviour at urban intersections. Hu
et al., 2018, used the definition of a spatio-temporal kernel density estimation by Li and
Racine to develop a framework for predictive crime hotspot mapping and evaluation.



Chapter 3

Exploring Spatial Analysis on
Networks

Taking a closer look at the approaches introduced in chapter 2.1 and 2.3, all of them
share the fact that they were indeed defined for doing spatial analysis. Though, they are
meant to be applied to aggregated data across subareas of the study area, such as districts,
postal zones or road blocks. Since usually census-related data (like population counts
etc.) is widely available, this subarea based spatial analysis has become one of the most
popular tools for empirical spatial analysis. In most theoretical work on spatial analysis
an unbounded homogeneous space with Euclidean distance is assumed to be the study
area. This assumption offers the optimal conditions for the development of new theories of
spatial analysis or spatial stochastic processes (Okabe and Sugihara, 2012). Yet, assuming
an ideal space is far from real world problems that are associated with and whose data
is collected on network-shaped areas such as streets, railways, pipeline systems, rivers or
communication networks.

So, tools for spatial analysis on networks are needed. But what does it actually mean
to do spatial analysis on networks? What problems may arise and which obstacles need
to be considered? The following chapter is inspired by the book "Spatial Analysis Along
Networks: Statistical and Computational Methods" by Okabe and Sugihara, 2012, and
will deal with the above questions. In particular, we will focus on events that occur on or
alongside networks in form of point patterns. Among others, point patterns can represent
the occurrence of traffic accidents, crime incidences, the contamination of rivers or, as we
will see in the case study later on (see chapter 5), taxi stops in the sense of entry and exit
points.

29
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3.1 Point Patterns On and Alongside Networks

Doing hotspot analysis on an ideal space seems fanciful. However, many real world
problems are closely connected to a network-shaped research area. These network events
can be divided into two categories, namely events happening directly on the network
and events that happen close to, particularly alongside networks. Events that happen on
networks include car accidents, street crime sites, beaver lodges in watercourses, leakages
in gas pipelines, breaks in a wiring network or blood clots in a vascular network and many
more. As for alongside networks events, the entrances to almost all buildings in a city are
adjacent to streets, thus, all events constrained to facilities next to a network arc can be
categorised as an alongside network event.

The main difference between doing spatial analysis on a plane and spatial analysis on
a network is, that while distance on the plane can easily be measured by the Euclidean
distance, the concept of distance can not be assessed that easily on a network. Unfor-
tunately, planar spatial analysis is often applied to networks treating it as if it were a
plane. Though, this easily leads to false conclusions as can be straightforwardly deducted
from the following figure 3.1. The first part (a) shows points on a plane that seem to
be clustered to some extent. On the other hand, when adding a network structure and
considering the points to be network events (b), they are simply randomly distributed on
the network.

Figure 3.1: While there seems to be a clustering apparent in (a), the points aren’t clustered
in (b) which are the same points embedded in a network structure. This Figure was
recreated from Okabe and Sugihara, 2012.

The point distributions are the same for the first and second part of the figure and
were randomly generated using the uniform distribution on the network. It demonstrates
that applying spatial analysis tools that were developed for the analysis of a planar study
area to network shaped data will most likely result in misleading findings. In fact, not only
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Okabe and Sugihara, 2012, warned from wrong results by using planar spatial analysis
methods on a network. Yamada and Thill, 2004, conducted a study on traffic accidents
in Buffalo showing that the K function method overestimates occurring clusters. Lu and
Chen, 2007 studied crime distributions along streets and also warned from the effect when
using planar methods instead of network spatial analysis tools.

Closely related to the issue of using planar spatial analysis methods on networks, is the
Euclidean distance assumption. It is often chosen because of its straightforward calculation
and on the other hand because it is assumed to approximate the shortest path distance on
a network over a large study region. Still, it remains problematic when studying a small
area like a city. That is why it is important to introduce network spatial analysis. In the
following it is assumed that:

• The considered events occur on or alongside a network.

• If a method is chosen that includes distance variables, the shortest path distance
will be assumed.

It should be noted that this cannot be a generalisation for all events that are probable
to occur on a network shaped research area. Take for example the service area of a cell
phone antenna. The antenna itself may be stationed alongside a network but its service
area is characterised by Euclidean distance. So, it is important to take the properties of
ones study object into account.

When using the above assumptions for network spatial analysis, it is easy to adapt to
situations like directed networks when for example taking the current of a river into account
or considering delivery routes in a city without neglecting one-way streets. Furthermore,
one could handle non-planar networks like bridges or tunnels crossing other streets. The
downside on the other hand of using the shortest-path distance on a network is, that it
takes several steps to be computed. The most apparent obstacle is that the data sources
of the network and point pattern usually differ. So, the typical case to encounter would be
that the points aren’t exactly mapped onto the network but rather slightly off. Therefore,
the points have to be assigned to the network and only then an algorithm for calculating
the shortest path distance can be applied (Okabe and Sugihara, 2012).

3.1.1 Conceptualising the Real World

When facing a problem in the real world, the first challenge is to describe it in detail and
qualitative terms such that subsequently it can be put into a logical, quantitative model.
Dealing with spatial phenomena, there are two main ways to put them into an abstract
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model, namely the object-based model and the field-based model. In the following, both of
them will be described in more detail.

Object-Based Model

When modeling real world phenomena, the first task to arise is to find a way of representing
entities in a more abstract form. In case of the object-based model they can be qualified
as discrete, distinct and well-demarcated abstract things termed objects. They can be
represented by various geometric shapes such as points, lines, areas or solids that are
representing the entities’ abstract form as well as their abstract characteristics. These
characteristics are the attributes of the entities that include spatial as well as non-spatial
properties (see figure 3.2). While the non-spatial attributes usually cover the identifiers
of the object, the spatial features cover geometric as well as topological features. The
geometric properties are the geometric elements that form an object and are therefore
quantitative characteristics. Typical geometric properties would be the length of a street
or the area of a forest. Topological features on the other hand characterise the qualitative
properties of the geometric elements forming the object. These are the characteristics that
are preserved under topological transformation of the space and include attributes such as
connectivity or intersections.

Figure 3.2: Types of attributes of objects in the object-based model. This figure was
recreated from Okabe and Sugihara, 2012.

After putting the real world into the concept of an object-based model, the next step is
to define the corresponding data model. A data model is needed to describe the conceptual
model in terms of numeric values and therefore being able to process it with a computer.
In case of the object-based approach, the most commonly used data model is the vector



3.1. POINT PATTERNS ON AND ALONGSIDE NETWORKS 33

data model.
In case of the object based model, the main component of the concept model are

objects which can be described by spatial and non-spatial attributes, both of them need a
data model of their own. The non-spatial characteristics can be assembled in a relational
database in the form of tables. Let’s take a closer look at the data model describing the
spatial attributes. Again, there are two sub-sections of the spatial attributes, namely
the geometric and the topological properties. The data model for the geometric features
describes a finite number of points or rather the coordinates of a finite number of points
forming the studied geometric objects. Typically, these points represent the vertices
forming a polygon or the endpoints of a line segment. Note, that a curved surface can be
approximated by a collection of connected polygons, while a curved line can be described
by a sequence of connected straight line segments. These geometric elements (points, lines
and polygons) can be described in terms of vectors, therefore this data model is called
vector data model.

Concerning the topological attributes, they describe the relationship between geometric
elements. It will be discussed in more detail in the context of a network shaped research
area, where the extracted graph covers the representation of topological attributes.

Definition. A link is a line segment satisfying the following conditions:

• There is only a finite number of lines whose length is also finite. Therefore a line is
actually a line segment.

• Every line segment is a straight line segment. Curved lines are therefore approximated
by a connected sequence of straight line segments.

• All line segments are pairwise connected. That means that whichever pair of points
on any line segment is selected, there is always at least one path in the network from
one point to the other.

The endpoints of the above defined links are called nodes.

Definition. Let V = (v1, . . . , vnV
) be a set of nodes and L = (l1, . . . , lnL

) be a set of links.
A geometric network is a pair of sets of nodes and links and is denoted by N = (V, L) or
simply N .

Remark. Note, that in the present thesis only finite networks are regarded. That means
every considered network consists of a finite number of links of finite length and a finite
number of nodes.
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Apart from the fact that the geometric network displays the geometrical and topological
attributes of a network object, it also functions as the underlying space for spatial analysis
on a network. So, the geometric network can also be called network space. The network
space can not only be described as a pair of sets of nodes and links N = (V, L), it can also
be seen as the union of its links L̃ = UnL

i=1 li representing the set of points constituting N .
Even though the topological attributes are indirectly suggested by the geometric

network, the corresponding graph can be extracted to make those properties explicit. By
regarding the set of nodes V as a set of vertices V and the set of links L as a set of edges
L, the graph G = (V, L) can be extracted. That way, the quantitative properties, namely
the geometrical attributes, are neglected (such as the location of nodes and length of links)
while the qualitative, namely topological attributes are exhibited. So the graph can be
seen as the abstract representation of the network where the main focus lies with pairs of
vertices that are connected by edges (Okabe and Sugihara, 2012).

Note, that even though the network nodes are now considered to be the graph vertices
and analogously the network links are taken as graph edges, there is a subtle difference
between the network and graph representation. The network N = (V, L) usually refers to
real world systems that are represented in terms of a network, such as friendship networks
on Facebook. The corresponding graph G = (V, L) is the mathematical representation of
the defined network. So, one can say that while in graph theory the interest lies mostly
in questions about the graphs itself, network theorists are more concerned about the
real world situations that are simply modeled by a network (Barabási and Pósfai, 2016).
Alternatively, one can say that a graph does not contain information about for example
the length of edges. To include this information a weighted graph is needed which can be
referred to as a network (Sierksma and Ghosh, 2010).

Field-Based Model

In case of the object based model, entities were considered to be discrete, distinct and well-
demarcated abstract things. In case of the field-based model the entities are described by a
function of an attribute value or a vector of attribute values for every possible point. Here,
the term ’field’ is to be understood as vector field and not as a field in abstract algebra.
The functions representing the entities of the research area are called field functions. The
field-based model is mostly used in the context of temperature, precipitation, elevation,
soil wetness, slope of terrains, etc. Though it is primarily used when the attribute values
have interval or ratio scales, it is also applicable when they have nominal or ordinal scales.
An example would be a binary function defined on every point over the research area,
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indicating whether a certain criterion applies or doesn’t apply at the considered point, e.g.
categorising a region into cultivated and non-cultivated land. Similarly, one can define
a function with multiple values such that the land usage can be classified into various
categories instead of only two.

The data model most often associated to the field-based model is the raster data model.
While the field function as defined above can easily map an infinite number of points on
the continuum of space, for the raster data model one has to restrict the field function to
a finite number of points. If the necessity arises, attribute values on non-selected sample
points can be spatially interpolated. There are various suggested methods for sampling
the attribute values:

(i) A lattice can be used to identify equally spaced points and take those attribute values
into consideration. This is the most commonly used method, the data identified by
the grid lattice is called raster data.

(ii) Attribute values of irregularly spaced points on the research area are examined.

(iii) The space is considered to be tessellated in a regular way. Then a representative
value of the attribute values in the tessellated cell is used, for example the mean,
median or maximum.

(iv) The space is considered to be tessellated in an irregular way. As in the previous
method, a representative value of the attribute values in the tessellated cell is used.

For application of the field-based model for a network, a field function on the network
space has to be defined. As seen before, the attribute values can take ratio, interval,
ordinal and nominal scales. Although, ratio and interval scales are more frequently used
since ordinal and nominal scales are usually covered by an object-based model (Okabe
and Sugihara, 2012).

Note, that basically the object-based model can also be used with the raster data model
as well as the field-based model with the vector data model. Though, in practice there is
a strong association between the models as suggested above. Note also, that the raster
data model is rarely used for networks.
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3.1.2 Essential Computational Methods for Network Spatial Anal-
ysis

In the previous chapter we introduced the notion of the object-based model as well as
the field-based model and their corresponding data models in terms of conceptualizing
phenomena of the real world. These data models have the purpose of representing the
conceptual models in form of numerical values to make them accessible by computational
methods. Since the goal of the present thesis is to develop a spatio-temporal analysis
toolkit for networks, the introduction of statistical methods applicable to networks is
needed. Unfortunately, these statistical methods necessitate a lot of geometric computation
which rapidly becomes very time consuming when working with usually very large spatial
data sets. So, computational methods that master to find the thin line between acceptable
computation time, required memory and accuracy of computation are needed. In the
following section the basic computational methods are introduced before moving on to
the more specialized topics of network spatial autocorrelation, nearest neighbour distance
methods, hotspot analysis on networks and kernel density estimation.

Planar and non-planar Networks

When doing analysis on networks one has to distinguish two major types of networks,
namely planar and non-planar networks.

Definition. A network is called planar if it can be embedded in the plane. That means
that there exists a drawing of it, such that its links intersect only at their endpoints: the
network’s nodes.

A network is called non-planar if it doesn’t meet the above definition. That means
that every possible drawing of the network contains at least one link that intersects with
at least one other link at a different point than their shared node.

Putting these definitions in real world context, one can consider a city map. When
talking about road crossings, as presented in figure 3.3a, then they will usually be presented
in a planar way. That means that the intersection of the roads will be represented as an
intersection of two links within a node, as demonstrated in figure 3.3b. So, when reaching
the crossing, one is free to continue down any of the other three roads, independent of the
road that is chosen to reach the crossing. In case there is a bride or a tunnel within the
street network (figure 3.3c), they will be mapped in form of a non-planar crossing, as can
be seen in figure 3.3d. An intersection of two links without a node at the crossing implies



3.1. POINT PATTERNS ON AND ALONGSIDE NETWORKS 37

that it is not possible to cross from one road to the other at the point of the intersection
because they are located on different layers of the network (Okabe and Sugihara, 2012).

Figure 3.3: Two types of crossings: planar (a) and non-planar (b), as well as their geometric
representation. This Figure was recreated from Okabe and Sugihara, 2012.

Typical examples of non-planar networks would include public transportation networks
including tram- and subways, a simple road network involving bridges or tunnels for
crossing other streets, or people’s paths in multi-level buildings.

Shortest Path Distance

Many times when doing spatial analysis on networks, the resolution of a problem will need
the calculation of the shortest path from a given point to another. Let’s first elaborate on
what finding the shortest path actually means. As we have seen before (Chapter 3.1.1), a
network can be defined as a weighted graph. This implies that crossing from one node to
the next comes with a certain cost depending on the edge that is passed: c(e). These costs
can be interpreted in various ways such as actual transportation costs when moving goods
from one point to the next or when looking for a shortest path one can interpret these
costs as the length of the edge one is moving along. A path is an alternating sequence
of vertices and edges (v0, e1, v1, e2, . . . , en, vn) with ei being the edge from vi−1 to vi and
0 ≤ i ≤ n, to move from the starting vertex v0 to the endpoint vn. Then the shortest path
from one vertex to another is the path that causes the minimal costs.

One of the most efficient algorithms for finding the single-source shortest path, is the
Dijkstra Algorithm. It is a greedy algorithm which means that at each iteration stage
the algorithm chooses the best option for its next step without taking future moves into
account. Even though this problem-solving heuristic usually doesn’t produce an optimal
outcome, it is possible to produce a locally optimal solution (Encyclopedia of Mathematics,
2014). The Dijkstra algorithm achieves that for directed graphs with non-negative edge
costs. So, henceforth it is assumed that c(eij) ≥ 0 ∀i, j.

Finding the shortest path with the Dijkstra algorithm is an iterative process. Every
vertex is labeled with a 2-dimensional vector. The first element presents the length of
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the shortest path to reach the corresponding vertex, while the second element states the
predecessor contributing to the shortest path to reach the current vertex. These labels can
be updated in every iteration step. In a first step, the source vertex s is defined and its
label is set to (0, s) since the predecessor is s itself and it takes no edge to reach it (which
corresponds to an edge of length 0). Every other label is set to (∞, ∗). Since their vertices
haven’t been considered yet, their shortest path is set to infinity and their predecessor is
unknown. Then the iteration starts: in every step the set of vertices is partitioned into
two sets V1, V2, namely the vertices that have already been processed: V1, and the set of
vertices V2 that have to be considered yet. Due to the fact that the length for every edge is
greater than or equal to zero, c(eij) ≥ 0, the set V1 is never empty since it always contains
the source vertex. In the first iteration every vertex that is adjacent to the starting vertex
s is taken into account and their label is updated according to the shortest path to it
(in this case merely the distance from the source) and their predecessor (in this case s).
In every iteration step the algorithm tests every vertex in set V2 to check if the detected
path can be improved. That means for every v ∈ V2 the algorithm checks if there exists a
u ∈ V1 such that a path (u, v) from u to v exists such that labelv > labelu + c(euv). In case
such a path doesn’t exist, the present label remains, in case such a path is found, labelv is
updated accordingly. At the end of every iteration step the shortest path to exactly one of
the vertices is obtained, the corresponding node v0 in V2, the one with the smallest label,
is transferred to V1. That way, the algorithm proceeds until every vertex was handled and
V2 is empty, then the shortest path from the starting point s to every other vertex was
found (Dijkstra, 1959, Sierksma and Ghosh, 2010).
Example. Figure 3.4 and table 3.1 demonstrate the Dijkstra algorithm. Here, the source
vertex is vertex A. In the initialisation the label of A is set to (0, A) while all other labels
remain at (∞, ∗). In the initialisation the set V1 contains only vertex A, the other vertices
are in set V2. Now, all vertices of set V2 are inspected to see if there is an edge from A

to any of the vertices. This is the case for vertices B, C and D, their labels are updated
accordingly as is highlighted in figure 3.4 and can be seen in table 3.1. Note, that B, C and
D remain in set V2 since there is still the possibility of a shorter path than the direct path
from the source vertex. In the next iteration step the vertex with the shortest distance
from A is chosen - vertex D - and again the labels of vertices in V2 that are successor to
D are updated. Then, D is moved from set V2 to set V1 since its shortest path was found.
This way the algorithm continues until the set of V2 is empty. In every iteration step the
shortest path to exactly one vertex is found.

One of the downsides of using the shortest path distance for network spatial analysis is
that it is not as simple as using the Euclidean distance between two points on a plane.
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Figure 3.4: The first graph shows the initialisation phase. Then the following iteration
steps are given with the considered vertex and updated labels highlighted.
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Table 3.1: Initialisation as well as iteration steps of the Dijkstra algorithm for the graph
presented in figure 3.4

Several steps need to be taken: usually when doing a case study, the point pattern and
network data will be obtained from different sources. That means that the points will
most likely not be exactly on but rather slightly off the network and therefore must be
assigned onto the edges of the network. Only after that an algorithm for calculating the
shortest path can be applied (Okabe and Sugihara, 2012).

Voronoi Diagrams

The network Voronoi diagram is an extension of the Voronoi diagram defined on the
Cartesian plane or Cartesian space in higher dimensions. It was named after the Russian
mathematician Georgy Voronoi (1868-1908). Nowadays, the Voronoi diagram is directly
and indirectly part of many spatial analysis methods (Okabe and Sugihara, 2012).

Definition. Let p be an arbitrary point and let P = {p1, . . . , pn} be a set of points on
the Cartesian plane. dE(·, ·) denotes the Euclidean distance of two points in the plane.
Then we can define a set of points as

VV D(pi) = {p | dE(p, pi) ≤ dE(p, pj), j = 1, . . . , n}.

Then the set VV D is called Voronoi polygon of pi and the points p1, . . . , pn are called
generator points. Thus, we can define

V (P ) = {VV D(p1), . . . , VV D(pn)}



3.1. POINT PATTERNS ON AND ALONGSIDE NETWORKS 41

as the ordinary planar Voronoi diagram generated by P .

The ordinary planar Voronoi diagram is characterised by three aspects, namely space,
generators and distance. These can be used to extend the notion to networks by replacing
the Cartesian space by a network space and the Euclidean distance by the shortest path
distance d(·, ·). Then

VV D(pi) = {p | d(p, pi) ≤ d(p, pj), j = 1, . . . , n}

is called the Voronoi subnetwork of pi or Voronoi cell of pi. Analogously, the ordinary
network Voronoi diagram is defined as

V (P ) = {VV D(p1), . . . , VV D(pn)}.

This is the standard definition for network Voronoi diagrams for undirected networks.
Of course, it can be generalised such that it can be used on directed or weighted networks.

For the directed network Voronoi diagram, the shortest path distance has to be di-
vided into the outward shortest path distance and the inward shortest path distance. The
former denotes the shortest path distance from the node pi to p: d(pi, p), the latter denotes
the shortest path distance to the node pi from p: d(p, pi). Therefore, there are two ways
of defining the Voronoi subnetwork of pi, namely

VV D(pi) = {p | d(pi, p) ≤ d(pj, p), j = 1, . . . , n},

VV D(pi) = {p | d(p, pi) ≤ d(p, pj), j = 1, . . . , n}.

Together the outward and inward network Voronoi diagrams constitute the directed net-
work Voronoi diagram V (P ). Note, that there is also a change in the properties between
the undirected network Voronoi diagram and the directed network Voronoi diagram.
For example, while undirected network Voronoi diagrams were mutually exclusive and
collectively exhaustive, this property doesn’t always hold for directed network Voronoi
diagrams. It holds only if additionally there are no nodes with only leaving links and no
nodes that are only incident to links pointing towards the node (Okabe and Sugihara, 2012).

The weighted network Voronoi diagram can be extended from the weighted planar Voronoi
diagram. We replace the shortest path distance by a weighted shortest path distance
dw(·, ·) = αid(·, ·) + βi, where αi, βi are positive constants that reflect the weights for a
certain path such as transportation costs. As before, we can define the weighted network
Voronoi diagram V (P ) via
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VV D(pi) = {p | dw(p, pi) ≤ dw(p, pj), j = 1, . . . , n}
= {p | αid(p, pi) + βi ≤ αid(p, pj) + βi, j = 1, . . . , n}.

Note, that as defined above larger weights αi, βi will result in smaller Voronoi cells.
Depending on the objective of the study these can be adapted in such a way that larger
constants will lead to larger Voronoi cells (Okabe and Sugihara, 2012).

3.2 Network Spatial Autocorrelation
As we have seen in the previous chapter 2, the concept of spatial autocorrelation, namely the
correlation between the same attribute values at different locations, needs to be considered
when doing spatial analysis. As the original statistics for spatial autocorrelation were
developed for areal data, the concept of network autocorrelation needs to be examined in
more detail. Over time, multiple ways of exploring network autocorrelation were designed
and used in different contexts.

White, Burton, and Dow, 1981, were the first ones to extend the notion of spatial
autocorrelation as suggested by Cliff and Ord, 1973, to a more abstract level. As their
main focus was on social networks, their suggestion of a network autocorrelation and the
applications of studies based on this formulation was later called social autocorrelation.

Later, Goodchild, 1987, explored the autocorrelation between the attribute values
of links in a general network instead of social networks alone. Building on this idea
Black, 1992, applied this network autocorrelation to transport networks and flow systems.
While spatial autocorrelation focuses on variables at given location that are influenced by
variables at nearby locations, he understood network autocorrelation as the dependence of
variable values of given links on a network to similar values on links that are connected to
the link under examination (Okabe and Sugihara, 2012).

3.2.1 Classifying Autocorrelation

In the present thesis, the approach suggested by Okabe and Sugihara, 2012, will be
examined in more detail. They suggested a definition of network spatial autocorrelation
that is formulated in a more general way and therefore covers a broader range of application.

Definition. Let {e1, . . . , en} be a set of entities with xi, i = 1, . . . , n, being the attribute
values corresponding to ei. And let rij, i /= j, i, j = 1, . . . , n be the relations between ei

and ej with wij ∈ R, i /= j, i, j = 1, . . . , n, being the corresponding relational value of rij .
Then NR = ({e1, . . . , en}, {rij | i /= j, i, j = 1, . . . , n}) is called a relational network. The
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entities ei are embedded in a space S in which their relations are described by NR.
The autocorrelation between the attribute values xi of the corresponding entities ei in
space S, with their relations being described by the relational network NR with relational
values wij is called abstract autocorrelation.

Figure 3.5: A relational network for abstract autocorrelation: the entities ei, i = 1, . . . , n,
represent the nodes of the network, while the relations rij, i /= j, i, j = 1, . . . , n, represent
the links. The relational network is located in a space S.

Remark. A few remarks need to be made on the above definition.

(i) For the abstract autocorrelation all possible relations between entities are considered.
Therefore, the relational network is represented by a complete graph Kn, as can be
seen in figure 3.5. Of course, when illustrating a real-world situation some relations
are insignificant and can therefore be neglected. But still, conceptually all possible
relations are taken into consideration.

(ii) The possibility of neglecting insignificant links can be done with help of the relational
values. For example, wij = 1 in case there actually is a connection between two
entitites and wij = 0 in case there isn’t.

(iii) The relational values wij are usually called spatial weights in spatial analysis (intro-
duced in section 2.1.1).

(iv) Usually, the relational network NR is a directed network with rij /= rji and wij /= wji.
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As a relational network is embedded in a space S, it has to be noted that there
are different kinds of spaces. Among others, White, Burton, and Dow, 1981, primarily
investigated social networks and therefore the studied space was mainly in the non-physical
domain. When spatial analysis is conducted and spatial statistics to be applied, the only
space considered is the real world, meaning the physical space.

Apart from the space the relational network is situated in, also the entities and relations
between them can be categorised as physical and non-physical, for example:

• Entities: stores and districts vs. societies and cultures

• Relations: distance between two stores vs. political groups with opposing policies

• Space: regional and architectural space vs. social and religious space

So, there are 23 possible combinations of the above characteristics which can lead to
mixed classes of autocorrelation due to the physical / non-physical classification, see figure
3.6. If entities, relations and space can be categorised as physical, we call the resulting
autocorrelation strictly spatial autocorrelation or simple spatial autocorrelation. Spatial
autocorrelation in classic spatial analysis, where most studies consider entities as subareas
of the study area and distances are measured by the Euclidean distance, is henceforth
called planar spatial autocorrelation. From a mathematical point of view its structure
corresponds to the above definition of abstract autocorrelation. This is due to the fact
that even if it seems like attribute values are considered over a continuous plane, the plane
is actually treated like the composition of multiple discrete subareas. Though, spatial
autocorrelation is not restricted to the planar case but entities can be embedded in a
physical network space. The correpsonding spatial autocorrelation is therefore called
network spatial autocorrelation.

When dealing with network spatial autocorrelation further categorisations according to
the geometrical form of the observed entities can be made. For example, if the entities are
taxistops on a city street network (as we will see in chapter 5), they are points located on
the links of a network. Therefore, the network spatial autcorrelation can more precisely
be referred to as points-on-network autocorrelation or in case those points happen to be
the nodes of the network one can call it nodes-on-network autocorrelation. The geometric
form of the entities ei can also be that of a line segment. For example, one could count the
number of accidents on any 100m road segment (see Black, 1991), then the corresponding
network spatial autocorrelation can be called lines-on-network autocorrelation. If all links
of the network have attribute values one can refer to it as links-on-network autocorrelation.
If the entities are a set of connected line segments that constitute a subnetwork, for
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Figure 3.6: Classifications of abstract autocorrelation. This Figure was recreated from
Okabe and Sugihara, 2012. Note, that both weakly spatial autocorelation and strictly
apsatial autcorrelation may have further classifications as well but they are of no importance
and therefore out of scope for the present thesis.

example streets of single districts in a city, then the network spatial autocorrelation can
be addressed as subnetworks-on-network autocorrelation. The matching counterparts for
planar spatial autocorrelation are called points-on-plane autocorrelation, lines-on-plane
autocorrelation and polygons-on-plane autcorrelation (Okabe and Sugihara, 2012).

3.2.2 Spatial Randomness

There are two types of spatial randomness that can be defined on networks, namely
permutation spatial randomness and normal variate spatial randomness. As seen before,
entities can take various geometrical forms on a network such as points, line seqments or
subnetworks. Associated with these entities ei, i = 1, . . . , n, are their attribute values
xi, i = 1, . . . , n. Those spatial data units will henceforth be referred to as network cells
Li, i = 1, . . . , n.

Definition. For the permutation spatial randomness the attribute values x1, . . . , xn are
fixed but they are randomly assigned to the n network cells L1, . . . , Ln. Further, permuta-
tion spatial randomness assumes that every permutation of attribute values xi, i = 1, . . . , n,
occurs with the same probability.

Since all permutations occur with the same probability, the expected attribute values
are the same for all network cells and therefore uniform. That’s why, permutation spatial
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randomness is often used in spatial analysis as null hypothesis for statistical tests.

Normal variate spatial randomness doesn’t assume the attribute values to be fixed but
rather to be derived from a discrete probability distribution or a continuous probability
density function:

Definition. Normal variate spatial randomness assumes that the attribute values xi, i =
1, . . . , n, assigned to network cells L1, . . . , Ln are independently and identically generated
from a normal distribution.

As for the permutation spatial randomness, the attribute values’ expected value is the
same and therefore uniform across all network cells (Okabe and Sugihara, 2012).

3.3 Network Distance Methods
A central element when doing spatial analysis is the definition of distance and closely
related to it is the concept of neighbourhood. In chapter 2.1.1 the topic of a spatial weights
matrix in planar spatial analysis was discussed. There, the weights were defined based on
various concepts of distance: Euclidean distance, distance threshold, inverse distance or
based on boundaries (queen and rook criteria).

Now, the focus is on network spatial analysis and therefore the concept of distance
has to be investigated in more detail. The aforementioned distance concepts are based
on the Euclidean distance. As stated before, the Euclidean distance is often chosen for
networks because of its straightforward calculation. It is assumed to approximate the
shortest path distance on a network over a large study area. Still, it remains problematic
when studying a small area or a city because it can lead to a significant overestimation
of clusters. That’s the reason why it is advisable to use the shortest path distance when
working with networks. On its basis, the concept of nearest neighbour distance and the K
function method will be presented.

3.3.1 Nearest Neighbour Distance

The concept of network nearest neighbour distance is an extension of the planar nearest
neighbour distance, which belongs to the most traditionally used methods in planar spatial
analysis. The extension to networks was already broadly discussed in the 1950s (Cottam
and Curtis, 1949, Clark and Evans, 1954, Pielou, 1959).

Network nearest neighbour distance is based on the shortest path distance introduced
in a previous chapter (see 3.1.2). Okabe and Sugihara, 2012, introduced various kinds of
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the network nearest neighbour distance methods. In the following we will have a look at
the network auto nearest neighbour distance, in literature this method is conventionally
referred to as the network nearest neighbour distance. It examines points of the same kind,
for example taxi stops within a city, and therefore investigates the spatial patterns based
on the shortest path distance.

Let N = (V, L) be a network consisting of nodes V = {v1, . . . , vnV
} and links L =

{l1, . . . , vlL}. Let L̃ = UnL
i=1 li be the union of the links, that means a set of points forming

the links of the network. And let P = {p1, . . . , pn} be a set of points created by a stochastic
process on L̃ with a fixed n. We assume that all entities on the network are known and
therefore represented by pi. We assume that the points in P are independently and
identically distributed and follow the null hypothesis of complete spatial randomness. To
test this hypothesis a statistic test is needed that measures the distance from every point
pi ∈ P to its next nearest point in P . In doing so, we can focus on two different objectives,
namely

• Focus on one point pi and check if the next nearest point is significantly close -
network local nearest neighbour distance method

• Consider all points and test if the average distance for every point to their next
nearest point is significantly short - network global nearest neighbour distance method

For the local nearest neighbour distance method we consider a subnetwork of L̃ for pi,
namely L̃(t|pi) = {p | d(pi, p) ≤ t, p ∈ L̃}. So, the subnetwork L̃(t|pi) consists of all points
that are within a distance threshold of length t. The distance d(·, ·) is the shortest path
distance.

Definition. The nearest neighbour distance from pi is the distance d(pi, p∗), where p∗ is
the next nearest point of pi ∈ P .

For a statistical test the probability distribution function of d(pi, p∗) under the null
hypothesis of complete spatial randomness is needed. It is derived from the probability
that the next nearest point p∗ of pi lies within the distance threshold of t:

P(d(pi, p∗ ≤ t) = 1 − P(∀pj ∈ P\{pi} : d(pi, pj) > t

= 1 − P(p1, . . . , pi−1, pi+1, . . . , pn ∈ L̃\L̃(t|pi)),

where L̃\L̃(t|pi)) describes the complement network of L̃(t|pi)).
Then the probability distribution function is given by
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1 −
( |L̃| − |L̃(t|pi)|

|L̃|

)n−1

,

where |L̃| is the length of L̃.
The exact calculation of the probability distribution function can be looked up in Okabe
and Sugihara, 2012 (chapter 5.4). It provides the expected value µ(pi) and variance σ(pi).
Then one can define and local index as the ratio of the value d(pi, p∗

i ) to its expected value

as IL = d(pi, p∗
i )

µ(pi)
.

The global nearest neighbour distance method is derived from the local version, so
the local index has to be extended to a global index. Instead of only for a single pi, the
nearest neighbour distance has to be calculated for all p ∈ P and then the average is taken:

1
n

( ∑n
i=1 d(pi, p∗

i )
)
.

Then the expected value of the random variable 1
n

( ∑n
i=1 d(pi, p∗

i )
)

under the null hypothesis
of complete spatial randomness can be calculated by integration:

µ = 1
|L̃|

∫
pi∈L̃ µ(pi)dpi,

where the integral is the integration of µ(pi) along L̃. Since an analytical solution for the
integral is not easily found, Monte Carlo simulation is employed, then the global index is
defined as the ratio of the average of d(pi, p∗

i ), i = 1, . . . , n to its expected value:

IG = 1
µ

(
1
n

∑n
i=1 d(pi, p∗

i )
)
.

Again, the probability density function of the random variable 1
n

∑n
i=1 d(pi, p∗

i ), is needed
for statistical tests. However, here as well the analytical solution is not easily obtained,
therefore as n gets large one can apply the central limit theorem and conclude that the
null hypothesis can be tested using the normal distribution with the expected value and
variance received by Monte Carlo simulation.

Note, that the global nearest neighbour distance usually is the one applied in literature
(Okabe and Sugihara, 2012).

3.3.2 K Function Methods

Besides the nearest neighbour distance method, the K function method is the second main
method for point pattern analysis based on distance. Both of them answer similar research
questions but in a different way. While the nearest neighbour distance method corresponds
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to questions concerning the fact if the distance to the next nearest point is particularly
short, the K function method asks if within a given distance from each point there are
significantly many other points.

As we have seen for the network nearest neighbour distance method, Okabe and
Sugihara, 2012, distinguish various kinds of the K function method. In the following, the
network auto K function method will be introduced, which is the one usually referred to as
network K function method in literature. It measures the number of points within a given
distance for points of the same kind.

Let N = (V, L) be a network consisting of nodes V = {v1, . . . , vnV
} and links L =

{l1, . . . , vlL}. Let L̃ = UnL
i=1 li be a set of points forming the links of the network. Let

P = {p1, . . . , pn} be a set of points of the same kind that are created by a stochastic
process on L̃ with a fixed n. The points in P are independently and identically distributed,
therefore they follow the null hypothesis of complete spatial randomness. For testing this
null hypothesis two statistics are defined:

• Focus on one point pi and count the number of points pj ∈ P, j /= i, within a
predefined distance t. This statistic is called the network local K function method.

• Calculate the average number of points within a given distance t from every point in
P to the other points in P . This statistic is called the network global K function
method.

For the local K function method we consider for a pi ∈ P a subnetwork L̃(t|pi) ⊂ L̃. It
is defined as L̃(t|pi) = {p | d(pi, p) ≤ t, p ∈ L̃}, therefore it contains all points within a
shortest path distance of t. This is the network equivalent of a disk with radius t centered
at pi in the plane. Then, let n(t|pi) be the number of points in P (excluding pi) that are
incorporated in L̃(t|pi). Then we define

K(t|pi) = 1
ρ
n(t|pi),

where ρ = n − 1
|L̃| is the density of points and |L̃| is the length of L̃.

To test the hypothesis of complete spatial randomness (n − 1) points are uniformly
and independently generated over the whole network L̃. Thus, the probability distribution
function of the random variable n(t|pi) is a binomial distribution with parameters (n − 1)

and |L̃(t|pi)|
|L̃| . That’s why, the random variable K(t|pi) follows the binomial distribution

under the null hypothesis. Its expected value and variance are given by
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E(K(t|pi)) = µi(t) = |L̃(t|pi)|,

V(K(t|pi)) = σi(t) = 1
n−1 |L̃| |L̃(t|pi)|

(
1 − |L̃(t|pi)|

|L̃|

)
.

Given the random variable K(t|pi) then let K∗(t|pi) and K∗∗(t|pi) be its upper and lower
critical values with significance level α. If an observed value of K(t|pi) is smaller or greater
than K∗(t|pi) or K∗∗(t|pi) respectively, it leads to the conclusion that with a confidence
level of 1 − α points are significantly clustered around pi.

The global K function method is derived from the local K function method. For the local
method n(t|pi) was defined for a specific point pi. To generalise this to a global statistic
K(t), we average n(t|pi) over i = 1, . . . , n, i.e.

K(t) = 1
ρ

( 1
n

∑n
i=1 n(t|pi)

)
.

In order to test the null hypothesis of complete spatial randomness, it is necessary to
compute the expected value and variance of K(t). Since an analytical solution is hard to
find, Monte Carlo simulation can be used (Okabe and Sugihara, 2012).

3.4 Hotspot Analysis on Networks
While the spatial hotspot analysis investigated in section 2.1 was focused on hotspot
analysis on the Cartesian plane, now the possibilities for spatial hotspot analysis on
network space will be examined in more detail. Besag and Newell, 1991, sounded a note
of caution that while the terms of hotspot analysis and cluster analysis are often used
interchangeably, one has to keep in mind that there exists a subtle difference. While tests
of clustering try to answer the question if an observed pattern has arisen by chance or if
there actually are significant clusters present, the tests for the detection of clusters monitor
a large area divided into smaller subareas (network and subnetworks respectively) for
evidence of individual hot- or coldspots. In contrast to the test of clustering, the tests for
the detection of clusters have no biased opinion on where these clusters are to be expected.
So the detection of a hotspot would lead to further investigations and a more sophisticated
study of the results.

In the following chapter, techniques for spatial clustering and hotspot analysis on
networks are discussed in more detail: point cluster analysis, kernel density estimation and
the Moran’s I statistic. A central element of spatial analysis on networks is the shortest
path distance which is the core element of every introduced method. Note also, that the
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nearest neighbour distance method described in chapter 3.3.1 and the K function method
discussed in chapter 3.3.2 can be categorised as cluster analysis.

3.4.1 Point Cluster Analysis

Network point cluster analysis is a point pattern analysis method for networks. The
method checks for similarities between the attribute values of objects and groups those
objects accordingly. In case of spatial cluster analysis, this similarity refers to the spatial
proximity between objects which is measured by the shortest path distance between them
on the network.

Network point cluster analysis is rooted in the spatial cluster analysis for point patterns
on the plane. Yiu and Mamoulis, 2004, recognized clustering as one of the most important
spatial analysis tasks and also that the importance of using shortest path distance instead
of Euclidean distance for networks. They proposed variants of partitioning, density-based
and hierarchical methods. Jin et al., 2006, studied distance-based outliers by partitioning
each edge of the spatial network into a set of segments of the same length. Clauset, Moore,
and Newman, 2008, developed a method for hierarchical point cluster analysis on a network.

There are two types of clustering methods, namely

• Hierarchical clustering: objects are united in hierarchically structured clusters.

• Non-hierarchical clustering: objects are allocated to predefined points that form the
center of the resulting cluster.

In the following, a method for hierarchical clustering will be introduced. Let N = (V, L) be
a planar network with nodes V = {v1, . . . , vnV

} and links L = {l1, . . . , lnL
}. Let L̃ = UnL

i=1 li

be the union of the links, that means a set of points forming the links of the network. And
let P = {p1, . . . , pn} be point-like objects on L̃. The goal is to partition these points into
subsets of P such that clusters are formed, i.e. Pi ⊂ P, Pi /= ∅, Pi ∩ Pj = ∅ ∀i /= j andUnL

i=1 Pi = P . This procedure is called point clustering.
The initial step of the hierarchical clustering procedure consists of creating an initial

level cluster set C0. This is done by defining every point pi ∈ P as a cluster of its own:

C0 = {P
(0)
1 , . . . , P (0)

n } = {{p1}, . . . , {pn}}.

To be able to begin the point clustering, a suitable intercluster distance d(P (0)
i , P

(0)
j ) has

to be defined for the procedure. A possible candidate would be the shortest path distance.
Hence, the pair (P (0)

∗ , P
(0)
∗∗ ) with the minimal intercluster distance within every pair of
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clusters in C0 can be identified. This pair will be removed from C0, instead the union of
them will be added to the set and the first level cluster set C1 is found:

C1 = (C0\{P
(0)
∗ , P

(0)
∗∗ }) ∪ {P

(0)
∗ ∪ P

(0)
∗∗ }.

This process is continued iteratively until in the n-th step Cn−1 = {P n−1
1 } = {P} will

eventually be obtained. This way, spatially agglomerated points on a network can be
found (Okabe and Sugihara, 2012).

3.4.2 Kernel Density Estimation

The network kernel density estimation is an extension of the kernel density estimation
in the plane which is a non-parametric density estimation. Though, the extension is not
trivial. A possible approach would be to assume that since the network is embedded in
the plane one could treat the points on a network the same as points on a plane. Though,
using the kernel density estimation on networks the same as on planes produces bias
(Okabe and Sugihara, 2012).

Let q be an arbitrary point in an undirected, connected network L̃ that is embedded in
the plane. Let Lq ⊂ L̃ be a subnetwork such that the shortest path distance between q

and any other point on Lq is less than or equal to h. Lq is called the buffer network of q

with width h.
Okabe and Sugihara, 2012, suggested a construction of an unbiased kernel density

estimator using the shortest path distance from q to p on L̃. Let k(d(q, p) be a function
called base kernel density function that is characterised by

(i)
∫

p∈L̃ k(d(q, p))dp = 1,

(ii) ∃h ≥ 0 :
((( k(d(q, p)) = 0 d(q, p) ≥ h

k(d(q, p)) > 0 d(q, h) < h
,

(iii) k(d(q, p)) is not increasing with respect to d(q, p),

(iv) k(d(q, p)) is continuous with respect to d(q, p).

Okabe and Sugihara, 2012, further introduced an equal-split discontinuous kernel density
function and an equal-split continuous kernel density function. But generally speaking,
the kernel density function may be defined in various ways as long as the above conditions
are satisfied to avoid bias.
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3.4.3 Moran’s I Statistics

The Moran’s I is a spatial autocorrelation statistic, therefore it measures the correlation
between nearby attribute values. This concept of distance is integrated via the spatial
weights matrix wij , as we have seen in chapter 2.1.2. In case of a spatial network there are
two possible types of spatial weights:

• Topological weights: here the adjacency relationship between network cells is mea-
sured, for example wij = 1 if network cells Li and Lj are adjacent and wij = 0 if
they aren’t.

• Metric weights: measure the distances between representative points, in the literature
this is usually done by using a decreasing function of the shortest path distance such
as αe−βd(pi,pj) or α

d(pi,pj)β , where d(·, ·) is the shortest path distance and α, β > 0 are
constants.

As we have seen before there is a local and global version of the Moran’s I statistic. Apart
from using either topological or metric weights for the spatial weight matrix, the local and
global Moran’s I can be calculated for networks exactly the same way as in the planar case.
Only three additional steps have to be taken for the network spatial weight calculation,
namely the network has to be tessellated into network cells, a representative point has to
be defined for each network cell and then the spatial weights between all pairs of network
cells have to be calculated.

Let N = (V, L) be a network with nodes V = {v1, . . . , vnV
} and links L = {l1, . . . , lnL

}.
Let L̃ = UnL

i=1 li be the union of the links, that means a set of points forming the network.
At first, the representative set L̃ has to be tessellated into network cells L1, . . . , Ln.

This tessellation can result automatically from the data structure. For example, by using
the postal codes for a city street network then each district would be a network cell and
only the particular boundary points have to be added to N . In case the data doesn’t
suggest a specific division, a network Voronoi diagram can be constructed. For this, define
P = {p1, . . . , pn} ⊂ V and construct a Voronoi diagram for P as discussed in section 3.1.2.
Then the Voronoi subnetworks can be used as network cells with representative points pi.

Second, representative points for the network cells have to be chosen. This can be
either done arbitrarily or by taking the center of each network cell. In case the network
cells were constructed via a Voronoi subnetwork, the generating points pi can be used as
representative points. Either way, this results in a network N , = (N ,, L,) with V , = V ∪ P

and L, being the adapted set of links according to the inserted points of P in L.
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The third step covers the calculation of the spatial weights wij. Using the shortest
path distance, the weight for every pi ∈ P can be easily calculated. Put together, they
result in the spatial weights matrix (Okabe and Sugihara, 2012).

Analogously, this procedure can be used to calculate the spatial weights matrix for the
Getis-Ord Gi statistic or Geary’s c statistic.



Chapter 4

Development of a Python Tool for
Spatio-Temporal Hotspot Analysis

In the course of this thesis a Python tool was developed to do spatio-temporal hotspot
analysis for geographical data in form of point patterns. The goal was to create a tool
that can process not only regular maps (for example of countries) but a tool that is also
able to handle network shaped maps like a rail system or a street map. Furthermore, it
was important that in this development process only open source tools were utilised.

The starting point is that of exploratory data analysis which was originally promoted by
John Tukey, 1977. The ambition is to explore the data further than hypothesis testing and
model fitting. The approach of exploratory data analysis could possibly lead to additional
insights on the examined data. In the course of the underlying thesis, the focus is on the
analysis of entities and objects in form of point patterns on networks. Therefore, the initial
subsection will discuss the appropriate conceptual foundations and methodology. Then the
most important available Python packages are introduced, followed by the implementation
procedure and the evaluation of the process.

4.1 Conceptual Foundations

First of all statistical methods of spatio-temporal analysis had to be chosen. The starting
point of finding an appropriate approach was that of geographical analysis. As stated
before, in geographical analysis the focus of study was usually entirely on spatial analysis.
Only through technical achievements such as the global positioning system (GPS) and the
development of geographic information systems (GIS), it became possible to collect and
work with huge amounts of geographical and time referenced data. The need to be able to

55



56 CHAPTER 4. DEVELOPMENT OF A PYTHON TOOL

handle this data was further pushed by the fact that everybody was carrying electronic
devices such as mobile phones and therefore producing endless amounts of geo-referenced
data with it.

So, the initial approach to finding a suitable method for spatio-temporal analysis on
networks was to explore merely spatial analysis methods. As seen in chapter 2.1 there are
three most commonly used methods in spatial cluster analysis, namely Geary’s c, Moran’s
index and Getis and Ord’s Gi statistics. First of all, when doing hotspot analysis it is
important to use localized spatial statistics. When using global statistics one receives
information on signs of stationarity or non-stationarity in the data that is explored. While
stationarity stands for ’no clustering’ in the data, non-stationarity means that there is a
clustering in the data. The disadvantage of global statistics is, that one will indeed know
that there is at least one cluster somewhere, but not where it is to be found. That’s why
localized statistics have to be used when spatial clusters and hotspots are to be identified
(Braithwaite and Li, 2007). All three of the introduced spatial statistics have localized
versions that are able to identify various types of clusters including hotspots in the data.
As seen in chapter 2.1.2, Moran’s index is able to detect a clustering of similar values as
well as to identify an area that has values of the opposite sign than its neighbours. As the
intention of this thesis is to do hotspot analysis and with that finding hotspots as well as
coldspots, i.e. areas of clusterings of high values and areas with a clustering of low values,
Moran’s index would lead only half the way. Namely in finding areas with similar values
but it would not give any information on if it’s a clustering of high or low values per se.
Still, Moran’s index could be a possibility to progress since further investigation of the
data will reveal if it’s a clustering of particularly high or low values. Another advantage
of Moran’s index would be that there is already a first approach on a spatio-temporal
Moran’s index that could be an option (see chapter 2.3.1).

As Geary’s c works with squared differences, it measures how similar neighbouring
values are. While an outcome of a high value would mean that there’s a big difference
between neighbours and therefore negative spatial autocorrelation, a low value simply
means that neighbours have similar values. This defines no clustering of high or low values
yet, Moran’s index would categorise it probably simply as weak or even zero autocorrelation.
That’s why Geary’s c will not be the approach chosen for hotspot detection in the present
thesis.

The Getis-Ord Gi and G∗
i statistic identifies clusters of high values as well as clusters

of low values by producing a significantly high or low outcome with reference to their
average. Therefore, it seems like a good approach for the detection not only of hotspots
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but also of coldspots within one step. So, there are two possible candidates as the starting
point for our spatio-temporal hotspot analysis. Both of them have in common that they
are highly dependent on a spatial weights matrix. As we have seen in section 3.4.3, the
spatial weights matrix can be adapted to be applicable on network space. Therefore,
this wouldn’t pose a complication either. Consequently, a closer look on both methods
is needed. While either procedure needs three items for their analysis, namely a study
area, features with values and a neighbourhood for each feature, Moran’s index and the
Gi statistic approach the scan for clusters differently. The Getis-Ord Gi (or G∗

i ) statistic
takes a look at each feature’s neighbourhood excluding i (including i) to determine if their
values are significantly different than those from the study area. If so, feature i is part
of a hotspot/coldspot (ESRI, 2021c). If continuing with the Getis-Ord statistic, the G∗

i

method would be chosen because it includes feature i in its calculation. On the other
hand, local Moran’s index first compares feature i’s neighbourhood (excluding feature
i) to the study area to see if they differ significantly. Then i is checked against its own
neighbourhood. That way outliers within hotspots can be found, i.e. high values within
a coldspot or low values within a hotspot. This method is of good use when looking for
abnormal or unexpected trends (ESRI, 2021a).

The Getis-Ord G∗
i statistic can be preferred over its alternatives in identifying hotspots

for several reasons. First, it best approximates the typical definition of a hotspot by
identifying areas where local averages are significantly higher than global averages (Chainey
and Ratcliffe, 2005). Unlike local Moran’s I, the G∗

i statistic does not require that in a
geographic neighbourhood both feature i and its neighbours display significantly high
or low values in comparison to the study area itself. Furthermore, G∗

i has the ability to
identify features with high values even if they are located within a neighbourhood of high
values (Braithwaite and Li, 2007). In the plane, the Getis-Ord G∗

i statistic has been used
for hotspot detection in various contexts. For example for analysing spatial clustering in
patterns of voting (O’Loughlin, 2002), clustering of incidents of criminal activity (Chainey,
Reid, and Stuart, 2002) or for identifying transnational terrorism hotspots (Braithwaite
and Li, 2007).

Since it transpires, that the introduced state-of-the-art spatial analysis techniques are
applicable to networks, it needs to be examined if they are (in combination with a time
series analysis) preferable over the introduced spatio-temporal methods. Lee and Li, 2017,
suggested an approach for a spatio-temporal Moran’s I statistic by modifying the spatial
weights matrix for it to include not only the spatial but also the temporal component. In a
reply to a comment on their paper "Extending Moran’s Index for Measuring Spatiotemporal
Clustering of Geographic Events", Lee and Li, 2018, stressed the fact that space and time
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have different units that are not compatible and can therefore not be integrated directly.
Both the binary adjacency approach as well as the multiplicative principle are probable
ways that are currently available for addressing the problem of space and time interaction.
Still, the way events are related to each other spatio-temporally are totally different than
simply spatially or merely temporally. On a spatial basis, events can influence each other
mutually, that means that it is possible that two events A and B influence each other to
the same extent or probably that event A influences event B to a greater extent than event
B influences event A. If considered with a temporal point of view, the situation is not
at all similar. While past events can influence what is happening in the present, current
events would not change incidences of the past. That’s why, their integration of time into
a spatio-temporal weights matrix has to be considered only as a first step to a systematic
treatment of spatio-temporal analysis (Lee and Li, 2018).

The space-time scan statistic is a window statistic that identifies the maximum size of
clusters. The original method was extended by Kulldorff to be applicable to the plane
at first and to space later on. It was developed for epidemiological use cases such as the
detection of disease clusters or early detection of disease outbreaks. For the space-time
scan statistic an observation window (or cylinder in the 3-dimensional space) is created for
scanning the study area. Therefore, the Euclidean distance is entangled with the core of
the statistic. As we have seen, the Euclidean distance leads to severe misconceptions when
used in network spatial analysis. Therefore, this spatio-temporal statistic is abandoned as
an option for the development of a spatio-temporal analysis method for networks.

The third method that was discussed is the space-time kernel density estimation. As we
have seen in chapter 3.4.2, the planar kernel density estimation is transferable to network
space. For the space-time kernel density estimation a probability density function for
every point in space and time is calculated that represents the likelihood of an observation
being made at the corresponding location. In case of using the kernel density function
for hotspot detection, Kalinic and Krisp, 2018, noted that these can’t be considered
statistically significant because the parameter of bandwidth has to be specified by the
practicioner and therefore results in a problem of subjectivity. That’s why the method
would have to be used in combination with other hotspot detection methods such as the
Getis-Ord Gi statistic. With this all three introduced state-of-the-art approaches have to
be dismissed in case of spatio-temporal hotspot analysis on networks.

As a result, the choice for the spatio-temporal analysis in the present thesis will be a two
stage process. The international supplier of geographic information system software ESRI
(Environmental Systems Research Institute) proposes a two level approach for emerging
hotspot analysis. Their suggestion is to do a spatial analysis via the G∗

i statistic and then



4.1. CONCEPTUAL FOUNDATIONS 59

continue with a trend analysis with help of the Mann-Kendall trend test (ESRI, 2021b).
Since we are doing an exploratory data analysis this could be a valid option. An additional
advantage of a two stage process is, that is suffices to apply the merely spatial analysis
technique to the network which significantly reduces the effort for implementing adaptions
to existing statistics in Python.

As we’ve seen in chapter 2.2.4 the Mann-Kendall trend test is a rank correlation
test. Usually, when doing a time series analysis or trend analysis the distribution of data
needs to be known or estimated. One of the main advantages of a rank test is that it
is distribution-free. That means, that its power and significance is not biased by the
actual distribution of the data. That’s the reason why the Mann-Kendall trend test has
been widely used for testing trends in natural phenomena such as temperature, rainfall or
water quality series where the actual distribution is unknown (Hamed, 2009). Another
advantage the Mann-Kendall trend test poses, is that due to the ranking procedure the
effect of outliers is diminished (Kendall, 1962). The null hypothesis that is tested by the
Mann-Kendall trend test is that the data is independent and randomly ordered. However,
in case the data is autocorrelated the probability of detecting trends, that actually don’t
exist or not detecting trends when they exist, increases (Hamed and Rao, 1998). So
the disadvantage of the Mann-Kendall trend test is that the data has to be subjected
to a pre-whitening process to remove autocorrelation from the data. Unfortunately, this
process is problematic of its own, Yue et al., 2002, showed that using pre-whitening to
remove positive autocorrelation also resulted in weakening the magnitude of an existing
trend and therefore it ’potentially leads to inaccurate assessment of the significance of
a trend’. Hamed and Rao, 1998, introduced a second method to mitigate the effect of
autocorrelation and leave the data intact at the same time by modifiying the variance.
Moreover, when the data is not autocorrelated the altered formula reduces to the original
version of calculation. In case the Mann-Kendall trend test is chosen, this will be the
approach taken.

Both, the first order autoregressive model, AR(1), as well as the first order moving
average model, MA(1), have been widely used to describe natural processes. The AR(1)
model is characterised by an exponentially decaying correlation function and is therefore
often categorised as a short-term correlation process (Hamed, 2009). The AR(1) model as
well as the MA(1) model and therefore also the ARMA(1,1) model are linear processes
that are defined by linear equations with constant coefficients (Brockwell and Davis,
2016). Hamed and Rao, 1998, explored the effect of autocorrelation on the AR(1) and the
MA(1) model. They found that for both models the variance is increased by impacts of
autocorrelation. In case of the AR(1) model though, this effect is much larger than for
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the MA(1) model. This is due to the fact that for the AR(1) model the autocorrelation
extends beyond the first lag. On the other hand, Yue et al., 2002, showed that their impact
on the estimates of the slope of the trend is almost identical to that of the Mann-Kendall
statistic. While the variance of the estimators of the slope are altered, the mean and
distribution type stays the same. Since there is an approach for the Mann-Kendall trend
test to assess and reduce the effects of autocorrelation in the data, that at the same time
reduces to the original version of the Mann-Kendall trend test in case no autocorrela-
tion is present, the Mann-Kendall statistic will be chosen over the AR(1) and MA(1) model.

Following ESRI’s approach, a two stage method with a spatial hotspot analysis via
Getis-Ord’s G∗

i statistic followed by a trend analysis with help of the Mann-Kendall trend
test is pursued. The next step is to review existing Python packages to see if some statistics
or mechanics are already implemented and could be enhanced and adapted for the proposed
approach. In any case, a network based implementation for the Getis-Ord G∗

i statistic
is needed as well as an implementation for the Mann-Kendall trend test with adaptions
made to the variance calculations to incorporate the possibility of autocorrelated data.

4.2 Availability of Existing Python Packages

Python is a programming language that incorporates a great variety of libraries and
packages to cover a wide range of research fields and analysis methods. The following
chapter will first introduce the basic packages and libraries that will be relevant for the
tool implementation. Then, the Python spatial analysis library PySAL will be introduced
in more detail. Here, the included packages that could be of interest when proceeding
with the implementation will be presented. Note though, that not all of them were used
in the course of the tool implementation but they were rather a first collection of possible
starting points.

4.2.1 Basic Packages for Data Analysis

In this first subsection, the most important libraries for basic computations and data
analysis are introduced. Note, that this list is far from complete and their importance and
utility can vary depending on the programmer.
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NumPy

NumPy stands for numerical mathematics, the library is specialised in working with multi-
dimensional arrays and matrices. For those, it contains many numerical computing tools
such as universal functions (e.g. random number generators), linear algebra routines,
tensors, nearest neighbour search, etc. Using the NumPy library gives Python a lot of
functionalities previously known from MATLAB (“NumPy”, 2022).

SciPy

SciPy is a broadly applicable library for scientific computing that extends NumPy and adds
even more MATLAB functionalities. The SciPy library includes among others hierarchical
clustering, modules for optimisation, numerical integration and linear algebra routines,
algorithms for spatial structures or statistical functions (“SciPy”, 2022).

matplotlib

Matplotlib is a plotting library that is strongly connected to NumPy. It is possible to
create not only static but also animated and interactive visualisations such as line plots,
histograms, scatter plots, 3D plots, image plots, contour plots and polar plots (“matplotlib”,
2022).

pandas and geopandas

The package pandas was developed to be able to do spatial analysis in Python. It is based
on or more specifically enhances the libraries SciPy and matplotlib but in particular
NumPy. In pandas, large datasets can be handled more efficiently and intuitively in form of
DataFrames. Therefore, many functionalities of the above packages are already included,
though, since not every feature was improved, especially NumPy is often used together with
pandas.

Geopandas is a further extension of pandas, thanks to this module it is possible to
process inputs for spatial data in the form of Shapefiles or a PostGIS database. Many
spatial analysis tools are included such as overlay analysis, geocoding, spatial aggregation
methods and additional GIS-functionalities (Tenkanen, 2017).

NetworkX

The NetworkX package was developed for the construction and manipulation of networks.
It includes tools to study their structure and dynamics as well as functions for complex
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networks. It incorporates data structures for graphs, digraphs, and multigraphs, standard
graph algorithms and network structure and analysis measures such as finding subgraphs,
cliques, k-cores or exploring adjacency, degree, diameter and betweenness. Furthermore,
edges can have attributes such as weights or a time series (“NetworkX”, 2022).

4.2.2 PySAL

PySAL is a Python library that contains a great variety of packages concerning geo-
computation and spatial data science. Their main functionalities can be categorised into:
weights, spatial econometrics, spatial dynamics, ESDA (exploratory spatial data analysis),
clustering and computational geometry (Rey and Anselin, 2010). Because of its extensive
growth and the great activity in further development, the library was restructured to
facilitate the continuous advancement and refinement. PySAL 2.0 was released in 2019
(Rey et al., 2021).

Because of its great extent, in the following only the PySAL packages that could be
of interest for the implementation in the course of this thesis will be introduced. The
following descriptions are based on the paper ’The PySAL Ecosystem: Philosophy and
Implementation’ by Rey et al., 2021.

libpysal

The libpysal package contains the fundamental algorithms that are underpinning all
other packages. It includes the input/output module that offers the possibility to work
with geospatial file formats. Further, it contains a computational geometry module that
includes several algorithms to transform geometric shapes, for example Voronoi tessellations.
Additionally, it offers example data sets. But most interesting for the present thesis is the
weights module, it provided the possibility to store spatial weight matrices and tools for
manipulating and operating on them.

esda

esda - exploratory spatial data analysis - investigates spatial patterns in the data. It
includes the exploration of spatial dependence of random spatial processes on their nearby
realisations, spatial heterogeneity of them, i.e. when a nearby process exhibits different
behaviour and spatial autocorrelation, the statistical dependence of the attribute values of
a given variable in context with other nearby measurements.

The methods included in the esda package are applicable to continuous or binary
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data and can be conducted either on local or global scale. Furthermore, statistics about
boundary strength and measures of aggregation errors in statistical analyses are available.

Note, that the esda is primarily designed for employment on the plane and includes
implementation of the Moran’s I, Moran’s scatterplot, Getis-Ord Gi and G∗

i statistic on a
global and local scale.

giddy

giddy stands for geospatial distribution dynamics. It functions as an extension to the esda
package and offers analysis tools for spatio-temporal data. The role of space is examined
in the light of its dynamic over time. giddy mainly contains Markov chain models such as
spatial Markov, LISA Markov, Full Rank Markov and Geographic rank Markov models.

spaghetti

To overcome the fact that the Euclidean based framework is not suitable for the analysis
of networks, the package spaghetti - spatial graphs: networks, topology and inference -
was developed. For the study of networks and corresponding statistical processes, it offers
the appropriate data structures and analytical methods. Most importantly, it includes the
Dijkstra algorithm for the shortest path determination which represents the basis for all
distance based statistical methods on networks. Furthermore, it provides functionalities
such as the possibility to map near-network observations onto the next nearest link or
high-performance geometric and spatial computations using geopandas for high-resolution
interpolation along networks.

splot

splot is a visualisation package for spatial analysis. It includes the visualisation of global
and local spatial autocorrelation via the Moran scatterplot or cluster maps. Further, it
is possible to visualise the temporal analysis of cluster dynamics through heatmaps or
rose diagrams. splot is also capable of creating multivariate choropleth maps. It can
be assessed via the package matplotlib or bokeh to allow for static visualisations for
publications and interactive visualisations for the purpose of further investigation.

4.3 Implementation
In this section, the implementation of the Python tool for spatio-temporal hotspot analysis
is described in more detail. The tool aims at the processing of taxi movement data in form
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of point patterns and evaluating them on the OpenStreetMap (OSM, “OpenStreetMap”,
2022). The data is provided by the data owner ’Taxi 31300’ and the Austrian Institute of
Technology,

The framework of the implementation is described in more detail in section 4.3.1.
This is followed by a section on data handling (4.3.2) and details on the execution of the
implemented tool (4.3.3).

4.3.1 Framework

Since a two stage approach to the spatio-temporal hotspot analysis on networks was chosen,
it is primarily necessary to have a look at spatial analysis on networks. As we have seen
in chapter 3.4.3, the statistics that were introduced for the planar spatial analysis (section
2.1: Moran’s I, Geary’s c and Getis-Ord G∗

i ) can be transferred to network space relatively
easy. This is done by modifying the spatial weights matrix, two ways of doing so were
discussed in the corresponding chapter. The first possibility is to define topological weights
that reflect whether two links are connected. The second possibility suggests a decreasing
function of the shortest path distance, this is the option chosen for the implementation of
the spatio-temporal hotspot analysis tool.

To add the temporal scale, the data for investigation is split into multiple time slices.
The size of those time slices can be chosen freely by the user according to the inspected
data. So in case, a week has to be analysed, the size of these time slices can be set to
hours. In case years have to be analysed, it is probably more useful to set the time slices’
size to days or weeks. This is of course an incomplete list of the possible sizes to be chosen
from, to name just the most common ones, see table 4.1.

Alias Description Alias Description
D Calendar Days H Hours
W Weeks min Minutes
M Months S Seconds
Q Quarters
Y Years

Table 4.1: Most commonly used frequency aliases. Note, that the aliases can be modified
as well, for example ’30S’ for thirty seconds. For a complete list have a look at “Offset
Aliases”, 2022.

Then, the Getis-Ord G∗
i statistic is performed for each of these time slices. That way,

a time series is created for the individual links, labeling them as hotspot, coldspot or
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no point of significance. The hotspot detection with the Getis-Ord G∗
i statistic can be

performed based on different confidence levels. In the proposed analysis process, hotspots
and coldspots are categorised in three classes depending on their significance. So, there is
a grading of three levels of detected hotspots and coldspots within a significance level α

of 1%, 5% or 10%. Based on that, a time series forms that can be ranked based on this
categorisation, it can then function as an input for the Mann-Kendall trend test.

In section 2.2.4, it was mentioned that the Mann-Kendall trend test is a rank correlation
test. That implies that the given time series is ranked based on its individual values and
then it is evaluated if any trend can be detected within this ranking compared to the
natural ranking 1, . . . , n. That way, it can be assessed if an upward trend, a downward
trend or no trend at all exists within the series. In the proposed approach, the Mann-
Kendall trend test is only applied if within the time series of one link more than 90% of
the time steps are categorised as demonstrating a point of significance, i.e. more than 90%
of the values identify as a hotspot or more than 90% of the values mark a coldspot.

As the approach of exploratory data analysis was chosen, it is possible that more
interesting patterns can be detected than just an increasing or decreasing trend. Therefore,
eight patterns have been defined to categorise the results of analysis. These patterns were
inspired by ESRI, 2021b, they are described in the following list in terms of hotspots. Of
course, for the implementation they are defined for coldspots analogously. An illustration
of the various patterns can be examined in figure 4.1.

(0) No pattern detected: that means that none of the following definitions apply.

(1) New hotspot: The only time a hotspot was detected in this area was in the last time
step.

(2) Consecutive hotspot: There is a sequence of significant hotspots in the last time steps,
though it has never been a hotspot before the start of that sequence. Furthermore,
there are less than 90% of the values categorised as hotspot or coldspot. In the
implementation it will be possible to specify a value or percentage on how many of
the last time steps in the time series have to be categorised as a significant hotspot
to end up being labeled as a consecutive hotspot.

(3) Intensifying hotspot: is detected by the Mann-Kendall trend test, the significance
level for the detection of a trend is set to 5%. Here, at least 90% of the time steps a
hotspot of the three intensity categories has to be detected for the time series to be
analysed by the Mann-Kendall trend test.
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(4) Persistent hotspot: is identified by the Mann-Kendall trend test in case there are
more than 90% of the time steps categorised as a hotspot by the Getis-Ord G∗

i

statistic, but the Mann-Kendall trend test can not find an increasing or decreasing
trend within the significance level of 5%.

(5) Diminishing hotspot: functions analogous to the intensifying hotspot. It is detected
by the Mann-Kendall trend test within a significance level of 5%. The Mann-Kendall
trend test will be applied when at least 90% of the time steps are categorised as a
hotspot of the three intensity categories.

(6) Sporadic hotspot: in case of the sporadic hotspot it means that at some point one
time step has been categorised as a hotspot but then again no hotspot was detected.
At the same time in the whole series no time step was ever labeled as a coldspot.

(7) Oscillating hotspot: in case of the oscillating hotspot the corresponding time series
shows a hotspot in the last step but also a coldspot in at least one of the previous
time steps. Furthermore, the user has the possibility to fix a value or percentage of
preceding label switches from hotspot to coldspot.

(8) Historical hotspot: is found if indeed more than 90% of the time steps were categorised
as hotspots but at least the last time step was no hotspot.

Figure 4.1: This graphic illustrates a possible realisation of the various patterns. Hotspots
are colored red and coldspots are colored blue. The intensity of the significant spots can
be deduced from the given color.

Note, that not every pattern requires that in more than 90% of the time steps a
significant hot- or coldspot was detected. Figure 4.2 shows the possible ways of finding
the individual patterns described above. While patterns 0, 1, 2 and 6 are detected when
less than 90% of the time steps show significant spots, pattern number 7 can be detected
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in any case. On the other hand labels 3, 4, 5 and 8 need a categorisation of the individual
time steps as hotspots or coldspots for more than 90% of the time. If the last time step
wasn’t categorised accordingly, the pattern is ruled out as a historical hotspot. So, only in
cases 3, 4, 5 the Mann-Kendall trend test is applied. All other labels are based on the fact
that the time series didn’t qualify for the Mann-Kendall trend test or only less than 90%
of the time steps are categorised as significant.

Figure 4.2: This graphic shows the possible categorisation and gives an overview on the
corresponding requirements.

4.3.2 Data Handling

For the Python tool for spatio-temporal hotspot analysis it is assumed that the data is
provided in form of shapefiles. .shp is a non-topological file format for the purpose of
storing geometric location and attribute information of geographic objects, these can be
points, lines or polygons (ESRI, 2021d). Therefore, both the links for the network creation
and the point patterns can be stored in the form of shapefiles.

The Python package spaghetti is able to process these shapefiles and map the
observations in form of point patterns onto the nearest link of the provided network. That
way, for both the network and the point pattern a network/point pattern object and a
corresponding geopandas DataFrame is created to store the data of the links and points.
These can be used to start the analysis process, for further details see the next section
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4.3.3.
The results of the analysis consist of a table of links with the corresponding patterns.

This table can be used for further analysis and processing or it can easily be extracted to
a .xlsx or .csv file. Furthermore, the network map and point patterns can be plotted.
To make the different patterns clearly visible and pass on a visual impression, the network
map can automatically be plotted with the edges coloured according to their patterns. For
an example have a look at chapter 5.

4.3.3 Application

For the implementation, three main Python classes were defined that form the core. These
include the NetworkStatCalculator, the TimeSlicer and the PatternFinder.

NetworkStatCalculator
As can be deducted from the chosen name, the NetworkStatCalculator contains all
operations that are directly related to the network itself. This includes among others the
construction of the network object and filtering the longest component, the mapping of
the point patterns onto the nearest link as well as computing their count, this count can
be regarded as the attribute value of the corresponding link. In addition, the associated
dataframes for both links and points can be constructed. Furthermore, the Getis-Ord G∗

i

realisation as well as a function for plotting its evaluation is included in this class. Note,
that the G∗

i statistic is already implemented for planar spatial analysis in the package
esda and was adapted to network applicability based on the results discussed in 3.4.3.

As Okabe and Sugihara, 2012, noted, it is desirable for statistical tests that the network
links are split into equally spaced segments because then no adaptions have to be made
later on to balance these inequalities to prevent bias. So, the NetworkStatCalculator
offers the possibility to specify the preferred arc length and splits the links accordingly.
The functions to realise these implementations are all included in the spaghetti package.

TimeSlicer
The TimeSlicer class introduces the functionality to slice huge amounts of data into time
slices in the size specified by the user. The purpose is that afterwards each time slice is
analysed using the Getis-Ord G∗

i statistic such that a time series forms for every link. In
each time step the links are labeled with 0 if no hotspot or coldspot was detected by the
statistic, labels 1, 2 or 3 stand for the three defined intensities of hotspots (in accordance
with significance levels 10%, 5% and 1%) and analogously -1, -2 or -3 for the three types



4.4. EVALUATION 69

of coldspots (in accordance with significance levels 10%, 5% and 1%). So, the TimeSlicer
class opens the pathway to further pattern analysis based on the resulting time series.

PatternFinder
The name PatternFinder already suggests that this class contains all pattern definitions
as well as logic on time series analysis to arrive at these patterns. The required auxiliary
functions were also implemented in this class. As depicted in chapter 4.3.1, there were
eight possible patterns defined. Three of those patterns include the application of the
Mann-Kendall trend test. For the Mann-Kendall trend test implementation, the existing
implementation of Kendall’s τ in the library SciPy was used as a basis and adapted. As
mentioned in 4.1, the trend test was adapted such that existing autocorrelation will be
leveled out through an adaption in the calculation of the variance as proposed by Hamed
and Rao, 1998.

In the course of the implementation the following Python libraries and packages were
used: NumPy, SciPy, pandas, geopandas and from the PySAL library: libpysal, esda,
spaghetti and splot.

4.4 Evaluation
The implementation of a spatio-temporal hotspot analysis tool that was introduced in this
chapter is a first suggestion on how to tackle the vast topic of spatio-temporal analysis
not only in the plane but also on network shaped research areas. It exemplifies not only
the analysis statistics that could be used but also the definition of patterns that could
be detected and of interest following the approach of exploratory data analysis. The
application of the proposed analysis workflow will be discussed in more detail in the next
chapter (5) that deals with the analysis of taxi entry and exit points within the city of
Vienna.

In future enhancements of the tool, it would be desirable to eradicate certain flaws that
became apparent within the implementation process. These include long computation time
of the functions used from spaghetti but especially the issue that when using spaghetti
all link properties in the data is lost in the reading process and only point positions will be
maintained for analysis, should be solved (for reference see that the corresponding ticket
that was posted to the spaghetti support channel when the tool was first implemented
and is still open Gaboardi, 2020). This issue actually prevented the implementation of
additional evaluation possibilities concerning attribute values such as speed of the car in
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case of the taxi data that was processed in the case study (chapter 5). Furthermore, a
comprehensive documentation and workflow guide could be formulated such that the tool
increases in practicability and user-friendliness.

The validity of the tool, existing functions that were modified for the purpose as well
as newly implemented features were tested in-depth using unit tests. It is available for
inspection and usage on GitHub.

https://github.com/watashi42/Raum-Zeitliche-Hotspot-Analyse-f-r-Netzwerke


Chapter 5

Case Study: Analysing Taxi
Movement Data

This chapter elaborates on the case study of taxi movement data in the city of Vienna. The
implementation of a Python tool for spatio-temporal analysis is demonstrated investigating
the point patterns of taxi entry and exit points in the area of the railway stations Wien
Westbahnhof and Wien Hauptbahnhof in Vienna. The station Wien Westbahnhof used
to be the most important railway junction in Vienna until the new Hauptbahnof was
taken into full operation on the 13th of December in 2015. From that moment onward
every Railjet, Intercity, Eurocity and Euronight train to and from the west of Austria
and Europe, departed and arrived from the Hauptbahnhof instead of the Westbahnhof as
before (Schrenk, 2015). Though, the launch of the Hauptbahnhof consisted of multiple
stages, the first tracks went into operation in December 2012, due to timetable changes
in December 2013 and December 2014 more and more trains were transferred from the
Westbahnhof to the Hauptbahnhof (“Eröffnung des Wiener Hauptbahnhofs in Bildern”,
2014).

In the scope of this thesis it will be investigated if due to this gradually commissioning,
a change in hotspot patterns of taxi stops can be detected. In particular, it will be
interesting to see if there are diminishing hotspots around the Westbahnhof while there
are emerging hotspots in the area of the new Hauptbahnhof with every launching phase.

5.1 Data and Study Area

The data that is used for the case study was provided by the data owner ’Taxi 31300’ and
the Austrian Institute of Technology. It comprises taxi movement data within the city
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of Vienna from September 2012 until the end of June 2016. This time frame is broadly
formulated such that both the time before the first launch stage of the Hauptbahnhof was
coming into effect as well as the time after the final launch stage was completed.

The data is provided in form of .csv files. For building the network, links are
characterised by their ID for OpenStreetMap and their well-known-text, which is a form
or representation for vector geometry objects that includes the minimum and maximum
longitude and latitude. Further information that is provided includes each link’s junctions,
length, means of transportation (foot, bicycle, car, etc.) and the information if they are
one-way. In case of the taxi data, the provided information includes the trip ID, its starting
and ending time as well as their starting and ending points in form of specification of
longitude and latitude such that they can be mapped correctly onto the corresponding
network.

The study area comprises of the region around the station Wien Westbahnhof and
Wien Hauptbahnhof, as can be seen in figure 5.1. This area also includes the important
rail station Wien Meidling. Every train starting or ending at the new Hauptbahnhof will
also pass through Wien Meidling. Therefore, it presents a notable point of interest as well.
While the Hauptbahnhof is connected to a different underground line than the station
Wien Meidling, almost as many people will enter and exit trains at this station as they do
at the Hauptbahnhof itself.

Figure 5.1: This is the research area of this case study, the Westbahnhof is marked in dark
blue and the station Meidling (left side) and the Hauptbahnhof (right side) are highlighted
in red (“OpenStreetMap”, 2022).
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Preprocessing of Data
The data for the links illustrate the whole city of Vienna. So, as a first step only the links
are extracted that are available for car traffic, then these links have to be reduced to the
specified research area (see figure 5.1). This can be done with the help of QGIS, which is
a software for geographical information systems (“QGIS”, 2022). Here, one can generate a
vector layer containing the links of all Vienna. Then one can create a new layer with the
area of ones choice, containing only the links within this area. So, for this case study the
street network extracted for further analysis resembles the specified area, see figure 5.2.
This vector layer that was generated in QGIS and then saved as a shapefile such that it
suits the conditions for further processing with the tool.

Figure 5.2: Vienna’s street network surrounding the stations Wien Westbahnhof, Wien
Meidling and Wien Hauptbahnhof.

Note, that due to the selection of this area, it can happen that there are streets that
are not connected to the network. The automatic removal of those unconnected links is
implemented in the spatio-temporal analysis tool and therefore can be ignored during the
preprocessing.

Just as the links, the provided taxi data is spread over the whole of Vienna as well.
Since the data is originally stored in a database, one can already filter all trips that have
their starting or ending geometry within the specified research area. The result can then be
extracted in form of a .csv file. Though, this still leaves us with more than 14 million trips
from September 2012 till June 2016. Approximately half of them starting in the specified
area and half of them ending within the defined street network. Again, as determined
in chapter 4.3.2, the inputs for the spatio-temporal hotspot analysis tool have to be in
form of shapefiles. Similar to the links, the data for the point patterns can be handled by
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QGIS to meet this condition. Since there are so many trips within the broad time frame
chosen for the analysis, the .cvs data first has to be split into several parts, for each part
a point layer is created in QGIS and afterwards all those layers are merged again. Then,
this final layer can be saved as a shapefile that can be processed by the spatio-temporal
analysis tool. As one has to specify if the starting geometry or the endpoint geometry has
to be used when working with QGIS, the above process has to be done seperately for trips
starting or respectively ending in the research area.

5.2 Spatio-Temporal Analysis Workflow
In the following section the spatio-temporal analysis workflow will be described in more
detail. As there was no graphical user interface developed, the presented screenshots in
this section are taken directly from the command lines in a Jupyter Notebook.

After the preprocessing procedure, one is left with one shapefile containing the links
of the network and two shapefiles containing the information about the point patterns
that are to be examined. One for the starting geometry of each trip and one for the
endpoint geometry. The following description of the analysis workflow is demonstrated
on the example of examining the taxi exit points and therefore the endpoint geometry of
the point data. As a first step, this data has to be read into the notebook to be able to
process it by the analysis tool, see figure 5.3.

Figure 5.3: First command to read in the data in form of shapefiles for the street network
and the point patterns.

For the network data two further steps are necessary (figure 5.4). First, the shapefile
has to be processed in form of a geopandas DataFrame, this is necessary to be able to plot
the street network and visualise the results. Second, the network data has to be processed
with the Python package spaghetti such that a network object is created that can be
processed in the course of the point pattern mapping. Since a tool always aims at relieving
the user from tedious work, this is done automatically by using the implemented class of
the NetworkStatCalculator which constructs the required network object (see section
4.3.3).

As can also be seen in figure 5.4, for the point patterns there are also a couple of initial
steps to be taken before the tool functions automatically. Similar to the network data, the
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Figure 5.4: For both network data as well as point patterns initial steps have to be taken.
The data has to be processed as a geodataframe and timestamps have to be transformed
to a datetime format.

point patterns have to be processed as a geopandas DataFrame. This is necessary such
that the point patterns can be mapped onto the provided network links. It is a functionality
provided by the package spaghetti that is used within the tool implementation. Then, for
Python to be able to work with timestamps, the corresponding columns of the dataframe
have to be transformed to a datetime format. In case of this demonstration, this is done
to the column end which contains the end time of each trip.

Now, the data is prepared to be processed by the function get_pattern_as_gdf which
is implemented in the class of the NetworkStatCalculator, see figure 5.5. This function
maps the specified point patterns onto the network object (using the package spaghetti,
section 4.2.2), creates time slices of the requested size (using the class TimeSlicer, section
4.3.3), applies the Getis-Ord G∗

i statistic (section 2.1.4) and the Mann-Kendall trend test
(section 2.2.4) to categorise each link with its corresponding pattern. Furthermore, the
defined value corresponds to the value that has to be specified for patterns 1 - consecutive
hotspot and 7 - oscillating hotspot (for more details see section 4.3.1).

Figure 5.5: The get_pattern_as_gdf function is part of the NetworkStatCalculator class.
Therefore, it is applied to the created network object and takes the analysis parameters as
input.

In the above figure 5.5, the network object bhf is used and utilised as a basis for the
analysis of the previously read-in point patterns pp_stops. Furthermore, the time column
that is to be used for creating the time slices is the column end, the size of the time slices
is that of a month and the value is set to seven. The result of this function is a geopandas
DataFrame that provides information on every link, namely its ID, geometry and the
detected pattern. Together with the initially defined network_gdf the pattern_gdf can
be processed by the plot_pattern function to visualise the calculated results as can be
seen in figure 5.6.

Note, that the classes TimeSlicer and PatternFinder are implemented and used by
the NetworkStatCalculator in the background. Therefore, the class NetworkStatCalculator
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Figure 5.6: The plot_pattern function uses the dataframes for network and pattern data
as an input and plots the corrsponding pattern visualisation. Note, that this image is only
for demonstration purposes, the detailed analysis of the case study will be discussed in
the following chapter 5.3.

is the only one the user of the analysis tool has to interact with.

5.3 Results
The provided taxi movement data in the city of Vienna covers the period from September
2012 until June 2016. Every year in the middle of December a new part of the new
Hauptbahnhof went into operation. That is why, in the course of the analysis, for once
the period as a whole was analysed with help of the spatio-temporal hotspot analysis tool.
Secondly, every year the period from September until the end of March in the next year
was examined, this provided a time window of approximately the same length before and
after the launch date.

Moreover, the taxi stop data comprises both rides with the exit point within the
research area and trips with the starting point within the specified region. The number of
trips that start or end within the area are about the same. Hence, under the assumption
that people tend to drive to a rail station at the start of their journey, when they are for
example late, the ride with their exit point within the research area are hereafter examined
in greater detail.

Before discussing the results in-depth, the following table 5.1 gives a short overview
over the colours used within the analysis. As no coldspots were deteced in the total
analysis, the colour codes for coldspots aren’t stated in the table.
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Hotspot type Colour
No pattern grey
New hotspot purple
Consecutive hotspot orange
Intensifying hotspot maroon
Persistent hotspot red
Diminishing hotspot green
Sporadic hotspot gold
Oscillating hotspot cornflowerblue
Historical hotspot black

Table 5.1: Overview over the colour codes used in the following analysis.

Entire time period
As stated above, the provided data extends from September 2012 to June 2016. This
covers 46 months or 201 weeks. Hence, for the analysis the time slices were decided to have
the size of a month. Furthermore, the value that is needed for the calculation of pattern
of a consecutive hotspot / coldspot and the pattern of an oscillating hotspot / coldspot is
set to five, which is equivalent to a share of almost 11%. For the hotspot definition that
means that for a consecutive hotspot at least the last five time steps have to be categorised
as a hotspot (or coldspot respectively). For the link to be labeled as an oscillating hotspot
there have to be at least five switches from a hotspot to a coldspot in the whole time
series.

Figure 5.7 shows the results given by the spatio-temporal analysis tool. Possible
drop-off points for taxis in front of the examined rail stations are marked in blue for the
Wien Westbahnhof and red for the station Wien Meidling and Hauptbahnhof. As can
be seen, when analysing the complete research period, there is still a persistent hotspot
detected in front of the Wien Westbahnhof. At the same time, when considering the
station Wien Meidling (left red circle), in the area in front of the station there are road
sections categorised as persistent or sporadic hotspots and parts of it even as diminishing
hotspots. The last point of interest is the area around the Hauptbahnhof (right red circle),
here we can see persistent, sporadic and intensifying hotspots as well, but also newly
emerging hotspots. Therefore, the hypothesis of a shift from the Wien Westbahnhof to
the station Wien Meidling and Hauptbahnhof can’t be wholeheartedly supported when
analysing the complete time period as a whole.

To dig a little deeper, we can have a closer look at the evaluation of road segments
in front of the station Wien Westbahnhof and Hauptbahnhof. For each time slice the
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Figure 5.7: Spatio-temporal hotspot analysis for the entire time frame (September 2012 -
June 2016) based on monthly time slices.

Getis-Ord statistic is evaluated, the resulting time series is then analysed using the Mann-
Kendall trend test. The results of the Getis-Ord statistic are shown in figure 5.8, it consists
of two parameters, namely the p-value and the z-value.

Figure 5.8: Time series of the evaluation of the Getis-Ord statistic at road segments at
Wien Westbahnhof and Hauptbahnhof for the entire time frame (September 2012 - June
2016) based on monthly time slices.

To be categorised as a hotspot within a significance level of 1%, the p-value has to be
less than 0.01 and the z-value has to be greater than 2.58, these boundaries are also
highlighted in the graphic. As can be seen, the evaluation of the Wien Westbahnhof yield
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a persistent hotspot - both the p-value and the z-value remain within the boundaries for
the whole time period, except for the p-value at the 40th timestep. Still, the p-value can
be categorised as significant within a significance level of 5% at this point in time. For the
station Hauptbahnhof the road segment showing an intensifying hotspot was examined in
figure 5.8. As can be seen, both p- and z-value exceed the boundary in the first half of
the time series but then gain in significance. This results in the mentioned pattern by the
Mann-Kendall trend test.

Coming back to figure 5.7, what arouses attention are the areas highlighted in green
circles. Examining these regions in more detail, the following points of interest were
detected:

(1) Metropol theater

(2) Area around the famous Naschmarkt and Theater an der Wien

(3) -

(4) Hospital Rudolfstiftung

Even though not all of these highlighted areas can be assigned to a point of interest, most
of them did. So, the identification of these locations using the spatio-temporal analysis
tool indicates that plausible results are achieved.

As the analysis of the entire research period didn’t support the initial hypothesis, each
launching phase of the Hauptbahnhof will be analysed separately. Every year in December
an additional part of the Hauptbahnhof went into operation. Therefore, in the following
the time window from September till the end of March will be investigated. As the occasion
of interest usually took place in the middle of December, the time window was selected
such that the event is situated in the middle of the period.

September 2012 - March 2013
The analysis period from September 2012 till March 2013 covers 30 weeks, therefore a
weekly analysis is chosen with the value that is needed for the patterns consecutive hotspot
and oscillating hotspot set to three, which is equvalent to a share of 10%.

As can be seen in figure 5.9, the area in front of the Westbahnhof is, analogous to the
previous analysis, categorised as a persistent hotspot. But in this time frame the area
in front of the station Wien Meidling is mostly labeled as a persistent hotspot as well,
only parts are categorised as sporadic hotspots. For the Hauptbahnhof on the other hand,
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Figure 5.9: Spatio-temporal hotspot analysis for the time frame September 2012 till June
2013 based on weekly time slices.

hardly any street near it is categorised as a hotspot at all, mostly there is no pattern
to be detected. This supports the initial hypothesis at least partly, namely that the
Hauptbahnhof was no point of interest before its renovation and the timetable shift from
Westbahnhof to Hauptbahnhof. Other points of interest to be discovered are similar to
the example of the whole research period.

Again, looking at the time series of Getis-Ord G∗
i ’s evaluation, one can see that the p-

and z-value of the road segment at Wien Westbahnhof remain signifcant in every time
step within a significance level of 1%.
For the Hauptbahnhof station on the other hand, the evaluation shows that it could
even have been categorized as a coldspot at the start of the time series. Though, over
time it gains in significance and to a part can also be categorised as hotspot within a
significance level of 1%. This road segment was categorised as a consecutive hotspot by
the Mann-Kendall trend test.

September 2013 - March 2014
Similar to the year before, the time window from September 2013 till March 2014 consists
of 30 weeks. That’s why, again the size of each time slice was set to a week and the value
necessary for patterns two and seven is set to three, which constitutes a share of 10%.

In this time frame, the station Wien Westbahnhof remains a persistent hotspot as
before. As for the station Wien Meidling, here sporadic, persistent and new hotspots are
discovered. It seems that this station was a popular station even before the shift from
Westbahnhof to Hauptbahnhof. It is interesting though, that in this year, there is the first
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Figure 5.10: Time series of the evaluation of the Getis-Ord statistic at road segments at
Wien Westbahnhof and Hauptbahnhof for the time frame September 2012 till March 2013
based on weekly time slices.

Figure 5.11: Spatio-temporal hotspot analysis for the time frame September 2013 till June
2014 based on weekly time slices.

persistent hotspot around Wien Hauptbahnhof. In December 2013 the first trains were
transfered from the Westbahnhof to the Hauptbahnhof, so the first changes in the trains’
timetables happened. So, with the knowledge of the analysis of the entire time period and
at the current analysis stage, it seems that the initial hypothesis is only valid in terms of
the Hauptbahnhof becoming a point of interest due to the switch. Therefore, let’s follow
the hypothesis that the area around the Hauptbahnhof becomes more and more important
with every launching phase. Details on the Getis-Ord evaluation will be omitted at this
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point, the evaluation for the time frames September till March for all years 2012-2016 will
be presented later, see figures 5.14 and 5.13

September 2014 - March 2015
As the results for the time period from September 2014 until March 2015 resemble the
results for the previous year, a detailed analysis is omitted at this point.

September 2015 - March 2016
Again, as in the other time windows from September until March, there are 30 weeks to
be analysed. Hence, a weekly analysis with a value set to three, which is equivalent to a
share of 10% is chosen.

On December 13th, 2015, the new station Wien Hauptbahnhof was taken into full
operation. That’s why the investigation of this time frame is the most interesting one.
Besides that, it is the last possibility to support or dismiss the hypothesis stated for the
analysis. Figure 5.12 shows that for the first time there are diminishing hotspots in front
of the Westbahnhof station. So, there has actually been a reduction in taxi rides ending
at the Westbahnhof. At the same time there are no notable changes at the station Wien
Meidling. While there have been emerging hotspots in the previous years, there are now
persistent and sporadic hotspots in front of and around the station. When looking at
the Hauptbahnhof station, one can see that there has been an increase in stops at the
south entrance of the train station. Now, there is a persistent hotspot in comparison to
a sporadic hotspot before. At the same time, at the northern side of the Hauptbahnhof
there is a decrease in stops. Here, a historical hotspot as well as a diminishing hotspot
was detected.

Taking a closer look at the time series resulting from the Getis-Ord G∗
i statistics’

evaluation, we can see that for the selected road segment for the station Wien Westbahnhof,
figure 5.13, the p- and z-values remain within the boundary given by the significance level
of 1%. There has been only one breach in the 18th time step in 2014 and one in the 19th

time step in 2015. At those two points in time, the evaluation is still considered a hotspot
but only within a significance level of 5%. The Mann-Kendall trend test evaluated the
portraied road segment in every time period as a persistent hotspot.
In figure 5.14 the selected road segment for the Wien Hauptbahnhof station is shown.
The results for the year 2012 are omitted since because of an outlier the other results
couldn’t be properly assessed. As the threshold of the 1% signifcance level was passed by
the p-value in the time period from September 2013 onwards, also the boundary of the
5% significance level is shown in the figure. One can see, that over the years the p-value
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Figure 5.12: Spatio-temporal hotspot analysis for the time frame September 2015 till June
2016 based on weekly time slices.

Figure 5.13: Time series of the evaluation of the Getis-Ord statistic at road segments at
Wien Westbahnhof for the time frame September till March every year from 2012-2016
based on weekly time slices.

decreases while the z-value increases which means that the selected road segment gains in
significance. The categories evaluated by the Mann-Kendall trend test are diminishing
hotspot in 2013, intensifying hotspot in 2014 and persistent hotspot in 2015.

In conclusion, the initially formulated hypothesis, namely that there is a hotspot shift
from Wien Westbahnhof to the stations Wien Meidling and Wien Hauptbahnhof, can only
be approved to some extent. While the decrease of stops at the Westbahnhof became
partly apparent in the last observation window, when the last launching phase of the new
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Figure 5.14: Time series of the evaluation of the Getis-Ord statistic at road segments at
Wien Westbahnhof and Hauptbahnhof for the time frame September 2012 till March 2013
based on weekly time slices.

main station was finished, the increase in stops at the station Hauptbahnhof can primarily
be seen when comparing the categorisations around the station over the years.

Encountered Problems
During the evaluation phase it was detected that using the Python package spaghetti
causes that important information gets lost during the process, this issue was also reported
to the developers (Gaboardi, 2020). Unfortunately, not only attribute values get lost, but
also the original ID for every line segment is lost and replaced by an ID created by the
package. Therefore, there is no possibility to extract the evaluation of a road segment that
is chosen by, for example, its address - as would have been useful for the above evaluation.
The only information that would have been possible to use as a filtering parameter is
the specification of the geometry. Though, by reading in the data by spaghetti through
a Shapefile, the geometry data was rounded from six to five decimal digits and stored
as an geometry object. Therefore it couldn’t be compared automated to the data given
by reading in the original data from a .csv file. This issue resulted in tedious work for
finding the ID of a road segment manually in the areas of the stations Wien Westbahnhof
and Hauptbahnhof.
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5.4 Conclusion
As became apparent in the results of the case study, the spatio-temporal hotspot analysis
tool can only assist and support the user by providing a framework for analysis. At the
same time, the definition of the time slices’ size as well as the value which is critical for
the patterns consecutive hotspot and oscillating hotspot have to be specified by the user.
Therefore, the proposed tool is succumbed to subjectivity to a certain degree. The results
for the entire observation period and a monthly resolution didn’t support the hypothesis
as expected. Though, when examining the analysis results for every launching phase in
particular with a higher granularity, certain supporting factors for the hypothesis could be
discovered. The fact that there was indeed a reduction in taxi stops didn’t show when
considering the entire time frame and a monthly resolution. This was only discovered when
regarding solely the time window around the point in time when the new main station
went into full operation.

These subjectively defined parameters can influence and distort the results of the
analysis dramatically. That’s why it’d be important to answer the question on how to
define those parameters ideally or rather to provide some guidelines or approach on how
to define a good approximation of an ideal solution. Connected to these considerations, it
would also be useful to have some guidelines on how big to choose the time frame of the
observation. That means, additionally to the granularity and the fixed value, one has to
determine a time window of observation. In the presented case study, the time window for
the process of the first launching phase until full operation was almost four years. When
investigating every launching phase of its own, the chosen time window covered three and
a half months before the selected event and three and a half months after it. But these
time windows were subjectively chosen as well.

So, in conclusion it can be said that the spatio-temporal hotspot analysis tool detected
various points of interest (apart from the hypothesis testing) that mostly turned out to be
points of interest in the real world. At the same time, testing a particular hypothesis is
influenced by subjectively chosen parameters which could result in contradictory support
or dismissal statements for the hypothesis.
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Chapter 6

Conclusion

The analysis of spatio-temporal hotspots is of great interest in various research fields.
However, the detection of spatio-temporal patterns is limited by lack of appropriate
methods that are also applicable to networks. This thesis contributes to fill this gap by
presenting a two step approach to the spatio-temporal pattern analysis and furthermore
presents the developed tool to foster the applicability of the proposed procedure.

6.1 Revisiting Research Questions

The main objective of this thesis was to develop a method for spatio-temporal hotspot
analysis that meets the following requirements: it integrates the spatial and temporal
aspects of the data, is applicable to data collected on a network and is based on methods
implemented in the well-established open-source programming language Python. The
proposed approach models the spatio-temporal analysis process in two stages. The first
stage comprises of the slicing of the data into various time steps whose size can be in-
dividually specified by the researcher. For each of these time slices a spatial analysis is
performed, the resulting time series is then subjected to a trend analysis. This process
ends in the assignment of eight different patterns to each link of the research area. That
way, both spatial and temporal dimension is integrated in the analysis process. Fur-
thermore, the applicability of network based spatial methods was studied extensively,
confirming the applicability of the chosen method to network shaped research areas. The
approach has been implemented using the programming language Python utilising the
various available libraries and packages. With the developed tool the practicability for
data collected on networks was further demonstrated in a case study on taxi data in Vienna.
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In a conceptual evaluation, the proposed approach was compared to the previous state-
of-the-art approaches. Starting from a geographers point of view, the state-of-the-art
approaches for spatial analyses are mainly focused on planar analysis utilising Moran’s I,
Getis-Ord G∗

i statistics and Geary’s c. Concerning their applicability to network restrained
data, it can be achieved by a few adaptions to the process, mainly by adapting the spatial
weights matrix by using the shortest path distance instead of the Euclidean distance. As
the thesis is focused on spatio-temporal analysis, these state-of-the-art approaches were
introduced as well. For once, the spatio-temporal Moran’s I suggested the incorporation
of the temporal dimension into the spatial weights matrix. Though, as discussed, the
author itself stated that this was only a first suggestion and still harbouring some issues
concerning the interoperability of space and time. Another approach, the space-time scan
statistic, is based on circular windows or rather cylinders when integrating the temporal
component. This approach is problematic when applying it to networks, as the usage of
Euclidean distance leads to misconceptions. The last introduced state-of-the-art approach,
the space-time kernel density estimation, seems to be a very promising approach. Unfor-
tunately, it is highly exposed to subjectivity due to the bandwidth definition that has
to be set by the researcher. Due to this, the resulting hotspots cannot be categorised as
statistically significant and therefore an additional analysis is required. In conclusion, a
two stage approach was chosen in combining the network Getis-Ord G∗

i statistic and the
Mann-Kendall trend test.

Then, the proposed approach was implemented using the programming language Python.
Utilising various libraries that are available as open-source packages, three main classes
were defined to facilitate a straightforward analysis workflow for the user. The implemen-
tation allows for simple data input in form of shapefiles and outputs the resulting patterns
in form of GeoDataFrame, i.e. every individual link is listed with its corresponding pattern.
In addition, the tool offers a function to easily plot the results for visual assessment. The
visualisation not only presents the network of the research area but also colours the links
according to their resulting patterns. This way, the spatio-temporal analysis tool is also
applicable by users with limited expertise in Python.

The practicability of the spatio-temporal hotspot analysis tool was demonstrated in
the case study of taxi movement data in Vienna. Furthermore, the applicability not only
to network shaped research areas but also to planar research space was tested. By a
slight modification of the NetworkStatCalculator the input of planar data is enabled.
By adding a parameter to query if the input is a network or a plane, the internal setup is
modified to be able to process the planar area and fall back to using the Euclidean distance



6.2. DISCUSSION AND OUTLOOK 89

in the course of analysis. For the user the only modification is that a single parameter
has to be specified, tagging the research as planar or network spatio-temporal analysis.
The application was tested using aggregated Covid-19 data for the individual districts of
Austria.

6.2 Discussion and Outlook
The case study has given some insights of what is possible with the proposed approach of
spatio-temporal hotspot analysis on networks: constructing a network using link speci-
fications in shapefiles, processing point patterns in form of shapefiles and mapping the
points onto the nearest link, splitting links into equally distanced segments to avoid bias
in the computation, applying the Getis-Ord G∗

i statistic on the network using the number
of points on each link (link segment) as attribute values, specifying the time resolution of
computation and therefore determining the length of the resulting time series, computing
eight different patterns using logic inference and the Mann-Kendall trend test.

Still, the implementation also unveiled some flaws in existing Python packages and
raises the necessity to think about multiple refinements before additional features and
enhancements should be implemented. These include besides extensive computation
time of spaghetti functions and input problems for higher amounts of data leading to
revealing the underlying complexity of the simple input function provided by the tool
implementation. A more sever problem is that when reading in data with spaghetti,
the attribute values apart from the geolocation get lost in the process. This prevents the
implementation of additional features such as adding attribute values such as the speed
of taxis, speaking in terms of the presented case study. It can be highlighted though,
that this issue was reported to the developers of the spaghetti package and therefore
hopefully be resolved in the future (Gaboardi, 2020). This would open the possibility for
multiple extensions of the tool implementation.

Another weakness is posed by the realisation of the two stage approach for the analysis.
In case of using this procedure as a surveillance system for disease or crime monitoring,
the emerging hotspots become apparent with a time delay. That means that hotspots are
most likely not detected quick enough to employ effective countermeasures. Furthermore,
if a continuous streak of hotspots is detected in the last couple of time steps the results
can be diluted by the possibility of random fluctuations in earlier time steps (Kulldorff,
2001). This offers the possibility for reconsidering the pattern definitions and either add
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additional patterns or implement conditions such that fluctuations at an early stage don’t
distort the results.

The Python implementation of a spatio-temporal hotspot analysis tool for networks
presented in this thesis is a first prototype that is aimed at the analysis of a specific data
source. Additional work is necessary to enhance this prototype to a more sophisticated
and user-friendly implementation that can be made publicly available and be effectively
used for spatio-temporal hotspot analysis on networks.
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