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Kurzfassung

Antwortmengenprogrammierung (ASP) ist ein deklaratives Programmierparadigma, das
zusammen mit vielen Erweiterungen zur Lösung einer Vielzahl von Problemen in der
künstlichen Intelligenz, insbesondere im Bereich der Wissensrepräsentation und Argumen-
tation, weit verbreitet ist. Eine der wichtigsten Herausforderungen bei ASP ist der Prozess
der Grundierung, bei dem eine Problemspezifikation in eine Menge logischer Regeln um-
gewandelt wird, indem Variablen durch Konstanten ersetzt werden. Die Grundierung ist
entscheidend für die Gesamtleistung von ASP-Systemen, da sie sich direkt auf die Größe
und Komplexität der resultierenden Regelmenge auswirkt und bei bestimmten Problemen
zum bekannten ASP-Grundierungsengpass führt, bei dem das grundierte Programm zu
groß ist um von einem ASP-Löser verarbeitet zu werden. In dieser Arbeit stellen wir eine
neuartige Methode zur Grundierung in ASP vor, die nicht-grundierte Atome in Regeln
entkoppelt, um die Auswertung von Regelkörpern an den Lösungsprozess zu delegieren.
Zu diesem Zweck präsentieren wir eine Übersetzungen von nicht-grundierten, normalen
(strengen) Programmen in grundierte, disjunktive Programme sowie nicht-grundierte,
disjunktive zu grundierten, erkenntnistheoretischen Programmen. Im Vergleich zu her-
kömmlichen Grundierungssystemen liefern unsere Übersetzungen Programme, die nur
exponentiell in der maximalen Prädikatenanzahl, und deshalb nur polynomial, wenn
diese durch eine Konstante begrenzt ist. Mit der Implementierung eines Prototyps de-
monstrieren wir die technische Machbarkeit dieser neuen Methode und vergleichen sie
mit modernster ASP-Technologie in Bezug auf Grundierungsgröße, Grundierungszeit und
Gesamtlaufzeit. Es stellt sich heraus, dass unser Ansatz konkurrenzfähig mit bestehenden
Systemen ist.
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Abstract

Answer-set programming (Asp) is a declarative programming paradigm that has gained
widespread popularity together with many extensions for solving a variety of problems in
artificial intelligence, especially in the field of knowledge representation and reasoning.
One of the key challenges in Asp is the process of grounding, which involves transforming
a high-level problem specification into a set of low-level logical rules by replacing variables
with constants. Grounding is crucial for the overall performance of Asp systems, as it
directly affects the size and complexity of the resulting rule set, and for certain problems
results in the well-known Asp grounding bottleneck, where the ground program is too
huge to be processed by the Asp solver. In this thesis, we present a novel method for
grounding in Asp which decouples non-ground atoms in rules in order to delegate the
evaluation of rule bodies to the solving process. To this end, we present translations
from non-ground, normal (tight) programs to ground, disjunctive programs as well as
non-ground, disjunctive to ground epistemic logic programs. In comparison to traditional
grounding systems, our translations yield programs that are exponential only in the
maximum predicate arity, and thus polynomial if this arity is bounded by a constant.
With the implementation of a prototype, we demonstrate technical feasibility of this
new method and compare to state-of-the-art Asp technology in terms of grounding size,
grounding time and total runtime. It turns out that our approach is competitive with
existing systems.
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CHAPTER 1
Introduction

Motivation
The last decades have been marked by some major advances in efficiently solving hard
problems. To this end, a problem’s hardness is typically classified by computational
complexity theory and the polynomial hierarchy. One of the most crucial problems is
Boolean Satisfiabilty (Sat), the problem of deciding whether a Boolean formula is true,
which is known to be hard for the well-studied problem class NP. While problems that
are hard for this class can probably not be solved in polynomial time, the active research
evolved efficient decision procedures which led to the development of available and efficient
solvers [AS09, Bie08]. However, there was still a notable shift towards studying, solving
and applying even harder problems [KL99, Pap94, SM73].

One of them is Answer Set Programming (Asp) [BET11, GKKS19, JN16, SW18]. Asp
is a well-known problem modeling and solving framework, which, based on the stable
model semantics [GL91], not only asks for the satisfiabilty, but also asks for a justifi-
cation for every variable that is stated to be true. This and other formalisms (see e.g.,
Qsat [BHvMW09, KL99], #Sat [GSS21]) are known to be main drivers for knowledge
representation and reasoning, as well as artificial intelligence. With its capabilites Asp can
be seen as an extension of Sat, where knowledge is modeled by the means of rules forming
a logic program, a rule-based language whose solutions are sets of atoms, called answer sets.
Similar to Sat, the developement of efficient ASP solvers [GKKS19, CPZ19] enables the
broad use in not only academic, e.g. in natural language understanding [CRR19], but also
industrial applications [FFS+18]. Beyond that, there are even harder extensions to Asp,
e.g. the epistemic extension Epistemic Logic Programming (Elp) [GL91, Tru11, SE16],
which allows for the reasoning over multiple worlds and has been gaining popularity in
the early past. Generally, this makes the improvement of ASP systems an important and
interesting research topic in all its fields.
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1. Introduction

Example 1.1 (Asp Capabilities). Asp can be used to encode many problems effortlessly.
Assume the problem of choosing relationships among entities such that the structure does
not contain a triangle. This can easily be represented as a graph consisting of vertices
and edges, and encoded in the following (non-ground) program.

Program Π decides in Rule (1.1) for each edge (e) of a given graph, whether to pick it
(p) or not (p̄). Then, in Rule (1.2) it is ensured that the choice of edges does not form
triangles.

p(A, B) ∨ p̄(A, B) ← e(A, B). (1.1)
← p(X, Y ), p(Y, Z), p(X, Z), X != Y, Y != Z, X != Z. (1.2)

When instantiating the program with an instance {e(1, 2). e(1, 3). e(2, 3)}, an Asp solver
can decide whether an answer exists and enumerate these (see Figure 1.1).

1

2 3
1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Figure 1.1: Exemplary instance (top) for Example 1.1, where every graph (bottom)
depicts a solution (answer set) to the edge-picking problem.

As implied, non-ground programs containing variables require grounding (i.e. the instan-
tiation of variables necessary for solving) before solving. Traditional solvers therefore
rely on a so-called ground-and-solve technique [KLPS16], where a grounding module
transforms the non-ground input program into its propositional counterpart by replacing
variables with constants and a solving module computes the stable models accordingly.
This approach, however, has its limitations for certain problem types. This applies
especially for problems where the grounding leads to a combinatorial blow up, i.e. the
instantiation of rules yields exponentially large programs whose evaluation is not pro-
cessable by the solver. This problem is usually referred to as ASP grounding bottleneck
(cf. Example 1.2).

Example 1.2 (Asp Grounding Bottleneck). Recall the non-ground program Π of Exam-
ple 1.1.

One can identify the variables X, Y and Z that are instantiated during grounding. Tradi-
tional grounding generates a ground rule for every possible variable allocation from the
program’s domain dom(Π) as follows.

2



p(1, 1) ∨ p̄(1, 1) ← e(1, 1). p(1, 2) ∨ p̄(1, 2) ← e(1, 2). p(1, 3) ∨ p̄(1, 3) ← e(1, 3). (1.1)
p(2, 1) ∨ p̄(2, 1) ← e(2, 1). p(2, 2) ∨ p̄(2, 2) ← e(2, 2). p(1, 3) ∨ p̄(2, 3) ← e(2, 3).

p(3, 1) ∨ p̄(3, 1) ← e(3, 1). p(3, 2) ∨ p̄(3, 2) ← e(3, 2). p(3, 3) ∨ p̄(3, 3) ← e(3, 3).

← p(1, 1), p(1, 1), p(1, 1), 1 
= 1, 1 
= 1, 1 
= 1. ← p(1, 1), p(1, 2), p(1, 2), 1 
= 1, 1 
= 2, 1 
= 2. (1.2)
← p(1, 1), p(1, 3), p(1, 3), 1 
= 1, 1 
= 3, 1 
= 3. ← p(1, 2), p(2, 1), p(1, 1), 1 
= 2, 2 
= 1, 1 
= 1.

← p(1, 2), p(2, 2), p(1, 2), 1 
= 2, 2 
= 2, 1 
= 2. ← p(1, 2), p(2, 3), p(1, 3), 1 
= 2, 2 
= 3, 1 
= 3.

← p(1, 3), p(3, 1), p(1, 1), 1 
= 3, 3 
= 1, 1 
= 1. ← p(1, 3), p(3, 2), p(1, 2), 1 
= 3, 3 
= 2, 1 
= 2.

← p(1, 3), p(3, 3), p(1, 3), 1 
= 3, 3 
= 3, 1 
= 3. ← p(2, 1), p(1, 1), p(2, 1), 2 
= 1, 1 
= 1, 2 
= 1.

← p(2, 1), p(1, 2), p(2, 2), 2 
= 1, 1 
= 2, 2 
= 2. ← p(2, 1), p(1, 3), p(2, 3), 2 
= 1, 1 
= 3, 2 
= 3.

← p(2, 2), p(2, 1), p(2, 1), 2 
= 2, 2 
= 1, 2 
= 1. ← p(2, 2), p(2, 2), p(2, 2), 2 
= 2, 2 
= 2, 2 
= 2.

← p(2, 2), p(2, 3), p(2, 3), 2 
= 2, 2 
= 3, 2 
= 3. ← p(2, 3), p(3, 1), p(2, 1), 2 
= 3, 3 
= 1, 2 
= 1.

← p(2, 3), p(3, 2), p(2, 2), 2 
= 3, 3 
= 2, 2 
= 2. ← p(2, 3), p(3, 3), p(2, 3), 2 
= 3, 3 
= 3, 2 
= 3.

← p(3, 1), p(1, 1), p(3, 1), 3 
= 1, 1 
= 1, 3 
= 1. ← p(3, 1), p(1, 2), p(3, 2), 3 
= 1, 1 
= 2, 3 
= 2.

← p(3, 1), p(1, 3), p(3, 3), 3 
= 1, 1 
= 3, 3 
= 3. ← p(3, 2), p(2, 1), p(3, 1), 3 
= 2, 2 
= 1, 3 
= 1.

← p(3, 2), p(2, 2), p(3, 2), 3 
= 2, 2 
= 2, 3 
= 2. ← p(3, 2), p(2, 3), p(3, 3), 3 
= 2, 2 
= 3, 3 
= 3.

← p(3, 3), p(3, 1), p(3, 1), 3 
= 3, 3 
= 1, 3 
= 1. ← p(3, 3), p(3, 2), p(3, 2), 3 
= 3, 3 
= 2, 3 
= 2.

← p(3, 3), p(3, 3), p(3, 3), 3 
= 3, 3 
= 3, 3 
= 3.

Therefore, the grounding effort is in O(|dom(Π)|3). In general, the effort yields O(|dom(Π)|n)
where n is the largest number of distinct variables in a rule. More recent, intelligent
grounders may employ smart procedures towards efficiently producing the ground pro-
gram (e.g. [GST07], [FLP12]), however, the produced ground program is still potentially
of exponential size with respect to the input program.

Novel Approach on Grounding
To call attention to our novel grounding approach, we recall known Asp complexity
results.

For this reason, we identify different program types for logic programs, where the com-
plexity of these types typically ascend with their expressiveness and structure. As
seen in Table 1.1, the complexities for ground programs are relatively mild: decid-
ing if a disjunctive program has an answer set is located at the second level of the
polynomial hierarchy [EG95], whereas normal (and tight) programs yield NP-complete
fragments [BF91, MT91].

While variables in non-ground programs increase a program’s expressiveness and reduce
the encoding effort, the complexity reflects the potentially huge costs of grounding,
which is why non-ground programs ascend up to NEXPTIME completeness [DEGV01].
However, earlier works (see [EFFW07]), which focused on programs in bounded settings,
show that the complexity of programs with bounded predicate arity is more narrow.
In particular, the results show that the complexity for non-ground, normal (and tight)
programs drop to ΣP

2 completeness and for non-ground, disjunctive programs to ΣP
3

completeness (cf. Table 1.1). What is even more interesting: the exponential blow up in
rule instantiation still holds for bounded predicate arity despite their milder complexity.

3



1. Introduction

Ground Non-Ground
(bounded arity)

Tight/Normal Programs NP-c ΣP
2 -c

Disjunctive Programs ΣP
2 -c ΣP

3 -c

Epistemic Programs ΣP
3 -c -

1

2

Table 1.1: Known complexity results of the program types discussed in this thesis. The
proposed reductions are highlighted with arrows.

Resting upon these results, we can identify that non-ground programs (under bounded
arity setting) and ground programs share some of their complexity completeness, an
essential property for reducing between problems. In particular, this gives rise to a
polynomial reduction between non-ground and ground logic programs (see [Tur39, Pos44,
Rog87]), and thus an alternative grounding procedure that delegates certain efforts
to the solving process. In the first place, this idea seems qualified for reducing from
non-ground, normal (and tight) to ground, disjunctive programs (cf. Fig. 1.1 1 ). But
as the developement of some competitive epistemic solvers [CFG+20, BMW20, BHW21]
suggests, there might even lie potential in a reduction from non-ground, disjunctive Asp
programs to ground Elp programs (cf. Fig. 1.1 2 ), which are known to be ΣP

3 -complete
as well [SE16].

While the reduction itself seems interesting enough, the encoding of such a reduction
can be constructed in such a way that the dependencies of predicates in rules bodies are
decoupled, i.e. each predicate in the rule’s body can be instantiated separately to reduce
the number of instantiations. Especially, when assuming large rules bodies with very
dense structures, this idea might be particularly useful. The difference of this concept,
which we call body-decoupled grounding, compared to traditional grounding systems is
shown in the following example.

Example 1.3 (Body-Decoupled Grounding). Recall the program Π of Example 1.1.

p(A, B) ∨ p̄(A, B) ← e(A, B) (1.1)
← p(X, Y ), p(Y, Z), p(X, Z), X != Y, Y != Z, X != Z. (1.2)

As seen above, traditional grounding systems instantiate every variable of a rule at once
yielding a grounding effort of O(|dom(Π)|3), O(|dom(Π)|n) in general where n is the
largest number of distinct variables in a rule.

Our approach is different, since it decouples rule bodies during the grounding of Π.
Therefore, body predicates of (1.2) are grounded individually, yielding groundings that are
linear in the size of the ground atoms. Here, it corresponds to O(|dom(Π)|2) due to arity 2.

4



In general, the effort yields O(|dom(Π)|c) where c is a fixed constant corresponding to
the predicate arity.

Main Contributions
By utilizing the aforementioned complexity results we deal with an alternative grounding
approach that decouples rule bodies during grounding, which is rectified during solving.

To do so, we try to address grounding from a different perspective and answer the
following questions: Can we translate non-ground programs to ground programs without
an explicit instantiation of rules, but where instead certain aspects of grounding are
delegated to the efficient search procedures of modern Asp (and Elp) solvers? And is
this a promising approach, at least, for certain program classes?

Our main contributions are summarized as follows.

1. We present a novel reduction from non-ground, tight logic programs to ground,
disjunctive programs (cf. Fig. 1.1 1 ) that encodes grounding via search by iden-
tifying unsatisfiable ground rules and unjustified (unfounded) atoms. In contrast
to traditional grounding, our reduction allows us to decouple predicates occurring
in the body of a rule, which might be particularly useful for larger bodies with a
very dense structure. We show that in general the jump from (non-ground) tight
programs to (ground) disjunctive programs cannot be avoided.

2. We extend this approach to non-ground, normal programs, where for ensuring
justifiability we additionally encode the idea of orderings (level mappings) in our
reduction.

3. As we observe that epistemic solvers are improving, we lift our idea to a reduction
to epistemic logic programs. Due to the increased complexity of these programs we
can extend this approach to non-ground, disjunctive programs (cf. Fig. 1.1 2 ). The
presented reduction encodes subset-minimization of answer-sets and can therefore
omit foundedness and orderings.

4. We present a prototype that allows to translate critical parts of tight programs
using our reduction, thereby empowering the grounding process by decoupling
body predicates. Preliminary experiments indicate that this approach can lead
to significant speed-ups and a massive reduction in grounding size compared to
state-of-the-art grounders.

Publications
At this point, it should be mentioned that this thesis will complement and extend
our system newground, realizing a program reduction in practice, as well as our

5



1. Introduction

corresponding paper for the International Joint Conferences on Artificial Intelligence
2022 [BHW22a] (accepted and presented at the conference). Further, this thesis is related
to an extended version of [BHW22a] which is currently under review; the translation
to epistemic logic programs is entirely new. In addition to the other works, this thesis
contains additional examples, more detailed explanations and full proofs.

Further work by the author of this thesis has addressed quantitative reasoning and
alternative solving methods for epistemic logic programs [BHW21, BHW22b].

Overview
The rest of this thesis is organized as follows. In the next chapter, Chapter 2, all
necessary theoretical background is provided. In particular, this includes introductions
to Computational Complexity Theory, Answer-Set Programming and Epistemic Logic
Programming. Based on this background information, Chapter 3 first introduces our
reduction from non-ground, normal to disjunctive programs and potential optimizations,
before lifting the idea to a reduction from non-ground, disjunctive programs to epistemic
logic programs. In Chapter 4, newground, the implementation of the discussed reduction,
will be introduced before analyzing the tool’s performance in preliminary experiments.
Finally, the last chapter, Chapter 5, discusses and summarizes the findings of this thesis
and puts it into perspective of related work. Following that, the outcomes of the results
are presented, which give rise to future work.

6



CHAPTER 2
Background

In this chapter we introduce the preliminary concepts and underlying theory of the
approach presented in this work. To this end, Section 2.1 outlines the most relevant
concepts of complexity theory, Section 2.2 covers answer-set programming structurally
divided into ground and non-ground logic programs, and Section 2.3 introduces the
epistemic extension Elp of answer-set programming.

For some definitions, we use mathematical vectors X=	x1, . . . , xm
, Y =	y1, . . . , yn
 in
the usual way. We then combine vectors by 	X, Y 
 := 	x1, . . . , xm, y1, . . . , yn
 and check
whether some x1 is contained in in a vector X by x1 ∈ X. Without loss of generality, we
assume that elements of vectors are given in any fixed total order; for a given set S, we
construct its unique vector by 	S
.

2.1 Computational Complexity
For this section, we assume familiarity with basic complexity theory and will only
introduce concepts that are of importance for this thesis. An introduction and more
details can be found in [Pap94]. In the following we mainly consider decision problems
commonly defined as problems that can be posed as a yes–no question of specified sets of
inputs.

The problem class P contains all decision problems that can be solved in polynomial
time with a deterministic Turing machine. Similar, problems in the problem class NP
can be solved in polynomial time using non-deterministic Turing machines. For any
class C, there exists a complement class co-C which contains all decision problems whose
complement is in C, i.e. a problem P is in co-C if and only if the complement co-P of P
is in C. In general, the class PC for any class C includes all decision problems that can be
solved in polynomial time with a deterministic Turing machine with access to an oracle

7



2. Background

ΔP
0 = ΣP

0 = P = ΠP
0 = ΔP

1

(equal to NP) ΣP
1 ΠP

1 (equal to co-NP)

PNP = ΔP
2

ΣP
2 ΠP

2

ΔP
3

. . . . . .

Figure 2.1: Commutative diagram of the polynomial hierarchy.

for the class C, which can be seen as a subroutine able to solve all problems in C running
in constant time.

Further, we call a given problem P C-complete if P is in the complexity class C (mem-
bership) and P is C-hard, i.e. any problem of C can be reduced to P in polynomial time
and space (cf. Definition 2.2).

The polynomial hierarchy is composed of the three classes ΣP
k , ΠP

k and ΔP
k , and can be

inductively defined as follows.

ΣP
0 = ΠP

0 = ΔP
0 = P

and for k ≥ 1:

ΣP
k+1 = NPΣP

k

ΠP
k+1 = co-NPΣP

k

ΔP
k+1 = PΣP

k

Figure 2.1 illustrates the polynomial hierarchy and shows the relationship between the
different classes ΣP

k , ΠP
k and ΔP

k , where an arrow depicts a class being a subclass, e.g. ΣP
1

and ΠP
1 being a subclass of PNP. One can then speak about the i-th level of the polynomial

hierarchy to comprise the classes ΣP
i , ΠP

i and ΔP
i+1. Further, the class PSPACE includes

all problems that are decidable in polynomial space. It is known that the following chain
of inclusions holds

ΣP
0 ⊆ ΣP

1 ⊆ · · · ⊆ PSPACE,

8



2.1. Computational Complexity

where each is widely believed to be proper.

Earlier works by Wrathall [Wra76] show that Quantified Boolean Formulas (QBFs) are
especially suitable for showing complexity results, which is why the corresponding decision
problem Qsati is the showcase problem for determining the complexity of the i-th level
of the polynomial hierarchy.

Proposition 2.1. Given a propositional formula φ with its atoms partitioned into i ≥ 1
pairwise distinct sets V1, . . . , Vi, deciding whether ∃V1, ∀V2, . . . , QiVi φ is true is ΣP

i -
complete, where Qi = ∃ if i is odd and Qi = ∀ if i is even.

Similar, deciding whether ∀V1, ∃V2, . . . , Q

iVi φ is true is ΠP

i -complete, W where Q

i = ∀

if i is odd and Q

i = ∃ if i is even.

Many-One Reductions While the idea of problem reductions play an important
role in any field where problems have to be solved, it is especially a key technique in
complexity theory. As first introduced as a side issue by Turing [Tur39], revisited by
Post [Pos44], and later associated with computability theory [Rog87], Turing reductions
pose an important foundation for later scientific work on solving problems by reducing
between them. But in particular, Many-One Reductions, a stronger form of a Turing
reduction (cf. Definition 2.1; Turing reductions allow multiple invocations of the utilized
oracle), are an important way of solving problems and determining their complexity due
to their properties explained in Definition 2.2 below.

Definition 2.1 (Many-One Reduction). Given two (decision) problems A, B, let R be a
function from instances of problem A to instances B, i.e. each instance a of A is mapped
to an instance b = R(a) of B. When solving the instance R(a) with the algorithm for
problem B, the answer is already the correct answer to the instance a of A, we say a and
R(a) are equivalent, i.e. a is a positive instance of A ⇔ R(a) is a positive instance of B.

Notice that, many-one reductions are typically used under resource restrictions. Polynomial-
Time Reductions, which are generally considered, transform instances of one decision
problem into instances of another decision problem in polynomial time. This prevents
hiding the complexity of a problem in the reduction and makes the complexity comparison
possible. Therefore, we only focus on polynomial-time many-one reductions and denote a
reduction with P ≤R P 
 if problem P can be reduced to P 
.

Definition 2.2 (Hardness & Completeness). Let C be a complexity class and let P be
a problem. P is called C-hard if any problem P 
 ∈ C is reducible to P. P is called
C-complete if P lies in C and P is C-hard.

These properties can be used for different use cases. On the one hand, we can use
reductions to prove the complexity (hardness) of a problem. We can argue that if a
problem P is known to be C-hard and a problem P’ can be reduced to P, i.e. P 
 ≤R P,
then P 
 is also C-hard. On the other hand, reductions can be used for solving problems

9
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by reducing them to a problem for which a sophisticated, superior solver exists, e.g. many
NP problems are reduced to Sat because of its powerful solvers.

2.2 Answer-Set-Programming
Answer-Set Programming (often abbreviated to ASP) deals with so-called logic programs,
which is why it also often referred to as logic programming under the stable-model
semantics, and furthermore, with finding the associated solutions, called Answer-Sets, of
those. Since this thesis addresses methods for grounding, the process needed to solve
non-ground logic programs, a clear distinction between ground and non-ground programs
is made, which is why they are introduced separately. The following definitions are based
on [BET11, JN16].

2.2.1 Ground Answer-Set Programming
Let *, m, n be non-negative integers such that * ≤ m ≤ n; a1, . . ., an be distinct
propositional atoms. We refer to a propositional atom or the negation of it by literal. A
ground (disjunctive) program P is a set of (disjunctive) rules of the form

a1 ∨ . . . ∨ a� ← a�+1, . . . , am, ¬am+1, . . . , ¬an. (2.1)

For a rule r, we let Hr :={a1, . . . , a�} be the set of atoms appearing in the head of a rule r,
B+

r :={a�+1, . . . , am} be the set of atoms appearing the body of the rule without negation,
and B−

r :={am+1, . . . , an} be the set of atoms appearing in the body with negation. We
denote the sets of atoms occurring in a rule r or in a program P by at(r) :=Hr ∪B+

r ∪B−
r

and at(P ) := �
r∈P at(r).

Example 2.1. Consider the program

P1 := {
r1� �� �

a ∨ b ← ;
r2� �� �

c ∨ d ← e ;
r3� �� �

e ← b, ¬d ;
r4� �� �

e ← ¬b ;
r5� �� �

d ← b, ¬e ;
r6� �� �

b ← d, ¬e }.

As defined above, we can identify the following sets of atoms appearing in the rules.

Hr1={a, b}, B+
r1={}, B−

r1={}
Hr2={c, d}, B+

r2={e}, B−
r2={}

Hr3={e}, B+
r3={b}, B−

r3={d}
Hr4={e}, B+

r4={}, B−
r4={b}

Hr5={d}, B+
r5={b}, B−

r5={e}
Hr6={b}, B+

r6={d}, B−
r6={e}

Accordingly, for the set of atoms appearing in the program we have at(P )={a, b, c, d, e}.

10
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a e c

b d

Figure 2.2: Dependency graph DP1 of P1 (cf. Example 2.2).

A rule r is normal if |Hr| ≤ 1 and a program Π is normal if all its rules are normal,
otherwise the program is called disjunctive. Further, we can identify tight programs by
the following definition.

Definition 2.3 (Dependency Graph). The dependency graph DP of a ground program P
is the directed graph defined on the set �

r∈Π Hr ∪B+
r of atoms, where for every rule r ∈ P

two atoms a ∈ B+
r and b ∈ Hr are joined by an edge (a, b). A program P is called tight

if DΠ has no directed cycle [Fag94].

Example 2.2. Recall the program P1 of Example 2.1.

We can observe that the program Π1 is not tight, since the dependency graph DP1 , seen in
Figure 2.2, contains the directed cycle {b, d, e}. Further, since we have rules r1 and r2,
where we have |Hr| > 1 for r ∈ {r1, r2}, the program is not normal, but disjunctive.

Definition 2.4 (Interpretation). An interpretation I is a set of atoms. A rule r is
satisfied by an interpretation I if (Hr ∪ B−

r ) ∩ I != ∅ or B+
r \ I != ∅. An interpretation I

is a model of a program P if it satisfies every rule r ∈ P , in symbols I |= P . The
Gelfond-Lifschitz (GL) reduct of P under I is the program P I obtained from P by first
removing all rules r with B−

r ∩ I != ∅ and then removing all ¬z where z ∈ B−
r from the

remaining rules r [GL91]. An interpretation I is an Answer-Set of a program P , if I is
a minimal model (w.r.t. ⊆) of P I , i.e. I satisfies every rule r of the GL reduct P I and
every proper subset of I does not satisfy P I . We refer to the set of answer sets of a given
program P by AS(P ).

Example 2.3. Recall the program P1 of Example 2.1.

We can show that the set {a, c, e} is an answer set of P1, since it is a minimal model
of the GL reduct P

{a,c,e}
1 = {a ∨ b ←, c ∨ d ← e, e ← b, e ←}. Furthermore, we can

prove the set {a, c, e} as an answer, since it is a minimal model of P
{b,d}
1 = {a ∨ b ←,

c ∨ d ← e, d ← b, b ← d}. In similar fashion, one can find all answer sets of the program,
which are AS(P1) = {{a, c, e}, {a, d, e}, {b, c, e}, {b, d}}.

Proposition 2.2. The decision problem of deciding whether an Asp program has an
answer set, which is referred to as consistency, is (in general) ΣP

2 -complete [EG95].
If the input is restricted to normal or tight programs, the complexity drops to NP-
completeness [BF91, MT91], as seen in Table 2.1.
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Decision Problem Fragment Ground Non-Ground
(bounded arity)

Tight Asp tight programs NP [MT91] ΣP
2 [EFFW07]

Normal Asp normal programs NP [BF91] ΣP
2 [EFFW07]

Disjunctive Asp disjunctive programs ΣP
2 [EG95] ΣP

3 [EFFW07]
Elp epistemic programs ΣP

3 [SE16] -

Table 2.1: Decision problems related to the answer-set programming formalism that are
discussed in the course of this work. The column "Fragment" states the corresponding
fragment of logic programs, while the columns "Ground" and "Non-Ground (bounded
arity)" list their respective complexity completeness.

The following characterization of answer sets is often applied for normal programs [LZ03,
Jan06].

Definition 2.5 (Orderings). Let I be a model of a normal program P and ϕ be a
function (ordering) ϕ : I → {0, . . . , |I| − 1} over I. We say a rule r ∈ P is suitable
for justifying a ∈ I if (i) a ∈ Hr, (ii) B+

r ⊆ I, (iii) I ∩ B−
r = ∅, as well as (iv)

I ∩ (Hr \ {a}]) = ∅. An atom a ∈ I is founded if there is a rule r ∈ P justifying a,
which is the case if r is suitable for justifying a and ϕ(b) < ϕ(a) for every b ∈ B+

r , and
unfounded otherwise. Then, I is an answer set of P if (i) I is a model of P , and (ii) I
is founded, i.e., every a ∈ I is founded. For tight programs, the ordering ϕ is not needed.

Example 2.4. Recall the program P1 of Example 2.1.

As shown in Example 2.3, the set I := {a, c, e} is an answer set of P1. This can also be
proven by I |= P1 and a level mapping ϕ := {a �→ 0, e �→ 1, c �→ 2}. Then, the atom a is
founded by rule r1, atom e by rule r4 and atom c by rule r2.

Established ASP Techniques Through years of research in logic programming several
techniques have established and became so to say state-of-the-art.

The encoding of problems into ASP has always been an crucial step, especially since it is
can increase the solution finding for a given program tremendously. Today, programs are
typically designed following the established Guess-and-Check paradigm [EP06]. This way
programs are written in such a way that solution candidates are non-deterministically
guessed first, before eliminating invalid ones by enforcing constraints that each solution
must comply (cf. Example 1.1).

As already mentioned in the Introduction, Gebser et al. maintain a leading collection
of answer set solving tools in form of their Potassco system, with the main driver
clingo [GKK+11, GKKS19]. While, of course, the tools support grounding (see Sec-
tion 2.2.2), there are also more advanced expressions and classical negation that are
supported. However, during preprocessing and grounding these are usually reduced
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to standard logic programs and therefore present user-friendly adaptions for encoding
problems. Especially interesting, since it is later used for optimizing the encodings, is
the idea of aggregates of the form

s1 ≺1 α { t1 : L1; . . . ; tn : Ln } ≺2 s2

where ti and Li are tuples of terms (used for weighting/prioritizing) and literals, α the
name of the function (#count, #sum, #sum+, #min, or #max) and ≺1, ≺2 comparison
predicates to the terms s1, s2. Naturally, this extension to the original ASP syntax allows
the forming of values from groups of selected items and expressing conditions over them,
e.g. a minimum count of conditions being evaluated to true. Further details and syntactic
additions of the clingo system can be found in [GKKS19, CDF+20].1

Another common practice is the saturation technique [EG95, EGM97].While saturation
is a quite error-prone and sophisticated encoding technique, it allows the exploiting
of ASPs full expressive power (ΣP

2 ) by encoding problems in disjunctive ASP while
complementing the above-mentioned Guess-and-Check paradigm [EP06]. Saturation is
typically constructed by encoding the co-NP-check in the following steps, as described
in [ABC+15]. First of all, we guess a solution candidate S for which we want to know
if it withstands every possibility for not being a valid solution. To do so, we also guess
(using disjunction) a counter candidate C as a potential witness for S being invalid. If C
is not such a witness, we derive a designated atom A that causes all atoms of the (second)
guess to be set to true ("saturation"). By doing so, all guesses of potential witnesses
collapse to a unique maximal answer set if a valid solution has been guessed. Now, we
either have guessed a witness C for which we can kill the solution candidate S using a
constraint, or we have an invalid solution candidate S which is discarded by the minimal
model semantics because each model that does not result in a witness is saturated.

Example 2.5. Assume the following simple QBF ψ := ∃a∀b(a ∨ ¬b). Recall that the
problem of deciding whether QBFs of the form ∃V1∀V2φ are true is ΣP

2 -complete (cf.
Definition 2.1). Listing 2.1 illustrates how to solve this problem using the disjunctive
program P2. As explained above, the program uses saturation and models the variables
a, b of ψ with the atoms ta/fa and tb/fb, intuitively as true/false. Notice that ψ has
two satisfying models with M1(a) = M2(a) = true, M1(b) = false and M2(b) = true. In
comparison, when assuming program P2 with a guessed to true, i.e. M(ta) = true and
M(fa) = false, we consequently have M(sat) = true due to Line 6, M(tb) = true due to
Line 10 and M(fb) = true due to Line 11. Observe that a program P rel

2 , a relaxed scenario
of P2 without Line 14 to allow potentially unsatisfied solutions, cannot have a M 
 ⊆ M
and M 
 != M , such that M 
 |= P rel

2 . Since we require M 
 ⊆ M , M 
(fa) = true cannot
hold, i.e. we get that M 
(ta) = true from Line 2. In consequence, we get M(sat) = true,
M(tb) = true and M(fb) = true - leaving us with M 
 = M , proving M as an answer set
of P2. Observe that by similar reasons there cannot exist any model M 

 of P2, which is

1More information about the clingo input language can be found in the Potassco guide at https:
//potassco.org/doc/.
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exactly as M but additionally with M 

(fa) = true, since then M 

 ⊃ M . To show that
M is the only answer set of P2, assume another model M∗ of P2 with M∗(fa) = true.
To satisfy Line 14 and M∗ |= P2, we have to set M∗(fb) = true. However, there exists
a model M∗∗ ⊂ M∗ of P rel

2 , where M∗∗(tb) = true and M∗∗(sat) = false, invalidating
M∗ as potential answer set.

1 % Guess truth values of variables a and b
2 ta ∨ fa.
3 tb ∨ fb.

5 % Model the cases where ψ evaluates to true
6 sat ← ta.
7 sat ← fb.

9 % Saturize over the ∀-quantified variables, if ψ evaluates to true
10 tb ← sat.
11 fb ← sat.

13 % Ensure satisfiability
14 ← not sat.

Listing 2.1: Program P2 using the saturation technique to solve ψ of Example 2.5.

2.2.2 Non-Ground Answer-Set Programming
As said, we clearly differentiate between ground and non-ground ASP programs. Com-
pared to the former, the latter introduces the use of variables to address all possible
atoms. While this allows for shorter and more versatile problem encodings, therefore
enriching ASPs expressiveness, the complexity for solving these suffer. Similar to ground
Asp, we define non-ground Asp as follows.

Let p1, . . . pn be predicates, where each takes arity |pi| many variables for 1 ≤ i ≤ n. A
non-ground program Π is a set of non-ground rules of the form

p1(X1) ∨ . . . ∨ p�(X�) ← p�+1(X�+1), . . . , pm(Xm), (2.2)
¬pm+1(Xm+1), . . . , ¬pn(Xn).

where for every variable vector Xi we have |Xi|= |pi|. Whenever we have x ∈
	X1, . . . , X�, Xm+1, . . . , Xn
, then x ∈ 	X�+1, . . . , Xm
, such that rules can
be considered safe, i.e. all variables that are used in a rule appear in
some positive literal in the body. For a non-ground rule r, we let simi-
lar to ground rules Hr := {p1(X1), . . . , p�(X�)}, B+

r := {p�+1(X�+1), . . . , pm(Xm)},
B−

r := {pm+1(Xm+1), . . . , pn(Xn)}, and var(r) := {x ∈ X | p(X) ∈ Hr ∪ B+
r ∪ B−

r }.
Further, we use heads(Π) := {p(X) ∈ Hr | r ∈ Π} to refer to the predicates (including
the variable vector), and hpreds(Π) := {p | p(X) ∈ heads(Π)} for the predicate names
only, occurring in the head of a rule. Without loss of generality, we assume that variables
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are unique per rule, i.e., for every two rules r, r
 ∈ Π, we have var(r)∩var(r
) = ∅. The rule
size corresponds to �r� :=

��B+
r

�� + |B−
r | + |Hr| and program size �Π� := �

r∈Π �r�. The
attributes disjunctive and normal, as earlier defined for ground programs in Section 2.2.1,
naturally carry over to non-ground rules and programs. Non-ground, tight programs can
be defined as follows.

Definition 2.6 (Non-ground Dependency Graph). The dependency graph DΠ of a non-
ground program Π is the directed graph defined on the set hpreds(Π) of head-predicates
of the rules r ∈ Π. There is a directed edge from p to q whenever there is a rule r ∈ Π
with p(X) ∈ B+

r and q(Y ) ∈ Hr.

A non-ground program Π is called tight if DΠ has no directed cycle.

In order to solve a given non-ground program Π, the grounding of the program, the process
of instantiating the non-ground rules, is required. For the process of grounding Π, we
require a given set F of atoms, reflecting the facts, i.e., atoms of the form p(D) with p being
a predicate of Π and D being a vector over domain values of size |D| = |p|. We say that D
is part of the domain of Π (with respect to F), defined by dom(Π) := {d ∈ D | p(D) ∈ F}.
We refer to the domain vectors over dom(Π) for a variable vector X of size |X| by dom(X).
Let D be a domain vector over variable vector X and vector Y contain only variables of
X. We refer to the domain vector of D restricted to Y by DY .

Definition 2.7 (Grounding). The grounding G(Π) consists of F and ground rules
obtained by replacing each rule r of Form (2.2) for every domain vector D ∈ dom(	var(r)
)
by

p1(DX1) ∨ . . . ∨ p�(DX�
) ← p�+1(DX�+1), . . . , pm(DXm),
¬pm+1(DXm+1), . . . , ¬pn(DXn).

The effort of grounding a program Π is therefore in O(|dom(Π)|n), where n is the maximum
number of distinct variables over all rules.

Interestingly, for fixed arity the complexity of deciding consistency of a non-ground
program increases only by one level.

Proposition 2.3 (Grounding Complexity for fixed arity [EFFW07]). Let Π be any tight
(normal) or disjunctive, non-ground program, where every predicate has arity at most a.
Then, deciding whether G(Π) admits an answer set is complete for ΣP

2 or ΣP
3 , respectively.

We can not note that, unless using growing predicate arities, with non-ground Asp we
can not encode problems above the polynomial hierarchy, e.g., as commonly believed,
PSPACE-complete problems. Further, these complexity results give rise to an avoidance
of the grounding of non-ground programs with bounded predicate arity by polynomially
mapping/reducing to ground programs. [EFFW07]
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Example 2.6. Consider the tight, non-ground program Π :={r} with r = a(X, Y ) ←
b(X), c(Y, Z) and F := {b(1). c(1, 2).}. Observe that, while dom(Π)={1, 2} we have
dom(X)={1} and dom(Y )= dom(Z)={1, 2}. The grounding P = G(Π) of Π consists of:

{a(1, 1) ← b(1), c(1, 1). a(1, 1) ← b(1), c(1, 2).
a(1, 2) ← b(1), c(2, 1). a(1, 2) ← b(1), c(2, 2).}

The only answer set of P is {b(1), c(1, 2), a(1, 1)}.

Another frequently considered example, which can be elegantly encoded using non-ground
Asp and the Guess-and-Check paradigm (cf. Section 2.2.1), is the 3-colorability of a
given graph, i.e. if a given graph is 3-colorable.

Example 2.7. Listing 2.2 shows the encoding for checking if a graph, given by set of
facts F , is 3-colorable. Observe that, while the non-ground program is only composed of
two rules, the grounding yields an exponentially larger program.

To exemplify, considering a set F of facts, such that |dom(X)| = |dom(Y )| = n with n
being a large number. Then the grounding of Line 5 in Listing 2.2 yields the n2 for each
color, i.e. multiplied by three, by the means of combinatorics.

1 % Guess one of the three colors for each node of the graph
2 col(red, N) ∨ col(green, N) ∨ col(blue, N) :- node(N).

4 % Check whether no adjacent nodes have the same color
5 :- edge(X,Y), col(C,X), col(C,Y).

Listing 2.2: Encoding for the 3-Colorability of a given graph.

2.3 Epistemic Logic Programming
An epistemic logic program (ELP) P is an extension of a logic program as defined above.
The following definitions are based on [Gel91, Tru11, KWB+15, SE16].

In addition to standard logic program, where each rule body can contain epistemic literals.
An epistemic literal is a formula of the form not*, where * is a literal in the classical
sense and not is the epistemic negation operator.

Let k, m, j, n be non-negative integers such that k ≤ m ≤ j ≤ n and a1, . . ., an be
distinct propositional atoms. An epistemic logic program (ELP) is a set Π of ELP rules
of the form

a1 ∨ · · · ∨ ak ← *k+1, . . . , *m, ξm+1, . . . , ξj , ¬ξj+1, . . . , ¬ξn. (2.3)

where each *i is a literal over atom ai, and each ξi is an epistemic literal of the form not*i,
where *i is a literal over atom ai. Similarly to logic programs, let Hr = {a1, . . . , ak}, and
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let Br = {*1, . . . , *m, ξ1, . . . , ξj , ¬ξj+1, . . . , ¬ξn} that is, the set of elements appearing in
the rule body.

Then, at(r) := {a1, . . . , an} denotes the set of atoms occurring in an ELP rule r,
e-at(r) := {am+1, . . . , an} denotes the set of epistemic atoms, i.e., those used in epistemic
literals of r, and var(r) := at(r) \ e-at(r) refers to the non-epistemic atoms of r. These
notions naturally extend to programs. In a rule we sometimes write K* and M* for a
literal *, which refers to the expressions ¬not* and not¬*, respectively.

Definition 2.8 (World View Interpretation). Given an ELP P, a world view interpreta-
tion (WVI) I for P is a consistent set I of literals over a set A ⊆ at(P) of atoms, i.e.,
I ⊆ {a, ¬a | a ∈ A} such that there is no a ∈ A with {a, ¬a} ⊆ I.

Intuitively, for a WVI I every * ∈ I is considered as “known” and every a ∈ A
with {a, ¬a} ∩ I = ∅ is treated as “possible”. We denote the WVI over a set X ⊆ at(P)
of atoms obtained by restricting I to Y = (A ∩ X) by I|X := I ∩ {a, ¬a | a ∈ Y }. Next,
we define compatibility with a set of interpretations.

Definition 2.9 (WVI Compatibility). Let I be a set of interpretations over a set A of
atoms. Then, a WVI I is compatible with I if:

1. I != ∅;

2. for each atom a ∈ I, it holds that for each J ∈ I, a ∈ J ;

3. for each ¬a ∈ I, we have for each J ∈ I, a !∈ J ;

4. for each atom a ∈ A with {a, ¬a} ∩ I = ∅, there are J, J 
 ∈ I, such that a ∈ J , but
a !∈ J 
.

While there are many semantics for ELPs [Gel91, Tru11, KWB+15, SE16], we will
use the approach by Morak [Mor19] in order to define the semantics of an ELP. His
approach [Mor19] follows the semantics defined in [SE16], but uses a different formal
representation. Note that, however, our results can be adapted to other “reduct-based”
semantics, by changing the definition of the reduct appropriately.

Definition 2.10 (Epistemic Reduct). The epistemic reduct [Gel91] of program P w.r.t.
a WVI I over A, denoted PI , is defined as PI = {rI | r ∈ Π} where rI denotes rule r
where each epistemic literal not*, whose atom is also in A, is replaced by ⊥ if * ∈ I, and
by � otherwise. Note that PI is a plain logic program with all occurrences of epistemic
negation removed.

Then, a WVI I over at(P) is a world view (WV) of P iff I is compatible with the set
AS(PI). The set of WVs of an ELP P is denoted WV S(P).

Of course, as an ASP extension, ELPs can also be encoded in a non-ground form, which
requires grounding before the solving of a program. This thesis will only cover ground
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ELPs, which is why we restrict the background to this category. The problem of deciding
the existence of a world view for a ground ELP is known to be ΣP

3 -complete [Tru11], as
seen in Table 2.1.

Example 2.8. Consider the ground Elp program

P := {a, b; g ← ¬Ka; a ← ¬Kg}

When constructing a WVI I over e-at(Π) one guesses for each atom a ∈ e-at(Π) either
(1) a ∈ I, (2) ¬a ∈ I or (3) {a, ¬a} ∩ I = ∅ as described earlier, i.e., for the two atoms
in e-at(Π) we obtain 32 possibilities. Each WVI I can be checked with the corresponding
epistemic reduct PI by verifying Definition 2.9 for AS(PI).

Consider I1 = {a, ¬g} with its epistemic reduct ΠI1 := {a, b; g ← ⊥; a}. Note that
the epistemic reduct is indeed a plain logic program by the semantics of logic programs
and rules r with ⊥ ∈ B+

r or � ∈ B−
r can obviously be dropped. Since AS(PI1) = {{a}},

compatibility of I1 can be checked trivially which validates I1 as WV of P (which is the
only one).
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CHAPTER 3
Grounding Approach via

Reduction

This chapter introduces a novel grounding approach we call Body-Decoupled Grounding,
which combines the concept of problem reductions and the known complexities of non-
ground programs to reduce between non-ground and ground logic programs. This
reduction is encoded in such a way that body atoms are decoupled, minimizing the
combinatorial effort of instantiating variables.

In the following we motivate this idea with an example before Section 3.1 introduces our
approach for tight logic programs, which is extended to normal programs in Section 3.2.
In Section 3.3 the idea is lifted to disjunctive programs, where a reduction and the
necessary changes to reduce more complex program types are presented.

Motivation As implied in Chapter 2, the technique of reducing problems based on
complexity results allow the idea of reducing a given type of non-ground logic program
into a ground program of the same complexity level. While the reduction is interesting
itself, we aim for a performance advantage over traditional grounding systems with our
encoding.

Traditional grounding systems are known to be inefficient for programs or rules, which
are composed of long rule bodies and higher number of variables. This is due to the
common grounding-procedure of generating ground rules from non-ground rules by simply
instantiating the occurring variables with all possible domain value combinations. This
instantiation results in an exponential grounding size of the program, which, interestingly,
holds for programs with bounded predicate arity as well (cf. Table 2.1). In literature this
problem is usually referred to as ASP grounding bottleneck.

In comparison, with our approach we introduce a concept named body-decoupled grounding.
This type of grounding utilizes the idea of reducing between non-ground program types
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by using a translating encoding that reduces the combinatorial effort (and therefore
grounding size) by decoupling dependencies between different predicates of rule bodies,
i.e each predicate in the rule’s body can be instantiated separately to minimize the
number of instantiations. Further, with this approach we intuitively shift parts of the
complexity into the solving (cf. ground-and-solve systems), which is why we also call our
approach Body-Decoupled Grounding via Solving.

As already appearing in Chapter 1, the potential of this idea can be shown with the
following Example.
Example 3.1. Assume the following non-ground program Π that decides in (3.1) for
each edge (e) of a given graph, whether to pick it (p) or not (p̄). Then, in (3.2) it is
ensured that the choice of edges does not form triangles.

p(A, B) ∨ p̄(A, B) ← e(A, B) (3.1)
← p(X, Y ), p(Y, Z), p(X, Z), X != Y, Y != Z, X != Z. (3.2)

The typical grounding effort of (3.2) is in O(|dom(Π
)|3). Our approach grounds body
predicates of (3.2) individually, yielding linear bounds in the size of the ground atoms,
i.e., O(|dom(Π
)|2).

In the following we will first present our approach for tight and normal programs. To
ensure traceability, we start with the procedure for tight programs followed by lifting the
idea to normal programs, which is in close succession and can be seen as an extension.
Only then, the reduction for disjunctive programs is presented, which, while it is based
on the former procedure, requires additional effort due to the program’s complexity.

3.1 Body-Decoupled Grounding for Tight ASP
To ensure a comprehensible entry into our reduction, we first present our approach for
cycle-free programs without disjunction. To this end, we assume a given non-ground,
tight program Π and a set F of facts. Then, our reduction relies on the following sets
of variables. For each predicate p(X) in heads(Π), we use every instantiation of p(X)
and its negation p̄(X) over dom(Π), resulting in atoms AtPred := {p(D), p̄(D) | p(X) ∈
heads(Π), D ∈ dom(X)}, which are used as a guess for (potential) answer sets. Note that
the atoms over p̄(X) are for technical reasons only, and are not needed when employing
e.g., choice rules [SNS02].

In addition to AtPred and in accordance with the semantics of Asp, we require to
ensure (i) satisfiability and (ii) foundedness. For (i) computing models of rules, we
require atoms AtSat :={sat, satr, satx(d) | r ∈ Π, x ∈ var(r), d ∈ dom(x)}, where satr

indicates the satisfiability of a non-ground rule r and sat the satisfiablity of the program,
respectively. Atoms of the form satx(d) are used to indicate that we assign variable x of
non-ground rule r to domain value d ∈ dom(x) when checking for satisfiability.

For (ii) ensuring foundedness, we use variables AtUf := {ufr(DX), ufy(D�X,y�) | r ∈
Π, D ∈ dom(	var(r)
), h(X) ∈ Hr, y ∈ var(r), y /∈ X}. Intuitively, ufr(D) indicates that r
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3.1. Body-Decoupled Grounding for Tight ASP

fails to justify h(D) for head predicate h(X) ∈ Hr and domain vector D ∈ dom(h), where
ufy(D�X,y�) refers to the assigned domain value d that variable y gets in this foundedness
check for h(D), i.e. we ensure foundedness with atoms deriving unfoundedness. Overall,
the number of atoms used for our approach is limited by the largest predicate arity as
follows.

Observation 3.1 (Auxiliary Atoms). The number of atoms in |AtPred ∪ AtSat ∪ AtUf|
is bounded by O(�Π� · |dom(Π)|a+1), where a is the largest predicate arity.

After the declaration of the used atoms, we are in position to explain our reduction for tight
programs. The overall idea consists of three parts and is part of the reduction R, which
transforms the non-ground, tight program Π into a ground, disjunctive program R(Π)
consisting of facts F and the rules given in Figure 3.1. Rules (R1) take care of guessing
answer set candidates, then Rules (R2)–(R7) ensure (i) satisfiability, and Rules (R8)–
(R11) model (ii) foundedness.

Interestingly, the only disjunction that is indeed crucial and cannot be modeled via choice
rules, is the disjunction part of Rules (R2) for (i) satisfiability, which is responsible for
guessing and saturating assignments of variables to domain values. The construction is
such that whenever for a non-ground rule r ∈ Π, there is an assignment of variables to
domain values such that the resulting ground rule is satisfied, Rules (R3) or (R4) yield
satr. If such an atom satr can be derived for all non-ground rules of r ∈ Π, we follow sat
by Rules (R5), which is mandatory (cf. Rules (R7)). Then, Rules (R6) apply saturation,
which causes the assignment of all domain values to every variable. Assuming that a
grounding of a rule r ∈ Π was not satisfied, then there would exist a ⊆-smaller model of
the reduct, invalidating the answer set candidate. Intuitively, the construction takes care
that there is an answer set of R(Π), only if the grounding of Π admits an answer set.

Rules (R8) are for (ii) preventing unfoundedness, ensuring that for each head atom h(D)
contained in a model of R(Π), variables get assigned domain values for proving founded-
ness. Unjustifiability of a rule r ∈ Π for atom h(D) is derived by Rules (R9) and (R10),
which is prevented by Rules (R11).

Example 3.2. Consider the non-ground, tight program Π={a(X, Y ) ← b(X), c(Y, Z)}
and facts F = {b(1). c(1, 2).} from Example 2.6. Grounding the program as described
above and shown in Figure 3.1, results in the ground program P = R(Π) of Figure 3.2.
The answer sets of P restricted to symbols a, b, c of Π yield {a(1, 1), b(1), c(1, 2)}.

We state the correctness of procedure R with the following theorem and proof.

Theorem 3.1 (Correctness). Let Π be any non-ground, tight program. Then, the
grounding procedure R on Π is correct, i.e., the answer sets of R(Π) restricted to at(G(Π))
match the answer sets of G(Π). Precisely, for every answer set M 
 of R(Π) there is an
answer set M 
 ∩ at(G(Π)) of G(Π).
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3. Grounding Approach via Reduction

Guess Answer Set Candidates
for every h(X)∈heads(Π), D∈dom(X):

h(D) ∨ h̄(D) ← (R1)
Ensure Satisfiability
for every r∈Π, x∈var(r):�

d∈dom(x)
satx(d) ← (R2)

for every r∈Π,p(X)∈B+
r , D∈dom(X), X=�x1,...,x��:

satr ← satx1(D�x1�), . . . , satx�
(D�x��), ¬p(D) (R3)

for every r∈Π, p(X)∈Hr∪B−
r , D∈dom(X), X=�x1,...,x��:

satr ← satx1(D�x1�), . . . , satx�
(D�x��), p(D) (R4)

where Π={r1,...,rn}:
sat ← satr1 , . . . , satrn (R5)

for every r∈Π, x∈var(r), d∈dom(x):
satx(d) ← sat (R6)

← ¬sat (R7)
Prevent Unfoundedness
for every r∈Π, h(X)∈Hr, D∈dom(X), y ∈ var(r), y /∈X:�

d∈dom(y)
ufy(	D, d
) ← h(D) (R8)

for every r ∈ Π, h(X) ∈ Hr, p(Y ) ∈ B+
r , D ∈ dom(�X,Y �), Y =�y1,...,y��:

ufr(DX) ← ufy1(D�X,y1�), . . . , ufy�
(D�X,y��), ¬p(DY ) (R9)

for every r ∈ Π, h(X) ∈ Hr, p(Y ) ∈ B−
r ∪(Hr\{h(X)}), D ∈ dom(�X,Y �), Y =�y1,...,y��:

ufr(DX) ← ufy1(D�X,y1�), . . . , ufy�
(D�X,y��), p(DY ) (R10)

for every h(X)∈heads(Π), D∈dom(X), {r1,...,rm}={r ∈ Π | h(Y )∈Hr}:
← ufr1(D), . . . , ufrm(D) (R11)

Figure 3.1: Body-decoupled grounding procedure R for a given non-ground, tight
program Π, which creates a disjunctive ground program.

Proof. ⇐: Let M be an answer set of G(Π) and assume towards a contradic-
tion that there is no extension M 
 ⊇ M of M with M ∩ at(G(Π)) = M 
 ∩
at(G(Π)) such that M 
 is an answer set of R(Π). First, we construct N :=
{h̄(D) | h(X) ∈ heads(Π), D ∈ dom(X), h(D) /∈ M}, which collects those head atoms
that are not in M . Further, we gather satisfied rules by S := {sat, satr, satx(d) |
r ∈ Π, x ∈ var(r), d ∈ dom(x)}. Then, we set appropriate domain values for
the founded atoms F := {ufy1(	D, D


y1
), . . . , ufy�
(	D, D


y�

) | r ∈ Π, h(X) ∈

Hr, {y ∈ var(r) | y /∈ X} = {y1, . . . , y�}, D
 ∈ dom(	var(r)
), h(D) ∈ M, DX =
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3.1. Body-Decoupled Grounding for Tight ASP

Guess Answer Set Candidates
a(1, 1) ∨ ā(1, 1). a(1, 2) ∨ ā(1, 2). (R1)

Ensure Satisfiability
satX(1). satY (1) ∨ satY (2). satZ(1) ∨ satZ(2). (R2)
satr ← satX(1), ¬b(1). (R3)
satr ← satY (1), satZ(1), ¬c(1, 1). satr ← satY (1), satZ(1), ¬c(1, 2).
satr ← satY (2), satZ(1), ¬c(2, 1). satr ← satY (2), satZ(1), ¬c(2, 2).
satr ← satX(1), satY (1), a(1, 1). (R4)
satr ← satX(1), satY (2), a(1, 2).
sat ← satr. (R5)
satX(1) ← sat. satY (1) ← sat. satY (2) ← sat. satZ(1) ← sat. satZ(2) ← sat. (R6)
← ¬sat. (R7)

Prevent Unfoundedness
ufZ(1, 1, 1) ∨ ufZ(1, 1, 2) ← a(1, 1). ufZ(1, 2, 1) ∨ ufZ(1, 2, 2) ← a(1, 2). (R8)
ufr(1, 1) ← ¬b(1). ufr(1, 2) ← ¬b(1). (R9)
ufr(1, 1) ← ¬c(1, 1), ufZ(1, 1, 1). ufr(1, 1) ← ¬c(1, 2), ufZ(1, 1, 2).
ufr(1, 2) ← ¬c(2, 1), ufZ(1, 2, 1). ufr(1, 2) ← ¬c(2, 2), ufZ(1, 2, 2).
← a(1, 1), ufr(1, 1). ← a(1, 2), ufr(1, 2). (R11)

Figure 3.2: R(Π) with Π from Example 3.2, guided by R of Figure 3.1.

D

X , p(Z) ∈ B+

r ∪ B−
r , (p(Z) ∈ B+

r ) iff (p(D

Z) ∈ M)}. Finally, we set the domain

values for unfounded atoms U := {ufr(D), ufy(	D, d(y)
) | r ∈ Π, h(X) ∈ Hr, h(D) ∈
M, y ∈ var(r), y /∈ X, there is no ufy(	D, d

) ∈ F}, where d(y) yields any arbitrary, fixed
domain value in dom(y). Then, we let M 
 := M ∪ N ∪ F ∪ U . Since by assumption M 


is not an answer set, either (i) one of the rules is not satisfied, or (ii) M 
 is not minimal.

We proceed by case distinction. Case (i): Some rule r ∈ R(Π) is not satisfied by M 
.
It is easy to see that all heads of Rules (R1)–(R8) are satisfied by construction of M 
.
Rules (R8) are satisfied by construction of F and U . The construction of U also ensures
that Rules (R9) and (R10) are satisfied. Observe that Rules (R11) are satisfied, since M
is an answer set of G(Π) and therefore every atom of M is founded, as constructed by F .
This concludes Case (i), since every rule of R(Π) is satisfied.

Case (ii): Model M 
 of R(Π) is not minimal, i.e., there exists a model M 

 � M 
 with M 



being a model of R(Π)M � . Note that the difference between M 
 and M 

 cannot be due
to Rule (R1), since then M 
 and M 

 would be incomparable. If sat /∈ M 

, then by
Rules (R5), there is a rule ri ∈ Π with satri /∈ M 

, which by Rules (R3) and (R4) implies
that G(ri) is not satisfied by M 

. This, however, contradicts the assumption that M is
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3. Grounding Approach via Reduction

an answer set of G(Π). Consequently, by Rules (R6), the difference between M 
 and M 



cannot be due to any satx predicate. Further, M 
 and M 

 cannot differ in any predicate
of the form ufy either, since by Rules (R8), for every h(D) ∈ M 
, there is precisely
one ufy(	D, d
) ∈ M 
. Similarly, Rules (R9)–(R11) yield deterministic consequences,
depending only on the choice of Rules (R1) and (R8). As a result, we conclude that
M 
 = M 

 cannot differ.

⇒: Let M 
 be an answer set of R(Π) and assume towards a contradiction that M :=
M 
 ∩ at(G(Π)) is not an answer set of G(Π). Then, either (i) M is not a model of G(Π),
or (ii) there is an h(D) ∈ M that is unfounded by M . We proceed by case distinction.

Case (i): M is not a model of G(Π). Assume towards a contradiction that there is
a rule ri ∈ Π with M not satisfying G({ri}). Then, there is a subset M 

 � M 


with satri /∈ M 

, sat /∈ M 

 and satx predicate set accordingly for x ∈ var(ri), that is a
model of G(Π), which contradicts that M 
 is an answer set (⊆-minimal model) of R(Π).

Case (ii): There exists an h(D) ∈ M that is unfounded by M . Then, no matter how the
predicates ufx are assigned in M 
, since h(D) ∈ M is not founded, there is no rule ri ∈ Π
that can be instantiated such that the body is satisfied and thereby justifying h(D).
Consequently, for every such rule ri, by Rules (R9) and (R10), there is at least one
atom over predicates ufri in M 
. Finally, Rules (R11) are not satisfied (for h(D)), which
contradicts that M 
 is an answer set of R(Π).

The procedure R works in polynomial time, since our technique does not suffer from
large rules (or large rule bodies).

Theorem 3.2 (Polynomial Runtime and Grounding Size). Let Π be any non-ground,
tight program, where every predicate has arity at most a. Then, the grounding procedure R
on Π is polynomial, i.e., runs in time O(�Π� · |dom(Π)|2·a).

Proof. The reduction R constructs O(�Π� · |dom(Π)|a) many Rules (R1) of constant
size, O(�Π� · a) many Rules (R2) of size |dom(Π)|, as well as O(�Π� · |dom(Π)|a) many
Rules (R3) and (R4) of size O(a). Then, there is one Rule (R5) of size O(|Π|), O(�Π� ·
|dom(Π)|) many Rules (R6) and one Rule (R7). Finally, there are O(�Π� · |dom(Π)|a · a)
many Rules (R8) of size O(|dom(Π)| · a), and we require O(�Π� · |dom(Π)|2·a) effort for
Rules (R9) and (R10), as well as O(�Π� · |dom(Π)|) effort for Rules (R11).

We do not expect a significant runtime improvement in the worst case. Further, the
expressiveness increase from normal to disjunctive programs is inevitable (already for
fixed arity).

Proposition 3.1 (Disjunctive Programs Inevitable). Let Π be any non-ground, tight
program, where every predicate has arity at most a. Then, unless NP = ΣP

2 , there cannot
be a polynomial grounding procedure R
, where R
(Π) is normal.
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3.1. Body-Decoupled Grounding for Tight ASP

Proof. While consistency for ground, normal programs is in NP, ΣP
2 -hardness for dis-

junctive (head-cycle-free) non-ground programs, cf. [EFFW07, Lem. 6], can be lifted to
non-ground, tight programs, by observing tightness after converting disjunctive rules into
normal ones via shifting.

3.1.1 Optimizations
The reduction R, as described above, can also be further optimized. In the following
we introduce optimizations that decrease the resulting ground rules and allow for more
practicability.

Partial Reducability While the theory of decoupling rule bodies might seem tempting
in theory, the performance of grounders that were highly optimized over years will probably
not be achievable, especially for simpler problem encodings. Conscious of what optimized
grounders are capable of, our approach can be optimized such that only tough rules are
reduced by our reduction. Notably, with our approach the program can be split and the
reduction R just partially applied, as long as the foundedness can still be provided. We
back this statement with the following Corollary.

Corollary 3.1 (Partial Reducibility). Given a non-ground, tight program Π and a
partition of Π into programs Π1, Π2 with hpreds(Π1) ∩ hpreds(Π2) = ∅. Then, the answer
sets of R(Π1) ∪ G(Π2) restricted to at(G(Π)) match those of G(Π).

Proof (Idea). The result is a direct consequence of the proof construction of Theorem 3.1,
which can be extended. Satisfiability checking of R(Π1) ∪ G(Π2) works similarly, since
satisfiability of rules in G(Π1) are ensured by Rules (R2)–(R7), and satisfiability of
rules G(Π2) is treated directly.

Since hpreds(Π1)∩hpreds(Π2) = ∅, predicates in hpreds(Π1), hpreds(Π2) can only appear
in rule bodies of Π2, Π1, respectively. Consequently, for a given model of G(Π), the
foundedness of atoms over predicates hpreds(Π1) is decided by R(Π1), namely Rules (R8)–
(R11), whereas foundedness of atoms over hpreds(Π2) is checked by G(Π2).

Thereby, partial reducability not only allows for a more broad field of application, but
also for interaction of sophisticated grounders and the reduction R. As this implies,
while the reduction can handle harder rules with large rule bodies, traditional grounders
can still be used for simpler rule sets.

Example 3.3. Consider the non-ground, tight program Π2 :=Π ∪ {r2} with r2 = d(X) ←
b(X), and program Π and facts F = {b(1). c(1, 2).} from Example 3.2. One can split the
program Π2 into program parts Π2.1 := {a(X, Y ) ← b(X), c(Y, Z)} and Π2.2 := {d(X) ←
b(X)} to achieve partial reducability, since hpreds(Π2.1) ∩ hpreds(Π2.2) = ∅. Then, when
grounding subprogram Π2.1 using the reduction R and Π2.2 using a traditional grounder G,
the results R(Π2.1) and G(Π2.2) can be joined resulting in Figure 3.2 with an additional
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3. Grounding Approach via Reduction

Improved Foundedness, replacing (R9)–(R11) of R
for every r∈Π, h(X)∈Hr, p(Y )∈B+

r , D∈dom(�X,Y �), Y =�y1,...,y��:
ufrch(Y,X)(D�rch(Y,X)�) ← ufy1(D�X,y1�), . . . , ufy�

(D�X,y��), ¬p(DY ) (R
9)
for every r∈Π, h(X)∈Hr, p(Y )∈B−

r ∪(Hr\{h(X)}), D∈dom(�X,Y �), Y =�y1,...,y��:
ufrch(Y,X)(D�rch(Y,X)�) ← ufy1(D�X,y1�), . . . , ufy�

(D�X,y��), p(DY ) (R
10)
for every h(X)∈heads(Π), D∈dom(X), {r1,...,rm}={r∈Π|h(Y )∈Hr}:

← h(D), [
�

p(Y )∈Br1

ufrch(Y,X)(D�rch(Y,X)�)], . . . , [
�

p(Y )∈Brm

ufrch(Y,X)(D�rch(Y,X)�)] (R
11)

Figure 3.3: More involved formalization of checking for unfounded atoms based on
Observation 3.2, yielding alternative R
 (cf. R of Figure 3.1).

rule for G(Π2.2)=d(1) ← b(1). Now, when involving facts F , one will end up with answer
set {a(1, 1), b(1), c(1, 2), d(1)}, as expected.

Utilizing Variable Independencies When analyzing the established grounding pro-
cedure R and examples (cf. Example 3.2), we can identify redundancies in the rule set for
checking for unfoundedness of non-ground rules. Especially, in cases where variables of
the head-predicate of the non-ground rule do not occur in some body predicate, multiple
rules are produced to cover the whole possible ground atom set.

Based on that consideration, we provide an improvement of the grounding procedure R
utilizing reachable paths of the variable graph, which might significantly reduce the
number of atoms for the foundedness check. To do so, we define the variable graph VΠ of
a non-ground program Π in the following.

Definition 3.1 (Variable Graph). The variable graph VΠ of Π is the graph defined on
the set var(r) of variables of rules r ∈ Π, where two variables x, y ∈ var(r) are joined by
an edge (x, y) whenever there is a predicate p(X) in r with x, y ∈ X. Let X, Y be variable
vectors. We refer by rch(Y, X) to those vertices in X that are reachable by some y ∈ Y
in VΠ.

To this end, we rely on the following observation.

Observation 3.2 (Variable-Justification Independency). Given a non-ground program Π,
any rule r ∈ Π with h(X) ∈ Hr and p(Y ) ∈ B+

r . Further, let I be a set of atoms over G(Π).
Then, if r does not justify h(DX) ∈ I for D ∈ dom(	X, Y 
) due to p(DY ) /∈ I, we have
that r fails to justify any h(D
) ∈ I with D
 ∈ dom(X) and D


�rch(Y,X)� = D�rch(Y,X)� as
well.

Based on the observation above, we provide an alternative R
 of reduction R (see
Figure 3.3), which is optimized to consider independent variables according to Observa-
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3.2. Body-Decoupled Grounding for Normal ASP

Improved Unfoundedness
uf{X}(1) ← ¬b(1). uf{X}(2) ← ¬b(2). (R
9)
uf{Y }(1) ← ¬c(1, 1), ufZ(1, 1). uf{Y }(1) ← ¬c(1, 2), ufZ(1, 2).
uf{Y }(2) ← ¬c(2, 1), ufZ(2, 1). uf{Y }(2) ← ¬c(2, 2), ufZ(2, 2).
← a(1, 1), [uf{X}(1) ∨ uf{Y }(1)]. (R
11)
← a(1, 2), [uf{X}(1) ∨ uf{Y }(2)].

Figure 3.4: Optimized foundedness check using the reduction R
 for Π from Example 3.2.

tion 3.2. Instead of AtUf, we use atoms AtUfI := {ufrch(Y,X)(DX), ufy(D�X,y�)|r ∈ Π, D ∈
dom(	var(r)
), h(X) ∈ Hr, p(Y ) ∈ B+

r ∪B−
r , y ∈ Y, y /∈ X}. The updated reduction R
 is

given in Figure 3.3, where Rules (R
9) and (R
10) replace Rules (R9) and (R10) with the
only difference that a different head predicate is used with a potentially smaller domain
vector. Further, Rules (R11) are replaced by Rules (R
11), which contain disjunctions in
their bodies, as in the well-known weight rules [GKS11]. Alternatively, one can build
plain rules by creating the cross product among the sets of disjuncts of Rules (R
11).

Example 3.4. Consider the non-ground, tight program Π of Example 3.2. Based on the
Observation 3.2, the rules for preventing unfoundedness can be improved and reduced by
incorporating variable independencies, resulting in less rules for ensuring foundedness, as
shown in Figure 3.4.

Comparing to Figure 3.2, one can identify that Rules (R
9)-(R
11) do in fact reduce the
number of necessary instantiations and rules. While the head-predicate of the only rule r
in the program Π does contain the two variables X and Y , they are only partly incorporated
in the (decoupled) body-predicates b and c of r. Therefore, the rule set (R
9) can be
reduced to the domain vector only containing variable X when checking for predicate b
and, similar, to only Y when checking for c. This way the number of instantiations
can be reduced to the combinations of variables actually affecting the body-predicate. To
incorperate these changes and the different occurrences of variables in the head-predicate
ufrch of Rules (R
9) and (R
10), we switch in Rules (R
11) to weighted disjunctions of
these predicates in the body.

3.2 Body-Decoupled Grounding for Normal ASP
The idea of our reduction R
 can be also lifted to non-ground, normal programs. To this
end, one can rely on orderings (level mappings), as defined in Section 2.2.1. However,
to simplify the presentation, we only show a simplified variant that uses a quadratic
number of auxiliary atoms for comparison, instead of encoding orderings. We therefore
use for every two distinct ground atoms p(D), p
(D) of Π, an additional auxiliary
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3. Grounding Approach via Reduction

Additional Rules for Foundedness of Normal Programs
for every p(X), p�(X�)∈heads(Π), D∈dom(X), D�∈dom(X�), p(D) �=p�(D�):

[p(D) ≺ p
(D
)] ∨ [p
(D
) ≺ p(D)] ← (R

12)
for every p1(X1), p2(X2), p3(X3)∈heads(Π), D1∈dom(X1), D2∈dom(X2), D3∈dom(X3),

p1(D1) �=p2(D2), p1(D1) �=p3(D3), p2(D2) �=p3(D3):
← [p1(D1)≺p2(D2)], [p2(D2)≺p3(D3)], [p3(D3)≺p1(D1)] (R

13)

for every r∈Π, h(X)∈Hr, p(Y )∈B+
r , D∈dom(�X,Y �), Y =�y1,...,y��, p(DY )/∈F :

ufr(DX) ← ufy1(D�X,y1�), . . . , ufy�
(D�X,y��), ¬[p(DY ) ≺ h(DX)] (R

14)

Figure 3.5: For non-ground, normal programs, we require additional rules for ensuring
foundedness, yielding R

.

predicate [p(D) ≺ p
(D
)] responsible for storing precedence in the order of derivation.
Then, given R of Figure 3.1 (and the optimized reduction R
 of Figure 3.3), for normal
programs we just need to add those rules of Figure 3.5, yielding R

 shown in Figure 3.5.
Intuitively, Rules (R

12) determine precedence among different atoms and Rules (R

13)
take care of transitivity of “≺”. In addition to Rules (R
9) and (R
10), Rules (R

14) add
a further case of unfoundedness, if precedence among atoms is not suitable for justifying
foundedness.

Example 3.5. Consider the non-ground, normal program Π3 :=Π ∪ {r3} with
r3 = c(X, Y ) ← a(X, Y ), and program Π and facts F = {b(1). c(1, 2).} from Exam-
ple 3.2. While the grounding procedure R can be used identical for normal programs,
the additional rules, shown in Figure 3.6 (Additional Rules for Foundedness of Normal
Programs), ensure orderings as described above. For storing the order of derivation the
auxiliary predicate p is used. Notice that the number of rules were kept minimal by using
only the relevant variables per rule, i.e. X,Y,Z for r and X,Y for r2, and taking the
domain of each variable into consideration. The answer sets of P3 = R

(Π3) restricted
to symbols a, b, c of Π3 yield {a(1, 1), b(1), c(1, 1), c(1, 2)}, as expected.

Analogously to Theorem 3.1, one can show correctness of R

 for non-ground, normal
programs, including when applied to program parts as in Corollary 3.1. To this end, we
capture sufficient conditions of predicate dependencies as follows.

Definition 3.2 (Strongly-connected Component). Based on the dependency graph DΠ
of a non-ground program Π (see Definition 2.6), a set C ⊆ hpreds(Π) of predicates is
a strongly-connected component (SCC) if C is a ⊆-largest set such that for every two
distinct predicates p, q in C there is a directed path from p to q in DΠ.

Based on that definition, SCCs of the dependency graph can be utilized for partially
applying our reduction R

.
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Guess Answer Set Candidates
a(1, 1) ∨ ā(1, 1). a(1, 2) ∨ ā(1, 2). (R1)

Ensure Satisfiability
satX(1). satY (1) ∨ satY (2). satZ(1) ∨ satZ(2). (R2)
satr ← satX(1), ¬b(1). (R3)
satr ← satY (1), satZ(1), ¬c(1, 1). satr ← satY (1), satZ(1), ¬c(1, 2).
satr ← satY (2), satZ(1), ¬c(2, 1). satr ← satY (2), satZ(1), ¬c(2, 2).
satr ← satX(1), satY (1), a(1, 1). (R4)
satr ← satX(1), satY (2), a(1, 2).
sat ← satr. (R5)
satX(1) ← sat. satY (1) ← sat. satY (2) ← sat. satZ(1) ← sat. satZ(2) ← sat. (R6)
← ¬sat. (R7)

Improved Unfoundedness
uf{X}(1) ← ¬b(1). uf{X}(2) ← ¬b(2). (R
9)
uf{Y }(1) ← ¬c(1, 1), ufZ(1, 1). uf{Y }(1) ← ¬c(1, 2), ufZ(1, 2).
uf{Y }(2) ← ¬c(2, 1), ufZ(2, 1). uf{Y }(2) ← ¬c(2, 2), ufZ(2, 2).
← a(1, 1), [uf{X}(1) ∨ uf{Y }(1)]. (R
11)
← a(1, 2), [uf{X}(1) ∨ uf{Y }(2)].

Additional Rules for Foundedness of Normal Programs
pac(1, 1) ∨ pca(1, 1, 1). pac(1, 1) ∨ pca(1, 1, 2). (R

12)
pac(1, 2) ∨ pca(1, 2, 1). pac(1, 2) ∨ pca(1, 2, 2).
ufr(1, 1) ← ¬pca(1, 1, 1), ufZ(1, 1, 1). (R

14)
ufr(1, 1) ← ¬pca(1, 1, 2), ufZ(1, 1, 2).
ufr(1, 2) ← ¬pca(1, 2, 1), ufZ(1, 2, 1).
ufr(1, 2) ← ¬pca(1, 2, 2), ufZ(1, 2, 2).
ufr2(1, 1) ← ¬pac(1, 1). ufr2(1, 2) ← ¬pac(1, 2).

Figure 3.6: Ground program P3=R

(Π3) with Π from Example 3.5, guided by R of
Figure 3.1 with optimizations of Figure 3.3 and additional rules of Figure 3.5.

Theorem 3.3 (Partial Reducibility/Normal Programs). Given a non-ground, normal
program Π and a partition of Π into programs Π1, Π2 with hpreds(Π1) ∩ hpreds(Π2) = ∅,
where for every SCC C1 of DΠ1 and SCC C2 of DΠ2, we have C1 ∩ C2 = ∅. Then, the
answer sets of R

(Π1) ∪ G(Π2) restricted to at(G(Π)) match those of G(Π).

Proof. ⇐: Let M be an answer set of G(Π) and assume towards a contradiction
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that there is no extension M 
 ⊇ M of M with M ∩ at(G(Π)) = M 
 ∩ at(G(Π))
such that M 
 is an answer set of R

(Π1) ∪ G(Π2). Since M is an answer set
of G(Π), there is an order ϕ : M → {0, . . . , |M | − 1} that is used for show-
ing foundedness of M . Similar to the proof of Theorem 3.1, we collect those
head atoms not in M by N := {h̄(D) | h(X) ∈ heads(Π1), D ∈ dom(X), h(D) /∈
M}. Then, we gather satisfied rules by S := {sat, satr, satx(d) | r ∈ Π1, x ∈
var(r), d ∈ dom(x)}. We set appropriate domain values for the founded atoms F :=
{ufy1(	D, D


y1
), . . . , ufy�
(	D, D


y�

) | r ∈ Π1, h(X) ∈ Hr, {y ∈ var(r) | y /∈ X} =

{y1, . . . , y�}, D
 ∈ dom(	var(r)
), h(D) ∈ M, DX = D

X , p(Z) ∈ B+

r ∪ B−
r , (p(Z) ∈

B+
r ) iff (p(D


Z) ∈ M), [p(Z) ∈ B−
r ] or [ϕ(p(D


Z)) < ϕ(h(D))]}. Then, we set domain
values for unfounded atoms U := {ufr(D), ufy(	D, d(y)
) | r ∈ Π1, h(X) ∈ Hr, h(D) ∈
M, y ∈ var(r), y /∈ X, there is no ufy(	D, d

) ∈ F}, where d(y) yields any arbitrary,
fixed domain value in dom(y).

We encode ordering ϕ by setting O := {[a ≺ b] | {a, b} ⊆ M, ϕ(a) < ϕ(b)} and
adding those over atoms not only in M by P := {[p(D) ≺ q(D
)] | {p(X), q(Y )} ⊆
heads(Π1), p(D) ∈ dom(X), q(D
) ∈ dom(Y ), p(D)/∈M or q(D
)/∈M, q(D
) � p(D)},
where � is any arbitrary total ordering over atoms at(G(Π1)). Finally, we let M 
 :=
M ∪ N ∪ F ∪ U ∪ O ∪ P . Since by assumption M 
 is not an answer set, either (i) one of
the rules is not satisfied, or (ii) M 
 is not minimal.

We proceed by case distinction. Case (i): Some rule r ∈ R

(Π1) ∪ G(Π2) is not satisfied
by M 
. Obviously G(Π2) is satisfied since M is an answer set of G(Π). Further, it
is easy to see that all heads of Rules (R1)–(R8) are satisfied by construction of M 
.
Rules (R8) are satisfied by construction of F and U . The construction of U also ensures
that Rules (R9) and (R10) are satisfied. Observe that Rules (R11) are satisfied, since M
is an answer set of G(Π1) and therefore every atom of M is founded, as constructed by F .
Further, by construction of O and P , Rules (R

12), (R

13), and (R

14) are satisfied.
This concludes Case (i), since every rule of R

(Π1) ∪ G(Π2) is satisfied.

Case (ii): Model M 
 of R

(Π1)∪G(Π2) is not minimal, i.e., there exists a model M 

 � M 


with M 

 being a model of (R

(Π1) ∪ G(Π2))M � . Note that the difference between M 


and M 

 cannot be due to Rule (R1), since then M 
 and M 

 would be incomparable.
If sat /∈ M 

, then by Rules (R5), there is a rule ri ∈ Π with satri /∈ M 

, which by
Rules (R3) and (R4) implies that G(ri) is not satisfied by M 

. This, however, contradicts
the assumption that M is an answer set of G(Π). Consequently, by Rules (R6), the
difference between M 
 and M 

 cannot be due to any satx predicate. Further, M 


and M 

 cannot differ in any predicate of the form ufy either, since by Rules (R8), for
every h(D) ∈ M 
, there is precisely one ufy(	D, d
) ∈ M 
. Similarly, Rules (R9)–(R11)
yield deterministic consequences, depending only on the choice of Rules (R1) and (R8).
Rules (R

12) cannot be responsible for the difference between M 
 and M 

, since then
M 
 and M 

 would be incomparable (every answer set has to contain precisely one of
these head atoms per grounding of Rules (R

13)). Finally, Rules (R

14) also yield
deterministic consequences, given the choice of Rules (R8) and (R

14). As a result, we
conclude that M 
 and M 

 can only differ due to Π2. Then, however, M 

 ∩ at(G(Π)) is

30
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also a model of G(Π2)M . Further, M 

 ∩ at(G(Π)) is a model of G(Π)M as well, since M 



is model of (R

(Π1) ∪ G(Π2))M � , which by heads(Π1) ∩ heads(Π2) = ∅, could only be
prevented by atoms over body predicates of Π1. Then, however, M is not an answer set
since M 

 ∩ at(G(Π)) � M .

⇒: Let M 
 be an answer set of R

(Π1) ∪ G(Π2) and assume towards a contradiction
that M := M 
 ∩ at(G(Π)) is not an answer set of G(Π). Then, either (i) M is not a
model of G(Π), or (ii) there is an h(D) ∈ M that is unfounded by M . We proceed by
case distinction.

Case (i): M is not a model of G(Π). Assume towards a contradiction that there is a
rule ri ∈ Π with M not satisfying G({ri}). Then, ri ∈ Π1 since M is by definition a
model of G(Π2). Then, there is a subset M 

 � M 
 with satri /∈ M 

, sat /∈ M 

 and satx

predicate set accordingly for x ∈ var(ri), that is a model of G(Π), which contradicts
that M 
 is an answer set (⊆-minimal model) of R

(Π1) ∪ G(Π2).

Case (ii): There exists an h(D) ∈ M that is unfounded by R

(Π1) ∪ G(Π2). If h ∈
heads(Π2), then by construction of M , h(D) ∈ M 
 is also unfounded by every rule in Π2
(as well as by every rule in Π1 since heads(Π1) ∩ heads(Π2) = ∅ and there is no SCC
overlap that could cause foundedness), contradicting that M 
 is an answer set. Otherwise,
irrelevant how the predicates ufx or predicates of the form · ≺ · are assigned in M 
,
since h(D) ∈ M is not founded, there is no rule ri ∈ Π1 that can be grounded such
that the resulting body is satisfied and the ground rule justifies h(D). Consequently, for
every such rule ri, by Rules (R9), (R10), and (R

14) there is at least one atom over
predicates ufri in M 
. Finally, Rules (R11) are not satisfied (for h(D)), which contradicts
that M 
 is an answer set of R

(Π1) ∪ G(Π2).

In comparison to the procedure R
, which runs in time O(�Π� · |dom(Π)|2·a), we see from
the runtime complexity that the reduction R

 still runs in polynomial time, but might
suffer from the ordering encodings.

Theorem 3.4 (Polynomial Runtime and Grounding Size). Let Π be any non-ground, nor-
mal program, where every predicate has arity at most a. Then, the grounding procedure R



on Π is polynomial, i.e., runs in time O((�Π� · |dom(Π)|a)3).

Proof. The reduction R

 is constructed similar to reduction R, for which we have
shown a runtime of O(�Π� · |dom(Π)|2·a). The additional steps of the reduction con-
struct O((�Π� · |dom(Π)|a)2) many Rules (R

12) of constant size, O((�Π� · |dom(Π)|a)3)
many Rules (R

13) of constant size and O(�Π� · |dom(Π)|2 · a) many Rules (R

14) of
size O(a).

3.3 Body-Decoupled Grounding Beyond Normal ASP
In this section the idea of grounding via reduction is pursued beyond normal logic
programs, i.e. to disjunctive (or full) logic programs. In comparison to the above
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introduced reductions, the approach is considering ground Elp programs instead of Asp
programs, which is motivated in the following.

Motivation & Differences While the motivation for body-decoupled grounding as
described above still applies, Table 2.1 shows, the complexity of ground Asp programs
does not allow for a similar reduction (as in Sections 3.1 and 3.2) from disjunctive
programs since its complexity is limited to ΣP

2 , whereas (full) non-ground programs
are known to be ΣP

3 (when assuming bounded predicate arity). We therefore require a
problem of similar complexity for which solvers are available and to which we can reduce
(efficiently) from non-ground programs.

As defined in Section 2.3, epistemic logic programs implement a way to go beyond the
expressive power of Asp programs. Elp presents an extension to standard Asp and
allows reasoning over multiple worlds, i.e. deriving certain consequences depending on
whether objections are known or possible. With this increase in expressiveness and the
enabling of encoding harder problems, the complexity of (ground) Elp ascends to ΣP

3
completeness [SE16]. This lies in consensus with the complexity of non-ground Asp
programs, which seems to be fitting for our reduction approach. Further, since Elp
presents an extension to standard logic programs an efficient reduction from Asp and to
Elp seems obvious.

Interestingly, epistemic logic programs were subject to many recent works in the last years.
Especially, much attention was paid to efficiently solving these programs. In particular,
we list approaches using reductions [BMW20], multi-shot solving as an extension to
clingo [CFG+20] and hybrid solving techniques that utilize treewidth to break down the
effort of solving [BHW21]. These improvements make Elp an attractive problem to work
with.

Based on these observations, we present our grounding approach for non-ground, dis-
junctive programs by reducing to ground Elp. While yielded an epistemic extension
to logic programs, the encoding is still constructed in a way that the advantages of
body-decoupling are still achieved.

Body-Decoupled Grounding for Disjunctive Programs Similar to the ear-
lier reductions, we assume a given non-ground program Π and a set F of facts.
As for the approach for normal programs, we use every instantiation of p(X) and
its negation ṗ(X) over dom(Π) for each predicate p(X) in heads(Π), resulting in
atoms AtPred := {p(D), ṗ(D) | p(X) ∈ heads(Π), D ∈ dom(X)}. Further, we define
AtPredC := {pc(X), ṗc(X) | p(X) ∈ AtPred}.

In the accordance with the semantics of Asp, we require to ensure (i) satisfiability of a
potential model M of Π and (ii) non-existence of counter witness, i.e. a model C ⊂ M
(satisfying (i)) of ΠM . Notice that, by performing subset minimization, we do not require
a foundedness check as in earlier versions. For (i) computing models of rules, we require
atoms AtSatl :={satl, satl

r , grl
x(d) | r ∈ Π, x ∈ var(r), d ∈ dom(x)}, where satl (satr)
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Ensure Satisfiability of Answer-Set Candidates
for every r∈Π, x∈var(r):�

d∈dom(x)

grx(d) ← (S1)

for every r∈Π, p(X)∈B+
r , D∈dom(X), X=�x1,...,x��:

satr ← grx1(D�x1�), . . . , grx�
(D�x��), ¬p(D) (S2)

for every r∈Π, p(X)∈Hr∪B−
r , D∈dom(X), X=�x1,...,x��:

satr ← grx1(D�x1�), . . . , grx�
(D�x��), p(D) (S3)

where Π={r1,...,rn}:
sat ← satr1 , . . . , satrn (S4)

for every r∈Π, x∈var(r), d∈dom(x):
grx(d) ← sat (S5)

Ensure Satisfiability of ⊆-Smaller Models
for every r∈Π, x∈var(r):�

d∈dom(x)

grc
x(d) ← (S6)

for every r∈Π, p(X)∈B+
r , D∈dom(X), X=�x1,...,x��:

satc
r ← grc

x1(D�x1�), . . . , grc
x�

(D�x��), ¬pc(D) (S7)
for every r∈Π, p(X)∈Hr, D∈dom(X), X=�x1,...,x��:

satc
r ← grc

x1(D�x1�), . . . , grc
x�

(D�x��), pc(D) (S8)
for every r∈Π, p(X)∈B−

r , D∈dom(X),X=�x1,...,x��:
satc

r ← grc
x1(D�x1�), . . . , grc

x�
(D�x��), p(D) (S9)

where Π={r1,...,rn}:
satc ← nempty, satc

r1 , . . . , satc
rn

(S10)
for every r∈Π, x∈var(r), d∈dom(x):

grc
x(d) ← satc (S11)

Figure 3.7: Reduction S(Π) for encoding satisfiablity of a non-ground program Π into a
ground program requiring the use of disjunction through Formulas (S1) and (S6).

indicates satisfiability (of non-ground rule r) for a potential model l ∈ {�, c}, where we
use � for model M and c for a potentially smaller model N . An atom of the form grl

x(d)
indicates that for checking satisfiability, we assign variable x of non-ground rule r to
domain value d ∈ dom(x). For (ii) non-existence of a model N ⊂ M , we require proper
subsets. For this purpose we use AtEq := {eqp(X) | p(X) ∈ AtPred} ∪ {nempty} to
intuitively derive the equality of a predicate instantiation for the potential models M
and N while considering empty candidates.

The overall idea consists of the following parts, which are encoded as our reduction R,
which transforms a disjunctive, non-ground program Π into to an epistemic, ground
program R(Π) consisting of F and the rules given in Figure 3.8. To generate all possible
world view candidates, our targeted models M , we use Rules (R1) and (R2), where we
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Guess Answer-Set Candidates
for every h(X)∈heads(Π), D∈dom(X), a=h(D):

a ← not ȧ (R1)
for every h(X)∈heads(Π), D∈dom(X), a=h(D):

ȧ ← not a (R2)
Guess Potentially ⊆-Smaller Models
for every h(X)∈heads(Π), D∈dom(X), a=h(D):

ac ∨ ȧc ← a (R3)
Prevent Spuriously ⊆-Smaller Models
for every h(X)∈heads(Π), D∈dom(X), a=h(D):

eqa ← a, ac (R4)
for every h(X)∈heads(Π), D∈dom(X), a=h(D):

eqa ← ¬a (R5)
for every h(X)∈heads(Π), D∈dom(X),a=h(D)

nempty ← a (R6)
for every h(X)∈heads(Π), {a1,...,an}={h(D)|D∈dom(X)}, 1≤i≤n:

← nempty, eqa1 , . . . , eqan
(R7)

Prevent Unsatisfied Rules and ⊆-Smaller Models
← not sat (R8)
← not ¬satc (R9)
Ensure Satisfiability of Non-Ground Rules: see Figure 3.7
Figure 3.8: Reduction R(Π) from a disjunctive, non-ground program Π to an epistemic,
ground program.

use the epistemic negation to generate the mutually exclusive assignments (through
atoms a and ȧ) at the outermost level (Elp). For (ii) we guess possible smaller models N
throughout these candidates, achieved by Rule (R3), which results (for each world view
candidate) in an answer set candidate for all possible subsets of the guessed world
view candidates. Then, Rules (R4)–(R7) trivially derive the equality of the guessed
head predicates ensuring that the guessed models N only contain proper subsets of
models M , where we use Rules (R6) to consider and not remove the empty set candidate
(for which no proper subset exists and the construction would result in removing it).
As in earlier reductions, we ensure (i) satisfiability of models M by Rules (S1)–(S5),
where we yield satr whenever there is an assignment of variables to domain values for a
non-ground rule r ∈ Π. If such an atom can be derived for all non-ground rules r ∈ Π,
we follow sat by Rule (S4), which is mandatory throughout the world view (cf. Rule (R8);
an epistemic constraint to require atom sat to hold within a world view, i.e. for every
answer set of the epistemic reduct sat holds). Rule (S5) applies saturation, causing the
assignment of all domain values to every variable. This way any world view candidate M
is removed if not complying with (i). In the same way, we ensure (ii) satisfiability for the
potential models C (proper subsets of M), removing every answer set candidate (within
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each world view candidate) that does not conform with (i). Notice that, in addition to
Rules (S6)–(S8) and (S11), which are copying the behavior of Rules (S1)–(S3) and (S5),
we use Rules (S9) to “satisfy" rules of Π that are removed by the construction of the
GL reduct ΠM and instead of Rules (S4), we use Rules (S10) to consider a potentially
empty model for which we do not need to check for satisfiability of (non-existing) proper
subsets. Then, Rule (R9) removes any world view candidate M , where there is an answer
set candidate deriving satc such that we ensure (ii) non-existence of a model C ⊂ M
of ΠM . This is encoded through a constraint for the epistemic negation of the negated
atom satc, which ensures that none of the answer sets of the epistemic reduct includes
the atom satc. Intuitively, the only world view candidates remaining depict models of Π,
where non of the answer set candidates contains satc, i.e. there is no proper subset C
of the guessed model M (represented by the world view candidate) which represents a
model of the GL ΠM .

Notice that, in comparison to the earlier presented reductions, the rules for guaranteeing
foundedness of guessed head atoms and ordering are in our reduction R not required
anymore. This is due to the fact that the reduction encodes subset-minimization (cf. Def-
inition of an Answer Set, see Definition 2.4), which implicitly guarantees the other
properties.

Example 3.6. Consider the non-ground, disjunctive program Π4 :=
{a(X, Y ), p(X, Y ) ← b(X), c(Y, Z)} and facts F := {b(1). c(1, 2).}. Grounding
the program as described above and shown in Figure 3.8, results in the ground
program P4 = F ∪ R(Π4) of Figures 3.9 and 3.10. The world view candidates that are
guessed by the resulting ground program are checked by the procedure described above,
resulting in the two world views {a(1, 1), b(1), c(1, 2)} and {p(1, 1), b(1), c(1, 2)} (when
restricted to the symbols of Π4) which are equatable with the answer sets of the original
non-ground program Π4.

Similar to the earlier reductions R and R

 we state correctness of the reduction R in the
following.

Theorem 3.5 (Correctness). Let Π be any disjunctive, non-ground program. Then, the
grounding procedure R on Π is correct, i.e., the world views of R(Π) restricted to at(G(Π))
match with the answer sets of G(Π). Precisely, for every world view W of R(Π) there is
exactly one answer set M of G(Π), such that M = {a | a ∈ W ∩ at(G(Π))} holds.

Proof. =⇒: Let W be a WV of R(Π). Then, by Rules (R8), we require that sat ∈ W .
From this, we construct set M := {a | a ∈ W ∩ at(G(Π))}. Then, it remains to show that
(i) M is indeed a model of G(Π) and (ii) that M is a subset-minimal model of G(Π)M ,
i.e., there does not exist a model N of G(Π)M with N � M .

For establishing (i), we assume towards a contradiction that there is a rule r ∈ Π with a
concrete ground instantiation r
 ∈ G({r}) such that M is not a model of r
. Then, we have
that B+

r� ⊆ M and (B−
r� ∪ H) ∩ M = ∅. As a consequence, by construction we have that
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Ensure Satisfiabilty of a potential witness M
grX(1). grY (1) ∨ grY (2). grZ(1) ∨ grZ(2). (S1)
satr ← grX(1), ¬b(1). (S2)
satr ← grY (1), grZ(1), ¬c(1, 1). satr ← satY (1), grZ(1), ¬c(1, 2).
satr ← grY (2), grZ(1), ¬c(2, 1). satr ← grY (2), grZ(1), ¬c(2, 2).
satr ← grX(1), grY (1), a(1, 1). (S3)
satr ← grX(1), grY (2), a(1, 2).
sat ← satr. (S4)
grX(1) ← sat. grY (1) ← sat. grY (2) ← sat. (S5)
grZ(1) ← sat. grZ(2) ← sat.

Ensure Satisfiabilty of a potential counterwitness C
grc

X(1). grc
Y (1) ∨ grc

Y (2). grc
Z(1) ∨ grc

Z(2). (S6)
satc

r ← grc
X(1), ¬bc(1). (S7)

satc
r ← grc

Y (1), grc
Z(1), ¬cc(1, 1). satc

r ← satc
Y (1), grc

Z(1), ¬cc(1, 2).
satc

r ← grc
Y (2), grc

Z(1), ¬cc(2, 1). satc
r ← grc

Y (2), grc
Z(1), ¬cc(2, 2).

satc
r ← grc

X(1), grc
Y (1), ac(1, 1). (S8)

satc
r ← grc

X(1), grc
Y (2), ac(1, 2).

satc ← satc
r, nempty. (S10)

grc
X(1) ← satc. grc

Y (1) ← satc. grc
Y (2) ← satc. (S11)

grc
Z(1) ← satc. grc

Z(2) ← satc.

Figure 3.9: S(Π4) with Π4 from Example 3.6, guided by R of Figure 3.7.

there exists an answer set N of R(Π)W with {satx(d) | p(	x1, . . . , xo, x, xo+1, . . . , xu
) ∈
B+

r ∪ B−
r ∪ Hr, p(	d1, . . . , do, d, do+1, . . . , du
) ∈ at(r
)} ⊆ N , satr /∈ N by Rules (S2)

and (S3). Consequently, by Rules (S4), sat /∈ N , which immediately contradicts our
assumption that W is a WV due to Rules (R8); hence r
 cannot exist.

For showing (ii), we assume towards a contradiction that there exists an interpreta-
tion N � M that is a ⊆-smaller model of G(Π)M . From this we will now argue
that therefore W cannot be a WV of R(Π). To this end, we construct an interpreta-
tion M 
 := M ∪ ({ ˙h(D) | h(X) ∈ heads(Π), D ∈ dom(X)} \ M) ∪ {grx(d), satr, sat | r ∈
Π, x ∈ var(r), d ∈ dom(x)} as well as interpretations N 
 := {ac | a ∈ N} ∪ ({ḣc(D) |
h(X) ∈ heads(Π), D ∈ dom(X)}\N)∪{grc

x(d), satc
r, satc | r ∈ Π, x ∈ var(r), d ∈ dom(x)},

and E := {nempty | M != ∅} ∪ {eqa | a ∈ (M ∩ N) ∪ {b | ḃ ∈ M 
}}. Then, it remains to
show that indeed M 
 ∪ N 
 ∪ E is an answer set of G(Π)W , which, if W was a WV, is
impossible by Rules (R9) and due to satc ∈ N 
. Due to W and the construction of M 
,
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3.3. Body-Decoupled Grounding Beyond Normal ASP

Guess Answer-Set Candidates
a(1, 1) ← not ȧ(1, 1). a(1, 2) ← not ȧ(1, 2). (R1)
p(1, 1) ← not ṗ(1, 1). p(1, 2) ← not ṗ(1, 2).
ȧ(1, 1) ← not a(1, 1). ȧ(1, 2) ← not a(1, 2). (R2)
ṗ(1, 1) ← not p(1, 1). ṗ(1, 2) ← not p(1, 2).

Guess Potentially ⊆-Smaller Models
ac(1, 1) ∨ ȧc(1, 1) ← a(1, 1). ac(1, 2) ∨ ȧc(1, 2) ← a(1, 2). (R3)
pc(1, 1) ∨ ṗc(1, 1) ← p(1, 1). pc(1, 2) ∨ ṗc(1, 2) ← p(1, 2).

Prevent Spuriously ⊆-Smaller Models
eqa(1,1) ← a(1, 1), ¬ac(1, 1). eqa(1,2) ← a(1, 2), ¬ac(1, 2). (R4)
eqp(1,1) ← p(1, 1), ¬pc(1, 1). eqp(1,2) ← p(1, 2), ¬pc(1, 2).
eqa(1,1) ← ¬a(1, 1). eqa(1,2) ← ¬a(1, 2). (R5)
eqp(1,1) ← ¬p(1, 1). eqp(1,2) ← ¬p(1, 2).
nempty ← a(1, 1). nempty ← a(1, 2). (R6)
nempty ← p(1, 1). nempty ← p(1, 2).
← nempty, eqa(1,1), eqa(1,2), eqp(1,1), eqp(1,2). (R7)

Prevent Unsatisfied Rules and ⊆-Smaller Models
← not sat. (R8)
← not ¬satc. (R9)

Figure 3.10: R(Π4) with Π4 from Example 3.6, guided by R of Figure 3.8.

Rules (R1) are facts or not present in R(Π)W .However, since M is a model of G(Π), we
have that M 
 is by construction also a model of Rules (S1)–(S11). Then, by N , we
similarly have that N 
 is model of Rules (S1)–(S5), as well. Further, M 
 ∪ N 
 ∪ E is also
a model of Rules (R3) (due to N 
) and of Rules (R4)–(R7) (due to E). Consequently,
we have that M 
 ∪ N 
 ∪ E is also a ⊆-minimal model of G(Π)W ; by construction and
similar to (i), if there was ⊆-smaller interpretation satisfying Rules (S6)–(S11) without
containing some satr or satc

r� , then M or N would not be a model of G(Π)W , respectively.

Observe that due to incomparability of atoms ȧc and ac, there cannot be a smaller model
through Rules (R3) as well. We conclude that due to M 
 ∪ N 
 ∪ E being an answer set
of R(Π)W despite satc ∈ N 
, that therefore due to Rule (R9), W cannot be a WV of R(Π),
contradicting our assumption.

⇐=: Let M be an answer set of G(Π). First, we construct N := {¬a, ȧc, ¬ac, ȧ | h(X) ∈
heads(Π), D ∈ dom(X), a = h(D), a /∈ M}, which collects those head atoms that are
not in M . From this we construct a set I := M ∪ N ∪ {¬satc} ∪ {sat, satr, grx(d) | r ∈
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Π, x ∈ var(r), d ∈ dom(x)} ∪ {nempty | M != ∅} ∪ {eqa | a ∈ at(G(Π)) \ M}, where we
show that I 
 ⊇ I is a WV of R(Π). Then, it remains to show that I can be extended by
some subset S
 of S := {satc

r, ¬satc
r | r ∈ Π} to a WV of P = R(Π), i.e., I 
 := I ∪ S
 is

compatible with AS(PI�).

Condition (1): AS(PI�) != ∅ is satisfied as Rules (R8) and (R9) resolve to false constraints
by the construction of the epistemic reduct and Rules (R7) only constrain non-empty
answer set candidates that yield identical sets of atoms a and ac. However, these are
only some candidates, as Rules (R3) suggest.

Condition (2): for each atom a ∈ I and for any arbitrary J ∈ AS(PI�), we show a ∈ J as
follows. For every atom a ∈ M the atom a ∈ J holds (due to a fact in Rules (R1)) in
every answer set of PI by the construction of PI . Similarly, for every atom ȧ ∈ N , PI

yields ȧ in every answer set (by Rules (R1)). Notice that by construction of N there is no
atom a such that a ∈ M and ȧ ∈ N . Further, for nempty ∈ I, we have nempty ∈ J since
by construction there is some a ∈ J , required by some body of Rules (R6). For any atom
of the form eqa ∈ I, similarly, by construction of I and Rules (R5), it holds that eqa ∈ J .
Finally, for the remaining atoms a ∈ {sat, satr, grx(d) | r ∈ Π, x ∈ var(r), d ∈ dom(x)},
we assume towards a contradiction that some J ∈ AS(PI�) does not contain a. Then,
however, we have by construction of Rules (S4) and (S5) that there exists a rule r ∈ Π
such that satr /∈ J . In consequence, by Rules (S2) and (S3), we follow that M cannot be
a model of G({r}), which contradicts the assumption that M is an answer set of G(Π).

Condition (3): for the negative literals in N , it is easy to see that by construction,
none of these can appear in any answer sets J ∈ AS(PI�). Further, for the negative
literal ¬satc ∈ I, we also have that for every J ∈ AS(PI�), satc /∈ J , which is satisfied as
follows. Assume towards a contradiction that satc ∈ J . Then, by construction, we have
that M != ∅. Consequently, since J has to be a model of Rules (R7), we can construct
a set N 
 � M that is a model of G(Π)M as follows: N 
 := {a | ac ∈ J}. Since J is an
answer set of PI there cannot be a smaller model J 
 � J with satc /∈ J 
. Therefore,
N 
 is indeed a model of G(Π)M , since, independent of the instantiation constructed
by Rules (S1), every rule r ∈ Π is satisfied by N 
 due to satc ∈ J and construction of
Rules (S7)–(S9). This, however, contradicts that M is an answer set.

Condition (4): For every atom b ∈ at(P) with {b, ¬b} ∩ I = ∅, there are J, J 
 ∈ AS(PI�)
with b ∈ J and b /∈ J 
. For each atom of the form b = ȧ, one can easily find both J , J 


by Rules (R3); similarly, for b = eqa we can find J ,J 
 according to Rules (R4) by first
setting either ac ∈ J or not. Further, by Rules (S6), for atoms of the form b = grx(d)c,
one can also easily construct both J , J 
 accordingly.

Finally, observe that the remaining literals * ∈ S either belong to Condition (1), (2), or
(3), where we require either atom at(*) ∈ S
, literal ¬ at(*) ∈ S
, or neither, respectively.
This concludes that I 
 = I ∪ S
 is a WV of R(Π).

Interestingly, the evaluation of the runtime of reduction R shows that the upper bound
is lower than for any other reduction mentioned before. This is due to the fact that
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3.3. Body-Decoupled Grounding Beyond Normal ASP

reduction R encodes subset minimization and therefore does neither require checking
foundedness (cf. Fig. 3.1) nor orderings of derivation (cf. Fig. 3.5), which depict the most
effort of the other reductions.

Theorem 3.6 (Runtime). Let Π be any disjunctive, non-ground program, where every
predicate has arity at most a. Then, the grounding procedure R on Π is polynomial, i.e.,
runs in time O(�Π� · |dom(Π)|a).

Proof. The reduction R constructs O(�Π� · |dom(Π)|a) many Rules (R1), (R2) and (R3) of
constant size for guessing candidates. For preventing spuriously smaller models O(�Π� ·
|dom(Π)|a) many Rules (R4), (R5) and (R6) of constant size, as well as one Rule (R7)
of size O(|Π|) are constructed. For the sub procedure S, we require: O(�Π� · a) many
Rules (S1) and (S6) of size |dom(Π)|, O(�Π� · |dom(Π)|a) many Rules (S2). Then, (S3),
(S7), (S8) and (S9) of size O(a), one of each Rule (S4) and (S10) of size O(�Π�), as
well as O(�Π� · |dom(Π)|) many Rules (S5) and (S11) of constant size. Further, the
reduction R constructs one Rule (R8) and (R9) of constant size.
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CHAPTER 4
Implementation & Experiments

In this chapter we turn our focus to practically applying body-decoupled grounding
introduced in earlier chapters. To this end, we implement a prototype system which
follows the idea of our presented reduction to achieve grounding of non-ground programs
via reduction. The system and technical details are presented in Section 4.1. Then,
experiments and evaluations of our approach in practice are conducted in Sections 4.2
and 4.3.

4.1 System Overview
To show our approach in practical environments we implemented an open-source, proto-
type software tool called newground1. Accordingly, the system newground implements
our reduction R
 for non-ground, tight programs to realize body-decoupled grounding
via search as described in the earlier chapter.

To this end, we designed newground as reusable module that translates non-ground
input programs using our reductions into ground, disjunctive programs. This way the
system stays independent of any potentially used solver, i.e. the user stays in control of
which grounder, solver etc. is used afterwards, making newground thoroughly universally
applicable (even for future solvers). For this reason we settled for a command line tool,
which is not only basically standard for Asp related software, but also allows for fast
piping of inputs and outputs as well as flawlessly cooperating with Python3, which was
used for the implementation. Further, we utilize the latest clingo Python API for
efficiently parsing inputs profiting from clingo’s longstanding development of efficient
Asp software.

1Our system including supplemental material of this work is publicly available at https://github.
com/viktorbesin/newground.
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4. Implementation & Experiments

As implied, the system newground implements the optimized reduction R
 for non-
ground, tight programs featuring the improved rule set for checking foundedness which
utilizes variables independencies, as highlighted in Figure 3.3. Further, as we still
believe in the strengths of traditional, sophisticated grounding systems, newground also
supports partial reducability (cf. Corollary 3.1). This allows users to select program parts
that shall be grounded using our reduction and others that are traditionally grounded,
which results in even more freedom in usage for users.

4.1.1 Technical Details
While the system newground is meant as a prototype for showing proof of work
and to execute preliminary experiments, we still opted for a performance oriented
approach. Therefore, newground relies on the latest clingo 5.5 Python API2, which,
driven by years long of development, not only simplifies logic program parsing, but
parses very efficiently into well-documented data structures. To this end, we use clingos
clingo.application package, which enables the interaction with the typical parsing,
grounding and solving process of clingo. The control flow of newground can be seen
in Figure 4.1 and is briefly explained in the following.

First, newground uses the mentioned API to parse the given non-ground logic program
into its data structures and objects. To differentiate between parts being subject to the
reduction and others being left out for traditional grounding, newground distinguishes
the input, as supported by clingos parsing feature, by different subprograms. Next,
newground uses the generated Control object of the clingo.control package to
read out facts and to be untouched program parts and appends them to the desired
output. Depending on whether a reduction is requested (by the appropriate subprogram
of the input, cf. 4.1.2), newground starts its process of reducing non-ground rules. To
this end, we make use of clingos clingo.ast package, which enables the traversal of
non-ground logic programs in terms of abstract syntax trees by using its Transformer
class. The reduction process itself then contains two full traversals of the input program.
In the first traversal, newground picks up predicate domains and facts of the whole
program, which are needed for generating the desired ground rules. The second then
conducts the actual translation of non-ground rules by picking one after another and
generating the ground rules for each of the earlier stored domain values, as presented in
Chapter 3. At this point, we let newground pre-check arithmetic conditions of rule
bodies to minimize unnecessary output that might be generated through domain values.
When all rules are translated, the output is printed.

Notice that, at this point, the output might not be fully grounded as there might be
a subprogram in the input that is not being part of the reduction. But as suggested
earlier, partial reducability allows for partial grounding of this type, where the rest of the
non-ground program can be grounded by any other grounder. Similarly, potentially any
solver can be used on the output printed by newground. This way the tool can further

2More details can be found at https://potassco.org/clingo/python-api/5.5/.
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Parse instance

Add facts &
partial program

to output
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Add rules to output

Print output

Ground/Process/Solve

clingo API
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grounder/solver

No

Yes Yes

No

Yes

No

Figure 4.1: Flowchart that shows how newground parses inputs using the clingo API
and outputs partially ground programs.

benefit from and be used with any future solver. Indeed, newground features a direct
grounding after its implemented reduction. By using the clingox package we enable
users to fully ground any remaining non-ground program parts.

4.1.2 Usage

The tool newground can be used similar to clingo directly from the command line.
For running newground, clingo and the following Python3 packages are required to
be installed: clingo, clingox, and future-fstrings.

The input format for newground is equivalent to clingos input format. Based on the
principle of partial reducability (cf. 3.1), inputs can be divided into parts that shall be part
of the reduction by using subprograms. For this reason users may use #program rules.
for (non-ground) program parts that shall be reduced by newground. Additionally, the
sub-program #program insts. can be used for instantiating the program with facts.

Without explicit domains given the reduction uses the complete set of terms to fill all
variables in the grounding process. This process can be simplified by giving a domain for
each variable using the associated predicate _dom_(), e.g. _dom_X(1..5)., or with
more generic rules of the form _dom_X(X) :- a(X,_)., in the instatiating-part of
the program. This information is then processed automatically and considered in the
reduction.

The command line usage is shown in Listing 4.1. Notice that, besides the option
--ground for fully grounding the output, newground features options to ground
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any choice rules part of the reduction as well as the suppressing of any show-rules for
compatibility with solvers not implementing these types of rules.

$ usage: newground [files]

positional arguments:
file

optional arguments:
-h, --help show this help message and exit
--no-show Do not print #show-statements to avoid

compatibility issues.
--ground-guess Additionally ground guesses which results in

grounded output.
--ground Output program fully grounded.

Listing 4.1: Usage details of newground.

4.2 Benchmarks
In order to evaluate the performance of newground, we design a series of benchmarks.
Clearly, we cannot beat established and highly optimized grounders in all imaginable
scenarios and instances. Instead, the goal of our prototype and these benchmark settings
is to visualize and discuss the potential and strengths of our approach. Further, we point
out use cases, where body-decoupled grounding might be preferable with its advantages
over traditional approaches. Indeed, body-decoupled grounding can be incorporated into
every grounder, e.g. as part of a portfolio. These benchmark settings are used to discuss
potential ways to do so.

4.2.1 Benchmark Scenarios
In order to test newground, the following (directed) graph scenarios are considered.

S1 (coloring): Compute edge colorings over three colors in directed graphs such that
for each node no incoming or outgoing edges have the same color. See Listing 4.2.

S2 (paths): Find reachable paths between source and destination nodes, where each
node admits only one outgoing edge. See Listing 4.3.

S3 (clique): Obtain directed subgraphs containing so-called cliques, i.e. fully connected
subgraphs of size at least three. See Listing 4.4.

S4 (nprc): Compute non-partition-removal colorings: remove one vertex such that the
transitive closure of the original and the resulting graph are equal on the remaining
nodes and that the resulting graph is 3-colorable. Encoding is taken from [WTF20].
See Listing 4.5.
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S5 (stable marriage): Obtain so-called stable marriages. Encoding is taken from the
Asp competition 2014. See Listing 4.6.

The selection of scenarios is justified as follows. With Scenario S1 (coloring) we aim at
providing a basic coloring problem. While the decision of Scenario S2 (paths) is in P,
the problem can be extended to counting: counting such paths is as hard as every #P
problem [Val79]. Deciding Scenario S3 (clique) is in polynomial-time computable, but
ready to be used as part of more expressive problems. Finally, we consider Scenarios S4
(nprc) and S5 (stable marriage) in order to cover known Asp scenarios.

Partial Reductions for newground As body-decoupled grounding is meant as a
relief for those rules that hold a crucial role in terms of grounding size (grounding
bottleneck), we chose to apply our reduction through newground for the following rules.

S1 (coloring): on the rules prohibiting identical edge colors
S2 (paths): on the rule restricting to 1 chosen outgoing edge per node
S3 (clique): on the rule checking for a clique
S4 (nprc): on a rule that ensures non-partition (over reachability)
S5 (stable marriage): on the rules preventing polygamy

In the encodings, the respective rules below “#program rules.” are the ones subject
to reduction and newground grounds all other rules via gringo or idlv (newground*).
For all other benchmarked vanilla solvers, the lines indicating subprograms are removed
before those solvers are invoked.

1 % guess coloring
2 { g(X,Y); b(X,Y); r(X,Y) } :- edge(X,Y).

4 % only one color
5 :- g(X,Y), b(X,Y).
6 :- g(X,Y), r(X,Y).
7 :- r(X,Y), b(X,Y).

9 #program rules.
10 % not coloring 2 outgoing edges the same
11 :- g(X,Y), g(X,Z), Y < Z.
12 :- b(X,Y), b(X,Z), Y < Z.
13 :- r(X,Y), r(X,Z), Y < Z.

15 % not coloring 2 ingoing edges the same
16 :- g(Y,X), g(Z,X), Y < Z.
17 :- r(Y,X), r(Z,X), Y < Z.
18 :- b(Y,X), b(Z,X), Y < Z.

Listing 4.2: Encoding for Benchmark Scenario S1.
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1 % start is reachable
2 r(X) :- X=#min{ Y: edge(Y,_); Y: edge(_,Y) }.
3 % destination has to be reachable
4 :- not r(X), X=#max{ Y: edge(Y,_); Y: edge(_,Y) }.

6 % guess used edges / path
7 { f(X,Y) } :- edge(X,Y).

9 % reachability
10 r(A) :- r(B), f(B,A).

12 #program rules.
13 % not more than 2 outgoing rules
14 :- f(B,A), f(B,C), A != C.

Listing 4.3: Encoding for Benchmark Scenario S2.

1 % guess used edge
2 { f(X,Y) } :- edge(X,Y).

4 #program rules.
5 % has to contain at least 3-clique
6 c :- f(A,B), f(A,C), f(B,C), A != B, B != C, A != C.
7 :- not c.

Listing 4.4: Encoding for Benchmark Scenario S3.

1 vertex(X) :- edge(X,_).
2 vertex(Y) :- edge(_,Y).
3 keep(X) :- vertex(X), not delete(X).
4 delete(X) :- vertex(X), not keep(X).
5 :- delete(X), vertex(Y), not keep(Y), X != Y.
6 kept_edge(V1, V2) :- keep(V1), keep(V2), edge(V1, V2).
7 reachable(X, Y) :- kept_edge(X, Y).
8 blue(N) :- keep(N), not red(N), not green(N).
9 red(N) :- keep(N), not blue(N), not green(N).

10 green(N) :- keep(N), not red(N), not blue(N).
11 :- kept_edge(N1,N2), blue(N1), blue(N2).
12 :- kept_edge(N1,N2), red(N1), red(N2).
13 :- kept_edge(N1,N2), green(N1), green(N2).
14 reachable(X, Z) :- delete(D), edge(X, D), reachable(X, Y),

reachable(Y, Z).

16 #program rules.
17 :- delete(D), edge(V1, D), edge(D, V2), not reachable(V1, V2).

Listing 4.5: Encoding for Benchmark Scenario S4.
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1 % guess matching
2 match(M,W) :- manAssignsScore(M,_,_), womanAssignsScore(W,_,_),

not nonMatch(M,W).
3 nonMatch(M,W) :- manAssignsScore(M,_,_), womanAssignsScore(W,_,_)

, not match(M,W).

5 % no singles
6 jailed(M) :- match(M,_).
7 :- manAssignsScore(M,_,_), not jailed(M).

9 % strong stability condition
10 :- match(M,W1), manAssignsScore(M,W,Smw), W1 <> W,

manAssignsScore(M,W1,Smw1), Smw > Smw1, match(M1,W),
womanAssignsScore(W,M,Swm), womanAssignsScore(W,M1,Swm1), Swm
>= Swm1.

12 #program rules.
13 % no polygamy
14 :- match(M1,W), match(M,W), M <> M1.
15 :- match(M,W), match(M,W1), W <> W1.

Listing 4.6: Encoding for Benchmark Scenario S5.

Based on these scenarios, we study corresponding hypothesis that shall be verified in this
section.

H1: In contrast to traditional grounding, body-decoupled grounding of newground
suffers less from increased instance density and instance size.

H2: Body-decoupled grounding can massively reduce grounding sizes and grounding
times of large instances.

H3: Body-decoupled grounding can improve overall and solving performance on crafted
and application instances.

H4: The idea of body-decoupled grounding, where suitable, efficiently interoperates with
other approaches.

4.2.2 Benchmark Instances
For answering the hypotheses, we use crafted (random) and applicable ASP competition
instances where applicable. Note that competition instances are not particularly designed
to run into grounding bottlenecks. Therefore, we randomly generate instances, (directed)
graphs of different size ranging from 100 to 1500 vertices with an edge probability (density)
from 0.1 to 1.0, for S1–S4. These are particularly useful to answer Hypotheses H1–H3.
For S5, we took competition instances (as well as crafted ones), which aid in analyzing
Hypotheses H2–H4.
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4.2.3 Compared Tools
For the evaluation of our tool we only study the performance of the following exact (full)
grounders, i.e. we do not consider any other modern approaches, e.g. lazy grounding or
Asp module theory.

• gringo: version 5.5.1

• idlv: version 1.1.6

• newground: where Body-decoupled grounding is applied on certain (manually
fixed, see Section 4.2.1) non-ground rules of the respective programs that potentially
cause grounding overhead. The remaining part is grounded with gringo.

• newground*: similar to newground with idlv being used instead of gringo.

While running these benchmarks we measure grounding sizes and grounding times of the
mentioned grounders. Further, we measure solving capabilities of the resulting groundings
for comparing solving. For full intercomparability, grounding size measures the size of
the corresponding text output without writing it to the persistent storage (no disk or
I/O operations). Anyway, relative orders of magnitude of measured grounding sizes
unambiguously stand and are independent of format optimizations (which could be
applied to any grounder).
For comparing the overall performance of the groundings, we use solver clingo version
5.5.1 with options -q --stats=2 to compute one answer set without any excessive
output. For solving the groundings of newground we add the option --project to
ensure answer sets are over the same atoms. We limit the main memory (RAM) of the
cluster to 16GB and overall runtimes (grounding & solving) to 1800s. For all resulting
plots we cut-off grounding sizes beyond 10GB (or 30GB where reasonable).

4.2.4 Benchmark Platform
All of our benchmarks were conducted on a cluster consisting of 12 nodes. Each node of
the cluster is equipped with two Intel Xeon E5-2650 CPUs and each of these 12 physical
cores runs at 2.2 GHz clock speed that has access to 256 GB shared RAM. Results are
gathered on a system running Ubuntu 16.04.1 LTS OS that is powered on kernel 4.4.0-139.
We disabled hyperthreading and used Python version 3.7.6.

4.3 Results
In the following we discuss the results of the performed benchmarks, as stated above. To
this end, we evaluate the results in terms of grounding scalability, grounding performance
and overall performance to verify our hypothesis H1–H4. Further, where appropriate, we
compare to the better performing contestant (grounding profiles) and similar, we limit
the results to the better performing alternative of newground (grounding times).
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Figure 4.2: (Left): Grounding profile for gringo of S1 (coloring). (Right): Grounding
profile for newground of S1. The x-axis refers to the instance size and the y-axis
indicates the density. A circle indicates that an instance was grounded below < 1800s,
where the left half depicts grounding time and the right half depict grounding size. Mind
the different scales.
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Figure 4.3: Similar to Figure 4.2. (Left): Grounding profile for gringo of S2 (paths).
(Right): Grounding profile for newground of S2.

Grounding Scalability For studying and comparing the groundings yielded by the
different tools, we use crafted instances for Scenarios S1–S4 to generate a grounding
profile for each tool. Figure 4.2 to Figure 4.5 presents these grounding profiles for
newground and its better performing contestant, where grounding times and sizes are
shown depending on the instances size (x-axis) and instance density (y-axis). Circles
indicate a grounding below 1800s where the left half depicts the grounding time and the
right half the grounding size. Notice that different scales are used to allow for a more
distinct value read-off throughout the plots.

Throughout the plots it can be seen that, compared to gringo (and idlv), newground
grounds larger and denser instances faster. Further, one can clearly identify the reduction
of grounding sizes of up to 1

50 (cf. Fig. 4.2.1). Interestingly, when looking at fixed
instance sizes (columns) for newground (Fig. 4.2 to 4.5, (right)), the circles show very
similar results, i.e. the colors do not vary much. In comparison, this does not hold for
gringo (and idlv), which suggests that newground does in fact not suffer as much
from increasing instances density compared to gringo and idlv (Fig. 4.2 to 4.5, (left)).
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Figure 4.4: Similar to Figure 4.2. (Left): Grounding profile for gringo of S3 (clique).
(Right): Grounding profile for newground of S3.
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Figure 4.5: Similar to Figure 4.2. (Left): Grounding profile for idlv of S4 (nprc). (Right):
Grounding profile for newground of S4.

In a similar matter, we identify that the rows are also more similar, which is why we
overall can confirm hypothesis H1.

Grounding Performance For evaluating the actual groundings of the tools, we again
use our crafted instances for scenarios S1–S4 and generate cactus for each tool cactus
and scatter plots to further assess the total value distribution. Notice that the plots show
either newground or newground* according to which was better performing.

Figure 4.6 (left) shows the cactus plot of grounding times for scenarios S1–S4 for all
grounders. It can be identified that newground outperforms (in terms of grounding
time) in these scenarios with gringo performing second-best, expect for S4 (nprc).
We believe that this is most likely due to the fact that S4 allows to utilize treewidth-
based methods (as idlv uses them). Consequently, the plots show newground* for
S4, demonstrating that newground works well together with idlv. Similar, Figure 4.7
(left) shows grounding times for S5 (stable marriage), where the trend that newground
performs well continues.

The scatter plots in Figure 4.6 (right) and Figure 4.7 (right) for grounding times depict
similar results. Again, we can identify that newground improves groundings times
in most cases as we see more blue/green dots above the diagonal. Among those below
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4.3. Results

Figure 4.6: (Left): Cactus plot of grounding time over Scenarios S1–S4 for newground
(red color tones), gringo (green tones), and idlv (blue tones). The x-axis shows the
number of instances and the y-axis the runtime in seconds, sorted in ascending order for
each solver individually. The legend is sorted from best to worst. (Right): Scatter plot
of grounding time over Scenarios S1–S4 of newground (x-axis) compared to gringo
and idlv (y-axis). Overall times (grounding and solving time) of solved instances are
highlighted in orange.
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Figure 4.7: (Left): Cactus plot of grounding time as well as overall performance for
Scenario S5 (stable marriage). (Right): Scatter plot of grounding time over S5.

the diagonal (where gringo and idlv are faster), most dots are below 250s, suggesting
a potential for a portfolio that uses gringo or idlv for a limited time of 250s and
switches to newground if unsuccessful. Especially, since none (for S5) of the instances
are actually solved beyond that time (orange dots below the diagonal).

The scatter plots of Figure 4.8 give some indication regarding grounding sizes. As
most of the dots are above the diagonal, it can be seen that newground massively
reduces groundings sizes. Moreover, there are instances where gringo and idlv output
groundings beyond 30GB which are still solved by newground.

From these evaluations we can confirm hypothesis H2.
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Figure 4.8: (Left): Scatter plot of grounding size over Scenarios S1–S4 of newground
(x-axis) compared to both gringo (blue) and idlv (green) on the y-axis. (Right):
Scatter plot of grounding size over Scenario S5. Those instances that could be solved are
highlighted in orange.

Figure 4.9: Corresponding cactus plot of overall (grounding and solving) time over
Scenarios S1-S4 (cf. grounding performance of Figure 4.6 (Left)).

Overall Performance For the evaluation of solvability of the yielded groundings we
refer to Figure 4.9 and Figure 4.7 (left), which show the overall runtime over Scenarios
S1–S5. Besides the fact that newground still performs better than its contestants, one
can identify an immense difference between grounding and solving performance when
comparing with Figure 4.6. Interestingly, while it may seem unfair to analyze combined
grounding and solving time (since newground grounds faster), the comparison with the
cactus plot for grounding time only reveals that many instances that are grounded within
short time by gringo or idlv, but not solved within the remaining 1600s, e.g. many
instances of S2 and S3 are grounded by gringo within 200s (cf. Fig. 4.6 (left)), but only a
fraction of those are solved as Figure 4.6 shows. This is especially visible when combining
grounding and overall time in a plot, as in Figure 4.7 (left) for Scenario S5. While
idlv solves a good amount of grounded instances before dropping out, newground can
withstand a higher number of instances with a more gentle increase of overall time.
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4.3. Results

Overall, we see H3 confirmed. Further, throughout the benchmarks we see newground
operating well with gringo and idlv, which is why we see confirmed H4 as well.

Table 4.1 shows detailed results over Scenarios S1–S5, which further prove the overall
performance of newground. In most scenarios newground shows higher number of
grounded and solved instances, while keeping grounding times and grounding sizes lower
than the compared tools gringo and idlv.
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CHAPTER 5
Discussion

Finally, in this chapter we discuss and summarize the results of this thesis by putting them
into perspective of related work. Further, by interpreting the results and consequences,
we give rise to future work.

5.1 Summary
This thesis deals with the question if non-ground logic programs can be efficiently
grounded to ground programs by a translation procedure while circumventing the Asp
grounding bottleneck. Relying on the complexity studies for non-ground, normal and
tight programs under bounded predicate arity, we first introduce a reduction to ground,
disjunctive programs as a potential alternative to traditional grounding. To do so,
the translation replaces non-ground rules by wisely encoding guessing of candidates,
saturation foundedness (and orderings), which allows the decoupling of rules bodies. By
decoupling dependencies between body predicates the instantiation can be limited to
the linear size of the ground atoms. In similar fashion, we introduce a reduction for
non-ground, disjunctive logic programs. However, due to the increased complexity, we
make use of epistemic logic programs. While the core idea of the translation is similar,
the encoding involves subset minimization by guessing epistemic atoms and checking
saturation for both, potential model and counter witness. Nevertheless, body-decoupling
is guaranteed through the encoding. While both reductions yield groundings that are
linear in the size of the domain under the setting of bounded predicate arity, without
this restriction we still achieve groundings exponential in the predicate arity.

In terms of runtime, we have shown polynomial run times throughout all introduced
reduction procedures R, R

 and R. We do not expect a significant runtime improvement
in the worst case. However, we have seen that orderings tremendously increase the run
time of procedure R

 compared to R and R, where they are either not needed or can be
omitted.
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5. Discussion

The prototype newground1 implements our optimized reduction procedure R
 for
non-ground, tight logic programs. Users can use newground by simply providing (tight)
logic programs. Besides complete program translations, newground supports partially
reducability, such that rules can be explicitly excluded from the reduction. The general
idea of the tool is to forward the output of newground directly into user-chosen solver
to compute any answer sets.

To test our prototype, we ran five benchmark sets comparing against state-of-the-art
grounders gringo and idlv. For comparison, we measure grounding sizes, grounding
times and solving capabilities of the groundings. These preliminary experiments indicate
that our body-decoupled grounding approach brings advantages throughout most of the
benchmarks. However, we are aware of the strengths that sophisticated grounding systems
bring, which is why we focused on partially reductions for rules with high body-density.
So the results of our benchmarks do not imply the overall advantage of body-decoupled
grounding, instead they suggest a well-working interaction between a reduction-approach
and a traditional ground-and-solve system. This makes newground a prime example
for potentially incorporating into any traditional, state-of-the-art grounding system.

5.2 Related Work
Asp in its propositional case (ground) is crucial for the definition of answer-set semantics,
however, it is the predicate (non-ground) version that simplifies modeling and makes the
formalism an effective problem-solving technique. As defined in Chapter 2, non-ground
programs require some form of grounding, the crucial task of instantiating the variables
in non-ground rules, which is the reason for its harder complexity [BET11]. This is why
grounding in general is an active research field and in literature there are several attempts
to handle the problems that come with it [GLM+18]. In the following, we present related
works and attempts that have been made so far.

While there are many modern approaches, traditional Asp implementations typically
follow the two-step evaluation process called ground-and-solve [KLPS16]. Syrjänen [Syr01]
was one of the first releasing the grounder called lparse, a front-end grounder that
accepts logic programs under the ω-restriction. A similar approach was used by the
earlier versions of the well-known grounder gringo [GST07] using the λ-restriction, an
extension to one the earlier mentioned. The restrictions are essentially used to handle
positive recursion throughout predicates and ensure that the input programs have a
finite grounding. However, more recent versions of gringo as well as the dlv grounding
system [FLP12] follow a less restrictive approach called safety, the modern approach in
this area, which requires that each variable in a rule occurs in some positive body literal.
The grounding of these systems is typically an iterative bottom-up process guided by the
expansion of the program’s term base [GLM+18].

1The system (incl. supplemental material) is available at https://github.com/viktorbesin/
newground.
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5.2. Related Work

More recently, the dlv system was branched under the work of Calimeri et al. [CFPZ17]
resulting in the grounder idlv. While it is based on the same theoretical foundation as its
predecessor, new optimizations and usability features, e.g. Python interface, annotations
etc., were added.

Beyond these traditional grounding system literature have seen many approaches actually
trying to mitigate the Asp grounding bottleneck. On the one hand, there are several Asp
extensions that hybridize the Asp language with other formalisms, such as constraint
programming [OS12, BL17] and difference logic [GKK+16, SL16]. These can be used to
express any hard-to-ground constraints, which can then be efficiently evaluated using an
appropriate solver interoperating with the Asp system, i.e. circumventing the grounding
bottleneck by avoiding the grounding using a translation to another theory.

On the other hand, there are also several promising systems working on plain Asp,
e.g. lazy grounding technique. The idea of lazy grounding is to instantiate non-ground
rules on-demand when its body is satisfied, i.e. during solving. Thereby, the grounding
of unnecessary rules, i.e. rules that are never satisfied, can be prevented which therefore
mitigates the grounding bottleneck. To this end, lazy grounding has been implemented in
different tools, e.g. gasp [PDPR09], asperix [LN09] and alpha [Wei17]. Even though
lazy grounding has performed well in preliminary results, later experiments have shown
that their performance is still not competitive with state-of-the-art systems [GLM+18].
Further, later works by Cuteri et al. [CDRS17], compare two techniques lazy instantiation
and propagators similar to lazy grounding. The input is simplified by omitting the
problematic constraints, which are then either lazily instantiated if violated by a computed
stable model or emulated using CDCL-based Asp solvers. However, this approach is based
on procedures written in a imperative language, that is specific for the problem at hand,
and therefore time-consuming. More recently, there were also approaches translating
these non-ground constraints into dedicated C++ procedures instantiating the constraints
automatically [CDRS19, CDRS20]. Preliminary results for these systems, which are built
on the Asp solver wasp [ADLR15], show good performance compared to state-of-the-art
Asp systems.

In addition, there are other approaches that restructure logic programs to circumvent
the grounding bottleneck. While the body-decoupling of newground is a result of
the reduction used for grounding, the tool lpopt [BMW16] focuses on optimizing non-
ground programs directly before grounding. By splitting up problematic rules by the
means of tree decomposition algorithms the combinatorial load can be significantly
reduced as preliminary experiments have shown. This concept was later revisited by
Calimeri et al. [CFPZ18] in combination with idlv, however, experiments showed that
the resulting groundings tend to be problematic for the tested solving modules wasp and
clasp [GKK+15].

To the best of our knowledge, this work and the tool newground is the first deployment of
the reduction between different types of logic programs for grounding. However, reductions
have been used in the context of logic programs before. The tool selp [BMW20] uses a

57



5. Discussion

reduction from ground, epistemic logic programs to non-ground, disjunctive programs
(under bounded arity) to solve Elp solely from Asp systems.

5.3 Future Work
This thesis introduces a new approach on how to handle the Asp grounding bottleneck
and gives rise to plenty of future work.

While the preliminary results show that newground can outperform state-of-the-art
grounders in selected scenarios, there is still much room for testing our approach on more
instances to further evaluate and improve it. However, as we already stated earlier, it is
very unlikely that our approach beats highly optimized grounders in every imaginable
scenario, which is why we think an integration of this technique into intelligent grounders
makes sense. This way, heuristics can automatically estimate program parts that likely
benefit from our body-decoupled grounding approach.

Besides the maintenance of newground, the extension of the prototype to non-ground,
normal programs seems very interesting. In fact, there is currently ongoing work focusing
on the implementation and evaluation of this problem [Una22]. However, we believe that
orderings might not be optimal as the encoding will lift the grounding size tremendously.
Optimization and further evaluation are therefore still required in this area.

Driven by the development of truly competitive Elp solvers, we believe that there could
lie potential in the reduction introduced for non-ground, disjunctive programs, especially,
since the runtime evaluation shows even lower bounds than for the non-ground, tight
translation and epistemic negations are only subjects of very simply rules. Therefore, the
implementation and evaluation of a prototype for this approach might be interesting.
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