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Abstract 

Machine learning and especially neural networks receive more and more attention in 

current scientific applications, as shown by the increasing number of publications. 

Especially in medicine and biomedical engineering, where human errors still prove to 

be a cause of failure, machine learning algorithms are used to overcome the limits of 

human decision-making. One field that may benefit from the recent developments is 

radiation therapy, as machine learning algorithms perform well on classifying image 

data. The standard clinical workflow at the Medical University of Vienna / General 

Hospital of Vienna (AKH) includes a quality assurance (QA) measurement in 

advance of each high precision patient treatment. Each treatment is planned 

beforehand using the software Monaco (Elekta AB, Stockholm, Sweden), which 

determines beam energies and the positions of collimators of the medical linear 

accelerator (linac) according to a desired dose distribution covering delineated regions 

of interest on computer tomography images. The QA measurement on the linac is 

then performed with a verification phantom, and finally planned and measured dose 

distributions are compared in order to ensure safe dose deposition in the patient. The 

gamma passing rate (GPR) serves as a measure of conformity of these two dose 

distributions. The GPR depends on the size, shape and location of the tumour in the 

patient and has to exceed a certain value in order for the plan to be regarded as safe 

to irradiate on a patient. In this thesis, the setup and training of a convolutional 

neural network (CNN) with the aim of classifying treatment plan data by estimating 

the GPR is described. Achieving this task with sufficient accuracy will enable a higher 

efficiency of the QA procedures and more efficient use of the medical linear 

accelerator. 

A neural network is a deep learning concept mimicking the information processing 

in human neurons by its layered structure. Each layer is composed of a number of 

nodes, called neurons. They are connected to other neurons in the previous and/ or 

subsequent layers, each connection being weighted by a weighting function. The 

training process involves the passing of input data with known output to the network, 

i.e. data that has been labelled according to their corresponding class. To obtain 

input images, 600 volumetric modulated arc therapy (VMAT) treatment plans for 
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either prostate, gynaecological or head-and-neck (HN) cancer generated for either 

Versa HD or Synergy linacs (Elekta, Sweden) were extracted and assigned to one of 

three labels according to their GPR value. The planning data, i.e. the dose and 

positional information of all collimators contained in the planning data in Dicom 

(digital imaging and communication in medicine) format was then transformed into 

grayscale fluence maps, depicting the transmission of dose through the beam window. 

The complete dataset was separated into three smaller datasets designated for 

training, testing or evaluation purposes. During training, which was performed in 

Python using the framework TensorFlow, two datasets were used to set the weights 

in order to output the known label of each input accordingly following an 

optimisation operation. Several different models were trained, varying the learning 

rate, batch size and depth of network in order to improve achieved training accuracies 

and further testing the robustness of the resulting layer structure by switching and 

shuffling the datasets. 

The achieved training accuracies range from ~57% to ~69%, showing a large variation 

upon changing the layer sequence and parameters. Furthermore, robustness testing 

revealed large variations of accuracy upon switching the used datasets, leading to 

accuracies between ~59% and ~69%. Evaluating the best performing convolutional 

neural network on unknown data, i.e. the third dataset not used during training, 

resulted in an evaluation accuracy of 59.5%, showing a reduction of 10% compared 

to the training accuracy of ~69%. Similar values can be found in recent literature 

evaluating fluence maps of radiotherapy treatments according to the associated 

GPR1. Since the obtained results only offer a first insight on the performance and 

behaviour of CNN, various approaches to increase the achieved accuracies and 

enhance network robustness have been identified. Improvements with respect to 

accuracy and robustness are necessary for utilizing these CNNs in a clinical workflow 

but go beyond scope of this work, as the objective was to identify general mechanisms 

and problems of neural networks in radiotherapy. The results obtained in this thesis 

show the potential of CNNs acting as a promising new approach for applications in 

quality assurance in radiation therapy. 

                                      
1 Interian et al., 2018 and Nyflot et al., 2018  
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1 Introduction 

In an aging society, illnesses that are more likely to develop with increasing age such 

as cancer are on the rise in Austria. However, cancer is not only an issue of the aging 

population. In 2015, there was a 28% chance of being diagnosed with cancer before 

turning 75 [1]. Malignancies are responsible for about a fourth of all deaths [2]. 

Therefore, radiotherapy is a growing and evolving field and has seen many 

improvements over the last years. This chapter introduces the main concepts of 

radiation therapy and its methods, the underlying fundamental physics, as well as 

treatment planning and delivery in section 1.1. The different particle types that can 

be used as well as the most common delivery modalities are discussed. Section 1.2 is 

dedicated to machine learning and the general approach and mechanisms present in 

today’s research, with regard to the network type that is used in this thesis.  

 Radiotherapy 

The main goal of radiotherapy is to deliver a maximum dose to the tumour while 

sparing as much of healthy tissue as possible. This is achieved by applying ionising 

radiation to the patient, which consists of charged or uncharged particles with an 

energy higher than the energy that is needed to ionise atoms. This radiation causes 

strand breaks in cell DNA, leading to cell death [3]. This happens either by directly 

ionising particles hitting the DNA double helix or by creating free radicals upon 

colliding with oxygen or hydrogen atoms, which can then react with the DNA strand 

itself. Charged particles ionise directly, while uncharged particles compose the 

indirectly ionising radiation and create secondary ionising particles and free radicals 

upon entering tissue. 

Due to the reduced ability to repair themselves, cancer cells are more affected by 

radiative damage compared to healthy tissue, which makes radiation therapy 

possible. Treatments are delivered in fractions, where the total dose a patient receives 

is split up in smaller doses and irradiated a number of times. This approach gives 

healthy cells time to repair until the next fraction is irradiated, therefore targeting 

mainly cancerous cells [4]. 
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Radiotherapy is a rather old concept, the first treatment being delivered in 1896 by 

Austrian radiologist Leopold Freund only one year after the discovery of x-rays [5]. 

It since became a standard method of treating cancer patients, along with surgical 

removal of the tumour and chemotherapy. In certain cases, combinations of the 

aforementioned treatments are possible, for example administering radiation on 

residual tumour tissue if a complete surgical removal of the tumour is not possible. 

Over the years, advanced methods have been developed that allow precise deposition 

of dose in the tumour and spare the healthy tissue around, both in delivery machines, 

treatment planning software and imaging, which allow a precise definition and 

irradiation of target volumes. 

 

 Delivery methods 

Depending on the mode of delivery, external beam (teletherapy) and internal 

(brachytherapy) radiotherapy can be distinguished. Brachytherapy denotes the 

medical practice of inserting small sealed radioactive sources in cancerous tissue, 

placing probes in body cavities or placing sources externally on the skin. The 

deposition of dose is carried out locally and the time the sources remain in or on the 

patient is individually set, ranging from a few minutes to 24 hours per treatment 

fraction for temporary implants. Permanent implants stay in the patient’s body but 

the radioactive material decays completely after several months. Brachytherapy is 

most commonly applied to the prostate, breast, uterus, vagina and cervix as well as 

around the mouth cavity, the eye and on the skin [6]. 

In teletherapy, the dose is delivered via an external radiation source, e.g. a linear 

accelerator (linac, see 1.1.4). The beam exits the linac from the gantry, which is able 

to rotate around the movable patient table and enables the irradiation of the tumour 

from different angles. For this treatment method, different ionising particles as well 

as X-ray photons can be used and are chosen according to their dose deposition 

properties. 
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 Beam qualities 

The central distinguishing feature of radiation types that determines the mode of 

treatment is the particle type. Charged particles, such as electrons, protons or heavier 

ions like carbon or boron are responsible for directly ionising radiation, while 

electromagnetic radiation, which is commonly described as a stream of photons, 

causes indirect ionisations in tissue. Photon and electron therapy devices have a 

similar but, compared to particle therapy, a comparatively easy setup in the form of 

a medical linac which accelerates electrons. Optionally, photons can be created by 

positioning a retractable transmission target in the beam path, which is hit by 

electrons (see 1.1.4). Therefore, radiation therapy using photons is one of the most 

common delivered treatments today. Subsequently, the topic of this work will be 

narrowed down to photon therapy, which is the most common treatment at the 

Medical University of Vienna / AKH Vienna and around the world. 

The deposition of energy in a medium, in that case human tissue, is described by the 

linear stopping power [7]. This property differs for each particle type, therefore 

different particles serve different applications. As illustrated in Figure 1, the depth 

at which most of the dose is deposited depends on particle type and energy. 

Figure 1: Depth-dose curves for a) 15 MeV electrons and b) 15 MV photons, c) fluence 
of 200 MeV protons, d) stopping power of 200 MeV protons and e) depth dose curve of 
200 MeV protons [7] 

For electron beams, curve a) shows the characteristic dose build-up-region after entry 

into the tissue, reaching a maximum of dose deposition shortly after. Since electrons 

are light charged particles, they undergo scattering reactions upon travelling through 
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the patient, which at first leads to an increase in the obliquity of electron paths since 

they are scattered from the original incident direction, increasing the electron fluence 

with depth until a maximum of dose deposition is reached. This is the case when the 

beam is completely diffuse and the mean scattering angle reaches a maximum. A 

steep dose fall-off is seen after the dose maximum due to further scattering of 

electrons, which enables sparing of the deeper situated tissues. Taking advantage of 

the shape of the depth-dose curve, electron beams are used to treat tumours at or 

close to the surface [7]. 

In comparison to electrons, photons of the same energy exhibit a significantly lower 

surface dose upon entry into tissue, while reaching roughly the same maximum dose 

after a dose build-up-region, as depicted by curve b). The fall-off, however, is less 

pronounced, the photons are able to penetrate deeper into tissue. The build-up is due 

to the generation of secondary electrons mainly by Compton scattering and the 

deposition of their energy along their path further away from the location of 

interaction. The dose reaches a maximum at a depth approximating the electron 

range, at which an electronic equilibrium is reached. Photon absorption and 

scattering leads to decreasing numbers of Compton electrons, which causes the dose 

to decrease after the dose maximum. Photon beams show a favourable surface dose 

in comparison to electrons and can therefore be used to treat tumours at a larger 

depth with better tissue sparing. 

In recent years, radiation therapy with protons and heavy ions has gained more 

importance due to their favourable depth dose profile, which shows a Bragg-peak at 

a certain depth where most of the dose is delivered shortly before the particles are 

stopped by tissue (see curve e) in Figure 1). The depth protons can reach inside the 

patient’s body is determined by the particle beam energy, therefore adjusting the 

energy to reach a specific depth in the patient’s body is possible. Overlaying beams 

of different energies creates a favourable dose deposition in the patient, with proton 

beams creating a spread out Bragg peak (SOBP), covering a volume with a relatively 

homogeneous dose, sparing the tissue behind almost completely, as illustrated in 

Figure 2. 
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Figure 2: Spread out Bragg peak of a proton beam treatment, achieving a plateau of 
dose at the desired depth [7] 

The downside of proton and heavy ion radiotherapy is the need for an accelerator in 

the form of a cyclotron or synchrotron, which – in contrast to linear accelerators used 

for electrons – has to be rather large and are therefore more expensive. Due to the 

higher weight of protons and ions compared to electrons, acceleration and steering 

the beam to the treatment rooms is more challenging. Nevertheless, more and more 

proton and heavy ion treatment centres are built aiming for a better patient 

treatment. One project especially important for Austria is the MedAustron, located 

in Wiener Neustadt. 

 Photon interactions 

Since this thesis deals with photon therapy, the three main interactions they can 

undergo upon colliding with matter will be described further. These effects include 

the photoelectric effect, the Compton effect as well as pair production. As 

demonstrated in Figure 3, these interactions show a different contribution to the 

total interaction probability depending on photon energy. The concept of cross 

sections is used to indicate the probability of an interaction by describing an area 

around the photon. Most relevant in radiotherapy, which is using photons in the 

energy range of 3 MeV up to 30 MeV, are the Compton effect and pair production. 
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Figure 3: Contributions of different effects to total cross section of photon absorption in 
carbon [7]. Considered effects are the photoelectric effect (PE), Incoherent or Compton 
scattering (Incoh), Coherent or Rayleigh scattering (Coh), Pair- and Triple production 
(Trip). 

 

The photoelectric effect describes the ionisation of an atom, i.e. the removal of a 

bound electron by the absorption of an incoming photon. This can only occur if the 

photon energy is larger than the binding energy of the electron and is the dominant 

effect in the lower energy range. The Compton effect, also termed Compton or 

incoherent scattering, describes a scattering process. The incoming photon interacts 

with an electron and transfers part of its energy to the electron, which is then ejected 

from the atom. The loss of energy causes the outgoing photon to travel at an angle 

compared to the incoming one. The third effect, pair production, becomes a 

contributing factor for higher energies. An incoming photon is absorbed in the electric 

field of a nucleus and produces an electron-positron pair. Both electron and positron 

have a rest energy of 511 keV, thus for this effect to happen, photon energies of at 

least 1.022 MeV are required [4]. 
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 Medical linac and Beam shaping  

In radiation therapy using photons, linear accelerators are used to generate the 

photon beam. The electrons produced by an electron gun are accelerated by 

radiofrequency waveguides and focused onto a target, leading to production of X-

rays. Before the beam enters the patient, a collimator, a flattening filter as well as a 

dual ion chamber are arranged in the beam path to achieve a uniform beam with 

homogeneous intensity distribution. The ion chambers measure ionisation of the 

contained gas and act as a safety measure to monitor the delivered dose. 

 

Figure 4: Schematic image of a linac setup . If the X-Ray target is removed, irradiation 
with electrons is possible [8]. 

 

 

Figure 5: Collimators that shape the beam [9] 
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To further shape the beam and avoid irradiating a larger volume of tissue than 

necessary, usually two pairs of collimator jaws confine the beam in x- and y-direction 

(with z being the coordinate axis along which the beam travels, also called beams 

eye view, BEV), forming a rectangular field. The last and possibly most important 

step of beam shaping occurs after the jaws, where the multileaf collimator (MLC) is 

located. This collimator consists of a number of pairs of leaves mostly made out of 

tungsten; each one is moved independently to form the desired tumour shape, as 

shown in Figure 6. Depending on the treatment mode, this is done in a step-and-

shoot manner, irradiating from fixed gantry positions around the patient only when 

leaf positions are fixed. The other possible mode involves the continuous movement 

of leaf pairs during the irradiation from several different beam angles. Regarding the 

observed plans for this work, Volumetric Modulated Arc Therapy was used, where 

additionally to MLC leaf movement also the gantry rotates around the patient during 

irradiation (see 1.1.5.3). 

 

 

Figure 6: Multileaf collimator  in BEV to adjust beam cross section to target shape in 
3D-CRT [10] 

 Treatment Modalities 

With the aim of improving dose deposition in the patient and therefore maximising 

healthy tissue sparing, multiple irradiation techniques have been developed. One 

improved modality is 3D conformal radiotherapy (3D-CRT), which achieves better 

dose distributions compared to former techniques only matching height and width of 

tumours by overlapping beams from different beam angles, aiming to conform to 

target volume shapes. Further improvements in aligning to tumour shape is given by 



Introduction    13 

intensity modulated radiotherapy (IMRT), incorporating different beam intensities 

within a single beam. In Volumetric Modulated Arc Therapy (VMAT), 

improvements go another step further by rotating the gantry during the      

irradiation [11]. 

 Three-dimensional Conformal Radiotherapy (3D-CRT) 

Fulfilling the main requirement of radiotherapy of irradiating tumours of simple 

shape while sparing healthy tissue leads to one technique: 3D conformal radiotherapy. 

In a forward planning manner, beams are positioned around the patient, overlapping 

and therefore depositing the most dose over the target volume [11]. Most modes apply 

between two and ten beams, exposing more healthy tissue to a lower dose with 

increasing number of beams. Individual beam shaping and weighting is achieved by 

using multileaf collimator (MLC) to confine the beam to the projected target shape 

and by using wedges to account for different tissue thickness. The single beams only 

incorporate one energy, therefore adapting precisely to complex tumour shapes is 

rather difficult and shows the need for improved treatment techniques. 

 Intensity Modulated Radiation Therapy (IMRT) 

A newer technique to improve dose distribution especially in regions surrounded by 

organs at risk or complex tumour shapes is IMRT – Intensity Modulated 

Radiotherapy. This method makes use of different intensities within a single beam, 

making a more precise and tissue sparing irradiation possible. In contrast, 

conventional radiotherapy methods use beams that only have one uniform beam 

profile and achieve the dose distribution in the body by overlaying of several beams 

and the use of collimators to align the beam dimensions to the tumour shape. For 

computation, IMRT techniques divide the beam into smaller sub-segments, termed 

as beamlets. These beamlets can be weighted differently, making it possible to 

generate non-uniform dose distributions. The delivery of these beamlets is achieved 

by using the (MLC), either in step-and-shoot or in dynamic mode. 

In step-and-shoot IMRT, each beam orientation delivers several differently shaped 

segments depending on the tumour size and outline. The radiation is only turned on 

as soon as the MLC leaf pairs reach their fixed position and the shape of the opening 

corresponds to the segment, in this manner covering all the segments sequentially. 
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The dynamic mode requires the leaf pairs to move continuously during the 

irradiation, covering the whole tumour shape in beams eye view (BEV) for each 

gantry position [11]. 

 Volumetric Modulated Arc Therapy (VMAT) 

Volumetric Modulated Arc Therapy (VMAT) refers to a mode of IMRT that 

continuously irradiates the patient while the gantry performs one or more full 

rotations (arcs) [12]. This approach inevitably covers a large amount of healthy tissue 

but allows a lower dose that only adds up in the tumour. Furthermore, the rotation 

speed as well as the dose rate can be varied and the MLC leaf pairs move continuously 

throughout the irradiation. Additionally, the reduced irradiation time in comparison 

to static field treatments makes the method advantageous to conventional 

approaches in certain cases [13].  

 

 Treatment planning 

Treatment plans are created for each patient before the actual treatment, where two 

approaches may be distinguished depending on the procedure used. In forward 

planning, the planner arranges beams in the treatment planning software, 

overlapping them at the tumour site based on 3D anatomy, e.g. the acquired CT 

images of the patient. This method can only be used for rather simple target 

geometries, irradiating with conventional radiotherapy methods and utilising from 

only 2 up to 10 beam entry angles. 

Today, IMRT is established as a standard and more frequently used, thus inverse 

planning is gaining more interest since it is necessary for this method. In inverse 

planning, which is also done for 3D-CRT treatments, CT images are used to delineate 

the volumes of interest. These include the tumour, a surrounding margin to 

counteract movement of the patient and machine inaccuracies, as well as the OAR 

(organ at risk) volumes, marking radiosensitive organs and tissues in the patient’s 

body that should receive little to no dose.  

According to the delineation conducted by a medical doctor, optimisation programs 

utilizing dose calculation algorithms (e.g. Monte Carlo or eCC) for dose calculation 
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then find the optimal way to apply beams to the volumes from different angles. The 

software further creates the complete treatment plan including the information of all 

machine parameters to achieve the simulated dose distribution. The complete 

treatment plans then provide information about the three-dimensional dose 

distribution in the patient. 

a)                                                   b)  

 

 

 

 

 

 

                   c) 

In Figure 7 the planned dose distributions are shown, with red being the area 

receiving the highest and blue marking the areas receiving the smallest amount of 

dose. To verify IMRT and VMAT plans, measurements on a phantom have to be 

performed to verify the machine is able to fulfil the requirements according to the 

plan. If the plan is approved, the patient receives the treatment. 

 

Figure 7: Dose distributions for a): localised prostate cancer, b): cervix cancer, c) head and 
neck cancer patient 
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 Patient Specific Quality Assurance 

According to current QA protocols, every treatment plan is measured on a phantom 

before applying the plan to the patient to ensure the precise delivery of dose is 

possible with the used medical linac by measuring the 3D dose distribution. Using a 

respective software, a direct comparison between measured and computed dose is 

made and quantitatively described using the gamma passing rate (GPR). This value 

evaluates the conformity of the measured dose distribution to the planned one and 

therefore serves as a criteria of quality for the tested plan, determining if irradiation 

on the patient is safe and executable [14]. It is given as a percentage of points that 

fulfil two criteria: the dose deviance (DD), setting a maximum divergence of 

measured dose to a certain fraction of the planned dose, as well as the distance-to-

agreement (DTA), which describes the maximum spatial distance of the measured in 

comparison to the planned dose distribution. 

 

Figure 8: Schematic depiction of the calculation of the gamma index with the distance r 
plotted on the x-axis and the dose D on the y-axis. The blue curve shows the measured 
dose values DE at different spatial points ri relative to the planned value of the dose at 
the origin DR(rR), rR. The dotted circle represents the DTA and DD criteria, with δD 
being the margin for dose deviance and δr the margin for the distance to agreement. If 
a point along the blue line that lies within the dotted circle can be found, the gamma 
index of this point is below or equal to 1 [15]. 
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One frequently used DTA/DD criteria margin is 3mm/3% but is somewhat arbitrary. 

Decreasing these numbers to 2mm/2% and therefore increasing the required 

conformity would result in a high number of treatment plans not passing the gamma 

criteria. However, with constantly improving delivery and planning techniques, dose 

may be deposited more precisely, leading to the possibility of adjusting the passing 

criteria in the future, consequently improving the delivered treatments.  

 

 Machine learning 

Artificial intelligence (AI), a branch of computer science that is used in numerous 

different industries and research topics today, is the general term for automating 

human learning processes in machines and therefore mimicking human         

intelligence [16]. A multitude of different techniques exist to serve its wide-ranging 

application areas, including natural language processing, speech, vision, robotics and 

machine learning. Machine learning specifically focuses on training and teaching 

machines to recognize connections and patterns by using a large number of examples 

as a database. During the training process, machine learning algorithms identify 

parameters and patterns in order to characterise and classify the input data, so that 

upon being presented with new data, those learned features are used to classify 

unknown data [17]. Deep learning is a subgroup of machine learning, describing the 

layered structure of learning and decision-making models, one of them being neural 

networks, which are the main focus of this work. Prominent examples of the use of 

machine learning today are determining handwriting, face recognition or 

distinguishing and classifying objects in images [18], [19]. 

Especially in biomedical research, machine learning gathers more and more attention: 

numerous applications involving machine learning components are tested and 

researched on in an attempt to avoid human mistakes when it comes to medicine 

and treating patients [20] or in order to make qualified predictions [21], [22]. Specific 

examples include neural networks and machine learning algorithms in general to be 

used for diagnosis of heart conditions by analysing the heart sounds [23] or identifying 

skin lesions by using images [24]. In light of recent advances in software as well as in 
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hardware and imaging techniques, radiotherapy is a field that can highly benefit from 

implementing machine learning routines into the standard workflow. One step of 

treatment planning in radiation therapy requires a medical doctor to delineate the 

target volume which is defined as the tumour volume including a safety margin, as 

well as and organs at risk, the healthy tissue that must not receive any dose during 

treatment (see 1.1.6). This delineation is performed by hand through a medical doctor 

on CT or MRI images and builds the basis for the treatment planning software, 

which arranges the beam energy and entry angles according to the required dose 

distribution. Since the accuracy of the delineation strongly depends on the executing 

medical doctor and the highly individualised problem, methods to improve the 

correctness of these delineations are developed. Naturally, as in this case, edge 

detection and image recognition is present, machine learning has been used to 

delineate volumes [25]–[27]. 

Machine learning can be roughly divided into supervised, semi-supervised, 

unsupervised and reinforcement learning. Supervised learning describes learning 

processes with already labelled data, therefore the model is built using the knowledge 

of the outcome. Unsupervised learning tries to identify new data solely by finding 

and memorizing commonalities in the unlabelled input data, while semi-supervised 

learning combines both above approaches and uses labelled data to optimize 

predictions made with unlabelled data. Reinforcement learning describes methods 

that are trained by rewarding certain actions that are taken. The so-called software 

agents hereby learn by trying to maximize the rewards that are given after certain 

goals are reached [20]. Reinforcement learning can be implemented with different 

methods, among those are Monte-Carlo-Algorithms and neural networks. 

 

 Neural Networks 

As a subgroup of machine learning methods, neural networks will be described 

further. The general concepts of neural networks and machine learning were 

developed in the 1940s, but it is only now that computational power is strong enough 

to build complex machine learning networks that can be used for current          
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research [28]. One early example and the predecessor and ground concept of neural 

networks is the perceptron, as described by Rosenblatt in 1958 [29]. 

The perceptron is the simplest decision making model and consists of a single logical 

element, which receives a number of inputs which are then translated into an output. 

Mimicking the process of an action potential travelling through neurons in the human 

brain, a perceptron receives weighted information and outputs information if the sum 

of all the inputs exceeds a certain threshold, described mathematically with a step-

function, as depicted in Figure 9. Adding more layers with more perceptrons results 

in a multilayer structure which can be used to predict simple models. 

 

 

Figure 9: Structure of a single-layer perceptron , receiving two inputs, xi, with their 
respective weights ωi, which are summed up and passed to a step-function to determine 
the output y, which, in this simple case, results in either 0 or 1 [30]. 

 

Deep neural networks used in research today are based on the perceptron model and 

expand it to build large layered structures. Neural networks consist of a number of 

layers, each containing up to thousands of neurons, named after their biological 

example [31]. The main difference in comparison with the multilayer perceptron is 

the two- or three-dimensional arrangement of neurons, the third dimension 

accounting for different input image colours on the RGB scheme. The very first layer 

consists of the input, one neuron representing one parameter of the input data. In 

case of using image data as input, each pixel of the image forms one neuron in the 

first layer. The final layer, also called the output layer, either estimates a value for 

the given problem when a linear regression model is used, or classifies the input data 

into different groups, forming a classification model. In the second case, the output 
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layer consists of the same number of neurons as there are labels defined for the 

current problem. All layers in-between are termed “hidden layers”, serving several 

different purposes. The number of hidden layers defines the “depth” of a network, if 

it consists of a large number of hidden layers it acquires the attribute deep [32]. 

 

 

Figure 10: Schematic structure of neural networks [33].  

 

Neural networks are built as depicted in Figure 10, consisting of a number of neurons 

per layer. In analogy to the human brain, the neurons in different layers are 

connected, either feeding information forward to the subsequent layer (feed-forward 

network) or transferring information to the same or back to the previous layer 

(recurrent neural network). All connections are weighted, either resembling a human 

excitatory neuron if the weight is positive or an inhibiting neuron in case of a negative 

weight. The weights determine the influence of a neuron on the connected neurons 

in the subsequent layer. Similar to the perceptron, the activation of a neuron is 

dependent on the sum of input it receives. The output is described using activation 

functions, which may have different shapes. Most used are the step-function, the 

sigmoid function as well as the ReLU, the rectified linear unit [34]. 
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Figure 11: Three most popular activation functions: Heaviside step-function, a sigmoid 
function and the ReLU, rectified linear unit [35]. 

 

Serving as the easiest activation function and most obvious representation of the 

threshold model, the Heaviside step-function describes the activation of a neuron if 

a certain input value is exceeded, therefore having only two possible outputs, 0 or 1. 

Logical XOR-problems can easily be described using this function. However, since 

for further computation and deep networks the derivative is needed, this function is 

not used in recent models. For more complicated models that require a non-binary 

output, the sigmoid function may be used as an alternative. This function represents 

a smoothed step-function, only converging to 0 for negative and 1 for positive real 

input values, mathematically describing the increased firing rate found in human 

neurons if the input is increased. Non-trivial models may be predicted using this 

activation function and it is able to describe probability due to its values between 0 

and 1. The third and probably most used activation function, the rectified linear unit 

(ReLU), returns 0 for all negative values and increases linearly with values larger 
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than 0. The use of ReLUs as activation functions improves computation time, shows 

advantageous performance in comparison with other activation functions during the 

training process and is a standard in convolutional neural networks. Additionally, 

the ReLU prevents the neural network from the vanishing gradients problem, since 

– in comparison to the sigmoid function – it does not converge to a value and 

therefore a gradient can be obtained also for large input values [36]. 

 

 Layers of a Convolutional Neural Network (CNN) 

One class of supervised, deep, feed-forward networks that is frequently used and will 

be described further are convolutional neural networks. These networks are formed 

by a number of layers of different shape, which can generally be divided into two 

groups concerning their function. Convolutional and pooling layers serve the purpose 

of identifying features and finding patterns, whereas flattening and especially fully 

connected layers are responsible for the actual classification [37]. 

The convolutional layers perform a convolution on the input data. So-called kernels 

or filters of a chosen size scan the input matrix in a stepwise manner, calculating the 

inner product as depicted in Figure 12. The resulting, significantly smaller matrix is 

the so-called feature map, containing only certain features of the input information. 

The enhanced features depend on the values of the kernel, which are set during the 

training process [37]. Following the concept of shared weights, the kernel values do 

not change within the same layer, thus reducing the number of total parameters that 

have to be set during training and also improving computation time which makes 

CNNs preferable to other models. The convolutional layer represents the receptive 

field present in the brain, reducing the number of neurons that are used as input for 

the next layer. The “step size”, the number of neurons the kernel moves for 

generating each convolved feature is called stride and is usually set to 1, so adjoining 

features have overlapping receptive fields. The process of surrounding the input 

matrix with zeros is called padding, and can be chosen to use in order to keep the 

number of neurons constant in both layers. 
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Figure 12: 2D representation of convolution operation   with a kernel K on input data 
I, resulting in a feature map [38]. 

 

Convolutional layers are followed by pooling layers. These offer a method of further 

reducing the neuron number by either choosing the most active neuron within a 

certain cluster of neurons (max pooling), calculating the mean value (average 

pooling) or summing up all the neuron values within the cluster (sum pooling). These 

layers are used to remove redundant information in order to improve computation 

time and allow for deeper networks.  

The layers that compute the classification start with a flattening layer. This layer 

arranges all the neurons into a one-dimensional vector, which is needed for the 

succeeding layers, the fully connected layers. These are also called dense, describing 

the fact that all the neurons of these layers are connected to all the neurons of the 

previous layer. The final layer, the output layer, is in fact also a fully connected 

layer, containing the number of classes set for the model. Linear regression models, 

which calculate a value, have only one neuron in the output layer. One possible 

complete layer sequence of a CNN is depicted in Figure 13. 
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Figure 13: Schematic depiction of layer sequence in a CNN   used for a classification 
problem [39]. 

 

 CNN Training process 

For the training process, two different datasets are needed: the training and testing 

dataset. These include the input information including their corresponding label, i.e. 

the class the input belongs to. The main procedure can be described by using the 

training data to set the weighted connections between neurons in a manner so that 

the network produces a correct output [31]. Subsequently, using the testing dataset 

on the training weights, errors between the network prediction and actual label are 

minimized to improve the network output. One process of feeding data in and then 

correcting the network to adjust to the found error is called epoch. The number of 

epochs performed during training can be set. 

As a first step, the training dataset and the corresponding labels are fed into the 

neural network. The number of input data that are presented to the network at the 

same time is defined by the batch size. This parameter can be chosen to be equal or 

smaller than the total number of data in the dataset and is termed mini-batch in the 

latter case. All the mini-batches are passed through the network, therefore all 

training images are used per epoch, i.e. the number of times the whole dataset has 

been passed to the network and an adjustment had been performed. The weights of 

all connections are set in a manner so that the network outputs the correct label for 

each training input. After this is done, the testing dataset is passed through the 

network in the same manner regarding the batch size. The network is now configured 

to work well on the training dataset and predicts output labels for the testing dataset. 

The prediction is compared to the correct output label and an error is determined 
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and mathematically depicted as the loss function. This function is now optimized 

using one of many available optimisation algorithms. To adjust and correct the 

network, the weights of each connection are changed following the found gradient 

when applying the optimizer. Optimisation happens by adjusting the weights 

following the descending gradient of the error [40]. Error correction is done in a back 

propagating manner, first adjusting the weights leading to the output layer and then 

subsequently going back layer per layer, correcting all the weighted connections of 

the model.  

Two parameters that can be monitored during the training are accuracy and loss. 

The accuracy describes the fraction of correct predictions made on testing data by 

the network, ideally converging to 1 with increasing number of epochs. The loss is 

the sum of all errors of the made predictions and should converge to 0. 

After a model is trained, it may be evaluated using another unlabelled dataset. Upon 

passing this evaluation dataset to the network, it outputs the probabilities the input 

belongs to each of the labels. This shows the practical use and ability of the model 

to sort unknown images into the labelled groups. 

 

 Overfitting 

One problem encountered with neural networks is the probability of overfitting. This 

describes the process of the network adapting too well to training data and achieving 

high accuracy during training. Since the network focuses too much on details it is 

not able to generalize parameters and patterns very well and therefore shows 

significantly reduced performance when unknown data is presented. There are two 

possible ways to counteract such a behaviour. Firstly, by adding a so-called dropout 

layer, a set percentage of training data is dropped randomly during training and is 

therefore not used for calculations [41]. Secondly, a regularizer may be implemented. 

Regularisation adds an additional term to the loss function, therefore keeping the 

weights from being adjusted too well to the details of the training data and achieving 

a better generalisation. Additionally, also pooling layers help to control overfitting 

by reducing the information and focusing only on main features. 
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 Purpose of thesis 

Current research in machine learning in the medical field is also pushing forward in 

the area of treatment plan evaluation [42]. For example, Interian et al. used a 

convolutional neural network to determine the gamma passing rate of treatment 

plans. This study served as motivation for this thesis, Interian et al used a dataset 

of 498 images, artificially increasing the data by using images several times, either 

by utilizing rotated or mirrored images additionally to the original. This is done with 

the assumption that the input images are rotationally invariant in regard to the GPR 

value. Different network types are tested on the dataset and then evaluated according 

to the percentage of correct predictions that were made, and then compared with a 

previously designed Poisson regression model, achieving similar results. 

In short, the aim of this master thesis is to design a neural network that is capable 

of categorising radiotherapy treatment plans into groups according to their predicted 

gamma passing rate with sufficient accuracy. The GPR is obtained during the quality 

assurance measurement, which precedes each patient irradiation in order to ensure 

the safe execution of the treatment plan. The GPR acts as a criteria that has to be 

fulfilled in order to apply the plan to the patient. If it can be predicted with a 

sufficient accuracy using treatment plan data only, there is a possibility of omitting 

the QA measurement in future cases where neural networks provide reliable 

predictions of the GPR. 

This thesis intends to use a similar approach as presented by Interian et al. and aims 

to achieve comparable or improved results [42]. The built neural networks should 

also be tested for their robustness and performance with varying parameters and 

datasets, respectively.  
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2 Materials and Methods 

In this chapter, the hardware resources used for generating the information needed 

as well as the selection of patient data are described. Furthermore, the overall 

approach of generating the input data and the coding effort and workload used for 

this work are elaborated. The setup of the neural network is discussed, along with 

the complete layer structure and the used activation functions, optimisation processes 

and metrics. Finally, the different approaches of optimising the network are 

discussed. 

 Hardware 

 Linac 

The investigated treatment plans were designed to be applied by two different types 

of linacs produced by Elekta, Sweden. The linac types include Elekta Versa HD and 

Elekta Synergy, differing in MLC types, i.e. in their number of MLC leaf pairs and 

the existence of jaw collimators in the x-direction. There are 80 leaf pairs in the 

Agility treatment head of the Versa linac and 40 in the MLCi2 of the Synergy linac, 

while the x-jaws are only present in the Synergy. For plans generated for Versa linacs, 

the values for the non-existing x-jaws necessary for computation were assumed as 

the maximum open position. The beam opening covers an area of 40 cm x 40 cm in 

both linac types, therefore the width of a single leaf amounts to 5 mm for the Versa 

and 10 mm for the Synergy linac. 

 Delta4 Phantom 

At the Department of Radiation Oncology of the Medical University of Vienna / 

AKH Vienna, a Delta4 Phantom (ScandiDos, Uppsala, Sweden) is used to perform 

the quality assurance measurement. The phantom is equipped with a cylindrical 

shaped container which consists of PMMA containing two detector plates placed in 

orthogonal orientation relative to each other, forming a cross shape. The 1069 

detectors distributed on those detector plates measure the deposited dose, which is 



Materials and Methods    28 

compared to the planned dose distribution in order to determine treatment plan 

accuracy. 

 Gamma Passing Rate 

Upon quality assurance measurements of treatment plans, which are performed on a 

phantom in advance of each patient treatment, the parameter which is used to 

categorise input data is obtained: the Gamma Passing Rate (GPR) [14], [43]. This 

rate is a measure of agreement between the dose distribution that was calculated and 

planned before and the actual delivered dose distribution onto the phantom. For the 

data used in this work, these underlying criteria were set to 3% and 3mm, respectively 

[12]. Fulfilling these criteria leads to a gamma index of ≤ 1; the percentage of all the 

points exhibiting a gamma index of ≤ 1 then forms the GPR value. Therefore, a high 

accordance of the planned and measured dose distribution results in a GPR value 

close to 100%. This is usually achieved by relatively simple target geometries like 

prostate boost treatments. The GPR is actually a measure of dosimetric accuracy 

but can also be interpreted as a measure of complexity, since intricate target volume 

shapes usually exhibit a lower GPR. 

A plan with a measured GPR lower than 90% must not be applied to the patient 

and requires the setup to be checked. In case no irregularities are found there, e.g. 

the detector and linac configurations are correct, the plan has to be redone in order 

to ensure safe treatment of the patient. 

 

 Patient Data 

In order to train a neural network and to achieve good performance, a sufficiently 

large sample dataset is necessary. Therefore, VMAT radiation treatment plans 

created using the software Monaco (Elekta AB, Stockholm, Sweden) were exported and 

by using the parameters and values that are set in the planning data, images of the 

transmitted dose were created and used as an input for the neural network. Each patient 

is given a unique patient ID, which was used to identify plans throughout the process 

and is also encoded in the filenames of the images. 
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 Selection 

For this investigation a total of 600 IMRT/VMAT radiation therapy plans were 

exported, which were taken from three tumour groups: gynaecological tumours, head 

and neck (HN) as well as prostate cancer patients. An even distribution between the 

groups was desired, leading to total numbers of plans for each group presented in 

Table 1. The respective dose distributions are shown in Figure 7 in section 1.1.6. 

Table 1: Numbers of plans per tumour group 

Group Number 
Gynaecological 151 

HN 227 
Prostate 222 
Total 600 

 

While selecting prostate patients, boost-plans were used exclusively for better 

comparability, referring to the administration of a dose of typically 13-28 Gy to the 

prostate gland only, omitting the pelvis region and surrounding lymph nodes. This 

leads to a sharply delimited volume of dose deposition and therefore to a favourable 

target volume regarding accuracy and complexity. 

The plans were designed for two different linacs, Elekta Versa HD and Elekta 

Synergy. The selection of plans did not depend on the linac type, since it is assumed 

that the different linacs do not produce different results, as for the Versa HD linac 

plans the missing x-jaws are replaced by the values for completely opened ones and 

can therefore be evaluated using the same tool as for the Synergy linac plans.  

Further selection criteria include the completed QA measurement, i.e. the 

requirement that a GPR value has been obtained for the plan beforehand. Only the 

plans that had an associated GPR were used, since this value is needed for labelling 

the plans. To avoid differences in patient Dicom standards as well as updates or 

changes in data format or data storage modalities, it was aimed to utilize fairly recent 

plans. The acquired plans according to the presented criteria were generated in a 

timespan between 2015 and 2018. 
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 Labelling 

For the sake of describing the problem, a multi-class classification model was chosen 

and all plans were labelled according to their GPR value. As a majority of the used 

treatment plans showed a very high GPR value, grouping them into equally large 

groups to ensure validity of the results of the neural network proved to be a challenge. 

The prostate plans exhibit a GPR of 1, since the prostate gland is well delimited to 

its surroundings and is shaped rather simply and shows little to no variance of 

location in different patients. Therefore, they were all assigned with the label 0, 

indicating the highest GPRs. Intervals of GPR values that make up the labelled 

groups were to be chosen in a manner so that the numbers of plans of each label are 

as balanced as possible in order to avoid a bias towards a certain label in the model 

while still giving reasonable results. It was chosen to divide the input data into three 

labels according to their GPR according to Table 2. 

Table 2: Distribution of all treatment plans to GPR values and consequent assignment 
of labels. 

 

 

GPR Number of Plans Labels Numbers per label 
1 235 

0 383 
]0.99, 1[ 148 

]0.98, 0.99] 75 
1 130 

]0.97, 0.98] 55 
]0.96, 0.97] 17 

2 87 

]0.95, 0.96] 21 
]0.94, 0.95] 13 
]0.93, 0.94] 11 
]0.92, 0.93] 6 
]0.91, 0.92] 10 
]0.9, 0.91] 4 
]0.89, 0.9] 2 
]0.88, 0.89] 2 
≤ 0.87 1 
Total 600  600 
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 Dicom file structure and parameters 

In order to generate images as data input for the neural network, treatment planning 

data is used. Medical data, as in the case of radiotherapy treatment plans, is stored 

in Dicom (Digital Information and Communications in Medicine) format, which can 

store image data as well as patient information. In this particular case – the Dicom 

variation for radiotherapy, Dicom RT– each file contains the complete treatment 

plan information, i.e. collimator positions and delivered dose, as well as patient data. 

The data is stored in form of attributes, which can be accessed via their associated 

tag ID. The extracted parameters include the Dicom tags noted in Table 3. 

Table 3: Dicom tag IDs, names and descriptions [44] 

Tag ID Tag Name Description 

(300a, 00c0) Beam Number 
Number of the beams that are used to 
irradiate, equivalent to the number of arcs the 
gantry is performing. 

(300A,0112) 
Control Point 

Index 

Consecutive numbers of control points along 
the gantry arc signifying points at which 
changes occur during the beam delivery, all the 
parameters below are associated to a certain 
control point. 

(300A,0134) 
Cumulative 

Meterset Weight 
Fraction of total beam meterset that has been 
irradiated at the current control point. 

(300A,0086) Beam Meterset 
Total amount of monitor units (MU) that are 
set to be delivered with the current beam. 

(300A,011E) Gantry Angle 
Angle the gantry is positioned at, with 180° 
being the position where the gantry is in the 
most upright position. 

(300A,011C) Leaf Jaw Position 

This entry appears two or three times per 
control point, corresponding to two or three 
different collimator types. 
The entries for the jaw collimators are 
described with ‘ASYMX’ or ‘ASYMY’, 
depending on the orientation, containing two 
values signifying the distance from the center 
to the two parts of each collimator. The entry 
for the MLC leaves includes the description 
‘MLCX’ and contains either 80 or 160 values 
in a row, assigning each leaf a position given 
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in mm distance from the origin. Indexing starts 
at the bottom left leaf and first covers all the 
leaves on the left, then continues at the bottom 
right (seen from BEV). 

 

The gantry can perform a full 360° rotation around the patient couch and while there 

is a continuous irradiation, control points are set along the arc the gantry moves 

along. These can vary in number depending on the geometry and size of the target 

volume; furthermore, the gantry speed can be varied for additional dose modulation. 

In the Dicom file, the aforementioned parameters are defined for each control point. 

The single jaw and leaf positions are given in mm distance from the origin, making 

it necessary to compute the distance using the data from each corresponding leaf pair 

for further analysis. The origin of the coordinate system is positioned in the center 

of the beam. 

 Preparation of Patient Data 

Patient treatment plans are archived in a raw text file format as the output of the 

treatment planning system (TPS), Monaco (Elekta, Sweden), and can be exported 

from the TPS as Dicom files. To avoid loading every single plan into the software 

and extracting it, the raw planning data was first transformed into Dicom format 

and then into images depicting the transmitted dose, the fluence maps. The used 

software resources and detailed transformations will be described in the following 

paragraphs. 

 Software 

The necessary conversion of patient data to images was performed using several 

different software resources. In general, all coding operations were executed in 

Python, using PyCharm as integrated development environment (IDE). For 

transforming the patient data into structured XML (Extensible Markup Language) 

shape, the ElementTree Application Programming Interface (API) was used [45]. 

Additionally, further conversion into Dicom data format was achieved by using 

operating system functionalities, utilizing the os module [46] and the DCMTK toolkit 
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including the xml2dcm utility [47]. As a method to access the Dicom tags and read 

the Dicom files, the package PyDicom and more specifically the Dicompyler package 

was used [48], which is construed for dealing with the Dicom-RT format. This format 

is the extension of the Dicom type designed specifically for radiotherapy applications. 

Furthermore, the package NumPy was used for basic scientific computing and 

handling array objects [49], as well as Matplotlib as plotting library [50]. 

 

 Conversion of Monaco Raw Data to Dicom 

The transformation of the acquired raw plan data into Dicom files was the first step 

towards generating image data. The raw files were analysed and in a reverse 

engineering way, certain segments were characterized according to their values, which 

were compared to those of a corresponding exported Dicom file. Each Dicom 

checkpoint appears as a block of numbers in the raw data file, containing all the 

values for the MLC leaf and jaw positions. A characteristic starting sequence was 

identified, signifying the start of each checkpoint-block. However, the order of the 

leaf positions had to be changed in order to be consistent with the arrangement of 

values in the Dicom file, as the raw file listed the two positions of a leaf pair 

consequently, while the Dicom lists all the values of the left MLC leaves first, followed 

by all the positions of the right MLC leaves. 

Furthermore, the values of the jaw collimator positions had to be manipulated. In 

the raw file, positions for each jaw pair were given using two values: the size of the 

opening, i.e. the distance between the two jaws, and the offset of the center of this 

opening with respect to the central axis, both in mm. This is depicted in Figure 14.  
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Figure 14: Schematic depiction of calculation of jaw positions y1 and y2 as present in 
the Dicom file using the values given in the raw plan file, opening size and offset (blue). 

Therefore, the jaw positions for the y-jaw on the y-axis as given in the Dicom file 

can be calculated from those values according to the following equation. For plans 

designed for the Synergy linac, the positions of the x-jaw are obtained analogously, 

with 𝑥ଵ,ଶ representing the positions of the x-jaw along the x-axis, with 𝑥ଵ describing 

the position of the left and 𝑥ଶ the position of the right jaw, respectively. 

 
𝑦ଵ,ଶ =  𝑜𝑓𝑓𝑠𝑒𝑡 ௬ ∓  

𝑜𝑝𝑒𝑛𝑖𝑛𝑔 𝑠𝑖𝑧𝑒௬

2
 (1) 

 
𝑥ଵ,ଶ =  𝑜𝑓𝑓𝑠𝑒𝑡 ௫ ∓ 

𝑜𝑝𝑒𝑛𝑖𝑛𝑔 𝑠𝑖𝑧𝑒௫

2
 (2) 

 

To obtain the values for the cumulative meterset weight, a small computing effort 

had also been necessary. The total beam meterset can be obtained easily by parsing 

the raw file. Within the blocks containing the information for each checkpoint, a 

value corresponding to the dose that has been delivered between two checkpoints can 

be found. Therefore, the needed meterset weight, the fraction of dose that has been 

delivered between the preceding and the current checkpoint can be calculated using 

the following context. 
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𝑀𝑒𝑡𝑒𝑟𝑠𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 =

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝐷𝑜𝑠𝑒 𝑝𝑒𝑟 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡

𝐵𝑒𝑎𝑚 𝑀𝑒𝑡𝑒𝑟𝑠𝑒𝑡
 (3) 

 

As described in 2.3.3, the beam meterset parameter describes the total dose delivered, 

while the cumulative meterset weight gives the fraction of the meterset that has been 

delivered up until the regarded checkpoint. To achieve the same convention as in the 

original Dicom, the meterset weight obtained using (3) has to be summed up 

continuously for each checkpoint.  

All the retrieved values are now arranged in a single ElementTree object in order to 

write an XML file, since it offers an intuitive way to incorporate a desired structure 

into a text file by defining elements and assigning correspondent sub-elements to 

mirror the Dicom file structure. The conversion from xml to Dicom format and vice 

versa is an easy task, accomplished by a simple operating system command. 

The retrieved values for cumulative meterset weight deviated after the third decimal 

from the comparative values in the Dicom, as the value for the beam meterset did 

also differ. Therefore the Monaco-internal conversion to Dicom seems to have an 

influence on these values. For being used in the following tasks the obtained values 

were regarded as sufficiently accurate.  

Using the values from the raw planning data file, a direct conversion to image would 

be possible instead of the intermediate step of generating Dicom data, but since this 

tool may be useful in future situations it was chosen to perform the two actions 

separately. Furthermore, creating two separate tools enables the generation of fluence 

maps from existing Dicom data. 

 Fluence Map Generation 

After converting the complete patient dataset to Dicom files, the delivered dose and 

the collimator positions per checkpoint were read from the Dicom and used to 

generate an image output. The created image type is called fluence map, displaying 

the fluence of dose through every point of the beam window during a complete 

treatment. Making use of the previously described libraries and the tag structure of 

the Dicom file, the needed parameters could be accessed easily. The first action taken 

was to create an empty matrix with the desired dimensions of the output image. For 
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this, 400 x 80 pixels were chosen as uniform image size. The width of 400 pixels 

represents the size of the beam window, which yields 400 mm, therefore 1 mm of the 

beam window corresponds to one pixel. The positions of the collimators are given in 

sub-millimetre precision, but a resolution in the mm range was considered sufficient. 

The image height of 80 pixels was chosen according to the number of leaf pairs. Since 

the used linacs exhibit either 80 or 40 leaf pairs, the former was chosen and set as 

the dimension. In order to generate uniform output images, this image size was kept 

also for the Synergy linac with half the number of leaf pairs. In this case, two pixels 

correspond to the width of one leaf, while for Versa plans, one leaf is represented by 

one pixel. This leads to a reduced resolution in the fluence maps for Synergy plans, 

but was assumed to not influence the results since the fluence maps therefore 

mimicked the larger MLC leaf pairs found in the Synergy linac.  

In order to fill the 400 x 80 matrix, the origin in the isocenter of the beam that is set 

to describe collimator positions in the Dicom is moved to the right upper corner. 

This is done in order to match the positional information of the collimators to the 

matrix indices and thus the pixels of the later generated image, i.e. equate the 

position in mm on the x- and y-axis to the matrix column and row indices. To move 

the origin, all x-values were shifted by +200 and the y values by -200, respectively. 

Since this conversion renders all y-values negative, the absolute value of positions on 

the y-axis was considered in order to fit the matrix index convention. 

For generating an image, a few more complex computational steps were necessary 

due to the definition of the checkpoints in the Dicom. Since the irradiation is 

performed continuously throughout the treatment, the checkpoints only give fixed 

intermediate positions of the collimators. For acquiring the total transmitted dose 

for the whole treatment, the movement of the collimators has to be accounted for, 

so therefore for each computation step the differences in cumulative meterset weight 

and in the collimator positions of two checkpoints were considered. The assumed 

model to calculate the transmitted dose in between two checkpoints by means of one 

MLC leaf pair is depicted in Figure 15. 



Materials and Methods    37 

 
Figure 15: Schematic representation of the calculation of the transmitted dose with the 
aim of generating fluence maps. The bars below the diagram illustrate one MLC leaf pair 
at their positions along the x-axis within the beam window. L1 represents the left leaf, 
L2 the corresponding right leaf of the pair. Both are represented at two different 
checkpoints, CP1 (marked by green symbols) and CP2 (marked by blue symbols), 
moving from the position at CP1 to CP2.  
 

The calculation requires the observation of two checkpoints at a time. Therefore, the 

dose delivered in the time between checkpoint 1 (CP1) and checkpoint 2 (CP2) is 

calculated using the cumulative meterset weights (CMWeight) of the two 

checkpoints as well as the total beam meterset: 

 
𝑑𝑜𝑠𝑒 = (𝐶𝑀𝑊𝑒𝑖𝑔ℎ𝑡஼௉ଶ − 𝐶𝑀𝑊𝑒𝑖𝑔ℎ𝑡஼௉ଵ) ∗ 𝐵𝑒𝑎𝑚 𝑀𝑒𝑡𝑒𝑟𝑠𝑒𝑡 (4) 

 

Then, the regions of different dose levels can be divided into five sections depending 

on the coverage of the beam. The left and right outer regions are completely covered 

by a MLC leaf during the time between CP1 and CP2. Since the MLC leaves do not 

shield 100% of the dose, a certain fraction of dose that is still transmitted has to be 

considered, as depicted in Figure 15. For this model, a transmission coefficient for 

the MLC of 𝑡௟ =  0.004 was used. The opening between left and right leaf that is not 

covered at any time denotes the region where the full dose is transmitted. Lastly, the 

movement of the MLC leaf pairs is accounted for in the regions with varying dose. 

To describe the partially covered regions, a simple linear correlation of dose and 
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position on the x-axis 𝑥 was assumed, with ∆𝑥 denoting the difference in leaf positions 

of the two checkpoints, i.e. the distance the leaf has moved in mm. Regarding the 

shape of the MLC leaf tips, a simplifying assumption was made. The tips present in 

the linacs are rounded, whereas in this model, a rectangular shape has been used. 

This leads to a disregard of the parts of the incoming beam that are slightly oblique 

and would still contribute to the transmitted dose in reality. 

Again, the fraction of dose that is transmitted through the partly closed collimator 

leaves described by the leaf transmission 𝑡௟ has to be considered and leads to the 

following formula.  

 
𝑑𝑜𝑠𝑒(𝑥) =

𝑑𝑜𝑠𝑒

∆𝑥
∗ 𝑥 ∗ (1 − 𝑡௟) + 𝑑𝑜𝑠𝑒 ∗ 𝑡௟ (5) 

 
𝑥 =  ൜    

𝑛 − min(𝐿ଵ𝐶𝑃ଵ, 𝐿ଵ𝐶𝑃ଶ) ,            𝑓𝑜𝑟  𝐿1 

max(𝐿ଶ𝐶𝑃ଵ, 𝐿ଶ𝐶𝑃ଶ) − 𝑛 ,           𝑓𝑜𝑟  𝐿2
     (6) 

 

Depending on the movement from left to right or vice versa, the dose shows either 

an increasing or decreasing slope, requiring a different definition of the parameter 𝑥. 

The column indices of the matrix are denoted by a single parameter 𝑛, which is used 

for the whole beam window. Since the filling of the matrix happens from left to right, 

an increase of 𝑛 is inversely correlated to the dose transmitted by movement of the 

right MLC leaves. To describe the different behaviour, the minimum or maximum 

positions of the leaf at the two regarded checkpoints (𝐿௜𝐶𝑃௜) are considered, 

respectively.  

An even finer distinction of regions has to be made once the jaw collimators are 

considered as well. The calculation of transmitted dose follows the same mechanism, 

using 𝑡௝ = 0.001 as jaw transmission coefficient. Furthermore, the width of the MLC 

lamellae has to be taken into account when translating the positions of the y-jaw 

along the y-axis to rows of the matrix. Depending on the used linac and MLC type, 

either 5 or 10mm correspond to one row and therefore a width of one pixel. Achieving 

uniform images of the same size as output required the duplication of each row for 

plans designed for the Synergy linac which incorporates only 40 leaf pairs, doubling 

the number of rows to 80 to match the Versa linac plans. Making the transmitted 

dose dependent on the x-jaw, y-jaw and the MLC positions and using the according 
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dose values obtained by the model described before, looping over all the checkpoints 

of all used beams fills the matrix. 

After completing the matrix using the full planning data, it is converted into a 

greyscale PNG image with a simple Python command. This conversion lead to an 

addition of a white frame around the actual matrix size, resulting in a final image 

size of 526 x 127 pixels. The name of the saved image is put together by the patient 

ID and the label, which is retrieved from an additional text file that lists all the 

regarded patient IDs and their corresponding GPRs. A few examples of the image 

output are given in the following figures. 

 

Figure 16: Fluence map of a gynaecological treatment plan. 

 

Figure 17: Fluence map of a prostate boost treatment.  

a)  
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b)  

Figure 18: Fluence maps for 2 different HN plans. Image a) shows a plan for a treatment 
performed on a Versa linac, while image b) depicts the fluence map for a plan performed 
on a Synergy linac. The reduced resolution in b) is evident, originating from the larger 
width of MLC leaf lamellae. 

The fluence maps portray the fluence of dose through the beam window during a 

whole treatment. The darker areas show regions of higher dose deposition, while 

white areas do not receive any dose. It is evident that fluence maps of prostate boost 

plans are easy to distinguish from HN and gynaecological plans by their smaller 

irradiated volume and simpler geometry and dose distribution. Due to the former 

described selection of image size the fluence maps appear pinched, as the length one 

side of the beam window is decreased, leading to a rectangular representation of the 

square beam window. 

 Random separation into three datasets 

The last action performed on the input data before it was used to train the neural 

network was to randomly shuffle the sample order and subsequently splitting the 

complete dataset into three groups – the training, testing and evaluation dataset, 

each containing 200 plans. For that, a text file was created combining the complete 

data paths of all the generated images to their labels. After shuffling the lines of that 

list, it was separated into three different text files, serving as an input to determine 

the three different datasets for the neural network. All the datasets were checked for 

relatively balanced distribution of the three labels, in order to avoid generating a 

dataset with only one prominent label, which would create a bias of the neural 

network towards one label. 
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Table 4: Distribution of the labels and tumour groups to the three datasets 

 Set 1 Set 2 Set 3 
Prostate 64 75 83 

HN 79 78 70 
Gynaecological 57 47 47 

Total 200 200 200 
 

Label 1 119 127 137 
Label 2 48 44 38 
Label 3 33 29 25 
Total 200 200 200 

 Neural Network 

After generating the input data, a neural network was set up using [51] as template, 

adapting the suggested neural network to suit the task presented in this work. The 

mentioned Github repository introduces a basic network structure and presents a 

strategy to transform image input data into usable tensors, which is also adjusted to 

the generated fluence maps. 

 TensorFlow 

The neural network was built in Python using the open source framework 

TensorFlow developed by Google [52]. It provides Python and C++ APIs and 

includes simple functions to arrange the layers of the network, network parameters 

and layer details and perform mathematical operations to generate output data. 

TensorFlow supports high level interfaces like Keras and can run on a CPU (central 

processing unit) as well as multiple GPUs (graphics processing unit). As suggested 

by the name, TensorFlow performs all the operations on multidimensional data 

organised as tensors. The network models generated in TensorFlow are organised as 

graphs following the graph theory of mathematics, consisting of so-called nodes and 

edges which represent the mathematical operations and the connecting dataflows, 

respectively. After the building of the graph is complete, the execution happens only 

in form of a session, during which the previously defined functions and operations 

are called. 
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 Visualisation using TensorBoard 

TensorBoard is a collection of tools able to visualise the built graph in a TensorFlow 

procedure as well as displaying images that are passed through the network and 

illustrating obtained scalar variables [53]. In order to select which nodes or values 

should be displayed, summary objects have to be added during the model build, 

which gather the selected values during the training process. This data is collected 

in TensorBoard event files, which can then be visualised in the web browser.  

The complete graph is shown in Figure 19. The boxes correspond to the nodes and 

therefore to collections of operations combined in one namespace, while the edges are 

shown as arrows, depicting dependencies and dataflows. Auxiliary nodes, i.e. nodes 

of a high degree with many connections to other nodes (e.g. the used optimiser) are 

displayed in the upper left corner to keep the diagram arranged clearly. 

 

Figure 19: TensorBoard visualisation of the complete model, data flows of tensors are 
shown with arrows and operations as boxes.  
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In order to debug and analyse the neural network, TensorBoard can display the 

inputs and outputs of every node, also showing the single operations performed inside 

of larger, more complex nodes. 

 

Figure 20: Display of an expanded node in TensorFlow, providing information about the 
inputs and outputs of the selected node. 

 Used Mathematical Operations in Neural Network  

Loading the input data into the model can be realised using two different approaches. 

Firstly, the input images may be organised in three folders according to their labels. 

During loading of the data into the network, two tensors are built, one containing 

the image data paths while the other lists the labels corresponding to the folder the 

images are in. The other method, which was chosen for this work, involves a file 

which lists the data paths of the input data and their corresponding label. Upon 

reading the file, the paths and labels are separated and assigned to separate tensors. 

Both strategies now convert the PNG image data into uint16 tensors, i.e. the values 

of the tensors are integer values with a size of 16 bit. The number of colour channels 

is set to 1, since only greyscale images are regarded. The size of the tensors amounts 

to 526 x 127 x 1, representing the greyscale 2D images. 

As activation function of the neurons, the previously discussed ReLU was used. This 

function sets negative activations to zero and outputs a linear function if there is a 

positive input. 
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𝑓(𝑥)  =  𝑥ା =  𝑚𝑎𝑥(0, 𝑥) (7) 

 

Therefore, the output increases with the positive input leading to neurons reacting 

stronger to larger input values and enabling the calculation of more complex, non-

linear models. 

After each training cycle of loading training data into the network and setting the 

weights, a prediction of the label of the subsequently fed in testing data is made 

using the previously determined weights. After the last fully connected layer, i.e. the 

output layer, the softmax function is applied to determine the probabilities of the 

tested image belonging to one of the possible labels. The softmax function converts 

an n-dimensional vector termed logits, which is received as input from the previous 

network layer, to a decimal probabilistic value for each of the possible classes. The 

output is therefore a scalar value between 0 and 1, the sum of the probabilities for 

all labels naturally yielding 1.  

Further, the loss function (generally termed cost function) which describes the 

difference between estimated and actual label is determined by calculating the cross 

entropy. The cross entropy serves as a method of obtaining the difference between 

the probability distribution given by applying the softmax function on the output 

logits, i.e. the output of the neural network, and the actual distribution of labels. For 

two discrete probability distributions 𝑝௜ and 𝑞௜ the cross entropy is given as follows. 

 
𝐻(𝑝, 𝑞) = −∑𝒊𝑝௜𝑙𝑜𝑔(𝑞௜) (8) 

 

The last performed step before the optimisation of the loss function is to determine 

the mean of the acquired cross entropy tensor, which is reduced to one single element 

in the process. This obtained value is later used as the scalar value determining the 

loss and should converge to 0 during the training process. The optimisation of the 

loss function is performed using the Adam (Adaptive Moment Estimation)    

optimiser [54]. This metric combines the benefits of two other optimisers, Adaptive 

Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp) and 

serves as an extension of the conventional stochastic gradient descent (SGD). In 

contrast to SGD, which uses a fixed learning rate, Adam determines a learning rate 
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for each parameter i.e. each weight separately and adapts the learning rates according 

to the found gradient of the loss function. Contrary to other optimisation techniques, 

Adam uses estimations of both the first and second stochastic moments of the 

gradient, corresponding to the mean and uncentered variance of the gradient. A 

hyperparameter that can be set is the step size 𝛼, indicating the size of the steps that 

are taken along the gradient in order to find a minimum value. It is generally also 

referred to as learning rate but has to be distinguished from the individual learning 

rates set for each parameter when describing the Adam optimiser. However, since 

the framework TensorFlow denotes 𝛼 as learning rate, this convention will be kept 

for further investigation performed in this thesis. 

As described in 1.2.1.3, complex models may learn details of the training data and 

are therefore prone to overfitting. To avoid that, weight regularization was applied 

in order to keep the model simple and therefore improving the generalisation of 

features. This was done by adding an L2 regularizer to each convolutional layer, 

which retrieves the squared feature weights of each layer. All these values are 

summed up, multiplied by a factor 𝜆 called regularization parameter, and added to 

the loss function, serving as method to consider the complexity of the model [55]. 

The loss function to be optimised has now a shape as shown in (9). 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒൫𝐿𝑜𝑠𝑠(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙) +  𝜆 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑜𝑑𝑒𝑙)൯ (9) 

 

This additional term penalizes large weights in the model and therefore regulates the 

distribution of weights, reducing large positive and increasing small negative outlier 

weights. The loss function includes the additional L2 term, therefore the optimisation 

compensates the complexity of the model, therefore counteracting overfitting. The 

regularization parameter 𝜆 determines the fraction of the L2 regularization term that 

is added to the loss function and is set to 0.01 for this work. 

 
𝐿2 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 = ||𝝎||ଶ

ଶ =  𝜔ଵ
ଶ +  𝜔ଶ

ଶ+ . . . + 𝜔௡
ଶ  (10) 

 

In order to quantify the results of the training, the parameters accuracy and, as 

previously described, the loss are calculated. The accuracy is determined by obtaining 

the ratio of correct to total number of predictions made by the network.  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 (11) 

 

In the network this is realised by applying the argmax function to test logits, i.e. the 

vectors obtained in the last fully connected layer, hereby – in contrast to the softmax 

function – only obtaining the labels with highest probability. Comparing the result 

to the actual labels of the test dataset yields a tensor of Boolean values, therefore 

determining the number of correct predictions. Similarly to obtaining the scalar value 

for the loss function, the reduced mean of the tensor of correct predictions is obtained 

in order to describe the accuracy. 
 

 Terminology of Neural Networks 

In order to provide a summary of the terms and definitions used in the previous 

sections, the following table provides short descriptions of the parameters and 

properties of neural networks in respect to TensorFlow terminology [56]. 

Table 5: List of used terminology of neural networks.  

Accuracy Fraction of correct predictions made by the network 

Activation function 
Mathematical function describing the activation of the 
neurons in the network, i.e. how the input values of each 
neuron relate to the output 

Batch 

Number of input data fed into the network at a time, if the 
batch size is smaller than the total number of input data it 
is termed mini-batch, often a factor of the total number of 
inputs is used for a faster computation process 

Convolution 

Mathematical operation performed in the convolution layer 
in order to reduce the number of parameters which allows 
faster computation and more complex networks without 
reducing performance 

Dropout 
Method to reduce overfitting, deliberate deactivation of a 
certain fraction of neurons to improve generalisation of 
network 

Epoch 

Process of all training instances passing through the 
network once. One epoch consists of the number of 
iterations it takes to pass the whole input dataset through 
the network once, i.e. number of input data divided by 
batch size 
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Fully Connected Layer 
Layer in which all the neurons have connections to all the 
neurons of the previous layer; performs classification of data 

Feature 
Elements of input vectors, i.e. number of neurons of the first 
layer 

Graph Complete structure of neural network 
Hyperparameter Property of network model that is to be set manually 

Iteration 
Training step; passing of one batch to the network and 
setting the weights according to the gradient 

Label Output of network, group the input belongs to 

Learning rate 
Size of steps taken along the gradient of the loss function in 
order to reach minimum 

Logits 
Output of last layer of the network, non-normalised vector 
of predictions made by the network 

Loss (Cost) function 
Main objective to be optimised during training by following 
the gradient of the loss function along its descending slope 
to find a minimum 

Max Pooling layer 

Layer of neural network that selects the most active neuron 
in a cluster of chosen size in order to improve computation 
time and reduce overfitting by focusing on the most relevant 
features 

Model 
Neural network after training, can be used to evaluate 
unlabelled input data 

Node/ Neuron 
One computational unit in the network, organised in layers, 
connected to other neurons 

Optimisation function 
Algorithm used to minimise/ optimise the loss function by 
adjusting the weights of the neurons  

Overfitting 
Process of very flexible adjustment of network to the 
training data leading to worse generalisation and therefore 
worse performance on unknown data 

Parameter 
Variable of network model, to be set during training by the 
network itself, i.e. weights 

Regularization 
Another method of avoiding overfitting by adding an 
additional expression to the loss function in order to 
improve generalisation of model 

Session Object that runs the built TensorFlow graph 
Step size Equivalent to learning rate 

Training 
Process during which the weights are adjusted in a way that 
the output of the network model matches the know input 
label 

Weights 
Parameters of the connections between neurons, to be set 
during training 



Materials and Methods    48 

 Structure of network 

In order to represent the final used layer structure of the neural network, Figure 21 

shows the complete network including all data flows as well as the properties of the 

layers. 

 

Figure 21: Structure of the used convolutional neural network as portrayed by 
TensorBoard (left) as well as the equivalent structure presented as boxes with 
description for better visibility (right). The arrows show the order the layers are passed, 
starting at the bottom with the first convolutional layer and ending at the last fully 
connected and therefore the output layer containing three neurons. 
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The function of the layers can be divided into feature detection and classification, 

the former accomplished by the convolutional and pooling layers, and the latter done 

by the flattening and the fully connected layers. 

As depicted in the figure, the network consists of four convolutional layers, each 

followed by a pooling layer. The number of filters or kernels used amounts to 32 for 

the first layer, using a kernel size of 5x5. The input of this layer is formed from the 

pixels of the actual input image. The other three convolution layers make use of 64 

filters, with a size of 3x3 each. The stride was kept at the default value for all the 

convolution layers, causing the filter to move one pixel or neuron at a time. Each 

convolution layer is followed by a pooling layer utilizing the max pooling technique, 

therefore selecting the neuron with maximum activity within a selected field size. 

These four layers exhibit the same parameters, choosing a field size of 2x2 and a 

stride of 2.  

For executing the classification process, a flattening layer organises the retrieved 

neurons into a one-dimensional vector in order to serve as input for the following 

three fully connected layers. The first two of these consist of 1024 neurons, each 

connected to all the neurons of the previous layer, hence the nomenclature. The last 

of the fully connected layers serves as the output layer and consists of only three 

neurons, the same number as labels are present in the model. The values retrieved 

in this layer are the non-normalised predictions of the probabilities of the input data 

belonging to each of the labels. This output can be seen as a vector termed logits 

and is used to obtain the probability distribution. 

The structure as it is elaborated here was obtained after testing and improving the 

original neural network, which is to be described in the following sections. The 

performed optimisation can be thematically divided into three topics: the 

optimisation of the network itself by adding more layers, the optimisation of 

parameters used during training and the testing of robustness of the network against 

different input data. 
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 Optimisation of Arrangement of Network Layers 

One strategy to evaluate improvements was to increase the depth of the network, i.e. 

adding more convolutional and fully connected layers.  

 

Figure 22: Different tested layer sequences. Network 1 represents the same network as 
suggested in the template, successive addition of convolution and fully connected layers 
lead to Network 4, which is the final used structure. 

Usually, adding convolutional layers improves the accuracy of neural networks as 

more features are extracted while keeping the computation time rather low. This has 

a limit, since at a certain point the network will tend to overfit the data since detailed 
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features are detected by the convolutional layers. Four different layer sequences were 

tested, depicted in Figure 22. 

 Optimisation of Training Parameters 

In order to further improve the obtained model and check the response of the model 

to different parameter changes, selected training hyperparameters were varied in 

order to identify optimal values and achieve sufficiently accurate results. These 

include the learning rate and the batch size. Other network parameters that were 

not changed over the course of the training processes are the number of epochs as 

well as the regularization parameter. 

 Learning Rate 

The learning rate is a parameter that describes the step size that is taken along the 

gradient in the direction of the steepest descent during backpropagation in order to 

correct the network weights and determine the minimum of the loss function. In case 

of the used optimiser in this work, the learning rate set upon calling this function is 

a hyperparameter describing only the step size, since the learning rate of each 

parameter is adjusted separately, as described in 2.5.3. 

A very small learning rate causes the weights to be adjusted very slowly, therefore 

increasing the time until a minimum is reached. On the other hand, a large learning 

rate takes steps that may be too large and therefore never reach the minimum, as 

illustrated in Figure 23. 

  

Figure 23: Depiction of the learning rate as the size of steps that are taken along the 
found gradient. The curve on the left shows a very small learning rate while the curve 
in the middle presents an optimal value and the right curve depicts a learning rate that 
is too large [57]. 
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For this investigation, the values for the learning rate were varied from the 

recommended default value of 0.001 to 0.01 and 0.0001. 

 Batch size 

As previously described, the batch size determines the number of input images that 

is passed to the network at once, influencing the gradient of the loss function that is 

obtained after one iteration. The gradient that is formed is averaged over all the 

predictions made, therefore, if more predictions are made, i.e. more images are passed 

through at once, the gradient is more precise. However, it has been shown that 

performance actually decreases when using large batch sizes due to worse 

generalisation, therefore it was assumed that the used amount of images per batch 

was sufficient [58].  

In order to compare the performance of the model with different batch sizes, mini-

batches of different sizes were built, using 50, 100 or 150 images per batch. Since the 

total dataset size is 200, the last case performed only one iteration since there is a 

residual amount of 50 images. One iteration describes the pass of one mini-batch to 

the network and one backward pass of weight correction. The relation of iterations 

and epochs, i.e. the cycle of passing all the input data once and setting the weights 

accordingly, is given as follows. 

 
1 𝐸𝑝𝑜𝑐ℎ =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑚𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ
 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (12) 

 

 Testing of Robustness of Training 

An important way of determining validity of a model is to test it for its robustness. 

To do that, two different approaches were taken: firstly, the three different datasets 

were given to the network in different combinations. Secondly, the datasets itself 

were shuffled again and compared.  
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 Robustness against Switching of Datasets 

One robustness testing involved the switching of the three prepared datasets, which 

are simply enumerated for the sake of a general view. 

 

Table 6: Combinations of the three obtained datasets 

Combination Training dataset Testing dataset 
1 Set 1 Set 2 
2 Set 2 Set 1 
3 Set 3 Set 1 
4 Set 3 Set 2 
5 Set 1 Set 3 
6 Set 2 Set 3 

 

 Robustness against Shuffling of Datasets 

In order to investigate if the order of the list objects within the datasets has an 

influence on the training, the before investigated combinations of datasets were tested 

again after using a short script to shuffle the lines within the files containing the 

image paths and labels. 

Table 7: Combinations of shuffled datasets in order to test robustness 

Combination Training dataset Testing dataset 
1 Set 1 shuffled Set 2 shuffled 
2 Set 2 shuffled Set 1 shuffled 
3 Set 3 shuffled Set 1 shuffled 
4 Set 3 shuffled Set 2 shuffled 
5 Set 1 shuffled Set 3 shuffled 
6 Set 2 shuffled Set 3 shuffled 

 

The described models were compared with the corresponding models from the 

previous robustness test. 

The trainings were performed on an Acer Aspire E5-575G laptop based on an Intel® 

Core™ i7-7500U CPU with 2.90GHz and 8GB RAM. Additionally, an NVIDIA 

GeForce 940MX graphics card is available as GPU. 
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3 Results 

After setting up the neural network as stated, the described variations of parameters 

and layer sequences as well as the robustness tests were performed in order to design 

an algorithm that is able to classify the input data accordingly and with the highest 

possible accuracy.  

The epochs performed during each training were set to 500, i.e. the whole dataset is 

passed to the network 500 times, with a consequent backpropagation calculation and 

adjustment of weights after each forward pass. Another parameter that has not been 

varied is the regularization parameter 𝛼, which was set to 0.01 for all the performed 

network training processes. For the models built for this thesis it was chosen to 

display the value of accuracy and loss of every 10th epoch using TensorBoard. 

TensorBoard provides a slider to adjust smoothing of the obtained curves to improve 

visibility of the trend of the graphs. The transparent curves display the actual 

obtained values, while the lines with high opacity represent the smoothed values. 

 

Figure 24: TensorBoard visualisation of the loss for multiple different network models. 
The x-axis represents the numbers of epochs while the y-axis shows the value of the loss. 

The scalar loss values obtained as described before are displayed in Figure 24. Since 

the value showed the desired behaviour of converging to zero rapidly in all performed 

trainings, this parameter is not further discussed in the following optimisations. 
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 Network Layer Structure 

In order to determine the optimal layer structure, more convolutional and fully 

connected layers were added to the basic structure, leading to the results presented 

subsequently. All network trainings were performed using a learning rate of 0.001 

and a mini-batch size of 100. 

 

Figure 25: Achieved accuracy of four different layer sequences, represented as training 
accuracy over number of epochs.  

Network 1, which was suggested in the used template, contains the least amount of 

layers and achieves the lowest accuracy of ~59%. Adding a third convolutional layer 

increases the achieved accuracy substantially to just over 64%. No changes were 

observed upon adding a fourth convolution layer and a third fully connected layer, 

however the layer sequence of Network 4 was kept for all further training processes, 

since no consequential increase of computation time was monitored (see 3.7). 

 Learning Rate 

The first hyperparameter to be varied was the learning rate. As shown in Figure 26, 

the accuracy of the model varies considerably with changing learning rate. The lowest 

tested value was 0.01, exhibiting the predicted behaviour of not converging to a 

minimum, since the taken steps are too large. Reducing the learning rate to 0.001 

already leads to a relatively fast convergence to an accuracy of around 64%. Further 

reducing that value to 0.0001 yields only a small increase of accuracy. However, again 

the observed computation time did not increase substantially. 
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Figure 26: TensorBoard graph displaying the training accuracy for different learning 
rates over the number of epochs. 

 

 Batch Size 

 

Figure 27: Training accuracy of trained model for three different mini-batch sizes. 

Three different models were trained using three different batch sizes, i.e. 50, 100 or 

150 images per mini-batch. The obtained curves all converge similarly to a value 

between 63% and 65 %. While a batch size of 150 produces the smoothest curve, the 

achieved accuracy values for the smallest batch size of 50 vary to a larger extent, 

causing the graph to appear less smooth especially for the first 150 epochs. 
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 Robustness against Switching 

To test the robustness of the model found in the last optimisation steps, the three 

datasets were passed to the network in different combinations according to 2.8.1. 

This test was again performed using a learning rate of 0.001 and a batch size of 

100. 

 

Figure 28: Accuracy of networks for six different combinations of datasets, given as 
training accuracy over number of epochs. 

The hereby achieved training accuracies reach from ~59% to ~69%, therefore a large 

variance can be observed. The resulting curves seem to follow three different 

branches, converging either to a value below 60% for combinations 2, 3 and 4, around 

64% for combination 1 or ~69% for combinations 5 and 6.  

 Robustness against Shuffling 

The second robustness test performed was to shuffle the datasets and compare those 

to the same unshuffled combinations from the previous testing. Again, a learning 

rate of 0.001 and a batch size of 100 images was used.  

Figure 29 and Figure 30 show the first three and the last three combination in 

comparison with their shuffled variations, respectively. Overall, the shuffled 

combinations yield similar values as the non-shuffled versions, following the observed 
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three branches. A deviation can be observed in combination 4, where the shuffled 

version provides an increase of accuracy of around 4%. 

 

Figure 29: Training accuracy of networks over number of epochs to compare original 
datasets with shuffled ones. 

 

Figure 30: Training accuracy of networks over number of epochs to compare original 
datasets with additionally shuffled ones. 

 Evaluation of unknown data 

The model delivering the best results as presented before consists of four 

convolutional and pooling layers, three fully connected layers, with the learning rate 

set to 0.001 and a mini-batch size of 100 images. Upon using dataset 2 and 3 for 
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training, an accuracy of 69% is reached. The final operation performed on the 

completed model was the classification of unknown data. For this purpose, the 

evaluation dataset, i.e. one that has not been used during training is passed to the 

best performing model described before. In contrast to training, the weights are now 

fixed and only predictions are made. During this process, an evaluation accuracy of 

59.5% was achieved. 

 Computation times 

Since no extensive increases in computation times upon changing parameters while 

performing network trainings on the CPU were observed, models were not optimised 

to that effect. For the sake of completeness, all runtimes are listed below. Calculation 

times ranged from 51 minutes and 26 seconds for Network 3 to 2 hours, 39 minutes 

and 35 seconds for the largest tested mini-batch size of 150 images. 

Table 8: List of the computation times of the respective trained models 

Model Time 
Learning rate 0.01 1h 49min 33s 

Learning rate 0.001 = Combination 1 2h 7min 3s 
Learning rate 0.0001 1h 45min 28s 

Mini-batch 50 55min 51s 
Mini-batch 100 2h 2min 58s 
Mini-batch 150 2h 39min 35s 

Network 1 1h 0min 0s 
Network 2 1h 4min 59s 
Network 3 51min 26s 
Network 4 58min 51s 

Combination 1 shuffled 1h 44min 12s 
Combination 2 2h 36min 36s 

Combination 2 shuffled 1h 44min 9s 
Combination 3 1h 48min 51s 

Combination 3 shuffled 2h 24min 4s 
Combination 4 1h 54min 35s 

Combination 4 shuffled 1h 53min 13s 
Combination 5 1h 41min 30s 

Combination 5 shuffled 2h 7min 16s 
Combination 6 2h 11min 38s 

Combination 6 shuffled 2h 8min 10s 
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4 Discussion 

A neural network able to classify treatment plans into groups according to their GPR 

was established and optimised. As a first approach of assessing the performance of 

neural networks concerning the task mentioned above one possible implementation 

of a convolutional neural network was presented, which demonstrated the ability to 

produce reasonable output. The generation of input data, i.e. the transformation of 

radiotherapy treatment plans to fluence maps was accomplished as desired.  

 Interpretation of Results 

Overall, accuracy values in the range of 57%-69% were observed upon training 

different network layer sequences with varying hyperparameters. The obtained 

results will be discussed and interpreted below. 

The increase of network depth, i.e. the addition of convolutional and fully connected 

layers lead to the predicted improvement of network performance of ~5% to up to 

64% accuracy compared to the smallest network presented in the template. This 

increase originates from the higher number of features that are identified and used 

for classification. However, the expected large increase of computation time with 

depth of network due to an increased number of parameters was not observed or only 

minimal. 

Furthermore, the achieved results for learning rate and batch size variation supported 

the theoretical background and underlying fundamentals of machine learning as 

presented in 2.7. The largest learning rate exhibited the expected behaviour of 

oscillating around the minimum but not reaching it, due to the step size being too 

large, while the smaller learning rates converged to values of ~ 64%. The variations 

upon changing mini-batch size support the theoretical predictions, as the observed 

curves appear smoother with increasing batch size, probably related to the gradient 

of the loss function. The gradient is formed by the average of the differences of all 

predictions. Increasing the number of predictions – as it is the case when increasing 

the number of images passed to the network at once – enhances the precision of the 

gradient.  
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While the built network is robust concerning shuffling of input data, switching of 

datasets causes a discrepancy of accuracy of 10% (e.g. Combination 4 and 6 in          

Figure 28). The testing of robustness against shuffling behaved as desired, supporting 

the assumption that the order the input data is passed to the network does not 

influence the outcome. However, the large difference in accuracy observed when 

switching datasets seems to originate from the unbalanced distribution of input data 

to the three labels and thus the three datasets and indicates the necessity to improve 

the network in this context. Suggestions on how to overcome this limitation are 

described in section 4.3. 

In general, the relevance of the analysis of computation times is questionable, since 

the runtime also depends on the workload on the CPU, which varied with the time 

of day and the personal activity and therefore the observations did not match the 

theoretically expected one. In contrast to the predictions, decreasing the learning rate 

did not always lead to a longer computation time and in some cases even to a decrease 

in runtime. However, the observed increase of computation time with batch size is 

in line with the fact that more images are used per computation step. 

 Comparison to Literature 

The obtained results are compared with one achieved by Interian et al., since it was 

aimed to replicate and improve their stated outcome [42]. The best performing 

network, i.e. the CNN with four convolutional layers and three fully connected layers, 

reached an accuracy value of 69% upon training with a learning rate of 0.001 and a 

mini-batch size of 100. In comparison to that, Interian et al. achieved an accuracy of 

0.70 ± 0.05 upon predicting GPR values of fluence maps. However, since the aim 

was to determine continuous values rather than distinct classes, the mean absolute 

error (MAE) was used as evaluation metric in order to measure accuracy. In contrast, 

the metric that is commonly used in classification problems and was therefore applied 

in this work is the cross entropy, making the direct comparison of the results 

challenging. However, the results achieved in this thesis are of the same order of 

magnitude as the achieved accuracy using a CNN to predict GPR based on fluence 

maps presented in literature and are therefore considered as plausible. 
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Another approach of using deep learning methods to evaluate QA data was 

investigated by Nyflot et al., using a convolutional neural network to identify errors 

in QA measurements and comparing the performance to manually selected features 

[59]. In contrast to Interian et al., the group focused on the detection of errors rather 

than predicting a parameter of the plan using gamma images displaying the gamma 

index of each point of the irradiated field. In this case, a two- or three-class 

classification problem was investigated, respectively. Their deep network achieved a 

maximum accuracy of 64.1% upon dealing with three classes, using the max margin 

loss function. The results suggest the achieved accuracies in this work hold up to the 

current findings of image classification of QA plans related to GPR in literature, even 

though again a different metric was used to compute the loss function. 

What appears to be a satisfactory result at first glance has to be treated with caution: 

upon closer inspection of the evaluation of unknown data it was evident that the 

network classified all the input data as label 0, probably stemming from the large 

proportion of input images that incorporate the label 0. Furthermore, the networks 

showed largely varying accuracies upon switching of datasets, which leads to the 

evaluation of the encountered limitations within the presented work. 

 Limitations and Improvements 

Despite the encouraging comparison with literature, further improvements are 

necessary in order to reach the final goal of implementing the proposed machine 

learning routine into the standard clinical workflow. The results show a wide range 

of different accuracy values upon testing different network structures and especially 

large variations when assessing the robustness of the built networks against switching 

of datasets. Therefore, the findings require identification and examination of possible 

errors, as well as a discussion of other approaches for future investigations of that 

matter. The limitations encountered over the course of this work occurred in different 

aspects of the input dataset, network building and training processes. The main 

problem encountered was the faulty classification of treatment plans in the group 

with highest GPR values, due to the predominant assignment of label 0 to the 

acquired treatment plans. 
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 Dataset 

As it is the case for all machine learning methods, increasing the number of patient 

data and therefore increasing the training examples is a method of improving the 

resulting accuracy. While the 600 used images show to be of the same order of 

magnitude as the one compared with literature, results are expected to improve with 

increasing number of input data. Increasing the number of images would in this case 

require to obtain older plans, with the current planning dates of the retrieved patient 

data for this thesis already spanning over three years. Including even older plans 

would reduce the uniformity and therefore quality of data, since planning and 

treatment techniques have changed and improved over time. Therefore, new data 

has to be acquired. 

On this note, the improvements in delivery systems and planning software lead to 

enhanced GPR values for more recent plans. This causes the number of plans with 

lower GPRs and therefore plans with label 1 or 2 to be found rather sparsely, 

hindering the building of a valid CNN model. Therefore, the desired balanced 

distribution of data to labels was not possible, since almost 64% of all the plans were 

categorised with the label 0. Despite best efforts to adjust the intervals determining 

the labels to distribute the input data evenly to all labels, the number with images 

of associated label 0 was still the largest and the trained networks were prone to 

identifying most data with label 0, as it was observed upon evaluating unknown data. 

Since the GPRs were obtained using the 3mm/3% criteria, a method to discern 

planning data more precisely would be to apply the 2mm/2% criteria, further 

distributing the obtained gamma passing rates to lower values and increasing the 

variance in the dataset. Also, it might be necessary to re-investigate the data set for 

drifts of the linac and the detector, which could also influence the classification. 

Other approaches of labelling the patient data were also considered. Separating the 

data into 4 classes did not yield valid output, since the resulting accuracy figures 

only equalled random guessing. Distinguishing only two classes and in that way 

introducing the pass-fail criteria of the QA measurement was considered as not fine 

enough for this application. This approach would also worsen the distribution of data 

to labels, since only plans with a GPR of <90% fail the QA measurement, which 
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amounts to only 5 plans out of 600. Again, in this scenario, a network that only 

predicts label 0 would yield a high accuracy but would not offer a feasible model. 

The chosen intervals of GPR determining the labels in this thesis were somewhat 

arbitrary and served mainly the goal to achieve a balanced distribution to the labels 

than a statement about failing or passing the QA measurement. 

The differing number of images in each class also seems to be the factor influencing 

robustness, since different datasets lead to very different outputs. In line with that 

argument, datasets 2 and 3, the combination that yielded the best accuracy, also 

contain most of the images classified with label 0. This leads to the assumption that 

the high training accuracy is caused by the predominant classification of label 0, 

which is correct in most of the cases. The substantially worse performance of the 

evaluation dataset on the trained model of only 59.5% evaluation accuracy compared 

to 69% training accuracy can be explained by the lower ratio of label 0 to label 1 

and 2, therefore a larger portion of  predictions are incorrect.  

However, using non-balanced distributions of input data to labels is the general 

situation in current research and is therefore a problem that can be circumvented by 

choosing appropriate calculation metrics and other methods to prevent the network 

leaning toward a predominantly present label. Methods that have been proposed to 

counteract unbalanced distributions include oversampling, i.e. artificial increase of 

numbers of underrepresented labels, therefore either rotating or mirroring images to 

generate more input data and thus balancing the distribution in that way. This 

method of data augmentation is also generally used to increase the number of input 

data, but makes the network more prone to overfitting. On that note, applying a 

different technique to counteract overfitting could also be tested in the future. 

Another obvious method of balancing the number of labels would be to omit data 

from the predominant label, i.e. undersampling. This method therefore reduces the 

number of total data instances, and hence reduces the network performance. Finally, 

choosing more sophisticated metric to even out the unbalanced distribution enables 

the setup of a more feasible network without further manipulating the input data. 
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 Metric 

The used metric to calculate the loss function as previously discussed was the 

TensorFlow function sparse softmax cross entropy, allowing the classification of 

mutually exclusive labels. However, in this case other metrics such as the softmax 

cross entropy would have offered the possibility to put weights to the different classes, 

therefore enabling the prioritisation of images with labels that only occur sparsely 

and therefore compensating the imbalance in the distribution. A built-in function is 

available in TensorFlow, which requires the specification of a tensor containing a 

weight for each sample of the passed data [60]. In this context, the framework 

TensorFlow itself is currently worked on and updated frequently, therefore possibly 

offering future improvements in mathematical implementations as well as more 

efficient computation. 

 Fluence maps dimensions 

As described, the dimensions of the matrix and therefore the size of the generated 

fluence maps images was set to 400x80 pixels. Nevertheless, since the positional 

information of the collimators is available in sub-millimetre precision, a finer image 

generation would be possible by increasing the image width to 4000 pixels, therefore 

increasing the precision of the network predictions. However, this would also 

drastically increase the parameters of the input and consequently all following layers. 

Subsequently, the increased number of necessary computations of parameters are 

more expensive concerning memory of the machine and could therefore be 

investigated on a system with higher computing power. 

 Physical machine memory 

Another problem that was encountered that limited the possibilities of further 

research was the limited memory available in the used PC. Therefore, sampling with 

a batch-size of the complete dataset of 200 images was not possible due to a limited 

RAM of 8 GB. While computation time itself had not posed any obstacles, the models 

trainings aiming to investigate batch sizes of 200 images were terminated due to a 

lack of memory. All operations were performed on the included CPU with 2.90 GHz 

clock frequency, which was sufficient for the performed tasks since computation times 
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were in the range of one to three hours. The option of using the built-in GPU was 

considered, but due to lacking memory, not even small, simple networks were able 

to be trained on the graphical device. One suggestion for improvements for the future 

is therefore the use of GPUs with larger memory, since the computation operations 

on tensors can be parallelised and therefore runtime is improved. Alternatively, using 

a PC with increased RAM would already enable testing of wider and deeper networks. 

 Further improvements 

Another concept that may offer further potential but was not applied in this work 

was to include the information of the total number of monitor units and checkpoints 

per plan in the input to the network in order to consider not only the relative but 

the absolute dose output of different plans. Since the used fluence maps show only 

the relative fluence distribution of each plan, i.e. the darkest region of prostate plans 

does not correlate to the same dose as the darkest region of HN plans, considering 

the full delivered dose as input parameter for the network may contribute to the 

assessment of complexity and GPR. Additionally, the number of checkpoints may 

also hold valuable information that could be used assessing the complexity and GPR, 

since a slight correlation of the number of checkpoints and GPR values is expected. 

A method to circumvent the convolution blocks and feed these parameters directly 

to the network needs to be developed. 

Expanding the network size, i.e. the number of neurons, filters and kernel sizes per 

layer was not investigated in this thesis for multiple reasons. In order to understand 

the fundamental mechanisms and relations between parameters and the behaviour of 

the network, other parameters that were easier to vary and more straightforward 

were tested first. Additionally, the aforementioned memory issues prevented the 

further widening of the network.  

The application of the investigated CNNs is not limited to VMAT treatments only. 

Since the fluence maps present the input information and may be created from TPS 

output for all the different radiation methods, the concepts may also be adapted for 

particle therapy. 
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Finally, the performed optimisations provided a first insight into neural networks 

and the possibility of incorporating machine learning algorithms in the clinical 

workflow to improve patient care and reduce time for quality assurance 

measurements. Using the proposed approaches to improve the CNN and the input 

data likewise, a constant improvement of the achieved results in this work can be 

expected. 
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5 Conclusion and Outlook 

For applying new machine learning algorithms in the clinical workflow and 

substituting a well-understood patient specific QA process, high reliabilities and 

accuracies of results are required. This thesis set the first step into investigating 

neural networks designed for the special purpose of identifying the complexity of 

fluence maps for Versa HD and Synergy linacs allowing a classification according to 

the gamma passing rate. 

In conclusion, incorporating machine learning algorithms and especially neural 

networks into the clinical workflow to estimate GPR values of treatment plans is a 

promising approach for future improvements of the QA procedure. Strategies on how 

to overcome the encountered limitations have been proposed and may be 

implemented in the future. Enlarging and improving the dataset is one of the key 

aspects expected to improve model performance, along with choosing a computation 

metric more suitable for the task and increasing the resolution of input images. That, 

in addition to further optimisation of the network dimensions is possible on a PC 

with larger computing power. Nevertheless, the results achieved in this work are 

comparable to current findings in literature and show a high potential of 

improvement that may be investigated in the future. 
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- Converts input PNGs to tensor 
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- Performs training using given training and testing datasets 
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TensorBoard  
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