
DIPLOMARBEIT

Assessment of Treatment Plan

Complexity using Neural Networks

ausgeführt am Atominstitut der Fakultät für Physik

der Technischen Universität Wien

Unter der Anleitung von Univ.Prof. Dr. DI Dietmar Georg

und DI Wolfgang Lechner, PhD

durch

Judith Schinerl, BSc
Hintere Fahrstraße 2
3500 Krems - Stein

Wien, 04.02.2019

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

II

III

Declaration

I, Judith Schinerl BSc, declare that this thesis submitted in partial fulfilment of the

requirements for the conferral of the degree Master of Science, from the University

of Technology, Vienna, is wholly my own work unless otherwise referenced or

acknowledged. This document has not been submitted for qualifications at any other

academic institution.

Judith Schinerl BSc

04.02.2019

IV

V

Acknowledgements

I want to thank all the people that were involved in this work, especially Wolfgang

Lechner PhD, for detailed guidance throughout the duration of my thesis and for the

hours of support and interesting conversations. Many thanks go to Univ.-Prof. Dr.

DI Dietmar Georg for supervising this thesis and giving me the opportunity to extend

my knowledge in the field of radiation therapy. I would also like to mention Hugo

Furtado PhD and Dipl. Ing Lukas Fetty, who supported me in understanding

machine learning a bit better and provided helpful advice on how to overcome the

problems I encountered.

Lastly I owe my family my deepest gratitude for making it possible for me to follow

my education and for supporting me in every way they could.

VI

VII

Abstract

Machine learning and especially neural networks receive more and more attention in

current scientific applications, as shown by the increasing number of publications.

Especially in medicine and biomedical engineering, where human errors still prove to

be a cause of failure, machine learning algorithms are used to overcome the limits of

human decision-making. One field that may benefit from the recent developments is

radiation therapy, as machine learning algorithms perform well on classifying image

data. The standard clinical workflow at the Medical University of Vienna / General

Hospital of Vienna (AKH) includes a quality assurance (QA) measurement in

advance of each high precision patient treatment. Each treatment is planned

beforehand using the software Monaco (Elekta AB, Stockholm, Sweden), which

determines beam energies and the positions of collimators of the medical linear

accelerator (linac) according to a desired dose distribution covering delineated regions

of interest on computer tomography images. The QA measurement on the linac is

then performed with a verification phantom, and finally planned and measured dose

distributions are compared in order to ensure safe dose deposition in the patient. The

gamma passing rate (GPR) serves as a measure of conformity of these two dose

distributions. The GPR depends on the size, shape and location of the tumour in the

patient and has to exceed a certain value in order for the plan to be regarded as safe

to irradiate on a patient. In this thesis, the setup and training of a convolutional

neural network (CNN) with the aim of classifying treatment plan data by estimating

the GPR is described. Achieving this task with sufficient accuracy will enable a higher

efficiency of the QA procedures and more efficient use of the medical linear

accelerator.

A neural network is a deep learning concept mimicking the information processing

in human neurons by its layered structure. Each layer is composed of a number of

nodes, called neurons. They are connected to other neurons in the previous and/ or

subsequent layers, each connection being weighted by a weighting function. The

training process involves the passing of input data with known output to the network,

i.e. data that has been labelled according to their corresponding class. To obtain

input images, 600 volumetric modulated arc therapy (VMAT) treatment plans for

VIII

either prostate, gynaecological or head-and-neck (HN) cancer generated for either

Versa HD or Synergy linacs (Elekta, Sweden) were extracted and assigned to one of

three labels according to their GPR value. The planning data, i.e. the dose and

positional information of all collimators contained in the planning data in Dicom

(digital imaging and communication in medicine) format was then transformed into

grayscale fluence maps, depicting the transmission of dose through the beam window.

The complete dataset was separated into three smaller datasets designated for

training, testing or evaluation purposes. During training, which was performed in

Python using the framework TensorFlow, two datasets were used to set the weights

in order to output the known label of each input accordingly following an

optimisation operation. Several different models were trained, varying the learning

rate, batch size and depth of network in order to improve achieved training accuracies

and further testing the robustness of the resulting layer structure by switching and

shuffling the datasets.

The achieved training accuracies range from ~57% to ~69%, showing a large variation

upon changing the layer sequence and parameters. Furthermore, robustness testing

revealed large variations of accuracy upon switching the used datasets, leading to

accuracies between ~59% and ~69%. Evaluating the best performing convolutional

neural network on unknown data, i.e. the third dataset not used during training,

resulted in an evaluation accuracy of 59.5%, showing a reduction of 10% compared

to the training accuracy of ~69%. Similar values can be found in recent literature

evaluating fluence maps of radiotherapy treatments according to the associated

GPR1. Since the obtained results only offer a first insight on the performance and

behaviour of CNN, various approaches to increase the achieved accuracies and

enhance network robustness have been identified. Improvements with respect to

accuracy and robustness are necessary for utilizing these CNNs in a clinical workflow

but go beyond scope of this work, as the objective was to identify general mechanisms

and problems of neural networks in radiotherapy. The results obtained in this thesis

show the potential of CNNs acting as a promising new approach for applications in

quality assurance in radiation therapy.

1 Interian et al., 2018 and Nyflot et al., 2018

IX

List of Abbreviations

 AKH Allgemeines Krankenhaus

API Application Programming Interface

3D-CRT Three dimensional Radiotherapy

BEV Beams Eye View

CNN Convolutional Neural Network

CPU Central Processing Unit

Dicom Digital Imaging and Communication in Medicine

GPR Gamma Passing Rate

GPU Graphics Processing Unit

HN Head and Neck

IDE Integrated Development Environment

IMRT Intensity Modulated Radiotherapy

Linac Linear Accelerator

MAE Mean Absolute Error

MLC Multileaf Collimator

MU Monitor Units

OAR Organ at Risk

PNG Portable Network Graphics

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SOBP Spread out Bragg Peak

TPS Treatment Planning System

VMAT Volumetric Modulated Arc Therapy

XML Extensible Markup Language

Contents

Declaration .. III

Acknowledgements ... V

Abstract .. VII

List of Abbreviations ... IX

1 Introduction .. 5

 Radiotherapy .. 5

 Delivery methods ... 6

 Beam qualities ... 7

 Photon interactions ... 9

 Medical linac and Beam shaping ... 11

 Treatment Modalities .. 12

 Treatment planning... 14

 Patient Specific Quality Assurance ... 16

 Machine learning .. 17

 Neural Networks .. 18

 Purpose of thesis .. 26

2 Materials and Methods ... 27

 Hardware .. 27

 Linac .. 27

 Delta4 Phantom ... 27

 Gamma Passing Rate ... 28

 Patient Data .. 28

 Selection .. 29

 Labelling .. 30

Contents 2

 Dicom file structure and parameters ... 31

 Preparation of Patient Data ... 32

 Software ... 32

 Conversion of Monaco Raw Data to Dicom .. 33

 Fluence Map Generation .. 35

 Random separation into three datasets ... 40

 Neural Network .. 41

 TensorFlow .. 41

 Visualisation using TensorBoard ... 42

 Used Mathematical Operations in Neural Network 43

 Terminology of Neural Networks ... 46

 Structure of network .. 48

 Optimisation of Arrangement of Network Layers 50

 Optimisation of Training Parameters ... 51

 Learning Rate .. 51

 Batch size ... 52

 Testing of Robustness of Training .. 52

 Robustness against Switching of Datasets ... 53

 Robustness against Shuffling of Datasets .. 53

3 Results ... 55

 Network Layer Structure .. 56

 Learning Rate ... 56

 Batch Size ... 57

 Robustness against Switching ... 58

 Robustness against Shuffling .. 58

 Evaluation of unknown data .. 59

 Computation times ... 60

Contents 3

4 Discussion ... 61

 Interpretation of Results .. 61

 Comparison to Literature ... 62

 Limitations and Improvements .. 63

 Dataset .. 64

 Metric .. 66

 Fluence maps dimensions .. 66

 Physical machine memory ... 66

 Further improvements ... 67

5 Conclusion and Outlook .. 69

References .. 70

List of Tables ... 75

List of Figures .. 76

Appendix: Documentation of Programs .. 78

Contents 4

Introduction 5

1 Introduction

In an aging society, illnesses that are more likely to develop with increasing age such

as cancer are on the rise in Austria. However, cancer is not only an issue of the aging

population. In 2015, there was a 28% chance of being diagnosed with cancer before

turning 75 [1]. Malignancies are responsible for about a fourth of all deaths [2].

Therefore, radiotherapy is a growing and evolving field and has seen many

improvements over the last years. This chapter introduces the main concepts of

radiation therapy and its methods, the underlying fundamental physics, as well as

treatment planning and delivery in section 1.1. The different particle types that can

be used as well as the most common delivery modalities are discussed. Section 1.2 is

dedicated to machine learning and the general approach and mechanisms present in

today’s research, with regard to the network type that is used in this thesis.

 Radiotherapy

The main goal of radiotherapy is to deliver a maximum dose to the tumour while

sparing as much of healthy tissue as possible. This is achieved by applying ionising

radiation to the patient, which consists of charged or uncharged particles with an

energy higher than the energy that is needed to ionise atoms. This radiation causes

strand breaks in cell DNA, leading to cell death [3]. This happens either by directly

ionising particles hitting the DNA double helix or by creating free radicals upon

colliding with oxygen or hydrogen atoms, which can then react with the DNA strand

itself. Charged particles ionise directly, while uncharged particles compose the

indirectly ionising radiation and create secondary ionising particles and free radicals

upon entering tissue.

Due to the reduced ability to repair themselves, cancer cells are more affected by

radiative damage compared to healthy tissue, which makes radiation therapy

possible. Treatments are delivered in fractions, where the total dose a patient receives

is split up in smaller doses and irradiated a number of times. This approach gives

healthy cells time to repair until the next fraction is irradiated, therefore targeting

mainly cancerous cells [4].

Introduction 6

Radiotherapy is a rather old concept, the first treatment being delivered in 1896 by

Austrian radiologist Leopold Freund only one year after the discovery of x-rays [5].

It since became a standard method of treating cancer patients, along with surgical

removal of the tumour and chemotherapy. In certain cases, combinations of the

aforementioned treatments are possible, for example administering radiation on

residual tumour tissue if a complete surgical removal of the tumour is not possible.

Over the years, advanced methods have been developed that allow precise deposition

of dose in the tumour and spare the healthy tissue around, both in delivery machines,

treatment planning software and imaging, which allow a precise definition and

irradiation of target volumes.

 Delivery methods

Depending on the mode of delivery, external beam (teletherapy) and internal

(brachytherapy) radiotherapy can be distinguished. Brachytherapy denotes the

medical practice of inserting small sealed radioactive sources in cancerous tissue,

placing probes in body cavities or placing sources externally on the skin. The

deposition of dose is carried out locally and the time the sources remain in or on the

patient is individually set, ranging from a few minutes to 24 hours per treatment

fraction for temporary implants. Permanent implants stay in the patient’s body but

the radioactive material decays completely after several months. Brachytherapy is

most commonly applied to the prostate, breast, uterus, vagina and cervix as well as

around the mouth cavity, the eye and on the skin [6].

In teletherapy, the dose is delivered via an external radiation source, e.g. a linear

accelerator (linac, see 1.1.4). The beam exits the linac from the gantry, which is able

to rotate around the movable patient table and enables the irradiation of the tumour

from different angles. For this treatment method, different ionising particles as well

as X-ray photons can be used and are chosen according to their dose deposition

properties.

Introduction 7

 Beam qualities

The central distinguishing feature of radiation types that determines the mode of

treatment is the particle type. Charged particles, such as electrons, protons or heavier

ions like carbon or boron are responsible for directly ionising radiation, while

electromagnetic radiation, which is commonly described as a stream of photons,

causes indirect ionisations in tissue. Photon and electron therapy devices have a

similar but, compared to particle therapy, a comparatively easy setup in the form of

a medical linac which accelerates electrons. Optionally, photons can be created by

positioning a retractable transmission target in the beam path, which is hit by

electrons (see 1.1.4). Therefore, radiation therapy using photons is one of the most

common delivered treatments today. Subsequently, the topic of this work will be

narrowed down to photon therapy, which is the most common treatment at the

Medical University of Vienna / AKH Vienna and around the world.

The deposition of energy in a medium, in that case human tissue, is described by the

linear stopping power [7]. This property differs for each particle type, therefore

different particles serve different applications. As illustrated in Figure 1, the depth

at which most of the dose is deposited depends on particle type and energy.

Figure 1: Depth-dose curves for a) 15 MeV electrons and b) 15 MV photons, c) fluence
of 200 MeV protons, d) stopping power of 200 MeV protons and e) depth dose curve of
200 MeV protons [7]

For electron beams, curve a) shows the characteristic dose build-up-region after entry

into the tissue, reaching a maximum of dose deposition shortly after. Since electrons

are light charged particles, they undergo scattering reactions upon travelling through

Introduction 8

the patient, which at first leads to an increase in the obliquity of electron paths since

they are scattered from the original incident direction, increasing the electron fluence

with depth until a maximum of dose deposition is reached. This is the case when the

beam is completely diffuse and the mean scattering angle reaches a maximum. A

steep dose fall-off is seen after the dose maximum due to further scattering of

electrons, which enables sparing of the deeper situated tissues. Taking advantage of

the shape of the depth-dose curve, electron beams are used to treat tumours at or

close to the surface [7].

In comparison to electrons, photons of the same energy exhibit a significantly lower

surface dose upon entry into tissue, while reaching roughly the same maximum dose

after a dose build-up-region, as depicted by curve b). The fall-off, however, is less

pronounced, the photons are able to penetrate deeper into tissue. The build-up is due

to the generation of secondary electrons mainly by Compton scattering and the

deposition of their energy along their path further away from the location of

interaction. The dose reaches a maximum at a depth approximating the electron

range, at which an electronic equilibrium is reached. Photon absorption and

scattering leads to decreasing numbers of Compton electrons, which causes the dose

to decrease after the dose maximum. Photon beams show a favourable surface dose

in comparison to electrons and can therefore be used to treat tumours at a larger

depth with better tissue sparing.

In recent years, radiation therapy with protons and heavy ions has gained more

importance due to their favourable depth dose profile, which shows a Bragg-peak at

a certain depth where most of the dose is delivered shortly before the particles are

stopped by tissue (see curve e) in Figure 1). The depth protons can reach inside the

patient’s body is determined by the particle beam energy, therefore adjusting the

energy to reach a specific depth in the patient’s body is possible. Overlaying beams

of different energies creates a favourable dose deposition in the patient, with proton

beams creating a spread out Bragg peak (SOBP), covering a volume with a relatively

homogeneous dose, sparing the tissue behind almost completely, as illustrated in

Figure 2.

Introduction 9

Figure 2: Spread out Bragg peak of a proton beam treatment, achieving a plateau of
dose at the desired depth [7]

The downside of proton and heavy ion radiotherapy is the need for an accelerator in

the form of a cyclotron or synchrotron, which – in contrast to linear accelerators used

for electrons – has to be rather large and are therefore more expensive. Due to the

higher weight of protons and ions compared to electrons, acceleration and steering

the beam to the treatment rooms is more challenging. Nevertheless, more and more

proton and heavy ion treatment centres are built aiming for a better patient

treatment. One project especially important for Austria is the MedAustron, located

in Wiener Neustadt.

 Photon interactions

Since this thesis deals with photon therapy, the three main interactions they can

undergo upon colliding with matter will be described further. These effects include

the photoelectric effect, the Compton effect as well as pair production. As

demonstrated in Figure 3, these interactions show a different contribution to the

total interaction probability depending on photon energy. The concept of cross

sections is used to indicate the probability of an interaction by describing an area

around the photon. Most relevant in radiotherapy, which is using photons in the

energy range of 3 MeV up to 30 MeV, are the Compton effect and pair production.

Introduction 10

Figure 3: Contributions of different effects to total cross section of photon absorption in
carbon [7]. Considered effects are the photoelectric effect (PE), Incoherent or Compton
scattering (Incoh), Coherent or Rayleigh scattering (Coh), Pair- and Triple production
(Trip).

The photoelectric effect describes the ionisation of an atom, i.e. the removal of a

bound electron by the absorption of an incoming photon. This can only occur if the

photon energy is larger than the binding energy of the electron and is the dominant

effect in the lower energy range. The Compton effect, also termed Compton or

incoherent scattering, describes a scattering process. The incoming photon interacts

with an electron and transfers part of its energy to the electron, which is then ejected

from the atom. The loss of energy causes the outgoing photon to travel at an angle

compared to the incoming one. The third effect, pair production, becomes a

contributing factor for higher energies. An incoming photon is absorbed in the electric

field of a nucleus and produces an electron-positron pair. Both electron and positron

have a rest energy of 511 keV, thus for this effect to happen, photon energies of at

least 1.022 MeV are required [4].

Introduction 11

 Medical linac and Beam shaping

In radiation therapy using photons, linear accelerators are used to generate the

photon beam. The electrons produced by an electron gun are accelerated by

radiofrequency waveguides and focused onto a target, leading to production of X-

rays. Before the beam enters the patient, a collimator, a flattening filter as well as a

dual ion chamber are arranged in the beam path to achieve a uniform beam with

homogeneous intensity distribution. The ion chambers measure ionisation of the

contained gas and act as a safety measure to monitor the delivered dose.

Figure 4: Schematic image of a linac setup . If the X-Ray target is removed, irradiation
with electrons is possible [8].

Figure 5: Collimators that shape the beam [9]

Introduction 12

To further shape the beam and avoid irradiating a larger volume of tissue than

necessary, usually two pairs of collimator jaws confine the beam in x- and y-direction

(with z being the coordinate axis along which the beam travels, also called beams

eye view, BEV), forming a rectangular field. The last and possibly most important

step of beam shaping occurs after the jaws, where the multileaf collimator (MLC) is

located. This collimator consists of a number of pairs of leaves mostly made out of

tungsten; each one is moved independently to form the desired tumour shape, as

shown in Figure 6. Depending on the treatment mode, this is done in a step-and-

shoot manner, irradiating from fixed gantry positions around the patient only when

leaf positions are fixed. The other possible mode involves the continuous movement

of leaf pairs during the irradiation from several different beam angles. Regarding the

observed plans for this work, Volumetric Modulated Arc Therapy was used, where

additionally to MLC leaf movement also the gantry rotates around the patient during

irradiation (see 1.1.5.3).

Figure 6: Multileaf collimator in BEV to adjust beam cross section to target shape in
3D-CRT [10]

 Treatment Modalities

With the aim of improving dose deposition in the patient and therefore maximising

healthy tissue sparing, multiple irradiation techniques have been developed. One

improved modality is 3D conformal radiotherapy (3D-CRT), which achieves better

dose distributions compared to former techniques only matching height and width of

tumours by overlapping beams from different beam angles, aiming to conform to

target volume shapes. Further improvements in aligning to tumour shape is given by

Introduction 13

intensity modulated radiotherapy (IMRT), incorporating different beam intensities

within a single beam. In Volumetric Modulated Arc Therapy (VMAT),

improvements go another step further by rotating the gantry during the

irradiation [11].

 Three-dimensional Conformal Radiotherapy (3D-CRT)

Fulfilling the main requirement of radiotherapy of irradiating tumours of simple

shape while sparing healthy tissue leads to one technique: 3D conformal radiotherapy.

In a forward planning manner, beams are positioned around the patient, overlapping

and therefore depositing the most dose over the target volume [11]. Most modes apply

between two and ten beams, exposing more healthy tissue to a lower dose with

increasing number of beams. Individual beam shaping and weighting is achieved by

using multileaf collimator (MLC) to confine the beam to the projected target shape

and by using wedges to account for different tissue thickness. The single beams only

incorporate one energy, therefore adapting precisely to complex tumour shapes is

rather difficult and shows the need for improved treatment techniques.

 Intensity Modulated Radiation Therapy (IMRT)

A newer technique to improve dose distribution especially in regions surrounded by

organs at risk or complex tumour shapes is IMRT – Intensity Modulated

Radiotherapy. This method makes use of different intensities within a single beam,

making a more precise and tissue sparing irradiation possible. In contrast,

conventional radiotherapy methods use beams that only have one uniform beam

profile and achieve the dose distribution in the body by overlaying of several beams

and the use of collimators to align the beam dimensions to the tumour shape. For

computation, IMRT techniques divide the beam into smaller sub-segments, termed

as beamlets. These beamlets can be weighted differently, making it possible to

generate non-uniform dose distributions. The delivery of these beamlets is achieved

by using the (MLC), either in step-and-shoot or in dynamic mode.

In step-and-shoot IMRT, each beam orientation delivers several differently shaped

segments depending on the tumour size and outline. The radiation is only turned on

as soon as the MLC leaf pairs reach their fixed position and the shape of the opening

corresponds to the segment, in this manner covering all the segments sequentially.

Introduction 14

The dynamic mode requires the leaf pairs to move continuously during the

irradiation, covering the whole tumour shape in beams eye view (BEV) for each

gantry position [11].

 Volumetric Modulated Arc Therapy (VMAT)

Volumetric Modulated Arc Therapy (VMAT) refers to a mode of IMRT that

continuously irradiates the patient while the gantry performs one or more full

rotations (arcs) [12]. This approach inevitably covers a large amount of healthy tissue

but allows a lower dose that only adds up in the tumour. Furthermore, the rotation

speed as well as the dose rate can be varied and the MLC leaf pairs move continuously

throughout the irradiation. Additionally, the reduced irradiation time in comparison

to static field treatments makes the method advantageous to conventional

approaches in certain cases [13].

 Treatment planning

Treatment plans are created for each patient before the actual treatment, where two

approaches may be distinguished depending on the procedure used. In forward

planning, the planner arranges beams in the treatment planning software,

overlapping them at the tumour site based on 3D anatomy, e.g. the acquired CT

images of the patient. This method can only be used for rather simple target

geometries, irradiating with conventional radiotherapy methods and utilising from

only 2 up to 10 beam entry angles.

Today, IMRT is established as a standard and more frequently used, thus inverse

planning is gaining more interest since it is necessary for this method. In inverse

planning, which is also done for 3D-CRT treatments, CT images are used to delineate

the volumes of interest. These include the tumour, a surrounding margin to

counteract movement of the patient and machine inaccuracies, as well as the OAR

(organ at risk) volumes, marking radiosensitive organs and tissues in the patient’s

body that should receive little to no dose.

According to the delineation conducted by a medical doctor, optimisation programs

utilizing dose calculation algorithms (e.g. Monte Carlo or eCC) for dose calculation

Introduction 15

then find the optimal way to apply beams to the volumes from different angles. The

software further creates the complete treatment plan including the information of all

machine parameters to achieve the simulated dose distribution. The complete

treatment plans then provide information about the three-dimensional dose

distribution in the patient.

a) b)

 c)

In Figure 7 the planned dose distributions are shown, with red being the area

receiving the highest and blue marking the areas receiving the smallest amount of

dose. To verify IMRT and VMAT plans, measurements on a phantom have to be

performed to verify the machine is able to fulfil the requirements according to the

plan. If the plan is approved, the patient receives the treatment.

Figure 7: Dose distributions for a): localised prostate cancer, b): cervix cancer, c) head and
neck cancer patient

Introduction 16

 Patient Specific Quality Assurance

According to current QA protocols, every treatment plan is measured on a phantom

before applying the plan to the patient to ensure the precise delivery of dose is

possible with the used medical linac by measuring the 3D dose distribution. Using a

respective software, a direct comparison between measured and computed dose is

made and quantitatively described using the gamma passing rate (GPR). This value

evaluates the conformity of the measured dose distribution to the planned one and

therefore serves as a criteria of quality for the tested plan, determining if irradiation

on the patient is safe and executable [14]. It is given as a percentage of points that

fulfil two criteria: the dose deviance (DD), setting a maximum divergence of

measured dose to a certain fraction of the planned dose, as well as the distance-to-

agreement (DTA), which describes the maximum spatial distance of the measured in

comparison to the planned dose distribution.

Figure 8: Schematic depiction of the calculation of the gamma index with the distance r
plotted on the x-axis and the dose D on the y-axis. The blue curve shows the measured
dose values DE at different spatial points ri relative to the planned value of the dose at
the origin DR(rR), rR. The dotted circle represents the DTA and DD criteria, with δD
being the margin for dose deviance and δr the margin for the distance to agreement. If
a point along the blue line that lies within the dotted circle can be found, the gamma
index of this point is below or equal to 1 [15].

Introduction 17

One frequently used DTA/DD criteria margin is 3mm/3% but is somewhat arbitrary.

Decreasing these numbers to 2mm/2% and therefore increasing the required

conformity would result in a high number of treatment plans not passing the gamma

criteria. However, with constantly improving delivery and planning techniques, dose

may be deposited more precisely, leading to the possibility of adjusting the passing

criteria in the future, consequently improving the delivered treatments.

 Machine learning

Artificial intelligence (AI), a branch of computer science that is used in numerous

different industries and research topics today, is the general term for automating

human learning processes in machines and therefore mimicking human

intelligence [16]. A multitude of different techniques exist to serve its wide-ranging

application areas, including natural language processing, speech, vision, robotics and

machine learning. Machine learning specifically focuses on training and teaching

machines to recognize connections and patterns by using a large number of examples

as a database. During the training process, machine learning algorithms identify

parameters and patterns in order to characterise and classify the input data, so that

upon being presented with new data, those learned features are used to classify

unknown data [17]. Deep learning is a subgroup of machine learning, describing the

layered structure of learning and decision-making models, one of them being neural

networks, which are the main focus of this work. Prominent examples of the use of

machine learning today are determining handwriting, face recognition or

distinguishing and classifying objects in images [18], [19].

Especially in biomedical research, machine learning gathers more and more attention:

numerous applications involving machine learning components are tested and

researched on in an attempt to avoid human mistakes when it comes to medicine

and treating patients [20] or in order to make qualified predictions [21], [22]. Specific

examples include neural networks and machine learning algorithms in general to be

used for diagnosis of heart conditions by analysing the heart sounds [23] or identifying

skin lesions by using images [24]. In light of recent advances in software as well as in

Introduction 18

hardware and imaging techniques, radiotherapy is a field that can highly benefit from

implementing machine learning routines into the standard workflow. One step of

treatment planning in radiation therapy requires a medical doctor to delineate the

target volume which is defined as the tumour volume including a safety margin, as

well as and organs at risk, the healthy tissue that must not receive any dose during

treatment (see 1.1.6). This delineation is performed by hand through a medical doctor

on CT or MRI images and builds the basis for the treatment planning software,

which arranges the beam energy and entry angles according to the required dose

distribution. Since the accuracy of the delineation strongly depends on the executing

medical doctor and the highly individualised problem, methods to improve the

correctness of these delineations are developed. Naturally, as in this case, edge

detection and image recognition is present, machine learning has been used to

delineate volumes [25]–[27].

Machine learning can be roughly divided into supervised, semi-supervised,

unsupervised and reinforcement learning. Supervised learning describes learning

processes with already labelled data, therefore the model is built using the knowledge

of the outcome. Unsupervised learning tries to identify new data solely by finding

and memorizing commonalities in the unlabelled input data, while semi-supervised

learning combines both above approaches and uses labelled data to optimize

predictions made with unlabelled data. Reinforcement learning describes methods

that are trained by rewarding certain actions that are taken. The so-called software

agents hereby learn by trying to maximize the rewards that are given after certain

goals are reached [20]. Reinforcement learning can be implemented with different

methods, among those are Monte-Carlo-Algorithms and neural networks.

 Neural Networks

As a subgroup of machine learning methods, neural networks will be described

further. The general concepts of neural networks and machine learning were

developed in the 1940s, but it is only now that computational power is strong enough

to build complex machine learning networks that can be used for current

Introduction 19

research [28]. One early example and the predecessor and ground concept of neural

networks is the perceptron, as described by Rosenblatt in 1958 [29].

The perceptron is the simplest decision making model and consists of a single logical

element, which receives a number of inputs which are then translated into an output.

Mimicking the process of an action potential travelling through neurons in the human

brain, a perceptron receives weighted information and outputs information if the sum

of all the inputs exceeds a certain threshold, described mathematically with a step-

function, as depicted in Figure 9. Adding more layers with more perceptrons results

in a multilayer structure which can be used to predict simple models.

Figure 9: Structure of a single-layer perceptron , receiving two inputs, xi, with their
respective weights ωi, which are summed up and passed to a step-function to determine
the output y, which, in this simple case, results in either 0 or 1 [30].

Deep neural networks used in research today are based on the perceptron model and

expand it to build large layered structures. Neural networks consist of a number of

layers, each containing up to thousands of neurons, named after their biological

example [31]. The main difference in comparison with the multilayer perceptron is

the two- or three-dimensional arrangement of neurons, the third dimension

accounting for different input image colours on the RGB scheme. The very first layer

consists of the input, one neuron representing one parameter of the input data. In

case of using image data as input, each pixel of the image forms one neuron in the

first layer. The final layer, also called the output layer, either estimates a value for

the given problem when a linear regression model is used, or classifies the input data

into different groups, forming a classification model. In the second case, the output

Introduction 20

layer consists of the same number of neurons as there are labels defined for the

current problem. All layers in-between are termed “hidden layers”, serving several

different purposes. The number of hidden layers defines the “depth” of a network, if

it consists of a large number of hidden layers it acquires the attribute deep [32].

Figure 10: Schematic structure of neural networks [33].

Neural networks are built as depicted in Figure 10, consisting of a number of neurons

per layer. In analogy to the human brain, the neurons in different layers are

connected, either feeding information forward to the subsequent layer (feed-forward

network) or transferring information to the same or back to the previous layer

(recurrent neural network). All connections are weighted, either resembling a human

excitatory neuron if the weight is positive or an inhibiting neuron in case of a negative

weight. The weights determine the influence of a neuron on the connected neurons

in the subsequent layer. Similar to the perceptron, the activation of a neuron is

dependent on the sum of input it receives. The output is described using activation

functions, which may have different shapes. Most used are the step-function, the

sigmoid function as well as the ReLU, the rectified linear unit [34].

Introduction 21

Figure 11: Three most popular activation functions: Heaviside step-function, a sigmoid
function and the ReLU, rectified linear unit [35].

Serving as the easiest activation function and most obvious representation of the

threshold model, the Heaviside step-function describes the activation of a neuron if

a certain input value is exceeded, therefore having only two possible outputs, 0 or 1.

Logical XOR-problems can easily be described using this function. However, since

for further computation and deep networks the derivative is needed, this function is

not used in recent models. For more complicated models that require a non-binary

output, the sigmoid function may be used as an alternative. This function represents

a smoothed step-function, only converging to 0 for negative and 1 for positive real

input values, mathematically describing the increased firing rate found in human

neurons if the input is increased. Non-trivial models may be predicted using this

activation function and it is able to describe probability due to its values between 0

and 1. The third and probably most used activation function, the rectified linear unit

(ReLU), returns 0 for all negative values and increases linearly with values larger

Introduction 22

than 0. The use of ReLUs as activation functions improves computation time, shows

advantageous performance in comparison with other activation functions during the

training process and is a standard in convolutional neural networks. Additionally,

the ReLU prevents the neural network from the vanishing gradients problem, since

– in comparison to the sigmoid function – it does not converge to a value and

therefore a gradient can be obtained also for large input values [36].

 Layers of a Convolutional Neural Network (CNN)

One class of supervised, deep, feed-forward networks that is frequently used and will

be described further are convolutional neural networks. These networks are formed

by a number of layers of different shape, which can generally be divided into two

groups concerning their function. Convolutional and pooling layers serve the purpose

of identifying features and finding patterns, whereas flattening and especially fully

connected layers are responsible for the actual classification [37].

The convolutional layers perform a convolution on the input data. So-called kernels

or filters of a chosen size scan the input matrix in a stepwise manner, calculating the

inner product as depicted in Figure 12. The resulting, significantly smaller matrix is

the so-called feature map, containing only certain features of the input information.

The enhanced features depend on the values of the kernel, which are set during the

training process [37]. Following the concept of shared weights, the kernel values do

not change within the same layer, thus reducing the number of total parameters that

have to be set during training and also improving computation time which makes

CNNs preferable to other models. The convolutional layer represents the receptive

field present in the brain, reducing the number of neurons that are used as input for

the next layer. The “step size”, the number of neurons the kernel moves for

generating each convolved feature is called stride and is usually set to 1, so adjoining

features have overlapping receptive fields. The process of surrounding the input

matrix with zeros is called padding, and can be chosen to use in order to keep the

number of neurons constant in both layers.

Introduction 23

Figure 12: 2D representation of convolution operation with a kernel K on input data
I, resulting in a feature map [38].

Convolutional layers are followed by pooling layers. These offer a method of further

reducing the neuron number by either choosing the most active neuron within a

certain cluster of neurons (max pooling), calculating the mean value (average

pooling) or summing up all the neuron values within the cluster (sum pooling). These

layers are used to remove redundant information in order to improve computation

time and allow for deeper networks.

The layers that compute the classification start with a flattening layer. This layer

arranges all the neurons into a one-dimensional vector, which is needed for the

succeeding layers, the fully connected layers. These are also called dense, describing

the fact that all the neurons of these layers are connected to all the neurons of the

previous layer. The final layer, the output layer, is in fact also a fully connected

layer, containing the number of classes set for the model. Linear regression models,

which calculate a value, have only one neuron in the output layer. One possible

complete layer sequence of a CNN is depicted in Figure 13.

Introduction 24

Figure 13: Schematic depiction of layer sequence in a CNN used for a classification
problem [39].

 CNN Training process

For the training process, two different datasets are needed: the training and testing

dataset. These include the input information including their corresponding label, i.e.

the class the input belongs to. The main procedure can be described by using the

training data to set the weighted connections between neurons in a manner so that

the network produces a correct output [31]. Subsequently, using the testing dataset

on the training weights, errors between the network prediction and actual label are

minimized to improve the network output. One process of feeding data in and then

correcting the network to adjust to the found error is called epoch. The number of

epochs performed during training can be set.

As a first step, the training dataset and the corresponding labels are fed into the

neural network. The number of input data that are presented to the network at the

same time is defined by the batch size. This parameter can be chosen to be equal or

smaller than the total number of data in the dataset and is termed mini-batch in the

latter case. All the mini-batches are passed through the network, therefore all

training images are used per epoch, i.e. the number of times the whole dataset has

been passed to the network and an adjustment had been performed. The weights of

all connections are set in a manner so that the network outputs the correct label for

each training input. After this is done, the testing dataset is passed through the

network in the same manner regarding the batch size. The network is now configured

to work well on the training dataset and predicts output labels for the testing dataset.

The prediction is compared to the correct output label and an error is determined

Introduction 25

and mathematically depicted as the loss function. This function is now optimized

using one of many available optimisation algorithms. To adjust and correct the

network, the weights of each connection are changed following the found gradient

when applying the optimizer. Optimisation happens by adjusting the weights

following the descending gradient of the error [40]. Error correction is done in a back

propagating manner, first adjusting the weights leading to the output layer and then

subsequently going back layer per layer, correcting all the weighted connections of

the model.

Two parameters that can be monitored during the training are accuracy and loss.

The accuracy describes the fraction of correct predictions made on testing data by

the network, ideally converging to 1 with increasing number of epochs. The loss is

the sum of all errors of the made predictions and should converge to 0.

After a model is trained, it may be evaluated using another unlabelled dataset. Upon

passing this evaluation dataset to the network, it outputs the probabilities the input

belongs to each of the labels. This shows the practical use and ability of the model

to sort unknown images into the labelled groups.

 Overfitting

One problem encountered with neural networks is the probability of overfitting. This

describes the process of the network adapting too well to training data and achieving

high accuracy during training. Since the network focuses too much on details it is

not able to generalize parameters and patterns very well and therefore shows

significantly reduced performance when unknown data is presented. There are two

possible ways to counteract such a behaviour. Firstly, by adding a so-called dropout

layer, a set percentage of training data is dropped randomly during training and is

therefore not used for calculations [41]. Secondly, a regularizer may be implemented.

Regularisation adds an additional term to the loss function, therefore keeping the

weights from being adjusted too well to the details of the training data and achieving

a better generalisation. Additionally, also pooling layers help to control overfitting

by reducing the information and focusing only on main features.

Introduction 26

 Purpose of thesis

Current research in machine learning in the medical field is also pushing forward in

the area of treatment plan evaluation [42]. For example, Interian et al. used a

convolutional neural network to determine the gamma passing rate of treatment

plans. This study served as motivation for this thesis, Interian et al used a dataset

of 498 images, artificially increasing the data by using images several times, either

by utilizing rotated or mirrored images additionally to the original. This is done with

the assumption that the input images are rotationally invariant in regard to the GPR

value. Different network types are tested on the dataset and then evaluated according

to the percentage of correct predictions that were made, and then compared with a

previously designed Poisson regression model, achieving similar results.

In short, the aim of this master thesis is to design a neural network that is capable

of categorising radiotherapy treatment plans into groups according to their predicted

gamma passing rate with sufficient accuracy. The GPR is obtained during the quality

assurance measurement, which precedes each patient irradiation in order to ensure

the safe execution of the treatment plan. The GPR acts as a criteria that has to be

fulfilled in order to apply the plan to the patient. If it can be predicted with a

sufficient accuracy using treatment plan data only, there is a possibility of omitting

the QA measurement in future cases where neural networks provide reliable

predictions of the GPR.

This thesis intends to use a similar approach as presented by Interian et al. and aims

to achieve comparable or improved results [42]. The built neural networks should

also be tested for their robustness and performance with varying parameters and

datasets, respectively.

Materials and Methods 27

2 Materials and Methods

In this chapter, the hardware resources used for generating the information needed

as well as the selection of patient data are described. Furthermore, the overall

approach of generating the input data and the coding effort and workload used for

this work are elaborated. The setup of the neural network is discussed, along with

the complete layer structure and the used activation functions, optimisation processes

and metrics. Finally, the different approaches of optimising the network are

discussed.

 Hardware

 Linac

The investigated treatment plans were designed to be applied by two different types

of linacs produced by Elekta, Sweden. The linac types include Elekta Versa HD and

Elekta Synergy, differing in MLC types, i.e. in their number of MLC leaf pairs and

the existence of jaw collimators in the x-direction. There are 80 leaf pairs in the

Agility treatment head of the Versa linac and 40 in the MLCi2 of the Synergy linac,

while the x-jaws are only present in the Synergy. For plans generated for Versa linacs,

the values for the non-existing x-jaws necessary for computation were assumed as

the maximum open position. The beam opening covers an area of 40 cm x 40 cm in

both linac types, therefore the width of a single leaf amounts to 5 mm for the Versa

and 10 mm for the Synergy linac.

 Delta4 Phantom

At the Department of Radiation Oncology of the Medical University of Vienna /

AKH Vienna, a Delta4 Phantom (ScandiDos, Uppsala, Sweden) is used to perform

the quality assurance measurement. The phantom is equipped with a cylindrical

shaped container which consists of PMMA containing two detector plates placed in

orthogonal orientation relative to each other, forming a cross shape. The 1069

detectors distributed on those detector plates measure the deposited dose, which is

Materials and Methods 28

compared to the planned dose distribution in order to determine treatment plan

accuracy.

 Gamma Passing Rate

Upon quality assurance measurements of treatment plans, which are performed on a

phantom in advance of each patient treatment, the parameter which is used to

categorise input data is obtained: the Gamma Passing Rate (GPR) [14], [43]. This

rate is a measure of agreement between the dose distribution that was calculated and

planned before and the actual delivered dose distribution onto the phantom. For the

data used in this work, these underlying criteria were set to 3% and 3mm, respectively

[12]. Fulfilling these criteria leads to a gamma index of ≤ 1; the percentage of all the

points exhibiting a gamma index of ≤ 1 then forms the GPR value. Therefore, a high

accordance of the planned and measured dose distribution results in a GPR value

close to 100%. This is usually achieved by relatively simple target geometries like

prostate boost treatments. The GPR is actually a measure of dosimetric accuracy

but can also be interpreted as a measure of complexity, since intricate target volume

shapes usually exhibit a lower GPR.

A plan with a measured GPR lower than 90% must not be applied to the patient

and requires the setup to be checked. In case no irregularities are found there, e.g.

the detector and linac configurations are correct, the plan has to be redone in order

to ensure safe treatment of the patient.

 Patient Data

In order to train a neural network and to achieve good performance, a sufficiently

large sample dataset is necessary. Therefore, VMAT radiation treatment plans

created using the software Monaco (Elekta AB, Stockholm, Sweden) were exported and

by using the parameters and values that are set in the planning data, images of the

transmitted dose were created and used as an input for the neural network. Each patient

is given a unique patient ID, which was used to identify plans throughout the process

and is also encoded in the filenames of the images.

Materials and Methods 29

 Selection

For this investigation a total of 600 IMRT/VMAT radiation therapy plans were

exported, which were taken from three tumour groups: gynaecological tumours, head

and neck (HN) as well as prostate cancer patients. An even distribution between the

groups was desired, leading to total numbers of plans for each group presented in

Table 1. The respective dose distributions are shown in Figure 7 in section 1.1.6.

Table 1: Numbers of plans per tumour group

Group Number
Gynaecological 151

HN 227
Prostate 222
Total 600

While selecting prostate patients, boost-plans were used exclusively for better

comparability, referring to the administration of a dose of typically 13-28 Gy to the

prostate gland only, omitting the pelvis region and surrounding lymph nodes. This

leads to a sharply delimited volume of dose deposition and therefore to a favourable

target volume regarding accuracy and complexity.

The plans were designed for two different linacs, Elekta Versa HD and Elekta

Synergy. The selection of plans did not depend on the linac type, since it is assumed

that the different linacs do not produce different results, as for the Versa HD linac

plans the missing x-jaws are replaced by the values for completely opened ones and

can therefore be evaluated using the same tool as for the Synergy linac plans.

Further selection criteria include the completed QA measurement, i.e. the

requirement that a GPR value has been obtained for the plan beforehand. Only the

plans that had an associated GPR were used, since this value is needed for labelling

the plans. To avoid differences in patient Dicom standards as well as updates or

changes in data format or data storage modalities, it was aimed to utilize fairly recent

plans. The acquired plans according to the presented criteria were generated in a

timespan between 2015 and 2018.

Materials and Methods 30

 Labelling

For the sake of describing the problem, a multi-class classification model was chosen

and all plans were labelled according to their GPR value. As a majority of the used

treatment plans showed a very high GPR value, grouping them into equally large

groups to ensure validity of the results of the neural network proved to be a challenge.

The prostate plans exhibit a GPR of 1, since the prostate gland is well delimited to

its surroundings and is shaped rather simply and shows little to no variance of

location in different patients. Therefore, they were all assigned with the label 0,

indicating the highest GPRs. Intervals of GPR values that make up the labelled

groups were to be chosen in a manner so that the numbers of plans of each label are

as balanced as possible in order to avoid a bias towards a certain label in the model

while still giving reasonable results. It was chosen to divide the input data into three

labels according to their GPR according to Table 2.

Table 2: Distribution of all treatment plans to GPR values and consequent assignment
of labels.

GPR Number of Plans Labels Numbers per label
1 235

0 383
]0.99, 1[148

]0.98, 0.99] 75
1 130

]0.97, 0.98] 55
]0.96, 0.97] 17

2 87

]0.95, 0.96] 21
]0.94, 0.95] 13
]0.93, 0.94] 11
]0.92, 0.93] 6
]0.91, 0.92] 10
]0.9, 0.91] 4
]0.89, 0.9] 2
]0.88, 0.89] 2
≤ 0.87 1
Total 600 600

Materials and Methods 31

 Dicom file structure and parameters

In order to generate images as data input for the neural network, treatment planning

data is used. Medical data, as in the case of radiotherapy treatment plans, is stored

in Dicom (Digital Information and Communications in Medicine) format, which can

store image data as well as patient information. In this particular case – the Dicom

variation for radiotherapy, Dicom RT– each file contains the complete treatment

plan information, i.e. collimator positions and delivered dose, as well as patient data.

The data is stored in form of attributes, which can be accessed via their associated

tag ID. The extracted parameters include the Dicom tags noted in Table 3.

Table 3: Dicom tag IDs, names and descriptions [44]

Tag ID Tag Name Description

(300a, 00c0) Beam Number
Number of the beams that are used to
irradiate, equivalent to the number of arcs the
gantry is performing.

(300A,0112)
Control Point

Index

Consecutive numbers of control points along
the gantry arc signifying points at which
changes occur during the beam delivery, all the
parameters below are associated to a certain
control point.

(300A,0134)
Cumulative

Meterset Weight
Fraction of total beam meterset that has been
irradiated at the current control point.

(300A,0086) Beam Meterset
Total amount of monitor units (MU) that are
set to be delivered with the current beam.

(300A,011E) Gantry Angle
Angle the gantry is positioned at, with 180°
being the position where the gantry is in the
most upright position.

(300A,011C) Leaf Jaw Position

This entry appears two or three times per
control point, corresponding to two or three
different collimator types.
The entries for the jaw collimators are
described with ‘ASYMX’ or ‘ASYMY’,
depending on the orientation, containing two
values signifying the distance from the center
to the two parts of each collimator. The entry
for the MLC leaves includes the description
‘MLCX’ and contains either 80 or 160 values
in a row, assigning each leaf a position given

Materials and Methods 32

in mm distance from the origin. Indexing starts
at the bottom left leaf and first covers all the
leaves on the left, then continues at the bottom
right (seen from BEV).

The gantry can perform a full 360° rotation around the patient couch and while there

is a continuous irradiation, control points are set along the arc the gantry moves

along. These can vary in number depending on the geometry and size of the target

volume; furthermore, the gantry speed can be varied for additional dose modulation.

In the Dicom file, the aforementioned parameters are defined for each control point.

The single jaw and leaf positions are given in mm distance from the origin, making

it necessary to compute the distance using the data from each corresponding leaf pair

for further analysis. The origin of the coordinate system is positioned in the center

of the beam.

 Preparation of Patient Data

Patient treatment plans are archived in a raw text file format as the output of the

treatment planning system (TPS), Monaco (Elekta, Sweden), and can be exported

from the TPS as Dicom files. To avoid loading every single plan into the software

and extracting it, the raw planning data was first transformed into Dicom format

and then into images depicting the transmitted dose, the fluence maps. The used

software resources and detailed transformations will be described in the following

paragraphs.

 Software

The necessary conversion of patient data to images was performed using several

different software resources. In general, all coding operations were executed in

Python, using PyCharm as integrated development environment (IDE). For

transforming the patient data into structured XML (Extensible Markup Language)

shape, the ElementTree Application Programming Interface (API) was used [45].

Additionally, further conversion into Dicom data format was achieved by using

operating system functionalities, utilizing the os module [46] and the DCMTK toolkit

Materials and Methods 33

including the xml2dcm utility [47]. As a method to access the Dicom tags and read

the Dicom files, the package PyDicom and more specifically the Dicompyler package

was used [48], which is construed for dealing with the Dicom-RT format. This format

is the extension of the Dicom type designed specifically for radiotherapy applications.

Furthermore, the package NumPy was used for basic scientific computing and

handling array objects [49], as well as Matplotlib as plotting library [50].

 Conversion of Monaco Raw Data to Dicom

The transformation of the acquired raw plan data into Dicom files was the first step

towards generating image data. The raw files were analysed and in a reverse

engineering way, certain segments were characterized according to their values, which

were compared to those of a corresponding exported Dicom file. Each Dicom

checkpoint appears as a block of numbers in the raw data file, containing all the

values for the MLC leaf and jaw positions. A characteristic starting sequence was

identified, signifying the start of each checkpoint-block. However, the order of the

leaf positions had to be changed in order to be consistent with the arrangement of

values in the Dicom file, as the raw file listed the two positions of a leaf pair

consequently, while the Dicom lists all the values of the left MLC leaves first, followed

by all the positions of the right MLC leaves.

Furthermore, the values of the jaw collimator positions had to be manipulated. In

the raw file, positions for each jaw pair were given using two values: the size of the

opening, i.e. the distance between the two jaws, and the offset of the center of this

opening with respect to the central axis, both in mm. This is depicted in Figure 14.

Materials and Methods 34

Figure 14: Schematic depiction of calculation of jaw positions y1 and y2 as present in
the Dicom file using the values given in the raw plan file, opening size and offset (blue).

Therefore, the jaw positions for the y-jaw on the y-axis as given in the Dicom file

can be calculated from those values according to the following equation. For plans

designed for the Synergy linac, the positions of the x-jaw are obtained analogously,

with 𝑥ଵ,ଶ representing the positions of the x-jaw along the x-axis, with 𝑥ଵ describing

the position of the left and 𝑥ଶ the position of the right jaw, respectively.

𝑦ଵ,ଶ = 𝑜𝑓𝑓𝑠𝑒𝑡 ௬ ∓

𝑜𝑝𝑒𝑛𝑖𝑛𝑔 𝑠𝑖𝑧𝑒௬

2
 (1)

𝑥ଵ,ଶ = 𝑜𝑓𝑓𝑠𝑒𝑡 ௫ ∓

𝑜𝑝𝑒𝑛𝑖𝑛𝑔 𝑠𝑖𝑧𝑒௫

2
 (2)

To obtain the values for the cumulative meterset weight, a small computing effort

had also been necessary. The total beam meterset can be obtained easily by parsing

the raw file. Within the blocks containing the information for each checkpoint, a

value corresponding to the dose that has been delivered between two checkpoints can

be found. Therefore, the needed meterset weight, the fraction of dose that has been

delivered between the preceding and the current checkpoint can be calculated using

the following context.

Materials and Methods 35

𝑀𝑒𝑡𝑒𝑟𝑠𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 =

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝐷𝑜𝑠𝑒 𝑝𝑒𝑟 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡

𝐵𝑒𝑎𝑚 𝑀𝑒𝑡𝑒𝑟𝑠𝑒𝑡
 (3)

As described in 2.3.3, the beam meterset parameter describes the total dose delivered,

while the cumulative meterset weight gives the fraction of the meterset that has been

delivered up until the regarded checkpoint. To achieve the same convention as in the

original Dicom, the meterset weight obtained using (3) has to be summed up

continuously for each checkpoint.

All the retrieved values are now arranged in a single ElementTree object in order to

write an XML file, since it offers an intuitive way to incorporate a desired structure

into a text file by defining elements and assigning correspondent sub-elements to

mirror the Dicom file structure. The conversion from xml to Dicom format and vice

versa is an easy task, accomplished by a simple operating system command.

The retrieved values for cumulative meterset weight deviated after the third decimal

from the comparative values in the Dicom, as the value for the beam meterset did

also differ. Therefore the Monaco-internal conversion to Dicom seems to have an

influence on these values. For being used in the following tasks the obtained values

were regarded as sufficiently accurate.

Using the values from the raw planning data file, a direct conversion to image would

be possible instead of the intermediate step of generating Dicom data, but since this

tool may be useful in future situations it was chosen to perform the two actions

separately. Furthermore, creating two separate tools enables the generation of fluence

maps from existing Dicom data.

 Fluence Map Generation

After converting the complete patient dataset to Dicom files, the delivered dose and

the collimator positions per checkpoint were read from the Dicom and used to

generate an image output. The created image type is called fluence map, displaying

the fluence of dose through every point of the beam window during a complete

treatment. Making use of the previously described libraries and the tag structure of

the Dicom file, the needed parameters could be accessed easily. The first action taken

was to create an empty matrix with the desired dimensions of the output image. For

Materials and Methods 36

this, 400 x 80 pixels were chosen as uniform image size. The width of 400 pixels

represents the size of the beam window, which yields 400 mm, therefore 1 mm of the

beam window corresponds to one pixel. The positions of the collimators are given in

sub-millimetre precision, but a resolution in the mm range was considered sufficient.

The image height of 80 pixels was chosen according to the number of leaf pairs. Since

the used linacs exhibit either 80 or 40 leaf pairs, the former was chosen and set as

the dimension. In order to generate uniform output images, this image size was kept

also for the Synergy linac with half the number of leaf pairs. In this case, two pixels

correspond to the width of one leaf, while for Versa plans, one leaf is represented by

one pixel. This leads to a reduced resolution in the fluence maps for Synergy plans,

but was assumed to not influence the results since the fluence maps therefore

mimicked the larger MLC leaf pairs found in the Synergy linac.

In order to fill the 400 x 80 matrix, the origin in the isocenter of the beam that is set

to describe collimator positions in the Dicom is moved to the right upper corner.

This is done in order to match the positional information of the collimators to the

matrix indices and thus the pixels of the later generated image, i.e. equate the

position in mm on the x- and y-axis to the matrix column and row indices. To move

the origin, all x-values were shifted by +200 and the y values by -200, respectively.

Since this conversion renders all y-values negative, the absolute value of positions on

the y-axis was considered in order to fit the matrix index convention.

For generating an image, a few more complex computational steps were necessary

due to the definition of the checkpoints in the Dicom. Since the irradiation is

performed continuously throughout the treatment, the checkpoints only give fixed

intermediate positions of the collimators. For acquiring the total transmitted dose

for the whole treatment, the movement of the collimators has to be accounted for,

so therefore for each computation step the differences in cumulative meterset weight

and in the collimator positions of two checkpoints were considered. The assumed

model to calculate the transmitted dose in between two checkpoints by means of one

MLC leaf pair is depicted in Figure 15.

Materials and Methods 37

Figure 15: Schematic representation of the calculation of the transmitted dose with the
aim of generating fluence maps. The bars below the diagram illustrate one MLC leaf pair
at their positions along the x-axis within the beam window. L1 represents the left leaf,
L2 the corresponding right leaf of the pair. Both are represented at two different
checkpoints, CP1 (marked by green symbols) and CP2 (marked by blue symbols),
moving from the position at CP1 to CP2.

The calculation requires the observation of two checkpoints at a time. Therefore, the

dose delivered in the time between checkpoint 1 (CP1) and checkpoint 2 (CP2) is

calculated using the cumulative meterset weights (CMWeight) of the two

checkpoints as well as the total beam meterset:

𝑑𝑜𝑠𝑒 = (𝐶𝑀𝑊𝑒𝑖𝑔ℎ𝑡ଶ − 𝐶𝑀𝑊𝑒𝑖𝑔ℎ𝑡ଵ) ∗ 𝐵𝑒𝑎𝑚 𝑀𝑒𝑡𝑒𝑟𝑠𝑒𝑡 (4)

Then, the regions of different dose levels can be divided into five sections depending

on the coverage of the beam. The left and right outer regions are completely covered

by a MLC leaf during the time between CP1 and CP2. Since the MLC leaves do not

shield 100% of the dose, a certain fraction of dose that is still transmitted has to be

considered, as depicted in Figure 15. For this model, a transmission coefficient for

the MLC of 𝑡 = 0.004 was used. The opening between left and right leaf that is not

covered at any time denotes the region where the full dose is transmitted. Lastly, the

movement of the MLC leaf pairs is accounted for in the regions with varying dose.

To describe the partially covered regions, a simple linear correlation of dose and

Materials and Methods 38

position on the x-axis 𝑥 was assumed, with ∆𝑥 denoting the difference in leaf positions

of the two checkpoints, i.e. the distance the leaf has moved in mm. Regarding the

shape of the MLC leaf tips, a simplifying assumption was made. The tips present in

the linacs are rounded, whereas in this model, a rectangular shape has been used.

This leads to a disregard of the parts of the incoming beam that are slightly oblique

and would still contribute to the transmitted dose in reality.

Again, the fraction of dose that is transmitted through the partly closed collimator

leaves described by the leaf transmission 𝑡 has to be considered and leads to the

following formula.

𝑑𝑜𝑠𝑒(𝑥) =

𝑑𝑜𝑠𝑒

∆𝑥
∗ 𝑥 ∗ (1 − 𝑡) + 𝑑𝑜𝑠𝑒 ∗ 𝑡 (5)

𝑥 = ൜

𝑛 − min(𝐿ଵ𝐶𝑃ଵ, 𝐿ଵ𝐶𝑃ଶ) , 𝑓𝑜𝑟 𝐿1

max(𝐿ଶ𝐶𝑃ଵ, 𝐿ଶ𝐶𝑃ଶ) − 𝑛 , 𝑓𝑜𝑟 𝐿2
 (6)

Depending on the movement from left to right or vice versa, the dose shows either

an increasing or decreasing slope, requiring a different definition of the parameter 𝑥.

The column indices of the matrix are denoted by a single parameter 𝑛, which is used

for the whole beam window. Since the filling of the matrix happens from left to right,

an increase of 𝑛 is inversely correlated to the dose transmitted by movement of the

right MLC leaves. To describe the different behaviour, the minimum or maximum

positions of the leaf at the two regarded checkpoints (𝐿𝐶𝑃) are considered,

respectively.

An even finer distinction of regions has to be made once the jaw collimators are

considered as well. The calculation of transmitted dose follows the same mechanism,

using 𝑡 = 0.001 as jaw transmission coefficient. Furthermore, the width of the MLC

lamellae has to be taken into account when translating the positions of the y-jaw

along the y-axis to rows of the matrix. Depending on the used linac and MLC type,

either 5 or 10mm correspond to one row and therefore a width of one pixel. Achieving

uniform images of the same size as output required the duplication of each row for

plans designed for the Synergy linac which incorporates only 40 leaf pairs, doubling

the number of rows to 80 to match the Versa linac plans. Making the transmitted

dose dependent on the x-jaw, y-jaw and the MLC positions and using the according

Materials and Methods 39

dose values obtained by the model described before, looping over all the checkpoints

of all used beams fills the matrix.

After completing the matrix using the full planning data, it is converted into a

greyscale PNG image with a simple Python command. This conversion lead to an

addition of a white frame around the actual matrix size, resulting in a final image

size of 526 x 127 pixels. The name of the saved image is put together by the patient

ID and the label, which is retrieved from an additional text file that lists all the

regarded patient IDs and their corresponding GPRs. A few examples of the image

output are given in the following figures.

Figure 16: Fluence map of a gynaecological treatment plan.

Figure 17: Fluence map of a prostate boost treatment.

a)

Materials and Methods 40

b)

Figure 18: Fluence maps for 2 different HN plans. Image a) shows a plan for a treatment
performed on a Versa linac, while image b) depicts the fluence map for a plan performed
on a Synergy linac. The reduced resolution in b) is evident, originating from the larger
width of MLC leaf lamellae.

The fluence maps portray the fluence of dose through the beam window during a

whole treatment. The darker areas show regions of higher dose deposition, while

white areas do not receive any dose. It is evident that fluence maps of prostate boost

plans are easy to distinguish from HN and gynaecological plans by their smaller

irradiated volume and simpler geometry and dose distribution. Due to the former

described selection of image size the fluence maps appear pinched, as the length one

side of the beam window is decreased, leading to a rectangular representation of the

square beam window.

 Random separation into three datasets

The last action performed on the input data before it was used to train the neural

network was to randomly shuffle the sample order and subsequently splitting the

complete dataset into three groups – the training, testing and evaluation dataset,

each containing 200 plans. For that, a text file was created combining the complete

data paths of all the generated images to their labels. After shuffling the lines of that

list, it was separated into three different text files, serving as an input to determine

the three different datasets for the neural network. All the datasets were checked for

relatively balanced distribution of the three labels, in order to avoid generating a

dataset with only one prominent label, which would create a bias of the neural

network towards one label.

Materials and Methods 41

Table 4: Distribution of the labels and tumour groups to the three datasets

 Set 1 Set 2 Set 3
Prostate 64 75 83

HN 79 78 70
Gynaecological 57 47 47

Total 200 200 200

Label 1 119 127 137
Label 2 48 44 38
Label 3 33 29 25
Total 200 200 200

 Neural Network

After generating the input data, a neural network was set up using [51] as template,

adapting the suggested neural network to suit the task presented in this work. The

mentioned Github repository introduces a basic network structure and presents a

strategy to transform image input data into usable tensors, which is also adjusted to

the generated fluence maps.

 TensorFlow

The neural network was built in Python using the open source framework

TensorFlow developed by Google [52]. It provides Python and C++ APIs and

includes simple functions to arrange the layers of the network, network parameters

and layer details and perform mathematical operations to generate output data.

TensorFlow supports high level interfaces like Keras and can run on a CPU (central

processing unit) as well as multiple GPUs (graphics processing unit). As suggested

by the name, TensorFlow performs all the operations on multidimensional data

organised as tensors. The network models generated in TensorFlow are organised as

graphs following the graph theory of mathematics, consisting of so-called nodes and

edges which represent the mathematical operations and the connecting dataflows,

respectively. After the building of the graph is complete, the execution happens only

in form of a session, during which the previously defined functions and operations

are called.

Materials and Methods 42

 Visualisation using TensorBoard

TensorBoard is a collection of tools able to visualise the built graph in a TensorFlow

procedure as well as displaying images that are passed through the network and

illustrating obtained scalar variables [53]. In order to select which nodes or values

should be displayed, summary objects have to be added during the model build,

which gather the selected values during the training process. This data is collected

in TensorBoard event files, which can then be visualised in the web browser.

The complete graph is shown in Figure 19. The boxes correspond to the nodes and

therefore to collections of operations combined in one namespace, while the edges are

shown as arrows, depicting dependencies and dataflows. Auxiliary nodes, i.e. nodes

of a high degree with many connections to other nodes (e.g. the used optimiser) are

displayed in the upper left corner to keep the diagram arranged clearly.

Figure 19: TensorBoard visualisation of the complete model, data flows of tensors are
shown with arrows and operations as boxes.

Materials and Methods 43

In order to debug and analyse the neural network, TensorBoard can display the

inputs and outputs of every node, also showing the single operations performed inside

of larger, more complex nodes.

Figure 20: Display of an expanded node in TensorFlow, providing information about the
inputs and outputs of the selected node.

 Used Mathematical Operations in Neural Network

Loading the input data into the model can be realised using two different approaches.

Firstly, the input images may be organised in three folders according to their labels.

During loading of the data into the network, two tensors are built, one containing

the image data paths while the other lists the labels corresponding to the folder the

images are in. The other method, which was chosen for this work, involves a file

which lists the data paths of the input data and their corresponding label. Upon

reading the file, the paths and labels are separated and assigned to separate tensors.

Both strategies now convert the PNG image data into uint16 tensors, i.e. the values

of the tensors are integer values with a size of 16 bit. The number of colour channels

is set to 1, since only greyscale images are regarded. The size of the tensors amounts

to 526 x 127 x 1, representing the greyscale 2D images.

As activation function of the neurons, the previously discussed ReLU was used. This

function sets negative activations to zero and outputs a linear function if there is a

positive input.

Materials and Methods 44

𝑓(𝑥) = 𝑥ା = 𝑚𝑎𝑥(0, 𝑥) (7)

Therefore, the output increases with the positive input leading to neurons reacting

stronger to larger input values and enabling the calculation of more complex, non-

linear models.

After each training cycle of loading training data into the network and setting the

weights, a prediction of the label of the subsequently fed in testing data is made

using the previously determined weights. After the last fully connected layer, i.e. the

output layer, the softmax function is applied to determine the probabilities of the

tested image belonging to one of the possible labels. The softmax function converts

an n-dimensional vector termed logits, which is received as input from the previous

network layer, to a decimal probabilistic value for each of the possible classes. The

output is therefore a scalar value between 0 and 1, the sum of the probabilities for

all labels naturally yielding 1.

Further, the loss function (generally termed cost function) which describes the

difference between estimated and actual label is determined by calculating the cross

entropy. The cross entropy serves as a method of obtaining the difference between

the probability distribution given by applying the softmax function on the output

logits, i.e. the output of the neural network, and the actual distribution of labels. For

two discrete probability distributions 𝑝 and 𝑞 the cross entropy is given as follows.

𝐻(𝑝, 𝑞) = −∑𝒊𝑝𝑙𝑜𝑔(𝑞) (8)

The last performed step before the optimisation of the loss function is to determine

the mean of the acquired cross entropy tensor, which is reduced to one single element

in the process. This obtained value is later used as the scalar value determining the

loss and should converge to 0 during the training process. The optimisation of the

loss function is performed using the Adam (Adaptive Moment Estimation)

optimiser [54]. This metric combines the benefits of two other optimisers, Adaptive

Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp) and

serves as an extension of the conventional stochastic gradient descent (SGD). In

contrast to SGD, which uses a fixed learning rate, Adam determines a learning rate

Materials and Methods 45

for each parameter i.e. each weight separately and adapts the learning rates according

to the found gradient of the loss function. Contrary to other optimisation techniques,

Adam uses estimations of both the first and second stochastic moments of the

gradient, corresponding to the mean and uncentered variance of the gradient. A

hyperparameter that can be set is the step size 𝛼, indicating the size of the steps that

are taken along the gradient in order to find a minimum value. It is generally also

referred to as learning rate but has to be distinguished from the individual learning

rates set for each parameter when describing the Adam optimiser. However, since

the framework TensorFlow denotes 𝛼 as learning rate, this convention will be kept

for further investigation performed in this thesis.

As described in 1.2.1.3, complex models may learn details of the training data and

are therefore prone to overfitting. To avoid that, weight regularization was applied

in order to keep the model simple and therefore improving the generalisation of

features. This was done by adding an L2 regularizer to each convolutional layer,

which retrieves the squared feature weights of each layer. All these values are

summed up, multiplied by a factor 𝜆 called regularization parameter, and added to

the loss function, serving as method to consider the complexity of the model [55].

The loss function to be optimised has now a shape as shown in (9).

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒൫𝐿𝑜𝑠𝑠(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙) + 𝜆 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑜𝑑𝑒𝑙)൯ (9)

This additional term penalizes large weights in the model and therefore regulates the

distribution of weights, reducing large positive and increasing small negative outlier

weights. The loss function includes the additional L2 term, therefore the optimisation

compensates the complexity of the model, therefore counteracting overfitting. The

regularization parameter 𝜆 determines the fraction of the L2 regularization term that

is added to the loss function and is set to 0.01 for this work.

𝐿2 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 = ||𝝎||ଶ

ଶ = 𝜔ଵ
ଶ + 𝜔ଶ

ଶ+ . . . + 𝜔
ଶ (10)

In order to quantify the results of the training, the parameters accuracy and, as

previously described, the loss are calculated. The accuracy is determined by obtaining

the ratio of correct to total number of predictions made by the network.

Materials and Methods 46

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 (11)

In the network this is realised by applying the argmax function to test logits, i.e. the

vectors obtained in the last fully connected layer, hereby – in contrast to the softmax

function – only obtaining the labels with highest probability. Comparing the result

to the actual labels of the test dataset yields a tensor of Boolean values, therefore

determining the number of correct predictions. Similarly to obtaining the scalar value

for the loss function, the reduced mean of the tensor of correct predictions is obtained

in order to describe the accuracy.

 Terminology of Neural Networks

In order to provide a summary of the terms and definitions used in the previous

sections, the following table provides short descriptions of the parameters and

properties of neural networks in respect to TensorFlow terminology [56].

Table 5: List of used terminology of neural networks.

Accuracy Fraction of correct predictions made by the network

Activation function
Mathematical function describing the activation of the
neurons in the network, i.e. how the input values of each
neuron relate to the output

Batch

Number of input data fed into the network at a time, if the
batch size is smaller than the total number of input data it
is termed mini-batch, often a factor of the total number of
inputs is used for a faster computation process

Convolution

Mathematical operation performed in the convolution layer
in order to reduce the number of parameters which allows
faster computation and more complex networks without
reducing performance

Dropout
Method to reduce overfitting, deliberate deactivation of a
certain fraction of neurons to improve generalisation of
network

Epoch

Process of all training instances passing through the
network once. One epoch consists of the number of
iterations it takes to pass the whole input dataset through
the network once, i.e. number of input data divided by
batch size

Materials and Methods 47

Fully Connected Layer
Layer in which all the neurons have connections to all the
neurons of the previous layer; performs classification of data

Feature
Elements of input vectors, i.e. number of neurons of the first
layer

Graph Complete structure of neural network
Hyperparameter Property of network model that is to be set manually

Iteration
Training step; passing of one batch to the network and
setting the weights according to the gradient

Label Output of network, group the input belongs to

Learning rate
Size of steps taken along the gradient of the loss function in
order to reach minimum

Logits
Output of last layer of the network, non-normalised vector
of predictions made by the network

Loss (Cost) function
Main objective to be optimised during training by following
the gradient of the loss function along its descending slope
to find a minimum

Max Pooling layer

Layer of neural network that selects the most active neuron
in a cluster of chosen size in order to improve computation
time and reduce overfitting by focusing on the most relevant
features

Model
Neural network after training, can be used to evaluate
unlabelled input data

Node/ Neuron
One computational unit in the network, organised in layers,
connected to other neurons

Optimisation function
Algorithm used to minimise/ optimise the loss function by
adjusting the weights of the neurons

Overfitting
Process of very flexible adjustment of network to the
training data leading to worse generalisation and therefore
worse performance on unknown data

Parameter
Variable of network model, to be set during training by the
network itself, i.e. weights

Regularization
Another method of avoiding overfitting by adding an
additional expression to the loss function in order to
improve generalisation of model

Session Object that runs the built TensorFlow graph
Step size Equivalent to learning rate

Training
Process during which the weights are adjusted in a way that
the output of the network model matches the know input
label

Weights
Parameters of the connections between neurons, to be set
during training

Materials and Methods 48

 Structure of network

In order to represent the final used layer structure of the neural network, Figure 21

shows the complete network including all data flows as well as the properties of the

layers.

Figure 21: Structure of the used convolutional neural network as portrayed by
TensorBoard (left) as well as the equivalent structure presented as boxes with
description for better visibility (right). The arrows show the order the layers are passed,
starting at the bottom with the first convolutional layer and ending at the last fully
connected and therefore the output layer containing three neurons.

Materials and Methods 49

The function of the layers can be divided into feature detection and classification,

the former accomplished by the convolutional and pooling layers, and the latter done

by the flattening and the fully connected layers.

As depicted in the figure, the network consists of four convolutional layers, each

followed by a pooling layer. The number of filters or kernels used amounts to 32 for

the first layer, using a kernel size of 5x5. The input of this layer is formed from the

pixels of the actual input image. The other three convolution layers make use of 64

filters, with a size of 3x3 each. The stride was kept at the default value for all the

convolution layers, causing the filter to move one pixel or neuron at a time. Each

convolution layer is followed by a pooling layer utilizing the max pooling technique,

therefore selecting the neuron with maximum activity within a selected field size.

These four layers exhibit the same parameters, choosing a field size of 2x2 and a

stride of 2.

For executing the classification process, a flattening layer organises the retrieved

neurons into a one-dimensional vector in order to serve as input for the following

three fully connected layers. The first two of these consist of 1024 neurons, each

connected to all the neurons of the previous layer, hence the nomenclature. The last

of the fully connected layers serves as the output layer and consists of only three

neurons, the same number as labels are present in the model. The values retrieved

in this layer are the non-normalised predictions of the probabilities of the input data

belonging to each of the labels. This output can be seen as a vector termed logits

and is used to obtain the probability distribution.

The structure as it is elaborated here was obtained after testing and improving the

original neural network, which is to be described in the following sections. The

performed optimisation can be thematically divided into three topics: the

optimisation of the network itself by adding more layers, the optimisation of

parameters used during training and the testing of robustness of the network against

different input data.

Materials and Methods 50

 Optimisation of Arrangement of Network Layers

One strategy to evaluate improvements was to increase the depth of the network, i.e.

adding more convolutional and fully connected layers.

Figure 22: Different tested layer sequences. Network 1 represents the same network as
suggested in the template, successive addition of convolution and fully connected layers
lead to Network 4, which is the final used structure.

Usually, adding convolutional layers improves the accuracy of neural networks as

more features are extracted while keeping the computation time rather low. This has

a limit, since at a certain point the network will tend to overfit the data since detailed

Materials and Methods 51

features are detected by the convolutional layers. Four different layer sequences were

tested, depicted in Figure 22.

 Optimisation of Training Parameters

In order to further improve the obtained model and check the response of the model

to different parameter changes, selected training hyperparameters were varied in

order to identify optimal values and achieve sufficiently accurate results. These

include the learning rate and the batch size. Other network parameters that were

not changed over the course of the training processes are the number of epochs as

well as the regularization parameter.

 Learning Rate

The learning rate is a parameter that describes the step size that is taken along the

gradient in the direction of the steepest descent during backpropagation in order to

correct the network weights and determine the minimum of the loss function. In case

of the used optimiser in this work, the learning rate set upon calling this function is

a hyperparameter describing only the step size, since the learning rate of each

parameter is adjusted separately, as described in 2.5.3.

A very small learning rate causes the weights to be adjusted very slowly, therefore

increasing the time until a minimum is reached. On the other hand, a large learning

rate takes steps that may be too large and therefore never reach the minimum, as

illustrated in Figure 23.

Figure 23: Depiction of the learning rate as the size of steps that are taken along the
found gradient. The curve on the left shows a very small learning rate while the curve
in the middle presents an optimal value and the right curve depicts a learning rate that
is too large [57].

Materials and Methods 52

For this investigation, the values for the learning rate were varied from the

recommended default value of 0.001 to 0.01 and 0.0001.

 Batch size

As previously described, the batch size determines the number of input images that

is passed to the network at once, influencing the gradient of the loss function that is

obtained after one iteration. The gradient that is formed is averaged over all the

predictions made, therefore, if more predictions are made, i.e. more images are passed

through at once, the gradient is more precise. However, it has been shown that

performance actually decreases when using large batch sizes due to worse

generalisation, therefore it was assumed that the used amount of images per batch

was sufficient [58].

In order to compare the performance of the model with different batch sizes, mini-

batches of different sizes were built, using 50, 100 or 150 images per batch. Since the

total dataset size is 200, the last case performed only one iteration since there is a

residual amount of 50 images. One iteration describes the pass of one mini-batch to

the network and one backward pass of weight correction. The relation of iterations

and epochs, i.e. the cycle of passing all the input data once and setting the weights

accordingly, is given as follows.

1 𝐸𝑝𝑜𝑐ℎ =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑚𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ
 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (12)

 Testing of Robustness of Training

An important way of determining validity of a model is to test it for its robustness.

To do that, two different approaches were taken: firstly, the three different datasets

were given to the network in different combinations. Secondly, the datasets itself

were shuffled again and compared.

Materials and Methods 53

 Robustness against Switching of Datasets

One robustness testing involved the switching of the three prepared datasets, which

are simply enumerated for the sake of a general view.

Table 6: Combinations of the three obtained datasets

Combination Training dataset Testing dataset
1 Set 1 Set 2
2 Set 2 Set 1
3 Set 3 Set 1
4 Set 3 Set 2
5 Set 1 Set 3
6 Set 2 Set 3

 Robustness against Shuffling of Datasets

In order to investigate if the order of the list objects within the datasets has an

influence on the training, the before investigated combinations of datasets were tested

again after using a short script to shuffle the lines within the files containing the

image paths and labels.

Table 7: Combinations of shuffled datasets in order to test robustness

Combination Training dataset Testing dataset
1 Set 1 shuffled Set 2 shuffled
2 Set 2 shuffled Set 1 shuffled
3 Set 3 shuffled Set 1 shuffled
4 Set 3 shuffled Set 2 shuffled
5 Set 1 shuffled Set 3 shuffled
6 Set 2 shuffled Set 3 shuffled

The described models were compared with the corresponding models from the

previous robustness test.

The trainings were performed on an Acer Aspire E5-575G laptop based on an Intel®

Core™ i7-7500U CPU with 2.90GHz and 8GB RAM. Additionally, an NVIDIA

GeForce 940MX graphics card is available as GPU.

Materials and Methods 54

Results 55

3 Results

After setting up the neural network as stated, the described variations of parameters

and layer sequences as well as the robustness tests were performed in order to design

an algorithm that is able to classify the input data accordingly and with the highest

possible accuracy.

The epochs performed during each training were set to 500, i.e. the whole dataset is

passed to the network 500 times, with a consequent backpropagation calculation and

adjustment of weights after each forward pass. Another parameter that has not been

varied is the regularization parameter 𝛼, which was set to 0.01 for all the performed

network training processes. For the models built for this thesis it was chosen to

display the value of accuracy and loss of every 10th epoch using TensorBoard.

TensorBoard provides a slider to adjust smoothing of the obtained curves to improve

visibility of the trend of the graphs. The transparent curves display the actual

obtained values, while the lines with high opacity represent the smoothed values.

Figure 24: TensorBoard visualisation of the loss for multiple different network models.
The x-axis represents the numbers of epochs while the y-axis shows the value of the loss.

The scalar loss values obtained as described before are displayed in Figure 24. Since

the value showed the desired behaviour of converging to zero rapidly in all performed

trainings, this parameter is not further discussed in the following optimisations.

Results 56

 Network Layer Structure

In order to determine the optimal layer structure, more convolutional and fully

connected layers were added to the basic structure, leading to the results presented

subsequently. All network trainings were performed using a learning rate of 0.001

and a mini-batch size of 100.

Figure 25: Achieved accuracy of four different layer sequences, represented as training
accuracy over number of epochs.

Network 1, which was suggested in the used template, contains the least amount of

layers and achieves the lowest accuracy of ~59%. Adding a third convolutional layer

increases the achieved accuracy substantially to just over 64%. No changes were

observed upon adding a fourth convolution layer and a third fully connected layer,

however the layer sequence of Network 4 was kept for all further training processes,

since no consequential increase of computation time was monitored (see 3.7).

 Learning Rate

The first hyperparameter to be varied was the learning rate. As shown in Figure 26,

the accuracy of the model varies considerably with changing learning rate. The lowest

tested value was 0.01, exhibiting the predicted behaviour of not converging to a

minimum, since the taken steps are too large. Reducing the learning rate to 0.001

already leads to a relatively fast convergence to an accuracy of around 64%. Further

reducing that value to 0.0001 yields only a small increase of accuracy. However, again

the observed computation time did not increase substantially.

Results 57

Figure 26: TensorBoard graph displaying the training accuracy for different learning
rates over the number of epochs.

 Batch Size

Figure 27: Training accuracy of trained model for three different mini-batch sizes.

Three different models were trained using three different batch sizes, i.e. 50, 100 or

150 images per mini-batch. The obtained curves all converge similarly to a value

between 63% and 65 %. While a batch size of 150 produces the smoothest curve, the

achieved accuracy values for the smallest batch size of 50 vary to a larger extent,

causing the graph to appear less smooth especially for the first 150 epochs.

Results 58

 Robustness against Switching

To test the robustness of the model found in the last optimisation steps, the three

datasets were passed to the network in different combinations according to 2.8.1.

This test was again performed using a learning rate of 0.001 and a batch size of

100.

Figure 28: Accuracy of networks for six different combinations of datasets, given as
training accuracy over number of epochs.

The hereby achieved training accuracies reach from ~59% to ~69%, therefore a large

variance can be observed. The resulting curves seem to follow three different

branches, converging either to a value below 60% for combinations 2, 3 and 4, around

64% for combination 1 or ~69% for combinations 5 and 6.

 Robustness against Shuffling

The second robustness test performed was to shuffle the datasets and compare those

to the same unshuffled combinations from the previous testing. Again, a learning

rate of 0.001 and a batch size of 100 images was used.

Figure 29 and Figure 30 show the first three and the last three combination in

comparison with their shuffled variations, respectively. Overall, the shuffled

combinations yield similar values as the non-shuffled versions, following the observed

Results 59

three branches. A deviation can be observed in combination 4, where the shuffled

version provides an increase of accuracy of around 4%.

Figure 29: Training accuracy of networks over number of epochs to compare original
datasets with shuffled ones.

Figure 30: Training accuracy of networks over number of epochs to compare original
datasets with additionally shuffled ones.

 Evaluation of unknown data

The model delivering the best results as presented before consists of four

convolutional and pooling layers, three fully connected layers, with the learning rate

set to 0.001 and a mini-batch size of 100 images. Upon using dataset 2 and 3 for

Results 60

training, an accuracy of 69% is reached. The final operation performed on the

completed model was the classification of unknown data. For this purpose, the

evaluation dataset, i.e. one that has not been used during training is passed to the

best performing model described before. In contrast to training, the weights are now

fixed and only predictions are made. During this process, an evaluation accuracy of

59.5% was achieved.

 Computation times

Since no extensive increases in computation times upon changing parameters while

performing network trainings on the CPU were observed, models were not optimised

to that effect. For the sake of completeness, all runtimes are listed below. Calculation

times ranged from 51 minutes and 26 seconds for Network 3 to 2 hours, 39 minutes

and 35 seconds for the largest tested mini-batch size of 150 images.

Table 8: List of the computation times of the respective trained models

Model Time
Learning rate 0.01 1h 49min 33s

Learning rate 0.001 = Combination 1 2h 7min 3s
Learning rate 0.0001 1h 45min 28s

Mini-batch 50 55min 51s
Mini-batch 100 2h 2min 58s
Mini-batch 150 2h 39min 35s

Network 1 1h 0min 0s
Network 2 1h 4min 59s
Network 3 51min 26s
Network 4 58min 51s

Combination 1 shuffled 1h 44min 12s
Combination 2 2h 36min 36s

Combination 2 shuffled 1h 44min 9s
Combination 3 1h 48min 51s

Combination 3 shuffled 2h 24min 4s
Combination 4 1h 54min 35s

Combination 4 shuffled 1h 53min 13s
Combination 5 1h 41min 30s

Combination 5 shuffled 2h 7min 16s
Combination 6 2h 11min 38s

Combination 6 shuffled 2h 8min 10s

Discussion 61

4 Discussion

A neural network able to classify treatment plans into groups according to their GPR

was established and optimised. As a first approach of assessing the performance of

neural networks concerning the task mentioned above one possible implementation

of a convolutional neural network was presented, which demonstrated the ability to

produce reasonable output. The generation of input data, i.e. the transformation of

radiotherapy treatment plans to fluence maps was accomplished as desired.

 Interpretation of Results

Overall, accuracy values in the range of 57%-69% were observed upon training

different network layer sequences with varying hyperparameters. The obtained

results will be discussed and interpreted below.

The increase of network depth, i.e. the addition of convolutional and fully connected

layers lead to the predicted improvement of network performance of ~5% to up to

64% accuracy compared to the smallest network presented in the template. This

increase originates from the higher number of features that are identified and used

for classification. However, the expected large increase of computation time with

depth of network due to an increased number of parameters was not observed or only

minimal.

Furthermore, the achieved results for learning rate and batch size variation supported

the theoretical background and underlying fundamentals of machine learning as

presented in 2.7. The largest learning rate exhibited the expected behaviour of

oscillating around the minimum but not reaching it, due to the step size being too

large, while the smaller learning rates converged to values of ~ 64%. The variations

upon changing mini-batch size support the theoretical predictions, as the observed

curves appear smoother with increasing batch size, probably related to the gradient

of the loss function. The gradient is formed by the average of the differences of all

predictions. Increasing the number of predictions – as it is the case when increasing

the number of images passed to the network at once – enhances the precision of the

gradient.

Discussion 62

While the built network is robust concerning shuffling of input data, switching of

datasets causes a discrepancy of accuracy of 10% (e.g. Combination 4 and 6 in

Figure 28). The testing of robustness against shuffling behaved as desired, supporting

the assumption that the order the input data is passed to the network does not

influence the outcome. However, the large difference in accuracy observed when

switching datasets seems to originate from the unbalanced distribution of input data

to the three labels and thus the three datasets and indicates the necessity to improve

the network in this context. Suggestions on how to overcome this limitation are

described in section 4.3.

In general, the relevance of the analysis of computation times is questionable, since

the runtime also depends on the workload on the CPU, which varied with the time

of day and the personal activity and therefore the observations did not match the

theoretically expected one. In contrast to the predictions, decreasing the learning rate

did not always lead to a longer computation time and in some cases even to a decrease

in runtime. However, the observed increase of computation time with batch size is

in line with the fact that more images are used per computation step.

 Comparison to Literature

The obtained results are compared with one achieved by Interian et al., since it was

aimed to replicate and improve their stated outcome [42]. The best performing

network, i.e. the CNN with four convolutional layers and three fully connected layers,

reached an accuracy value of 69% upon training with a learning rate of 0.001 and a

mini-batch size of 100. In comparison to that, Interian et al. achieved an accuracy of

0.70 ± 0.05 upon predicting GPR values of fluence maps. However, since the aim

was to determine continuous values rather than distinct classes, the mean absolute

error (MAE) was used as evaluation metric in order to measure accuracy. In contrast,

the metric that is commonly used in classification problems and was therefore applied

in this work is the cross entropy, making the direct comparison of the results

challenging. However, the results achieved in this thesis are of the same order of

magnitude as the achieved accuracy using a CNN to predict GPR based on fluence

maps presented in literature and are therefore considered as plausible.

Discussion 63

Another approach of using deep learning methods to evaluate QA data was

investigated by Nyflot et al., using a convolutional neural network to identify errors

in QA measurements and comparing the performance to manually selected features

[59]. In contrast to Interian et al., the group focused on the detection of errors rather

than predicting a parameter of the plan using gamma images displaying the gamma

index of each point of the irradiated field. In this case, a two- or three-class

classification problem was investigated, respectively. Their deep network achieved a

maximum accuracy of 64.1% upon dealing with three classes, using the max margin

loss function. The results suggest the achieved accuracies in this work hold up to the

current findings of image classification of QA plans related to GPR in literature, even

though again a different metric was used to compute the loss function.

What appears to be a satisfactory result at first glance has to be treated with caution:

upon closer inspection of the evaluation of unknown data it was evident that the

network classified all the input data as label 0, probably stemming from the large

proportion of input images that incorporate the label 0. Furthermore, the networks

showed largely varying accuracies upon switching of datasets, which leads to the

evaluation of the encountered limitations within the presented work.

 Limitations and Improvements

Despite the encouraging comparison with literature, further improvements are

necessary in order to reach the final goal of implementing the proposed machine

learning routine into the standard clinical workflow. The results show a wide range

of different accuracy values upon testing different network structures and especially

large variations when assessing the robustness of the built networks against switching

of datasets. Therefore, the findings require identification and examination of possible

errors, as well as a discussion of other approaches for future investigations of that

matter. The limitations encountered over the course of this work occurred in different

aspects of the input dataset, network building and training processes. The main

problem encountered was the faulty classification of treatment plans in the group

with highest GPR values, due to the predominant assignment of label 0 to the

acquired treatment plans.

Discussion 64

 Dataset

As it is the case for all machine learning methods, increasing the number of patient

data and therefore increasing the training examples is a method of improving the

resulting accuracy. While the 600 used images show to be of the same order of

magnitude as the one compared with literature, results are expected to improve with

increasing number of input data. Increasing the number of images would in this case

require to obtain older plans, with the current planning dates of the retrieved patient

data for this thesis already spanning over three years. Including even older plans

would reduce the uniformity and therefore quality of data, since planning and

treatment techniques have changed and improved over time. Therefore, new data

has to be acquired.

On this note, the improvements in delivery systems and planning software lead to

enhanced GPR values for more recent plans. This causes the number of plans with

lower GPRs and therefore plans with label 1 or 2 to be found rather sparsely,

hindering the building of a valid CNN model. Therefore, the desired balanced

distribution of data to labels was not possible, since almost 64% of all the plans were

categorised with the label 0. Despite best efforts to adjust the intervals determining

the labels to distribute the input data evenly to all labels, the number with images

of associated label 0 was still the largest and the trained networks were prone to

identifying most data with label 0, as it was observed upon evaluating unknown data.

Since the GPRs were obtained using the 3mm/3% criteria, a method to discern

planning data more precisely would be to apply the 2mm/2% criteria, further

distributing the obtained gamma passing rates to lower values and increasing the

variance in the dataset. Also, it might be necessary to re-investigate the data set for

drifts of the linac and the detector, which could also influence the classification.

Other approaches of labelling the patient data were also considered. Separating the

data into 4 classes did not yield valid output, since the resulting accuracy figures

only equalled random guessing. Distinguishing only two classes and in that way

introducing the pass-fail criteria of the QA measurement was considered as not fine

enough for this application. This approach would also worsen the distribution of data

to labels, since only plans with a GPR of <90% fail the QA measurement, which

Discussion 65

amounts to only 5 plans out of 600. Again, in this scenario, a network that only

predicts label 0 would yield a high accuracy but would not offer a feasible model.

The chosen intervals of GPR determining the labels in this thesis were somewhat

arbitrary and served mainly the goal to achieve a balanced distribution to the labels

than a statement about failing or passing the QA measurement.

The differing number of images in each class also seems to be the factor influencing

robustness, since different datasets lead to very different outputs. In line with that

argument, datasets 2 and 3, the combination that yielded the best accuracy, also

contain most of the images classified with label 0. This leads to the assumption that

the high training accuracy is caused by the predominant classification of label 0,

which is correct in most of the cases. The substantially worse performance of the

evaluation dataset on the trained model of only 59.5% evaluation accuracy compared

to 69% training accuracy can be explained by the lower ratio of label 0 to label 1

and 2, therefore a larger portion of predictions are incorrect.

However, using non-balanced distributions of input data to labels is the general

situation in current research and is therefore a problem that can be circumvented by

choosing appropriate calculation metrics and other methods to prevent the network

leaning toward a predominantly present label. Methods that have been proposed to

counteract unbalanced distributions include oversampling, i.e. artificial increase of

numbers of underrepresented labels, therefore either rotating or mirroring images to

generate more input data and thus balancing the distribution in that way. This

method of data augmentation is also generally used to increase the number of input

data, but makes the network more prone to overfitting. On that note, applying a

different technique to counteract overfitting could also be tested in the future.

Another obvious method of balancing the number of labels would be to omit data

from the predominant label, i.e. undersampling. This method therefore reduces the

number of total data instances, and hence reduces the network performance. Finally,

choosing more sophisticated metric to even out the unbalanced distribution enables

the setup of a more feasible network without further manipulating the input data.

Discussion 66

 Metric

The used metric to calculate the loss function as previously discussed was the

TensorFlow function sparse softmax cross entropy, allowing the classification of

mutually exclusive labels. However, in this case other metrics such as the softmax

cross entropy would have offered the possibility to put weights to the different classes,

therefore enabling the prioritisation of images with labels that only occur sparsely

and therefore compensating the imbalance in the distribution. A built-in function is

available in TensorFlow, which requires the specification of a tensor containing a

weight for each sample of the passed data [60]. In this context, the framework

TensorFlow itself is currently worked on and updated frequently, therefore possibly

offering future improvements in mathematical implementations as well as more

efficient computation.

 Fluence maps dimensions

As described, the dimensions of the matrix and therefore the size of the generated

fluence maps images was set to 400x80 pixels. Nevertheless, since the positional

information of the collimators is available in sub-millimetre precision, a finer image

generation would be possible by increasing the image width to 4000 pixels, therefore

increasing the precision of the network predictions. However, this would also

drastically increase the parameters of the input and consequently all following layers.

Subsequently, the increased number of necessary computations of parameters are

more expensive concerning memory of the machine and could therefore be

investigated on a system with higher computing power.

 Physical machine memory

Another problem that was encountered that limited the possibilities of further

research was the limited memory available in the used PC. Therefore, sampling with

a batch-size of the complete dataset of 200 images was not possible due to a limited

RAM of 8 GB. While computation time itself had not posed any obstacles, the models

trainings aiming to investigate batch sizes of 200 images were terminated due to a

lack of memory. All operations were performed on the included CPU with 2.90 GHz

clock frequency, which was sufficient for the performed tasks since computation times

Discussion 67

were in the range of one to three hours. The option of using the built-in GPU was

considered, but due to lacking memory, not even small, simple networks were able

to be trained on the graphical device. One suggestion for improvements for the future

is therefore the use of GPUs with larger memory, since the computation operations

on tensors can be parallelised and therefore runtime is improved. Alternatively, using

a PC with increased RAM would already enable testing of wider and deeper networks.

 Further improvements

Another concept that may offer further potential but was not applied in this work

was to include the information of the total number of monitor units and checkpoints

per plan in the input to the network in order to consider not only the relative but

the absolute dose output of different plans. Since the used fluence maps show only

the relative fluence distribution of each plan, i.e. the darkest region of prostate plans

does not correlate to the same dose as the darkest region of HN plans, considering

the full delivered dose as input parameter for the network may contribute to the

assessment of complexity and GPR. Additionally, the number of checkpoints may

also hold valuable information that could be used assessing the complexity and GPR,

since a slight correlation of the number of checkpoints and GPR values is expected.

A method to circumvent the convolution blocks and feed these parameters directly

to the network needs to be developed.

Expanding the network size, i.e. the number of neurons, filters and kernel sizes per

layer was not investigated in this thesis for multiple reasons. In order to understand

the fundamental mechanisms and relations between parameters and the behaviour of

the network, other parameters that were easier to vary and more straightforward

were tested first. Additionally, the aforementioned memory issues prevented the

further widening of the network.

The application of the investigated CNNs is not limited to VMAT treatments only.

Since the fluence maps present the input information and may be created from TPS

output for all the different radiation methods, the concepts may also be adapted for

particle therapy.

Discussion 68

Finally, the performed optimisations provided a first insight into neural networks

and the possibility of incorporating machine learning algorithms in the clinical

workflow to improve patient care and reduce time for quality assurance

measurements. Using the proposed approaches to improve the CNN and the input

data likewise, a constant improvement of the achieved results in this work can be

expected.

Conclusion and Outlook 69

5 Conclusion and Outlook

For applying new machine learning algorithms in the clinical workflow and

substituting a well-understood patient specific QA process, high reliabilities and

accuracies of results are required. This thesis set the first step into investigating

neural networks designed for the special purpose of identifying the complexity of

fluence maps for Versa HD and Synergy linacs allowing a classification according to

the gamma passing rate.

In conclusion, incorporating machine learning algorithms and especially neural

networks into the clinical workflow to estimate GPR values of treatment plans is a

promising approach for future improvements of the QA procedure. Strategies on how

to overcome the encountered limitations have been proposed and may be

implemented in the future. Enlarging and improving the dataset is one of the key

aspects expected to improve model performance, along with choosing a computation

metric more suitable for the task and increasing the resolution of input images. That,

in addition to further optimisation of the network dimensions is possible on a PC

with larger computing power. Nevertheless, the results achieved in this work are

comparable to current findings in literature and show a high potential of

improvement that may be investigated in the future.

References 70

References

[1] “Krebs im Überblick.” [Online]. Available: http://www.statistik-
austria.at/web_de/statistiken/menschen_und_gesellschaft/gesundheit/krebs
erkrankungen/krebs_im_ueberblick/index.html. [Accessed: 13-Dec-2018].

[2] “Todesursachen im Überblick.” [Online]. Available: http://www.statistik-
austria.at/web_de/statistiken/menschen_und_gesellschaft/gesundheit/todes
ursachen/todesursachen_im_ueberblick/index.html. [Accessed: 13-Dec-2018].

[3] F. M. Khan, “Physics of Radiation Therapy Third Edition,” J. Am. Med.
Assoc., p. 1138, 2003.

[4] D. Radstone, “Radiotherapy: principles and applications,” in Gynaecological
Oncology for the MRCOG and Beyond, N. Acheson and D. Luesley, Eds.
Cambridge: Cambridge University Press, 2011, pp. 95–102.

[5] L. Freund, “Elements of General Radiotherapy for Practitioners,” Rehman,
New York, 1904.

[6] A. T. Porter and J. D. Forman, “Prostate brachytherapy. An overview.
[Review],” Cancer, vol. 71, no. 3 Suppl, pp. 953–958, 1993.

[7] P. Mayles, “Handbook of radiotherapy physics: theory and practice,” p. 1425,
2007.

[8] E. D. Podgorsak and International Atomic Energy Agency., Radiation
oncology physics : a handbook for teachers and students. International Atomic
Energy Agency, 2005.

[9] E. E. Klein, M. Vicic, C. M. Ma, D. A. Low, and R. E. Drzymala, “Validation
of calculations for electrons modulated with conventional photon multileaf
collimators,” Phys. Med. Biol., vol. 53, no. 5, pp. 1183–1208, 2008.

[10] European Respiratory Society., Breathe. European Respiratory Society, 1969.

[11] A. Taylor and M. E. B. Powell, “Intensity-modulated radiotherapy - What is
it?,” Cancer Imaging, vol. 4, no. 2, pp. 68–73, 2004.

[12] M. Teoh, C. H. Clark, K. Wood, S. Whitaker, and A. Nisbet, “Volumetric
modulated arc therapy: a review of current literature and clinical use in
practice,” Br. J. Radiol., vol. 84, no. 1007, pp. 967–996, 2011.

[13] S. Rana, “Intensity modulated radiation therapy versus volumetric intensity
modulated arc therapy,” J. Med. Radiat. Sci., vol. 60, no. 3, pp. 81–83, 2013.

References 71

[14] D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the
quantitative evaluation of dose distributions,” no. March, pp. 656–661, 1998.

[15] M. Hussein, C. H. Clark, and A. Nisbet, “Challenges in calculation of the
gamma index in radiotherapy - Towards good practice,” Phys. Medica Eur. J.
Med. Phys., vol. 36, pp. 1–11, 2017.

[16] W. Ertel, Introduction to Deep Artificial Intelligence, Undergraduate Topics
in Computer Science. 2018.

[17] K. P. Murphy, Machine learning: a probabilistic perspective. MIT Press ,
Cambridge, Mass. [u.a.], 2012.

[18] S. M. Shamim, M. Badrul, A. Miah, A. Sarker, M. Rana, and A. Al Jobair,
“Handwritten Digit Recognition using Machine Learning Algorithms,” no.
July, pp. 15–23, 2018.

[19] H. Kulkarni, “Unconstrained Facial Recognition using Supervised Deep
Learning on Video,” no. May, 2018.

[20] J. H. Lee, J. Shin, and M. J. Realff, “Machine learning: Overview of the recent
progresses and implications for the process systems engineering field,” Comput.
Chem. Eng., vol. 114, pp. 111–121, 2018.

[21] R. J. Reynolds and S. M. Day, “The growing role of machine learning and
artificial intelligence in developmental medicine,” Dev. Med. Child Neurol.,
vol. 60, no. 9, pp. 858–859, 2018.

[22] W. . Baxt, “Application of artificial neural networks to clinical medicine,”
Lancet, vol. 346, no. 8983, pp. 1135–1138, 1995.

[23] C. Park, C. C. Took, and J.-K. Seong, “Machine learning in biomedical
engineering,” Biomed. Eng. Lett., vol. 8, no. 1, pp. 1–3, 2018.

[24] A. Esteva et al., “Dermatologist-level classification of skin cancer with deep
neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[25] C. E. Cardenas et al., “Auto-delineation of Oropharyngeal Clinical Target
Volumes Using Three-Dimensional Convolutional Neural Networks,” Phys.
Med. Biol., 2018.

[26] R. Vivanti, L. Joskowicz, N. Lev-Cohain, A. Ephrat, and J. Sosna, “Patient-
specific and global convolutional neural networks for robust automatic liver
tumor delineation in follow-up CT studies,” Med. Biol. Eng. Comput., vol. 56,
no. 9, pp. 1699–1713, 2018.

References 72

[27] Y. Wang et al., “Automatic Tumor Segmentation with Deep Convolutional
Neural Networks for Radiotherapy Applications,” Neural Process. Lett., pp.
1323–1334, 2018.

[28] W. S. McCulloch and W. H. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[29] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain,” Psychol. Rev., vol. 65, no. 6, pp. 386–408,
1958.

[30] “A Gradual and Gentle Introduction to Deep Learning — AI-SS: Artificial
Intelligence Software Solutions.” [Online]. Available: https://www.ai-ss.org/a-
gradual-and-gentle-introduction-to-deep-learning/. [Accessed: 16-Dec-2018].

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[32] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” 2014.

[33] “Machine learning fundamentals (II): Neural networks.” [Online]. Available:
https://towardsdatascience.com/machine-learning-fundamentals-ii-neural-
networks-f1e7b2cb3eef. [Accessed: 05-Dec-2018].

[34] M. Early and A. Program, “Machine Learning with TensorFlow Version 10
MEAP Edition Manning Early Access Program Copyright 2017 Manning
Publications.”

[35] “Understanding activation functions better - bobdc.blog.” [Online]. Available:
http://www.snee.com/bobdc.blog/2017/09/understanding-activation-
funct.html. [Accessed: 19-Dec-2018].

[36] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks
Xavier,” Proc. Fourteenth Int. Conf. Artif. Intell. Stat., vol. 15, pp. 315–323,
2011.

[37] “Convolutional Neural Networks (LeNet) — DeepLearning 0.1
documentation.” [Online]. Available:
http://deeplearning.net/tutorial/lenet.html. [Accessed: 21-Dec-2018].

[38] “2: An example of convolution operation in 2D 2 . | Download Scientific
Diagram.” [Online]. Available: https://www.researchgate.net/figure/An-
example-of-convolution-operation-in-2D-2_fig3_324165524. [Accessed: 20-
Dec-2018].

[39] G. Carlsson, “Using Topological Data Analysis to Understand the Behavior of
Convolutional Neural Networks.” [Online]. Available:

References 73

https://www.ayasdi.com/blog/artificial-intelligence/using-topological-data-
analysis-understand-behavior-convolutional-neural-networks/.

[40] Y. LeCun, L. Bottou, L. Bengio, and P. Haffner, “Gradient-Based Learning
Applied to Document Recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J.
Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[42] Y. Interian et al., “Deep Nets vs Expert Designed Features in Medical Physics:
An IMRT QA case study,” Med. Phys., 2018.

[43] H. Li, L. Dong, L. Zhang, J. N. Yang, M. T. Gillin, and X. R. Zhu, “Toward
a better understanding of the gamma index: Investigation of parameters with
a surface-based distance method,” Med. Phys., vol. 38, no. 12, pp. 6730–6741,
2011.

[44] “All CIODs — DICOM Standard Browser.” [Online]. Available:
https://Dicom.innolitics.com/ciods. [Accessed: 19-Jun-2018].

[45] “lxml.etree.” [Online]. Available: https://lxml.de/api/lxml.etree-module.html.
[Accessed: 08-Jan-2019].

[46] “os — Miscellaneous operating system interfaces — Python 3.7.2
documentation.” [Online]. Available:
https://docs.python.org/3/library/os.html. [Accessed: 08-Jan-2019].

[47] “DCMTK: xml2dcm: Convert XML document to DICOM file or data set.”
[Online]. Available: https://support.dcmtk.org/docs/xml2dcm.html.
[Accessed: 10-Jan-2019].

[48] “Dicompyler.” [Online]. Available: http://www.Dicompyler.com/. [Accessed:
11-Jun-2018].

[49] “NumPy — NumPy.” [Online]. Available: http://www.numpy.org/. [Accessed:
08-Jan-2019].

[50] “Matplotlib: Python plotting — Matplotlib 3.0.2 documentation.” [Online].
Available: https://matplotlib.org/. [Accessed: 08-Jan-2019].

[51] A. Damien, “https://github.com/aymericdamien/TensorFlow-
Examples/blob/master/examples/5_DataManagement/build_an_image_dat
aset.py.” Github repository, 2015.

References 74

[52] “TensorFlow.” [Online]. Available: https://www.tensorflow.org/. [Accessed:
12-Jan-2019].

[53] “TensorBoard: Visualizing Learning | TensorFlow.” [Online]. Available:
https://www.tensorflow.org/guide/summaries_and_tensorboard. [Accessed:
12-Jan-2019].

[54] D. Kingma and J. Lei Ba, “Adam: A Method for Stochastic Optimization,”
CoRR, vol. abs/1412.6, pp. 58–62, 2015.

[55] “Regularization for Simplicity: L₂ Regularization | Machine Learning Crash
Course | Google Developers.” [Online]. Available:
https://developers.google.com/machine-learning/crash-course/regularization-
for-simplicity/l2-regularization. [Accessed: 15-Jan-2019].

[56] “Machine Learning Glossary | Google Developers.” [Online]. Available:
https://developers.google.com/machine-learning/glossary/. [Accessed: 15-Jan-
2019].

[57] “Setting the learning rate of your neural network.” [Online]. Available:
https://www.jeremyjordan.me/nn-learning-rate/. [Accessed: 17-Jan-2019].

[58] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang,
“On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima,” pp. 1–16, 2016.

[59] M. J. Nyflot, P. Thammasorn, L. S. Wootton, E. C. Ford, and W. A.
Chaovalitwongse, “Deep learning for patient‐specific quality assurance:
identifying errors in radiotherapy delivery by radiomic analysis of gamma
images with convolutional neural networks,” Med. Phys., vol. 0, no. 0, p.
mp.13338, 2018.

[60] “tf.losses.softmax_cross_entropy | TensorFlow.” [Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/losses/softmax_cross_entr
opy. [Accessed: 23-Jan-2019].

List of Tables 75

List of Tables

Table 1: Numbers of plans per tumour group ... 29

Table 2: Distribution of all treatment plans to GPR values 30

Table 3: Dicom tag IDs, names and descriptions .. 31

Table 4: Distribution of the labels and tumour groups to the three datasets 41

Table 5: List of used terminology of neural networks. .. 46

Table 6: Combinations of the three obtained datasets .. 53

Table 7: Combinations of shuffled datasets in order to test robustness 53

Table 8: List of the computation times of the respective trained models 60

List of Figures 76

List of Figures

Figure 1: Depth-dose curves ...7

Figure 2: Spread out Bragg peak of a proton beam treatment9

Figure 3: Contributions of different effects to total cross section of photon absorption

in carbon .. 10

Figure 4: Schematic image of a linac setup .. 11

Figure 5: Collimators that shape the beam .. 11

Figure 6: Multileaf collimator .. 12

Figure 7: Dose distributions for a): localised prostate cancer, b): cervix cancer, c)

head and neck cancer patient ... 15

Figure 8: Schematic depiction of the calculation of the gamma index 16

Figure 9: Structure of a single-layer perceptron ... 19

Figure 10: Schematic structure of neural networks .. 20

Figure 11: Three most popular activation functions .. 21

Figure 12: 2D representation of convolution operation .. 23

Figure 13: Schematic depiction of layer sequence in a CNN.................................... 24

Figure 14: Schematic depiction of calculation of jaw positions 34

Figure 15: Schematic representation of the calculation of the transmitted dose 37

Figure 16: Fluence map of a gynaecological treatment plan. 39

Figure 17: Fluence map of a prostate boost treatment. ... 39

Figure 18: Fluence maps for 2 different HN plans. .. 40

Figure 19: TensorBoard visualisation of the complete model 42

Figure 20: Display of an expanded node in TensorFlow .. 43

Figure 21: Structure of the used convolutional neural network 48

Figure 22: Different tested layer sequences .. 50

Figure 23: Depiction of the learning rate ... 51

Figure 24: TensorBoard visualisation of the loss for different network models 55

Figure 25: Achieved accuracy of four different layer sequences, represented as training

accuracy over number of epochs. ... 56

Figure 26: TensorBoard graph displaying the training accuracy for different learning

rates over the number of epochs. ... 57

Figure 27: Training accuracy of trained model for different mini-batch sizes. 57

List of Figures 77

Figure 28: Accuracy of networks for six different combinations of datasets, given as

training accuracy over number of epochs. ... 58

Figure 29: Training accuracy of networks over number of epochs to compare original

datasets with shuffled ones. ... 59

Figure 30: Training accuracy of networks over number of epochs to compare original

datasets with additionally shuffled ones. ... 59

Appendix: Documentation 78

Appendix: Documentation

monaco2dicom.py

- Takes path of folder that contains subfolders (name = patient ID) containing
tel.1-files, creates a list of full paths for each tel1-file

- Identifies sections in tel1-file that contain wanted information and writes those
in ElementTree-element

- Performs necessary calculations on jaw positions and value that is used to
infer cumulative beam meterset weight

- Rearranges values of leaf positions
- Assigns label to each file depending on the GPR of the plan, to be found in a

txt file containing strings connecting patient ID and GPR
- Writes XML and further converts it to Dicom using Patient ID & label as

name and saves it to given path

fluence_maps.py

- Takes path of folder containing Dicom files
- Scans through Dicom; using tags and DicomParser to find Checkpoints and

needed values to calculate transmitted dose
- Checks if used linac is of type Versa or Synergy and therefore differentiates

needed values
- Reads positions of collimators and transforms to match chosen coordinate

system
- Calculates dose for different regions: covered by collimators, not covered by

collimators, party covered since collimator move, considering both jaws and
MLC leaf pairs

- Writes matrix with 400 columns and 80 rows
- For linacs with only 40 leaf pairs, every other row is copied to fill matrix
- Matrix is converted to grayscale PNG image, named after input Dicom name

(Patient ID & label)

neuralnet1.py

- Reads images either from a txt file (give path) containing full image paths and
corresponding label or from folder containing subfolder with images (names
contain their corresponding label)

- Converts input PNGs to tensor

Appendix: Documentation 79

- Builds network model in TensorFlow using convolutional, pooling, flattening
and fully connected layers

- Forms regularizer and add to convolutional layers and loss function
- Performs training using given training and testing datasets
- Calculates accuracy and loss and writes values as well as model graph to

TensorBoard
- Saves model with tf.Saver

randomise.py

- Takes txt file containing full image paths as rows as input, outputs shuffled
list in a new file

group_data.py

- Takes txt file containing full image paths as rows as input, looks up patient ID
(=name of image) in txt file containing IDs and corresponding GPR values

- Writes full path and new label according to chosen GPR intervals into new
output file

