
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

A Continuous Delivery Strategy
for Unikernel-Based Cloud

Services

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Mathias Mahlknecht, Bsc.

Matrikelnummer 1115808

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar

Mitwirkung: Dipl.-Ing. Clemens Lachner

Wien, 1. Dezember 2019

Mathias Mahlknecht Schahram Dustdar

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A Continuous Delivery Strategy
for Unikernel-Based Cloud

Services

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Mathias Mahlknecht, Bsc.

Registration Number 1115808

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar

Assistance: Dipl.-Ing. Clemens Lachner

Vienna, 1st December, 2019

Mathias Mahlknecht Schahram Dustdar

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der
Arbeit

Mathias Mahlknecht, Bsc.

Sechsschimmelgasse 18/11, 1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Dezember 2019

Mathias Mahlknecht

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

I would like to thank Prof. Schahram Dustdar for agreeing to supervise this diploma
thesis.

I thank my parents for enabling me to pursue this study and for their patience and
support throughout my whole school and university career.

A special thanks goes to Alexia, for her support and patience and for encouraging me to
finish this study.

Finally, I would like to thank Clemens for his valuable input, feedback and encouragement,
throughout the writing of this thesis.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

In den letzten Jahren hat sich die Art wie Anwendungen entwickelt, deployed und gehostet
werden stark verändert. Vor zehn Jahren waren die meisten Anwendungen noch monoli-
thische Systeme. Sie liefen lokal oder auf selbst gehostet Servern und die Entwicklung
umfasste teils Monate dauernde Release Zyklen. Moderne Anwendungen hingegen werden
heute nach agilen Prinzipien entwickelt, wobei die Funktionalität in kleine unabhängige
Services gekapselt wird, welche auf einer Cloud Infrastruktur ausgeführt werden. Au-
tomatisierung und Virtualisierung unterstützen die Entwicklung und das Deployment
solcher Anwendungen. Container, z. B. Docker, bieten eine leichtgewichtige Alternative
zu klassischen virtuellen Maschinen und sind heute die meist genutzte Technologie für
Cloud basierte Softwarelösungen. Ihre Kompaktheit und kurze Startdauer sind ideal in
Kombination mit modernen Automatisierungs- und Orchestrierungstools, zum hosten
von verteilter Software, in der Cloud. In den letzten Jahren haben sich Unikernel als
Alternative zu Containern und klassischen virtuellen Maschinen erwiesen. Diese basieren
auf dem Konzept der Library-Betriebssysteme, kombiniert mit modernen Methoden der
Virtualisierung, d. h. Unikernels vereinen die Vorteile von Containern und klassischen
virtuellen Maschinen, durch starke Isolation gepaart mit einer leichtgewichtigen Imple-
mentierung. Während Container von Continuous Delivery Tools bereits gut unterstützt
werden, ist das für Unikernels noch nicht der Fall. Es ist mit erheblich mehr Aufwand
verbunden eine kohärente Continuous Delivery Pipeline zu erstellen, die Cloud Services
als Unikernels liefert.

Diese Arbeit präsentiert eine Continuous Delivery Strategie für Cloud Services basierend
auf Unikernel. Als Erstes werden Unikernels mit anderen Virtualisierungstechniken
verglichen. Dabei werden Performance- und Sicherheitsfeatures, unter Zuhilfenahme von
existierenden Publikationen, untersucht. Die Ergebnisse zeigen die Vorteile von Unikernels
für Cloud Services und das Verlangen nach entsprechenden Tools, die den Übergang für
Entwickler erleichtern, die diese leichtgewichtige und sichere Alternative nutzen möchten.
Darauf folgend wird einen Continuous Delivery Pipeline, für auf Unikernels basierenden
Cloud Services, ausgearbeitet. Dabei werden sowohl existierende, also auch neuentwickelte
Tools verwendet. Abschließend wird die Verlässlichkeit von Unikernels im Vergleich zu
Containern evaluiert, basierend auf zur Zeit zur Verfügung stehenden Tools zum deployen
und betreiben von Cloud Services in Produktion.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Over the last decade the development, deployment, and hosting process of applications
changed drastically. Ten years ago most applications where monolithic systems, i.e.,
running locally or on premise, developed in long release cycles over months. Today, modern
applications are developed in an agile fashion, providing functionality encapsulated in
small services that run in the cloud. Automation and virtualization are the key enablers
for the development and deployment of such applications. Containers, e.g., Docker,
offer a light weight alternative to classical virtual machines and became the standard
virtualization technique for cloud-based services. Small size and fast startup times,
combined with modern automation and orchestration tools, outweigh drawbacks like
laxer isolation. In recent years, a third alternative to containers and classical virtual
machines, called unikernels, emerged. Based on the concept of library OS, combined
with modern technological features of virtualization and hypervisors, unikernels offer the
advantages of both, containers and classical virtual machines, by providing advanced
isolation and a lightweight implementation. While continuous delivery tools provide good
support to deploy cloud services as containers, the support for unikernels is still sparse
and it is not trivial to build a coherent continuous delivery pipeline for cloud services
packaged as unikernels.

This thesis presents a continuous delivery strategy for unikernel-based cloud services.
First, a thoroughly comparison of unikernels and other virtualization techniques, mainly
containers, is provided. Performance and security properties are examined, based on
existing research and publications. This will show the advantages of unikernels for cloud
services and the need for good tooling to ease the transition for developers, that want to
take use of this lightweight and secure alternative. Second, a continuous delivery pipeline
for unikernel-based cloud services is proposed and developed, by taking use of existing
tools and the implementation of new ones. Finally, the feasibility of unikernels in contrast
to containers is evaluated, based on the tools that are today available to reliable deploy
and run cloud services in a production-like environment.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Methodology and Approach . 3

2 Fundamentals 5
2.1 Operating Systems . 5

2.1.1 Kernel . 6
2.2 Unikernel . 8

2.2.1 MirageOS . 11
2.2.2 OSv . 12
2.2.3 Rumprun . 13

2.3 Virtualization . 13
2.3.1 Types of Virtualization . 14
2.3.2 Hypervisor . 15

2.4 Container . 16
2.4.1 Containers on Linux . 17
2.4.2 Containers in Agile Projects . 19

2.5 Microservices . 19
2.6 Continuous Integration/ Continuous Delivery 20

3 State of the Art and Related Work 23
3.1 State of the Art . 23

3.1.1 Orchestration . 23
3.1.2 Automated Builds . 24

3.2 Related Work . 26

4 Performance Evaluation of Unikernels 29
4.1 Computational Performance . 29

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2 Memory Management . 33
4.3 Network I/O . 35
4.4 Boot Time and Concurrent Provisioning 36
4.5 Summary . 38

5 Security Evaluation for Cloud-Services 41
5.1 Security Implication in a Cloud Environment 41

5.1.1 Security Threats . 41
5.1.2 The OWASP Top 10 . 42

5.2 Vulnerability Comparison . 43
5.2.1 Insecure Configuration . 44
5.2.2 Vulnerabilities Inside the Images 45
5.2.3 Vulnerabilities Directly Linked to the Runtime 45
5.2.4 Vulnerabilities in the Kernel . 46
5.2.5 Vulnerabilities in the Image Distribution, Verification, Decompres-

sion and Storage Process . 46
5.3 Summary . 47

6 A Continuous Delivery Strategy for Unikernels 49
6.1 Tools for a Continuous Delivery of Unikernels 49

6.1.1 CI/CD Server . 49
6.1.2 Build Tool for Unikernels . 50
6.1.3 JUnik, the Java Library . 51
6.1.4 Unik Builder, a Jenkins Plugin 52

6.2 Continuous Delivery Pipeline . 54
6.3 Experimental Setup . 56

6.3.1 Best Practices . 57
6.3.2 A Microservice Application . 66

6.4 Evaluation and Results . 68
6.4.1 Implementation and Build . 69
6.4.2 Delivery and Deployment . 73
6.4.3 Summary . 77

7 Discussion 79

8 Future Work 81

9 Conclusion 83

List of Figures 85

List of Tables 87

Bibliography 89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

This thesis evaluates the unikernel concept in the context of cloud services, and provides
a continuous delivery strategy for cloud services packaged as unikernels. In this chapter
the motivation and problem statement will be described, fallowed by the methodology
and the description of the used approach.

1.1 Motivation and Problem Statement

Continuous delivery is an important concept in agile projects, where a system rapidly
changes and those changes have to be frequently deployed. The goal is to automate as
much as possible of the delivery process. With a minimum of manual interference, the
project gets build, tested, and shipped. This makes the process faster and replicable.
Releasing a new version should be as easy as pressing a button [1].

In such projects, teams may rely heavily on virtualization together with advanced
continuous delivery tools, e.g., Jenkins1, to build, spin-up, take down, scale, and distribute
their applications. Virtualization in general means, there is an additional software layer
running on the host machine, which allows to run multiple guest operating systems (OS)
on top of it. This additional layer is often called hypervisor. A hypervisor provides a set
of virtual hardware, so that the guest OS, also called virtual machine (VM), only needs
to have drivers for this specific set of virtual hardware. The VMs are isolated from each
other and act as if they have exclusive access to the hardware. In terms of continuous
delivery, this brings advantages, since it allows to spin-up a clean environment for each
build and also makes this environments portable.

Containers gained increased industrial popularity lately, being a lightweight alternative
to full fledged VMs. The key difference between containers and full-virtualization

1https://jenkins.io

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

hypervisors, is the level where isolation is implemented. Traditional hypervisors isolate on
the hardware abstraction layer, whereas containers isolate on the system call/ABI layer.
This leads to a trade-off between isolation and performance. While full-virtualization
provides a better isolation between the VMs and makes it virtually impossible for the VMs
to be aware of each others presence or even to interfere directly with each other, there is
a significant overhead that impacts performance. Containers, on the other hand, have
less strict isolation, but applications perform almost equally as on a physical machine [2].

Docker2 is a well established, popular containerization tool and is supported by the
majority of cloud providers. It has a well defined API and different types of configuration
files, that makes it easy for a developer to define a new image, spin-up a container
or configure a cluster of communicating containers, without deep knowledge of the
underlying virtualization technology. It became the de facto standard for the industry, it
is integrated into all the major cloud providers and other cloud orchestration solutions
are build on top of it.

However, containers are not the only alternative to full fledged virtual machines. Uniker-
nels are another upcoming technology, which gained increased popularity, although mostly
in academic environments. The idea is based on library OS, which was already developed
in the 1990ies [3, 4]. In recent years, major problems of library OS and its derivatives
were solved, and this “second generation“ library OS was dubbed unikernel [5]. Various
tools aim to make it as easy to build an application as a unikernel, as it is to containerize
an application. But most of them are still in an early phase or support just a specific
type of unikernel.

Although containers and unikernel share similarities, they differ in other aspects, and
they are definitely not completely interchangeable. Containers still hold a complete
operating system like Linux, even if it is stripped down. The application, deployed into a
container, runs as one process alongside the other system processes inside the container.
A unikernel, on the other hand, is operating system and application at the same time.
This means applications, build as unikernel, can run without an operating system directly
on the hypervisor (or even on bare metal) [5].

This brings advantages, e.g., on embedded systems, where the firmware can be imple-
mented lightweight and updated by simply replacing the whole software as one. Another
advantage, especially in the context of cloud services, is enhanced security. First of all a
running unikernel can not be changed because everything up to configuration is done at
build time. This means injection of malicious code, is virtually impossible. Additionally,
only libraries that are needed for the applications, are also included into the build. This
reduces the attack surface significantly [6]. However, there are also disadvantages, e.g.,
it is not possible to deploy two closely coupled applications together, like it is with
containers [5].

One of the biggest advantages containers have over unikernels is, that it is currently still
easier to build, ship, and run an application as a container than it is as a unikernel. This

2https://www.docker.com

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Methodology and Approach

is mainly due to the Docker project and all the other tools that build on top of it or
make use of it. A developer does not need a deep understanding of operating systems
and virtualization to run their application in a container. As previously mentioned,
this is achieved by providing simple configuration files and taking use of well specified
continuous integration (CI) tools and extensions for those tools.

Regarding unikernels, the integration of CI into the development process is still not a
simple task. Deeper understanding of how unikernels actually work is needed, combined
with a lot of additional manual steps that have to be taken to build and run an application.
However, there are a ongoing projects that aim to facilitate this CI implementation
process. One of the most promising ones is Unik [7].

Unik is a framework that builds applications into different kind of unikernel implementa-
tions and runs them on different platforms. The developer simply provides a configuration
file and runs a command, specifying language, type of unikernel and targeted provider
platform. Little knowledge is required about how the unikernel is build. The framework
is open source and can easily be extended for new languages, unikernels and platforms.
The project is still in a relative early phase, but the aim is to make the configuration
and commands as similar to Docker as possible, so that the transition from container to
unikernels is easier [7].

To make continuous delivery of unikernels as simple as it is for containers, a proper
support of CI tools is needed. To the best of our knowledge there is currently no CI tool
that provides support for unikernels, neither directly built in, nor via plugins. To build
and ship unikernels with various CI tools, manual steps are necessary, resulting in time
and maintenance overhead.

The purpose of this thesis is to compare unikernels against containerization and other
virtualization techniques, in particular in the context of cloud-based services. Additionally
to the analysis of existing research in the area, this will be achieved by proposing and
evaluating a continuous delivery strategy for cloud services as unikernels.

1.2 Methodology and Approach

This thesis can be divided into four main parts. In the first part, the essentials are
provided, which the reader needs to follow the rest of the thesis. A review of existing
literature will show the different concepts and techniques used by an OS with respect to
the various types of virtualization, containers and unikernels especially. The concepts of
continuous delivery and microservices are described briefly. Additionally a presentation
of the state of the art and of related work is provided.

In the second part a thorough comparison between unikernels and other virtualization
techniques will be made. Since this is a broad field with a lot of different use cases,
the focus will be put on the usage in the cloud. Existing literature provides results
of experiments, where the different technologies are analyzed according to different
metrics. Common metrics in this area are size, build time, startup time, security and

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

performance. There is research that compares different container solutions with each
other, container solutions with virtual machines and bare metal, but also container
solutions with unikernels and different unikernel solutions with each other. This different
results will be put into context and additional observations and conclusions will be made.
The results will be divided into two chapters. The first one sets the focus on performance
metrics, while the second mainly covers security concerns in a cloud environment. This
evaluation will show the advantages of unikernels for cloud services and the need for good
tooling to ease the transition for developers, that want to take use of this lightweight
and secure alternative.

The third part will deal with the main contributions of the thesis. A continuous delivery
strategy will be presented and a Jenkins plugin that eases the build and deployment
of unikernels will be implemented and discussed. Obstacles or major risks encountered
during the development process will be documented as well.

The development and evaluation of the results will be performed in three steps. First,
existing tools for continuous delivery and building of unikernels are evaluated and selected.
In order to integrate this tools with each other, extensions and customization will be
developed. This will result in JUnik, a general Java client library for the Unik framework
and Unik Builder, a Jenkins plugin that takes use of this library, to add simple build
steps for unikernels to Jenkins.

Second, a continuous delivery strategy for cloud services as unikernels is proposed. This
strategy will be used to develop a continuous delivery pipeline, by taking use of the
previously selected and developed tools.

Finally, obstacles encountered during the development are described and the current state
of unikernels and their tools evaluated. This will lead to an assessment of unikernels in
contrast to other virtualization techniques, in the face of today’s need of highly scalable
and lightweight cloud services.

In the last section, the provided work is discussed and areas for future work identified. A
conclusion will finalize the work and provide a summary.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Fundamentals

Over the past years, server virtualization gained an increasing importance in deployment
and hosting of applications on the web. Especially in distributed systems, virtualization
techniques gained increased popularity. With the establishment of microservice based
applications, an increasing number of companies are switching to agile development
methods, where frequent and automated deployment is crucial. Tools to support and
simplify this automated deployment on virtualized hosts are continuously developed and
released.

In the following chapter fundamentals which are essential for the rest of this thesis are
provided. First, various aspects of operating systems (OS) are introduced. Secondly,
virtualization and respective tools are described. Third, the basic concepts of continuous
integration and deployment are presented.

2.1 Operating Systems

Andrew S. Tanenbaum describes the purpose of Operating Systems (OS), from two
views: The OS can be seen as “an Extended Machine” and its major task is “to hide
the hardware and present programs (and their programmers) with nice, clean, elegant,
consistent, abstractions to work with instead”. But it can also be seen as “a Resource
Manager”, then its primary task would be “to keep track of which programs are using
which resource, to grant resource requests, to account for usage, and to mediate conflicting
requests from different programs and users” [8].

However, the purpose of an OS is a combination of these and much more. In his book,
Modern Operating Systems [8], Tanenbaum provides a detailed view on operating systems,
their role and tasks and how they are implemented. Since this is beyond the scope of this
thesis, only short descriptions of the specific features of operating systems are provided,

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Fundamentals

which are necessary to understand the concepts of Virtualization and Containers as well
as Unikernels.

2.1.1 Kernel

A kernel is the core of every OS. It is a program running in a privileged mode and all
other programs rely on this program and its functionality for system critical task. The
kernel manages the communication with the hardware and the communication between
the different user processes. This way an abstraction layer for the user processes is
provided and some protection of the system from malicious and faulty instructions is
ensured.

One important task is the distribution of CPU time among the processes, i.e., it has to
make sure every process gets access to the CPU eventually and no idle process blocks
the CPU, without actually needing it. Another important task is the management of
memory. The kernel provides functionality to allocate memory space for the processes
and frees up memory if it is not needed any more, so a new process can use that space.
In general, all system-critical operations, that potentially effect other parts of the system,
need to be delegated to the kernel process. This is done via a special instruction set
called system calls.

Depending on the type of kernel, also the drivers for different I/O devices are located
here. Most modern OSs use one of the following two kernel types: a monolithic kernel or
a micro kernel. Monolithic kernels include a wide range of functionality and perform all of
them in privileged mode, which is a special permission level, reserved for security sensitive
operations. Micro kernels on the other hand, try to externalize as much functionality as
possible into the user space. Monolithic kernels consist of significantly more lines of code
and are naturally more complex. This implies that they are also more error prone, e.g., a
bug in a driver, which is included in the kernel and executed in privileged kernel mode,
can cause a failure of the whole system. Micro kernels are build from a smaller code base
since they contain only the functionality absolutely essential to the system, like process
and memory management. The above mentioned bug would only cause the process of
the driver to fail rather than the whole system [8].

Process

A process is a running instance of a program. Every time a program is executed at least
one new process is started. It holds all the relevant information needed for the program
to be executed. Every process operates in its own address space, i.e., a list of memory
locations on which the process can read and write. Apart from the binary, being the
executable program, the process contains the program’s data and its stack. Additionally,
associated with each process are a set of resources, e.g., registers, pointers, open files,
and related processes.

Not all processes have the same privilege level. There are user processes and system
processes. The system processes can only be started by the kernel and are allowed to

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Operating Systems

perform system critical instructions, e.g., interacting directly with the file system and
other I/O devices. The user processes have limited access to the resources and every
time a process needs to communicate with another process or the hardware, it needs to
call on the kernel, which in return delegates this operation to a system process [8].

Driver

Drivers are programs that control devices which are attached to the system. For every
device and OS there is a specific driver. Drivers provide a software interface that enables
the different programs of a system to interact with the hardware, without the need
to know the different protocols to communicate with different devices. The program
simply sends it requests to the software interface of the driver and the driver handles the
communication with the hardware and returns the response to the calling program.

Drivers are usually not included directly in the kernel, since they commonly come from
an external provider, like the manufacturer of the hardware. However, in many OSs, they
are executed in privileged mode, which allows them to interact closer with the hardware.
The downside of course, is the risk that an error in a driver could crash the whole system.

System Calls

System calls are a set of privileged instructions, that are only allowed in kernel mode. A
normal user process is not allowed to execute this instruction directly, but it passes the
control over to the kernel, which performs this task for it. This is because significant
security issues arise, if user processes is allowed to directly access I/O devices or the file
system.

Every time a user process wants to perform a privileged instruction, a system call is
performed. This is done by placing the system call number in a dedicated register and
executing a TRAP instruction, i.e., a special instruction that causes the process to stop
and the kernel to take over control. The kernel will then look up the system call number
and dispatch the requested system call handler. The system call handler is basically a
specific procedure that performs a privileged task, like reading from a file. After the
handler is finished the kernel passes the result to the process and returns control so that
the process can continue with its next instruction [8].

For UNIX like systems, a standard called POSIX 1 exists. It defines interfaces for about
a hundred systems calls and has the purpose to simplify the portability of applications
between different systems.

CPU Rings

Most of modern CPU architectures comprise different privilege levels and only allow
certain instructions on specific levels. By doing so, they make sure that a process can only

1https://standards.ieee.org/develop/wg/POSIX.html

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Fundamentals

Kernel-Mode

Ring 0

Ring 1

Ring 2

Ring 3

U
s
e
r
-M

o
d
e

Gate

Figure 2.1: Scheme of CPU Rings of the x86 architecture [10]

run instructions on its own up to its designated privilege level. For all other instructions
a process must delegate a task to another process with higher privilege level. Figure 2.1
illustrates the privilege scheme of the x86 architecture [9], a common CPU architectures.
It consists of four privilege levels: Ring 0 to Ring 3, whereas Ring 0 is the most privileged
level and Ring 3 the least one.

Most kernels only use two of these Rings: Ring 0 for kernel operations and Ring 3 for
user application operations. User applications can only access the address space assigned
to them directly, for everything else they have to call on the kernel to perform the task
for them. For instance to open a file, print to the screen or allocate memory. This is
because that could have an effect on an other application or the rest of the system. If an
application tries to run a protected instruction outside of Ring 0, a general-protection
exception is thrown [11].

2.2 Unikernel

The term Unikernel was first introduced by Madhavapeddy et al., where they define
unikernels as “single-purpose appliances that are compile-time specialized into standalone
kernels, and sealed against modification when deployed to a cloud platform” [5].

Although the term is new, the concept, also known as Library OS, is around since the
late 1990s. Their first representatives were Exokernel [3] and Nemesis [4]. This two
implementations had slightly different goals, than today’s unikernels.

The Exokernel project wanted to provide an alternative to general purpose, monolithic
operation systems. They argued that fixed high-level applications are hurting the

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Unikernel

application performance, because their is no single way to abstract physical resources
that is best for all applications. General operation systems also hide information, so it is
not possible for applications to implement their own resource management. New ideas or
different approaches only get slowly integrated into this abstraction, which also limits
functionality that would be possible otherwise. To overcome this issues the Exokernel
project implemented a new minimalistic kernel, that manly focused on secure bindings,
visible revocation and abort protocols. Due to this few simple functionalities this kernel
can be made efficient and low-level multiplexing of resources can be provided with a
minimum of overhead. Everything else, for instance traditional abstractions like page
tables and events, are implemented as libraries that can be used in the libraryOS running
on top of this kernel. This way every application can use the implementation that is
best suited for their needs. In their publication Engler, Kaashoek and O’Toole Jr. [3],
compared their Exokernel with a monolithic Unix operation system and were able to
show significant performance increases in there benchmark tests.

The Nemesis project on the other hand, aimed to provide a specialized operation system
for multimedia streams. They ended up with a libraryOS implementation, that had
significant performance increases, for this specific tasks, compared with a general purpose
operation system [4].

The first Library OSes had to deal with two major problems, namely resource isolation
and device drivers. It is not a trivial task to run multiple applications side by side and
still provide a strong resource isolation, to prevent communication between different
instances. To keep up with the fast development of PC hardware and to provide a wide
range of up-to-date drivers, is especially challenging for scientific projects, with limited
resources. The rise of hypervisors and virtualization helped to overcome these challenges.
Isolation can be ensured, simply by letting the hypervisor spawn a new VM for each
application. Since hypervisors provide an abstraction layer to the hardware, by providing
a set of supported virtual devices, the Library OSes only have to implement drivers for
these virtual devices. [12].

Unikernels are structured differently than a conventional OS. A conventional OS, like Linux
or Windows, is designed to support a wide range of tasks while running independently
and allowing the parallel execution of different applications. A substantial set of drivers
and services are integrated into the OS and might even run in the background, no matter
if current applications need them or not. In a unikernel, on the other hand, all services are
packed as libraries. These libraries are linked directly into an application at compile time
and can not be modified afterwards. Therefore, after compilation, the result is a single
purpose application, consisting of one process, that can run directly on a hypervisor, just
like a regular OS. Its benefits are much less computational overhead and reduced security
risks due to these specific reductions of unused services. It reduces the attack surface, by
simply not including interfaces that are not needed by the application. By only including
what the application needs, the computational overhead is reduced, since there are no
unnecessary background process running.

Configuration of applications, on a traditional OS, is many times done via ad-hoc text

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Fundamentals

Configuration

Application

Language Runtime

Threads

Processes

OS Kernel

Hyprvisor

Hardware Hardware

Hyprvisor

Library

Application

Unikernel

Traditional OS Archtecture Unikernel Architecture

Figure 2.2: A unikernel architecture is able to reduce its size by removing many layers of
the software stack, compared to a traditional OS. [13]

files, that are stored on the file system of the OS and need to be carefully maintained by
operations personal. Regarding unikernels, all the configuration is done by the developer
and can not be changed after compilation. Such configurations are implemented against
specific dynamic or static APIs which are checked during build time.

Since a traditional OS, does not know which applications will be executed on it, it must
therefore consider all executed code as potentially malicious. Concepts like userspaces
and privilege levels are introduced to protect the core system from the users and the
different processes from each other. Unikernels run just one application by design, with
a designated purpose, in only one process. There is no need to distinguish between user
commands and system commands, there are no different privilege levels and no costly
context switches are required. Since application and OS are one, in the unikernel concept,
there is no reason to protect the kernel from a failure of the application. If the application
fails, the whole unikernel can fail. This supports unikernels in increasing performance
and reducing their size. Figure 2.2 shows the differences between the software layers of a
traditional OS and those of a unikernel.

Today many different unikernel implementations, with different scopes, exist.

The first group of unikernels focus on reusability and support of already existing applica-
tions. This is realized by implementing the POSIX standard, which is also implemented
by the Linux kernel. An application implemented for a standard Linux OS, by taking
use of the POSIX interface, can be executed on a unikernel. Members of this group are
OSv or Rumprun. The second group focuses more on type safety by using a high level

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Unikernel

language. This unikernels reimplement all standard protocols in this same high level
language, optimize those protocols for unikernels and add additional special APIs. They
justify this sacrification of backwards compatibility and portability with performance
and safety improvements. This unikernels usually also require their applications to be
implemented in the same type save language. A member of this group is MirageOS.

The following sections will introduce some well established unikernel implementations.

2.2.1 MirageOS

MirageOS [5] is the first of this new generation of Library OSes and defined the term
Unikernel as a Library OS that is specifically designed to run in the cloud. It is fully
implemented in the type save, high level language OCaml2 and applications must be
developed specifically for this unikernel in the same language.

The selection of OCaml as the only supported language of course has some draw backs.
It is still a relatively esoteric language and it imposed a significant engineering effort to
reimplement the system components like the network or storage stack. But the OCaml
runtime’s fast performance for sequential executions, makes it well suited for unikernels,
since unikernels by design run in a single process on one vCPU. OCaml is also a type-save
language which adds to security.

MirageOS currently only runs on Xen hypervisor, but the support for other platforms is
planed. Core elements of Xen are also implemented in OCaml which made the integration
of MirageOS unikernels for this hypervisor easier.

The scheduling and thread logic is fully contained in application libraries, which allows
the developer of an application to modify it as it fits best for their application. Also
the device drivers are fully implemented in OCaml. Here we find an example where
MirageOS does not follow the POSIX standard. The POSIX API does not support
zero-copy sockets, this means there is always a second copy from the VM’s kernel to the
userspace process. Since MirageOS does not distinguish between kernel and user space,
this is not necessary and received pages can be passed directly to the application without
copying. This gives MirageOS a performance advantage.

Since MirageOS, as a unikernel, runs only one application and thus does not have to
distinguish between kernel and user space, it gives the developer much more control over
lower level OS functionality, than for example a standard Linux VM would. Which has
significant performance benefits. For instance, filesystem and caching are provided as
OCaml libraries, which gives control to the application over the caching policy instead of
just providing one default implementation.

In the benchmarks Madhavapeddy ed al. show that MirageOS has the same boot time as
a minimal Linux kernel and slightly less than half of the boot time of the Debian Linux.
This is on an unmodified Xen hypervisor. After modifying the Xen boot stack, to allow
parallel domain construction, they reach a minimal boot time of under 50 milliseconds.

2https://ocaml.org/

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Fundamentals

2.2.2 OSv

OSv [14, 15, 16] is a unikernel implementation by a company named Cloudius Systems.

Similar to MirageOS it is especially developed to run on the cloud, but it provides
support for multiple platforms, such as Xen, VMWare or Virtual Box as well as for cloud
providers like Amazon EC2 and Google GCE.

Originally it was implemented to support the execution of existing Java applications as
unikernels in the cloud, so it naturally provides a good support for this applications. By
now support was added for other languages like Golang, Python or Nodejs as well as for
Linux executables in general.

OSv is fully implemented in C++. Some OS components were reimplemented from
scratch others are taken from open source projects like FreeBSD. In general OSv focuses
on reusability, so that existing applications can easily be ported to run as a unikernel
in the cloud. Additionally a non POSIX API was added, that OSv aware applications
can use to increase their performance, for example a zero-copy, lock-free API for packet
processing. All JVM languages benefit from this API natively, because OSv’s JVM
implementation takes already use of it.

OSv aims to perform better than a standard Linux. Because of that, parts of the OS
were reimplemented instead of fully relying on existing projects like FreeBSD. To achieve
this, for instance system calls are linked to normal functions, since in a single address
space environment no special handling is needed for them. Another improvement is to
get rid of all spin-locks, for example by using lock-free algorithms, per-cpu run queues
and threading.

On of the biggest modifications is a high quality TCP/IP stack, since network communi-
cation is important for cloud native applications. This is done by using Van Jacobson’s
net channel ideas [17]. Here for each TCP or UDP connection a channel is created, which
is a single producer/single consumer queue. This significantly reduces the amount of
locks needed and in return increases performance.

Apart from the kernel it self, OSv provides additional tools, that aim to make it easier to
build, operate and maintain OSv kernels in the cloud.

With Capstan a build tools is provided, where the unikernel can be configured, similar to
a docker container, with a simple configuration file. This makes it much easier and less
error-prone, than writing a Makefile and build scripts directly.

Similar to the Capstanfile a cloud-init file can be added, that allows to define a
set of task that are performed on startup of the unikernel.

An other feature is a REST API, that can be added to the kernel on build time, which
allows remote monitoring of the unikernel but also to send commands, like restarting the
application. This api can be accessed directly, via command line, or via a web client.

OSv, with its ecosystem, is one of the most advanced unikernel projects. It allows to
execute every application as a unikernel, that can be executed on a standard Linux and

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Virtualization

on the same time provides a better performance. With its tools it is also relatively easy
to build, run and scale unikernels as a swarm in the cloud.

2.2.3 Rumprun

Rumprun unikernel [18, 19] is a unikernel implementation based on rump kernels. It aims
to run all applications developed for a POSIX environment as a unikernel.

The first purpose for the rump kernels was it to make it easier to develop and test drivers
for the NetBSD kernel in userspace. This means the rump kernels bring along everything
required to run a kernel driver. From there it went to not only make kernel driver work in
userspace and in the NetBSD kernel, but everywhere. This is resolved by the Anykernel
and the Hypercalls.

The Anykernel is a an architectural concept that ensures there is no direct reference
where there should not be one. For example it should be trivial to exchange the TCP/IP
stack with out any dependencies to the rest of the kernel.

The Hypercalls is a layer that provides an interface for the drivers to back-end resources
such as memory and I/O functions.

With this modifications it is possible to run drivers in any configurations, monolithic,
microkernel or unikernel.

Rumprun is simply a wrapper to run the rump kernels as unikernels. It takes existing
drivers from rump kernels, ads a libc and an application environment, and provides a
toolchain which builds existing applications as a rumprun unikernel.

2.3 Virtualization

VMware, one of the leading companies providing solutions for virtualization, describes the
technique as a “separation of a service request from the underlying physical delivery of
that service” [20]. This means, that there is an additional software layer between the host
machine and the guest OS. This software layer is called Hypervisor or Virtual Machine
Monitor (VMM, see 2.3.2). The hypervisor is able to virtualize the hardware layer in a
way, so that the different OSes, running on top of it (guest OS), can act like they have
exclusive access to the hardware. In fact, they are not aware of the other guests. This
allows to share specific hardware capacities and features between different services to
make of use their full potential, but at the same time isolate the services from each other.

The first server virtualization comparable to modern techniques was developed by IBM
in the 1970s as a way of time-sharing for their mainframe computers, specifically for their
System/370. This virtual machines simulated the System/370 architecture and worked
exclusively on this mainframe [21].

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Fundamentals

At about the same time Popek and Goldberg defined formal requirements for virtual
machines and formulated three essential characteristics, what they believed a virtual
machine architecture must fulfill [22]:

1. “Any program run under the VMM should exhibit an effect identical with that
demonstrated if the program had been run on the original machine directly.”

2. “A statistically dominant subset of the virtual processor’s instructions are executed
directly by the real processor.”

3. “The VMM is in complete control of system resources.”

Sticking to this characteristics proved to be difficult later on, because they were simply
unsuited to certain tasks, or required expensive operations like additional context switches.
Nowadays most existing hypervisors do not abide to those formal requirements that
strictly anymore [23].

In the late 70s the rise of the personal computer led to a decrease of interest in virtu-
alization techniques. Companies could now provide multiple PCs to their employees
instead of one big mainframe they all had to share. Another reason for the stagnation
was, that the most popular processor architectures were not designed to run multiple
operating systems at once. An example of this is Intels x86-32 architecture [9]. It was
then believed to be impossible running virtualization software on this architectures. 1999
VMware released its product VMware Virtual Platform, which was able to run Virtual
Machines on Intels x86-32 architecture based processors [20].

Today many different hypervisors exist, both commercial and open source. Some examples
are: VMware3, the Xen Project4 or Denali5. In addition most of modern processors
provide hardware support for virtualization, which helps developers of different hypervisors
to increase the performance of their products [24]. However, not all hypervisors work the
same way and the virtualization techniques can be divided in different types.

2.3.1 Types of Virtualization

Virtualization techniques can be roughly divided into four types, although in practice
many hypervisors use a mixture of different techniques to maximize their performance.

Operating System-level virtualization The virtualization is performed at operating
system-level. The host OS has a modified kernel that allows the execution of
multiple isolated Containers (see 2.4). There are many different kinds of this type
of virtualization and their implementations are widely used. This technique shows
a low performance overhead, but it does not support multiple kernels [24].

3https://www.vmware.com/
4https://www.xenproject.org/
5https://www.denaliai.com/

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Virtualization

Para-virtualization For this technique the guest OS needs to be modified. A special set
of instructions (Hypercalls) are added to replace the real machine’s instruction sets.
The advantages are a low performance overhead and most of modern processors
implement hardware support for this technique, that allows the hypervisor to run
between hardware level and guest OS level. [24].

Binary translation This technique is used to emulate a processor architecture which
differs from the actual architecture, alongside with an emulated eligible instruction
set through translation of code. The advantages here are the portability of OSes
and application code, but the emulation causes a significant performance overhead.
So in practice a combination of emulation and direct execution is used. Only a
small set of instructions, those that need privileged execution, are emulated the
rest are executed directly on the host CPU. This leads to a lower overhead, but
limits the possible guest OSes to those that run on the host CPU [24].

Hardware assisted virtualization Here the hardware provides extensions that sup-
port virtualization. More specific, an additional Ring -1 (root mode) is introduced,
in which the hypervisor can run, because of this the unmodified guest OS can
run in Ring 0 and is still on a higher level than the hypervisor. This increases
performance since a trap-and-emulate model can be performed on hardware level
instead of software level [24]. The trap-and-emulate model describes a technique,
where the processor stops and returns the control to the hypervisor, if the guest OS
attempts to execute privileged instructions. This way the hypervisor can intercept
and emulate the execution of this special instructions.

The last two types, Binary translation and Hardware assisted virtualization, can be
counted as Full-Virtualization techniques, as defined by Popek and Goldberg, since the
gust OS does not need modification and is not aware of the underlining hypervisor.

2.3.2 Hypervisor

The Hypervisor, also called Virtual Machine Monitor (VMM), is described by Whitaker
et al., where they present their hypervisor Denali, as “a software layer that virtualizes all
of the resources of a physical machine, thereby defining and supporting the execution of
multiple virtual machines (VMs)” [25].

This software layer provides an interface between hardware and software, while virtualizing
CPU, memory and I/O devices. This way multiple VMs, typically called guests, can
run on the same machine, called host. The VMs are fully isolated from each other and
behave like a physical machine. It can be distinguished between two types of hypervisors.
Type I runs directly on hardware on the Ring of highest privilege and controls all VMs.
Type II runs within an OS on the same Ring as the OS, and it relies on the OS for a
specific task, so every VM is a process within the OS [24].

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Fundamentals

2.4 Container

Containers are a type of Operating System-level virtualization and gained much popularity
in the last years. They can be counted as type II hypervisors, because they do not
emulate any of the hardware, but instead talk to the underlying OS, that than performs
calls to the hardware.

The key difference between containers and full-virtualization hypervisors, is the level where
isolation is implemented. Traditional hypervisors isolate on the hardware abstraction
layer, whereas containers isolate on the system call/ABI layer 6. This leads to a trade-off
between isolation and performance. While full-virtualization provides a better isolation
between the VMs and makes it virtually impossible for the VMs to be aware of each
others presence or to interfere directly with each other, there is a significant overhead
that impacts performance. Containers, on the other hand, have less strict isolation, but
applications perform almost equally as on a physical machine [2].

Since containers relay on the host OS to talk to the hardware, they normally support
only one kernel, even if there are approaches for multi-kernel containers 7. In order to
run containers on a specific OS, modifications to the kernel are required. In the past
this was seen as a disadvantage, but today it is not an issue any more, since several
modifications are integrated into the official Linux kernel now and therefore all major
Linux distributions support containerization out of the box [27].

Windows and macOS didn’t have this support for containers for a long time. Docker
started to add it, at least for the developer machines, by transparently spinning up
a Linux VM and running the containers inside this VM. While this was sufficient for
developers to test their containers, this was never thought to be used in production. Also,
the containers were still Linux containers and no other OS image could be used inside
the containers [28].

This changed a few years ago, when Microsoft started a partnership with Docker to
develop containers that can run natively on Windows. Now there exist two types of
Windows containers: First the standard Windows Server Container, that shares the
Kernel with the Host OS, like it is also done on Linux. This has the disadvantage that
the container OS and the Host OS have to be of the exact same version. The second
solution are Windows Server Containers with Hyber-V isolation. Hyber-V is a hypervisor
on which Windows Containers can run fully virtualized, which means they don’t share
the Kernel with the Host and thus can have different Kernel versions [29].

MacOS still does not have a native support for containers and since there is also no
server solution from Apple, it is not a real issue.

Another feature provided by containers is explicit resource sharing between different
VMs. While this violates the strict isolation rules for full-virtualization, it proves useful

6The ABI (Application Binary Interface) defines the low-level interface for a piece of software on a
specific hardware. For instance how to interact with the kernel or a system library [26].

7https://github.com/cloudfoundry-attic/warden

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Container

Figure 2.3: The market share of containerization technologies, based on a survey by
Portworx from 2017 [30]

for certain tasks. For instance two applications that need to share resources can do so
while still running each in their own VM. This way if one application causes a system
failure in its VM the other one is only marginally affected by it.

The two most popular container implementations are Linux Containers (LXC/LXD) and
Docker, while the latter builds on top of LXC/LXD and provides an abstraction-layer,
which makes it easier to use, also without in-depth knowledge about how containers work
under the hood. Especially Docker contributed to the popularity of containers, because it
made them much easier to use. Docker is today the most used containerization technology
as shown in figure 2.3, which shows the market share of different containerization
technologies, based on a survey performed by Portworx in 2017.

2.4.1 Containers on Linux

Most container solutions, like Docker, run mainly on Linux. This is simply because the
Linux kernel provides already all the tools the containers need to isolate their processes
from each other. The two most important tools are control groups and namespaces.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Fundamentals

While control groups limit how much resources a process can use, namespaces limit what
a process can see. In the following we will describe the two concepts in more depth.

Control Groups

The control groups (cgroups) provide a mechanism to manage the distribution of the
overall system resources transparently between different groups of processes. It forms a
tree structure and every process in the system belongs to one node in a hierarchy, but
multiple hierarchies are supported. The concept of cgroups is completely generic and
every subsystem can hook into the cgroups to organize their processes [31].

Currently there exists a cgroups implementation for memory, CPU, block I/O and
network. For each of this resources exists a hierarchy and for each node in the hierarchy
can be specified how much of the resource can be used. Initially every process belongs
to the root node, which gives it access to the whole resource, the further down in the
hierarchy the process gets moved, the more restricted is his access. Additionally if a
process gets forked from an other process, it automatically belongs to the same cgroups
as its parent [32].

Cgroups prevents one or multiple processes to block all resources and affect thereby the
performance of others, which is a key requirement for virtualization.

Namespaces

Namespaces are another way to ensure process isolation. It is a technique that wraps
the global system resources in an abstraction, so that it appears to all processes that
they have their own isolated instance of the system. In fact they only see the part of the
system that is within there namespace [33, 32].

Currently there exist six different namespace implementations:

pid Processes within this namespace only see other processes in this namespace. Every
namespace has its own PID numbering starting at 1 and this namespace can be
nested, which results in on process having multiple PIDs.

net Every network namespace has its own network stack.

mnt Every mount namespace has its own root file system and even process private
mounts are possible.

uts Every uts namespace has its own set of hostnames it can see.

ipc Every ipc namespace has its own semaphores, messages queues and shared memory.

user Allows to restrict certain UIDs or GIDs to their own namespace.

So each container can have its own namespaces, which provides isolation to the processes
and is crucial for virtualisation.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.5. Microservices

2.4.2 Containers in Agile Projects

In agile projects containers gained high popularity and there are multiple reasons for
that. The first reason is the relatively small size of a container image compared to the
images of full virtualization systems, so the images can easily be build and pushed to a
repository, from where they can be deployed to different servers. Running containers can
also easily and transparently be migrated to another location. Second, if an application
runs correctly in the container on a developer’s machine, it most likely behaves the
same way on the production server, since the environment for the application inside the
container never changes. Also the whole delivery pipeline can be realized with containers,
so that tests run in the same environment setting as the production server. Finally, due
to their small overhead, every service can run its own container, which provides higher
security. But on the same time, if services need to share files or communicate directly,
they can still do so, even if they run in different containers.

2.5 Microservices

The concept of modularization is a major research topic in software engineering. Dividing
an application into different components facilitates the whole software development
process as well as maintenance tasks [34]. The individual components are loosely coupled,
each concerned with a specific task and clear boundaries. Extracting common behavior
and tasks into libraries that can be reused and build upon is a core principle in the world
of software development. This allows multiple teams to work on the same application,
with minimal crosscutting concerns.

Services are the next step in this process of modularization and decoupling. The term
microservices has first been introduced at a workshop in 2011 [35], where participants
agreed on this term as an architectural concept. Since then, microservices gained
increased popularity and its architectural principles are used world wide by large and
small companies to build their applications [35, 36, 37].

Still, microservice is a broad term and various definitions exist. In general, every
application that splits its functionality into small, independently running services that
communicate with each other to reach a desired outcome, can be considered to correspond
to the architectural principle of microservices [36, 37]. Levis and Fowler [35] define
microservices as “an approach to developing a single application as a suite of small
services, each running in its own process and communicating with lightweight mechanisms,
often an HTTP resource API ”.

A key feature of microservices is the ease of deployment. If a specific service has to
undergo certain changes, this single service only has to be redeployed, while functionality
of all other services of the system is maintained. This allows for faster and easier system
updates, in contrast to a monolithic system, where the whole system has to be rebuild,
and redeployed [35, 36, 37].

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Fundamentals

The downside is increased complexity, to manage the communication between the services
and to maintain a consistent state throughout the whole system.

2.6 Continuous Integration/ Continuous Delivery

Continuous integration (CI) is a principle of agile development methods. The goal of
CI is to continuously integrate the codebase of a project, meaning every time a change
is performed. Continuous delivery (CD) takes this principles a step further. After the
build passed the automated tests and validations of the delivery pipeline, the changes
will be packaged as a release candidate. The release candidate often gets automatically
deployed to a production like environment or even directly into production [1].

Today these two terms are often used interchangeable or simply referred to by the
abbreviation CI/CD. To successfully implement a good CI/CD strategy the use of tools
and extensive automation is necessary, but good policies and discipline in the whole team
is at least as important.

Traditionally most of the tasks necessary to release new version are a sequence of manual
steps that are performed by multiple roles that are often organized in different teams.
The developers implement an application and when they consider a new version to be
done, they pass it on to the testing team. The testing team extensively tests the state of
the application. This can go trough multiple cycles until both, developers and testers
are confident that the new version is finished and fulfills all requirements. Only now
the new version is released and the operations personal will set it up in the production
environment.

This causes the release process to take several days or even weeks. Additionally it divides
the different roles and enforces them to only focus and optimize for their needs instead
of what is best for the whole project [1].

With CI/CD this whole process is automated. This is done by taking use of existing
tools and the heavy reliance on scripting. It must be possible to create a new release,
with minimal to no human interference.

This can be done by setting up a build and release pipeline that is automatically triggered
every time a change to the code base is performed. This pipeline consists of a set of
scripts that are held in the same code base as the application and versioned together
with the rest of the code. This enables the pipeline to evolve and change together with
the application and still allows to build older version.

Automated tests are one of the most important steps of this automated pipeline. By
a tight collaboration of testers and developers all tests are automated. Starting from
unit tests for specific parts of the code, integration tests for the whole system and
regression tests to detect unwanted side effects by changes to the code base. The more
tests are performed the higher the confidence that a systems behavior is correct. Only a
good test coverage provides the confidence to fully automated a release without human
interference [1].

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.6. Continuous Integration/ Continuous Delivery

Not only the build scripts, release scripts and tests should be kept in version control,
but everything that is needed to build, deploy, test and release an application. This
also includes database creation and update scripts, the configuration for the target
environments and the technical documentation. Every change set need to have an unique
identifier, which allows to identify the version for every build. Further more it is visible
which build is currently deployed to a specific environment and in the worst case it allows
to roll back to a previous version [1].

Operations personal and developers are encouraged work closely together to guaranty
a seamless deployment and well configured application and environment in production.
This close collaboration and the extension of the responsibility of the developers up to
the live time of an application, are also known as the DevOps principals.

When a fully automated build and release pipeline is in place, and the test coverage is
high enough to have a good confidence about the integrity of the system, releasing a new
version becomes unspectacular. This allows to increase the release cycles up to multiple
times per day. Every commit could become a new release, if it passes all automated tests.

The team can focus on producing actual value, rather than spending much of their time,
with manually testing and fixing the system and manually building and deploying the
application.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
State of the Art and Related

Work

This chapter provides information about the state of the art of orchestration and au-
tomated builds of unikernels, as well as information about related work in the area of
unikernels in a cloud environment.

3.1 State of the Art

In this section we will present state of the art tools for orchestration and automated
builds of unikernels. Automated builds are crucial for the continuous delivery of an
application. They make the release of a new version painless and repeatable. This is
also important for unikernels to have tools that add an abstraction over the build of new
images, so that the developer does not need to be concerned with the deep technical
details on how the image is created. The same is true for orchestration. Only after there
is a good support from orchestration tools to automatically manage unikernels, their full
potential can be used and they become a real option for the enterprise world.

3.1.1 Orchestration

With more applications being developed as distributed systems, running on a cloud plat-
form, it becomes increasingly important to have reliable tools to manage and orchestrate
all the independently running services.

Kubernetes [38] is on its way to become the de facto standard for orchestration in the
cloud. It was first developed by Google and released as open source. Now it is managed by
the Cloud Foundry Organization, an open source organization that drives the development
of tools and standards for the cloud.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art and Related Work

Kubernetes is not the only orchestration tool for cloud services. Other tools are Misos from
Apache or Swarm by Docker. All of them aim to simplify the orchestration of containers
across multiple hosts and they do this in a transparent way. The high configurability and
extensability of Kubernetes made it popular and lead to most cloud providers integrating
it into their system, which gave it another boost. The other tools are still used by
many developers and companies, but it seams like Kubernetes won the race for the cloud
platform of the future.

In order to really become the main platform for the whole cloud, it is important not be
limited to containers. Kubernetes started off as orchestrator for Docker, but there was
quickly added support for other container runtimes and even full blown virtual machines.
With the last big refactoring, the runtime was extracted from the core and replaced by
a clear interface. This way everyone can easily add their own runtime for what every
systems they want to orchestrate. This interface was named Container Runtime Interface
(CRI) [39]. Among diffident container solutions, there are currently also attempts to
provide a hypervisor based runtime, which takes use of this interface. This allows to add
VMs and in turn also unikernels as first class citizens to Kubernetes, just like containers.

The Unik project [7] was the fist that attempted to add support for unikernels to
Kubernetes through their framework. This was before CRI was released and it is not easy
to setup and based on a couple of workarounds, so not all features of Kubernetes could
be used, like it is possible with containers.

Integrating this two tools trough the CRI interface, benefits both tools and immediately
provide a powerful orchestration support to a wide range of unikernels, which as of now
does not exist.

3.1.2 Automated Builds

In order to build unikernels in an automated and reliable way, special tools are needed.
This tools automatically select the needed OS libraries to run an application and package
the application as bootable image.

There are currently different tools available that perform this tasks. In fact have most of
the unikernel implementations scripts in place, that help to create an image. Nevertheless,
at the moment there are only a few tools available that fully automate this process.

Currently the research goes in two directions. One option is to relay on the well established
Linux Kernel, but create an extremely striped down version of it, to build lightweight
VMs. The second option is to rely on specific library OS to build VM images. While
both result in much lighter VMs, than by using of traditional OS images, only the second
can be considered as real unikernel as they were defined by Madhavapeddy ed al. [5].

In the following representatives of both categories are presented.

LinuxKit [40] is one tool that is able to package an application as a lightweight bootable
image. It originally comes form the Docker ecosystem and was designed to build

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. State of the Art

lightweight images for containers. Over the time it was generalized and it is now possible
to run the images not only as containers, but on different hypervisors es well as on bare
metal.

The images created by this tool, resemble closely to unikernels. They have similar
attributes like immutability, small size and fast boot time.

The approach how ever is different. While unikernels are general constructed by selecting
a set of OS libraries that are needed by a specific application, LinuxKit takes the Linux
OS and strips away as much as possible.

So it is arguable if LinuxKit can be counted as real unikernel build tool.

Another tool that falls into the same category of LinuxKit is tynix. It was developed
by Filipe Manco et al. and presented in their publication about extremely lightweight
VMs [41].

The tool packages applications as extremely lightweight VMs, which include only the
application it self, dependencies of the application and a BusyBox to support basic
functionality.

Although the resulting images resemble unikernels, they again take use of the standard
Linux OS and don’t use a real library OS to build the images.

Capstan [42] on the other hand, is a build tool designed to package applications as
unikernels, specifically as OSv unikernel. Its usage is closely related to Docker. This is
on purpose, so that the transition from containers to unikernels, or more specific, the
transition from Docker to Osv, is as easy as possible.

The tool provides a CLI interface to build and run unikernels. Additionally a so
called Capstanfile, equivalent to the Dockerfile, can be used to specify and persist the
configuration for an image. New images can be build by using this configuration file or
existing images can be pulled from Github or an S3 storage.

Capstan is on of the more mature build tools, but its biggest drawback is that it only
allows for building OSv images. If developers wants to use one of the many other unikernel
solutions, they still have to rely on a partially manual process or fined other tools that
fulfill their needs.

Unik [7] has the potential to be one of this tools. It takes the same approach as Capstan,
by making CLI and configuration files similar to Docker. However, the configuration
options are still sparse and the whole project is still in an early phase and by no means
production ready. Nevertheless, it has big potential to become the leading tool for
building and running unikernels.

It already supports a wide range of unikernels, programming languages and target
platforms. The project is open source and the architecture is modular in a way, that
quite simply support for additional unikernels or target platforms can be added, without
touching the rest of the system.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art and Related Work

The different approaches have all their advantages and disadvantages. It will be seen
which of the them will break trough in the future. Be it lightweight VMs, still relaying on
the well established Linux kernel, a specific unikernel implementation or a more general
build tool, that allows to target many different unikernel solution.

3.2 Related Work

After the concept of unikernels was proposed and the first implementations were presented.
Researchers quickly started to investigate how unikernels can be leveraged for cloud
computing and how to optimize existing solutions to optimize them further for the cloud.

The following related work are examples of research that tries to optimize the unikernels
them self or their infrastructure, as well as taking use of the unikernel concept to optimize
cloud services.

In his thesis extended Maghsoud Chinibolagh [43] the unikernel IncludeOS with multicore
processing functionality. In general are unikernels by design single process and singe core.
But by extending an established unikernel implementation with multicore processing
functionality, Chinibolagh was able to show a good performance improvement compared
to a standard Ubuntu running on multiple cores. Additionally it was more resource
efficient than running multiple single core instances in parallel.

This thesis shows an interesting approach to take the most leverage of the high-end multi
core CPUs of the cloud servers, by extending and adapting the idea of how a unikernel
operates.

Dan Williams and Ricardo Koller proposed to extend the minimal implementation of
a unikernel, to the hypervisor the unikernel is running on. In their article ”Unikernel
Monitors: Extending Minimalism Outside of the Box” [44], they present their idea of
a Unikernel Monitor. One key benefit of unikernels is the reduction of attack surface,
by only including system libraries that are needed by the application. However the
hypervisor the unikernels are running on, is still general purpose. Thus it includes a lot
of functionality that are not needed by the application. This functionalities unnecessarily
occupy resources and are potential sources for vulnerabilities.

In Their proposal they suggest to extend the build mechanism of the unikernel, which
automatically includes dependent system libraries. The extensions additionally builds the
hypervisor and only includes dependent hypervisor libraries. The result is a lightweight
hypervisor, which in the extreme case only has the ability to boot and destroy the
unikernel. It does not even include a network interface, if the unikernel does not need
one. To prevent the provider from the task off managing many different hypervisors
running on one host, this unikernel monitor is be packaged and shipped together with
the unikernel.

The result is a type-II hypervisor which is able to run on a standard Linux KVM system.
The prototype ukvm contains only about 1000 lines of code and delivers a significant
faster startup time, than a unikernel running on standard QEMU/KVM.

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Related Work

The next step in cloud computing is called serverless or Functions-as-a-Service (FaaS).
Developers define a function, executing on simple task, and an endpoint which triggers
this function. They are not concerned with how the function is actually executed and
the underlying infrastructure. Andreas Happe et. al. proposed a FaaS framework based
on unikernels [6].

Every function is wrapped as a unikernel and for every call to this function an instance of
the unikernel gets started. After the request is completed the unikernel gets immediately
terminated. This is all done transparently to the user.

The small size and fast startup time of unikernels makes this possible. No resources are
wasted by idle processes and between the functions is a strong isolation.

Another area where unikernels gain traction besides cloud services, is the world of IoT. Jan
Amort evaluated the unikernel for software on IoT devices [45]. Based on his evaluation
he proposed a pipeline to deploy software on IoT devices using unikernels and thus
simplifying the process of rolling out updates to this devices.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Performance Evaluation of

Unikernels

Performance is an important topic when choosing the platform for an application. With
compute and memory becoming cheaper in the last decades, the priorities shifted for
most applications and resource efficient software was not number one priority any more.
By simply adding more computational power, performance can often be easier achieved.

This is about to change again, with more developers and companies relying on third
party cloud providers. The providers charge their customers not per rented VM, but
rather based on used memory and storage as well as computation time.

Because of this, it is not feasible any more to simply rent a couple of powerful VMs.
Running VMs that are idle, mean lost money. One way to reduce these costs are
containers. They allow to easily scale horizontally and to add and remove instances,
based on the workload. Although the lightweight containers are cheaper than bulky VMs,
they are still to big for real just-in-time starting and destroying of instances, e.g. one
instance per request for a webserver. Unikernels are a possible solution to this problem,
which presented it self over the last couple of years.

This chapter consists of a collection of studies and publications that evaluated different
unikernel solutions and compared them with other virtualization technologies, like
container or classical VMs, as well as bare metal. It contains observations about the
general computational performance of unikernels as well as more specific areas like
memory, network I/O, image size and boot time.

4.1 Computational Performance

To have a low computational overhead is especially important for cloud services. Not
only does a fast computation directly result in a shorter response time, but it potentially

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Performance Evaluation of Unikernels

(a) (b)

Figure 4.1: The results of a benchmarking study on unikernels versus containers, by Tom
Goethals et. al. [46]. In (a) the REST stress test performance evaluation and in (b) the
Bubble sort execution time.

saves cost as well. Especially if it is running on a public cloud provider, who charges by
computation time.

Because of this many studies analyze the computational performance of different virtual-
ization technologies. This allows us to directly compare the performance of unikernels to
more established technologies like classical VMs and containers.

Tom Goetahls et. al. [46] performed an in-depth benchmarking study on unikernels versus
containers.

They implemented a simple REST service in each of the languages Go, Java and Python.
Based on this service they performed stress tests both on OSv unikernel and Docker
container and measured the request per second.

By comparing the results for the different implementations in general, the highest
performance is seen for the Java implementation, fallowed by the implementation in Go.
Due to the fact of Python being an interpreted language, the implementation in this
language was significantly slower.

Figure 4.1a shows the results of the single-threaded setup. All three implementation
show a significant better performance while running as a unikernel, compared to running
as a container. With 38% more requests per second, Go shows the highest improvement.
Java and Python have with 16% and 15% similar performance gains.

By enabling multi-threading the containers experience a performance increase, the
unikernels however show a drop in the performance and are outperformed by containers
on a good portion. When single-threaded and multi-threaded results for unikernel
are compared directly, it is immediately visible that only Java shows an increase in
performance at all. While Python is with a small performance drop of 3% relatively

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Computational Performance

unaffected by the multi-threading, Go looses 25% if its performance. Even Javas 60%
performance increase is quite underwhelming for a quadrupled processor power.

In the same study a heavy load test was performed by implementing a simple bubble
sort algorithm, again in Java, Go and Python. Figure 4.1b shows, that the advantages of
unikernels over containers are not so clear in this case. While, with a 3% decrease for
the Go unikernel and a 1% increase for the Java unikernel, the performance is almost
equal to the containers, the execution time of the Python unikernel is twice as long as
that of the container. This low performance of the Python implementation is explained
with the assumption that language uses a significantly bigger amount of operations that
perform badly in a fully virtualized environment.

Another paper, that not only compares unikernels and containers, but also takes the
performance of classical VMs into account, is the paper for the 2015 IEEE International
Conference on Cloud Engineering by Murabito et. al. [47]. In their paper they present
the results of multiple benchmark tests, where they compared the performance of a
classical VM (KVM 1), containers (LXD and Docker) and a unikernel (OSv). Two of the
benchmark tests focused on computational performance.

The first benchmark tool they used was noploop2, this is a simple tool which measures
CPU clock speed, by using an unrolled No-Operation (NOP) loop. OSv performs in
this benchmark test slightly better than containers and classical VMs, but the minimal
difference of about 0.15ms is neglectable.

The second more sophisticated benchmark tool they used is called Linback3. It measures
performance by solving an algebra problem. The algorithm solves A × X = B, where
A is a matrix with size N and B is a vector. The benchmark performs the calculation
repeatably while slowly increasing N . The results again show almost equal performance
of all virtualization types. Only for a small N , shows OSv minor performance degradation.
No explanation is given as of why this is the case, but it might hint for an implementation
flaw in a system library in OSv.

In the paper of Avi Kivity et. al. [14], where they present the OSv unikernel, they as
well performed multiple benchmark test, to measure the performance of their unikernel
implementation. To measure the overall performance they used Memaslap4, which
performs request to the key-value store Memcached5, and SPECjvm2008 6, which is a
Java benchmark site.

In the benchmark tests using Memaslap they were able to achieve 22% higher throughput
than on a standard Linux. The SPECjvm2008 benchmark showed an average performance

1https://www.linux-kvm.org
2www.brendangregg.com/blog/2014-04-26/the-noploop-cpu-benchmark.html/
3people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.html
4http://docs.libmemcached.org/bin/memaslap.html
5https://memcached.org/
6https://www.spec.org/jvm2008/

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Performance Evaluation of Unikernels

gain of 0.5%. This does not seem much, but is still significant, since the standard deviation
with this benchmark tool is only 0.2%.

Another interesting result is from their analysis of the context switches, which shows
that switching between threads is 3 to 10 times faster on OSv compared to a standard
Linux VM.

MirageOS is another unikernel implementation. It was presented in the article of
Anil Madhavapeddy et. al. [5], where they explained the concept of unikernels. The
performance of their unikernel is evaluated by using several real world applications.

The first application is a DNS server based on MirageOS. Its throughput is compared
to those of two well established DNS servers, Bind9 7 and NSD8. Initially MirageOS
performed poorly. By adding changes to the implementation, to memorize responses and
prevent repeated computation, the performance improved significantly. This shows that
sometimes algorithmic improvements exceed those of machine level improvements.

Another application developed to evaluate the unikernel, is a webserver implemented on
top of MirageOS, which was compared to a standard webserver on Linux. It shows that
the unikernel scales much better, with a linear scaling up to 80 sessions, before it becomes
CPU bound. In contrast the Linux VM reaches its limits already with 20 sessions.

Finally, in their proceeding [13], Kai Yu et. al. compared the unikernel implementation
MiniOS, which is shipped together with the Xen hypervisor, to a standard Ubuntu
VM. They implemented a minimal http server and measured its performance by using
the benchmark tool Weighttp9. This way they were able to show a 39% performance
improvement of MiniOS compared to the Ubuntu VM.

As expected, there is not much difference between all the different virtualization techniques,
when it comes to raw compute. This is because it mainly depends on the used CPU,
which is always the same. However as soon as it depends on specific software components
as well, like drivers or kernel libraries, a good performance boost is observed by using
unikernels.

This is because of unikernels being highly customized for specific usage, for instance to
run cloud services. An example is the optimized network stack of OSv [14]. Standard
OS, which are used for VMs as well as a base for container images, are implemented
to support a big variety of use cases and perform reasonable well in all of this cases.
Unikernels on the other hand are designed to be specialized for a specific task, by adding
optimized kernel libraries at build time, this gives them the advantage.

7https://www.isc.org/bind/
8https://www.nlnetlabs.nl/projects/nsd/about/
9https://redmine.lighttpd.net/projects/weighttp/wiki

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Memory Management

Figure 4.2: Showing the minimal memory usage of an IncludeOS virtual machine including
a ”Hello world” program, the necessary parts of the OS- and standard libraries, and
a custom bootloader, in addition to the Qemu process itself. In comparison ”Hello
world”-programs in various language frameworks, excluding their operating systems, are
shown [48]

4.2 Memory Management

Memory usage is another pressing topic for cloud services. Especially a small memory
footprint is important, because it allows to run many instances of services on the same
host, without running out of resources.

In the paper already mentioned above [47], Robert Murabito et. al. performed a memory
I/O benchmark test as well. For this they used the tool STREAM 10 which performs
simple vector kernel operations.

The results show that KVM, Docker and LXD all perform equally well as the native
execution. Only OSv has approximately half of the memory throughput than the others.

The same benchmark tool was used by Alfred Bratterud et. al. in the article where their
unikernel IncludeOS is presented [48].

IncludeOS was compared to Ubuntu running in a VM as well as native. While the native
execution performed clearly best, the differences between IncludeOS and the Ubuntu VM
are not so clear. On Intel IncludeOS performed slightly better than the VM, both on
AMD it was the other way around. In both cases are the differences less than 0.5%.

The different results of this two studies show, that with unikernels it highly depends
on the type of unikernel. Every implementation optimizes for different goals and it is
important to always carefully choose the right solution for a specific use case.

10https://www.cs.virginia.edu/stream/

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Performance Evaluation of Unikernels

Alfred Bratterud et. al. [48] additionally compared the memory usage of a minimal
hello world implementation using the IncludeOS, to the same implementation in different
languages and on a traditional OS. While in the results for IncludeOS the whole unikernel
is includes, the results of the other implementations, running on standard OS, include
only the application it self without the OS.

The IncludeOS unikernel uses with 8.45 MB more than the pure applications in C
and Python. But the Nodejs implementation was already slightly bigger and the Java
implementation required more then three times of the memory space, always without
including the OS. Figure 4.2 shows these differences.

In the study of Tom Goetahls et. al. [46], additionally to the benchmark tests mentioned
before, the memory consumption of the OSv unikernel were compared to those of the
Docker containers. As expected the memory usage is higher for the unikernel as for the
containers. It ranges between twice as much for the Java implementation and 30 times
as much for the Go implementation. Although this sound a lot, in absolute numbers it is
only between 70MB and 130MB more memory required.

The differences are again explained with the fact that unikernels always have to include
the kernel as well, while the containers can rely on the kernel of its host. But since
unikernels are able to run directly on a hypervisor type I, no OS is needed. This saves in
total a lot of memory, which in the case of the containers is used by the OS it self.

Simon Kuenzer et. al. compare in their article [49], the minimum memory allocation that
is required to boot a VM. They introduce a highly optimized CDN implementation, using
the unikernel MiniOS. Their implementation, which they call Minicache only needes 1.2
MB of memory. This is little, even compared to the extremely stripped down, unikernel
like, Linux distribution Tynix, which is running the two standard tools nginx11 and
lighttpd12 and needs 51 and 23 MB memory respectively. With 82 MB has the standard
Debian the highest minimal memory allocation.

All of this publications show that unikernels may not provide much improvements
compared to other virtualization technologies, when it comes to memory throughput, but
in terms of memory usage, they have the lowest footprint by far.

This is because a small memory footprint is a key feature, for which unikernels were
designed in the first place. It is achieved by getting rid of all OS features and libraries
that are contained in standard OS and loaded in to the memory, even if they are not
needed at all by the application running on the OS.

The small memory footprint makes unikernels cheap and allows the execution of hundreds
or even thousands of instances on the same host, which is in general not possible with
classical VMs and even hardly achieved by containers.

11https://www.nginx.com/
12https://www.lighttpd.net/

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Network I/O

4.3 Network I/O

Applications that are build according to the microservice paradigm consist of multiple
distributed service. This services communicate with each other and the different clients
mainly over a network connection. Thus it is important that the network I/O virtualization
is fast and comes close to bare metal network drivers.

Pekka Enberg [50], in his master thesis, and Roberto Morabito et. al. [47], in their paper
for the 2015 IEEE International Conference on Cloud Engineering, both evaluated network
I/O performance of hypervisor based virtualization (using KVM), to OSv unikernel and
container based virtualization (using Docker).

Their experiment setups were fairly similar, the biggest difference was that Morabito et.
al. used a 10 Gigabit network interface and Enberg only a 1 Gigabit network interface.
This is important because in certain scenarios it lead to differences in the results.

The first scenario measures the transmission of TCP and UDP data from the client to
the server and the other way around. For both cases Docker performs best fallowed by
OSv. Although OSv performance still significantly better than a standard Linux VM. For
UDP Morabito et. al. observed a considerable performance drop, for all technologies,
compared to TCP. Since Enberg did not observe this differences, it suggests that the
faster network interface suffers more from the virtualization than the slower one.

The next scenario measures the round-trip, a request is send to the server and a response
to the client, both for TCP and UDP. Docker using bridged networking has the least
overhead fallowed by OSv with vhost-net. Docker using NAT networking has even more
overhead than the Linux VM with vhost-net. This means it depends here more on the
network I/O virtualization technique, than the OS virtualization.

Additionally to this raw request benchmark tests, Enberg performs an experiment
using Memecached to measure the effects of network intensive applications on different
virtualization techniques. The results are mostly consistent with the raw networking
benchmarks. The one exception is that OSv does not beat Docker NAT in this setup
anymore. This suggests that other components of the system in OSv are slowing down
the request/response processing, which is not visible for raw network measurings.

Tom Goetahls et. al. [46] analyzed the results of their benchmark tests also in terms of
latency. The Go implementation running in a OSv unikernel has a slightly higher median
response time than its container counter parts. On the other hand is its response time
relative stable, while the maximum response time for the container is almost 10 times
higher.

The Java implementation performs equally well on both, unikernel and container. Finally
the Python implementation has as a unikernel, with a median response time of 100ms
compared to 111ms, a considerable shorter latency than as container.

The highly specialized unikernel of Simon Kuenzer et. al. [49], also brings performance
gains in terms of network I/O. The results in figure 4.3 show that MiniCache reaches with

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Performance Evaluation of Unikernels

(a) (b)

Figure 4.3: HTTP serving performance in (a) reqs/sec and (b) throughput of MiniCache
compared to nginx and lighttpd on various platforms over 40 Gb/s NICs, using a single
VM. From the study performed by Kuenzer et. al. [49]. In the legend, D=Debian,
T=Tinyx, M=MiniCache; L=lighttpd, N=nginx.

600K request per second, for 50 simultaneous connection, by fare the best performance.
Fallowed by nginx and lighttpd on Tynix, with 118K and 102K req/sec. The slowest
performance showed Debian with 85K and 75K req/sec, for nginx and lightpd respectively.
The same is true for the throughput, where MiniCache reached 32 Gb/s fallowed by
Tynix with about 30.7 Gb/s and Debian again last with 20-22 GB/s.

The OSv unikernel was also evaluated in terms of network performance. Avi Kivity et.
al. [14] used the tool Netperf 13 for this evaluations. It showed a reduction of 37%-47%
in latency for request/response, compared to a standard Linux. The results of TCP
STREAM on the other hand, which measures single-stream throughput, was 24%-25%
higher.

Both unikernels and containers show an improvement in network I/O compared to
standard VMs. When comparing unikernels with containers it is not always so clear and
often containers are able to outperform unikernels. This is possibly because containers
don’t need to rely on a virtualized network interface, but can used the network driver of
the host kernel directly. There are however unikernels that are able to beat containers as
well, again by specializing and optimizing the network stack for their specific needs.

4.4 Boot Time and Concurrent Provisioning

On cloud platforms services get spawned and destroyed rapidly, often many instances on
the same time. This means it is important that the instances don’t slow each other down
if they get provisioned concurrently and that they have a fast startup time.

Bruno Xavier et. al. [51] conducted an experiment where they spawned several instances
(10, 20 and 30 instances) at the same time and investigated the impact on the provisioning
time. This was done with a standard Linux VM on KVM, with an OSv unikernel on
KVM and with a Docker container. The experiment was performed on an OpenStack14

13https://hewlettpackard.github.io/netperf/
14https://www.openstack.org/

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Boot Time and Concurrent Provisioning

Figure 4.4: Instance and Operating System/Container Startup for 10, 20 and 30 instances,
as evaluated by Bruno Xavier et. al. [51]

environment with one controller and one compute node and the results were compared
with each other.

The first evaluation was regarding the startup time. Figure 4.4 shows that OSv and
Docker have almost the same results for all three scenarios and always below one second.
But regarding the variance, Docker shows an increase in the distance between the first
and the last container, which is not visible in the graphic. This is due to the internal
synchronization of the Docker Engine, which will always increase the overall time with
the addition of concurrency. Since this only becomes relevant with a large number of
containers, it is not a big drawback.

The next evaluation inspected the image import. This consists of the copy of the image
from the repository and its preparation inside the compute node. For the OSv unikernels
the concurrency had non effect what so ever on the import time. The Docker containers
on the other hand, showed again a slowing down with increased concurrency. This is
explained by the decomposition of the images to check its metadata, casing again a
serialization by the Docker Engine.

The last evaluation shows the overhead generated by the platform it self. Here both OSv
and Docker were impacted by the concurrency, although Docker shows less overhead in
general.

The overall provisioning time increases for both OSv and Docker with increased concur-
rency. But OSv unikernels are significantly faster and the distance between OSv and
Docker increases with more concurrent instances. This increase in the distance can be
explained by the image import of the Docker containers.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Performance Evaluation of Unikernels

Simon Kuenzer et. al. show in their article [49], where they created the optimized CDN
server Minicache, how they were able to even increase the boot time of the unikernel
further, by adding optimizations to the underlying Xen hyervisor. They managed to
reduce the startup time from 200 ms on an unmodified Xen to on 89 ms, by applying
multiple modifications. With this modifications in place, Minicache was compared to an
other unikernel Tynix and to a standard Debian VM. Tynix showed a startup time of
665 ms and Debian took 5.4 sec to finish the startup.

In the article of Anil Madhavapeddy et. al. [5], where they presented the concept of
unikernels, based on their implementation of MirageOS, they compared the boot time of
a minimal webserver running on MirageOS to that of a minimal Linux kernel and that of
a standard Debian running Apache2 15. The boot time of MirageOS was equal to that of
the minimal Linux kernel and half of the standard Debian VM. Again, by optimizing
the underlying Xen hypervisor they were able to reduce the boot time of the unikernel
significantly, to only 50 ms.

This studies show that another strong advantage of unikernels is their boot time. Due to
their small size and the fact that there is no full sized OS that needs to boot before the
application can be started, gives unikernels an advantage. Some were able to reduce the
startup further time by optimizing the underlying hypervisor, instead of only modifying
the tool stack of the unikernel it self. This optimizations are definitely harder to achieve
as adding modified libraries to the unikernel, but it shows what is possible if a hypervisor,
optimized for unikernels, is used.

4.5 Summary

Through the analysis of this different studies multiple observations about the performance
of unikernels are possible.

First of all, it highly depends on the selected unikernel how well it performs for a certain
task. Every unikernel focuses on different targets, some focus on portability, others on
type safety. Again other unikernels make high performance their priority.

This means the results of the different studies can only be applied to other unikernels up
to a certain degree. In a big fraction of the studies OSv is used as unikernel, this makes
many results somewhat comparable, but the differences in studies where other unikernels
are used, underline the differences between the unikernels.

The main reason why OSv is often used as a representative for unikernels, is probably its
compatibility to POSIX and to possibility to run applications written in many different
languages. This makes it easier to compare it to other technologies like containers and
classical VMs. OSv is also one of the most production ready unikernels, that are currently
available.

15https://httpd.apache.org/

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Summary

Another obvious observation is that one of the biggest advantages of unikernels is their
small size. It not only makes it easy to load images over the network, it is also the main
reason for their small memory footprint and the short startup time. This three attributes
share all unikernel implementations and are also one of the main reasons why unikernels
are used in the first place. Also no other virtualization technique is able to beat this
qualities, not even containers.

Possibly the biggest advantage of unikernels when it comes to performance, is their high
customizability. This is also the reason for the first generation of library OS, which were
developed in the 1990s. The design of unikernels allow to add every OS functionality
at build time as a library. This makes it possible to optimize things like the filesystem
or the network stack in a way that is not possible for a general purpose OS, like Linux.
Since a unikernel can run only one process and thus only one service with a specific task,
everything can be optimized for this task, which brings a big advantage for performance.

Attempts to not only optimize the VM it self, but also the underlying hypervisor, added
another performance boost to the unikernel.

Unikernels have several advantages compared to other virtualization technologies,. When
it comes to performance and resource efficiency, their small size and fast startup time,
as well as their high customizability, are the most important ones. Security is another
important topic, which will be covered in the next chapter.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Security Evaluation for

Cloud-Services

Microservice applications run almost exclusively in some kind of cloud environment.
Sometimes it is a private cloud, only accessible from within an entities Intranet, but many
times it is a public cloud, that is managed by a third party. Security is an important issue
in either case. But especially in the public cloud it is essential, because if an application
has access to the public Internet, there is always the chance of attacks. In a third party
public cloud, with its multi-tenancy, comes the issue of trust on top. The provider and
the different tenants can never trust each other fully.

This means it is important to evaluate a technology for cloud services, not only from the
perspective of performance, but from a security perspective as well.

This chapter first describes in general which security implications applications face, when
they run in a cloud environment. Second a more closer look will be taken at possible
vulnerabilities of the Docker ecosystem, as a representative of containers, and directly
compared with unikernels. This way the performance of unikernels in a cloud environment
from a security perspective, will be visible.

5.1 Security Implication in a Cloud Environment

In a cloud environment it is especially important to evaluate the used technologies from
a security perspective. For this reason a look at the different security risks in the cloud
is necessary.

5.1.1 Security Threats

There are already many publications that address the general security treads in cloud
computing and to its virtual infrastructure. One comprehensive list is by Tariqul Islam

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Security Evaluation for Cloud-Services

et. al., they analyzed the vulnerabilities and security threats linked to cloud computing
and grouped them into six categories [52].

Network security contains all vulnerabilities and threads associated with network commu-
nication and configuration. Part of this category are, among others, malware injection
attacks, Insecure APIs of the cloud services, Cross Site Scripting or SQL injection.

Virtualization and Hypervisor security addresses all vulnerabilities in the virtualization
and resource sharing. This can be vulnerabilities in the hypervisor, that can be used to
gain full access to all VMs running on it, or the single point of failure of a hypervisor.
Other threats in this category are flaws in the OS running inside the VM, that allow
attackers to escape the VM and break the isolation boundaries between the Guests, or
out dated packages used in the VMs that can expose vulnerabilities.

Identity and Access Management of the cloud services is another important point, that
can pose a security threat, if not done properly. It could allow attackers unauthorized
access to information or event help to gain full control of VMs. This is an important
task that up to some extend lies in the hands of the cloud providers.

Data and Storage Security becomes especially important in a cloud environment where
storage is outsourced to a third party. This party is not necessarily trusted, which brings
new challenges for data integrity, availability and encryption, but also the sanitization of
data not needed anymore.

Governance or better the loss of it, by giving the providers control over critical issues
like policies, procedures, and security mechanisms of deployed services. This brings the
risk of data leaks or vendor lock-in.

Legal and Compliance Issues summarize all issues that come from the responsibility of
an organization to comply with laws, regulations or standards. This can be regulations
about the geographical location of data or differences in security and privacy regulations
in different countries.

This categories are broad and some of this security threats are not technical, like Gover-
nance or Legal and Compliance Issues. For all the other categories lies the responsibility
always to some extend at the provider and to some extend at the developer who imple-
ments the services in a way that they are secure. But also the used technologies play
a big role in securing a system and unikernels can help to provide a better isolation,
hardening of the system and reduction of the attack surface.

5.1.2 The OWASP Top 10

The OWASP (Open Web Application Security Project) is a community based organization,
who’s aim is to educate about security risks of web application and how to protect those
applications. Among many others projects, OWASP releases regularly a list of the Top
10 security risks for web applications. The latest is the OWASP Top 10 - 2017 list and is
displayed in table 5.1.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Vulnerability Comparison

Code Threat

A1:2017 Injection
A2:2017 Broken Authentication
A3:2017 Sensitive Data Exposure
A4:2017 XML External Entities (XXE)
A5:2017 Broken Access Control
A6:2017 Security Misconfiguration
A7:2017 Cross-Site Scripting (XSS)
A8:2017 Insecure Deserialization
A9:2017 Using Components with Known Vulnerabilities
A10:2017 Insufficient Logging&Monitoring

Table 5.1: The OWASP Top 10 - 2017 [53]

Some of them are entirely on application level and can not be solved by the platform,
like A2, A5 or A7. For others unikernels can help to reduce the risks.

An important one is A6. Misconfiguration is a big security risk and it is common, also
because the general use of ad-hoc configuration, e.g. in text files. Unikernels can help
here, because all their configuration is programmable and added at build time. This way
it allows for build time checks by the compiler and after the build the configuration can
not be changed anymore [5].

Another example where unikernels can help reduce the attack surface is A9. Using
outdated libraries with known vulnerabilities is a big issue. This is of course also possible
with unikernels. But since unikernels link only those components that are essential for
the correct execution, they contain much less unnecessary code, which in turn reduces
the included components with potential vulnerabilities [5].

Also code injection (A1) becomes much harder, because unikernels are immutable and
do not allow the execution of code that was not there add build time [5].

Finally, unikernels can also indirectly help to prevent security risks, e.g. thread A10.
Since unikernels are like one standalone application, a developer can not simple log into
the system to see what is happening, like it is possible with VMs or containers. This
forces the developer to add more logging and monitoring mechanisms.

5.2 Vulnerability Comparison

It is essential for web based applications to be resilient towards all kind of attacks. How
secure an application is depends not only on the implementation of the application it
self, but as well highly on the platform to application runs on. The more security a
platform provides out of the box the better, since it helps the developers to make their
applications more secure.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Security Evaluation for Cloud-Services

A. Martin et. al. [54] analyzed the vulnerabilities of the docker ecosystem. They divided
the vulnerabilities into five categories:

a) Insecure configuration

b) Vulnerabilities inside the images

c) Vulnerabilities directly linked to the runtime

d) Vulnerabilities in the kernel

e) Vulnerabilities in the image distribution, verification, decompression and storage
process

In the following they will be describe more closely and suggestions will be made how
this vulnerabilities apply to unikernels. This allows for a directly comparison between
containers and unikernels from a security perspective.

5.2.1 Insecure Configuration

Configuration is an important part for every system. It allows the adjustment of the
system to the special needs of a specific use case. For most systems, including container,
most of this configuration is done via ad-hoc configuration, either via special commands
or text files. Most systems and application provide a default configuration and many
users rely even in production on this default configuration. This can lead to a number of
weaknesses, because many of this default configurations focus more on usability than
security [55].

The default configuration of Docker is relative secure. But there are many options available
that allow to configure a container, with almost full access to the host. Although this
possibility can be useful at times, e.g. a privileged container that manages other container,
this can provide some attach surface both for the host it self and for other containers
running on it. According to A. Martin et. al. this can especially become a problem when
the containers are not used in their recommended way, which is a single purpose instance
that runs only one process, but as a full fledged VM with multiple processes. Ubuntu
and CentOS are the by fare most used base images, which means they package a full OS
with all its capabilities inside the container. [54].

Unikernel are much more restrictive. First of all they simply allow only one running
process and include only the libraries that are needed to run this process. Since they
run on a hypervisor and not on a host OS, resource sharing at a scale that is possible
with containers is here not an option. All the configuration is added as libraries during
build time, which allows them to be explicit decisions that are programmable and can
not be changed after the build. This prevents an instance from getting more rights as
it was intended. Especially the explicit programming of every configuration prevents
the developers to some extend from the inconsiderate application of some configuration
settings [5].

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Vulnerability Comparison

5.2.2 Vulnerabilities Inside the Images

Into this category fall all vulnerabilities that come from the application code base it self
or the code base of the OS image used.

Often vulnerabilities in this category come from out-date dependencies, this is on one
side due to the fact that the multiplication of image builds in the automated processes,
leads to outdated versions still a available at the registry, while the fast updated and
deployment cycles focus most of the time only at the latest image. On the other site,
due to the layered fashion docker constructs images, a vulnerability in a base image
effects all its child images. Relevant in this context are attacks that come from outside,
e.g. code injection [54].

Also unikernels can contain vulnerabilities due to out-dated dependencies. The advantage
here is, that the code base is usually much smaller and only liberties that are essential for
the application are included into the build. This limits the attach surface tremendously.

Bratterud et. al. call code that is included in an image but not needed bloat. They show
that Linux-based VMs can easily be 2000% bloated, especially if they are used as a single
purpose machine. We argue that the same is true for containers, as long as full sized OS
are used as base images. IncludeOS, as a representative of a unikernel, is 50/50 software
and OS, with only a few percent bloat [56].

Unikernels contain usually no shell, this comes naturally with its single process archi-
tecture, since a shell is a process with the purpose of running additional processes.
Additionally has a well designed unikernel no address space that is executable and
writable at the same time and every address space that neither need to be executable
nor writable is read-only. With this two attributes we have an immutable system and
even if an attacker manages to inject code, there is no way to execute it [56].

This way virtually the only way to inject malicious code into an unikernel, is before the
build, for instance when code gets pulled from a remote repository. But to secure this,
lies in the responsibility of the provider of the build environment.

5.2.3 Vulnerabilities Directly Linked to the Runtime

The runtime environment is an other source for vulnerabilities. This can be vulnerabilities
in the physical or virtual host, its OS or other malicious guests that run in the same
environment. This is especially an important category in the public cloud. There we
have multiple tenants and the provider, and all of them can not trust each other fully,
there is always a chance at least one of the actors has malicious intends. This means
vulnerabilities in this categories mostly concern isolation.

With Docker sources of vulnerabilities in this categories lie mostly in the framework it
self or the libcontainer. Container are isolated with their own namespaces and cgroups,
and additionally protected with technologies like SELinux, Apparmor and Seccomp. This
provides in general a good isolation of the containers from the host system. But in

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Security Evaluation for Cloud-Services

the end those techniques are all just advanced process isolation techniques. By default
containers use the same groups and security profiles, which means the isolation between
the containers is not so strict. This can be changed, but it is not done often, because
it comes to the cost of resource sharing, which means the communication between the
containers is much more restricted. Additionally since containers often run with root
privileges, they immediately have access to the whole host system and other containers if
they escape [54].

Unikernels are executed like any other VM, which means they have by definition a stronger
isolation and also at a lower level. Depending on the hypervisor used, it is fully virtualized
and isolation is enforced at the instruction level with hardware or paravirtualized, with
parts of the isolation on software level and some minimal resource sharing. In any cases
it is much stringer isolated than containers. A malicious unikernel can still gain control
to the underlying hypervisor by exploiting some vulnerabilities of said hypervisor and
thus indirectly also effect the other unikernel running on it. But a hypervisor is not a
full OS which again limits its attach surface [56].

5.2.4 Vulnerabilities in the Kernel

The Linux kernel is the base of most docker containers. It is quite complex and its code
base is over 19.5 million lines of code and it is growing. Projects of this size are seldom
without errors and in the last decade there were about 1500 detected vulnerabilities in
the kernel code alone [57]. Even minimal Linux distributions are shipped with additional
software on top of the kernel, which further increases the attack surface.

Since container use the same kernel as the host, they are vulnerable to kernel exploits.
Which allows an attacker to break out of the container and gain control of the host [54].

Unikernels on the other hand have their own kernel, this means there is virtually no
way that an attacker can gain control of other guest or even the host, trough such a
vulnerability. The fact that only those parts of the OS libraries that are really needed
are linked to the final image, which further reduces the attach surface. Unikernels
often re-implement big parts of the kernel, either to introduce type safety or to increase
performance. Although this brings advantages, with the type safety also from a security
perspective, the reimplementation can introduce new bugs and vulnerabilities, that are
not present in the well established Linux kernel [5].

5.2.5 Vulnerabilities in the Image Distribution, Verification,
Decompression and Storage Process

Martin et. al. name the vulnerabilities in this section as the highest, especially if the
automated build process is performed as from Docker recommended. This is because
there are multiple external services involved that all have full access to the code base and
could potentially add changes with malicious intend. On the other hand it is also the
only section where there is almost no difference to unikernels. Every time an automated

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Summary

build is performed, using third party services and over the public Internet the security
lies in the hands of this services and secure connections [54].

5.3 Summary

Containers are good, light-weight alternative to traditional VMs. This shows already
their popularity and increased usage over the last years. If they are used correctly they
are relative secure and their bigger flexibility at isolation brings definitely advantages
compared to other virtualization techniques. This is especially useful in a private cloud,
where in general runs only trusted code and security requirements are often not so strict,
because it is not reachable from the public Internet and entities who own it have full
control what is deployed onto it.

In a public cloud, with multiple tenants, the security requirements are much higher.
Nevertheless, rely provider more and more on container solutions over traditional VMs.
They have a smaller resource footprint than VMs and with their fast boot time they
can rapidly be spawned and destroyed, often on a per request basis. For the user they
are easier to setup. If they are used and configured correctly they are definitely a good
alternative to classical VMs. But from a pure security perspective they are far from the
best solution and pose many vulnerabilities and security risks.

Since unikernels are becoming more mature and the first implementation become ready
for industrial usage, they pose an interesting alternative to containers. The previous
chapter showed how they perform equally well or even better as containers and have an
even smaller resource footprint. From a security perspective they provide much better
isolation than containers do, in fact there isolation is equal to the one of traditional VMs.
Additionally, due to their small code size and the sealing at build time, the attack surface
stays as small as possible.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
A Continuous Delivery Strategy

for Unikernels

In this chapter a continuous delivery strategy is proposed, that is specifically designed
for cloud services which are deployed as unikernels.

First, a set of chosen tools is presented, that can support the automation process.
Secondly, the necessary changes and contributions to this tools, to fit them to the needs
of the deployment of services as unikernels, are explained. Subsequently, a continuous
delivery pipeline for services as unikernels is developed, by taking use of said tools.
Finally, the reliability and usability of such a pipeline is analyzed by developing a small
microservice application and continuously delivering one of its services via the pipeline
developed before. The results are compared to a similar pipeline using Docker containers
instead of unikernels, which is currently the most popular technology to release and
deploy microservices.

6.1 Tools for a Continuous Delivery of Unikernels

In order to set up an automated build and deployment pipeline, appropriate tools are
needed. They need to work well together in order to perform the different tasks that are
necessary for a CI/CD process specified later.

6.1.1 CI/CD Server

The first and most important tool is the one that performs and manages the automated
deployment process. There are many different so called CI/CD servers on the market.
They all have the goal to ease and automate the build and deployment process. Their
features range from simply executing predefined scripts in a certain order, to extended
visualization of success and failure rate, monitoring of the build processes, security

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

features like authentication or secure stores for API keys and passwords, and notification
features. Additionally most of them support direct integration to other tools like git
and artifact repositories, testing frameworks and a wide range of hosting providers and
orchestration tools.

Some of these are open source and free to use, others are proprietary. The wide
range of available CI server solution shows how much of an important part CI/CD has
become for the development and release cycle. Jenkins1, Hudson2, Tarvis3, GitLab CI 4,
CruseControl5, Codeship6, TeamCity7,CircleCI 8 and Bamboo9 are some of the most used
ones. Most of them can be installed on premise and some are additionally offered as a
service. Since they all serve mainly the same, specific purpose, their features vary just
slightly.

For the continuous delivery setup proposed in this thesis Jenkins was chosen. It is well
established and widely popular, used by large enterprises and individual developer teams.
Jenkins is free to use, open source, and maintained by a large and active community.
The modular structure makes it easily extendable making thousands of plugins available
for many different tasks.

6.1.2 Build Tool for Unikernels

In order to reliably build a service as a unikernel, a build tool is important. It needs
to wrap the often complex steps that are necessary to create a unikernel image and to
execute it on a hypervisor.

Currently there are many different unikernel solutions in development, most of them
are not production ready yet, and the building of an image is a highly manual process
that requires a lot of knowledge in operating systems and virtualization. The average
developer does not necessarily want to be occupied with this manual process, which can
easily lead to errors. They want a tool that, with a few commands, builds and ships
their application as an unikernel and provides an abstraction to various kinds of OS layer
operations.

The following are a selection of tools that are currently available and meet those require-
ments. Unik, an open source project that is capable to build applications of different
languages, using different unikernel solutions and targeting different platforms [7]. Cap-
stan is a tool to build applications specifically using the OSv unikernel. It is one of the
most advanced unikernel solutions. It is commercially developed and can already be used

1https://jenkins.io
2http://hudson-ci.org
3https://travis-ci.org
4https://docs.gitlab.com
5http://cruisecontrol.sourceforge.net
6https://codeship.com
7https://www.jetbrains.com/teamcity
8https://circleci.com/
9https://de.atlassian.com/software/bamboo

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Tools for a Continuous Delivery of Unikernels

to run applications in production [42]. The last one is tynix, a build tool that packages
and runs applications with LighVM. Both were developed together and manly used for
research purposes [41].

As build tool for the toolchain presented in this theses, Unik is selected, although it
is still under development. It already supports multiple unikernels, including OSv. Its
modular architecture makes it possible to add support for additional languages, unikernel
solutions and target platforms, in a plug and play manner. Additionally, its open source
nature makes it easy to extend and change functionality if needed. The support for
multiple unikernel solutions and target platforms prevents vendor lock-in and makes a
transition to another unikernel solution or target platform really simple.

With this tools, it is already possible to build a continuous delivery pipeline. Although
Unik only provides a command line interface at the moment, it is in Jenkins fairly easy
to use shell commands, so it is possible to call the command line interface from within
a Jenkins job. A drawback is that it requires the host that runs Jenkins to have Unik
installed locally and a user of Jenkins might not always have the rights to install system
tools as they like. However, it is best practice in Jenkins to use a plugin that provides
the desired functionality. Since to the best of our knowledge, at the time of writing this
thesis, there exists no such plugin for Unik or for unikernels in general, a plugin was
developed and also released to the Jenkins community so that others might take use of it
as they see fit.

6.1.3 JUnik, the Java Library

Since Jenkins is developed in Java, it made sense to wrap the functionality to interact
with Unik into a library. This brings the advantage that this implementation might show
useful not only to the Jenkins community, but to everyone that wants to integrate a Java
application with Unik. This library was subsequently used to create the Jenkins plugin.

Before implementing the library, different options on how to interact with the Unik
framework were investigated.

The first approach is to simply run the shell commands from within the client library. The
obvious disadvantages with this approach are, that it only works on Linux environments
and the framework must be installed locally.

Another approach is to use the daemons REST API, which the command-line client uses
as well to send commands to the daemon. This way we can directly communicate with
the daemon, independently of the location of the targeted daemon. It is independent of
the OS and the framework does not necessarily have to be installed locally.

Because of the early stage of the framework, its documentation is sometimes sparse.
One missing part was the API documentation, so the source code was analyzed and the
documentation provided back to the Unik project.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

After extracting this information the java client library was implemented, that wraps
the REST calls to the unik daemon. The library was dubbed JUnik and released on
Github10.

The library is divided into different types like instances, images, and volumes. For each
type there are multiple commands like creation, deleting, listing, description and others.
These different types are provided by a single client class, that can be instantiated with
a specific URL. This way any Unik daemon can be targeted, which is available over th
network.

Furthermore, the library provides an API for every functionality that Unik offers, although
some of them are not directly necessary for the implemented Jenkins plugin, like the
description of an image, or the listing of all available compilers.

Due to the fact that the Unik framework is still in an early state, it does not provide a
sophisticated error handling. It only sends 400 or 500 http errors, with out providing
additional information on what exactly caused the error. Because of this as much as
possible is handled at client side and the parameters are thoroughly validated, before
they are send to the server.

In the case there is still an error received from the daemon, it is wrapped in an exception
and left to the caller to handle it.

6.1.4 Unik Builder, a Jenkins Plugin

Using the JUnik library, a plugin for Jenkins to build and run unikernels was implemented,
named Unik Builder.

The aim of this plugin is to provide a set of simple commands that can be used in a
Jenkins job to build, ship, and deploy applications as unikernels.

For the implementation the docker-build-step-plugin11 was used as reference and template
for the structure and usage of the Unik Builder plugin. Since the aim of the Unik project
is to make the configuration and commands as similar to Docker as possible, so that the
transition from container to unikernels is easier, it maid sense to also make the usage of
the two plugins as similar as possible. The plugin was released open source as well and
added to the official Jenkins plugin repository12

Jenkins defines extension points, which are interfaces or abstract classes that model
specific behavior. Those extension points are either provided via the Jenkins core or via
a plugin. A plugin that targets a specific behavior simply has to implement one of these
extension points and annotate it with @Extension [58].

For the Unik Builder plugin multiple extension points were used. The most important one
is the Builder. It provides functionality to implement a build step. By implementing

10https://github.com/mathiasmah/junik
11https://wiki.jenkins.io/display/JENKINS/Docker+build+step+plugin
12https://github.com/jenkinsci/unik-builder-plugin

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Tools for a Continuous Delivery of Unikernels

Figure 6.1: The two links in the red box are custom actions, added by the Unik Builder
plugin, to view the logs of executed unikernels.

it as a SimpleBuildStep, it is automatically usable in freestyle and in pipeline jobs.
The UnikBuilder lets you define a UnikCommand, which is an extension point of its
own, but a custom one. Each implementation of the UnikCommand defines one specific
unik command.

Another special type of extension point is Action. Every page in Jenkins has a list of
navigation and command links on the left site. An action is the implementation of one of
the links. If the link is only for navigation, the action simple performance the redirect to
the desired target page. Alternatively an action can execute a specified task. Often it is a
combination of both. In general, they are added manually by calling addAction(...)

on an Actionable [58].

In this case the action was added to Run, which is the object representation of one
job execution. This means the action will appear as a link on the view of a specific
execution. The action implemented is a TaskAction, which allows the definition of an
asynchronous task. This allows to add an action for every unikernel that is started, to
get and list its internal logs. The red box in figure 6.1 shows these actions.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

All extension points are dynamically mapped to URLs using Stapler13. Stapler uses
reflection to determine how to process an URL. An example from this project is the
validation methods. For instance the class CreateImageCommand has a validation
method doCheckImageName(...), Stapler dynamically maps it to
io.jenkins.plugins.unik.cmd.CreateImageCommand/checkImageName.

Most of the extension points also have a view that need to be rendered. The technology
used for this is Jelly14. Views are organized according to classes, using Stapler. Stabler
identifies the correct view for an extension point by naming conventions [58].

Finally, we want to make the plugin more usable for pipeline projects also. This is
achieved by using the @Symbol annotation. By defining these symbols for the extension
points, the amount of text needed to call an extension point from a pipeline script,
reduces significantly [58].

For example if there were no symbols, the unik start command would look like this:

step([$class: ’UnikBuilder’,

command: [$class: ’StartInstanceCommand’,

instanceName: ’myInstance’]

])

With symbols on the other hand it is much shorter:

unik start(’myInstance’)

As seen above, in a pipeline job, configuration is only a matter of a few commands, while
as in a free style job, configuration looks like depicted in figure 6.2. This example pulls
an existing image from the hub end executes it on the globally configured Unik host.

6.2 Continuous Delivery Pipeline

Combining the selected tools and the provided Unik Builder plugin, a pipeline for
automated delivery and deployment can be established. Figure 6.3 shows the graphical
representation of this pipeline.

A continuous delivery pipeline automatically detects changes to the code base and start
a build and delivery process. Every time a developer pushes changes to a version control
system, the CI/CD tool, in this case Jenkins, detects this changes and triggers a new
build.

During the build process all the needed dependencies for the service itself as well as for
the unikernel base, are pulled from external sources. The service gets built, by taking use

13http://stapler.kohsuke.org/
14http://commons.apache.org/proper/commons-jelly/

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Continuous Delivery Pipeline

Figure 6.2: The configuration consist of two steps, in the first one an existing image is
pulled from a repository. In the second step the pulled image gets executed.

of the Unik Builder plugin, which relies on a Unik daemon to perform the operations.
This daemon can be installed locally on the same host as Jenkins itself, as well as on a
dedicated server on a remote location.

Before, after, or in between certain steps of the build process, unit-, integration-,
performance-, or any other test can be performed, as needed for the specific service that
is built.

After the built and all tests are successful, the unikernel image can be released.

Unik comes with a registry, similar to Docker, where images can be published. It is called
Unik Hub and in the current implementation it acts merely as a proxy to an Amazon
S3 storage. This brings the advantage that storage locations can easily be changed or
multiple storage options can be added in the future.

By taking use of the Unik Builder, the image can be pushed to a Unik Hub directly, at
either a globally configured or a specific location, specifying the corresponding command.
In either way the authentication is handled by the plugin using the Jenkins credentials
plugin, which allows to reference secrets stored in Jenkins without storing sensitive
information in the code base.

At this point the release process is finished. Now it is necessary to decide, if the
new version is automatically deployed to production or to a staging system, or if the
pipeline waits for a manual confirmation before it continues with additional steps, like
the deployment of the new release.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

Figure 6.3: Changes to the code base get detected, which triggers a new build in the
CI/CD pipeline. A new image is build, released to a repository and finally deployed. All
unikernel specific tasks are executed, by a Unik Runtime available over the network.

Although the Unik framework manages all the unikernel instances, it differs from a
full fledged orchestrator. It can be compared with the pure Docker daemon. Each
daemon only knows and manages the instances that are deployed to its host. There
are attempts to integrate it with Kubernetes, which would immediately bring a lot of
additional potential to both frameworks, but as of now, this is not in an usable state
yet. So the fully or partially automated pulling and roll-out of new versions by the Unik
framework is currently not possible.

However, another option is to let Jenkins deploy the new version, again by taking use of
the Unik Builder plugin. This will need a manual input or at least minor configuration for
the different hosts (each one needs to run a Unik daemon) and the number of instances.
With this the Unik Builder can download the new image to the hosts, stop running
instances if there are any and finally start new instances with the new image.

6.3 Experimental Setup

In order to evaluate the proposed pipeline together with the selected tools, a simple
microservice application was built, with one service that is continuously delivered using
this pipeline. Additionally, a second pipeline was created that is constructed the same
way as the one proposed above, only instead of unikernel it delivers a Docker container.
This second pipeline was used for comparison.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Experimental Setup

Component Description

CPU Intel R©CoreTMi7-6500U CPU @ 2.50GHz × 4
Memory 16 GiB
OS Ubuntu 18.10
Kernel Linux 4.18.0-25-generic.x86_64
Hypervisor Virtualbox 6.0.12r133076
Container Docker version 19.03.2, build 6a30dfc

Table 6.1: All the experiments and analysis were performed on a Lenovo Yoga-900
Notebook with Ubuntu 18.10 as OS.

Environment

All the experiments and analysis were performed on a Lenovo Yoga-900 Notebook with
Ubuntu 18.10 as OS. The full configuration and specifications of the environment is listed
in table 6.1.

Unik supports different unikernel implementations and target platforms that can be
used. Currently not every unikernel is fully supported on every platform, because the
framework is still under development. After trying different approaches, rumprun is
used as unikernel and Virtualbox as virtualization platform. This combination supported
nodejs as language and proved as most reliable.

The Unik Hub and the Docker registry were both self hosted. While the Unik Hub used
additionally an AWS S3 storage in the eu-central-1 region, the Docker registry stores all
images locally.

Jenkins was running locally as a Docker container and for the version control a public
Github repository was used.

6.3.1 Best Practices

An application is needed in order to properly compare unikernels with containers from
the perspective of cloud services and to build a continuous delivery for both of the
virtualization technologies. The aim is for the application to align with the best practices
of a microservices application that is designed to be deployed to the cloud.

Hence, first existing best practices for microservices and specifically for cloud native
applications, need to be discussed and evaluated. Decisions need to be made, about
which best practices apply for the use case ad hand and how they are applied. Only than,
the application can be implemented based on those decisions.

Microservices

Microservice is a broad term and was first introduced at a workshop in 2011 [35]. In
general, every application that splits its functionality into small, independently running

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

services that communicate with each other to reach a desired outcome, can be considered
to correspond to the architectural principle of microservices [36, 37].

James Levis and Martin Fowler tried to specify the term a bit in more detail and came up
with the characteristics of a microservice architecture and its development process. This
characteristics are based on observations of the development process of many different
microservice applications, the prevalence of this characteristics mean they are well proven
and does make them good best practices [35].

In the following the characteristics of microservices, as defined by Levis and Fowler, will
be discussed and the relevance for the use case at hand, will be described.

Componentization via Services Every good system architecture structures the
software in multiple components with clear boundaries. While a monolithic application
does this for instance in the form of libraries that are linked into the application, a
microservice architecture does this in the form of services. Services are out-of-process
components that run independently and communicate via web service requests or similar
ways. This way, services are independently deployable and if there are changes in only
one component, there is no need to redeploy the whole application.

Unikernels are well suited as platform for small services, that are independently running.
This allows to leverage the advantages of unikernels, like small resource footprint, fast
startup time and strong isolation. The example application developed to evaluate the
proposed deployment pipeline will consist of different services that are lightweight and
loosely coupled.

Organized around Business Capabilities To develop a well designed microservice
application it is also necessary to organize the teams the same way. The teams are
organized around business capabilities with all required skills represented. This is in
contrast to the classical way, where teams are organized around skills, i.e., there is a UI
design team, a database team, and so on. Conway’s Law states that an organization that
designs a system, will produce a system whose structure is a copy of the organization’s
communication structure. So according to this, an organization that is organized around
business capabilities will produce a microservice application where each service represents
a specific business case, which is a good structure for microservices.

Although this is an important characteristic, that allows organizations with multiple
teams to work efficiently and produce clean, maintainable code, it is not relevant for this
study, since the development will be done by only one team, mainly consisting of one
person.

Product not Project Applications are often seen as a project, where after the software
is delivered it is handed over to maintenance and the project team moves on. The better
way is to see them as products and the team that builds it, is responsible for it during
the whole live-time of the product. This comes close to the DevOps movement, where

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Experimental Setup

the teams also contain operations skills and are fully responsible for the application in
production.

This is again a purely organizational characteristic, with the purpose of giving the
development team more responsibility for there application, also in production, to
encourages them to invest more time in maintainability and to keep the whole application
live cycle in mind. This in turn reduces the time to market. Since the application
developed for this study, will never become a product and is solely intended to evaluate
the proposed deployment pipeline, this characteristic does not apply.

Smart endpoints and dumb pipes The applications aim to be as decoupled and as
cohesive as possible. The communication is done either trough RESTish protocols or
trough a lightweight message bus. Unlike with Enterprise Service Buses (ESB), which
often contain complicated logic for choreography, transformation or applying business
rules, with the microservice approach all the smarts lies usually with the endpoints, that
is the individual service, and the communication platform is dumb.

The example application will be implemented according to the RESTfull principles and
therefore applies this characteristic as well.

Decentralized Governance Independent components bring the advantage that there
is no need to use the same technology stack for everything, instead we can use what
ever is best suited to the specific use case of a service. The same is true with standards.
Instead of enforced standards from a centralized governance entity, that all teams have
to comply with, teams produce tools that solve a specific problem. Other teams can take
use of this tools, or choose another approach if it fits their needs better. In-house open
source is often used to encourage this behavior. So can one team take use of the battle
tested code of another team, without the explicit enforcement of specific standards.

Another organizational principle, that is important for bigger organizations with multiple
teams. For the project at hand it is not relevant, since it is an academic project, with no
explicit governing body and only one team.

Decentralized Data Management This addresses the problem that the conceptual
model of the world differs between different parts of a system. Ever service has his own
view of the world and needs only to save the data it really needs. This way we can
easily use different ways of data management, always the one that is best suited for the
specific service. The draw back here is consistency. Traditionally are transactions used
to guarantee consistency. However are distributed transitions difficult to implement, thus
generally a transaction less approach is used. This prevents temporal coupling between
the services, but introduces the necessity of compensation mechanisms, because of the
only eventually consistency of the data, between the different services.

In order to keep the example application simple and since the data management and
consistency is not related to the underlying platform, for this study only one database is

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

used. This does not necessarily violate this characteristic, since only one service of the
application handles data that needs to stored.

Infrastructure Automation The rise of infrastructure automation techniques is
important for microservice applications. Manual deployment of an application always
bears the risk that something breaks because one step is done differently than the last
time. This risk increases with more independently deployable components of a system.
With many independent services, that get continuously delivered on a daily basis, it is
not feasible anymore to manage the deployment manually, this makes the heavy usage of
automation necessary.

This is of course the most relevant characteristic for this study, since an automation
pipeline is evaluated.

Design for Failure With multiple independently running services, that often com-
municate over the network, the unavailability of one or more services at any time is
much more likely as with one monolithic application. At the same time multiple service
can be more resilient towards failure. A failure in a monolithic application is likely to
cause the full application to crash, while in a distributed system only one service will be
temporarily unavailable. Thus it is important that the system can handle it transparently,
if a service is unavailable. Well implemented error handling is key to enable this resiliency.
Extensive monitoring is important, it shows the current state of the system, helps to
identify sources of failure and allows for automated restart of failed services. To protect
services to be affected, if other service are not available, different techniques are used,
like asynchronous calls, caching or circuit breakers.

Although this is an important topic, for this study we are more interested in the operational
aspect, like monitoring and automated restarting of failed services, and less in the logical
aspects, like caching.

Evolutionary Design The microservice principles come from an evolutionary design
background. The breakdown of an application into independent services allows to apply
changes faster and more often. This is because it is not necessary to redeploy the whole
system only because of a change in one component. Together with automation, this
allows to release changes almost immediately.

The evolutionary design principle not rely applies, in the case of this study, since the
example application is only developed for testing purposes and only used for a short time.

This characteristics are a guide for organizations that want to produce well designed
microservice applications. They show that not only a good design, but the whole
structure and the philosophy of the organization, influences the development process
and the outcome of a project. The characteristics are high-level and specified for bigger
teams, many of them do not directly apply to the development of the example application,
developed for this study. However, it is important to evaluate all characteristics and

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Experimental Setup

Nr Factor Description

I Codebase One codebase tracked in revision control, many deploys
II Dependencies Explicitly declare and isolate dependencies
III Config Store config in the environment
IV Backing Services Treat backing services as attached resources
V Build, Release, Run Strictly separate build and run stages
VI Processes Execute the app as one or more stateless processes
VII Port binding Export services via port binding
VIII Concurrency Scale out via the process model
IX Disposability Maximize robustness with fast startup and graceful shutdown
X Dev/Prod parity Keep development, staging, and production as similar as possible
XI Logs Treat logs as event streams
XII Admin Processes Run admin/management tasks as one-off processes

Table 6.2: The 12 Factors by Adam Wiggins are best practices for cloud services [59].

principles, before one can decide which apply for the project at hand and which are not
necessary for the specific use case.

Componentization via services, smart endpoints and dumb pipes, decentralized data
management, infrastructure automation, and design for failure are the characteristics that
we will embrace during the following design and development of the example application,
used to evaluate the proposed delivery pipeline.

12 Factors

The microservice characteristics are generic and apply to a broad area in distributed
systems. Although they provide already a good guideline for the development of a
microservice application, additionally a detailed specification of what are the best practices
for services that are developed for the cloud is needed, in order to implement a well
designed example application, that is a good representative for an arbitrary cloud service.
This allows to draw conclusion from this study, that can be applied to cloud services in
general. Therefore, the 12 Factors for the design of cloud services are introduced and
explained.

The 12 factors are principles defined by Adam Wiggins and are seen as best practices
for applications that are designed as cloud services [59]. These principles are published
on a website that itself is implemented according to this principles and its sources are
available at Github 15.

Table 6.2 lists the 12 factors with a short description. In the rest of this section they are
described in more detail, along with a short analysis on how the different concepts of
containers and unikernels help to fulfill or even enforce these factors.

15https://github.com/heroku/12factor

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

I: One codebase tracked in revision control, many deploys There is always a
one-to-one correlation between an application and a codebase. If an application consists
of multiple codebases it is a distributed system, not an application. On the other hand,
multiple applications that share the same code base are not allowed either. The reason
for this is to prevent code sharing and thus dependencies between two applications,
that should be independent. One application is deployed to multiple environments,
starting from various testing environments up to the production environment. the
different environments don’t have to contain the same version, f.i. only stable and well
tested versions of the applications get deployed to production, while the version on the
development environment contains the latest commits to the code base.

Containers or unikernels do not enable this factor them self, rather the usage of a version
control system, like Git, and a clean code base. The fulfillment of this factor however,
will ease the usage of both virtualization techniques. The clear split of each applications
allows to easily add a Dockerfile as well as the corresponding configuration file for a
unikernel implementation, to the code base. This way the deployment configuration is
versioned together with the the application code, which allows the deployment of every
version of the application, at any given time.

II: Explicitly declare and isolate dependencies Dependencies have to be explicitly
declared in a manifest file, so it is immediately clear which dependencies are needed for
the application. Additionally, the dependencies have to be isolated during execution
so that no implicit dependencies can leak-in from the surrounding system. For this
dependencies management exist tools for most languages. Maven is such a tool for Java,
it allows to specify the dependencies and its desired version in a manifest file called
pom.xml. At build time the dependencies get pulled from a remote location and added
to the application. This factor not only covers dependencies like application libraries,
but also extends to system tools. So if an application relies on an external system tool,
this tool as well has to be explicitly declared and installed.

The use of a tool to manage application dependencies, like third-party libraries, is a
widely accepted best practice, enabled by the many dependency management tools that
are available for every language. However, the extension of this practice to system tools
and the whole environment is less common. Docker enables this through its Dockerfile,
which specifies the base image and additional system tools, that need to be installed.
While this already allows for a better fulfillment of this factor, the OS at the base of the
container is still general purpose and the container shares its kernel with the host OS.
Unikernels provide the ability to finalize the fulfillment of this factor, with the possibility
to have fine grained control over each kernel library that is used and the full isolation
from the host.

III: Store configuration in the environment The configuration consists of values
that are dependent on the environment the application is executed in. This values change
between different deploys, f.i. credentials or connection strings for databases. This

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Experimental Setup

configuration has to be stored directly on each environment, by taking use of the so called
environment variables. Environment variables are language and OS agnostic standards
and can easily be changed between deploys.

Docker containers and unikernels alike support this functionality. At startup time values
can be injected into the environment variables, which allows to use the same image for
different environments.

IV: Treat backing services as attached resources A backing service is any service
that the application consumes over the network. This can be a database, other internal
services, or external third party services. They all have to be accessed by using an URL
or any other connection string, stored in the configuration. A key factor is that they can
be exchanged without the need to make changes to the code base. Additionally, there is
no distinction between an internal or an external service.

This factor is mainly solved through the architecture of the system. Containers do not
provide any advantages over other environments, like bare metal or classical VMs, in
regard to this factor. Unikernels, however, enforce this factor through there restriction to
a single process. On other environments a backing service can just as well be installed as
an additional process on the same environment, which adds complexity to the environment
and might lead to problems when the backing service is exchanged. By taking unikernels
as deployment environment, there is no other possibility than to have a unikernel per
service and due to there strong isolation the service have to communicate over the
network.

V: Strictly separate build and run stages The build stage generates a bundled
executable of the codebase, called a release. This release can then be executed in the run
stage. Changes, directly on the release or during the run stage, are not possible because
they can not be propagated back to the codebase. Hence, for every change there must be
a new release. Additionally, every release needs a unique identifier.

Both, containers and unikernels provide this separation. In the build phase an image is
created, which subsequently can be deployed to various systems. However, the restriction
of modifications to an image in the run stage is not enforced by containers. Container
images, being full fledged OS environments, allow for changes to a running instance
even if it is in general considered bad practice. Unikernel images on the other hand are
immutable by definition, i.e., it is simply not possible to apply changes to an image after
it is built.

VI: Execute the app as one or more stateless processes Processes of a 12-
factor application are stateless. Stateless means that the process is not allowed to hold
information about a certain state over the span of multiple request, especially if this
influences the response of a fallowing request. Every data that needs to persist across
multiple requests must be stored in a backing service, like a database. This allows to run
multiple instances of an application, where each request can be routed to any instance.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

It is also important that a restart or a redeploy can be performed without the fear of the
loss of data stored in memory.

This factor is purely architectural and can neither be supported nor its violation prevented,
by the usage of a certain virtualization technique. However, if a service does not need to
fulfill the 12 factors, f.i. a backing service like a database, that needs to persist data, both,
containers and unikernels, support this via volumes. Volumes are a way to store data
over multiple deployments. After a new deployment all data generated by the application
would be lost otherwise.

VII: Export services via port binding Each service binds itself to a port and listen
for incoming requests. It has to be completely self-contained, e.g., so that it is not
possible to inject a webserver into the execution environment during runtime to create
a web-facing service. The app should rather export the webserver as a service via port
binding. This is typically implemented by adding a webserver library directly to the
application. This way the developer can access the service directly via the process port,
while in deployment, a routing layer handles the forwarding of requests to the correct
process port.

Both, containers and unikernels isolate services from each other. Through this isolation
the communication over the network comes naturally making them self-contained. Docker
containers as well as some of the more mature unikernels, like OSv support also the
configuration of port forwarding rules, through there respective tools.

VIII: Scale out via the process model The process model from factor VI with its
statelessness almost automatically enables this. The application can be scaled by adding
more instances of the same application.

For Docker containers exist multiple orchestration tools that manage the scaling of
instances. Although unikernels support this as well, sophisticated tooling is still missing,
which would allow to automate the management of larger clusters.

IX: Maximize robustness with fast startup and graceful shutdown The startup
of the application needs to be fast, to provide more agility for releases and scaling.
Furthermore, it has to be able to be shut down at any time without data loss and
additionally be resilient, so that uncontrolled crashes of the service it self or of a resource
can be handled transparently.

Th grace full shutdown and the resiliency must be handled by the application logic, the
underlying environment has little possibilities, since it highly depends on the application.
However do already containers provide a significant faster startup time than, f.i. tradi-
tional VMs. Unikernels are able to reduce the startup time even further, which makes
them an ideal candidate for just-in-time instantiation and fast scaling of an application.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Experimental Setup

X: Keep development, staging, and production as similar as possible Tradi-
tionally, there exist huge gaps between the environments. Examples are i) time gaps: code
takes up to weeks or months to go into production, ii) the personal gap: the developers
who write the code, are not the same as the operators that run it in production, and iii)
the tool gap: different tool stacks are used in development than in production. These
gaps need to be reduced as much as possible. Code has to be deployed immediately
after writing it; automation aids that. The same developers that write code has the
responsability for bringing it to production and monitor its behavior in every environment.
The tools need to be always be the same; even small differences in the tools and backing
services potentially leads to code that runs fine locally but fails in production.

The close the tool gap between the development environment and production is one of
the main reasons to use containers or unikernels, enabled by the ability to create an
image that contains the application as well as its full environment. This allows to have
conditions as similar to production as possible, on the local development environment as
well as during automated tests and on staging environments.

XI: Treat logs as event streams Logs are aggregated, time-ordered events from
the output stream of the application. In stead to be written to a file, they have to be
written unbuffered to stdout. Applications don’t have not be concerned on how the
logs are handled, because this can be different for each environment. Developers are able
to locally monitor the stdout in the foreground while they are working on the code, while
in deployment, logs can be collected and e.g., sent to a centralized logging system.

Docker containers and unikernels provide there logs as stream. This stream can be
handled trough configurations in the environment. Many log aggregation tools have good
support for Docker containers, while unikernels are not yet support so natively. However,
this only means that additional configuration for the tools is needed and with growing
popularity of unikernels, many maintainers will add better support for them as well.

XII: Run admin/management tasks as one-off processes Besides the regular
business of the application, developers often wish to run admin on-off administration
tasks on the application, like f.i. a database migration. They need to be performed in
an identical environment as the regular processes of an application and use the same
codebase and configuration as the release.

Containers still contain a full OS, this means administrators can directly connect to the
container via ssh protocol. This enables them to perform arbitrary maintenance tasks
on the system. Unikernels do not allow this, since they are a closed system and do not
provide the full OS functionality (e.g, a shell) which would enable this. In the case such
maintenance tasks are necessary, they must be explicitly implemented, together with an
API, which allows to trigger those tasks.

After analyzing the 12 factors and compare Docker containers and unikernels in their
ability to host such 12 factor applications, it appears that both technologies are equally

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

Figure 6.4: The simple microservice application consists of a scalable service, a loadbal-
ancer and a database.

well suited for this use case. There are minor differences like the small size and better
isolation of unikernels or the easier maintainability of containers. Unikernels are more
restrictive and often leave no choice than to follow the 12 factors. This might be an
advantage, but it also decreases flexibility. Overall, it depends more on the actual
implementation which technology provides a better fit.

6.3.2 A Microservice Application

The aim is to develop a distributed application and build an automated deployment while
taking in account the twelve factors and the characteristics of a microservice architecture.
The application will be build as Docker container, as well as rumprun unikernel with the
Unik framework. This allows for a thorough comparison of both technologies, containers
and unikernels, in the context of cloud services.

The high level design of the microservice application is depicted in figure 6.4. The main
part is a small messaging service, that can be scaled as needed. The service uses a
mongodb database to store its messages, all instances of the service share the same
database. A loadbalancer transparently distributes the requests between the instances of
the service.

Messaging Service

The core of our microservice application is a RESTful service that receives and stores
messages, providing three endpoints:

GET /api/messages To get all currently stored messages as json object, each together
with timestamp and id

GET /api/messages/:id To get the message with the id specified as parameters

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Experimental Setup

POST /api/messages To stores a new message

The service is implemented with nodejs and express as frameworks using typescript as
programming language to ensure type safety. To fulfill Factor I the service has its
own code base and is stored in a git repository. Dependency isolation is performed
by using the nodejs dependency manager npm. All dependencies are defined in the
file package.json and installed in the source tree under node_modules. The file
package-lock.json makes sure that the versions stay exactly the same even if the
dependencies are reinstalled on a new system. This fulfills Factor II.

The service automatically registers with the loadbalancer on startup. The address of
the loadbalancer can be specified via an environment variable. The same is possible
for the address, user, and password of the database connection as well as for the port
the service is listening on. This is in alignment with Factor III and Factor IV, because
all configuration is stored on the environment and the database and loadbalancer are
backing services that are configured as resources.

Factors VI, VII and VIII are ensured through the statelessness of the service. Messages
are the only data that have to be stored permanently. Since they are stored in an external
database, which is shared by all instances, statelessness is ensured. This facilitates scaling
of the application. Every instance listens on a different port while the loadbalancer
manages forwarding of requests to the appropriate one.

A part of Factor IX is implemented by the service itself. Uncaught errors, as well es
termination signals, are caught globally and a graceful shutdown is initiated, which
allows for open requests to be finished and clean up operations to be performed, e.g.,
unregistering from the loadbalancer. The rest is covered by the virtualization framework
that wraps the service, i.e., Docker and Unik.

In alignment with Factor XI, the logs are simply written to stdout/stderr and the
virtualization framework is responsible on how they are delivered. Factors V and X are
fully covered by the virtualization frameworks and the deployment pipeline. Due to the
simplicity of our application, no admin tasks are necessary, hence no special handling
according to Factor XII.

Loadbalancer

The loadbalancer has the purpose of distributing load between different services. Indepen-
dently of how many instances are currently running and at which location and port they
can be reached, the caller always uses the same interface, i.e., the one of the loadbalancer.
The loadbalancer knows every instance of the service and its current address and port.
This way, the request can be distributed transparently between all instances and adding
or removing of instances is always possible.

Various loadbalancer implementations are currently available. There are well established

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

ones like haproxy16 or modern ones like traefik17. Most of them support dynamically
adding and removing of services, which is an important feature for this application setup.
However, this is often a premium feature which is not included in the free version, or it
is only supported for specific technologies. Docker containers are well supported, coming
with functionality like auto-discovery of new containers. For other technologies, where
no direct integration exists, more configuration is needed. Sometimes even additional
tools, like external key-value stores.

The same is true for orchestration frameworks like Kubernetes which often have loadbal-
ancing features built-in. Many of those were build to orchestrate containers specifically.
Only slowly support for other technologies is added, like Kubernetes with its CRI Inter-
face [39]. Although it is expected that most of orchestration frameworks will support
unikernels in the future, currently it is not trivial to set them up for other technologies
than containers.

To keep it simple and to have the same conditions for both unikernels and containers, a
simple loadbalancer was implemented, using nodejs. It listens on two ports. One port is
used by the service instances to dynamically register and unregister itself. Requests to
the other ports are forwarded to the instances in a simple round-robin way. However, a
minimal health check is implemented: if an instance is not reachable by the loadbalancer,
it gets removed from the list and the request is forwarded to the next instance in the list.

Database

In order to implement a microservice application in accordance to the 12 Factors and to
keep the application stateless, it is necessary to store everything that needs to be shared
between the instances in a dedicated backing service. In this case the messages need to
be available to all instances, even after an instance is rebooted.

For this purpose, the Mongodb database is used, which is shared between all instances.
This database was chosen because it integrates well with nodejs. Due to its NoSQL
nature, it can be used without the prior specification of a schema.

6.4 Evaluation and Results

During the development multiple observations were made and issues occurred, both
regarding unikernels in general and the Unik framework in particular. This allowed to
take conclusions about the state of unikernels and especially their feasibility to run cloud
services in production. The results are put in contrast to Docker, which is currently the
most commonly used technology for this use case.

16http://www.haproxy.org/
17https://traefik.io/

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Evaluation and Results

6.4.1 Implementation and Build

The continuous delivery pipeline starts with a developer who pushes changes to the code
base, which triggers a build. Before the developers can create features and push them to
the code base, they need to make general decision about the project, e.g., which language
and tools they will use. After those decisions are made, each developer can start to create
features, using the selected language and tools.

Language selection

Docker has a vast variety of base images to choose from, built upon all kinds of different
technology stacks and languages. In the case where no base image exists, that fits certain
requirements, it is easy to extend an existing one with little additional tools needed.

Such images have a layered structure. Every layer adds tools or configurations to an
existing image, which results in a new image. This brings maximal reusability and
due to the fact that most images are based on common Linux distributions, every tool
or application that can run on this platforms, can also run inside a container without
modifications. Hence, there are virtually no restrictions on languages, dependencies and
tools that can be used to create an application that is be able to run in a container.

With most unikernels this is different. They often support only one language. For instance
MireageOS, which only supports OCaml as language or IncludeOS which only supports
C/C++. Other implementations, like OSv or rumprun, however do support multiple
languages. So unlike with containers, a developer has first to decide which unikernel
implementation needs to be supported and selected, based on the used language.

So unless one unikernel implementation cuts out all others, which is only possible if
it supports all languages, a tool like Unik is crucial to standardize the packaging and
execution of unikernels. With this framework developers do not have to learn to build
and operate a new unikernel solution every time they want to use another language. They
can always rely on the same build tool and simply select a targeted unikernel for each
built. This brings unikernels a step closer to compete with containers on a larger scale.

Unik officially supports multiple programming languages, target platforms, and unikernel
implementations. This brings the advantage that a developer can always use the same
tool to package their application as a unikernel and can still use different languages. They
just have to select an appropriate unikernel implementation when building the package.

As of now the supported possibilities are somewhat limited, i.e., there is no support
for every combination of language, unikernel and provider. In fact, faced with a few
restrictions, e.g., which language is used, the options are reduced significantly.

For this study typescript was selected as language for the application, more specifically
the nodejs framework. Node.js is currently one of the most used frameworks for simple
microservice implementation. Given this restriction, OSv and rumprun are the two
unikernels that Unik currently supports for this language.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

Building and Packaging

Before an application can be package by either using Docker or a unikernel implementation,
it has to be build. The build process it self is independent of the targeted virtualization
technology and is fully performed by language tools like compilers.

In this specific case Typescript is used as language, which is a dialect of Javascript with
type-safety build in. Although Typescript, just like Javascript, is an interpreted language,
it is good practice to transpile the code to native Javascript for increased performance.
The resulting Node.js application is then ready to be packaged either as Docker container
or as unikernel.

In order to package the application as container, a so called Dockerfile is created. Among
others, it contains information about the base image used, additional tools to be installed,
and instructions on how the application is executed. The build command provides
additional options, ranging from the name for the created image to specific instructions
about the CPU and memory usage of the packaging process.

The process to package the application as unikernel highly depends on the unikernel
implementation. However, most of the unikernels provide boilerplate base images for
common use cases, so developers can use those and build their application on top of them.
Additionally, tools and scripts are available which can be used to create the image. How
the tools and the level of abstraction work differs between the different unikernels. OSv is
organized similar to Docker. Its images are constructed as layers, that can be reused and
a so called Capstanfile defines how the application can be added on top of a base image.
rumprun is constructed differently, there are no layers that can be reused. Hence, every
unikernel has to be build from scratch. To simplify this, there exists a repository which
contains the boilerplate code to build images of many different languages and frameworks.
These base images can be used to build an application. Furthermore, additional scripts
are available in this repository, that help with the build process. Nevertheless, the level
of expertise required, is already significantly higher than for OSv.

This are just two examples. Different unikernel implementations follow different ap-
proaches for the build process and thus require different levels of expertise. A framework
like Unik, that provides a wrapper and a higher abstraction for the different unikernel
implementation, has the ability to reduce the complexity for developers significantly. It
makes it much simpler to build an application as unikernel and brings it much closer to
the way Docker builds containers. Which paves the way, for developers to use unikernels
the same way they use containers for their services.

As of now Unik only provides few configuration options and relies mainly on parameters
added to the build command. There is first support for a manifest file in the code base,
but the options in that file are very limited and differ between which unikernel is used.
This is likely to change and the configuration will more heavily rely on a manifest file
and be equal for all unikernels.

When creating the image in both cases, Docker as well as unikernels, it is important that

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Evaluation and Results

the targeted platform is known. For Docker it depends if the platform is using an ARM
or x86 processor and if the host is Linux or Windows. Based on this, the appropriate
base image has to be selected.

For unikernels the targeted hypervisor has to be known when building an image. The
Unik framework simplifies this. The target platform can simply be specified as an option
to the build command and the framework adds the platform specific modifications to
the image. The build is performed in two steps, first the raw unikernel image is created.
Based on this raw image, a bootable image for a specific provider is created. This brings
the possibility to shift the provider specific modification that are performed under the
hood, from build time to startup time. This way an image can be build that supports all
platforms. Of course the impact on the startup time has to be considered, which is after
all an important factor. Nevertheless, show resent efforts of Docker to create true multi
platform images, that this is an important topic.

For this study, the previously build application is packaged as OSv as well as rumprun
unikernel, by taking use of the Unik framework as a build tool. However attempts to
package and run the application using OSv failed. The problem is related to the way
the Unik framework is constructed. It has a highly modular architecture, which allows
to plugin a modules in order to add support for another unikernel or an additional
provider. A module that is responsible to package an application of a certain language,
as a specific unikernel, is called compiler. The compiler for the OSv unikernel takes use
of the Capstan build tool, which is the official build tool of this unikernel. Since this
module was implemented, the API of the Capstan tool changed, but the changes were not
added to the module. It causes Capstan to produce an error, which in turn causes the
whole packaging process to fail. This leaves rumprun the only unikernel that is currently
supported by Unik and is able to package a node.js application without errors.

This is one issue that highlights the challenges of a framework like Unik. It can only be
successful with an active community that keeps maintaining the different modules of the
framework, in a way that the integration to the different unikernel implementations and
target platforms stay current.

The next issue that occurred was caused by the usage of base images. Since Unik is simply
a wrapper for different unikernel implementations, also the base images provided by each
unikernel implementation are used. This in turn means Unik is dependent on the different
unikernel providers and communities to maintain the base images. So is currently the
latest supported node.js version for rumprun with 4.3.0 quite old. Additionally is this
version number only specified in the compiler module for rumprun and nodejs, but there
are already preparations in the code to specify the version in the Unik manifest file.
After the cause of the problem was identified, it was simply resolved by taking use of the
transpiler, which allows to specify a targeted node.js version. Only one logging library
had to be removed, because it was not compatible with this old node.js version.

While the incompatibility issues with the OSv compiler and the version issues with the
rumprun base image are inconveniences, they can be explained by the early phase in

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

which the Unik project and many unikernels in general are. However, they are not related
to the concept of unikernels in general. The following problem that occurred with one
used library, on the other hand, is a common problem with unikernels.

For the communication with the database the popular library mongoose was selected.
Unfortunately when running the service with this library as a rumprun unikernel, it led
to an obscure memory error located in the code of the unikernel implementation itself.
This is always a possibility with unikernels, when a library relies on functionality that a
traditional OS supports but not the unikernel. By changing to the native mongodb driver
for nodejs as library, this error was resolved. It is expected that with increasing popularity
of unikernels, maintainers of third party tools and libraries will start making their code
compatible to unikernels as well and this kind of issues will become less common.

Similar issues occur with whole tool stacks, if they are packaged as unikernel. For
instance, if they rely on multiple processes, they are not compatible with the unikernel
paradigm. In this study this was the case with the mongodb database, which was not
possible to run as a unikernel. Unikernel maintainers try to overcome this issue by
providing custom builds of this tools, with patches that change the implementation in a
way that it is compatible with unikernels. For instance instead of processes only threads
are used, which is possible in unikernels.

Debugging

Debugging, as the process of error analysis, is an important part of the development
cycle and many tools exist that support the developer with this task. One reason to
use containers or unikernels, is the advantage that the application is always executed
under the same conditions, which reduces errors caused by discrepancies between the
development and the production environment.

Docker allows to connect directly to the container via ssh protocol. This is possible,
because the container still holds a full OS with all functionalities, f.i., a shell. Thus,
developers can debug application directly inside the containers and inspect the whole
environment. Additionally delivers Docker all logs via stream, which makes it possible to
collect them and inspect them at anytime.

Unikernels on the other hand, being a closed immutable system, do not allow the
connection to an instance and the execution off arbitrary commands inside of it. This
makes it notoriously difficult to debug unikernels with the classical tools and approaches,
developers are used to, which is one of the major pints of criticism. Unikernel projects,
try to solve this problem, by adding functionality to add a debugger directly to the
unikernel or adding an API to the unikernel that delivery the logs.

Unik provides both, a flag that tells the compiler and the provider, that a debugger has
to be attached and commands to tail the logs of a unikernel. Since this functionalities
highly depend on the unikernel implementation, it is up to the compiler and provider
modules to implement them. The retrieval of logs is generally well supported, while the

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Evaluation and Results

debugging option is currently only supported by provider of the QEMU hypervisor and
few unikernels.

The rumprun, f.i, has the logging functionality not build into the kernel, but it is up
to each base image to provide this functionality. So consist the base image for node.js
of certain bootstrap javascript files that perform specific operations before starting the
main program. In order to provide the logging functionality is the stdout and stderr

output redirect to a buffer and an endpoint is added which delivers the content of this
buffer. This way the logs can be retrieved via HTTP. The Unik framework makes use of
this endpoints, to allow the retrial of the rumprun logs via Unik’s API.

During this study certain issues were detected with the way the logs are delivered. Unik
assigns a public address to the unikernel, but only after the startup is fully completed.
This leads to the problem that no logging can be retrieved, if an error occurs before the
main program is fully started, because the endpoint that delivers the logs is not available
yet. This made it hard to investigate such an issue. As a workaround the Virtualbox
tools had to be used directly to start the unikernel in the foreground. In particular
the vboxmanage command, which provides CLI functionality to manage Virtualbox
instances. The same tools is used by the Unik provider for Virtualbox to manage the
instances. The tool allows to start an instance in the foreground, this way the logs can
be seen directly in the console. This can be solved by either assigning the address earlier
in the startup process or by adding a debug option, to allow the start of the unikernel in
the foreground, without the need to rely on third party tools.

6.4.2 Delivery and Deployment

After a new image is created and all automated tests are passed successfully, the new
version can be released. This involves multiple parts. First the image must be made
available for execution, only then one or multiple running instance of it can be deployed.
After instances are deployed they must be operated and maintained. In all of this steps
automation and abstraction becomes more important, with the amount of instances that
are running in parallel.

Releasing

A released image of an application gets generally uploaded to a shared registry, from
where it can be deployed to a server or made publicly available.

Docker provides this functionality through the Docker Registry. The registry it self is
available as Docker image, so anyone can host such a registry for internal or public use.
Alternatively exists the Docker Hub, which is the official public registry. It is the default
registry configured in the Docker daemon and provides millions of images.

Unik aims to provide the same functionalities via there Unik Hub. The domain configured
in the the daemon as standard location of the official Unik Hub is currently not available.
In contrast to Docker, does Unik currently not provide a ready to use image of the registry

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

either, but the full source code is available as open source at Github. However, the different
components are not in the same state, and the whole system is not operational. Initial
attempts to apply patches, to fix this issues and make the registry applicable for this
setup, where quickly dismissed because it would have required a reimplementation of
bigger parts of all components of the system, which would be out of scope of this thesis.

There are three parts that play together so that images can be pushed and pulled to and
from a Unik Hub. The Unik Hub server, which has its own code base, the Unik daemon,
which connects to this registry and a modified AWS SDK for go, which is used by the
daemon. This three components seem to be all in a different state of development.

The SDK for AWS is a fork from an outdated version, which means the API for AWS
changed in the meantime and calls to it by using this fork fail. It is fair to assume that
this is only a temporary solution, because it is not sustainable to maintain a permanent
fork from the SDK in the long run, only to have this small modifications. More likely is
that a library will be implemented that wraps the SDK. Another possibility is that the
whole communication with AWS is performed by the Unik Hub so that the daemon does
not need the SDK at all.

In the daemon implementation specific parameters are hard-coded for a public Unik Hub.
Additionally, there are currently changes in the Unik Hub’s server API, which are not
yet incorporated in the daemon.

Deployment

The daemon of Docker as well as the one of Unik, are not only responsible for building
an image, but to execute and manage running instances as well. From a consumer
perspective the daemon of Unik is quite similar to the one of Docker. All of this plays
into the goal of making the transition from containers to unikernels as smooth as possible.
Both daemons act as a REST server and executes the commands send from the clients.
Both project ship a standard CLI client together with the daemon. Additionally is the
REST API open, which allows for third party tools to integrate with the daemon easily.

Due to its maturity the Docker daemon provides many options and fine grained control
over the containers it is managing. This was not always the case, when Docker was fist
released its API was much more limited and only grew over time. The Unik is still in its
early phase and the daemons API is quite limited.

However, the approach to supported target platforms is very different for the two platforms.
Docker supported for a long time only Linux containers and the x86 processor architecture
for the host. Only in the last couple of years support for ARM architecture and Windows
containers was added. Unik on the other hand aims to provide support for as many
unikernels and platforms as possible, right form the beginning, which adds an additional
layer of complexity and is visible in the architecture of the daemon.

The architecture of the Unik daemon consists of three parts, the API server, the compilers
and the providers. For every combination of language and unikernel exists a specific

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Evaluation and Results

compiler and for every target platform exists a provider. The API server hands of a build
command to the compiler of the specified unikernel, which constructs the raw image.
After that, the raw image is passed on to the provider implementation of the specified
target platform, which creates a bootable image for the specific platform.

The support for different target platforms, also makes the running and managing of
instances more complex. The unikernels instances run on hypervisors which are placed
on top of the host, or even at a remote location, similar to classical VMs. For every
configured provider the daemon starts one special unikernel, which is called Instance
Listener and manages all instances that are running on the same hypervisor and the
daemon collects and aggregates the information from these instance listeners or forwards
commands to them.

During this study multiple problems were discovered, which are caused by the instance
listener, who’s implementation is partially still very rudimentary.

One problem is that the instance listener manages and holds the state of the instances
in a Json file on the host. Every time a new operation is performed, like creating a
new instance or stopping one, this changes are applied to the file. This can lead to a
divergence between the real state of the system and the state represented in this Json
file. For instance, when a unikernel crashes it is sometimes not detected by the listener,
which leads to an error when a new instance with the same name is started, because the
listener assumes that an instance with this name is already running.

A similar issue occurs when the daemon crashes or is terminated. After a restart and
with a state.json file already existing it simple gets read and assumed to be in the
correct stated, without checks for the real state of the system. This can be a vulnerability
because the file can be edited manually to bring the instance listener into a wrong state.
Additionally, a manual clean up is sometimes necessary, to bring the system back in a
consistent state.

Another problem detected, is that the instance listener gets stuck in a deadlock after
running for a while and performing multiple operations. As of writing this thesis the
cause of this issue could not be found yet.

Although this are breaking issues for running Unik in production, the project does
not claim to be production ready and for this experimental setup this problems were
manageable. It is fair to say that there is still way to go for he Unik daemon to become
as reliable to manage unikernels, as the Docker daemon is for managing containers. But
it goes in the right direction to make the operating of unikernels on a bigger scale, as
simple as it is with containers.

Storage Management

Volumes are a concept for containers, to specify storage locations that can be mounted
to the container at startup. The advantage of volumes is, that data can be stored over
the extend of the live time of one container.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

Unik has copied this concept and has already good support for volumes. Similar to
containers, it is important to have this functionality with unikernels, since data saved
inside the unikernel will be no longer available if a new version of the unikernel is deployed.
Currently volumes have to be created for a specific provider and can than be added to
an instances on startup. Volumes can only be added to mountpoints that are specified
during the build of the image and if such a mount point is specified a volume has to be
added, otherwise the startup will fail.

This is much more restrictive and explicit than the volume management with Docker
and on the same time there are little configuration options. Docker for example allows
the specification of many different storage drivers, for all kind of underlying file systems.

Nevertheless is the current implementation of volumes quite reliable and with Unik
gaining more maturity additional options can be added and the whole process can be
made more dynamic.

Networking

Docker has a rich set of networking options which allows a fine grained control over
how the containers communicate with each other and with the outside world. Trough
the pluggable networking subsystem, it is not only possible to add standard network
plugins from Docker, like host networks for local communication or overlay networks
for communication between containers on different hosts. It is easily possible to use third
party plugins for specialized network stacks. This rich functionality evolved over time
and in the beginning also Docker only supported few networking options like host or
bridge networks.

Networking is a complex topic and it requires good expertise to manually setup networks
between different unikernels. Unik currently does not support the configuration of
different networking options, but simple uses the default host network of each provider.
For the state of the project this is currently good enough since it allow the communication
of all unikernels on a host as well as the connection the Internet. For production use
this is however not feasible. It is certainly necessary to create different closed networks
for groups of unikernels as well as restricting the access to the Internet. For cluster
orchestration it will be necessary to create overlays between unikernels on different
host and providers.

Although there is nothing implemented yet, the modular structure of the unikernel
framework can be a way to add support for many different network stacks. Networks can
simply be added as an additional module, like compiler and provider.

Orchestration

Orchestration is an important topic when it comes to managing multiple distributed
cloud services. Over the last years and with Docker becoming the defacto standard for
containers, many orchestration tools incorporated Docker as a first class citizen or were

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Evaluation and Results

developed specifically for this container solution. Starting from the minimal orchestration
tool docker-compose over the cluster management tool Swarm, up to third party tools
like Apache Mesos and Kubernetes.

For unikernels there is currently no native supported orchestration tool. This is likely to
change in the future when framework like Unik becomes more mature and more stable.
A tool like docker-compose can simply be implemented as an other client using the REST
API of the daemon, the same is true for other more complex orchestration and clustering
tools.

With Kubernetes becoming the leading orchestration tool, a good integration with a
unikernel framework like Unik is key to make unikernels truly applicable also for bigger
projects. In fact there were already initial attempts to add support for Unik to the
orchestration tool and with the refactoring of Kubernetes and the construction of a clear
interface for any kind of runtime implementation [39], unikernels are able to become real
fist class citizens for Kubernetes by using the Unik framework.

No doubt that there is still a way to go for Unik to reach this goals, but it is certainly
possible and only than it will become a real alternative for Docker, especially with bigger
projects, often consisting of hundreds or thousands of services.

6.4.3 Summary

Unikernels have the ability to become an alternative to containers for hosting cloud
services. The fact that in general unikernels images are smaller than container images
and their startup time is even faster, is an advantage. As many studies already showed,
they are also more resource efficient than containers, due to the fact that they don’t have
to rely on an underlying OS, but can run directly on a hypervisor and sometimes even
on bare metal. The better isolation and the low attack surface makes a good case for
them from the perspective of security.

What was missing until now and where there is still a lot of work and research left
to do, is the automation both for build and deployment as well as for operating and
orchestrating big clusters of unikernels. The fact that there are many different unikernels
with different specializations adds even more complexity to this work.

In this chapter a continuous delivery pipeline was presented, that automates the build
and deployment process of cloud services as unikernels. The pipeline was implemented on
Jenkins with a custom plugin that takes use of the Unik framework [7]. The advantages
of this framework are, that it provides a wrapper for many different unikernel implemen-
tations, which means the same pipeline can be used to build an application as different
unikernels and for different target platforms.

In order to provide a good analysis of the proposed pipeline an example application was
developed, by following the best practices of the microservice characteristics [35] and the
12 Factors [59]. This application was deployed with the proposed pipeline as a unikernel
and additionally as Docker container for comparison.

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. A Continuous Delivery Strategy for Unikernels

The results show that the Unik framework is a good first step, by providing a common
build tool for different unikernels. By making the interface similar to Docker, the
transition is made easier for developer, even without deep knowledge of OS and unikernels.
However, the implementation of Unik is still rudimentary and many necessary features
like networking or a shared registry are missing or not in a working state. There is still a
lot of work to do, in order to add support for more unikernels and target platforms as well
as making the commands for the already supported ones more reliable and provide more
fine grained controlling options. Also debugging is still a problem. A running unikernel is
a closed box, which makes it hard to debug it, but this is necessary to investigate issues
during the development. Unik might provided answers for this problem even tough the
implementation is not finished yet.

Unik has the ability to standardize the way how unikernels are build, without limiting
users to one specific unikernel. It makes it already now relatively simple to run a 12
factor application, even tough it is not stable enough for production.

The next big step that is necessary to use unikernels on a bigger scale for cloud services,
is a reliable orchestration tool. Integrating a tool like Unik with Kubernetes would enable
the orchestration of many different unikernels at once.

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Discussion

Since the unikernel concept was proposed by Madhavapeddy et. al. in 2013 [5], many
different implementations emerged and many publications evaluated different use cases
for unikernels and compared them to classical VMs and containers. Some might expect
unikernels to replace containers in the near future, but just like containers didn’t fully
erase the need for classical VMs, will unikernel simple present an additional alternative
to the existing technologies.

Many different areas exist, where unikernel might provided an interesting alternative.
In this thesis cloud services were examined as one area, where unikernels might provide
significant benefits. Concepts like microservices and Functions-as-a-Service (FaaS) lead
to highly distributed applications, that often relay on untrusted and shared resources.
The applications take use of fully automated orchestration tools, that use just-in-time
instantiation and auto scaling to guaranty high availability. Traditional VMs are often to
heavy for this use cases and containers, with their relative weak isolation, might impose
security risks. this makes unikernels an interesting alternative that is worth to consider,
since they are able to combine the advantages of both, traditional VMs and containers.

In the first parts of this thesis unikernels are compared to other virtualization technologies,
like containers. For cloud services, performance and security are two important topics,
hence each area has its own chapter, where existing literature is evaluated and summarized
to provide a full picture about the advantages and drawbacks of unikernels, in contrast
to other virtualization technologies. The decision to rely on existing literature for this
evaluation, was based on the wast amount of existing research in this area, which lead
to the presumption that a summary and comparison of existing research provides more
value than yet another performance experiment of a specific unikernel implementation.

In the second part a continuous delivery strategy was proposed and implement, which
allowed for a better evaluation of the unikernel concept for cloud services. The imple-
mentation relays heavily on an existing framework for unikernels, called Unik [7], in spite

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Discussion

of its relative early state. This lead of course to some issues during the development.
Nevertheless, its support for many different unikernels and target platform, provides
advantages over the usage of one specific unikernel implementation and its often relative
low level tooling. Due to the early phase of the whole unikernel area, there is lots of
movement and it is not yet clear which unikernel implementation will persist and which
will fade. It is likely that a framework will emerge, that provides an abstraction and a
more developer friendly interface for unikernels, just like Docker for containers. Unik
might not necessarily be the one to persist, but it is the only one currently availability
that supports multiple unikernels and it provides interesting concepts on how such a
framework might look like.

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 8
Future Work

This chapter describes the future work that is still necessary, to make unikernels truly
ready as a cloud platform for future applications in the industries.

In the last years extensive research has been done in the field of unikernels. Different
implementations have been proposed and developed, showing different approaches to the
unikernel concept. Most of this implementations are only experimental and for academic
purposes, only few reached the state where they can be considered for real world use
cases. Nevertheless, those implementations are an important step and provide the base
for the extensive evaluation of unikernels, in terms of performance and security as well as
to show the advantage of unikernels over classical VMs and containers in specific areas of
cloud computing and IoT.

As important those first implementations were, the next step will be to bring some
unikernel implementations into a state, where they can be considered for production
environment. Some implementations, like the OSv unikernel are already in a good state,
but new implementations will most definitely emerge that incorporate learnings from
those first unikernels.

Another area where additional research and work is needed, is the building and orches-
tration of unikernels. Tools that abstract the complex process of unikernel building are
essential to make them applicable for a broader audience of developers. These tools are
also important to ease the creation of automated build and deployment pipelines. In
order to manage large amount of running unikernel instances, new orchestration tools are
necessary, as well as the integration into existing orchestration tools like Kubernetes. Only
the automation provided by tools like this, will enable the real advantages of unikernels,
like high scalability and just-in-time instantiation.

One promising tools is the Unik framework, which was also used for the evaluations in
this thesis. It has the ability to enable the usage of unikernels for a bigger audience,
especially in the industries, just like Docker did with containers. The framework is in an

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Future Work

early state and there is still much work and research necessary to make it a full-fledged
and stable build framework for unikernels. It is not clear yet, if Unik will succeed in
its goal to become the main platform for unikernels, but it will definitely provide good
learnings for future work in this area.

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 9
Conclusion

The need for a specialized OS that can be optimized for a specific application, was
already known for a long time. The first library OS implementations in the 1990s tried to
tackle this problem, but they faced different problems, like the vast amount of hardware
interfaces that needed to be supported and maintained. With the rise of virtualization
and other technologies most of this issues could be resolved and unikernels emerged as
the second generation of library OS, that are specifically developed to run in virtualized
environments.

Over the last years many different unikernel implementation were developed and the
concept was extensively examined and compared to different virtualization techniques like
classical VMs and containers. The research showed that unikernels are able to combine
the advantages of both, classical VMs and containers, while being secure and light weight.

In this thesis the advantages for cloud-services running as unikernels were evaluated and
a continuous delivery strategy for unikernel-based cloud services was presented.

The thesis started with the essentials, which the reader needs in order to understand the
concepts and terminology used in this thesis. A review of existing literature showed the
different concepts and techniques used by an OS with respect to the various types of
virtualization, containers and unikernels especially. The concepts of continuous delivery
and microservices were described and a presentation of the state of the art and of related
work was provided.

In the second part a thorough comparison between unikernels and other virtualization
techniques was made, while keeping the focus on the usage in a cloud environment. The
comparison is based on existing literature that provided results of experiments, where the
different technologies were analyzed according to different metrics. Common metrics in
this area are size, build time, startup time, security and performance. There is research
that compares different container solutions with each other, container solutions with
virtual machines and bare metal, but also container solutions with unikernels and different

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

9. Conclusion

unikernel solutions with each other. This different results were put into context and
additional observations and conclusions were provided. The results are divided into two
chapters. The first one sets the focus on performance metrics, while the second mainly
covers security concerns in a cloud environment. This evaluation showed the advantages
of unikernels for cloud services and the need for good tooling to ease the transition for
developers, that want to take use of this lightweight and secure alternative.

The third part presented the main contributions of the thesis. A continuous delivery
strategy was presented and the implementation of a Jenkins plugin that eases the build
and deployment of unikernels was discussed. Obstacles or major risks encountered during
the development process were documented as well.

The development and evaluation of the results were performed in three steps. First,
existing tools for continuous delivery and building of unikernels were evaluated and
selected. In order to integrate this tools with each other, extensions and customization
were developed. The results of this first step was JUnik, a general Java client library for
the Unik framework and Unik Builder, a Jenkins plugin that takes use of this library.
Second, a continuous delivery strategy for cloud services as unikernels was proposed. This
strategy was used to develop a continuous delivery pipeline, by taking use of the previously
selected and developed tools. Finally obstacles encountered during the development were
described as well as the current state of unikernels and there tools evaluated.

This work lead to an assessment of unikernels in contrast to other virtualization techniques,
in the face of today’s need of highly scalable and lightweight cloud services. It showed the
advantages of unikernels for the deployment of cloud services, but on the same time the
flaws that are still present in the currently existing tools and unikernel implementations.

The research area of Unikernels is still in its infancy. There is a need for stable tooling
that pave the way for unikernels in the industry, but it is likely that unikernels will
disrupt the way services are operated in the cloud.

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

2.1 CPU Rings . 8
2.2 Traditional OS architecture versus Unikernel architecture 10
2.3 Market share of containerization technologies 17

4.1 Results of a benchmarking study on unikernels versus containers 30
4.2 Minimal memory usage of IncludeOS . 33
4.3 I/O Performance of Minicache . 36
4.4 Instance and Operating System/Container Startup 37

6.1 Jenkins menu with links to Unik logs . 53
6.2 Freestyle configuration using the Unik Builder 55
6.3 A continuous delivery process using the Unik framework 56
6.4 High level design of the microservice application 66

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

5.1 The OWASP Top 10 - 2017 . 43

6.1 The host configuration for the experiments 57
6.2 The 12 Factors by Adam Wiggins . 61

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[1] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, 1st ed. Addison-Wesley Professional,
2010.

[2] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-
based Operating System Virtualization: A Scalable, High-performance Alternative
to Hypervisors Stephen,” SIGOPS Operating Systems Review, vol. 41, no. 3, pp.
275–287, 2007.

[3] R. Dawson, M. Engler, F. Kaashoek, and J. O’T Oole Jr., “Exokernel: An Oper-
ating System Architecture for Application-Level Resource Management,” SIGOPS
Operating Systems Review, vol. 1, no. 212, pp. 251–266, 1995.

[4] I. Leslie, D. McAuley, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E. Hyden,
“The Design and Implementation of an Operating System to Support Distributed
Multimedia Applications,” IEEE Journal on Selected Areas in Communications,
vol. 14, no. 7, pp. 1280–1297, 1996.

[5] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire,
S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library Operating Systems for
the Cloud,” SIGPLAN Not., vol. 48, no. 4, pp. 461–472, 2013.

[6] A. Happe, B. Duncan, and A. Bratterud, “Unikernels for Cloud Architectures: How
Single Responsibility can Reduce Complexity, Thus Improving Enterprise Cloud
Security,” in 2nd International Conference on Complexity, Future Information
Systems and Risk (COMPLEXIS), 2017, pp. 30–41.

[7] solo.io inc., “Unik - The Unikernel Compilation and Deployment Platform,”
Accessed on: Feb. 23, 2019. [Online]. Available: https://github.com/solo-io/unik

[8] A. S. Tanenbaum and H. Bos, Modern Operating Systems, 2nd ed. Pearson
Education International, 2014.

[9] Intel Corporation, iAPX 86,88 User’s Manual. Intel Corporation, 1981.

[10] Cljk, “Ring (CPU),” Accessed on: Feb. 23, 2018. [Online]. Available:
https://de.wikipedia.org/wiki/Ring_(CPU)#/media/File:CPU_ring_scheme.svg

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[11] G. Duarte, “CPU Rings, Privilege, and Protection,” Accessed on:
Mar. 10, 2019. [Online]. Available: https://manybutfinite.com/post/
cpu-rings-privilege-and-protection/

[12] A. Madhavapeddy and D. J. Scott, “Unikernels: The Rise of the Virtual Library
Operating System,” Communications of the ACM, vol. 57, no. 1, pp. 61–69, 2014.

[13] K. Yu, C. Zhang, and Y. Zhao, “Web Service Appliance Based on Unikernel,” in
37th IEEE International Conference on Distributed Computing Systems Workshops
(ICDCSW), 2017, pp. 280–282.

[14] A. Kivity, D. Laor, G. Costa, and P. Enberg, “OSv—Optimizing the Operating
System for Virtual Machines,” in USENIX Annual Technical Conference (USENIX
ATC), 2014, pp. 61–72.

[15] Cloudius Systems, “OSv Homepage,” Accessed on: Mar. 10, 2019. [Online].
Available: http://osv.io/

[16] Claudius Systems, “OSv Github Wiki,” Accessed on: Mar. 10, 2019. [Online].
Available: https://github.com/cloudius-systems/osv/wiki/

[17] V. Jacobson and B. Felderman, “Speeding up Networking,” Accessed on:
Feb. 23, 2019. [Online]. Available: https://es.slideshare.net/networksguy/
speeding-up-networking-3771560

[18] A. Kantee and J. Cormack, “Rump Kernels: No OS? No Problem!” ;Login;, vol. 39,
no. 5, pp. 11–17, 2014.

[19] Rumpkernel Community, “Rumpkernel Github Wiki,” Accessed on: Feb. 23, 2018.
[Online]. Available: https://github.com/rumpkernel/wiki/wiki

[20] VMware, “Understanding Full Virtualization, Paravirtualization, and Hardware As-
sist,” Tech. Rep., 2007. [Online]. Available: https://www.vmware.com/content/dam/
digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf

[21] R. J. Creasy, “The Origin of the VM/370 Time-Sharing System,” IBM Journal of
Research and Development, vol. 25, no. 5, pp. 483–490, 1981.

[22] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third
generation architectures,” Communications of the ACM, vol. 17, no. 7, pp. 412–421,
1974.

[23] R. Rose, “Survey of System Virtualization Techniques,” Master’s thesis, Oregon
State University, 2004.

[24] F. Rodríguez-Haro, F. Freitag, L. Navarro, E. Hernánchez-sánchez, N. Farías-
Mendoza, J. A. Guerrero-Ibáñez, and A. González-Potes, “A summary of virtualiza-
tion techniques,” Procedia Technology, vol. 3, pp. 267–272, 2012.

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[25] A. Whitaker, M. Shaw, and S. S. D. Gribble, “Denali: Lightweight Virtual Ma-
chines for Distributed and Networked Applications,” in USENIX Annual Technical
Conference (USENIX ATC), 2002.

[26] bta and M. Gondim, “What is an application binary interface (ABI)?” Accessed on:
Feb. 05, 2019. [Online]. Available: https://stackoverflow.com/a/2456882

[27] J. Pönisch, M. Kosler, and D. Schreiber, Tagungsband: Chemnitzer Linux-Tage 2011.
Universitätsverlag Chemnitz, 2011.

[28] Docker Inc., “Docker Documentation.” [Online]. Available: https://docs.docker.com/

[29] Microsoft, “Windows Containers,” Accessed on: Feb. 23, 2018. [Online]. Available:
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/

[30] Portworx, “Portworx Annual Container Adoption Survey 2017,” Tech. Rep., 2017.
[Online]. Available: https://portworx.com/wp-content/uploads/2017/04/Portworx_
Annual_Container_Adoption_Survey_2017_Report.pdf

[31] P. Menage, P. Jackson, and C. Lameter, “CGROUPS,” Accessed on: Mar. 10,
2019. [Online]. Available: https://www.kernel.org/doc/Documentation/cgroup-v1/
cgroups.txt

[32] J. Petazzoni, “Anatomy of a Container: Namespaces,
cgroups & Some Filesystem Magic,” Accessed on: Mar.
10, 2019. [Online]. Available: https://fr.slideshare.net/jpetazzo/
anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon

[33] The Linux man-pages project, “Linux Programmer’s Manual: NAMESPACES(7),”
Accessed on: Mar. 10, 2019. [Online]. Available: http://man7.org/linux/man-pages/
man7/namespaces.7.html

[34] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The Structure and Value
of Modularity in Software Design,” SIGSOFT Software Engineering Notes, vol. 26,
no. 5, pp. 99–108, 2001.

[35] J. Levis and M. Fowler, “Microservices,” Accessed on: Feb. 02, 2019. [Online].
Available: https://martinfowler.com/articles/microservices.html

[36] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
and L. Safina, “Microservices: Yesterday, today, and tomorrow,” in Present and
Ulterior Software Engineering. Springer International Publishing, 2017, pp. 195–216.

[37] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture,” IEEE Software, vol. 33, no. 3,
pp. 42–52, 2016.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[38] The Linux Foundation, “Kubernetes,” Accessed on: Aug. 25, 2019. [Online].
Available: https://kubernetes.io/

[39] The Linux Fondation, “CRI: the Container Runtime Interface,” Accessed on: Nov.
05, 2019. [Online]. Available: https://github.com/kubernetes/community/blob/
master/contributors/devel/sig-node/container-runtime-interface.md

[40] J. Cormack and R. Neugebauer, “LinuxKit - A toolkit for building secure,
portable and lean operating systems for containers.” [Online]. Available:
https://github.com/linuxkit/linuxkit

[41] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata,
C. Raiciu, and F. Huici, “My VM is Lighter (and Safer) than your Container,” in
26th Symposium on Operating Systems Principles (SOSP), 2017, pp. 218–233.

[42] Cloudius Systems, “Rapid VM builds - Capstan,” Accessed on: Mar. 10, 2019.
[Online]. Available: http://osv.io/capstan/

[43] M. M. Chinibolagh, “Development of Multicore Computing for a Cloud-Based
Unikernel Operating System,” Master’s thesis, University of Oslo, 2016.

[44] D. Williams and R. Koller, “Unikernel Monitors: Extending Minimalism Outside of
the Box,” in 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
2016.

[45] J. Amort, “Evaluating the Unikernel Concept for the Deployment of Software on
IoT Devices,” Master’s thesis, Technische Universtät Wien, 2017.

[46] T. Goethals, M. Sebrechts, A. Atrey, B. Volckaert, and F. De Turck, “Unikernels vs
containers: An in-depth benchmarking study in the context of microservice appli-
cations,” in 8th IEEE International Symposium on Cloud and Services Computing
(SC2), 2018, pp. 1–8.

[47] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. Lightweight Virtualiza-
tion: A Performance Comparison,” in IEEE International Conference on Cloud
Engineering (IC2E), 2015, pp. 386–393.

[48] A. Bratterud, A. A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum, “In-
cludeOS: A minimal, resource efficient unikernel for cloud services,” in 7th Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom), 2016,
pp. 250–257.

[49] S. Kuenzer, A. Ivanov, F. Manco, J. Mendes, Y. Volchkov, F. Schmidt, K. Yasukata,
M. Honda, and F. Huici, “Unikernels Everywhere,” SIGPLAN Notices, vol. 52, no. 7,
pp. 15–29, 2017.

[50] P. Enberg, “A Performance Evaluation of Hypervisor, Unikernel, and Container
Network I/O Virtualization,” 2016.

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[51] B. Xavier, T. Ferreto, and L. Jersak, “Time Provisioning Evaluation of KVM, Docker
and Unikernels in a Cloud Platform,” in 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2016, pp. 277–280.

[52] T. Islam, D. Manivannan, and S. Zeadally, “A Classification and Characterization
of Security Threats in Cloud Computing,” International Journal of Next-Generation
Computing, vol. 7, no. 1, pp. 1–17, 2016.

[53] The OWASP Foundation, “OWASP Top 10 - 2017,” Tech. Rep., 2017. [Online].
Available: https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%
29.pdf.pdf

[54] A. Martin, S. Raponi, T. Combe, and R. Di Pietro, “Docker Ecosystem – Vulnerability
Analysis,” Computer Communications, vol. 122, pp. 30–43, 2018.

[55] B. Duncan, A. Bratterud, and A. Happe, “Enhancing Cloud Security and Pri-
vacy: Time for a New Approach?” in 6th International Conference on Innovative
Computing Technology (INTECH), 2016, pp. 110–115.

[56] A. Bratterud, A. Happe, and B. Duncan, “Enhancing Cloud Security and Privacy:
The Unikernel Solution,” in 8th International Conference on Cloud Computing
Technology and Science (CloudCom), 2017, pp. 1–8.

[57] M. Jimenez, M. Papadakis, and Y. L. Traon, “An Empirical Analysis of Vulnerabili-
ties in OpenSSL and the Linux Kernel,” in 23th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2017, pp. 105–112.

[58] Jenkins Community, “Extend Jenkins,” Accessed on: Oct. 10, 2019. [Online].
Available: https://wiki.jenkins.io/display/JENKINS/Extend+Jenkins

[59] A. Wiggins, “The Twelve-Factor App,” Accessed on: Sep. 30, 2019. [Online].
Available: https://12factor.net/

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Methodology and Approach

	Fundamentals
	Operating Systems
	Kernel

	Unikernel
	MirageOS
	OSv
	Rumprun

	Virtualization
	Types of Virtualization
	Hypervisor

	Container
	Containers on Linux
	Containers in Agile Projects

	Microservices
	Continuous Integration/ Continuous Delivery

	State of the Art and Related Work
	State of the Art
	Orchestration
	Automated Builds

	Related Work

	Performance Evaluation of Unikernels
	Computational Performance
	Memory Management
	Network I/O
	Boot Time and Concurrent Provisioning
	Summary

	Security Evaluation for Cloud-Services
	Security Implication in a Cloud Environment
	Security Threats
	The OWASP Top 10

	Vulnerability Comparison
	Insecure Configuration
	Vulnerabilities Inside the Images
	Vulnerabilities Directly Linked to the Runtime
	Vulnerabilities in the Kernel
	Vulnerabilities in the Image Distribution, Verification, Decompression and Storage Process

	Summary

	A Continuous Delivery Strategy for Unikernels
	Tools for a Continuous Delivery of Unikernels
	CI/CD Server
	Build Tool for Unikernels
	JUnik, the Java Library
	Unik Builder, a Jenkins Plugin

	Continuous Delivery Pipeline
	Experimental Setup
	Best Practices
	A Microservice Application

	Evaluation and Results
	Implementation and Build
	Delivery and Deployment
	Summary

	Discussion
	Future Work
	Conclusion
	List of Figures
	List of Tables
	Bibliography

