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Abstract

Global competition within the manufacturing sector nowadays is forcing more and more
companies to implement modern, innovative technologies into their factories. Technolo-
gies such as Augmentet Reality (AR), are becoming more and more present since they
can support human workers in their daily tasks. As an employee’s workflow has changed
in recent years towards shorter work cycles and more flexible job roles, their perform-
ance requirements have also increased significantly. Employees are now responsible for a
larger work area and forced to work at several workstations, sometimes simultaneously.
Due to the changing work environment, this so-called multi-machine operation cannot
yet be accomplished in an ideal way with the help of AR, as the current technologies are
limited to a single workstation. Better support would be ensured if it was possible to
automatically recognize which machine is in usage. Used in multi-machine operations,
in this case AR could provide workstation-specific instructions. Furthermore, Deep
Learning (DL) enables context sensitivity - automated recognition - for AR-equipped
devices. An assistance system based on AR and DL would therefore be able to support
human decision-making in everyday work. This thesis is a proof of concept on the
way to a fully developed assistance system to ease the workload of employees in multi-
machine operations by giving the system the ability of context-awareness. The main
contributions of this thesis are twofold - the creation of a new dataset called “Assembly
Factory Workplaces”, consisting of 4695 images, 6 workplace categories and 4 special
categories for transitions – and the development of a new neural network, based on a
modified ResNet-50 architecture, which was first pre-trained on the Places365 data-
set and finally tuned with the self-developed dataset. This neural network shows an
overall validation accuracy of 77% on the Assembly Factory Workplaces dataset. The
performed use case, conducted at the TU Wien pilot factory, demonstrates that it is
possible to install a neural network on a head mounted display (HMD) device (i.e.,
Microsoft HoloLens 1 ) and enable context awareness for AR devices. Furthermore, the
observations within the test run have shown that the classification of main and special
categories works both accurately and sufficiently fast under test conditions. This thesis
provides a proof of concept that can be extended in the future by increasing the As-
sembly Factory Workplaces dataset to be more diverse, deploying the system on other
augmented reality headsets or smartglasses, or try other neural network architectures.

Keywords— Industry 4.0, Assembly Factories, Assistance Systems, Multi-Machine Operations,
Cognitive Stress, Context Awareness, Artificial Intelligence, Deep Learning, Residual Networks,
Head-Mounted Displays, Microsoft Hololens
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DE-Version

Der weltweite Wettbewerb in der Fertigungsindustrie zwingt heutzutage immer mehr
Unternehmen dazu, moderne, innovative Technologien in ihre Fabriken zu implemen-
tieren. Technologien wie Augmentet Reality (AR) beispielsweise werden immer präsenter,
weil sie die menschliche Arbeitskraft bei ihren täglichen Aufgaben unterstützen können.
Da sich der Arbeitsablauf eines Mitarbeiters in den letzten Jahren in Richtung kürzerer
Arbeitszyklen und flexibleren Tätigkeitsbereichen verändert hat, sind auch deren Leis-
tungsanforderungen deutlich gestiegen. Mitarbeiter*innen sind nun für einen größeren
Arbeitsbereich verantwortlich und gezwungen, zum Teil gleichzeitig, an mehreren Arbeit-
splätzen tätig zu sein. Dieser sogenannte Mehrmaschinenbetrieb kann aufgrund der
wechselnden Arbeitsumgebung mithilfe von AR noch nicht in idealer Weise unterstützt
werden, da die derzeitigen Technologien noch nicht vollständig ausgereift sind. Eine
bessere Unterstützung wäre dann gewährleistet, wenn automatisch erkannt würde, um
welche Maschine es sich handelt. Eingesetzt in Mehrmaschinenbetrieben könnte AR in
diesem Fall arbeitsplatzspezifische Anweisungen bereitstellen. Deep Learning (DL) er-
möglicht dabei eine Kontextsensitivität – also ein automatisches Erkennen – für mit AR
ausgestattete Geräte. Ein auf AR und DL basierendes Assistenzssystem wäre daher in
der Lage, die menschliche Entscheidungsfindung und den Arbeitsalltag zu erleichtern.
Diese Arbeit bietet einen ersten Entwurf am Weg zu einem vollständig entwickelten As-
sistenzsystem zur Entlastung von Mitarbeiter*innen in Mehrmaschinenbetrieben durch
die Fähigkeit des Systems zur Kontextwahrnehmung. Die beiden Hauptbestandteile
dieser Arbeit sind zum Einen die Erstellung eines neuen Datensatz mit der Bezeichnung
„Assembly Factory Workplaces “ – bestehend aus 4695 Bilder, 6 Arbeitsplatzkategorien
und 4 speziellen Kategorien für Übergänge – und zum Anderen die Entwicklung eines
neuen neuronalen Netzwerkes, basierend auf einer modifizierten ResNet-50 Architek-
tur, welches zunächst auf den Places365 Datensatz vortrainiert und schließlich mit
dem selbstentwickelten Datensatz abgestimmt wurde. Dieses final trainierte neuronale
Netzwerk weist eine Validität von 77% in Bezug auf den selbst erstellten Datensatz
auf. Der im Zuge dieser Arbeit in der TU-Wien Pilot-Fabrik durchgeführte Testlauf
konnte zeigen, dass es möglich ist, ein neuronales Netzwerk auf einem HMD-Gerät,
beispielsweise der Microsoft HoloLens 1, zu installieren, um dadurch kontextsensible
AR-Geräte zu schaffen. Des Weiteren konnte im Zuge des Testlaufes gezeigt werden,
dass die Klassifizierung der Haupt- und Spezialkategorien unter Testbedingungen so-
wohl genau als auch ausreichend schnell funktioniert. Auf dem Konzept dieser Arbeit
könnte in Zukunft aufgebaut werden, indem der erstellte Datensatz vergrößert, das Sys-
tem auf anderen Augmentet-Reality-Headsets oder Smartglasses eingesetzt wird oder
neue neuronale Netzwerkstrukturen ausprobiert werden.
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Chapter 1
Introduction

1.1 Motivation and Problem Statement

The rise of new manufacturing and information technologies has enabled new operations in
the industrial sector. These technologies (e.g., Cyber-Physical Systems, Internet of Things
or Smart Data) can increase efficiency, lead to more flexibility and cost reductions, and
provide autonomous decisions. Due to these significant changes in the industrial sector, the
collective term “Industry 4.0” has been established. Driven by the beneficial reasons of these
new technologies, companies implemented new concepts in their factories [1]. Despite the
positive aspects mentioned above, these concepts also lead to greater diversification of man-
ufactured products. As a result, the workflow changed to shorter cycles, flexible work tasks,
and increased task monitoring, leading to higher performance requirements and more chal-
lenging jobs for employees. Consequently, it is desired to support human workers by forming
more manageable working environments. Therefore, the performance imbalance between
human workers can be overcome by developing ergonomic and human-centred workplaces
and assistance systems. These tools or approaches are required to transform complex work
tasks into feasible ones [2–4].

In this way, the implementation and introduction of assistance systems target the provision
of support to workers through different levels of abstraction (e.g., understanding, perception,
reasoning, etc.). Despite the continuous progress of automation in the industry, assistance
systems still focus on the human worker. A typical example of cognitive assistance is the use
of augmented reality, e.g., with head mounted displays (HMDs). However, implementing as-
sistance systems that interactively support the human worker remains a challenge [5]. These
assistive technologies often provide additional information (e.g., in the form of visualisation
of data) to the worker. Therefore, the attention of the human worker is required in various
forms, but the cognitive resources of humans are limited. Negative output performance can
occur by contesting the upper or lower limits of these cognitive resources [6]. In this case, a
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1.1 Motivation and Problem Statement

mutual understanding of the goals between the human worker and the machine can benefit
already complicated workflows. For a seamless integration of advanced manufacturing into
smart factories, the digital infrastructure must capture, generate, or spread intelligence, im-
proving the context-awareness of these assistance systems. Therefore, context-aware systems
(i.e., smart augmented reality) aim to reduce the cognitive stress of the human worker [2–4].

The rise of advanced manufacturing (i.e., smart factories) based on network technologies
or manufacturing data allows for a scientific decision-making process. By data extraction,
images of the current workplace can be extracted and fed into the decision-making process
for classification [7]. This decision-making process can be built into a context-aware assist-
ance system, consisting of hardware and software. It supports the execution of the tasks
or can be adapted depending on the task’s progress. Therefore, the physical environment
of a human can be tracked and analysed, providing feedback to the overall process (e.g.,
cameras can determine the working environment of human workers). However, a meaningful
technique (e.g., the Deep Learning approach) is required to extract the relevant information
of this countless data. Deep learning (DL), a field of machine learning (ML), has received
a lot of attention in commercial and scientific research. It is a group of algorithms with
generally supervised learning that implement neural networks consisting of many layers that
extract a hierarchy of features from images [8]. Their ability of representation learning (i.e.,
automatically detects important features) is the key to identifying the abstract and complex
image characteristics of the workplace using neural networks. This ability contradicts the
classical ML approach, in which hand-crafted features are used. In this case, scene classific-
ation based on deep learning has a high precision of determination and can be the solution
to increase the context-awareness of augmented reality as an assistance system [4, 5].

Multi-machine operation can be described as a manufacturing process where one human
worker is operating on multiple machines. It requires higher qualifications and cognitive
skills of human workers compared to a single workplace operation. This presents an ideal
use case for augmented reality to assist workers and augment their cognitive capabilities.
However, as of now, multi-machine operation is too complex for augmented reality to be
used and assist workers. In such environments, parallel processes create conditions in which
the human worker has to decide what should be done next. This parallel process thinking
can be overwhelming and can cause increased pressure on the human worker. In this case,
implementing a context-aware system helps the assistance systems decide where the human
worker is located. Based on location detection, adaptations can be made that support the
human worker. Therefore, instructions can be adapted based on the recognised scene, more
effective shop floor coordination can be made, and human cognitive demands are relieved [9].

12



1.2 Research Question and Research Objective

1.2 Research Question and Research Objective

The question remains on what specific effects and benefits this technology (i.e., scene recog-
nition in workplaces) and its applications have on assembly workers. To reach an acceptance
of this application, essential steps towards evaluating efficiency have to be made. Therefore,
the first research question is: How can workplace recognition enhance context-awareness of
assistance systems?
In the second step, a state-of-the-art analysis is performed by evaluating suitable deep learn-
ing algorithms, publicly available datasets and applications for scene classification. Different
algorithms will lead to different information outcomes. These possible outcomes are related
to the first research question to identify the most promising algorithm. Therefore, the second
research question states: Is there any available dataset for workplace scene classification and
what is the most promising scene classification approach?
Lastly, on the basis of a gathered data set, the most promising deep learning algorithm
should be implemented in the TU Wien pilot factory. Therefore, the developed neural net-
work should be deployed onto a HMD device to enable context-aware AR devices within
factories. Subsequently, the last research question states: How can the developed deep learn-
ing algorithm be deployed on a HMD device and how does it behave in the TU Wien pilot
factory?

1.3 Methodology

The first research question is answered by a literature search in the field of Industry 4.0 and
deep learning. Google Scholar as the search engine will be used, and relevant words from
these topics are combined to narrow the search result. The entire search query can look as
follows:

[context-aware* OR adaptive] AND [workplace* OR assistance system*] → results (1.1)

Furthermore, the value of workplace recognition for assistance systems is determined by
evaluating its strengths and weaknesses [3].

Based on Research Question 1, Research Question 2 should be answered by a state-of-the-art
literature review of the existing deep learning approaches in scene classification. Therefore,
different deep learning techniques (e.g., Convolutional Neural Network (CNN)) for scene
recognition are assessed. The entire search query can look as follows:

[Deep Learning OR Machine Learning OR Convolutional Neural Network*]

AND [Image Classification OR Scene recognition] → results
(1.2)

13



1.4 Expected Outcome

During this literature search, use cases, applications fields, and new developments of scene
classification are derived. Then each application should be evaluated and compared with
special care in network architectures and hyperparameters to identify the most suitable
approaches. Furthermore, the relevance of their techniques and their performance should be
described.

Afterward, the most promising scene classification algorithm is developed and tested in
a use case within the institutes pilot factory to answer the third research question. To
extract all the important characteristics of the use case, a dataset should be generated in
which the algorithm should be trained. The dataset samples should be collected by web
scraping with the approach of searching for different keywords from the various workplaces.
Moreover, to counteract the size irregularity of the dataset class, synthetic image generation
should be utilised to compensate this. If not enough images can be received through web
scraping, data augmentation or dropout (i.e., regularisation techniques) might be an option
to increase the model’s generalisability. This collected data should be labelled into different
categories and divided into training, validation, and test sets. The training and validation set
is used to train the network on this specific application area by learning important features.
Training the data means updating the weight parameters of the neural network to increase
the accuracy of the algorithm. Since during training the algorithm remembers the images
within the training set, its performance must be evaluated on unseen data (i.e., validation
set). However, validation by improving the algorithm performance on the dataset might
not be enough. Therefore, the developed model should be tested within a use case (i.e.,
Multi-Machine operations), where the model is deployed into a HMD device. The global
workflow of the algorithm can be explained by the detection of the human environment by
taking a shot through a camera. Furthermore, scene recognition classifies the workplace in
which the human is located. Finally, the algorithm prediction should be validated in terms
of explainability, reliability, and clarity. These are important aspects in guaranteeing the
acceptance of the human worker [10].

1.4 Expected Outcome

As a result of the first research question, values in terms of weaknesses and strength are
evaluated to identify how workplace recognition enhance context-awareness of assistance
systems. These values can be summarised as important holistic factors that can benefit
from the implementation of this kind of technology in smart factories. This outcome of the
first research question acts as a decision support for the selection of a scene classification
algorithm. Based on research in the literature on possible applications for scene classification,
the findings (i.e., deep learning approaches and publicly available datasets) are evaluated
and compared with each other. However, the result of the second research question should
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identify the most suitable deep learning algorithm for scene recognition of assembly factory
workplaces. The third research question should be the development of a scene classification
use case for the TU Wien pilot factory based on the information gained through the previous
research questions. Within the case study, the HMD device should be evaluated regarding
its classifcation speed and classification performance of the dataset classes. Depending on
which workplace the user is located, different instructions can be given to accomplish the
task. Furthermore, Explainable Artificial Intelligence (XAI) should be used to describe
black-box operations transparently. Undoubtedly, the organisation and the individual will
benefit from this cooperation, from information processing to improved communication and
support in decision making [11, 12].

1.5 Scientific Relevance

The competitive nature of the industry forces more companies to implement high-tech meth-
ods. Through the implementation of Industry 4.0, the role of human workers will change,
leading to increased complexity and skill requirements in industrial work environments. To
meet the need for these requirements, assistance systems can provide a remedy. However,
Lucke et al. [13] define a smart factory as “a factory that context-aware assists people and
machines in the execution of their tasks.” Because of this definition, implementing assistance
systems without context-awareness might not be sufficient to assist the human worker. In
this case, the relevant literature on context-awareness is elaborated with the further treat-
ment of industrial applications and assistance systems to show sympathy.

Subsequently, context-aware assistance can be implemented through a deep learning ap-
proach (i.e., scene classification) by improving interactions between humans and their sur-
roundings. This system should classify the working environment by scene recognition to
detect wrong or faulty actions before any initial disasters appear, preventing severe damage
[4]. Furthermore, a dataset is generated to represent the application area (i.e., Multi Ma-
chine Operation) environment. This dataset can be important for future research on this
topic and can be a source for other algorithms in this area. Additionally, a scene classification
algorithm has been developed for this application area and tested for this specific use case.
A template for the algorithm is generated to allow its reproducibility and the derivation of
applications in the industry. In this context-aware guidance system, feedback can be given
to the human worker immediately if any new work plan are recognised. Furthermore, it can
help understand the complexity of human work tasks, can reduce the cognitive demant of
operating on multiple workplaces and can serve as a support in case of uncertainties. There-
fore, this implementation is highly interested in industry and economy by reducing the entry
threshold for workplaces and enabling the ability to assign employments to low-qualified
human workers.

15



Chapter 2
Research Background and Theoretical

Principles

2.1 Assistance Systems

A strong need exists to support employees who work in the future of manufacturing by
making the complexity of new industrial environments more manageable. Assistance systems
have the potential to address this need by supporting human work tasks or reducing human
cognitive stress levels. An assistance system in production can be understood as a context-
aware system which consists of hardware and software to support the human worker with the
execution of a task and can adapt depending on the progress of the task. Since assistance
systems can be implemented in many areas and different applications, there are various ways
of adapting to contextual information (e.g., to specific users, or to physical and emotional
states, etc.). By increasing computational power and emerging information technologies,
assistance systems become feasible in the context of workplace recognition [4].

2.1.1 Cyber-Physical Systems

Recent evolutions in the manufacturing industry have shown that the development of Cyber-
Physical Systems (CPS) enables synchronisation on the physical floor of the factory, often
referred to as Industry 4.0. CPS is a transformative technology to connect physical assets
with the computational capabilities of systems. This technology paves the way for the man-
agement of Big Data, examines interoperability among different machines to fulfil the goal
of adaptability or self-awareness, and promotes machines’ efficiency, collaboration, or resili-
ence. Through the growing use of IoT technologies, sensors, cameras, or network machines,
continuous data is generated (i.e., Big Data). To handle this huge amount of collected data,
computational power or cloud computing is required to extract useful information. Fur-
thermore, it is worth mentioning that continuous data acquisition, timely adaptation, and

16



2.1 Assistance Systems

control are required to support dynamic environments such as the manufacturing industry
(i.e., real-time analysis (RTA)). If the computational effort of the system is too high, the
processing of the data might take too long and impede the system from generating any mean-
ingful value. To solve this risk, one might need to take more care during the development of
the system, in relation to its rapid operability and lean design [1, 14, 15].

CPS contain two main functional components. The first is advanced connectivity that en-
sures real-time data acquisition from the physical world and information feedback from
cyberspace. The second component is intelligent data management, including the ability to
build a new cyberspace. This combination of data acquisition and further intelligent data
management allows the system to be aware of the input, to predict a possible solution, and
react appropriately according to it. For the purpose of this thesis, this might be a camera’s
photo shot of the workplace. Furthermore, the image of the workplace can be analysed using
deep learning to extract meaningful information and to adapt the system according to the
retrieved information [1, 16].

With the rise of CPS, physical work tasks constantly shift to digital ones. This shift should
not lead to an additional burden, but should try to seamlessly integrate physical systems
with digital infrastructure. The human worker should be at the centre of the technology
and should benefit from its implementation. Since the inner complexity of the working tasks
is increasing, there has to be more support from the outside so that the human worker
can withstand this. A solution might be to optimise human-computer interaction (HCI) to
benefit the user in the application of new digital technologies [2].

2.1.2 Types of Assistance Systems

The recent announcements of different assistance systems result in a research landscape
lacking a coherent overview. Therefore, there are different approaches [1, 4] that organise
heterogeneous assistance systems to reveal further developments. It is desirable to obtain
a general framework that allows these assistance systems to be uniquely shaped based on
the specific characteristics of a holistic framework. Applying such a framework can increase
the understanding of new assistance systems, since a common vocabulary is established to
identify different characteristics of assistance systems. This attribute identification allows
easier decision making about future work, can be beneficial in learning about potential
applications of assistance systems and in finding a common ground for discussions [4].

Table 2.1 presents an adaptation of the framework of assistance systems established by Fell-
mann et al. [4]. This framework is structured into four main categories with subjected
features. Each feature can be described by multiple attributes, allowing to identify the gen-
eral characteristics of an assistance system. The evaluated framework acts as an overview
of the essential characteristics of the assistance system and tries to reveal possible use cases.
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It is worth mentioning that this framework is developed based on the current information
gained from existing assistance systems and might need adaptions in case of future develop-
ments. However, this approach is probably not suitable for comparing the performance of
similar assistance systems. It can be seen rather as a rough classification of the wide variety
of assistance systems [4].

Table 2.1: Adaptation of the assistance system framework established by Fellmann et al.
[4]. The category information focusses on data generation and presentation of the result
evaluated for the user. In the category intelligence: state detection reflects the ability to
collect data under different conditions, context sensitivity refers to surrounding influences,
and learning aptitude allows future behaviour to be improved by learning from previous data.
The category interaction specifies the interface between humans and the assistance systems,
where the feature control shows the executor of the job, user involvement classifies the level of
cognitive or visual distraction by the used assistance system, extent of immersion describes
inclusive surroundings for the human senses. Moreover, input and output should explain
how the assistance system is fed with data and what it produces. The last category system
characteristics contains the transportability of the assistance systems (i.e., installation in
other workplaces), robustness in the forms of surviving unintentional events or the readiness
level (i.e., simplicity of the system).

Category Features Attributes

Information
Generation

Manual
Partly Automated
Automated

Presentation
Basic
Intermediate
Complex

Intelligence

State Detection
No
Tools
Products
User

Context Sensitivity
No
Task
Environment
User

Learning Aptitude No
Yes
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Category Features Attributes

Interaction

Control
Human
Cooperation
Machine

User Involvment
Low
Medium
High

Input Traditional
Modern

Output
Visual
Haptic
Acoustic

Extent of Immersion
None
AR
VR

System Characteristics

Transportability
Stationary
Restricted
Unrestricted

Robustness
Low
Medium
High

Technology Readiness Level
Low
Medium
High

The classification of assistance systems can be done in various ways. Perales et al. [1] describe
another one, with the important features: virtualization refers to the possibility of monitor-
ing physical processes or physical environments with the assistance system, interoperability
describes the connection of machines and systems, autonomization describes the strength of
the algorithm to make decisions, and real-time availability expresses the necessity to collect
and analyse data in real time. However, Perales et al. mention that feature extraction is not
enough to classify the assistance systems. Moreover, they established a two-step approach,
which additionally classifies the system into the most relevant technologies, Cyber-Physical
Systems (CPS), Internet of Things(IoT), Smart Data and Smart Factory. Applying this
framework to this thesis, the technology for image-based workplace recognition is CPS and
the features describe the following characteristics: virtualization to recognise scenes, interop-
erability for communication between the human and the system (i.e., Microsoft HoloLens 1 ),
autonomization making decisions through the algorithm (i.e., deep learning), and real-time
availability adapting to dynamically changing workplaces [1].
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2.1.3 Digital Guidance for Workers

The technological and computational evolutions in recent years have led to new developments
in digital assistance systems for human workers within factories. Although the assembly
tasks for industrial workplaces become more complex, factories will not be without humans.
Therefore, it is necessary to support existing worker capabilities with assistive technologies to
cope with increasing diversity in work tasks [17]. A possible digital assistance system can be
a system that includes augmented reality (AR) with context awareness as technology. When
working on demanding tasks, context-aware augmented reality can support the worker by
different work instructions at various workplaces. AR can be developed into an assistance
system through head-mounted displays (HMD) or AR glasses. These instructions can be
obtained by the headset without the need of the hands of the industrial worker. For example,
displaying information on near surrounding devices (i.e., terminals) takes time and is more
cognitively demanding to transfer the information to the location where the information is
required. The use of AR devices reduces head movement compared to tasks with tablets and
consequently decreases the error rate in manual tasks [18].

If the instructions are different between the workplaces, HMD without context awareness
cannot adapt to changing environments. Therefore, context awareness can be incooperated
by an AR device by capturing images and classifying them according to their inheriting
characteristics. The benefit of context-sensitive assistance systems is that they directly
display the desired information in the position where the action is required. However, the
use of a HMD with AR as digital assistance is not possible without the approval of the
human worker, since the human-computer interaction must be accepted [19].

2.1.4 Human-Computer Interaction

If computers are to become intelligent, they have to naturally interact with humans in real-
world applications. Therefore, they must have the ability to recognise the user and his/her
intent. When looking at assistance systems, they aim to support the human worker, but
sometimes lack natural interaction. In general, these systems produce additional output,
which can be challenging for the limited cognitive resources of humans. Hence, cognitive-
based systems learn and build knowledge by understanding natural language. Therefore,
cognitive science with three independent parts: cognition, affect, and conation can be neces-
sary to respect operations with assistance systems. Cognition, the ability to think and recog-
nise surroundings, allows the creation of mental representations (i.e., abstraction of reality)
for further decision making. Affect is about perceiving emotions and feelings and conation
points out the motivation and temperament. If a computer does not have at least one of
these three abilities, it will produce mindless and impersonal interactions. Cognitive-based
systems are able to put the content into context, providing confidence-weighted responses
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with supporting evidence. In addition, they extend the capabilities of humans by augmenting
human decision making and helping to make sense of the growing amount of data. There-
fore, it is essential to enable these abilities for assistance systems to give the human worker
an emotional connection with the machine and increase his/her acceptance. The objective
is not necessarily to translate human-like behaviour into computer systems, but instead to
enhance the cognitive capabilities of computers for improved Human-Computer Interaction
(HCI). In this case, the decision-making process can incorporate some level of feelings of
humans touching on their needs. The result might be greater pleasure at work or decreased
cognitive overload for the human worker. However, an interesting upcoming development
for modern workplaces could be the development of a system that assists human-to-human
interactions [11, 20].

Of course, such systems are known to be abused if people are analysed and evaluated without
their consent or by the manipulation of the decision-making process that is not in their
benefit. But many technologies can be applied to either benefit the organisation or the human
worker. However, the intention of assistance systems, CPS, or human-centred systems, is to
benefit both the human worker and the organisation. These benefits should be visible by
disclosing the system’s working tasks and the business case. Moreover, the human worker
should understand that through such inventions, his or her pricacy is not affected. The
approval of workers for such systems is essential. Otherwise, misgivings of the system will
damage the future human-organisation relationship [11].

From a technical perspective, the increasing complexity of robotics and environments over-
whelms the cognitive capacities of a human worker. Traditional explicit control modalities
(e.g., keyboards, displays, GUIs, etc.) are added for each system without considering human
cognitive capacities. Therefore, devices are continuously built with perceptional capabilities,
shifting their explicit HCIs to implicit HCIs (e.g., speech, gesture, etc.). Implcitit HCIs do
not require a control modality to interact with a system. Moreover, computer understanding
is gained by taking the assumption that the computer has a certain awareness of human be-
haviour. This means that a system must understand the context to be aware of the human
environment, which can be further utilised for an implicit HCI [21].

For example, the human workers might have to handle conditions where they are operating on
multiple machines simultaneously (i.e., Multi-Machine Operations). Some of them will lack
these capabilities, which will impede the entry level for such jobs. An assistant system that
can determine the different workspace environments can enable the user to display workplace-
specific information on an interactive device (e.g., smart glasses). Therefore, such systems
can reduce the cognitive overload of the user by offering a sufficient level of intelligence.
Such systems must perceive the user’s surroundings and autonomously evaluate a decision
without any additional user input. By implementing these systems, some traditional control
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modalities will become redundant and can be avoided. Furthermore, this allows for a minimal
communication requirement between a workstation and the human worker [22].

If humans communicate with other humans, they identify objects in the real world by expres-
sions. Through the rise of ML, it is now possible to mimic this behaviour and automatically
refer to objects by machines. This identification of objects can be performed by extracting
meaningful features from the objects. It is even possible to use whole images with meaning-
ful features as input for classification. For example, this enables the classification of specific
images of the workplace without identifying each object. With this implementation, the
challenge for the assistance system of knowing the location might be solved. Therefore, the
system can identify the workspace in which the human worker is currently located and can
adapt its assistance to the user according to it. This dynamic system paves the way for
the implementation of HCI in multi-machine operations without increasing the cognitive
demands of the human worker.

2.1.5 Context-Awareness

Due to automation, workers must spend less time at single machines or work stations. These
time savings lead to a change in work tasks, resulting in single workers operating multiple
machines (i.e., multi-machine operation). However, the shift from manual work tasks to
planning and controlling requires the human worker to adapt to changing behaviours. These
adaptations usually do not occur without user input, as those devices are not aware of their
surroundings. Therefore, decreasing the cognitive stress of the user through the support
of context-aware guidance systems allows adapting to changes in the physical environment.
The context is described as any information that characterises the situation of relevant
entities (e.g., persons or workspaces) for system applications. This gained information can be
processed and feed back to the user in an adopted way to support him/her in accomplishing
the task [23].

Primarily, this means that the main goal is to present information to the user, which supports
him/her in the decision-making process by the capablilty of context-awareness. However,
to achieve this, the system must operate without additional user input. When considering
the use study, the system should automatically adapt according to the workplace where the
user is located, which can only be done by a context-aware system. Such a system can be
implemented by any portable device (i.e., hand-held device, smart glasses, etc.) and will
only be required if the environment or the user’s tasks are significantly changing. Further-
more, this context-aware system requires hardware and software that provide perception
and computational capabilities. It can gain its perceptional capabilities through various
ways (e.g., sensors, audio analysis, video analysis, etc.) and its computational capabilities
through processors [4, 23].
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A context-aware assistance system can only be successful if it follows certain design criteria.
Therefore, the system has to be usable for all human sizes, and it has to be operable in vari-
ous physical environments (e.g., different light conditions). Furthermore, the social aspect
should not be neglected by implementing the system in a way that does not hinder human
communication. Another requirement of the system is transportability, since the environ-
mental objects (i.e., machines or workplaces) are not located next to each other. Finally, the
passing time helps determine moving parts or static parts and helps to identify the conjunc-
tion between two objects. In general, for the classification of entities, a unique identifier must
be used. These are mainly physical objects with characteristic properties (e.g, proportions,
spacings), which allow their identification. Position information is essential for defining ori-
entations and spatial relations. Otherwise, it becomes quite challenging if the object in an
image is not fully displayed or is too small-scaled for its determination. When interacting
with the context, it is especially useful to further group the same context information into
states. In addition to a state of context recognition, there should be states that allow us
to determine the enter and leave of the context, to define the systems boundary conditions.
Either to the lower boundary (i.e., too close to the target) or to the upper boundary (i.e.,
too far from the target). In case a state is entered, the system should have the capability
to determine how long the user is within these states. This means that the longer the user
is within this context, the slower the trigger the state will be left, giving the system the
robustness to withstand unintentional events. Knowing the prelimitations of contex-aware
assistance systems, its values and weaknesses can be disclosed [21, 23].

2.1.6 Values and Weaknesses of Digital Assistance

The everlasting progress of industry will not stop, increasing the expectations on human
workers. Therefore, the development of assistance systems might counteract this behaviour
and support the human worker in performing given tasks. However, it is not yet clear to
what extent assistance systems will not contribute positively but will unintentionally lead
to negative appearances. Considering that there are many different assistance systems, it
might be challenging to provide values and weaknesses that agree on all of these. Therefore,
the values and weaknesses of digital assistance through HMD are discussed [6].

The function of the selected assistance system is the perception assistance by context recog-
nition and the cognitive assistance that can further support the decision-making process due
to an information output. This assistance system has a direct influence on the human worker
and just indirectly influences the performance of the workflow. With the application of this
assistance system, the qualification requirement of the working task (e.g., multi-machine
operation) could be reduced through providing additional work instructions and therefore
lowers the qualification level of the employee. The positive effect might be that this job pos-
ition is suitable for a wider range of people. However, a human worker might have problems
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when pure physical work tasks are shifting to cyber-physical tasks. The amount of virtual
environment will grow in their jobs, and their acceptance of technology might be low. Fur-
thermore, social interactions with other humans might get disrupted. By wrongly designing
the system, it will present digital information to the human worker in inappropriate situ-
ations or by reducing his field of view and distracting his attention. During human-to-human
interaction, there should be the possibility of turning off these systems to increase natural
communication.

Human nature is feeling unwell in conditions that are attached to uncertainty. For example,
if a human worker performs a multi-machine operation and comes into a situation where it
is unclear what the next step is or what the right decision is, the work pressure increases
dramatically because a wrong decision is attached to a negative performance of his or hers
workstation. A solution might be an assistance system that can support this decision and,
therefore, decreases the pressure on the human by removing his responsibility in case of an
error. In case of failure, guilt lies in the assistance system and not in the human worker,
making his or her work tasks more comfortable. Moreover, early detection in the case of
failure and correction in the case of wrong decisions can further relieve the human worker.

Cognitive assistance enables the human worker to reduce his effort in handling the task
and increases his flexibility. A human worker may be unfamiliar with the system at the
beginning of the job and may have a longer adjustment period for this system. However,
the information displayed, provided by the decision-making process of the assistance system,
can act as a source of learning and continuously train the human worker to perform a task.
Continuous learning with this system could make it redundant one day, and the human
worker can perform the task without active assistance [3].

2.2 Deep Learning

As discussed in the previous chapters, relief of the human worker’s strain by assistance sys-
tems can bring benefits in cognitive assistance of the human worker tasks. Although, physical
devices (i.e., cameras) are capable of capturing the surroundings of the human worker, a
system which can process this information is required. Therefore, the images recorded by
the cameras must be evaluated by an algorithm that can capture context. However, history
has shown that abstract and formal tasks that are difficult to describe by human beings can
be easily automated. These tasks (e.g., identification of objects) that humans efficiently per-
form are subjective and intuitive, making them difficult to solve for any algorithm. Moreover,
developing an algorithm that addresses this challenge is an enormous investment, since many
conditions and boundaries must be determined. Doing this without any learning ability of
the algorithm requires huge expenses, and such systems are mostly error prone and rigid.
Nevertheless, we know that tasks such as image classification require tremendous flexibility
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since each image will look different (i.e., different light conditions or a variation in the ex-
posure position), even the existing object in the image. Therefore, the solution to this issue
is to allow the computer to learn from experience and accomplish the desired task based on
experience under controlled performance measurements [24].

Before elaborating on technical aspects, definitions of the terms artifical intelligence (AI),
machine learning (ML) and deep learning (DL) are necessary. Many times these terms
are used interchangeably, but their principles differ. Artificial intelligence is referred to
as a generic term (i.e., without any explicit technology) that gives computers the ability
to mimic human behaviour and solve problems. However, the other two terms describe a
more technical meaning of how the computer is able to learn human behaviour. Therefore,
machine learning , a branch of AI, is a technology that uses statistical techniques to learn
from previous information and experiences. By learning from past information, the machine
can make future decisions. Lastly, deep learning, a branch of ML, is a technology that
was inspired by the human brain network by using artificial neural networks (ANN) to solve
problems. It builds automatically representations of patterns from the data, without manual
feature engineering [25].

Besides the three mentioned terms, Computer Vision (CV) focusses on helping to give com-
puter visual awareness of the observed world. This is different from ML which gives machines
the ability to learn. In contrast, CV is focused on giving machines the ability to see. It breaks
down and tries to interpret visual information instead of processing statistics or simulated
data.

Artifical Intelligence

Visual 
Computing

Machine 
Learning

Deep Learning

Figure 2.1: Illustration of the relationship between ML, CV and DL under the branch of AI.
Adapted from [25].
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Visual information from images remained opaque for a long time, and to get the most out of
the image data, computers must understand the content within the image. In general, CV
is challenging due to the inherent complexity of the visual world and a true vision system
must extract characteristics from each scene of an infinite number. Knowing the intersection
of CV with ML and DL, we can illustrate the topic we focus on during this thesis (see Fig.
2.1) [26].

2.2.1 How can an Algorithm learn?

By knowing the ability of the algorithm to make decisions on its own, one can ask the
question why it is called learning? Therefore, Mitchell [27] provides the following definition:
“A computer programme is said to learn from experience E with respect to some class of
tasks T and the performance measure P if its performance in T, measured by P, improves
with experience E.”

The task T can be understood as how the system should process an example (e.g., collection
of characteristics) that has been measured from an object. In the case of computer vision,
the characteristics are usually defined arrangements of pixels in the image. Depending on
the selected task (i.e., analysis method), different results can be expected. For example,
regression is a task in which the input is converted to one output of continuum values. On
the other hand, the classification task involves input (e.g., pixel values of an image) that is
specified in one of k categories. Therefore, the learning algorithm has to produce a function
f (see Equation 2.1) that assigns a probability distribution over all classes [24].

f : Rn → {1, . . . , k} (2.1)

To evaluate the abilities and limits of the machine learning algorithm, a quantitative meas-
urement of its performance is required. Depending on the task used, different performance
measurements should be performed. Looking again at the image classification task, the ac-
curacy (i.e., P) is identified by the proportion of correct outputs that the algorithm can
produce for a single caterogry. In contrast, the error rate (i.e., P) is the proportion in which
incorrect outputs are identified. Both accuracy and error rate can be described on a scale of
0 to 1, where for a binary problem the accuracy of 0 indicates a wrong assignment and 1 a
correct assignment [24].

The experience of the ML algorithm can be defined by a dataset containing various samples.
Depending on the class of learning problem, the samples of the dataset can be labelled or
not. Regardless of the above, the classification performance of the algorithm is evaluated on
the dataset. Although the size and quality of the dataset reflects the expierence, incorrect
or insufficient samples decrease the performance of the classification task [24].
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2.2.2 Machine Learning Basics

The hierarchical structure of AI, ML and DL concludes that to master deep learning, prior
knowledge of ML is required to understand its connections. Machine learning is based on ap-
plied statistics and uses computers to approximate complicated functions. The complicated,
mostly nonlinear function can be made up of simpler (i.e., linear) functions by joining them
together. Therefore, the algorithm is capable of solving complex applications. Furthermore,
the performance of the output of the function is enhanced by iterations through an optim-
isation procedure (e.g., gradient descent, etc.). During each iteration, the algorithm learns
important information for future decision-making. In following sections are the learning
techniques and ML fundamentals discussed [24].

Classes of Learning Problems

ML is a broad term, and the learning procedure can be selected depending on the problem
statement. In general, learning problems can be divided into the main classes, supervised,
unsupervised, and reinforcement learning. These classes show different approaches to in-
formation handling and algorithm training.

Supervised Learning Algorithm The goal of supervised learning is to uncover relation-
ships between data characteristics that have already been measured. This gives the learning
algorithm the ability to learn the characteristics of each data point, which is labelled into a
category. Since the algorithm already knows the output during learning, it can assign the
features of each data point with supervision to the different classes. Each category represents
a class with characteristics that are used to train the algorithm on these data. Finally, the
learnt features are predicted on unseen data to classify unlabelled images. More mathemat-
ically, these supervised learning algorithms estimate the probability distribution p(y|xxx) using
the maximum likelihood estimation to find the best parameter θθθ vector. The probabilities
of assigning a xxx to one y must be evaluated for all classes. If there are multiple classes, the
clear assignment of xxx to a class may not be that simple. Therefore, training through multiple
epochs is required to optimise θθθ, allowing us to assign xxx to one y more clearly. The main cat-
egories of supervised learning are classification, which predicts a class label, and regression,
which helps to find correlations and addresses a numerical label. Well-known examples are
the MNIST handwritten digit algorithm for classification [26] and the Boston house price
algorithm [28] for regression. In general, classification is a special case of regression in which
variables are categorical (i.e., one of a fixed number of possible classes) [24, 28, 29].
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Class A Class B

x

f(x)

(a) Classification

x

f(x)

(b) Regression

Figure 2.2: Schematic representation of (a) classification by two different classes and (b)
regression by linear fit. Adapted1

Typically, for supervised machine learning, large-labelled datasets are of great importance for
high-quality training. Without a good dataset, the developed ML algorithm will have poor
performance. Therefore, collecting data, classifying them and tagging them one by one is
essential for the desired application and further research in various domains. Furthermore,
each available open-source dataset drives the development of deep learning technologies.
However, the dataset can be split into different parts (i.e., training, validation, and testing)
to perform different tasks. The training set is used to optimise the dynamic parameters (i.e.,
weights and bias) of the algorithm, the validation set is used to find its static parameters (e.g.,
learning rate, batch size, etc.), and the test set evaluates its performance. Unlikely splitting
the dataset into different chunks makes the test set susceptible to uncertainty around the
average test error, if the sizes of the different dataset parts are small [30].

Unsupervised Learning Algorithm In contrast to supervised learning, the input of the
dataset does not include an annotation for unsupervised learning. For unsupervised learning,
beneficial properties outside the structure of the dataset have to be extracted without any
instructor or assistance. The main categories of unsupervised learning are clustering (i.e.
finding groups in the dataset) and density estimation (i.e., summarising the distribution of
the data). During clustering, the algorithm has to classify the meaningful features into the
same categories. Therefore, a relationship between the characteristics of the data that have
not been designated has to be determined. For example, in image clustering, the learning
algorithm has to be trained with a dataset that does not contain labels. The network has
the general goal of finding similarities inside the input data to make appropriate clustering,

1https://www.javatpoint.com/regression-vs-classification-in-machine-learning, last accessed on 20.11.2022
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keeping the boundaries of clusters as simple as possible. Another topic, Auto Encoders
(AE), addresses unsupervised learning by reconstructing the training data and minimising
the reconstruction error without any data labelling. It consists of an encoder function that
tries to convert the input data into a different representation and a decoder that converts
this representation back to its original state. From a mathematical perspective, the encoder
transforms an input xxx into a hidden representation hhh. Within the state hhh usually a lower
dimensionality is occurring and information can be retrieved. By trying to convert hhh back
to its original state, the difference between the original input and decoded representation
(i.e., ideallly close to the origin input) can be measured. However, it is still controversial
whether AE are unsupervised learning approaches or not. But considering the definition
that unsupervised learning approaches learn from input without any labelled output, AE
can be interpreted as unsupervised learning [15, 24, 28].

Reinforcement Learning In reinforcement learning (RL) the algorithm is not based on
a fixed dataset, but rather interacts with its environment to learn from previous actions.
This interaction is only possible if the learning algorithm can receive information from the
environment to determine its current state. The derivation of states from the environment
is especially useful if new states arise. Then, depending on the information received from
the environment, an agent (i.e., a system that learns and makes decisions) can decide what
actions should be taken. These actions are evaluated by a reward function and are rewarded
or penalised based on whether the agent chooses a good or bad action. However, these
actions are categorised into epochs in which the decision-making strategy is optimised by
maximising the cumulative reward. In this way, the reinforcement model saves well-working
actions and can improve over time. The agent can either explore new actions (i.e., random
actions) or exploit the historical decisions predicted by the model during the training stage
(i.e., model actions). Generally, with increasing time, the model is programmed to explore
less and exploit the previously learnt actions to reinforce the learning strategy. However, the
reinforcement learning approach has a long convergence time and underlines the drawbacks
of high computational requirements compared to other learning approaches. Due to these
drawbacks, RL is best suited for applications with various unknown states [14, 24, 25].

Generalisation, Underfitting and Overfitting

The challenge of the algorithm in machine learning is that it has to perform well on unseen
data, which is called generalisation. This characteristic of ML is not restricted to any
learning strategy, but in the following will be discussed for supervised learning. To give the
algorithm the ability to perform well on unknown data (i.e., test set), it had to previously
learn from known data (i.e., training set). In general, learning from large training datasets is
beneficial for generalisation, since the algorithm remembers important characteristics more
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precisely. Due to the labelled data in the training set, performance can be evaluated and
optimised, reducing its training error. However, in addition to optimising the training error,
the error value on a new sample (i.e., generalisation error or test error) must be considered.
Since the data on which the network runs on during deployment is not labelled, evaluating
the generalisation error is difficult. To handle the uncertainty of the generalisation error,
similarities between the test and the training set are used. Therefore, the effort lies in creating
identical distributed training and test sets that are independent of each other to impede fake
performance. By impeding the arbitrariness of the training and test sets, the generalisation
error can be approximated by the training error, since both datasets underline the same
sampling process. In this case, the two primary goals of generalisation are to reduce the
training error and to increase the similarity of the training and test error without violating
the independence of each other.

There are two crucial terms (i.e., overfitting and underfitting) when discussing a poor gen-
eralisation, which occurs due to different causes. While underfitting represents a situation
where the error rate of the training set cannot be sufficiently lowered, overfitting occurs when
the gap between the training and test error is too large. Both phenomena can be described
by the capacity factor. The capacity can be changed by changing the model’s ability to
generalise, for example, by changing its complexity or its learning behaviour (see Chapter
2.2.3). An appropriate capacity is chosen if the algorithm is suitable for various functions.
However, a low capacity refers to underfitting and a high capacity refers to overfitting. In
the case of an example of fitting a polynomial function (see Fig. 2.3), the capacity can be
controlled by choosing the function boundaries (i.e., order of the function). The order of the
polynomial function must be selected before training, and its right choice is important for the
working algorithm. Such a static variable is called a hyperparameter and will be discussed in
Chapter 2.2.2. In general, the best capacity is achieved when the ML algorithm is adjusted
to the true complexity of the task. However, in case of overfitting, the learning algorithm
finds a suitable function that reduces the training error, but does not fit the structure of the
recognition task. If no test set is available to validate the test error, these overfitting prin-
ciples are often referred to as Occam’s razor, which states that if similar solutions of different
learning strategies are available, the simplest should be selected. Furthermore, overfitting
occurs when individual characteristics including noise are learnt by the algorithm, which neg-
atively impacts generalisation ability. Therefore, strategies are used that tend to reduce this
behaviour. This includes data augmentation, early stopping, dropout, small convolutional
kernel size, cropping, and warping [24, 31].
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Figure 2.3: Schematic representation of fitting of the same dataset by three different poly-
nomial functions. (a) A linear function was chosen for fitting the data points, which cannot
capture the curvature resulting in underfitting. (b) A quadratic function seems to fit the
datapoints perfect, resulting in the optimal capacity. (c) The selection of a polynomial func-
tion of a higher order can pass through all datapoints perfectly but does not reflect the true
complexity of the structure. This lead to erroneous results on unseen data point [24].

Hyperparameters

Developing an algorithm ML includes the choice of many different parameters. These para-
meters can be distinguished into trainable parameters (i.e., parameters inside the model;
learnt by the solver), nontrainable parameters (i.e., inside the model; not learnt by the
solver) and hyperparameters (i.e., outside the model; cannot be learnt by the solver dir-
ectly). The difference between nontrainable parameters and hyperparameters is that while
nontrainable parameter are within the model (e.g., frozen weights of an layer, etc.), hyper-
parameters define the model’s structure from the outside. Therefore, hyperparameters are
determined independently and are usually not learnt by the algorithm itself. Instead, those
parameters are set statically and allow one to change the behaviour of the learning algorithm.
Examples of hyperparameters are the number of layers created, the size of the layers, or even
the choice of the activation function. Looking at the different results in Figure 2.3, the vari-
ation in order of the functions is striking. This degree can be seen as a hyperparameter that
controls the capacity of the learning algorithm [32].

Generally, no example out of the test set should be used to evaluate the hyperparameters, to
reach impartiality. Therefore, the training set is divided into two different sets. One set is
used to determine the weights (i.e., training set). The other subset is referred to as the val-
idation set, which allows the hyperparameters to be continuously updated according to the
optimisation of the generalisation error. Usually, a fifth of the training set is used for valida-
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tion and the rest is used to optimise the training set. After optimising the hyperparameters,
the overall performance of the network can be improved [24, 32].

2.2.3 Artificial Neurone and Neural Networks

The idea of NN has been developed and inspired by investigations on how humans are cap-
able of capturing context. Therefore, the neural system of the human brain with the ability
to learn and memorise was mimicked by artificial neural networks (ANNs), consisting of
interconnected artificial neurones (ANs). These artificial neurones are combined within mul-
tiple layers and operate in parallel, illustrating the nerve activities of the biological neurones.
The general goal is to minimise the network output error by optimising its parameters with
the best possible selection [15, 33].

The artificial neurones are inspired by biological neurones within the human brain. Each
artificial neurone (see Fig. 2.4) receives multiple inputs (i.e., x0, x1, ...xn) which are pro-
cessed by multiplication with certain weights (i.e.,w0, w1, ...wn). The weights are necessary
adjustment values that try to optimise the output. For the task of image classification,
the inputs are represented by the pixel values of an image, whereas the weights express a
factor to change the colour channels or the pixel intensity of the input. In general, multiple
artificial neurones are controlled by weights and a bias (i.e., to adjust any offset) and can
be combined into a neural network, which is a parametric model. This model is defined as
f(x;θθθ) =WWW ·x+ b with θθθ= (WWW, b), while θθθ describes the parameters, consisting of a vector of
weights WWW and a bias b. A special case of this model is a linear classifier with one artificial
neurone.
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Figure 2.4: Schematic representation of the structure of an artificial neurone, including
weights and a bias as changable parameters and an activation function as nonlinearity. The
illustration is adapted from [33].
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Furthermore, the relevance of the individual neurone is implemented by an activation func-
tion. It detects the importance of certain neurones and can act as a switch by turning off
individual neurones. Without an activation function as nonlinearity, nonlinear problems
cannot be solved by this parametric model, since a linear model in combination with other
linear models still represents a linear model [33, 34].

Activation Function - Nonlinearity

Describing context within a scene is a complex patterns that cannot be described by linear
correlations. Therefore, using activation functions (i.e., nonlinearities) within NN enables
the detection of complex shapes inside a structure. The activation function decides whether
a neurone is activated and transforms a neurone signal based on a nonlinear monotonic func-
tion. If the activation function returns its input without any transformation (i.e., identity
function), every layer of NN will only be a linear transformer and the network will be a linear
regression model. In Chapter 2.2.2, it has been shown that the linear regression model is
sufficient for linear problems but not for complex higher-order problems [24, 26].

Overall, there exist many different approaches for activation functions. However, the most
popular activation functions are sigmoid (see Fig. 2.5a), rectified linear activation function
ReLU (see Fig. 2.5b) and leaky ReLU (see Fig. 2.5c). Among all activation functions,
the sigmoid function is biologically inspired by mimicking neuronal activation in the brain.
Although it has a regularising effect (see Chapter 2.2.3), forcing the features into a range
between 0 and 1, it has the downside of relatively flat gradients during backpropagation.
Parameters that receive small gradients work only for shallow networks. For deep neural
networks with sigmoid activation functions, repeated multiplication of small slopes causes
them to be close to 0. This phenomenon is called the vanishing gradient problem and can
be solved by using steeper activation functions. Therefore, the rectified linear activation
function ReLU allows a much greater gradient than the sigmoid function to overcome this
problem. However, ReLU has the downside of dying neurones, where a negative input will
lead to the deactivation of neurones without any representation of information. This is caused
by negative input values that eventuate in an output of 0. An neurone with 0 output does
not contribute to the model and therefore the neurone or node is called “dead” (i.e., neurone
remains dead). Therefore, leaky ReLU tries to mitigate dying neurones (i.e., small negative
slope function for values less than 0) by improving the ability to send gradients backwards.
The small negative gradient of leaky ReLU helps defuse the problem of vanishing gradients.
Besides these three mentioned activation functions, any non-linear function can be used
[28, 32].
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Figure 2.5: Schematic representation of (a) Sigmoid, (b) ReLU, and (c) leaky ReLU activa-
tion functions on an input scale of [-10,10]. Adapted2.

Regularisation

It is essential to find the best representation of data, which can be supported by penalties
or restrictions. Therefore, regularisation is a technique that restricts training behaviour and
increases the performance of the model on unseen data. It can reduce generalisation errors,
especially overfitting, at the expense of increasing training errors. Adding a penalty called
regularizer allows optimising the learning behaviour by slowing the convergence of the model.
Although regularisation is not restricted to NN, its techniques to achieve this are dependent
on the problem statement. For this reason, regularisation techniques are specially discussed
for NN applications [24, 26].

For NN, regularisation can be achieved by techniques such as data augmentation, weight
decay, early stopping, learning rate schedules, or dropout. All of these techniques slow down
training and therefore decrease overfitting behaviours. However, two relevant techniques,
dropout and data augmentation, will be discussed in more detail. Compared to a baseline
NN, the regularised model shows an improved performance output on unseen data [24, 26].

While in a traditional NN all neurones are related to neurones in the surrounding layers
(see Fig. 2.6a), the NN with dropout (i.e., hyperparameter) enables the model to randomly
deactivate neuronal activities inside the network (see Fig. 2.6b). Since the deactivated
neurones can be seen as dead for this training step, their information transfer has to be
taken by the remaining neurones. Consequently, the ability to learn is more difficult, leading
to regularisation of the model and avoidance of overfitting. Therefore, for every optimisation
step in the neural network, a different neurone connection is generated, except for weight
sharing between the networks. In dropout, a single neurone cannot rely on its closely located
neurones because they might be deactivated. Consequently, updating the neuronal weights
is no longer performed simultaneously, preventing all neurones from convergence to the same

2https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092, last accessed on 20.11.2022

34

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092


2.2 Deep Learning

goal. Hence, these neurones learn to extract features that are based on the conjunction with
various neurones, resulting in increased robustness of the overall algorithm [35].

Active Neuron

(a)

Active Neuron
Deactivated 

Neuron

(b)

Figure 2.6: Schematic representation of (a) neural network with two hidden layers, and
(b) neural network with two hidden layers and temporarily deactivated neurones. This
illustration is adapted from [36].

Another regularisation technique, data augmentation, increases the model generalisation
ability. Without data augmentation, the dataset might be too small. The consequence
would be that the NN memorises the training set, leading to overfitting. Therefore, data
augmentation increases the training set by artifically generating new samples by altering
existing ones. In general, the data augmentation procedure is performed depending on the
type of input data. For image classification, the images can be rotated by certain degrees,
cropped to certain percentages, or zoomed in to increase the data variety. This technique
adds noise to the training set and is mainly required if the richness of the existing dataset
is not sufficient to train the algorithm appropriately. However, this technique must be used
with caution. Creating artificial input for training can generate incorrect feature maps by
omitting important characteristics. For instance, if an image of digit 6 is data augmented
upside down, it suddenly transfers into a 9, which will trick the algorithm. In general, the
use of data augmentation increases not only the amount of data it trains on, but also the
robustness of NN [25, 37].

2.2.4 Neural Network Training and Evaluation

By knowing the fundamentals about ML and NNs, the question arises on how these networks
are trained. Therefore, neural network training can be performed in various applications and
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can show differences for each type of neural network. Despite the multiple applications, the
fundamentals will remain similar. During this chapter, neural network training is discussed
with a focus on image classification. Furthermore, performance metrics are mentioned, which
help to evaluate the output of the model.

Feed Forward and Backpropagation

The multilayer configuration of NNs clarifies that training these networks is not that simple.
Therefore, the training procedure consists of two phases (see Fig. 2.7), where the first phase
(i.e., feed forward) is the propagation of inputs through hidden layers (i.e., the true value
is unknown) to the final layer. During this phase, the inputs of each layer are multiplied by
weights to generate an output, which is the input for the next layer. In the final layer, an
input-to-output mapping is performed through a function that calculates the error (i.e., loss)
with respect to the target value. After evaluating the loss of the feed forward propagation,
adaptations of the model parameters θθθ (i.e., weights and biases) are performed according
to minimise it based on an algorithm. This procedure, called gradient descent, translates
the error from the loss function through all layers to the first layer. During each layer, its
parameters are adjusted to minimise those errors as much as possible. While the opimisation
function is only used for the adjustment of the parameters using the gradient, backpropaga-
tion refers only to the method to calculate the derrivative of the loss function L(θθθ). In this
case, backpropagation (i.e., second phase) has to calculate all derivatives of the functions
from the last layer to the previous. Therefore, any function that represents a layer must be
real and differentiable. This training process is repeated for a specific number of iterations
until the loss function is satisfied. A common way to save computational resources is to
package these iterations into batches and update the parameters in each batch. In this case,
one batch consists of multiple inputs that calculate the loss. Subsequently, these losses of all
inputs in one batch are averaged and backpropagated. When multiple inputs are bundled in
batches, volatility in the output can be flattened and backpropagation for each input can be
avoided. If all the data is packed into one batch, the computational resources are likely not
large enough to save the input into memory. On the other hand, if a batch consists of one
input, the loss is calculated for each input, consequently lowering the training speed. In gen-
eral, backpropagation is a procedure that calculates the loss for each weight by considering
the chain rule backwards through the network [20, 24–26].
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Figure 2.7: Schematic representation of feed forward propagation and backpropagation
within a neural network [20].

Optimisation function and Momentum

The optimisation function is used to train the network by adapting the changeable paramet-
ers (i.e., weights and bias) of NNs to minimise the loss function that evaluates its perform-
ance [32]. This procedure can be performed using different strategies. However, the most
common is the gradient descent. Gradient descent is an iterative first-order algorithm to
minimise the loss function L(θθθ), where θθθ are called parameters. To calculate the gradients,
a differential optimisation function with real parameters is required. These parameters are
then updated in each iteration by θθθ=θθθ-α·∇L(θθθ), where α represents the learning rate (i.e.,
hyperparameter). The gradient ∇L(θθθ), is a vector that contains all partial derivatives of
L(θθθ) and can be calculated by backpropagation. The learning rate is strongly necessary to
update the parameters based on a certain step size, otherwise results might lead far astray. In
general, gradient descent can follow various approaches. While the stochastic gradient des-
cent approach (SGD) has one input sample, the batch gradient descent includes all samples.
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By looking at these two extremas, another approach, mini-batch gradient descent, has been
established. It takes a batch of samples and computes the gradient for the loss of the mini-
batch. However, when using gradient descent, the gradient is usually an approximation and
cannot be solved analytically. Therefore, the optimisation algorithm might not find a local
minima of the function, but has the advantage of arriving at a very low value of the function
that is useful enough. The risk remains, that the gradient descent might find poor local
minima, which does not satisfy the overall goal of optimisation within NN. However, prac-
tise has shown that regardless of the initial condition, different local minima achieve equal
results [24, 28].

By knowing that gradient descent can run into a local minimum that is not sufficiently low,
it might happen that this minimum could not be passed through without any support, since
α is too small. Therefore, there are strategies to avoid this. The so-called momentum helps
the gradient descent to handle difficult loss functions better. Momentum is introduced to
include inertia for gradient descent, by a velocity v. This velocity is continuously updated
according to v=β· v−α·∇L(θθθ), where β∈ [0, 1) refers to the momentum (i.e., hyperpara-
meter). The parameters are then updated according to θθθ=θθθ+v. Without momentum, once
the optimisation flow is interrupted (e.g., by the example of SGD, each batch), the algorithm
will change the direction according to the steepest gradient obtained. This results in oscil-
lations along the optimisation path, which can be flattened by momentum. In general, the
algorithm can involve past gradient evaluations in future behaviours [24, 28].

Loss function

Once we know how the general training flow works, more care can be taken into its individual
components. While training is the state that adjusts the model weights, learning is the
models ability to minimise the loss. Loss of a network determines the difference between the
output of the model generated by the current parameters and the expected output. It tells
the optimiser how well it is performing and acts as a penalty in the network for incorrect
predictions. Furthermore, the objective of most DL approaches is based on minimisation of
loss by gradient descent. In contrast, a high loss value indicates that the model does not
fit well. However, the loss function defines the way the loss of the last layer of the network
is calculated. Generally, the loss function depends on the problem we want to solve. For
typical regression problems, the mean square error (MSE) is used (see Equation 2.5)[24].

MSE =

∑n
i=1(yi − ŷi)

2

n
(2.2)

Where yi is the true labelling, ŷi refers to the predicted value, and n represents the number
of error parameters. In MSE, (yi − ŷi)

2 results in a preference for lower error values. The
benefit of this loss function (i.e. convex shaping) is that larger error values result in a bigger
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step to the next state if the predicted value is further away from the target. A convex loss
function can prevent the optimiser from getting stuck in a high training error. However,
this loss function is not suitable for classification, as it is hard to judge about any difference
between the true and predicted labelling. Therefore, the cross-entropy loss function is used
for classification tasks (see Equation 2.3)[24].

CrossEntropyLoss =
n∑

i=1

−(yi · log(ŷi) + (1− yi) · log(1− ŷi)) (2.3)

This function measures the difference between the true labelling yi and the predicted value
ŷi for all categories n. To get an idea of the function, we look at an example of predicting
an input to one true class of n categories. For all categories that are not true, yi = 0 results
in a cross-entropy loss function of −log(1− ŷi)). On the other hand, the category with the
true labelling yi = 1 has a loss function of −log(ŷi). Therefore, it is immediately visible that
a high true value and a low false value refer to a low loss value. Theoretically, the best loss
value is 0, which is indicated by ŷi = 1 for the true class and ŷi = 0 for all other categories
[28].

Performance Metrics

The trained model must be validated to show its effectiveness. Therefore, performance
metrics are selected to check different functionalities of the algorithm. Loss is the most well-
known performance metric that is minimised to adjust the training parameters. It is the
distance between the target value and the values predicted by the model. In other words,
loss is the value that represents the summation of errors in a model. Generally, the loss
value is a subjective metric whose value depends on the loss function and the preprocessing
of the data points. Hence, its distance between the true value to the prediction made by the
model depends on the range of the data values.

For classification problems, accuracy is a more interpretable performance metric. It de-
scribes the number of errors made on the data, by what percentage of the test data are
correctly classified. Both, accuracy and loss, are not equal, and their correlation allows
room for interpretation. The best case is high accuracy with low loss, which refers to low
errors in a few data. Although loss is the perfect choice for optimising training, accuracy
better represents real-world applications, but with the drawback of losing information about
distances. Generally, to interpret the results for multiclass classification in a more precise
way, confusion matrices can be used (see Fig. 2.8). A confusion matrix shows the correlation
of each class prediction and can be described for a two-class problem by four quadrants (i.e.,
True Positive (TP), True Negative (TN), False Negative (FN) and False Positive (FP)). The
descending diagonal represents the TP and TN values, which are desired to be high for a
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good classification. Below the diagonal are FP and above the diagonal are TN. Although for
some classification applications (i.e., recognising cancer) their difference is crucial, for our
application they will not be distinguished.3
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Figure 2.8: Schematic representation of a binary confusion matrix with the actual values on
the horizontal axis and the predicted values on the vertical axis. Adapted3.

Another performance metric, F-measure (F1-score), shows how the model performs relative
to all classes and is a more accurate performance metric for multiclass classification than
accuracy TP+TN

Total
.4 F1-score takes FP and FN into account, and its definition includes preci-

sion TP
TP+FP

and recall TP
TP+FN

. The final F1 score can be calculated for the total number of
classes (see Equation 2.4).

F1 =
n∑

i=1

2 · wi · precisioni · recalli
precisioni + recalli

(2.4)

Where n is the number of samples and wi the weighing factor of the imbalance within the
classes [38].

3https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5, last accessed on 20.11.2022
4https://medium.com/@shrutisaxena0617/precision-vs-recall-386cf9f89488, last accessed 24.11.2022
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2.2.5 Types of Neural Networks

After knowing the basic terms about NN training and evaluation, different types of NN are
discussed. Generally, neural networks can be classified into different categories (e.g., struc-
ture, data flow, neurones, layer, or density). Therefore, this chapter focusses on fundamental
networks with regard to their main characteristics. As mentioned in Chapter 2.2.3, ANN
is a general neural network, which can cover several architectures (e.g., CNN, RNN, etc.).
However, due to the large number of different networks, the focus is on the most common
[34].

Deep neural networks

DL involves neural networks with layers that extract a hierarchy of features from the raw
input images. From an architectural perspective, these neural networks typically consist
of different layers (e.g., input, hidden, output) with neurones, activation functions, and
weights. The depth of the system is determined by the number of layers between the input
layer and the output layer, called the hidden layers. Each hidden layer is vector valued
and receives input from the previous layer, multiplies it with weights, and computes its
activation value. Historically, a deep neural network (DNN) was defined as a network with
a depth of >2. This definition has changed with the rise of new models to hundreds or
thousands of layers. Therefore, the larger the depth of DNN, the greater the representation
capacity within the network. Although its great to increase the size of the neural network,
its not always necessary and also comes with some downsides. These are mainly based
on increased computational resources and the aspect that performance cannot be further
increased. In general, all the network architectures mentioned in the following (i.e., MLP,
CNN or RNN) can be considered as DNN. If they are also called DNN depends on the depth
of their networks. It is worth mentioning that a special layer within the neural network is
the so-called fully connected or dense layer, where the neurones in a layer are connected to
all neurones in the previous layer. The drawback of this special network is that the number
of parameters increases rapidly, increasing computational costs [34].

Feed Forward Neural Network

Feedforward neural networks are one of the most basic networks, since the information flow is
one-directional from input x through computations to output f(x). This feedforward neural
networks can be either single-layered or multi-layered. A special multilayer feedforward
network NN is a multilayer perceptron (MLP). It consists of at least three layers (i.e., input
layer, hidden layer, and output layer) with an additional activation function. Generally, a
feedforward NN is called MLP if it consists of fully connected layers or a specific activation
function. Furthermore, the output of such NNs can be a function f(x), which can be
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composed of a chain of functions (see Equation 2.5) presented by the depth of the model n
(i.e., number of layers in the network).

f(x) = f (n)(f (n−1)...(f 2(f 1))) (2.5)

The general goal of the algorithm is that f(x) approximates f(x) *, which is the expected
function. Therefore, during training, x must produce a value to minimise the deviation
of f(x) * from f(x). For these networks, all weights must be selected initially and are
static for the forward path. Feedforward neural networks can be best seen as function
approximation machines to achieve generalisation. Compared to a linear model, the most
significant difference of this neural network is that it is trained iteratively by an optimiser to
the best approximation rather than solving the equation. This type of NN focusses on how
the network is capable of learning instead of changing the architecture. Another type of NN
that focusses on learning behaviour is recurrent neural networks. In general, feedforward
networks can be used for simple classification tasks or face recognition. Their benefit lies
in the fast and easy identification in one direction. The feed forward neural network is the
simplest network in terms of how information is processed through a network [24, 34].

Convolutional Neural Networks

The convolutional neural network (CNN) is type of a NN with automatic feature extraction
and outstanding performance in processing images, speech or audio. Today, most convo-
lutional networks are trained in a purely supervised fashion, using feed forward and back-
propagation through the entire network on each training iteration. Figure 2.9 shows the basic
structure of a CNN, which contains one or more convolutional layers followed by pooling lay-
ers, where the output of these layers goes to a fully connected layer to classify the image.
These convolution, pooling, and activation procedures can be repeated until multiple layers
are represented within the network. The input of CNN is handled batch-wise and consists of
an image, typically transferred to an array with rows, columns, and colour channels, where
each entry represents one pixel. Afterward, the convolution process slices the input image
into different feature maps and the pooling process downsamples the size of the convolution
layer by using a pooling filter, thus increasing the invariance of the system. However, these
two procedures of NN generally require fewer parameters than a fully connected layer. While
the number of parameters describes the complexity of the network, the number of layers de-
scribes the depth of a NN. Each of the layers represents a different output of feature maps.
Usually, edges and corners are detected in the first step, the complexity of the features will
increase with higher depth and eventually transform into abstract formations. In the last
step, a fully connected layer is fed, where each input represents an abstract feature of the
initial image. The output of the fully connected layer should be a confidence score that
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predicts every class label. Depending on the activation of the different features, a forecast
can be given of what the input image tries to present. Moreover, the results may not lead to
a unique identification and the boundaries might be blurred. Therefore, adequate algorithm
training is required to improve its classification performance. In general, the significant be-
nefit of CNN is the unnecessary extraction of manual characteristics, while its basic principle
relies on weight sharing between layers. The key insight that justifies CNN for image clas-
sification is that we do not need complete information from all input data simultaneously,
but rather have information only at the local level [12, 20].

Figure 2.9: Schematic representation of a CNN for image classification. The input im-
age is passed through convolutional and pooling layers into a fully connected layer for
classification [12].

Filters and Features The convolution process concentrates on the proper extraction
of image characteristics or patterns. Therefore, a processing technique (i.e., filtering) is
required that determines specific patterns within an input (i.e., pixels of an image) and
changes its values without changing the position. These patterns are striking characteristics
of the image. Usually, every characteristic of the input image that supports the algorithm to
detect the appropriate solutions is a feature. These features are detected by the weights of
the filter, which alters the structure of the feature. Therefore, element-wise multiplication
of an input array with an array of weights is referred to as a filter or kernel, which is the
detector of features. For example, the detection of vertical lines (i.e., features) in an input
image can be accomplished by a 3x3 filter (i.e., kernel size), where each filter entry illustrates
one weight (see Fig. 2.10a). Another low-level feature extractor is the 3x3 filter for corner
detection (see Fig. 2.10b) [26, 37].
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Figure 2.10: (a) Schematic illustration of a 3x3 filter for vertical line detection within an
input image [26]. (b) Schematic illustration of a 3x3 filter for edge detection within an input
image [26].

These filters are usually a fraction of the size of the input image and can be drafted manually
or automatically by the algorithm. In CNN, the filters are automatically chosen to find the
most suitable features. Therefore, the filters are designed to systematically scan the input
image for features according to a pre-selected scanning procedure. The repreated scanning
on one input allows one to extract all important characteristics to create the feature map
(i.e., activation map). In summary, an input such as the pixels of an image is multiplied by
a filter to create a feature map (see Fig. 2.11). When a stack of filters is applied to a layer,
multiple feature maps can be extracted. However, the application of such a filter often comes
with the so-called border effects and occurs depending on the filter scanning procedure. This
effect reduces the size of the feature map compared to the input and can be a big deal for
small images with large filters due to the fast loss of information. Suppose that every pixel
of the input image once has the opportunity to be in the centre of the filter. Scanning of
the input is no longer possible without moving beyond the boundaries of the input image,
resulting in the border effect. Therefore, the extension of the area (i.e., addition of pixels
outside the image boundaries) in which the kernel works allows for a scanning strategy,
which is called padding (i.e., hyperparameter). Without padding, the corner pixels would
be examined only once, leading to a reduced output size after scanning. A second way
to manipulate the scanning procedure is to change the movement of the filter within the
input image (i.e., stride). This allows filter overlap when processing an input image, which
consequently changes the output size. While padding is used to treat every pixel in the input
equally, stride allows one to manipulate the movement of the filter and the size of the feature
map. For example, a stride of 2 is used to half the input size [26, 37].
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Figure 2.11: Schematic representation of filters and feature maps with stride and pooling.
The illustration is adapted from [26].

Convolution Convolution originates from the idea that fully connected layers connect
every value from one layer to the next, which might not be required to extract meaning-
ful features. The term convolution describes the connection of two functions that overlap
from different layers. Mathematically, convolution is a linear operation that multiplies some
weights (i.e., filter) with input, similar to the traditional NN. However, convolution was
designed to elementally multiply a two-dimensional array of inputs (e.g., image pixels) with
a two-dimensional array of weights, often referred to as a filter or kernel. Therefore, con-
volution can be described as applying a filter to an input that results in the activation of
pixels. The filter’s size is usually smaller than the input, allowing it to extract details. Each
filter is a channel of the convolutional layer and processes only one characteristic of the layer.
Although the depper layers can see the entire image (i.e., global features), the early layers
learn more local features. The scanning of the entire input of the layer with different filters
results in feature maps (i.e., activation maps), of multiple features. In other words, instead
of increasing the layer count to learn more features, the filters are replicated within a layer
using a depth size D (i.e., hyperparameter), which is known as a feature map. While tradi-
tional ML approaches rely on hand-crafted filters, convolution automatically detects features
anywhere in the input image. This feature detection capability is based on stochastic gradi-
ent descent training, where the network is forced to extract features that minimise the loss
for the specific task at most [24, 26].

Pooling As already mentioned, by implementing convolutional layers, the positions of fea-
tures can be precisely detected within an input image. However, convolution performs poorly
if the location of the feature is altered (e.g., rotation of the image), leading to a different
feature. Therefore, pooling addresses this problem by downsampling feature maps that still
contain critical structural elements of the feature without fine details. This pooling layer
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is accomplished similarly to the convolutional layer and increases the system’s robustness.
Downsampling is achieved by summarising the feature maps into patches and applying a
pooling layer. Alternatively, this can be accomplished by stride by changing the step size of
the filter during convolution. However, the more robust way is to use a pooling layer after
applying the nonlinearity function of the feature layer. This pooling layer can be generated
by a small filter (e.g., 2x2 pixels) with a specific stride (e.g., 2 pixels), which consequently
reduces the output of the pooling layer by a factor (i.e., 2) compared to the feature map.
The variation of the pooling filter and the stride allows generating different outcome sizes.
The two main pooling procedures are average pooling and maximum pooling. While max-
imum pooling extracts the maximum pixel value for each filter, average pooling calculates
the average value. Therefore, pooling combines all pixel values of one filter into one value.
This new capability of pooling layers is referred to as model invariance to local translation,
where a translation of the feature in the image will not change the pooled output. Generally,
maximum pooling has overtaken average pooling, as it is more valuable to highlight the most
present feature in the filter compared to the average value. In summary, the main difference
in convolution compared to pooling is that each feature map is processed by a different filter
and pooling applies the same procedure to every feature [24, 37].

Recurrent Neural Networks

If MLPs are extended to include feedback loops and have the ability to save state information
f(x)state, they are called recurrent neural networks (RNNs). These feedback loops can be
generated by processing the previous outputf(x)state−t after a specific time step t. Therefore,
RNNs consists of a structure with multiple states and can share the parameter weights
between those. Such networks usually save a part of the layer output in memory, which is
further processed with the actual input from the next state. However, the complexity of
network training increases with the captured time span and the dependencies of its states.
A recurrent neural network is especially used for tasks that require the previous output to
detect coherence. In such cases, the data is primarily dependent on historical information.
Applications include text processing (e.g., grammar checks) or text-to-speech processing.
The challenge of RNNs is to train networks over a long period of time to capture the desired
connections. This can be handled using the strategy of Long Short-Term Memory (LSTM).
LSTM is a subtype of RNN, including a memory for state saving, and addresses the problems
of RNN by limiting the information flow through time steps through gates. Typically, an
input gate controls the input from the last layer and an output gate controls the output
from the next layer. Its strength lies in efficiently processing time-series data that might
have some time gaps (e.g., losses within video frames) [15, 34].
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State of the Art

The daily tasks of human workers in factories are often supported by assistance systems.
Since the supportive behaviour of these assistance systems might generate additional at-
traction for human workers, a system that can adapt and reduce the cognitive load on the
human worker is desired. To enable this, the system can be context aware by capturing the
environment of the human worker. One way of developing systems aware of the environment
is to use image recognition. The captured images can be fed into an algorithm, which is a
combination of data mining and image processing. While data mining attempts to answer
the question of how image characteristics are extracted, image processing is focused on the
preparation of images for the algorithm input. Image processing reshapes the resolution
of the extraced images to fit the algorithm demand. Although improved image resolution
might help increase the overall performance of the algorithm, it negatively affects latency
due to the higher processing time. To effectively use data mining, the aspects of handling
large amounts of image data and low latency for application execution must be considered.
To fulfil the first aspect of handling large amounts of image data, the assistance system
must be able to dynamically extract the context of the environment. To enable dynamic
working environments, the overall latency of the algorithm has to be in the range of some
milliseconds. This allows one to feed back the processed input to the user at an appropriate
time. Image classification is an application which can fulfil the aspects of data mining. The
term image classification can be understood as the classification of images into particular
categories of information. However, the image classification algorithm also underlies some
essential requirements. To enable low latency, training the image classifier using histor-
ical data is important. This historical data can be provided by images that illustrate the
characteristics of the different workplace categories. Lastly, the classifier must fit the applic-
ation case and perform the classification with a high degree of accuracy. Therefore, image
classification can be used in the field of Image Mining within the Smart Factory and can
provide useful information about the content of an image, especially in the human working
environment [39].
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Today, convolutional neural networks (CNN) are the state-of-the-art approach to solve prob-
lems in the field of images. A CNN has the ability to handle zoom or translation invariance
within the image, due to its special layers (i.e., convolution and pooling). Moreover, CNN
can reduce the parameters required due to its special layers, compared to a fully connected
network, which consequently benefits the fluent real-time application. Usually, during the
image classification approach, the entire image is observed. Therefore, the most efficient
characteristics can be extracted in each layer of the NN, starting from the corners and edges
of the first layer and increasing to higher-order characteristics for the deeper layers. These
identified patterns and structures of the image are used to derive semantic information. A
special-case image classification approach is scene classification, where the region of interest
is both foreground and background. It is a semantically coherent view of a real-world envir-
onment, including multiple objects. A scene content can exhibit different unique identifiers,
which include objects inside the image, the locations and relations between objects, the sur-
roundings of the objects (i.e., background) and even events inside an object, which describe
an activity inside a specific environment. The goal of scene classification is to classify an in-
put (i.e., images) based on its ambient content, objects, and layout into a countable number
of classes. To understand what the most promising software for this use case looks like, a
rough idea of how the latest deep learning technology can be applied is required [30, 40].

As discussed in Chapter 2.2.2, supervised learning algorithms need labelled input data,
which allows to train a NN. Since the use case application should be made for the specific
environment of an assembly factory, our network requires labelled data (i.e., images) with
this specific information. Therefore, state-of-the-art research is conducted to find the latest
datasets that contain basic structures and objects. Most likely, these datasets will not contain
all the context required to solve the desired classification. However, these dataset can be
used as a good starting point for transfer learning to pretrain the model on low-level image
features. By choosing a dataset with similar scenes to our use case, transfer learning those
scenes allows extracting image characteristics. By learning image features through transfer
learning of existing datasets, high-level features from the assembly factory environment will
not be learnt well enough. Developing our own dataset, which represents these high-level
features, is necessary to cover the full context of the use case. However, the appropriate
choice of the dataset is not only important for our own application. Moreover, the choice of
the model architecture is a crucial part for providing a solution that meets the requirements
of the use case. It must be complex enough to extract details and simple enough to operate
at low computational costs [40].

To find the most promising datasets and model frameworks, state-of-the-art research is
carried out. Therefore, datasets are examined that include similar scenes for the working
environment of our application. In addition, learning strategies, hyperparameters, and net-
work architectures of other applications are examined to find features and gain insight for
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the model construction of our own application. To fully understand the importance of these
specific attributes, the use case and its operational goal will be described in the experimental
part. In general, the state-of-the-art chapter covers dataset research that is used to extract
low-level features, important aspects in generating a dataset for deep learning, and different
model characteristics and architectures.

3.1 Datasets for Scene Recognition

Before fitting and optimising the network to its specific needs, the foundation must be
built carefully. Without a suitable and high-quality dataset, training a neural network can
become a serious challenge. Since the use case application should be made for an assembly
factory, suitable images must be gathered that describe that context. Furthermore, the
specific characteristics and boundaries of the human working environment must be defined
to limit the operationability of the application to certain constraints. Therefore, a boundary
of our use case is that all assembly images are located indoors, which limits the dataset
to indoor images. By indoor scenes, we assume that the assembly is principally within a
factory building where the full sky is not visible except for windows. In general, classification
of indoor scenes is a challenging topic and can often not meet the accuracy of an outdoor
scene classification task, due to many reasons. Human-made buildings and objects often
show higher similarity than natural objects and require more effort from the algorithm.
Furthermore, the focus on indoor scenes impedes classification due to poor and artificial
lighting conditions. Additionally, since workplace predictions should be made dynamically,
the dataset should contain any random scenes within the factory. Finally, these real-time
predictions are based on data supplied in time sequences or videos, which capture scenes
with temporal alterations [40].

3.1.1 Challenges in Datasets for Scene Recognition

Although the boundary conditions within the dataset can mitigate the challenge of scene
classification, there are still other difficulties that exist. The two main ones in operating
with scenes are annotation ambiguity and visual inconsistency, which are concluded from
the nature of the scene context in the dataset. The first, visual inconsistency (see Fig.
3.1a) states that the same scene category shows significant differences in appearances, and
the second, annotation ambiguity (see Fig. 3.1b) refers to different scene categories that
have similar objects or appearances. Both challenges are owed by the human that generates
the dataset. Generally, the annotator must rely on his intuition and knowledge to label
training data with scenes consisting of varying intrinsic factors (i.e., objects, background, or
human activities). Therefore, scene categories are subjective and do not occupy a categorical
distinction [40].
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Visual inconsistency describes a high intraclass variance of a scene category which is based
on low to no similarity of features between images. This significant difference in appearance
within a scene category is caused by the subjective processes of labelling images into various
categories. Furthermore, the annotation of images is impeded by different image conditions
(e.g., shading, blur motion, poor resolution, filtering distortion, etc.) that increase the
effects of intraclass variance. Therefore, large differences within the context of two scenes
can occur, making it nearly impossible to visually connect both and classify them into the
same category. On the other hand, annotation ambiguity goes along with a low inter-class
variance, where the same visual occurrences in different categories result in class overlaps. If
large amounts of specific features are represented in multiple classes, confusion or uncertainty
for the classifier is the result. A clear prediction of a class might no longer be possible, which
will cause random behaviour during classification. This is especially the case if a dataset
consists of a large number of categories. A probable solution to this behaviour is to assign
multiple ground-truth labels to one category. The ground-truth labeling can be done by
applying an existing classification algorithm, trained on a working dataset, on the ambigous
dataset. Based on this information, super classes can be built which combine similar classes
to achieve higher classifier precision [31, 40].

(a)

(b)

Figure 3.1: Illustration of the two main challenges of scene datasets. (a) Visual inconsist-
ency due to the same scene category (i.e., mall) but with images of different content. (b)
Annotation ambiguity due to different scene categories (i.e., library, archive, and bockstore)
but with similar content information within categories [31].
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3.1.2 Publicly Available Datasets

Most of the publicly available datasets focus on object categories, which provide labelled
data in numerous ways (i.e., bounding boxes, segmentation, etc.). Although these datasets
were built for object recognition, transfer learning of these datasets can be a valuable choice
to pretrain a network for scene recognition. Pretraining the model parameters on datasets is
especially useful when the available dataset is small. Without any pretraining, the weights of
the model are initialised randomly, making the training of a small dataset more challenging.
Although the entire scene content is relevant for classification, training on an object-based
dataset is feasible, since the actual use case scenes might have similar or the same objects
within them. Therefore, the extracted features of the objects are partially inherent within
the actual scenes, making it a good choice to get a first impression. Moreover, since the
dataset for the use case was defined on the basis of characteristic objects within the working
environment, learning these or similar objects can be beneficial. However, since multiple
objects are possible to appear in one record of the human worker, the image might not
be solely classified on one object, since the entire scene plays a significant role. In the
following, relevant datasets that contain important objects or scenes for transfer learning
are descirbed [31, 40].

ImageNet is a object-centric dataset which was built on the hierarchical structure provided
by objects defined by WordNet. These objects are organised in different classes within a root-
to-leaf structure with large subtrees (e.g., vehicles) unfolding into synsets (e.g., sailboat).
The systematic way of organising data allows ImageNet to be more accurate and diverse
on a larger scale than other datasets. ImageNet currently contains 14.197.122 images1 with
21841 indexed synsets2, where each synset consists of 500-1000 images [41].

The scene-centric dataset MIT Indoor 67 (i.e., MIT67), is focused on indoor scenes such
as stores, buildings, or public spaces. It consists of 15.620 images3 from 67 indoor scenes4,
where each image has a minimum resolution of 200 pixels [31] on the smallest axis. The
dataset authors Quattoni and Torralba [42] state that most outdoor scenes can be categorised
by global image properties, while for indoor scenes characterising objects might be more
preferential. In addition, they state that local and global image information is important for
the recognition of indoor scenes [31].

Another dataset is the Scene UNderstanding 397 (i.e., SUN397 ) dataset, which comprises
397 categories [43] sampled, including 175 indoor scenes [43]. The dataset contains 108.754
images, where each scene has a minimum size of 200x200 pixels [43]. The SUN dataset
categories were built similarly to ImageNet on the basis of the WordNet approach, which

1https://www.image-net.org/, last accessed on 20.08.2022
2Ibid.
3https://web.mit.edu/torralba/www/indoor.html, last accessed on 20.08.2022
4Ibid.
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includes 70.000 words [43] to describe scenes. After preprocessing (e.g., grouping synonyms
or separating classes described by the same words, etc.), 397 categories [43] with unique
identities that have a minimum of 100 images [43] were remaining. Therefore, the prepro-
cessed SUN dataset is often referred to as SUN397 dataset. This dataset is motivated by
the authors, Xiao et al. [43], who proposed that the current scene dataset tasks fail to
capture the richness and diversity of the scenes. They believe that recognising the types of
scene within an image is more valuable than labelling an entire image with a scene. This
means that one image is represented by a combination of multiple scenes, similar to real-
world applications. Furthermore, they state that human performance is not necessarily the
upper limit of classification, as computational methods could reach higher accuracy in some
categories [43].

Zeng et al. [31] state that publicly available datasets, without semantic labelling, are not
large and rich enough to cover the high diversity of environmental scenes. Additionally, the
scene categories are often unbalanced, and the large variety of images in the classes results in
a poor prediction of infrequent images within a class. Scene classification often lacks closed-
world assumptions and is not robust enough to be used in different applications. Therefore,
datasets are required that include segmental annotation information. The LabelMe dataset
includes, within the training set, 1000 fully annotated images5, and around 2000 partially
annotated images6 with 32.164 labelled objects7. Figure 3.2 shows an annotated image
from the dataset LabelMe, where the lines indicate the segmented objects. However, for our
proposed method within the use case, the scenes have a semantic multiplicity, where a scene
belongs to multiple semantic classes. Therefore, multi-label images that include multiple
classes are required, or only the most obvious class is assigned [31].

Figure 3.2: Visualization of the annotation of a kitchen image from the LabelMe dataset.
The lines around the scene content represent segmented objects (e.g., barstool, etc.) [44].

5http://labelme.csail.mit.edu/, last accessed on 10.09.2022
6Ibid.
7Ibid.
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Zhou et al. [45] claim that, in general, scene recognition does not achieve the same perform-
ance as object detection, trained on ImageNet. Datasets, like MIT Indoor67 and SUN397
failed in terms of quantity to feed deep learning algorithms. Therefore, they introduced the
Places365 dataset with 10 million labelled images8 of scenes. Places365 is a scene-centric
dataset, which was built to complement large object-centric datasets such as ImageNet. A
dataset of this size ensures that CNN training becomes feasible and that the diversity of each
class can be covered. It includes 434 scenes9 that account for 98% [46] of scenes a human
can encounter in the natural and human-made world. These scenes were selected with some
minor changes from the SUN397 database, which was based on WordNet. However, it is
worth mentioning that each class of the dataset includes 15.000 to 30.000 training images
[46], each image with a minimum size of 256x256 pixels [46]. To extract the richness of
features from such a large dataset, the model architecture must be complex enough. If not,
the large size of the dataset will not be beneficial and will not increase the robustness or
performance of the system. Furthermore, Figure 3.3 is an illustration of possible categories
show similar features to the environment [46].

(a) Archive (b) Assembly Line (c) Basement (d) Cublicle Office

(e) Dining Hall (f) Garage Indoor (g) Storage Room (h) Repair Shop

(i) Phys. Laboratory (j) Pantry (k) Office (l) Home Office

Figure 3.3: Illustration of relevant categories from the Places365 dataset for pretraining the
model.10

8http://places2.csail.mit.edu/, last accessed on 20.10.2022
9Ibid.

10http://places2.csail.mit.edu/explore.html, last accessed on 20.11.2022
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Furthermore, the authors state that the Places365 dataset is more diverse and dense than any
other scene-centric datasets. Diversity and density are important to validate the perform-
ance and robustness of the algorithm. If a dataset is not diverse and dense, its generalisation
capability is low. While high density signifies that images generally have a high amount of
similar neighbours, high diversity describes great richness within the scenes. Moreover, the
authors show that there is a difference between the features learnt with an object-centric
approach and a scene-centric approach CNN. Scene-centric CNNs have the capability to re-
cognise more richness inherent in the scenes. During building their dataset they realised that
datasets which include the same visual classes yet have different generalisation performance.
However, the comparison between three mentioned datasets Places, SUN and ImageNet il-
lustrates that the Places dataset is more diverse and dense than the other three datasets (see
Fig. 3.4a). The Places dataset has the best density and diversity, and also has the highest
number of scenes per category (see Fig. 3.4b) [45, 46].

(a) (b)

Figure 3.4: (a) Comparison of the density and diversity of the datasets Places, SUN, and
ImageNet [45]. The Places dataset achieves the highest diversity at an equally good density.
(b) Comparison of the number of images per category of each dataset. The Places dataset
has the highest number of images [45].

Due to the limitation of available images for various application areas, researchers have also
tested dynamic scene data by extracting images from videos. Furthermore, research has been
conducted to directly apply dynamic scene data to an algorithm. The challenge in generating
dynamic scene data lies in separating camera motion from inherent movement within the
scene. Considering a camera motion as an addition to the movement of activities within
the image, algorithms become uncertain about detecting meaningful features. However,
describing an image is not necessarily done using deep learning techniques. Researchers have
also tried a chaotic system framework for classification that does not follow any sequential
order. In conclusion, dynamic scene data is an upcoming field of research with some minor
drawbacks, which currently lacks qualitative data [40].
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3.2 Model Frameworks for Scene Recognition

Since the choice of the right deep learning network is motivated by the complexity of the
application, the architecture should be chosen to best suit the needs of the use case. In
general, there are two different temporal differentiations for scene recognition, static scene
recognition, and dynamic scene recognition. Static scene recognition focusses on classifying
scenes based on spatial information within the scenes, without considering any temporal
changes. It can be done by either a scene-centric or object-centric approach, where either
the scene or the object is in the centre of recognition. On the other hand, dynamic scene
recognition addresses spatial networks by additionally considering the temporal aspects of
the scenes. These temporal changes are mainly based on analysing the change of scenes
between different states. In this chapter, a basic introduction to static scene recognition is
given, and further network architectures or characteristics of models are analysed [31, 40].

3.2.1 Static Scene Recognition

Static scene recognition is treated as a method of scene classification in which the input of
the model exhibits scenes in different states. In a high-level approach, there are two main
detection strategies for static scene recognition. Scene recognition based on object-centric or
scene-centric approaches. For scene-centric approaches, the classifier dives into the surround-
ing area of the object and tries to classify the image based on the entire content. Therefore,
further semantic labelling might be necessary to identify the connection between semantic
parts (e.g., objects, textures, or background) within the scenes. In scene recognition, if the
input images do not include semantic labelling, the model must learn contextual features
from images with high-level convolutional layers. Therefore, CNN is expected to learn the
deep features presented in the image. Although CNN has been trained on a dataset without
any semantic labelling, the network still identifies semantic clues in the image by detecting
objects alongside contextual clues. However, we want to detect the entire context of a scene
without loss of information. A technique which allows detection of the entire image and
not just the object is of interest. The concept of a scene-centric approach is to understand
the content of the image holistically, by finding low-level features or segmented regions to
conclude on the image context. In contrast, the object-centric approach is the procedure to
classify a scene based on the response of an image to multiple object detectors (i.e., object
bank). Therefore, the objects are identified within the scene and the appropriate scene based
on the inherent objects is determined. Undoubtedly, this approach is useful for describing
multiple significant objects inside scenes and capturing high-level visual representations. For
indoor scene classification, it might not be enough to extract just the objects, since poor
performance can occur if the same objects are presented in different scene categories. Thus,
the classification performance of scene-centric CNNs is expected to be better than that of
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object-centric CNNs, since for indoor scenes features in different scales of the image can be
extracted. In addition, they may extract more detailed information from a scene, such as
fine local semantic regions, which are crucial to discriminate ambiguous scenes [31].

Due to the lack of sufficient dataset sizes in scene recognition, the latest research has focused
on dynamic scene recognition using videos as input. To directly process the videos without
any frame extraction, dynamic scene recognition captures, in addition to the extracted spatial
features from static scenes, temporal information that connects these static scenes. The
challenge of dynamic scene recognition lies in creating a model that is powerful enough to
capture spatial and temporal information about the scene. RNN are the perfect choice to
solve these tasks, especially LSTMs with the capability of short-term and long-term memory.
Another applied architecture is T-ResNet which is based on a residual network. The T-
ResNet model shows strong performance for objects with linear motion but has difficulties
in mixed motion patterns (i.e., intrinsic scene dynamics and camera motion). However, it is
possible to use static scene recognition in a dynamic way by extracting image sequences from
a video. For example, every second an image can be extracted from a video and classified
into a category. This technique is less computationally intensive and can fit the need for an
application area in which qualitative datasets are available [40, 47].

3.2.2 Network Architectures of Scene Recognition

CNN Models for Scene Recognition

AlexNet is a neural network architecture, designed by Krizhevsky et al. [35], which shows
that model depth is important for performance. However, this performance gain comes at
the cost of more model parameters and longer processing time. Jmour et al. [48] have used
a scene-centric strategy, where neural network training was accelerated by using pretrained
model parameters to classify traffic sign images into 4 different categories. They have imple-
mented this system using the well-known AlexNet architecture combined with some transfer
learning techniques. Transfer learning is important, to initalize weights for training and
consequently improve network performance. Without targeted weight initialisation, gradi-
ent descent might not reach a local optimal minima for these nonconvex functions. After
pretraining the initial parameters of their model on a different dataset, all layers beside
the last one were frozen. Freezing keeps the parameters within the frozen layer constant,
without any update by further training. Finally, the parameters inside the last layer are
trained based on a more specific dataset consisting of 360 traffic sign images [48]. For the
traffic sign classification approach, the authors have remarkably achieved a 93% accuracy
[48] for the test set. However, the well-known AlexNet architecture is not state-of-the-art
anymore due to various reasons (e.g., kernel size too large, low amount of layers, etc.), and
new architectures have replaced its position [31].
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Therefore, the authors Xiao et al. [49] stated that the original AlexNet model is outdated
due to reasons such as large convolutional kernels or high stride in the first layer. During
training, this large convolutional kernel and stride lead to a rapid decline of the input shape
after the first layer, which corresponds to a loss of spatial information. However, the authors
suggested decomposing the large convolutional kernel into a cascade structure with small
convolutional kernels and a reduced stride. Since scene images have a rich foreground and
background, a smaller convolutional kernel can recognise more fine-grained local features to
distinguish between the targets within the scene. After changing the old-fashioned AlexNet
model with some new design features, their model improvements on different datasets could
be verified. Finally, they have tested their improved AlexNet model in 23 categories [49]
from the Places 2 dataset with 22650 total images [49] and achieved with 72% almost 10%
[49] accuracy improvement compared to its unchanged version [49].

Deep Residual Network The choice of the right depth of a network is always an im-
portant decision. When choosing a network that is too shallow, the network might not be
able to learn all the desired complex tasks. As learnt by the authors [31, 49], one can think
that choosing a network that is deep enough could solve this problem. But in the early
stages of neural networks, training a deeper architecture (i.e., more layers) was not always
beneficial. During training, such networks stopped improving with a higher training error
than its shallower counterpart (i.e., degradation problem) (see Fig. 3.5a). This degrada-
tion is not caused by overfitting, as the deeper model is stuck with a higher training error.
Instead, it results from the initialisation of the network, the optimisation function, or the
backpropagation algorithm (i.e., vanishing or exploding gradients) [50].

(a) (b)

Figure 3.5: (a) Difference in training error between a 20-layer and 56-layer plain neural
network over the number of iterations. The higher training error is notable for deeper NN
[50]. (b) Schematic representation of a residual block of a residual neural network, where
identity mapping ensures that the deeper layer does not perform worse [50].
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Generally, in NN the deeper nodes have a wide diversified connection to the nodes in the
early layers. If these deeper nodes lose information during backpropagation (i.e., the gradi-
ent approaches 0), the information cannot be passed to the earlier layers and the training
improvement might stop. In contrast, if the gradients explode, training of a neural network
becomes more challenging due to larger weight updates. However, as CNN depth increases,
weight updates for the model make the training procedure unstable, increasing the risk
that the gradient falls or explodes. This problem has been encouraged by the architectures
of neural networks. For example, normalisation layers within the network keep the model
weights low for computational purposes, but increase the chances of a vanishing gradient
[31].

To address this issue, residual networks (i.e., ResNet) can skip the hierarchical structure of
CNNs by allowing the gradient information to be passed through layers without computation.
Instead of hoping that each layer reaches a lower training error, as in traditional approaches,
it is explicitly desired that each layer fits a residual mapping (see Fig. 3.5b). The residual
mapping is formulated by F (x)+x, which can be carried out by feedforward neural networks
with shortcut connections. These shortcut connections are responsible for skipping one or
more layers during one training phase. Layers with one shortcut connection are specified
as the residual block (i.e., stack of layers). These residual blocks make it possible to learn
identity functions. Therefore, the identity mappings replicate the input of the residual
blocks to its output, which ensures that the higher layers do not perform worse than the
lower layers. The ResNet architecture, consisting of multiple residual blocks, avoids signal
loss by vanishing gradients with the help of skip connections, consequently increasing the
accuracy of deep networks by optimising the training procedure [50].

The authors He et al. [50] tested this strategy by building a residual network on a plain
network, which was inspired by the VGG-19 architecture. Their residual network has a
lower complexity than the VGG-19 network, its parameter size is only 18% [50] of it. This
plain network consists of 34 layers with 3x3 convolutional filters, which were upgraded with
shortcut connections to its residual version. The input images of the network were a random
region of 224x224 [50], which were cropped from the resized 256x480 images [50]. Further-
more, the network includes batch normalisation layers, SGD as the optimisation function,
a batch size of 256 [50], an initial learning rate of 0.1 [50] that decays at 32.000 iterations
[50] by 10. Moreover, the model is trained for 60.000 iterations [50], with a weight decay of
0.0001 [50] and a momentum of 0.9 [50].

Researchers A. Shah and K. Rana [51], focused on the classification of indoor scenes using a
scene-centric deep learning technique based on residual neural networks. The classification
should include different states (i.e., empty, partially empty, disciplined, or indisciplined)
of the class room scenes. Therefore, they developed their own dataset that contains these
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state information. However, the lack of representatives within their dataset encouraged them
to pretrain their model with the object-centric ImageNet dataset. After pretraining, they
fixed the weights of some early layers to ensure that these early parameters do not change
anymore, keeping the richness learnt for low-level features. As a model they have chosen
a ResNet architecture (i.e., 152 layers), where one residual unit consists of convolutional,
batch normalisation, activation, and pool layers. The dataset that includes high-level feature
information was images extracted from videos, resized to a shape of 224 x 224 pixels for the
network input [51]. In the last layer, they used a softmax classifier to identify the label. As
a result, their approach has achieved an accuracy of 83% [51] on a classroom scene test set
[51].

Efficient Neural Networks Afif et al. [52] developed an application for five selected
categories of common indoor scenery in the MIT67 dataset. The goal of their work was to
develop an indoor scene assistance system for robot service and blind people. Therefore,
they have chosen a network built on the EfficientNet architecture that exhibits the desired
inverted bottleneck structure. EfficientNet provides a new approach to network scaling, by
uniformly balancing the depth, width, and resolution of the model. As evaluation method,
they have chosen the cross-entropy loss function. They trained their network for 10.000
iterations [52] with a learning rate of 0.01 [52]. Furthermore, they selected a training and
validation batch size of 100 [52]. Their system achieved around 95% accuracy [52] for a
truncated MIT67 dataset, consisting of 5 classes, and reached a processing speed of 12 ms
per image, which corresponds to 83 FPS [52].

Advances Image Classification with CNNs

In recent years, new architectures (i.e., VGG, ResNet, DenseNet, etc.) have been proposed
that steadily increased the accuracy of the model. However, these improvements in model
accuracy are not the result of improved architecture alone. Small refinements in the data
preprocessing strategy or training procedure, such as loss functions, learning rate sched-
ulers, or optimisation methods, played a huge role in achieving this. Therefore, this short
review lists the latest implementation details for improving the training procedure or model
architecture, but barely changing the computational complexity [53].

Starting with the preprocessing strategy, a different procedure for the training and valida-
tion dataset is beneficial. Therefore, for the training dataset the following data augmentation
strategies were used: randomly changing the hue, brightness, contrast, and saturation coef-
ficients of an image between values of 0.6 and 1.4 [53]; cropping a rectangular region of the
image and resizing it into a 224 by 224 square image [53]; adding noise as a destructive factor
to the image; normalising the image by subtracting the mean and standard deviation of the
entire dataset, for weight sharing between different datasets. On the other hand, the valida-
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tion procedure does not require any special data augmentation strategy, just normalisation
and image shaping to match the input size of the network. Another augmentation strategy,
called mix-up, was mentioned, which overlaps two samples of different categories into a new
sample [53].

For model training, weights have generally been initialised based on the Xavier algorithm and
all bias parameters were set to 0. However, this weight initialisation is different depending on
the type of layer (e.g., batch normalisation, mean 0 and standard deviation 1). Furthermore,
the authors state that training is more efficient using lower numerical precision and a larger
batch size. Lowering the 32-bit floating point precision to 16-bit for the weights can increase
the overall training speed by 2 to 3 times without disturbing the training process. A larger
batch size (i.e., 1024) reduces the noise in the gradient, allowing a higher learning rate.
Generally, a larger batch size results in greater confidence in the loss evaluated. Regarding
the learning rate, they mention that a too high learning rate results in numerical instability.
Therefore, they recommend gradually increasing the learning rate from 0 to the desired
learning rate. This strategy can be perfectly implemented by cosine learning rate decay,
which further reduces the learning rate once the desired learning rate is continuously reached
to zero for the total number of batches. Decreasing ensures that if a good local minima is
reached, it will not be left anymore and will be further optimised. Compared to the well-
known step decay, cosine decay is claimed to be more numerically stable (see Fig. 3.6)
[53].

(a)

(b)

Figure 3.6: (a) Change in the learning rate over the number of epochs for cosine decay
and step decay. (b) Comparison of cosine decay and step decay for Top-1 accuracy on
ImageNet [53].
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Lastly, model tweaks are minor changes in the architecture without increasing computa-
tional complexity but with significant benefits in the model accuracy. The authors have
shown some improvements for the original ResNet network (i.e., 50 layers). Two tweaks
appeared in the downsampling block of this architecture. When the kernel size and stride
are incorrectly adjusted, information is lost during the convolution procedure. Therefore,
the authors provided a solution by correctly adjusting these parameters. Another tweak to
the original ResNet architecture is the 7x7 kernel within the first convolutional layer. It
can be replaced by three 3x3 kernels, which are less computationally intensive. Through
the improvements of these modifications, which were mainly caused by information loss, the
ResNet architecture could obtain an 1% accuracy improvement, by the cost of 3% computa-
tional speed [53]. Finally, He et al. have evaluated all their improvements for the ResNet50
architecture and achieved an improvement in the top-1 validation accuracy of 75.3% [53] to
79.29% [53] on ImageNet, compared to the unchanged model [53].

Selective Joint Fine-Tuning Ge and Yu [54] introduced a transfer learning method,
called selective joint fine-tuning, to improve the performance of deep learning tasks with
insufficient training data. Transfer learning applies the knowledge learnt in one domain
to other related tasks. In general, after training the weights of a NN with the help of a
source dataset, the weights are further optimised with the more specific target dataset. By
applying a standard transfer learning approach on datasets with a large number of categories,
this approach might lack the ability to connect meaningful features from both datasets.
Therefore, the proposed method, selective joint fine-tuning, tries to simultaneously train a
target learning task with a small dataset and a source learning task with large training data
(see Fig. 3.7). Consequently, information is shared between those to datasets during training
to increase the target training performance. This approach is based on the borrowing of
samples from a large-scale labelled dataset for the source learning task. However, the source
learning task does not use all of its existing training data, but only those with similar low-
level characteristics compared to the target learning class. The core idea of their transfer
learning approach is based on the use of a subset of similar images from the source dataset
to train one target image. We can think of it as the fact that for each image in the target
dataset, k nearest-neighbour training images from the source task are searched. During their
selective joint fine-tuning approach, the learning rates started at 0.01 and were divided by 10
every 2400 to 5000 iterations. Most of the experiments were completed in 16.000 iterations
[54].
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Figure 3.7: Schematic representation of selective joint fine-tuning. The convolutional layers
of the NN are shared by a source and target dataset. Furthermore, the loss of the NN is
simultaneously updated according to both learning tasks [54].

Hybrid Models for Scene Recognition

Multilayer feature-based method Recently, hybrid deep models have been proven to
be effective methods for scene recognition. A deep hybrid model, the multilayer feature-
based method, states that important slight clues (i.e., information) are lost if only high-
level features are extracted and fed into a classifier. Therefore, some methods use low-
level features from the early layers along with high-semantic information of the features
from the latest layers of hierarchical models. While the intermediate layers in CNNs can
capture local features, top layers extract holistic features. This extension of extracting
features from different layers allows for higher classification accuracy. However, extracting
features from all layers to classify the image can result in overfitting. Therefore, usually only
the features of some selected layers are extracted. For indoor indoor scene classification,
intermediate and high layers (i.e., parts and objects) are more important than low layers
(i.e., edges and textures), which capture only redundant and neglectable segments in multiple
categories. Another multistage convolutional network, directed acyclic graph CNNs (DAG-
CNNs), allows us to explore more complicated structural layouts. These models usually do
not operate sequentially but are graph-related. DAG-CNN combine the local features of the
lower layers and the holistic features of the upper layers, by connecting multiscale branches
to the final classification layer [31, 55].

Semantic-Aware Scene Recognition Lopez-Cifuentes et al. [56] states that the num-
ber of parameters of conventional CNNs (i.e., DenseNet-161,VGG-16, etc.) has increased
significantly compared to traditional AlexNet, although performance has only increased by
a small amount (i.e., 1% to 3% accuracy). Therefore, they provided a novel strategy to use
object-level information within scenes to improve the training process without increasing the
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number of parameters. Their approach relies on a semantic-driven attention mechanism to
direct the learning process of common-scene objects. Therefore, they used a multi-modal
model composed of a two-branched CNN, gathering context and image information, and an
attention module. This attention module is inspired by saliency theories and only concen-
trates on task-relevant image content. In general, the model is a combination of a semantic
segmentation branch and a feature-based branch to interpret semantic regions and exploit
spatial relations. As training dataset for training Places-365 was chosen for which the RGB
images were resized to a dimension of 224 x 224 to fit the input structure of the network.
By knowing where the object of interest is located within the scene or the general type of
scene, we expect that the classes we have can be narrowed down sufficiently. For example,
if a sea can be segmented within a scene, possible classes can be narrowed down, since only
a limited number of objects can interfere with this segmentation [57].

The available datasets are only image-based and not semantically labelled. They have used
an automatic semantic segmentator. The limitations of this segmentation-based approach
are based on poor or imprecise segmentation. This was especially the case for cluttered
or empty scenes. Figure 3.8 illustrates this problem that they have faced in the cluttered
office or in the empty backyard. Finally, their approach achieved a better result (i.e., 57 %
accuracy) on the Places 365 dataset than ResNet-50 (i.e., 55 % accuracy) or AlexNet (i.e.,
52 % accuracy) [56].

Figure 3.8: Illustration of class activation maps of two classes (i.e., office and backyard)
based on three different approaches. The two columns on the left show the RGB image and
the semantic segmentation. The three right columns show the classification approach (i.e.,
RGB branch, semantic branch and total network) [56].

Combination of CNN and HOI One of the hallmark tasks in human-object interaction
(HOI) is visual context analysis. The capablilty to capture HOI is important when different
interactions between humans and objects should be extracted. The way the human and the
objects interact can be analysed using different approaches. Moutik et al. [58] proposed a

63



3.2 Model Frameworks for Scene Recognition

two-stage approach with an object detector and scene classification to recognise the interac-
tion between a person and a book. Figure 3.9 illustrates this connection of two branches to
identify HOI.

Figure 3.9: Schematic illustration of a CNN workflow for HOI detection, which is composed
of feature extraction, interaction generation and interaction grouping. Within the interac-
tion generation, interaction points and interaction vectors are produced. In the last step,
interaction grouping, these are combined to give a final prediction [58].

Both branches are learning collaboratively, allowing to recognise the activity efficiently. This
is based on knowledge distillation, which aims to transfer knowledge from one model (i.e.,
teacher) to another model (i.e., student). The basic idea behind this principle is that the
teacher model transfers knowledge to the student model to obtain a competitive performance.
As teacher model, they have used scene recognition to identify different semantic regions
and as object detector, they have used a feature pyramid network (FPN). When both are
combined together, the location of the desired object can be identified more easily. The
interaction between a human and an object is identified by setting interaction points based
on the human and object centre points. Finally, the object learns to calculate an interactive
vector that illustrates the type of interaction. If the objects are getting closer, the length of
the vector becomes smaller, indicating an interaction [58].

Combination of CNN and LSTM Padoy [8] and Yengara et al. [59] developed a phase
recognition algorithm that was applied in the medical sector, especially in the operating room
during surgeries. Due to the human-machine interaction within the operating room, context-
aware systems are of great importance to strengthen this interaction. Therefore, their work
focus on real-time algorithms for automatically recognising surgical phases, allowing better
management within the operating room. This system is aware of the surgical context, human
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interactions, and movement, including activities (i.e., surgical workflow) that take place
inside the operating room. This context-aware system allows to automatically notify the user
regarding the progress of surgeries. Their approach relies purely on captured laparoscopic
videos, which should give an approximate remaining time for the current task. In case of
any inconsistency in the workflow between humans and machines, this system can make
recommendations to alter the workflow. However, since its objective is to recognise the
current phase of surgery, temporal information is required to identify progress [8, 59].

Their developed phase recognition algorithm consists of a combination of CNNs with a re-
current neural network (RNN) (i.e., long-term memory network (LSTM) (see Fig. 3.10).
While CNNs extracts spatial features from different images, LSTM allows sharing of tem-
poral knowledge between these. In particular, LSTM is important to draw conclusions about
the correlation between different states to identify the current phase. The proposed network
contains seven convolutional layers [59] that are connected to LSTM followed by a fully con-
nected layer to predict classes. End-to-end training of a two-step model (i.e., CNN-LSTM)
requires more effort than for a single-stage model, since the loss has to be backpropag-
ated through both the LSTM and CNN. Backpropagation through an LSTM network is
not identical to that of a CNN and requires a specific backpropagation through time (i.e.,
BPTT) algorithm, which works by unrolling all input timesteps [8, 59].

Figure 3.10: Schematic illustration of the CNN-LSTM architecture for surgical phase recog-
nition. Multiple states are fed into CNNs that are connected to a LSTM model [8].

They conducted training on the Cholec120 dataset, consisting of 120 lacroscopic videos [8]
performed by 33 surgeons [8]. For training, the authors have set the following hyperpara-
meters. The batch size for the CNN model was 50 [59] and for the LSTM 500x12 ( i.e.,
which corresponds to 500 time steps and 12 forward passes) [59]. As an optimiser, they have
chosen SGD or ADAM. The training was carried out between 8.000 and 50.000 iterations
[59]. The learning rate was set to 10−4 [59] if the model was pretrained, or 10−3 [59] if the
model was not pretrained. Furthermore, the learning rate was scheduled for every 1/3 [59]
of the maximum iterations, with a decay factor of 0.1 [59]. Generally, they observed that
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CNN-LSTM training converges to poor local optima unless CNN is trained independently
from the LSTM network. This application is a perfect example for dynamic scene recognition
in which activities within the surgery room can be analysed [59].

Another work includes LSTM-CNN for Human Acticity Recognition (HAR) by analysing the
acceleration of different body sensors. They proposed different model architectures for F1

performance comparsion against the UCI-HAR11 dataset, which is a dataset that includes 30
different human activities. Their initial attempts were based on a CNN architecture, which
they optimised by including a global average pooling (GAP) layer instead of a fully connected
layer and a final batch normalisation layer to stabilise the output, for which they reached a
F1 of 93.35%. Since the recording of the activities of the body sensors is a temporal sequence,
temporal information can be analysed. Therefore, they improved the CNN architecture by a
LSTM layer, which final model achieved a F1 of 95.78%. However, they observed an increase
in computation time per epoch from 1202 to 9416 ms, respectively [38].

Other works have shown the difference between static and dynamic networks for scene classes.
Therefore, Feichtenhofer et al. [60] proporsed a temporal ResNet architecture, the T-ResNet
architecture, to improve scene classification performance. Furthermore, a dynamic scene
dataset YUP++ was used, which was divided into static cameras and moving camera classes
and contains classes such as Falling Trees, Waving Flags or Fireworks. Their proposed
T-ResNet architecture achieved a classification increase of 6% [60] compared to the base
ResNet architecture for static cameras. However, for moving camera videos, the T-ResNet
architecture outperforms the ResNet architecture by 8% [60]. Remarkable is that although
ResNet architecture is only analysing static images, the average classification performance
of moving camera images drops by 13% [60] compared to static camera images. Another
interesting approach was developed by Gu et al. [61], who tried to extract moving targets
from satellite video scenes. Therefore, they utilised the T-ResNet architecture which achieved
around 9% accuracy improvement compared to a common two-stream CNN. Lastly, another
CNN-LSTM approach with spatial-temporal attention mechanism was used by Zheng et al.
[62]. Their goal was to classify underground mine videos into possible categories. They have
achieved an increase in accuracy of 2% with CNN-LSTM compared to the common CNN
architecture [62].

Object-based Models for Scene Recognition

While a scene-centric classification approach focusses on the geometric properties of the
environment, object recognition focusses on detection within images. Most of the methods for
classifying scenes (e.g. kitchen, bathroom, etc.) rely on local and global properties of images,
using feature-based methods. However, observations have been made that some indoor scenes

11https://archive.ics.uci.edu/ml/index.php, last accessed on 25.11.2022
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are better described by the inherent objects. Object detection can be done either by a single-
stage method or by a multi-stage method. A single-stage method, You Only Look Once
(YOLO), is a widely used object detection algorithm used for real-time applications. Another
object classifier, region-based convolutional networks (R-CNN) is a two-stage detector with a
pipeline of object localisation and classification. In contrast to a single-stage approach, both
the object localisation and classification tasks have to be optimised, making it less stable
for training. Nowadays, the detection of controlled environments for object detection works
pretty well. However, uncontrolled environments such as occlusions, arbitrary viewpoints,
and cluttered environments remain a challenge. For example, it is easy for the object detector
to detect a table, but if it is cluttered with many objects, detection becomes more difficult.
Therefore, the extraction of global features from images with chaotic background results in a
degraded model performance, compared to images of objects with a plain background. This
suggests that a chaotic background introduces noise into the features. Generally, for each
image where objects are not detectable due to the different conditions (i.e., lightning, spatial
relations, etc.), image classification can be the method of choice. [31, 44, 63, 64].

Compared to object recognition, scene recognition not only identifies the target of objects,
but also spatial correlations between objects. Therefore, the advantage of image classification
is that they yield more enriched spatial information than object detection because of the
advanced recognition pattern. However, a promising approach is the combination of object-
centric and scene-centric approaches. Harzallah et al. [65] show that the combination of
object localisation and image classification can increase scene identification, as intraclass
variations can be better handled. They believe that image classification and object detection
use different information for processing, depending on the scale of the object. Therefore,
better results are expected when both are combined. This assumption can be verified by the
observation that processing an image by either a classifier or a detector leads to different
results due to different extracted features. While image classification tries to predict the class
of an image, object detection tries to identify the localisation of one or more objects inside
an image. If the object is small and appears in a non-standard context, the object detector
may manage to find it, while the classifier cannot detect it anymore. However, if the object
occupies a large part of the image and cannot be fully displayed (i.e., detector struggles to
identify truncated objects), image classification can be the matter of choice [31, 65].

The performance improvement, by the combination of an image classification method and
an object detector method can illustrated by the example of two images of a car dataset.
The first image (see Fig. 3.11a) includes cars inside a street. The striking feature is the
small size of the car, which appears in a non-standard environment. The detector might
find the object and identify the class, while the classifier will struggle. If an image (see Fig.
3.11b) includes mainly truncated cars, they may be hard to identify by the object detector,
but the classifier might have enough information to decide on the presence of the object.
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This increased classification accuracy is based on the different contents observed by both
approaches within an image [65].

(a) (b)

Figure 3.11: Illustration of two different images of a car dataset that are beneficial to be
identified either for (a) object localisation or (b) image classification [65].

3.3 Comparison of the Algorithms

Although the authors [44, 65] have shown that for scene classes it would be beneficial to
use object detectors, a single-stage object detection approach might not detect the richness
of the inherent features within the scenes. This is especially the case for cluttered indoor
scenes or annotation ambiguity. To avoid the problem of annotation ambiguity, where the
same objects are presented within different scenes, object detection should not be used
alone. Therefore, we are benching object-centric approaches and focus on a scene-centric
approach, as the authors [65] state that scene-centric approaches can yield more enriched
spatial information.

The choice of the right deep learning architecture is important for extracting the richness
and diversity of the scenes. If the resolution of the input scene is not large enough, the full
context of the scene cannot be captured. For high-resolution images, the network depth has
to be deep enough to increase the receptive field and to detect finer features. The AlexNet
network, established by Jmour et al. [48], may not be deep enough to perfectly capture the
context of scenes, without losing spatial information from images. This is caused by large
convolutional kernels and high stride. Therefore, the applied filters are too inaccurate and
fine details, such as lines, cannot be captured from indoor scenes. Although Xia et al. [38]
show model improvements, AlexNet may not be the best application for our use case, but
can be chosen as a baseline model.

Deep residual networks, introduced by K. He et al. [50], enable to increase the depth of the
neural network without decreasing the generalisation ability of the network. They show ex-
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cellent performance metrics for well-known datasets such as Places365, which contain scenes
similar to our application environment. Usually, since such networks include the safety aspect
of identity mapping, the network parameters can be increased without loss of performance
and the danger of vanishing gradients. Furthermore, the high number of layers enables the
detection of the richness of large scene datasets such as Places365. For example, Shah et al.
[51] provided an approach to use a pretrained 152-layer ResNet architecture to perform a
scene classification task within class rooms. Furthermore, improving this architecture with
minor tricks, mentioned by T. He et al. [53], can further enhance the ResNet classification
performance without increasing the complexity of the mentioned architecture. To further
improve RTA, a ResNet architecture with an optimal trade-off between classification per-
formance and classification speed might be interesting.

Selective joint fine-tuning is an effective way to transfer learn a small dataset, by simul-
taneously training the target dataset with the k-nearest neighbours of the source dataset.
However, this is not beneficial for all learning tasks. If the indoor scene classification ap-
proach is narrowed down to a small number of categories, transfer learning probably will not
struggle finding similar images and can be done in its original form without any advanced
approach. Considering that the application domain will increase for future developments,
selective joint fine-tuning can become the matter of choice [54].

Lopez-Cifuentes et al. [56] established another technique, semantic-aware scene recognition,
to cover the diversity of indoor scenes. In general, semantically aware scene recognition can
help identify objects or regions of interest within scenes more easily. Although semantic-
based approaches show good clasification performance, problems for empty or cluttered
scenes are known for this technique. This might be challenging for our application, since
it is based on indoor scenes within a factory, and cluttered workspaces or large empty-
floor scenes are usually the case. Therefore, semantic classification might be interesting for
extracting more fine details if the application is expanded to differentiate between workplaces
of one class but will not be further pursued for the current application.

Moutik et al. [58] proposed a hybrid model system that is capable of identifying the in-
teraction between the human worker and the object. This system is based on the centre
points of the human and object and an interaction vector, which alteration unveils temporal
information of static scene images. Another hybrid approach, including object detectors
and scene classification to capture different perspectives of the scenes, was mentioned by
Harzallah et al. [65]. Both of these mentioned hybrid deep models have the capability to ex-
tract more precise and detailed information about humans and the workplace. However, for
smart factory applications with AR, where only the hands of the human worker are visible,
detecting interactions between the human and the environment is hardly possible. Further-
more, as we have already mentioned within the challenges of image classification, workplace
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recognition should have the ability to operate in real time and work fluently. Therefore,
although multistage detectors generally achieve better detection performance than one-stage
detectors, one-stage detectors are mostly more time efficient and have greater applicability
to RTA. In general, multistage detectors should be neglected, unless their increased feature
extraction provides some beneficial output [64, 66].

Another hybrid-based model looks promising for further improving classification perform-
ance. This hybrid-based model mentioned by Zeng et al. [31] tries to identify different scalar
ranges of the model and weights them for the final classification. As we are processing scenes,
there might not only be high-level features important but also some low-level characteristics
that might be beneficial for classification. However, this approach was not chosen, since the
assembly factory scenes show similar low-level characteristics where the performance increase
through this hybrid-based model is not guaranteed.

Looking at the CNN-LSTM approach, carried out by the authors [8, 59], to identify the
activity progress of states, the LSTM extension is responsible for processing temporal know-
ledge. Furthermore, the authors [60, 61] have shown that a CNN-LSTM architecture could
achieve remarkable improvements in classification accuracy (i.e., up to double digit num-
bers) compared to standard CNN architectures. However, through this SOTA analysis, two
main drawbacks of the CNN-LSTM architecture have been identified. On the one hand, as
stated by Xie et al. [55], the LSTM extension increases the computation time by a multiple.
This is not desired if RTA on a HMD device must be guaranteed. The other aspect is that
meaningful temporal information must be present to significantly increase the classification
performance of a CNN-LSTM approach. Therefore, studies [60, 61] with a significant tem-
poral change within their video classes could achieve remarkable results with the CNN-LSTM
approach. However, if the temporal information is not significant, as in works [38, 62], the
classification performance cannot be dramatically increased using the CNN-LSTM approach.
Therefore, the trade-off between increased classification accuracy and calculation speed is
no longer worth it. Lastly, another important information is that despite static or dynamic
scene recognition, the classification performance by datasets with moving cameras will def-
initely decrease significantly [60]. This is an important aspect to consider when deploying
the network on a mobile HMD device.
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Chapter 4
Proposed Method

In this chapter, a module for scene-awareness in HMD-assisted work scenarios is introduced,
and the proposed method to accomplish it is described in detail. Therefore, the general
challenges and requirements of the planned module are mentioned, and basic functionalities
of assistance systems that are treated by the context-aware middleware are explained. In
the implementation design chapter, the necessary parts that have been accomplished to
generate the context-aware middleware are included. Therefore, the software is described in
detail regarding its dataset, its model architecture, its training procedure, and its evaluation
results. Finally, in the experimental chapter, the built image-based workplace recognition
middleware is tested by a use case within the institute pilot factory. In this use case,
the algorithm is validated for its interference speed and usability for the human worker.
Furthermore, the functionality of the implemented software is evaluated with respect to the
classification accuracy of use case workplaces. In summary, important application criteria of
this use case are derived for the future development of context-aware digital assistants for
workers.

4.1 Challenges and Requirements

The possibility of a system becoming context-aware is based on some essential criteria.
This system has to capture the environment of the human worker in the form of images,
classify these images into one possible workplace, and should feed back the results to the
human worker in an appropriate time. Moreover, it has to be pre-trained by a dataset,
which includes images from the different workplaces. Lastly, to establish such an assistance
system, a considerable amount of software as a middleware has to be developed. In the
following are the most important challenges mentioned which need to be considered during
the development of such a module.
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4.1 Challenges and Requirements

Dataset Quality: The quality of the dataset is an important characteristic for the overall
performance of the prediction. Since the algorithm is based on neural networks that include
changable parameters, training the algorithm on a specific dataset (i.e., that includes images
from workplaces) is necessary. Without this qualitative dataset the model predictions become
poor and the system cannot achieve the desired support for the human worker. Because there
is no scene dataset available for the manufacturing industry, a generation of the dataset
that contains the richness and diversity of the workplace is desired. Challenges for the
development of a dataset for scene classifcation can be data availability or similarity between
classes.

Real Time Analysis: RTA is characterised by system execution in real time. A charac-
teristic factor, the latency, is the time between the triggered event and the required response
of the workplace classification. This gap, where no information is recognized, should be as
small as possible and can be reduced by optimising the processing steps of the algorithm.
For this reason, the processing steps include the collection and transfer of images to the loc-
ation of the analysis. Furthermore, for one captured image, one forward path of the neural
network for one captured image must be calculated. Once the system knows the category
of the workplace, the output is transferred and displayed to the human worker in an inter-
pretable form. Overall, the necessary reaction to workplace detection can be given within a
latency step and fully depends on the processing speed of the used device. In general, RTA
is important for workplace-image classification to immediately support the human worker.
Otherwise, usability of the system will be low [39].

Black Box Challenge: The rise of algorithms with decision-making capabilities leads
to mistrust if the human worker cannot comprehend the output without any explanation.
Therefore, the system should always try to find a way to explain its decision to increase its
trustworthiness. Besides the desired instructions for the human worker, the algorithm must
explain its decision based on a processing result (e.g., accuracy of the prediction, by detected
features). Otherwise, the negative effect of no explanation can lead to system abuse and can
harm human working conditions [37].

Effectiveness of Context-Awareness: The development of the classification system
alone is not enough to get detailed feedback on its functionalities. Moreover, the system
should be tested with an experiment or an use case to show its strengths and weaknesses.
Since the proposed technology is only part of an assistance system, which is responsible for
capturing the environment of the human worker through context awareness, its full usability
for the human worker cannot be tested yet. Therefore, the main focus should be to provide
feedback on classification performance within the application area, the dataset quality by
wrong classification, and processing time.
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4.2 Functionality Classification

4.2 Functionality Classification

The desired functionality of the assistance system and the module can be classified within
Fellman framework (see Table 2.1). To get an idea to what extent the middleware should
be part of an assistance system, Table 4.1 demonstrates some functionalities. These func-
tionalities are important characteristics for identifying an assistance system. However, only
those that have been fully completed by the developed middleware are discussed.

State detection & Context sensitivity: State detection is the ability to gather in-
formation about the current state, especially about the working environment. Therefore, to
ensure that the working environment is captured, HMD devices worn by human workers can
be beneficial. This leads to the detection of the current human workplace without capturing
the human worker. Finally, this system is context-sensitive by the capability distinguish
between different workplaces.

Table 4.1: Implementation of the assistance system framework established by Fellmann et
al. [4] for the developed middleware of image-based workplace recongition.

Category Features Attributes

Information Generation -
Presentation -

Intelligence
State detection Automatically
Context Sensitivity Environment
Learning Aptitude -

Interaction
Control Cooperation
User Involvment Low
Input Modern
Output -
Extent of Immersion -

System characteristics
Transportability -
Robustness -
Technology Readiness Level -

Input: The inputs for the middleware are images that are detected by a camera system
(i.e., HMD devices). Furthermore, the extracted images are fed into the algorithm (i.e.,
neural network) for classification.

User involvment & Control: This middleware should be able to detect the workplace
where the human worker operates without user involvement. The easiest form of location
detection are cameras (e.g., HMD devices) that human workers wear to capture their visual

73



4.3 Implementation design

location. This allows one to identify the user working environment without directly monitor-
ing the human worker. Since direct user involvement is not required, the control is performed
indirectly by user movement and can be well established in the working tasks. Therefore,
the execution of the job might be supported by reducing cognitive stress without additional
strain on the human worker.

4.3 Implementation design

The implementation design chapter shows the steps taken to create the middleware that
allows image-based workplace recognition. Initially, starting with a general picture of the
workplace application area and the final specification of the dataset classes. Furthermore,
the construction steps of the dataset are explained. Finally, the core components of the
model architecture, model training, and network results are mentioned.

4.3.1 Dataset

By specifying the assembly factory as the application, it is clear that various objects can exist
within each workplace. In general, these objects are not uniquely assigned to one workplace
and can be present in multiple classes. For example, a robotic arm can be used as a processing
machine if used for welding, but also as a conveyor belt if it moves products from one place
to another [66]. Since any workplace scene can be seen as a formation consisting of multiple
objects, it is not possible to classify workplaces solely as objects without considering the
environment. Hence, to give prospects for the environmental context, the algorithm must
have knowledge of all scenes. Therefore, the algorithm must be trained on a dataset that
contains characteristics of all workplaces.

Publicly available scene datasets (i.e., SUN397, Places365 or MIT67 Indoor classes) can
be a perfect choice for training, since they contain classes similar to industrial workplaces.
However, not all classes of publicly available datasets are similar to the workplaces of our
application. When taking all classes of these public datasets for pretraining, the parameters
of the network might overfit. Hence, the generation of truncated datasets with the most
relevant classes, by evaluating each class regarding its suitability as workplace, can create
a remedy. Unlikely, these truncated datasets do not represent the full complexity of the
actual application. Therefore, we mainly use the similarity of these datasets to pre-train our
model using transfer learning. As revealed through SOTA research, the Places365 dataset
has achieved the best results in terms of richness and diversity compared to other datasets,
which is why it is used for pre-training our model. Since classes of these datasets still might
have inter-class variations to the actual application classes, they do not fully represent the
features of the application objects and content. For this reason, the main objective was to
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4.3 Implementation design

develop a dataset that best fits the conditions of the assembly factory application domain.
Furthermore, our own developed assembly factory dataset should finally meet the features
of the workplaces on which the model should be fine-tuned. Lastly, the dataset can also
include images from the actual workplace location. Although the generalisation capability
will not increase through this act, the model will show improved classification accuracy for
the specific environment. However, just training on this specific application is not beneficial,
since the dataset will not have the robustness to perform consistently for small workplace
changes.

(a) Assembly Line (b) Machine Tool (c) Table

(d) Shelf (e) Robot (f) Terminal

(g) Empty (h) Too Close (i) Combined Workplaces (j) Neutral

Figure 4.1: Illustration of the relevant categories of the Assembly Factory Workplaces data-
set. While categories (a-f) represent a possible workplace class, categories (g-j) are special
classes that set application boundaries and improve transitions between workplaces.

For our self-developed assembly factory dataset, six different main scene classes (i.e., As-
sembly Line , Machine Tool , Robot , Shelf , Table and Terminal) were chosen, each illustrating
one possible workplace. Furthermore, to support transitions between workplaces and restrict
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the boundaries of the application, four more classes (i.e., Empty , Too Close , Combined Work-
places and Neutral) that should help project the application area more clearly were added.
Figure 4.1 shows sample scenes, resized to 256 x 256 pixels, for each class in the dataset.

Since the four special classes should represent the application area more accurately and
improve the relationships between workplaces (see Figure 4.2), each is described in more
detail to show its intention:

For example, when the user with AR glasses is too far from one specific workplace, it can
happen that multiple workplaces are present in one scene. Therefore, for scenes that
include multiple workplaces, which are difficult to uniquely classify into one category,
the category Combined Workplaces was generated. The indentification of that class
should notify the user to adapt his position more precisely to show the occupation
along a workplace.

Another case might occur when the user with AR is located in an area of the assembly
factory, where no workplace is represented. This can happen when the user is too far
from any workplace and the objects are too small, so that no features can be detected.
This class, Empty , should ensure that no workplace is identified instead of deciding in
which workplace the user is presented.

Likewise, if the user is too close to the desired object, only low-level features can be
extracted. In general, the system may have difficulty extracting meaningful features
to identify unique workplaces due to a similar close-up appearance. Therefore, the
system should inform the user to relocate for new classification.

Lastly, neutral backgrounds are added as a category to classify any scenes that are not
within the scope of the assembly factory, where no workplace information is available.

Overall, the behaviours of the class Too Close or Combined Workplaces are based on the
principles of visual inconsistency and annotation ambiguity which were already well discussed
in Chapter 3.1.1. Furthermore, the class Empty can be seen as a new class with its own
detectable features. Generally, when establishing a new dataset for scene classification, it is
wise to identify its generalisation capabilities (i.e., performance on unseen data) by testing
it with a popular CNN architecture (i.e., AlexNet, GoogleLeNet, VGG16, etc.). By doing
this, the well-known problems of dataset generalisation can be identified early on [31, 40].
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Application Area

Workplace 1
Empty

Combined Workplaces

Workplace 3
Workplace 2

Neutral

Too Close

Application Area

Workplace 1
Empty

Combined Workplaces

Workplace 3
Workplace 2

Neutral

Too Close

Special Classes Workplace

Figure 4.2: Schematic representation of the application area of the Assembly Factory Work-
places dataset, including the four special classes (i.e., Empty , Combined Workplaces , Too
Close and Neutral).

Construction of the dataset

The assembly workplace dataset was inspired by the construction of the Places365 dataset
and was developed based on three fundamental steps [46]. Starting with querying and
downloading of the images, labelling the images with ground truth categories, determining
inconsistent images within a class by screening and finally the synthetic data generation to
fill new or existing classes with artifical images.

The application classes are built on a set of keywords that are consulted to query multiple
search engine requests (i.e., on Google Images, Bing Images, and Flickr). However, one
dataset class can represent multiple keywords to ensure that more images are found through
various search engines. Furthermore, since most search engines have an inherent limitation of
search results, filter categories (i.e., colour, type, size, date) are set to increase the diversity
of the findings. When scraping on multiple search engines with multiple filters, it must be
ensured that duplicate images are not presented. Therefore, during image scraping, a history
is generated to ensure unique images by using the Uniform Resource Locator (URL). Since
unique URLs are not entirely an indication of duplicates, it is a good choice to additionally
apply Principal Component Analysis (PCA) to remove the same images from each category.
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4.3 Implementation design

This has been done by the software Vispics1. However, similar images might not be a large
interference and some duplicate images will not cause a significant performance decrease (i.e.,
unless diversity is large enough), since data augmentation procedures are applied anyway
during training.

In the next step, the ground-truth label verification of the image was performed manually
in a three-iteration process. In the first iteration, all images that did not fit any class were
removed (around 60% of the total scraped images). In the second iteration, each image
was analysed to identify whether the objects and features presented fit better into another
category. During this iteration, images were rearranged between the different classes with
the focus on generating classes with equal size. Furthermore, scraped images that do not fit
any of the six workplace classes were classified into one of the two special classes (i.e., Empty ,
Too Close) or were deleted. In the third iteration, the premature dataset was trained on the
model, and the resulted confusion matrix was examined to indicate intersections between
two classes, which were further optimised.

Lastly, for categories with no samples or a low number of samples, synthetic image data was
generated. Therefore, the special class Too Close was further filled with image fractions of
the six workplaces by extracting 1/25 close-ups of their total image size. The other class
Combined Workplaces was generated based on the combination of p random images from the
six workplace classes. The number of random images is chosen with the rationale that some
workplace classes already include a portion of another class. This cannot be avoided, since
the transitions between workplaces are blurry. Therefore, p might be a parameter, easy to
adjust, to enable transitions. Moreover, the Neutral class was created based on the generation
of images with 256 x 256 random pixel values. Despite the special classes, synthetic images
were also generated for the workplace classes. This procedure is only possible if the class
includes unique objects within the scene. Therefore, the object is extracted from an image
with an inappropriate background and superimposed on suitable backgrounds to generate
new data. This procedure is especially useful if there is not enough data available for one
category. For this dataset, the category Robot lacks representative data. Therefore, the
Robot objects have been extracted from its background and augmented with different sizes
on new backgrounds. The new backgrounds were based on scenes that illustrate common
backgrounds for assembly factories (i.e., Empty).

Finally, the finished Assembly Factory Workplaces dataset consists of 10 different categories
with a total of 4695 images. What matters in multiclass classification is whether the classes
are balanced, because usually models are biased towards larger classes (i.e., trained more on
this class due to more images). Generally, class imbalance was avoided by equally arranging
the number of images for each class within the dataset.

1http://www.visipics.info/index.php?title=Main_Page, last accessed on 20.10.2022
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4.3.2 Model Architecture

Once the dataset has been generated, the development of the neural network was carried
out, which is the core of the image-based workplace middleware. Initially, the deep learning
approach (i.e., supervised) is selected based on the available data that need to be processed.
However, based on the state-of-the-art chapter, research of previous applications has been
carried out to identify and compare the most suitable architectures. As model, a modified
ResNet architecture was chosen, which basic principle of residual networks being introduced
by K. He et al. [50]. Based on the author Lopez-Cifuentes et al. [56], residual networks
show excellent performance on the Places365 dataset, which shows similarity to our dataset.
The developed ResNet architecture consists of 4 different residual blocks and a total of 122
layers (see Fig. 4.3a). Each residual block consists of a convolutional block and an identity
function to skip connections (see Fig. 4.3b). The convolutional block consists of convolu-
tional and batch normalisation layers, stringed together. Scaled Exponential Linear Unit
(SELU) activation functions are used as the last layer within each convolutional block of the
network. Furthermore, the proposed network was modified on the basis of the tricks (B,C,D)
proposed by T. He et al.[53], i.e., adaptions changes of stride and kernel size for some layers
to extract information without loss. As first layer, a batch normalisation layer was chosen
to alter the images not normalised during preprocessing. Furthermore, the ReLU activation
layers were replaced by the SeLU activation layers, as they have shown greater performance
in test runs. Lastly, depending on the type of dataset (i.e., training or validation), dropout
was applied as a regularisation technique.
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Figure 4.3: (a) Schematic illustration of the architecture of the modified residual neural
network. (b) Schematic illustration of a convolutional block and a residual block from the
network.
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4.3.3 Preprocessing of the Data

The purpose of preprocessing the input data is to support the algorithm in its performance.
The input image is a tensor with a shape (C, H, W), where C is the number of channels and
H and W are the height and width of the image. Furthermore, the bundling of images into
batches aligns a batch dimension in front, resulting in a four-dimensional tensor as input for
the network. Knowing the height and width of the image, the input shape of the network
can be correctly adjusted. It is noteworthy that the input shape of the network should be
consistent, at least for the dimensions C, H, and W. Since all images of the dataset are RGB,
each image consists of 3 channels. However, the height and width of the images within the
dataset are not consistent. Therefore, independent of training and validation procedures, all
images are resized into a shape of (256, 256). Despite image resizing, image preprocessing
is also important to increase the diversity of the available dataset by data augmentation.
These data augmentation strategies act as regularisation and were used solely for the training
cycle. During training, data augmentation is applied as a sequence of transformations to
preprocess the image. Each transformation changes the image with a certain probability
to generate new images for training. For example, in one data augmentation strategy, the
RandomRotation function rotates the input image within a range of 0 to 10. Furthermore,
since two different datasets are used for training, the images within both can be normalised
to allow weight sharing across the training procedures. Therefore, the input is normalised
with the mean value and standard deviation of all input images (see Equation 4.1).

xxx =
xxx− µ

σ
(4.1)

Where, xxx is the input of the network, µ is the mean of the dataset and σ is the standard
deviation of the dataset. By normalising image pixel values relative to the mean and standard
deviation of the dataset, consistent results can be achieved when applying the same model
to similar dataset images. For scene datasets, calulating the mean and standard deviation
is not easy, but as we know through gradient descent, input data can be handled in batches.
To find a remedy, the average mean is calculated over all batches. However, the standard
deviation is more challenging since the average σ between batches is not equal to calculate
across the entire dataset. The strategies for calculating the mean and standard deviation of
a dataset originate from the information of Nikita Kozodoi2.

4.3.4 Network Training

During the training procedure, the model parameters (i.e., weights and bias) are optimised
based on the dataset images with the goal to minimise the error in each iteration. There-

2https://kozodoi.me/blog/, last accessed on 02.10.2022
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fore, images are grouped in batches and randomly shuffled before feeding to the network to
ensure variety during training. Additionally, since algorithm training is a time-consuming
procedure, multiprocess workers (i.e., 2 for the training and validation dataset) speed up
the training process by parallelising it. For the training Adam was chosen as the optimiser
and Binary Cross-Entropy With Logits Loss (i.e., is a combination of binary cross-entropy
loss and a sigmoid layer) was set as the loss function. In particular, this means that the
optimiser and loss function are selected during compiling to decide the model architecture.
In the fitting step, the weights of the compiled model are adapted in each iteration. This
is done by using the backpropagation procedure in a specific number of iterations. Whereas
the total number of iterations can be calculated by epochs · dataset size

batch size
. After each training

iteration of the training set, the network predicts the validation set to test its performance on
unseen data. However, hyperparameters are the most crucial part of training a deep learning
algorithm, and their right settings are important for the generalisation of the model. The
learning rate is the most well-known hyperparameter, which is updated in each iteration.
Furthermore, a cosine learning rate scheduler is implemented to change the learning rate for
each epoch based on a cosine function. Finally, to test whether the model has developed
correctly without any logical errors, small input data is fed to it to explore whether it can
overfit [24, 26].

Pretraining

In reality an entire convolutional network with random parameter initiation is only rarely
trained from scratch. The reason for this is that the self-developed datasets are generally
not large enough to generalise well. Therefore, it is common to pretrain a model on a well-
working dataset and use these weights as initialisation for the desired dataset. As pretraining,
a truncated Places365 dataset (i.e., consists of 10 classes with a total of 4 ·104 images for the
training set and 1 · 103 images for the validation set) is chosen, from which input images are
preprocessed by the mentioned data augmentation strategies. The pretraining is carried out
for 54 epochs with an overall training time of 8 h, a training batch size of 64 and a validation
batch size of 32. Lastly, the initial learning rate α was set to 1 · 10−2 with a cosine learning
rate scheduler, which reduces α to 1 · 10−5 for the total epochs. Finally, the proability for
dropout of the dropout layer was set to 0.25.

Fine Tunining

After pretraining the model with the Places365 dataset, the learnt features are transferred
as weights for training the self-developed dataset. Besides the hyperparameters already
set by the pretraining, some of them have to be adapted. As suggested by Yengara et
al. [59] the learning rate is reduced for the training of the self-developed dataset, to avoid
overwriting the learnt behaviour during prertaining by incorrect weight updating. Therefore,
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the initial learning rate is set nearly one order of magnitude (i.e., to 2·10−3) lower than during
pretraining. Furthermore, the number of training epochs is set to 34 and the probability of
dropout to 0.35. Lastly, all augmentation strategies stayed the same as for the pretraining,
besides the model output size adjustment to the new number of dataset classes.

4.3.5 Network Results

Pretraining Results

Figure 4.4 shows the Binary Cross-Entropy With Logits Loss and accuracy over the number
of training epochs (i.e., 54) for network pretraining on the truncated Places365 dataset.
Both figures show the pretraining results for the training and the validation dataset. Within
Figure 4.4a the loss of the training and the validation dataset declines over the number of
epochs. For the total number of epochs, the training dataset reaches a loss of 0.15 and
the validation dataset reaches a value of 0.17. Although regularisation strategies of data
augmentation and a dropout layer with a propability of 0.25 are applied to the training
dataset, the loss of the training dataset is smaller than of the validation dataset. However,
training and validation loss can be adjusted in relation to each other based on the previously
mentioned strategies.
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Figure 4.4: Results for network pretraining over the number of epochs.(a) BCE with Logits
Loss for the training and validation dataset, (b) accuracy for the training and validation
dataset.

Furthermore, Figure 4.4b shows the classification accuracy for the training dataset and the
validation dataset. Both, training and validation accuracy ascend for each epoch and the
training accuracy reaches higher values than the validation accuracy. Remarkable are the
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fluctuations within the validation accuracy which can be an indication for a small validation
batch size (i.e., 32). The decisve value for the validation accuracy lies arround 65% which
is satisfactory compared to similar works [56] for the entire Places365 dataset.

Furthermore, Table 4.2 shows a more detailed representation of each class for the pretraining
in the form of the confusion matrix. The entire table is normalised for each actual class
prediction. Through this normalisation, the main diagonal values indicate the classification
accuracy for each class. Moreover, the mean of the TN and TF values indicates the total
overal accuracy. Generally, the confusion matrix reveals the learnt features for different
classes. For pretraining, an equally distributed classification accuracy could be reached for
each class, despite the Repair Shop. This class has a low classification accuracy of 0.34 and
shows a strong misclassification with other classes (e.g., Garage Indoor ). The reason might
be that weak features are recongized, which interfere with other classes. Lastly, to interpret
the entire result, the F1 score was calculated for the pretrained model which lies around 0.66.

Table 4.2: Confusion matrix for pretrained neural network, where the vertical label indicates
the predicted condition and the horizontal label shows the actual condition. The values are
rounded to two decimal places and all values above 0.10 were highlighted.
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Archive 0.83 0.04 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.08
Assembly Line 0.04 0.61 0.01 0.00 0.04 0.05 0.00 0.02 0.20 0.02
Basement 0.02 0.06 0.61 0.05 0.12 0.02 0.01 0.02 0.07 0.01
Dining Hall 0.02 0.04 0.00 0.84 0.00 0.05 0.00 0.01 0.03 0.01
Garage Indoor 0.00 0.01 0.10 0.00 0.68 0.01 0.03 0.00 0.05 0.07
Office 0.05 0.00 0.01 0.00 0.03 0.75 0.02 0.10 0.03 0.00
Pantry 0.01 0.00 0.01 0.02 0.01 0.02 0.86 0.00 0.04 0.03
Physical Laboratory 0.01 0.09 0.00 0.00 0.02 0.12 0.00 0.64 0.11 0.00
Repair Shop 0.04 0.04 0.07 0.02 0.20 0.07 0.03 0.11 0.34 0.08
Storage Room 0.10 0.01 0.03 0.00 0.03 0.04 0.06 0.12 0.10 0.50

Fine Tuning Results

The pretrained model is further fine-tuned with the Assembly Factory Workplaces dataset
for 34 epochs. Figure 4.5 includes the training results for the Binary Cross-Entropy With
Logits Loss and the accuracy over the number of epochs for training and validation. As the
model does not have random initialisation of the weights, the loss values and corresponding
the accuracy already start at a lower, or higher initial value. As seen in Figure 4.5a, the
training dataset reaches a loss of 0.06 and the validation dataset a loss of 0.12 at the end
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of the training. It should be mentioned that the model stops training automatically after
7 epochs, for which the validation loss cannot be further decreased. Figure 4.5b shows
a strong discrepancy between validation and training accuracy, which indicates that the
model overfits. This can be avoided by increasing the dataset size or implementing more
regularisation techniques. Finally, the model reaches a classification accuracy of 0.77 with
the corresponding F1 score of 0.76.
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Figure 4.5: Results for the fine-tuned model on the Assembly Factory Workplaces over the
number of epochs.(a) BCE with Logits Loss for the training and validation dataset, (b)
accuracy for the training and validation dataset.

In the second step, the confusion matrix of the fine-tuned model was built (see Fig. 4.5).
Remarkable is the high classification accuracy for the classes Combined Workplaces (i.e.,
0.98 ) and Neutral (i.e., 1.00 ). Although it is intended that Neutral does not show any
misclassification with any other class, it was expected that Combined Workplaces has a strong
misclassification with other workplaces, since it should present the transistions between
classes. The weakest classifcation accuracy of a workplace class was achieved by the Table
class (i.e., 0.40 ), which shows a strong misclassification with the Machine Tool class (i.e.,
0.22 ) and the Terminal class (i.e., 0.18 ). This implies that the detected features within
the Table class might not be unique enough, since the tables are also represented within the
Terminal and Machine Tool classes.
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Table 4.3: Confusion matrix of the neural network, fine-tuned on the self-developed dataset.
The vertical label indicates the predicted condition, and the horizontal label shows the actual
condition.
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Assembly Line 0.77 0.07 0.00 0.00 0.03 0.07 0.02 0.03 0.00 0.01
Machine Tool 0.16 0.46 0.02 0.00 0.05 0.03 0.09 0.13 0.06 0.00
Combined Workplaces 0.00 0.00 0.98 0.00 0.00 0.02 0.00 0.00 0.00 0.00
Neutral 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Robot 0.04 0.08 0.00 0.00 0.81 0.02 0.01 0.00 0.00 0.03
Shelf 0.08 0.07 0.00 0.00 0.00 0.78 0.02 0.00 0.03 0.02
Table 0.05 0.22 0.05 0.00 0.02 0.00 0.40 0.18 0.09 0.00
Terminal 0.01 0.07 0.00 0.00 0.00 0.00 0.07 0.82 0.03 0.00
Too Close 0.09 0.04 0.07 0.00 0.01 0.10 0.11 0.00 0.56 0.01
Empty 0.07 0.00 0.00 0.00 0.07 0.21 0.00 0.00 0.00 0.64

4.3.6 Experiment

Since the developed NN has been tested so far only with the validation dataset, the use case
was carried out to test the basic functionalities of the system within a real environment.
Therefore, the trained model was applied within the TU Wien pilot factory to show the
effectiveness of class recognition and the capability of RTA for the assistance system middle-
ware. The pilot factory is a typical assembly factory environment with different workplaces,
which are limited to indoor scenes. Furthermore, the objects and environment in the Pilot
factory should not be seen as static. This means that the process should be functional,
although minor changes are occurring in the scenes. These minor changes can be illustrated
by appearing and disappearing small objects (e.g., working tools, etc.) in the scene. The
developed and trained model is deployed on a HMD device (i.e., Microsoft HoloLens 1 )
and is tested for classification accuracy. Since the HMD is worn by the human worker, the
images, fed into the algorithm, are indirectly decided by the movement of the human worker.
The visual field of the user is captured in random time steps. Therefore, basically any image
within the pilot factory can be classified. In the following, the experimental chapter includes
the description of the HMD, the deployment of the model on the device, and the results of
the use case.

AR Device

In our use case, Microsoft HoloLens 1 was chosen as the HMD which is classified as mixed
reality (MR) device. The Microsoft HoloLens 1 contains a visor with all the necessary sensors
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and cameras to detect the receptive field of the user (see Fig. 4.6a). Additionally, this visor
includes holographic lenses, which allow displaying holograms to the user. Furthermore,
its cameras can take photos of up to 2MP3 and the device can process this environment
based on retrieved images from timeframes with its integrated processor. This processor
(see Fig. 4.6b) has an Intel 32-bit architecture3 with 64 GB Flash3 and 2 GB RAM3. Lastly,
the battery capacity of the device allows 2-3 hours3 of active operation. The HoloLens has
been in the long-therm service state since 20183 and will not receive further updates. The
latest version includes the Windows SDK 18093, which provides libraries and tools to build
Windows applications. Within this latest software, one of the most severe limitations is that
applications are only supported by being deployed to HoloLens 1 via the Universal Windows
Platform (UWP) [67].

(a) (b)

Figure 4.6: Microsoft HoloLens 1 pictures of the (a) visor, integrated with its cameras and
sensors, and (b) of its built-in processor.3

NN Deployement on the AR Device

The trivial approach to connect the trained network and the HoloLens 1 is to run the network
on an external server and feed it with the retrieved images from the HMD. However, this
approach has several downsides. Within assembly factories, the density of equipments with
wireless connections is high. Although these connections can be guaranteed within a factory,
a stable connection with low latency might not always be created. Furthermore, connecting
the HoloLens 1 to a web-enabled network can make it more susceptible to data abuse.
Therefore, a standalone application might be the way to go. In addition to the trivial
approach, there exists the possibility of directly processing the data on the device [67]. Here
is an approach described on how to deploy the software on the device (see Fig. 4.7).

3https://docs.microsoft.com/en-us/hololens/hololens1-hardware, last accessed 24.08.2022
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Figure 4.7: Schematic representation of the NN deployment on the Microsoft HoloLens 1.

Since the entire model was developed with the Python programming language by the Pyt-
orch neural network library, it has to somehow be interchangable with the device that should
perform the classification. Therefore, Open Neural Network Exchange (ONNX) is ideal for
allowing NN models to be converted to a format that can be applied in different program-
ming languages. Through this conversion, only the model with its parameters is exported.
Training has to be done before, within the Python framework. In detail, the developed NN
in Pytorch was exported to ONNX with opset version 7, to support the latest SDK 1809 for
HoloLens 1. After conversion of the NN to an exchangable format, it has to be integrated
within an UWP application, which is the only possibility to directly deploy the network on
the device. The Universal Windows Platform (UWP) is a Windows runtime that allows to
execute applications under Windows 10 and Windows 11. Within an UWP app, it is possible
to integrate specific APIs for control of the HoloLens 1. To create the UWP application,
the game development system Unity, programmed in C#, was used. Unity is an engine
for 3D and 2D game development. It has support for MR, including the HoloLens. Unity
applications consist of scenes that contain 3D elements and the game logic. These scenes
are created with Unity Editor, which can be displayed to the user in the form of holograms.
The game logic can be implemented with C# scripts, which allow camera frame extraction,
feeding the model, and converting its output. Within these scripts, the most important
library is Windows Machine Learning (WinML), which applications can run standalone on
the HoloLens. WinML is a machine learning interference API, which originates from the
Microsoft AI framework. It was developed on Windows 10 by Microsoft and is part of the
standard Windows 10 SDK. Finally, after creating the UWP app in Unity, Visual Studio
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was required to build the app and release it to the Hololens. The entire UWP application is
created and modified based on the work of Rene Schulte4.

It is noteworthy that there are multiple approaches to deploy NNs to the HoloLens 1. Other
approaches include Barracuda or TensorFlow [67]. For example, Barracuda is a NN in-
terference library for the HoloLens 1 and supports GPU processing. However, the UWP
approach is the only one for directly deploying the model on the device. Unfortunately, this
library only supports CPU processing, which dramatically increases the processing time.
However, the benefit compared to Barracuda is that it can run on all Windows 10 devices
and Barracuda can only be used in the Unity environment.

Experimental Outcome

After deployment of the UWP app on the Microsoft HoloLens 1, its functionality was tested
within the pilot factory. Special care was taken in the interpretability of the workplace class,
recognition of the workplace classes, the special classes with its transitions, and finally the
classification speed of one image cycle.

Workplace Classes Instructions for the user can be given with the HoloLens 1 capability
to generate holograms and display them to the user. For this use-case, these holograms
can be any digital object. In this case, the digital object is a text with the two most
appropriate classes and their related classification accuracy. Additionally, text-to-speech
software was used to give sound information (i.e., class with the highest accuracy) to the
user. By moving through the pilot factory, it is possible to classify scenes of the workplace
classes when certain criteria are met. Fast movement with HoloLens 1 sometimes leads to
misclassification due to disproportionately poor camera focussing. Furthermore, the correct
position in the workplace is important for classification. It remains that misclassification
can occur when looking at an identical workplace. This might result from an unintentional
internal processing of the device and should be identified in future work.

Special Classes In general, four typical classification challenges occurred when observing
the environment from the worker’s perspective using HoloLens 1 within the experiment.
First, for scenes where no workplace is recongised, but the user is within the application
area, the special class Empty should be detected. This class usually represents large and
empty factory areas. However, it was not always easy for the system to recognise, since this
empty area consists mainly of low-level features that overlap with the Too Close class.

Next, the class Too Close worked well, as approaching too close to a workplace resulted in
indistinguishable low-level features and the important high-level features to recognise the

4https://kodierer.blogspot.com/2018/06/content-for-unite-berlin-autotech.html, last accessed 24.10.2022
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workplace were no longer represented. Therefore, once the user is located too close to a
workplace, guidance information can be provided. Moreover, this class was also consistently
recognised by looking at the floor.

Furthermore, since it is possible for the human worker to be in a position to look at two or
more workplaces, adequate feedback should be given without misclassification. This special
class Combined Workplaces was barely recognised. However, since this class was built by
aligning three workplace class images into one image, misclassification could occur depending
on the workplaces captured by the device.

Lastly, the class Neutral was generated to cover all images that do not exhibit the features of
any of the other nine classes. This class was supposed to act as a safety mechanism to avoid
incorrect classification of images outside the application area. However, since our application
area consists of scenes and not only images with objects, the inheritent features were too
diverse to avoid classification outside the application area and similar features to our classes
always got detected outside the application area. Therefore, during the use case it was not
possible to detect the Neutral class.

Intereference Speed In general, the retrieval time of images from AR glasses should
be chosen wisely. The interference speed is evaluated based on how many images can be
processed per second, called frames per second (FPS) [64, 66]. For this use case, the inter-
ference speed of a classification cycle is around 0.25 FPS. This loe interference speed is due
to the network architecture with around 22 Mio. weights and most likely on the fact that
the UWP application with the WinML library only supports CPU processing. Approaches
like the Barracuda one are faster since they can use GPU resources. However, these ap-
proaches are limited to the Unity environment and cannot be established with UWP apps
and therefore cannot be deployed to the Microsoft Hololens 1.

Explainable AI Lastly, to test an edge case and to interpret the way the model behaves,
explainable AI (XAI) was used. The purpose of XAI is to make neural networks more
transparent and explainable. For the XAI analysis the gradient-weighted class activation
mapping (Grad-CAM) was applied. This is an approach in which any desired layer or block
of a class can be selected. The technique produces from the gradient information of chosen
layers or blocks a localisation map, which highlights the important regions for predictions of
a class. For the developed network, the last convolution block was chosen to interpret the
high-level features of the network predictions [68].

Figure 4.8 shows the edge case, where scenes are recorded from the TU Wien pilot factory
and represent typical workplaces from the self-developed dataset. These images were initially
fed into the neural network to calculate its prediction. The centre images highlight the
highest prediction accuracies and their related classes. Right beside the images are the
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corresponding results of XAI. The image on the left could be classified with an accuracy
of 95% as Machine Tool and the XAI approach, on the left, highlights the area that is
important for the prediction. Furthermore, from this workplace class (i.e., Machine Tool ),
three close-up areas are extracted. Therefore, the area directly on the machine (i.e., top
image) and the one on the floor (i.e., bottom image) show low-level characteristics and
are classified as Too Close . This illustrates that after the classification of the Machine
Tool class, the work instructions can remain for this class, if the special class Too Close is
recognised. However, if looking at the close-up appearance of the right centre image, the
scene classification approach recognises the class Terminal . This means that workplaces can
be recognised within workplaces, and once the Terminal class is recognised, work instructions
can change.

Machine Tool 0.95
Machine Tool

Terminal

Terminal 0.55
Shelve 0.39

Too Close 0.94

Too Close 0.77
Terminal 0.11

Too Close

Too Close

Figure 4.8: Illustration of an edge case with scenes from the TU Wien pilot factory. The
three images next to the class Machine Tool (i.e., at the right) show close-up appearences
from this class. While the four images in the center show the class prediction by the network,
the outer images represent class activation maps to interpret how the network predicts the
class with the highest prediction accuracy.
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Chapter 5
Discussion

This chapter should include answers to the research questions that will be discussed in the
following sections. Starting with “How can workplace recognition enhance context-awareness
of assistance systems? ”. Then moving over to “Is there any available dataset for workplace
scene classification and what is the most promising scene classification approach? ”, by dealing
with the developed dataset and the developed neural network. Lastly, the question “How
can a deep learning algorithm be deployed on a HMD device and how does it behave within
the TU Wien pilot factory? ” should be treated.

Context awareness in assistance systems to support industrial workers

Context awareness has the ability to recognise work environments within assembly factories
based on significant characteristics. For a digital assistance system, it can be enabled by
giving it the capability to retrieve the surroundings of the human worker in the form of
images. Moreover, it must have the ability to interpret these images by their features and
classify them into a possible workplace. Therefore, without monitoring the human worker,
the system can retrieve the visual field of the industrial worker. Hence, context-based digital
assistance systems might be the result of alleviating the cognitive demand of the human
worker. To establish such a context-sensitive assistance system, HMD devices, such as
Microsoft HoloLens 1, are the perfect choice.

Such a context-sensitive device can be especially useful for training new workers or for people
with a low cognitive load limit. Through a context-sensitive device, the right instructions
can be displayed in the right place without requiring any user action. Displaying instructions
on HMD devices can improve task performance and reduce task load [18]. Therefore, the
entrance barrier for certain jobs can be reduced. However, reducing the cognitive demand
of the human worker with a new technology is a conflicting topic, as its novelty can already
increase stress. Therefore, further investigations are required to validate this hypothesis.
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The increasing shift from operational to more monitoring and controlling tasks can increase
the demand for Multi-Machine Operations. There are already applications that use a mobile
device (e.g., a tablet or a smartphone) as an instruction system for the human worker.
However, these systems may not guarantee the same efficiency as through HMD devices,
as hands-free operations are not possible and head-movement might be reduced by HMD
devices. Within this thesis, Multi-Machine Operations was addressed to differentiate between
entire workplaces. Another possible extension might be the combination of the current
workplace scene recognition with human activity recognition to gather more context of the
application area. Such an application enables to differentiate betweem activities within an
identified specific workplace [18].

Generally, work instructions should be adapted according to the cognitive needs of the human
worker and should be kept as simple as possible. Therefore, continuously presenting task
instructions to the human worker can have a negative impact on performance. Furthermore,
HMDs are difficult to work with and by working with centrally placed instructions, the
industrial worker may not be able to interact with the work objects due to holographic
obstacles. When information is always displayed in the centre of the device, the picking
time of a part and its placement at assembly positions might be decreased. Therefore, a
context-aware HMD device can differentiate regions of the visual field and place instructions
on regions of low interest is desired.

Importance of the diversity and richness of the Assembly Factory Workplaces datset
and its limitations

The aim of this thesis, to gather context awareness by classifying workplace images, is
only possible by using indoor scenes of assembly factories for training. SOTA research was
conducted to find the most suitable datasets to best fit the requirements of the application. In
this regard, it is important to know that workplaces do not exhibit only one specific object
for their classification. Moreover, the entire scene is important, including the foreground
objects and background details. For this reason, suitable classes of the public scene dataset
Places 365 were chosen to pretrain the model. However, the selected classes are only a
fraction of the diversity and richness of possible workplaces within an assembly factory. A
dataset that satisfies these criteria does not exist as of now. Therefore, within this thesis, a
new dataset was introduced, Assembly Factory Workplaces , which was used to finally train
the model for the desired application.

The dataset is limited to indoor scenes, because most assembly factories are within a building
and not outside. Limiting training to a specific genre allows us to improve the classification
performance by restricting the number of classes. For example, the Places 365 dataset has
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434 different classes1, and the latest classification algorithms can only achieve accuracies of
up to 60% [56] for the entire dataset. Therefore, the truncation of the dataset to include only
10 similar classes to our dataset helped to learn only relevant features to our dataset through
pretraining. Furthermore, since images are captured randomly with the HMD device, every
possible scene within the factory can be classified. Of course, unintentional scenes will
occur and misclassification cannot be avoided, but special classes were introduced to absorb
unintentional behaviour of the classifier. For example, if the floor or ceiling of the factory
are specific classes within the dataset, predictions of those can be included. Assuming a
situation, a human worker is located at a specific workstation and constantly engaged in one
work task. The classification system will continuously recognise the desired class. However,
if the human worker is briefly distracted by looking at the ceiling or floor, the system will
classify these scenes within a workplace class if the entire dataset is unaware of special
classes. Therefore, special classes Neutral , Combined Workplaces , Empty , and Too Close are
introduced, whose classification can be treated differently from standard workplace scenes.
For example, if a special class is detected, the previous workplace can still be in focus.
Therefore, temporal change can be used more effectively, improving user experience.

Blurry boundaries between workplaces make it difficult to identify transitions or even unique
workplaces. In general, workplaces within assembly factories are not strictly separated from
each other. Moreover, workplace scene classes can be superimposed or even not visible at all
within one scene. There is no clear structure of the workplaces within the assembly factory,
so basically every position must be respected. Therefore, if using sequential information
more properly (e.g., through dynamic scene recognition, etc.) the classification of blurry
boundaries might be increased.

The represented dataset contains the richness and diversity of all workplace classes. There-
fore, the generated dataset should act as a strong baseline for assembly factory applications.
Future adaptations are possible to define the workplaces more precisely and to extend the
classes by allocation. In general, all these changes are possible since the developed learning
approach does not have a limit on detectable classes. To expand applications across various
factory domains, workplaces within other factories have to be identified and added to the
model. It should be kept in mind that adding new classes increases the functionality in
other domains but could potentially lower the total classification accuracy. Therefore, it is
recommended to always validate the functionality of the system after such changes. So far,
the developed model cannot differ between two workplaces of the same class. Therefore, the
dataset facilitates just one specific workplace occurrence for a human worker. For example,
the Terminal class can be recognised, but the differentiation between two different Terminal
workplace classes is not implemented. This might be future work to enable the identification
of different workplaces of the same class.

1http://places2.csail.mit.edu/, last accessed on 20.08.2022
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Static scene recognition to unlock context awareness for digitial assistance systems

The supervised learning approach makes it possible to train the model in different images,
improving classification performance in unseen workplaces. As mentioned through SOTA
analysis, there exist different approaches to develop NN models for scene recognition. On
the one hand, there are object-centric approaches, which try to identify unique objects inside
an image for classification. As already stated, an object is not a unique identification of a
workplace scene. Therefore, it is not recommended to use these approaches exclusively. A
hybrid-based approach (e.g., object localisation and classification [65] or a combination of
CNN and HOI [58]) can extract more detailed features, but these approaches usually take
longer for processing. Therefore, we initially started with a lean model design with the
ulterior motive that processing such a model on a deployed device will take even longer. For
this reason, it was decided decided to use a single-stage scene recognition approach, to meet
the requirements of RTA. The adapted ResNet50 architecture was chosen because the study
in [56] has shown that it shows good performance on the Places 365 dataset, which shows
classes similar to our desired application. Further adaptations to the model were made to
implement the latest SOTA strategies [53] for model training to increase overall classification
performance.

Another interesting research area for future work involves models based on dynamic scene
recognition. These models use not only the spatial information of the images but also the
temportal information through changes between scenes. CNN-LSTM models have already
shown excellent results compared to static scene recognition for human activity recognition
or for natural scene recognition (e.g., waterfalls, landslides, etc.). However, there is an
uncertainty that arises when looking at dynamic scene recognition for workplace assembly
scenes with HMD devices. Most workplace classes do not have inherent movement, such
as waterfalls or landslides. Therefore, the benefit of dynamic scene recognition might be
more stability for the classification of the special classes or transitions through temporal
information. However, if no meaningful temporal information can be gathered, the trade-
off between increased classification accuracy and classification speed might not be worth it.
Therefore, temporal information can also be artificially generated by static scene recognition
by averaging the last classification results.

Lastly, learning aptitude is still an open task. Currently, it is not supported that the model
is self-learning through its application. Therefore, a validation procedure with the human
worker can be implemented. During the usage of the application, if the human worker
can provide feedback on the wrong classification of the device, further improvements can
be implemented. This can be beneficial for specific real-world applications to increase the
accuracy of classification.
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Testing the Model Behaviour deployed on a HMD Device within an Assembly Pilot
Factory

The use case focusses on the application within the TU Wien pilot factory, where the work-
place classes are represented. For the use case, Microsoft HoloLens 1 was chosen as HMD
device. This use case validates the assistance system module in terms of usability. There-
fore, the detection of different workplace classes, special classes, and intereference speed was
observed.

This use case should be an attempt to test context sensitivity of a system developed on
a HMD device within an assembly factory. Therefore, some critical appearances could be
observed. On the one hand, the classification time of 4000 ms is certainly too long. However,
the user has to wait too long for contextual feedback adaption. Through the observations
of the use case, a classification time of around 1000 ms should be attempted to provide
at least a continuous flow of recognition and bridge misclassification results. For future
research this suggests to try an approach where a HMD device supports GPU processing
(e..g, Barracuda), as this might be the most promising adaption. Another adaption might
be to change the model architecture. As model architecture, a more lean CNN model can
be tried to increase the classification speed at low costs of classification performance. For
example, the number of residual blocks of the ResNet architecture can be reduced to increase
the classification speed. Or, although AlexNet was not chosen for this application, it might
be worthwhile to test the improved version of Xiao et al. [49], which has fewer parameters
and can show a faster classification speed. Moreover, some adjustment parameters might be
beneficial to individually control the number of FPS that are processed by the device or to
regulate the sensitivity of the classification (i.e., averaging strategy to include timeframes
of the previous classification outputs, which will be considered for future decision-making).
Without any user-related settings, the overall usability of the assistance system might drop
dramatically.

Although the human worker can be supported by the Microsoft HoloLens 1, the device can
restrict the visual field of the human worker. This limited total field of view can result in
negative exposure for the industrial worker, since the accomplishment of the working tasks
might be hindered. The instructions displayed on the AR device might occlude important
areas. Optical see-through smart glasses, such as Google Glasses, typically have a smaller
field of view for AR, do not impair as strongly and are more lightweight [18]. In general, the
user should only be immersed in the virtual world as much as necessary. If no holograms
are required and only the text displayed is sufficient, smart glasses (e.g., Google Glasses)
might be beneficial. Therefore, the device should be chosen depending on the output type
that needs to be displayed. Although the HoloLens is a supererogation for just displaying
text, it keeps the information output flexible. Nevertheless, it is recommended to test other
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AR devices, such as Microsoft HoloLens 2 for faster processing or Google Glasses with less
VR immersion.

In general, the system cannot decide to capture only workplace classes. Therefore, the entire
application area has to be covered and should also include the classification of non-workplace
classes to increase overall performance of the device. However, by limiting the application
area more strictly, classifying non-relevant information can be avoided. In addition, the sys-
tem can differentiate between different workplaces, but it cannot identify worktasks within
workplaces. Thus, multiple task-specific instructions for one workplace cannot be differenti-
ated based on context. Lastly, the system does not capture and save the images that have
been processed. Therefore, it is unknown which images eventually got classified and whether
HMD still shows some drop in classification performance compared to digital validation.
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Conclusion

To sum up, this thesis is a proof-of-concept to showcase that context-sensitivity in terms of
location or scene-awareness can be implemented in a HMD device to help human workers
in assembly factories. Therefore, the benefits (i.e., enabling automated AR-instructions
within multi-machine operation, supporting the decision-making process, and removing the
responsibility of the human worker) and drawbacks (i.e., unfamiliarity with the system,
reduced field of view, and split attention) of an guidance system with context awareness
were mentioned. Through the latest research on supervised learning algorithms for indoor
scenes, important key aspects of neural networks and datasets for training could be identified.
Thus, it has been determined that the application within an assembly factory can be best
represented by indoor scene classes. Therefore, a newly developed dataset, Assembly Factory
Workplaces , with around 4695 images, 6 workplace classes and 4 special classes classes,
was created. Furthermore, as a neural network, a modified ResNet-50 architecture was
introduced. To increase the robustness and performance of the model, pretraining was
carried out on a truncated Places365 dataset. To finally validate the test results, a use case
was conducted within the TU Wien pilot factory. Therefore, the trained neural network
was deployed on a HMD device (i.e., Microsoft Hololens 1 ). Since the proposed system is
only a middleware to support context-awareness in multi-machine operation, the use case
focused on identifying the classification speed (i.e., around 4000 ms) and the identification
performance of the classes, which was sufficient for most scene classes (i.e., Terminal , Too
Close, Shelf , Robot , Assembly Line) within the assembly factory. Moreover, some classes
(i.e., Table , Combined Workplaces , Empty , Neutral , Machine Tool) could not be classified
properly which suggests further research. Overall, this thesis provides a proof of concept
that shows that scene-awareness for assistance systems is achievable. However, there are
still open topics that need to be further examined. On the one hand, the posistive effects of
these AR-based instructions in multi-machine operations need to be proven by experimental
studies with workers. Furthermore, other neural networks (i.e., espically CNN-LSTM or
Object Detection with CNN), a more diverse and rich datasets and other HMD devices or
smart glasses, might be worthwile, to improve the functionality of context-awareness.
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