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Abstract

Many unsolved mysteries in our universe such as galaxy rotation curves, mass distribu-
tion of clusters etc. can be reasonably explained by the concept of dark matter. WIMPs
(Weakly Interacting Massive Particles) are the most favored dark matter candidate. In
the quest to experimentally observe WIMP dark matter, CRESST is an outstanding ex-
periment setting the best exclusion limits for low-mass WIMPs ever since. The analysis
of the raw data observed by a particular cryogenic detector TUM40 used by CRESST
is very challenging as two distinct pulse shapes are observed leading to a two-class clas-
sification problem. Neural networks and deep learning evolved to high potential tools
in the field of data science. This work uses state-of-the-art deep learning techniques to
investigate the two-class classification problem observed in TUM40 data.
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1. Dark Matter

Dark matter is a synonym for different particles that do not interact via the electromag-
netic force, hence the name dark matter. The standard model of cosmology (ΛCDM
model) is based on cold dark matter (CDM) and the cosmological constant (Λ) together
with the cosmological principle which is outlined in this chapter’s first two parts. In
the third part the main cosmological observations are summarized which indeed hint
the existence of non-luminous matter. Furthermore, different models of dark matter are
introduced with the prominent one being weakly interacting massive particles (WIMPs)
as seen in the fourth part. Finally a brief discussion about the experimental approaches
to observe dark matter is given.

1.1. Cosmological Principle

On scales larger than a few Mpc1 strong indication is given that our universe is isotropic
as well as homogeneous. The former statements imply that the universe behaves the
same in every spatial direction and observations do not differ in different locations. Both
properties combined is denoted as the cosmological principle. A metric that follows the
cosmological principle is written as

ds2 = −c2dt2 + a(t)2

(
dr2

1−Kr2
+ r2dθ2 + r2 sin(θ)2dφ2

)
. (1.1)

Equation (1.1) is referred to as the FRW (Friedmann-Robertson-Walker) metric, a(t)
denotes the expansion of space as a function of time, K ∈ {−1, 0, 1} corresponds to a
hyper-spherical, flat or spherical space respectively and c is the speed of light. The FRW
metric together with the Einstein field equations form the following described standard
model of cosmology.

1.2. ΛCDM Model

Einstein’s field equations are the fundamental equations of general relativity theory. They
connect the energy and momentum with the geometry of the universe and are given by

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (1.2)

1pc (parsec) is defined as the distance between an arbitrary point on the line originating from the
sun perpendicular to the rotation plane of the earth around the sun where the average distance
between the earth and the sun is at an angle of one arcsec measured at that arbitrary point. A pc is
approximately 3·1016 meters.
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Solving Einstein’s equation together with the FRM metric given by (1.1) leads to the
following fundamental Friedmann equations2 where the first one reads(

ȧ(t)

a(t)

)2

+
c2K

a(t)2
− c2Λ

3
=

8πG

3
ρ(t) . (1.3)

The first part of equation (1.3) is defined as the Hubble constant H(t)2 :=
(
ȧ(t)
a(t)

)2
,

ρ(t) is the energy density of the universe, G is the gravitation constant and Λ is the
cosmological constant. It is common to transform ρ → ρ - Λ/8πG and set K to zero to
evaluate the critical energy density as

ρc(t) =
3H(t)2

8πG
. (1.4)

As radiation, matter and the cosmological constant3 contribute to the energy density
ρ the former different parts are normalized as Ωi = ρi/ρc. Based on this normalization
together with equation (1.4) equation (1.3) can be rewritten in terms of

ΩT (t) =
∑
i

Ωi(t) = 1 +
c2K

ȧ(t)2
. (1.5)

As discussed, the total energy density of our universe seen in equation (1.5) consists
of the following three parts

ΩT = Ωmatter + Ωradiation + ΩΛ . (1.6)

The contribution from matter can be further divided into

Ωmatter = Ωbaryons + Ωleptons + Ωneutrinos + Ωdark matter. (1.7)

In summary the ΛCDM model is derived with the cosmological principle and the FRW
metric combined with the Einstein field equations. The energy density of the universe
is made up of matter, radiation and the contribution from the cosmological constant.
Furthermore, the energy density given by matter can be further divided with one part
consisting of cold dark matter. An overview of the main different contributions to our
universe is seen in figure 1.1.

1.3. Evidence for Dark Matter

Many cosmological as well as astrophysical observations on all cosmological scales hint
the existence of matter that is non-luminous. The following part briefly summarizes
prominent observations.

2The derivation of the Friedmann equations leads to two equations. For the considerations of this
chapter only the first one is needed.

3The influence of the cosmological constant Λ on a(t) is usually referred to as dark energy.
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Figure 1.1.: Energy density contributions to our present universe based on nine year
WMAP data (left chart) and Planck data (right chart). This illustration is taken from
[1].

Cosmic Microwave Background

In 1978 Arno Penzias and Robert Wilson were awarded with the Nobel Prize in Physics
for the discovery and related work regarding the cosmic microwave background (CMB)
[2]. The origin of this radiation lies about 380,000 years after the big bang. At that
time the expansion of the universe and the resulting decrease in temperature caused a
suppression of the disintegration process of hydrogen with photons. Hence photons were
able to travel freely (photon decoupling) and are observed all over the sky with a nearly
perfect black body radiation spectrum. Due to the expansion of the universe over time the
wavelengths of the photons are increased which leads to a red-shift of the CMB resulting
in a temperature of 2.72548± 0.00057K [3]. Another red-shift of the CMB originates by
an inhomogeneous mass density of the universe at the time of photon decoupling. The
former temperature fluctuations are observed by many experiments including WMAP [4]
and Planck [5]. Given these temperature fluctuations many cosmological quantities based
on the ΛCDM model can be constrained. In addition, it can be derived that roughly
a quarter of the energy density of our universe is indeed made up of dark matter. An
overview of the findings based on nine year WMAP and Planck data can be seen in figure
1.1.

Virial Theorem applied to Galaxy Clusters

In classical mechanics the virial theorem connects the mean potential energy with the
mean kinetic energy of a N-body problem. F. Zwicky applied the virial theorem to
observations of the COMA cluster and found that the observed objects move to fast
which can be explained by additional mass which does not interact with light [6].
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Galaxy Rotation Curves

A galaxy rotation curve is a depiction of the angular velocities of the respective stars
as a function of their radial distance measured from the galaxy center. Such a curve
is expected to rise linearly with the distance from the center of the galaxy r until a
maximum is achieved and then decrease proportional to 1/

√
r. This fact is derived by

the equality of the absolute value of the gravitational force and the centrifugal force.
However, many observed galaxies including the Milky Way do not show a decrease but
rather a constant angular velocity [7, 8]. An explanation of this behaviour can be made
with an additional presence of dark matter which does not interact with light.

Mass Distribution of the Bullet Cluster

The Bullet Cluster consists of two galaxy clusters traversing each other. While the X-ray
emitting gas components experience friction the remaining masses (stars, dark matter)
move by freely. By measuring the X-rays as well as the mass distribution a spatial
partitioning is observed. Contrary to the measurements the center of mass is expected
in the gas components as mGas » mStars. This discrepancy can be explained via dark
matter present in both galaxies traversing without friction and is outlined in detail in
[9].

1.4. Dark Matter Candidate Theories

In principle observations that indicate the existence of dark matter can be explained by
many theories. Three distinct approaches are outlined as follows.

MOND

MOND (Modified Newtonian Dynamics) is a theory which extends the law of gravitation
without introducing a new particle, furthermore, the considerations outlined in section 1.2
would be violated because the ΛCDM model is based on particle dark matter. However,
this theory does not account for mechanisms such as the CMB fluctuations, the Bullet
Cluster measurements and others as described in [10].

MACHO

MACHOs (Massive Astrophysical Compact Halo Objects) describe non-luminous bary-
onic matter. Experiments based on gravitational lensing observed MACHOs but it is ex-
cluded that MACHOs account for all observed dark matter mass as described in [11, 12].

Unknown Particles

A promising approach is to describe dark matter in terms of non-baryonic unobserved
particles as all Standard Model particles are excluded. Many hypothetical particles
fulfill the necessary requirements as described in detail in [13, 14]. One well motivated
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Figure 1.2.: Feynman diagram of dark matter particles interacting with standard model
particles. Three distinct processes which are used to experimentally search for dark
matter can be seen. This illustration is taken from [15].

candidate is the WIMP (Weakly Interacting Massive Particle) which is proposed to have
a mass of typically weakly interacting particles. In addition, WIMPs interact only via
the gravitational force as well as a weak force with roughly the same strength as the weak
nuclear force. The density of dark matter today can be derived via thermodynamic laws,
this derivation needs an interaction cross section as well as a dark matter particle mass
as inputs. If the former calculation is carried out with typical values for the cross section
and mass of weakly interacting particles, the measured dark matter density is derived.
This circumstance is referred to as the WIMP miracle and further increases the interest
in WIMPs as candidates for dark matter.

1.5. Dark Matter Detection

Dark matter particles might interact with ordinary standard model particles as illustrated
in the Feynman graph seen in figure 1.2. Based on this interaction scheme three distinct
approaches are capable of searching for dark matter. Indirect detection experiments mea-
sure the processes of dark matter particles decaying or annihilating into standard model
particles. Collider production experiments aim to produce dark matter from standard
model particles and infer dark matter via missing energy and momenta based on the
production processes. And lastly direct detection experiments measure nuclear recoils4

induced by dark matter particles based on the expected dark matter interaction rate for
different models. CRESST is an experiment searching for WIMPs by the direct detection
principle, hence the WIMP interaction rate is needed and briefly outlined as follows.

Expected WIMP Differential Recoil Spectrum

Assuming that WIMPs are present in the Milky Way, nuclear recoils occur due to the
movement of the earth throughout the galaxy. Based on this assumption the differential

4Recently also electron recoil dark matter searches evolve.
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Figure 1.3.: Depiction of the differential
recoil spectra as a function of the re-
coil energy for different target mate-
rials. For this plot a WIMP mass of
100 GeV/c2 is considered. This illus-
tration is taken from [16].

Figure 1.4.: Illustration of the differ-
ential recoil spectra as a function of
the recoil energy for different WIMP
masses. For this plot tungsten is used
as target material. This illustration is
taken from [16].

recoil spectrum is a product of three distinct terms as follows. The first term is the
density of the target nuclei in the detector. The second term is the flux of the incoming
WIMPs which is dependent on the WIMP velocity. Two effects have to be considered
for the WIMP velocity distribution. Firstly an upper bound is given by the galactic
escape velocity, WIMPs that are faster are not bound to the Milky Way, and secondly
an annual modulation originating from the movement of the earth around the sun has
to be considered. The third term represents the differential WIMP scatter cross section.
This term is proportional to the squared target mass number A and a form factor that
accounts for the fact that at high momentum transfers the target cannot be approximated
as a point. A detailed discussion of the WIMP differential recoil spectrum can be found
in [16]. In figure 1.3 the differential recoil spectra for different target materials and for a
WIMP mass of 100 GeV/c2 are depicted. Figure 1.4 shows the differential recoil spectra
for different WIMP masses and tungsten as target material. Based on both figures, a
low detector threshold is of utmost importance to ensure a high WIMP interaction rate.
This circumstance is amplified as the WIMP mass decreases. Therefore, CRESST aims
for a very low detector threshold. The experiment itself as well as the detector principle
is outlined in the following chapter.



2. CRESST

CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) is an ex-
periment dedicated to hunt dark matter based on nuclear recoil processes, it is located
in the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Starting in 1995, CRESST
developed over three stages with different detector materials and designs setting new
limits on the cross-section of WIMP dark matter ever since. A summary of the different
CRESST stages and phases as well as the main publications is seen in table 2.1. The
unique two-channel detector design based on the phonon and a scintillation light sig-
nal provides a method to distinguish between different types of particles involved in an
interaction, thus this design delivers an active background discrimination. CRESST-II
and CRESST-III are based on these two channel cryogenic detectors. CRESST-I used
only one channel to measure the phonon signal. This work focuses solely on CRESST-II
phase 2 which is further denoted as CRESST. This chapter will give an general idea of the
experimental setup leading into an introduction of the two-channel detector setup and
finishing with the fundamentals of the raw data preparation and selection for CRESST
detectors.

2.1. Experimental Setup

Figure 2.1 depicts the experimental setup of the CRESST experiment. A large fraction
of the experiment is dedicated to the shielding against various sources of background
such as Muons, Gamma Quanta, Electrons, Radon and Neutrons. In addition, LNGS
provides 1400 m of rock which is equivalent to approximately 3600 m of water [25]. In
the upper region of figure 2.1 the cooling complex is seen which provides temperatures of
approximately 5 mK by the principle of He3/He4 dilution. The heart of the experiment
holds the cryogenic detectors which are described in the following chapter. A detailed
description of CRESST is seen in [16, 18].

Table 2.1.: Summary of different CRESST stages and phases as well as the respective
main publications.

Stage Phase Data Taking Publications
CRESST-I - 2000 [17]

Commissioning 2007 [18, 19]
CRESST-II Phase 1 2009-2011 [20]

Phase 2 2013-2015 [21, 22]
CRESST-III Phase 1 ≥2016 [23, 24]
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Figure 2.1.: Illustration of the CRESST experimental setup. This illustration is taken
from [26].
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2.2. Two-Channel Cryogenic Detector Design

CRESST uses two-channel cryogenic detectors as seen in figure 2.2. Energy deposited
by particles in the target is measured in two channels. Firstly a phonon signal which is
measured in one channel and secondly scintillation light that is measured in the other
channel. The signals of both channels combined deliver a background discrimination
method. In the first part a general introduction of the detector concept is given. This
chapters second part concentrates on a physical model to describe the measured signal
shape.

2.2.1. Detector Working Principle

The core component of a two-channel cryogenic detector seen in figure 2.2 is the target
crystal. Nuclear recoils induced by incoming particles deposit energy in the crystal which
leads to crystal lattice vibrations. From a physical standpoint this lattice vibrations are
phonons, thus a temperature increase is caused by any particle interaction. Based on
thermodynamics the energy increase is approximately connected with the temperature
increase as follows

∆T =
∆E

C
. (2.1)

In equation (2.1) C denotes the heat capacity of the target crystal. This quantity
depends on temperature. For temperatures much smaller than the Debye temperature
C scales with T-3, hence at very low temperatures a tiny energy deposition leads to a
rather high temperature increase of the target crystal. As the former equation is only an
approximation a detailed discussion of the temperature rise induced by a particle inter-
action is seen in section 2.2.2. In addition to the phonon signal, particle interactions also
produce scintillation light. The detector is surrounded by a reflective housing that guides
the scintillation light into the light absorber which is another crystal that gets heated by
the incoming photons. TESs (Transition Edge Sensors) are mounted on the target crys-
tal and the light absorber respectively, thus the crystal/light absorber and the respective
TES are in direct thermal contact. Those TESs are type-I superconductors operated in
the transition region. Due to the temperature increase of a crystal originating from a
particle interaction the TES heats up and its resistance changes as illustrated in figure
2.3. This increase of the resistance is finally measured with a SQUID readout resulting
in a measured signal for the phonon as well as the light channel independently. CRESST
uses mostly CaWO4 as target material for the crystals. A typical event measured in the
phonon channel is seen in figure 2.5.

Background Discrimination

The amount of produced scintillation light (<10% for CaWO4) strongly depends on the
type of the interacting particle, whereas the phonon signal is quasi independent of the
particle type. Gammas and electrons interact with the electrons in the crystal via the
electromagnetic force, hence more scintillation light is produced compared to a recoil
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Figure 2.2.: Depiction of a CRESST
two-channel cryogenic detector de-
sign. This illustration is taken from
[27].

Figure 2.3.: Illustration of a transition
curve for a Type-I superconductor
which is used to measure the temper-
ature rise of CRESST detector target
crystals.

process originating from a neutral particle. Based on the photon and the light signal the
light yield parameter is defined as

LY =
EScintillation
EPhonon

. (2.2)

Processes originating from electrons or gammas produce the most amount of scintil-
lation light, consequently the light yield is normalized to one for electron/γ processes.
This is done by setting the observed phonon energy equal to the light channel energy for
electron/γ events at a specific calibration energy, resulting in a light yield parameter of
one for electron/γ events at that specific calibration energy. Particle interactions with
less observed scintillation light produce light yields smaller than one. A typical light
yield plot for a CaWO4 crystal used in CRESST is seen in figure 2.4. Following the
discussion in [16] the WIMP nuclear recoil cross section scales with the squared mass
number A of the target nuclei. Considering CaWO4 crystals WIMP events are mostly
expected in the tungsten band. However, for low WIMP masses the deposited energy
can be lower as the detector threshold for tungsten recoils. This would lead to a shift
into the oxygen band for the observable particle interactions. The same argumentation
holds for neutrons, resulting in the bulk of neutron background events observed in the
oxygen band. Based on the former discussion the light yield parameter provides a high1

background discrimination as seen in figure 2.4.

2.2.2. Pulse Shape Model

Figure 2.5 illustrates a measured phonon signal. The underlying physical model behind
the pulse shape is of great interest. A detailed discussion of the pulse shape seen in

1For CRESST-II detectors a background reduction of at least 1/105 at 46 keV is provided by the two
channel detector design [20].
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Figure 2.4.: Depiction of a light yield
plot for a CaWO4 target crystal. This
plot is taken from [28].
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Figure 2.5.: Measured phonon signal
with a fit energy of 35 keV. The ampli-
tudes correspond to the SQUID out-
puts.

cryogenic detectors used in CRESST is given by [29]. The main points of this publication
will be summarized in the following parts.

General Considerations

A particle interaction in the target crystal leads to initial phonons of very high frequen-
cies. These unstable phonons decay with a rate that is proportional to the fifth power of
their frequency (Γ ∝ ν5) with an initial frequency that is approximately half the Debye
frequency of the detector material. Due to the frequency-dependent decay rate of the
phonons a rapid average frequency decrease is observed which is followed by a much
slower decay rate resulting in an approximately constant frequency on time scales of mi-
cro seconds. This constant frequency is much higher than the average frequency of the
thermal phonons, thus the initial phonons are non-thermal. Combining that the crystal
diameter is in the order of a few centimeters and the typical speed of sound is roughly
103 m/s leads to the fact that the non-thermal phonons immediately (µs) fill the target
crystal. As a result the TES which is mounted directly on the target crystal is as well
immediately filled with non-thermal phonons. Electrons in the TES efficiently absorb
those phonons which leads to a rise in the temperature of the TES electron system and
furthermore resulting in a change of the TES resistance. In summary the former state-
ments lead to a fast power input in the TES electron system Pe(t) that is responsible for
the fast acting component of the measured signal.
The bulk of the heat in the TES electron system originating from the non-thermal

phonons escapes into the heat bath and does not flow back into the absorber as the
thermal coupling of the TES electron system with the absorber is very small at low
temperatures. A power input to the thermal phonons Pa(t) is given by the fact that a
part of the non-thermal phonons thermalizes on the surface of the target crystal. This
power input results in a slow acting component of the measured signal.
According to the outline above an initial particle interaction results in two power inputs

for the TES electrons system as well as the target crystal phonon system respectively.
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In order to derive a pulse shape the phonon frequency dependency of the power inputs
is neglected and the heat flow in the whole detector is evaluated based on the thermal
model of the whole detector design seen in figure 2.6. The change in temperature of
the TES electron system determines the change in resistance of the TES which is the
measured signal, hence ∆Te(t) will be calculated. A particle depositing energy ∆E into
the crystal leads to the following power inputs

Pe(t) = Θ(t)P0e
−t/τn , Pa(t) =

1− ε
ε

Pe(t) with P0 =
ε∆E

τn
. (2.3)

In equation (2.3) P0 is the initial non-thermal phonon power input that splits into the
TES electron system and the target crystal phonon system according to ε. The initial
power input P0 decays with a time constant τn in terms of the two processes which
are discussed above, namely the thermalization of the phonons on the crystal surface
represented by τCrystal and thermalization of the phonons given by the TES electron
system represented by τTES leading to

τn =

(
1

τTES
+

1

τCrystal

)−1

. (2.4)

The form of the two power inputs seen above together with the model seen in figure
2.6 are used to describe the temperature change of the TES electron system described in
the following part.

Derivation of the TES Electron Temperature Response

Two differential equations can be formulated by considering the thermal model seen in
figure 2.6 as well as the power inputs defined in equation (2.3) and additionally neglecting
the spatial dependence of the TES electron system temperature. Leading to the following
equations

Ce
dTe
dt

+ (Te − Ta)Gea + (Te − Tb)Geb = Pe(t) (2.5)

Ca
dTa
dt

+ (Ta − Te)Gea + (Ta − Tb)Gab = Pa(t) . (2.6)

Equation (2.5) and (2.6) can be analytically solved with the initial conditions that the
temperature of the target crystal as well as the temperature of the TES electron system
is equal to the temperature of the heat bath. The solution is given by

∆Te(t) = Θ(t− t0)[An(e−(t−t0)/τn − e−(t−t0)/τin) +At(e
−(t−t0)/τt − e−(t−t0)/τn)] . (2.7)

In equation (2.7) ∆Te(t) is defined as Te(t)-Tb. As Ce � Ca holds true for the
considered detector design the decay times seen in equation (2.7) evaluate as
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Figure 2.6.: Illustration of the thermal model of a cryogenic detector design which is
described in chapter 2.2.1. Pa(t) denotes the power input to the thermal phonons in
the target crystal, Ta is the temperature of the target crystal, Ca is the heat capacity
of the target crystal. Pe(t) denotes the power input to the TES electron system, Te
is the temperature of the TES electron system, Ce is the heat capacity of the TES
electron system. Geb describes the thermal conductance between the TES electron
system and the heat bath. Gep is the thermal conductance between the TES electron
system and the TES phonon system, GK is the thermal conductance between the TES
phonon system and the target crystal. The former two quantities define Gea which is
the resulting thermal conductance between the TES electron system and the target
crystal derived by an inverse sum. Geb denotes the thermal conductance between the
TES electron system and the heat bath which has a temperature of Tb. Lastly Geb
denotes the thermal conductance between the target crystal and the heat bath. This
illustration is taken from [29].
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τin ≈
Ce

Gea +Geb
τt ≈

Ca
GebGea/(Geb +Gea) +Gab

(2.8)

and the amplitude of the non-thermal component reads

An ≈
P0

(Geb +Gea)(1− τin/τn)(1− τin/τt)
=

−ε∆E
Ce(1− τn/τin)(1− τin/τt)

. (2.9)

The sign of the amplitude of the non-thermal component given by equation (2.9) is
determined by the ratio of τ in/τn, thus two distinct detector operation modes can be
utilized as follows.

τ in � τ n: In this case τ in is the rise time and τn is the decay time seen in equation (2.7)
which leads to ∆Te(t) ∝ P0e

−(t−t0)/τn . The temperature rise of the TES electron
system has the same shape as Pe(t) which is seen in equation (2.3). As a result
this operation mode measures the time dependent non-thermal phonon flux and is
referred to as the bolometric mode.

τ n � τ in: In this case the amplitude of the non-thermal component seen in equation
(2.7) is proportional to the energy of the high frequency phonons given by An ≈
−ε∆E
Ce

. Thus this mode is referred to as the calorimetric mode because the total
energy of the high frequency phonons is measured.

In the former introduced differential equations (2.5) and (2.6) it is assumed that the
electron system of the TES is a perfect thermal conductor. However, GTES also denoted
as GFilm is smaller compared to Geb which is also denoted as GAu. To take this effect
into account the temperature distribution of the TES electron system has an additional
dependency on the spatial coordinate Te = Te(x,t). Correcting equations (2.5) and (2.6)
for this effect will lead to coupled partial differential equations of second order which
cannot be solved analytically. After a rather long calculation equation (2.7) still holds
true but with adapted decay times and amplitudes given by

τt =
Ca

γGea +Gab
τin = Ce

(1− γ)

Gea
(2.10)

At =
∆E

Ca

(1− γ)(1− εγ)

(1− τn/τt)
An =

(1− γ)

Gea(1− τin/τn)
P0 (2.11)

γ =

(
Gea
GAu

+
λL

tanhλL

)−1

λL =

√
Gea
Gfilm

Gfilm =
κV

L2
. (2.12)
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In equation (2.12) κ, V and L denote the thermal conductivity of the film, the volume
of the film and the length of the film respectively. Equation (2.7) together with equations
(2.4), (2.10), (2.11) and (2.12) form the final model for the pulse shape of a cryogenic
detector. In summary the pulse shape model seen in equation (2.7) has two distinct
components, namely a fast component originating from the initial non-thermal phonons
and a slow component resulting from the decay of the non-thermal component. Therefore,
the decay of the fast component equals the rise of the slow component that is determined
by the time constant τn. τ t characterizes the decay of the thermal component and is
mainly determined by the thermal conduction between the TES electron system and the
heat bath as well as the thermal conduction between the target crystal and the heat
bath. Furthermore, it is observed that the approximate temperature change given by
equation (2.1) is measured by the thermal component but corrected as seen in equation
(2.11). This correction partly accounts for the fact that some of the heat from the non-
thermal phonons escapes into the heat bath. Lastly the resulting pulse shape model is
independent of the interacting particle type resulting in the same pulse shape for every
particle and pulses only differ by the deposited energy in terms of an almost linear change
in the amplitude. A fit of the introduced pulse shape model given by equation (2.7) on
real measured pulses is depicted in figure 3.3 and discussed in section 3.1.1.

2.3. Raw Data Preparation

The former chapter emphasized the detector working principle and introduced a physical
model to describe the pulse shape measured with cryogenic detectors. This chapter
focuses on the practical considerations in analyzing measured pulses. Figure 2.5 depicts
a measured phonon channel signal. Technically the voltage output of the SQUID is
measured every 0.04 ms, every voltage measurement is referred to as a sample. An
event is formed by 8192 samples resulting in a record length of about 328 ms. In the
next chapter a selection of simple quantities that are calculated for every record are
introduced.

2.3.1. Basic Pulse Parameters

Many pulse parameters are measured and calculated for all observed pulses in the whole
data analysis process as seen in [26, 30]. For the aim of the present work only three
parameters are needed which are described as follows.

Pulse Height is determined by firstly applying a 50 sample running average on the pulse.
Secondly the average of the first 50 resulting samples is evaluated and subtracted
from every sample. Lastly the maximum sample is determined as the pulse height
parameter.

10% - 70% Rise Time is the time difference between the 70% and 10% sample relative
to the maximum sample.
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Figure 2.7.: Depiction of the standard event fit with its three distinct fitting parameters.
This illustration is taken from [30].

Decay Time is the time between the maximum sample and the sample corresponding
to 1/e of the pules height.

The pulse height parameter is a first estimation of the amplitude of the pulse. However,
as seen in figure 2.5 the pulse is superimposed with noise that is somewhat averaged out
by the 50 sample moving average. In general, the pulse height parameter is biased
towards higher values, thus, a superior approach to determine the amplitude of the pulse
is described in the following chapter.

2.3.2. Template Fit

The amplitude of a measured pulse can be evaluated by fitting a template. This template
or also referred to as a standard event is as well a record consisting of 8192 samples. It
is obtained by averaging every sample of many measured records with equal amplitudes
and then it is scaled to an amplitude of 1 V, thus the variance of the (random) noise
should be averaged out and it resembles the typical shape of a pulse. Figure 2.7 illustrates
the fitting procedure with its three free parameters. The template can be scaled which
is done by multiplying every sample with a scale parameter, furthermore the template
can be shifted in time to correct for events that have a time offset. Lastly a baseline
offset can be introduced by adding a value to every sample. By minimizing the MSE
(Mean Squared Error) the former three parameters are obtained2 with the scale factor
corresponding to the amplitude. This fitting procedure can be extended in several ways
in order to adapt to the detailed structure of the data which is among others discussed
in [30].

2Note that this fitting procedure without the time shift is a linear fit, thus the solution can be given in
a closed form.
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2.3.3. Energy Evaluation

After evaluating the amplitude of a record with the standard event fit described above the
deposited particle energy can be reconstructed. As known from the discussion in chapter
2.2.2 the amplitude of the event scales linearly with the deposited particle energy3. For
the purpose of the energy reconstruction an electrical heater is mounted on every target
crystal. The heater current circuit is designed such that the deposited heating energy
scales linearly with the injected heater voltage. A heater pulse standard event can be
obtained and the standard event fitting procedure can be applied as described in the
former chapter. Based on heater pulses the energy reconstruction of a real pulse is
evaluated in two steps as described in a simplified version as follows.

Energy Calibration

For the energy calibration at time t0 heater pulses with one particular voltage V0 are
injected into the detector4. The observed heater pulses are fit with the heater pulse
standard event resulting in an amplitude Ah,0. Additionally, the detector is irradiated
with a 57Co source which has a prominent gamma peak at 122.1 keV. Many events
originating from this source are used to obtain the standard event. Events originating
from the known source deliver a fit amplitude ACo,0 with a known deposited energy of
ECo. Heater pulses scale linearly with the injected heater voltage and additionally at
zero injected voltage an amplitude of zero is observed. Based on those considerations a
line can be defined as follows

Vh,0(A) =
V0

Ah,0
A . (2.13)

In order to connect the energy of the known source with the injected heater voltage
the CPE (Convert Pulse-Height to Energy) factor is defined as follows

CPE =
ECo

Vh,0(ACo,0)
=

1

V0

Ah,0
ACo,0

ECo . (2.14)

The CPE factor connects the injected heater voltage with a corresponding deposited
particle energy, for example an injected heater voltage of 1 V is equivalent to a electron/γ
interaction depositing an energy of 1V·CPE. This factor as seen in equation (2.14) is
usually determined once for every detector in a data taking phase. Additionally, heater
pulses are injected constantly over the whole data taking phase to monitor the detector
response as a function of energy and time. Furthermore, control pulses which are heater
pulses that drive the TES completely out of the transition region are injected to measure
and stabilize the detector working point.

3This statement is only true if the temperature rise lies in the linear region of the TES transition curve
depicted in figure 2.3.

4The injected heater voltage is the applied voltage to the heater current circuit. It must not be mistaken
with the amplitudes delivered by the standard event fit which are given in Volts as well.
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Energy Reconstruction

In this simplified explanation the detector response is measured constantly with an in-
jected heater voltage of Vt=V0. The amplitude Ah,t for the injected heater pulses at time
t is determined with the heater standard event fit. If the detector response has changed
compared to energy calibration time the measured amplitude will change as well even if
the same heater voltage is injected as done in the calibration phase. In analogy to the
calibration step a line at time t can be defined as follows

Vh,t(A) =
Vt
Ah,t

A . (2.15)

A particle event happening approximately at time t will be fit with the particle stan-
dard event resulting in an amplitude Ap,t. The CPE factor determined at calibration
time in conjunction with the detector response at time t given by equation (2.15) is used
to reconstruct the particle energy with the following equation.

Ep = Vh,t(Ap,t) · CPE =
Ap,t
ACo,0

Ah,0
Ah,t

ECo . (2.16)

The first two terms of the right part seen in equation (2.16) can be interpreted as
follows. The first fraction accounts for the fact that different deposited energies have
a different amplitude, the second fraction adjusts for changes in the detector response
function. If the fit heater amplitude increases over time given the same injection voltage
the energy would be overestimated. However, as the second fraction would be smaller
than one in that situation the overestimation is suppressed.
This outlined procedure of energy calibration as well as energy reconstruction is done

for the light and for the phonon channel respectively, therefore two CPE factors are
determined and used for the energy reconstruction. At calibration the energy in the
phonon and the light detector are set to the energy of the calibration source resulting in
a light yield of one at a deposited energy of the calibration source (122.1 keV for 57Co). As
a γ-source is used this energy reconstruction implicitly assumes that every measured event
is a γ with a certain energy fraction η emitted as scintillation light. For events that induce
less/more scintillation light the energy reconstruction overestimated/underestimates the
total deposited energy, therefore the following correction is applied to the reconstructed
phonon energy Ep to derive E which is the total particle independent deposited energy5.

E = ηEl + (1− η)Ep = (1− η(1− LY ))Ep (2.17)

The above outlined energy calibration and reconstruction procedure is simplified in
order to explain the intuition behind it. Usually heater pulses of many different energies
are injected and fit with a polynomial of higher order rather than a line without an offset.
Figure 2.8 shows a measured detector response curve with the energy reconstruction for
the TUM40 detector. It is observed that the polynomial fit to the heater pulses is very

5For this circumstance the reconstructed phonon energy Ep is given in keVee (electron equivalent) and
the total energy E is given in keV.
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Figure 2.8.: Illustration of a TUM40 cryogenic detector response curve. The abscissa
correspond to the amplitude given by the standard event fit for heater as well as
particle pulses. The left ordinate represents the injected heater voltage and the right
ordinate is the evaluated electron equivalent energy based on the CPE factor. This
illustration is taken from [30].

close to linear at time of the measurement, therefore a fit particle event amplitude of one
volt corresponds to approximately 111 keVee. For CaWO4, which is the target material
of TUM40, η=6.6% [21], the TUM40 detector is described in detail in section 3. More
technical details regarding the energy calibration and reconstruction are seen in [26, 30].



3. Cryogenic Detector TUM40

Chapter 2.2 introduced the general working principle and the design of two-channel
cryogenic detectors. In CRESST detector modules with a composite design and CaWO4
as target material were used among others, this composite detector design follows the
same outlined working principle but differs in on detail in the construction which leads
to an additional pulse shape. The main results of these modules are outlined in [21,
22], a detector threshold of 307 eV was achieved which enabled setting limits on light
dark matter that where state-of-the-art at that time. One particular composite detector
module is the TUM40, this work exclusively focuses on data measured by this detector.
In the following parts the composite detector design is introduced. Based on the two
observed pulse shapes a classification problem arises. Several approaches for the pulse
shape discrimination are discussed.

3.1. Composite Detector Design

In a standard detector design, also referred to as conventional detector design, the TES
gets evaporated on the target crystal, however the high temperature exposure on CaWO4
leads to an oxygen deficit which decreases the scintillation light output. To maximize the
light output the TES is evaporated on a small CaWO4 crystal labeled as carrier. This
carrier is then glued on the target crystal that is labeled as absorber. A sketch of the
core composite detector design is seen in figure 3.1 and a real photograph of the target of
the TUM40 detector is seen in figure 3.2. This outlined detector design is referred to as
composite detector design and is introduced in [31]. Additionally to the improved light
output, it has the disadvantage that particle interactions can occur in the absorber as
well as in the carrier as discussed in the following chapter.

3.1.1. TUM40 Pulses Shapes

For the TUM40 detector the absorber standard event is generated with events originating
from the known 57Co source and the carrier standard event is generated with many carrier
events that have the same amplitude. In section 2.2.2 the cryogenic detector pulse shape
model was introduced with the resulting model seen in equation (2.7). The former pulse
shape is fit to both standard events which is illustrated in figure 3.3, and the resulting fit
parameters are summarized in table 3.1. As equation (2.7) is non linear in its parameters
the fitting procedure has no closed form solution, hence the basin hopping non linear
solver was used. This algorithm is based on simulated annealing with an additional
step of gradient decent at every jump in the fit parameter space. Based on figure 3.3
it is observed that the carrier pulse is fast rising and fast decaying due to the direct
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Figure 3.1.: Schematic of the target
crystal of the composite detector de-
sign. The thermometer is evaporated
on the carrier crystal which is glued
on the absorber crystal. This illus-
tration is not to scale. The holding
clamps, light detector and the detec-
tor housing are not depicted.

Figure 3.2.: Photograph of the target
crystal of a TUM40 detector. The
carrier with the evaporated TES in
black is seen. The holding clamps,
light detector and the detector hous-
ing are not mounted. This illustration
is taken from [32].
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Table 3.1.: Resulting parameters of the pulse shape model given by equation (2.7) fit to
the absorber as well as the carrier standard event of TUM40. The pulse shape model
is expanded by a line to consider a baseline offset d and a slope k. The fit is plotted
in figure 3.3.

Fit Parameter Absorber Template Carrier Template
d 0.0020 V 0.0008 V
k 0.000045 V/ms 0.000004 V/ms
t0 -1.694 ms -0.902 ms
An 1.452 V 1.239 V
At 0.352 V 0.049 V
τn 19.539 ms 2.110 ms
τ in 2.587 ms 0.114 ms
τ t 76.255 ms 29.940 ms

contact with the TES contrary to the absorber. This statement is confirmed by the
fitting parameters seen in table 3.1.

3.2. Former Discrimination Methods

TUM40 pulse shape discrimination methods have been studied in detail in [26]. In the
following part the main concepts of the former publication are summarized.

3.2.1. RMS Ratio

This method is based on the template fit which is discussed in section 2.3.2. To every
observed pulse the absorber and the carrier standard event is fit resulting in two sets of
fitting parameters as well as two values for the MSE and RMS respectively. The RMS
(Root Mean Squared Error) is defined as the square root of the MSE. Normalizing both
RMS values leads to the RMS ratio which is defined as

RMS ratio =
RMSCarrierF it − RMSAbsorberF it
RMSCarrierF it + RMSAbsorberF it

, RMS ratio ∈ [−1, 1]. (3.1)

The RMS ratio seen in equation (3.1) ranges from -1 for a perfect carrier template fit
to 1 for a perfect absorber template fit. Consequently absorber events are expected to
result in a positive RMS ratio and vice versa for carrier events. The RMS ratio can be
plotted as a function of the deposited particle energy which leads to two distinct bands.
At low energies (low amplitudes) the noise dominates the RMS leading to an overlap of
the two bands, therefore the pulse shape discrimination based on the RMS ratio fails. A
more sophisticated method of pulse shape discrimination is discussed as follows.
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(a) Equation (2.7) fit to the carrier template.
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(b) Equation (2.7) fit to the absorber template.

Figure 3.3.: Depiction of the carrier and absorber templates fit with equation (2.7) based
on the basin hopping optimization algorithm. The resulting parameters are summa-
rized in table 3.1.
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3.2.2. Neural Network

Neural networks are universal function approximaters and can be used in the context
of a classification task. It is proposed that the underlying structure in the data can be
learned by a neural network in order to discriminate pulses at very low energies where
the RMS ratio fails. The concept of neural networks is discussed in detail in section 5.
In this context neural networks work with the following eight input parameters that are
provided by the standard event fit and the pulse itself.

Rise Time 10-70 % is directly evaluated on the raw pulse and described in section 2.3.1.

Decay Time is directly evaluated on the raw pulse and described in section 2.3.1.

Absorber Amplitude AAbsorber is provided by the standard event fit with the absorber
template.

Absorber RMS is provided by the standard event fit with the absorber template.

Carrier Amplitude ACarrier is provided by the standard event fit with the carrier tem-
plate.

Carrier RMS is provided by the standard event fit with the carrier template.

Amplitude Ratio is defined as AAbsorber/ACarrier.

RMS Ratio is defined in equation (3.1).

The neural network was trained on data generated with the later introduced method
seen in section 4 with two different optimization methods. The favored neural network
architecture consists of three linear layers with eight and seven nodes per hidden layer.
This discrimination method outperformed the RMS ratio at low energies and was used
to analyze real CRESST data as outlined in [26]. Both of the former methods relied
on parameters given by the standard event fit. In the following chapter discrimination
methods are discussed that work with the raw pulse itself.

3.3. Potential Discrimination Methods

The former investigated discrimination methods are solely based on quantities resulting
from the raw data analysis in combination with the standard event fit. In contrast
different discrimination methods can be applied on the raw pulse itself or on the Fourier
transformed pulse. Figure 3.4 illustrates an absorber as well as a carrier pulse raw and
Fourier transformed. As observed the noise becomes the dominant part in a signal at
low energies (low amplitudes), this effect is also problematic in the standard event fitting
method. Additionally, pulses are likely to rise on different time stamps in the record due
to the triggering algorithm. In the next parts discrimination methods in the real as well
as in the Fourier space are discussed.
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(c) Generated carrier event with and energy
of 1 keVee absorber equivalent.
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Figure 3.4.: Illustration of generated absorber and carrier events. The energy of the
absorber event corresponds to 1 keVee, the same corresponding scaling parameter was
used for the carrier event (absorber equivalent). The left column depicts the raw pulse
and the right column illustrates the Fourier transformation, note that the amplitude
for a frequency of zero is not seen due to the logarithmic scale. The method to generate
artificial pulses is described in chapter 4.



3. CRYOGENIC DETECTOR TUM40 31

3.3.1. Discrimination in Fourier Space

Many machine learning algorithms such as SVM (Support Vector Machines) or neural
networks can be used to discriminate pulses in the Fourier space. Different characteris-
tical frequencies are expected for absorber and carrier events respectively as also seen in
figure 3.4. An algorithm that is used in CRESST-III to trigger pulses acts in the Fourier
space and can potentially be used to discriminate TUM40 data as outlined below.

Optimum Filter

In this chapter the principle of the optimum filter method will bis summarized as well as
how this method could be applied to discriminate between the two TUM40 pulse shapes
based on [33]. The core idea of the optimum filter method is to apply a filter function
on the pulse such that signal-like features are amplified and the noise is removed. Based
on the Fourier transformation of a typical signal shape s(ωk) which can be obtained by
the absorber standard event and a power spectral density of the stationary noise N(ωk)
that can be obtained by measuring noise of the detector as discussed in section 4.2.1 the
following transfer function is defined as

H(ωk) = h
s∗(ωk)

N(ωk)
e−jωkiM . (3.2)

In equation (3.2) h denotes a normalization constant and iM denotes the filter delay.
A signal can be filtered by multiplying the Fourier transformed signal with the transfer
function1 leading to an amplification of the frequencies that are signal-like given by s(ωk)
and reducing the noise like frequencies as the signal is divided by N(ωk).

In order to discriminate different pulse shapes the standard event used to derive s(ωk)
can be filtered to calculate a filtered standard event. This filtered standard event can be
fit to any filtered signal by aligning the maximum of the filtered pulse with the maximum
of the filtered standard event and scaling the filtered standard event to the amplitude of
the filtered signal. Based on the fit a shape indicator is defined as follows

SI =

L−1∑
i=0

(yfi − fi)2

σ2
L(L− 2)

. (3.3)

In equation (3.3) yf
i is the filtered signal, fi is the fit filtered standard event, σ2

L is the
expected noise and L is the length of the signal. If the filtered pulse is of the same shape
as the filtered standard event the numerator in equation (3.3) would only resemble the
present noise on the filtered pulse. As the noise is cancelled by σ2

L in the denominator
the SI evaluates to approximately one for equal pulse shapes and higher numbers for
non matching pulse shapes. If the absorber standard event is used to derive the filtered
standard event this former outlined procedure is a potential method to discriminate the
TUM40 pulse shapes.

1Many additional details need to be considered in order to filter a signal with the transfer function that
are outlined in the publication [33].
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3.3.2. Discrimination in Real Space

Many machine learning algorithms can be used in order to discriminate the TUM40
pulse shapes. As the former work seen in [26] used neural networks together with the
parameters resulting from the standard event fit as described above it is from great
interest how neural networks would perform on the raw data, hence skipping the standard
event fitting procedure. The remaining part of this work focuses on the TUM40 pulse
shape discrimination problem investigated with neural networks on the raw pulse.



4. Artificial Pulse Generation

In chapter 3 the TUM40 detector design with its two distinct pulse shapes was intro-
duced. The resulting classification problem and additionally former as well as future
discrimination methods were discussed, concluding that this work focuses on pulse shape
discrimination with the raw pulses and neural networks. As this classification task is a
supervised learning problem, training data with known class labels are needed. In this
chapter a method that generates pulses that resemble the real nature of the observed
data is discussed. This artificial pulse generation method with its two steps is sketched
in figure 4.1. Detector noise is superimposed with signal-like shapes (templates) of the
two distinct pulse classes resulting in an artificial pulse that resembles the nature of a real
pulse. The former two ingredients namely the template as well as the noise are discusses
as follows.

4.1. Pulse Shape Templates

In chapter 2.3.3 it is outlined that with a known radioactive calibration source two
templates are generated, one for the absorber and one for the carrier respectively. Based
on the pulse shape discussion in chapter 2.2.2 the two templates were fit with equation
(2.7) as summarized in section 3.1.1 resulting in two analytic functions. The templates
as well as the fit functions are seen in figure 3.3. In summary the templates and the
standard event fit functions are available to generate pulses. The analytic fit functions
can be shifted in time freely whereas samples are missing at the beginning/end of the
record if the templates are shifted in time. Additionally, the analytic fit functions are
noise-free. In contrast the template is an average of a finite number of measured pulses,
hence the variance of the noise is not completely averaged out1. In order to generate
pulses that resemble different deposited particle energies the templates are scaled as
follows.

Energy Scaling

Following the theoretical discussion of the pulse shape model given in section 2.2.2 the
amplitude scales approximately linearly with the deposited particle energy. Experimen-
tally the energy reconstruction is done with heater pulses as discussed in chapter 2.3.3.
In order to generate pulses of different energies the energy reconstruction procedure is
reversed based on the TUM40 detector response curve seen in figure 2.8. Starting with
the wanted energy E on the right ordinate, assuming that the green curve is approxi-
mately a line with an observed slope of k=111.78 keV/V and finally resulting in a scaling

1A template would only be noise-free if an infinite amount of measured pulses were averaged.
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Figure 4.1.: Sketch of the method to generate artificial pulses. Empty baselines are su-
perimposed with scaled and additionally time-shifted templates resulting in generated
absorber and carrier events of different energies.
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parameter given by sE=E/k. As a template is scaled to an amplitude of 1 V, multiplying
every sample of the template with the scale factor sE leads to a template that resembles
an event originating from a deposited energy of E. This outlined scaling method only
provides meaningful results for the absorber template as the calibration is only done for
absorber events. However, the same procedure is carried out for the carrier template but
in this case the scaled energy E does not resemble the deposited particle energy as the
carrier is not calibrated. Furthermore, it is noted that scaling the template, especially to
high energies, amplifies the minor present noise component, thus the analytic description
is favored to generate artificial pulses.

4.2. Noise

Unavoidable signal that is always present on the detector is denoted as noise. Many
sources such as thermal fluctuations, thermal links, electrical resistors etc. produce noise,
a detailed investigation is given in [34]. As not every physical aspects is understood, noise
simulation methods are not available. Therefore this work solely relies on measurements
as follows.

4.2.1. Empty Baselines

Empty baselines are detector readouts where no event is triggered, resulting in many
records with 8192 samples. Consequently this measurements should be free from particle
interactions and resemble the detector noise characteristics. For TUM40 142591 empty
baselines were measured. Several unwanted artifacts, where some are depicted in figure
4.2, are present on the data that were removed with the following cuts.

Derivative Cut The first derivative at every sample is calculated and divided by the
RMS resulting from an offset fit in the first n samples. If the maximum sample
exceeds the cut limit this record will be removed. This cut is designed to remove
empty baselines as seen in figure 4.2a.

Pulse Height Cut The pulse height parameter as introduced in chapter 2.3.1 is calcu-
lated. If the pulse height exceeds the cut limit this empty baseline will be removed.
This cut removes particle events happening in the time window of the readout as
seen in figure 4.2b.

Step Cut Firstly an offset is fit into the first n samples. Secondly the percentage of
residuals that are below or above n times the standard deviation based on the
offset fit are counted. If the calculated percentages exceed a certain level this
empty baseline will be removed. This cut is designed to remove artifacts as seen in
figure 4.2c. Those artifacts originate from the fact that the SQUID shows discrete
baseline levels, hence a non-zero average baseline level can occur and moreover
jumps of the baseline level are likely.
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Table 4.1.: Summary of the parameters for the four outlined cuts. From the initial 142591
empty baselines 103178 survived all four cuts.

Cut Type nSamples nσ Cut Limit nCut
Derivative Cut 200 - 5.0 4679

Pulse Height Cut 200 - 0.03 V 2468
Step Cut 200 3 50.0 % 25738

Right Minus Left Baseline Cut 200 5 5·σ 32749

Right Minus Left Baseline Cut An offset is fit in the first and the last n samples. If the
fit offset of the last samples lies outside the range given by n times the standard
deviation based on the fit of the first samples the empty baseline will be removed.
This cut is designed to remove artifacts as seen in figure 4.2d.

Table 4.1 summarizes the applied cuts. From the initial 142591 empty baselines 103178
survived all four cuts. Consequently about 100000 empty baselines are available to
generate artificial pulses, this number can be too little for certain applications. A method
that is based on the measured empty baselines seen above but provides infinite amounts
of simulated noise is discussed as follows.

4.2.2. Baseline Simulation

Based on the measured empty baselines a spectral power density is calculated that is
used in a sampling method as outlined in [35]. This method provides an infinite amount
of empty baselines and its uses for the CRESST experiment will be investigated in the
work of [36].

4.3. Generated Datasets

As seen in figure 4.1 an empty baseline is superimposed by a known template which is
scaled and maybe additionally shifted in time resulting in an artificially generated pulse.
Different available templates and different forms of empty baselines were discussed. Based
on the former considerations three different datasets were generated as follows.

4.3.1. Datasets with Measured Noise

Two datasets are created with the surviving empty baselines by superimposing every
empty baseline with one carrier and one absorber event resulting in approximately 200000
generated pulses per dataset. The templates were used for one and the fit templates were
used for the other dataset. The only difference is that for the fit templates an additional
offset in time was used. This time offset is uniformly sampled from tshift ∈ [−10 ms, 10 ms]
and added to the time offset seen in table 3.1. The energies were uniformly sampled from
E ∈ {0.342, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 3.0, 7.0, 11.0} keV, this set of energies was also used
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(a) One sample has a very high value.
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(b) An event directly happening in the read-
out time window.
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(c) The SQUID baseline level jumps.
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(d) A rise observed in the readout window due
to a temperature increase of the detector.

Figure 4.2.: Several examples of artifacts observed in the measured empty baselines of
the TUM40 phonon channel. The amplitudes correspond to the SQUID outputs.
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Figure 4.3.: Depiction of the determined pulse height parameter as a function of the
scaling parameter for the dataset described in section 4.3.1.

in [26]. In summary two equal datasets were generated that only differ by an additional
time shift.
In figure 4.3 the computed pulse heights are plotted as a function of the used template

scale factors for the absorber as well as the carrier templates. The distinct scale factor
populations given by the discrete values of the former mentioned set of energies is ob-
served. For the generated absorber events the pulse height parameter is approximately
the scale factor as expected. Contrary, the pulse height parameter underestimates the
scale factor regarding the carrier events. This is due to the fast rise and decay of the
carrier pulse shape in combination with the 50 sample average that is used to derive
the pulse height, the carrier peak is averaged out and hence the resulting pulse height is
lower.

4.3.2. Dataset with Simulated Noise

This dataset is generated by using simulated empty baselines in combination with the
templates as outlined in [36] resulting in a dataset without an additional time shift.
Figure 4.4 depicts the pulse height parameter as a function of the scale parameter. Much
higher energies were generated and the carrier pulse height underestimation is observed in
analogy to the former discussed dataset. It must be mentioned that the generated pulse
heights do not resemble the real data. This is due to the fact that at higher energies the
TES saturates and hence the pulse shape changes.
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Figure 4.4.: Depiction of the determined pulse height parameter as a function of the
scaling parameter for the dataset described in section 4.3.2.



5. Neural Networks

A neural network is a universal function approximation algorithm that is widely used
in many different application due to its powerful performance. Ranging from image
classification, pattern recognition and speech recognition to complete AI solutions and
many more machine learning applications. Machine learning tasks can be divided into
the following three main categories.

Supervised Learning In this framework every input is labeled and the machine learning
algorithm learns to predict these labels given a new input. If the label is a real
number it is referred to as a regression task whereas in a classification task the
label is a natural number representing a class. In terms of statistics the algorithm
is meant to learn the conditional probability distribution p(y|x) where y is the label
and x is the input.

Unsupervised Learning In this framework labels are not provided with the data. The
algorithm is expected to learn the underlying structure of the data. Examples are
clustering algorithms where similar datapoints are combined in different classes,
or learning the conditional distribution p(x|y) which means that the algorithm
generates data x of the form y.

Reinforcement Learning In reinforcement learning the algorithm is expected to make
certain decisions to get to a desired end result. Learning is done based on the out-
come resulting that results from a combination of all former decisions. A common
example is the game chess. The algorithm can decide its move on every round and
learns on the final outcome of the game which is win or loss.

Neural networks are used with great success in all three former mentioned machine
learning ares. This work focuses on the TUM40 classification task where the input is a
pulse (a vector of 8192 dimensions) and the label is zero or one for carrier and absorber
event, respectively. In this chapters first part the basic concept of a neural network is
outlined, in its second part a complete walk through a supervised learning problem will
be given and in its final part a selection of state of the art neural network techniques are
discussed.

5.1. Fully Connected Feed Forward Neural Network

Closely following the discussion seen in [37] neural networks realize the idea of a very
simplified brain model. In this simplified model the brain is a composition of neurons
that process information and synapses that connect the neurons in order to pass the
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information from one neuron to the others. The strength of this connection is learnable
and determines how input information is processed. This former concept is expressed in
mathematical terms as follows.

oj = σ

(
N∑
i=1

wijxi + b0j

)
, 1 ≤ j ≤M, σ(x) =

1

1 + e−x
. (5.1)

In equation (5.1) xi are the inputs multiplied by the learnable weights wij and a learn-
able bias1 b0j that represent the synapses. This calculated linear combination of the
inputs with the learnable weights is inserted into an activation function σ which is re-
sulting in the output of one neuron oj, a neuron is also referred to as node. The activation
function σ is a so-called Sigmoid function and is the historical first used activation func-
tion, many additional activation functions have been found as seen in section 5.3.1.
M sets of weights that lead to M outputs form a layer where all N inputs are connected

to all M outputs, hence it is a fully connected layer with N·M+M learnable weights. Fully
connected layers can be stacked, this is done by taking the outputs of one layer as inputs
to the next layer. Many stacked layers are referred to as a deep neural network or deep
learning. It is noted that the information of the network is only fed forward from the
first layer over the intermediate hidden layer(s) to the last output layer. In summary
many layers represented by equation 5.1 can be stacked together in order to form a fully
connected deep neural network (FNN) that is also illustrated in figure 5.1. In contrast
many other forms of architectures are imaginable, such as connections between every
node, self-connections etc. which is discussed in section 5.3.5. But this simple model
given by equation (5.1) can approximate any continuous function on compact subsets
of Rn with a finite number of weights [38]. However, it is unclear how to receive the
corresponding weights. This is a major challenge and will be examined in chapter 5.2.
Additionally, one layer can in principle approximate any function as mentioned above
but deep neural network architectures seem to perform superior. Again it is not clear
how many layers are best or the number of nodes per layer etc., this lack of the a-
priori knowledge of such hyperparameters is denoted as black magic of deep learning,
hyperparameter search methods are discussed in section 5.3.4. In conclusion a summary
of many used neural network terms is given as follows.

Node, Neuron are the composition of the linear combination of its inputs with the
weights and the applied non-linearity, as seen as blue rings in figure 5.1. A layer
typically consists of many nodes.

Parameters are the learnable weights as well as bias of the neural network.

Hyperparameter denotes every parameter which is a-priori unknown but crucially de-
termines the performance of a neural network. For example the number of layers,
number of nodes per layer, batch size, size of kernel etc.

1Usually the bias is included into the set of learnable weights as w0j, hence the input is extended with
x0 that is always set to one.
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Figure 5.1.: Sketch of a two layer feed forward neural network. The blue circles represent
the network nodes. The two inputs are fully connected to the next layer over the
respective weights. In the center two nodes represent the hidden nodes and are fully
connected to the two nodes of the output layer. The blue filled circles are the inputs
always equal to one representing the bias terms. The above model has four weights
and one bias per layer equaling to an overall number of twelve learnable parameters.
The green arrows show the forward information flow. This illustration is taken from
[37].

Layers The definition of a layer in a neural network is not uniform. One definition
is to count the different compositions of hidden nodes as hidden layer where the
input and output nodes are not respected. Another definition is that every set of
learnable weights is counted as a layer. The network depicted in figure 5.1 has one
(hidden) layer based on the former and two layers based on the latter definition.

Sample, Feature A sample is one single element x that can be the input of a neural
network, a sample is usually a vector. A feature is one item xi of the input vector.

Batch, Mini-Batch, Iteration, Epoch In a supervised learning algorithm labeled data
are used in order to learn the parameters. A training batch is referred to the whole
data that are used for training. Training a neural network is done on subsets of
the batch one by one, where every subset is denoted as mini batch. An iteration
is the training procedure only on one mini batch, and if all mini batches that form
the training batch are used once to train a neural network it is denoted as epoch.
Neural networks are usually trained for many epochs.
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Figure 5.2.: Depiction of a supervised learning task. Predictions of the model based on
the given data are compared to the the true label of the data. The deviation of the
former two quantities measured by the loss function is used to adjust the parameters
of the model in order to learn the labels of the data.

5.2. Supervised Training Cycle

The aim of this chapter is to outline the commonly used method of adjusting the weights
of a neural network to perfectly fit the given data. Many of these steps are not unique to
neural networks but are used in the field of supervised machine learning in general. Figure
5.2 depicts the different steps of a supervised learning task. Data are fed through the
neural network to predict the respective label, the loss function measures the deviation
between the prediction and the label of the given data. Lastly, the weights are adjusted to
minimize this deviation. In the context of neural networks this training cycle is repeated
for many epochs. The first part of this chapter concentrates on the statistical framework
to derive a loss function commonly used in classification and regression. Secondly, details
of the data are discussed. In the third part a method to evaluate the gradient of the loss
function with respect to the neural network weights is introduced. And lastly, ways of
using the gradient information to adjust the learnable weights are outlined.

5.2.1. Loss Function

To derive a loss function an underlying statistical model has to be defined by considering
the conditional distribution of the targets given the data. Based on this conditional
distribution the neural network models the conditional mean E(t|x,w) which is a function
of the data vector x and the learnable parameters w. Given a two-class classification
problem the underlying process is the following Bernoulli distribution

f(t|x,w) = p(x,w)t (1− p(x,w))1−t , E(t|x,w) = p(x,w) (5.2)

In equation (5.2) t is zero or one representing the two classes and p(x,w) denotes the
probability of a sample x belonging to class t. As p(x,w) is the conditional mean this
quantity is modeled by the neural network that gets a sample x as an input and predicts
the class probability (a number between zero and one) as an output. In order to derive
the parameters of a statistical model given some data the parameters are adjusted such
that the probability of observing the given data is maximized. This procedure is referred
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to as maximum likelihood. Assuming independent data the probability of obtaining N
samples representing the data is given by the likelihood function as follows

L =
N∏
i=1

f(ti|xi,w) . (5.3)

To derive the maximum likelihood solution for the parameters equation (5.3) is usually
transformed by taking the logarithm2 and switching the sign which leads to the loss
function. Due to switching the sign the loss function has to be minimized. For the
two-class classification problem the loss function is derived as

L(w) = −
N∑
i=1

(ti ln p(xi,w) + (1− ti) ln(1− p(xi,w))) . (5.4)

Equation (5.4) is referred to as the binary cross-entropy loss function. A K class
classification problem can be derived similarly based on the multinomial distribution
given by

f(t1, · · · , tK |x) ∝
K∏
i=1

pi(x,w)ti ,
K∑
i=1

pi = 1, ti ∈ {0, 1},
K∑
i=1

ti = 1 (5.5)

L(w) = −
N∑
i=1

K∑
j=1

tij ln pj(xi,w) . (5.6)

In that case the neural network has K output nodes representing the probabilities of x
belonging to the different K classes, the sum of all output nodes equals to one. Equation
(5.6) is labeled as cross-entropy loss. Regression problems can be modeled via a normal
distribution leading to the following loss function based on the same derivation outlined
above leading to

L(w) =
1

2

N∑
i=1

(y(xi,w)− ti)2 . (5.7)

Equation (5.7) is denoted as the MSE (Mean Squared Error). Depending on the
specific problem a corresponding loss function can be derived as shown above. The
weights are determined by minimizing the loss function respectively.

2This transformation is valid as the logarithm is a monotonous function hence the maximum/minimum
remains at the same argument of the function. For independent data the likelihood function is a
product of the density of each sample, based on the calculation rules of logarithms this product
transforms in a sum and the solution is attained easier compared to the raw likelihood function.
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5.2.2. Data Preparation

In the data preparation step the raw data are adapted to suit the machine learning
algorithm. Many steps are needed depending on the given data. The following two steps
are of great importance.

Data Pre-Processing

Generally the input features xi differ in their range, thus the mean as well as the standard
deviation are not equal across all features. As the input of a node is the linear combination
of the input features with the weights, input features of different scales (different standard
deviations) lead to different relative importance of the input features assuming that the
weights are of equal magnitude. To avoid this issue every input feature is transformed
to a mean of zero and a standard deviation of one as follows

x̃(i) =
x(i) − µ̄(i)

σ̄(i)
. (5.8)

In equation (5.8) µ̄(i) is the estimator of the mean and σ̄(i) is the estimator of the
standard deviation per feature. If the features are approximately of the same scale
the standard deviation may be approximated over all features. Many more ways of
pre-processing are possible such as min-max scaling or using the median instead of the
mean, however the particular form of data pre-processing strongly depends on the data
structure. The procedure given by equation (5.8) is sufficient for many applications.

Data Set Splits

For a supervised learning task the parameters of a model are determined by minimizing
the loss function with respect to the parameters for given data. Usually, the data are
split into three distinct subsets. One is used for training (training set), the other one is
used to evaluate the model at different training steps (evaluation set), if the training is
finished and the best possible evaluation loss is archived the model is tested on the third
dataset (test set). This partitioning serves many purposes. In iteration based training
it can be measured if the model overfits the data as a function of the training step
which is discussed in detail in section 5.3.2. Furthermore, the performance of different
network architectures (hyperparameter configurations) can be compared based on the
performance of the model on the evaluation set. For the latter purpose this outlined
dataset split method is a special case of cross-validation.

5.2.3. Backpropagation Algorithm

The optimal parameters of a neural network are found by minimizing the loss function
given the training set. As the loss function and the neural network is nonlinear deriving
the gradient and setting it to zero will lead to a set of nonlinear equations which is
impossible to solve analytically. Therefore, another common way of finding a minimum
is to initialize the parameters randomly and refine them in an iterative fashion. This
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is done by evaluating the gradient of the loss function with respect to the weights and
then updating the weights by stepping into the negative gradient direction which should
decrease the loss function. This procedure is referred to as gradient decent. Additionally,
many algorithms exist that define the exact way of updating the weights with the gradient
information which are discussed in chapter 5.2.4. This chapter will focus on deriving the
gradient based on the chain rule of differentiation for a fully connected feed forward
network summarizing the outline seen in [37]. The generic implementation of computing
the gradient for many different neural network architectures is very complicated and is
discussed in detail in [39]. In analogy to equation (5.1) the forward pass of one layer of
a fully connected feed forward neural network can be written as

oj = h(aj), aj =
∑
i

wjioi . (5.9)

In equation 5.9, oj denotes the outputs of a layer which may be the inputs of the next
layer and h is the applied activation function. Based on the discussion above the loss
function usually decomposes into a sum of the training samples as follows

L(w) = E(w) =
N∑
n=1

En(w) . (5.10)

Based on equation (5.10) the gradient over all n samples is given by the sum of the
individual gradients given by

∂E

∂wji
=

N∑
n=1

∂En
∂wji

. (5.11)

The derivation of the gradient for the individual parts of the sum in the loss function
seen in equation (5.11) is evaluated with the chain rule off differentiation as follows

∂En
∂wji

=
∂En
∂aj

∂aj
∂wji

= δjoi, δj =
∂En
∂aj

,
∂aj
∂wji

= oi . (5.12)

The third part in equation (5.12) is simply the derivative of equation (5.9) with respect
to wji. The second part depends on the examined layer in the network. For the output
layer the quantity δk evaluates as

δk = h′(ak)
∂En
∂ok

. (5.13)

En of equation (5.13) is the loss function and depends on the form of the problem
as discussed in chapter 5.2. For the hidden layers the effect of lower layers on the loss
function will be taken into consideration by applying the chain rule as well as the product
rule of differentiation given by
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δj =
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

=
∑
k

δk
∂ak
∂aj

. (5.14)

The last term in equation (5.14) denotes the change of the outputs of a lower layer
with respect to the outputs of the above layer and can be derived from equation (5.9)
given by

∂ak
∂aj

= h′(aj)wkj (5.15)

and with equation (5.14) and (5.15) leading to the final expression for δ of hidden
layers given by

δj = h′(aj)
∑
k

δkwkj . (5.16)

In summary equation (5.9) denotes the forward pass of an input through a fully con-
nected feed forward neural network. After the forward pass the gradient of all weights
is derived by equations (5.11) and (5.12) with δ that is given by equation (5.13) for the
output layer and equation (5.16) for the hidden layers. The former method is called back-
propagation because δ can only be evaluated starting from the output layer leading back
to the input layer, hence the gradient information flows backwards. Given the gradient
information the parameters can be updated as follows.

5.2.4. Parameter Update Methods

The former chapter described how the gradient of the weights can be derived in an
efficient way. In this chapter many ways of updating the weights based on the gradient
information will be discussed. The first simple approach is to update the weights directly
with the scaled gradient given by

wt+1 = wt − λ∇E(wt), λ > 0 . (5.17)

The weight update rule seen in equation (5.17) is referred to as gradient decent. λ is the
learning rate and defines how far the step will be taken in the direction of the gradient, t
denotes the number of iteration. The learning rate λ is a hyperparameter, consequently
the appropriate value is a-priori unknown and needs to be found by hyperparameter
search algorithms outlined in section 5.3.4. Based on equation (5.17) a momentum term
can be introduced and is given by

vt+1 = εvt − λ∇E(wt), 0 ≤ ε ≤ 1, wt+1 = wt + vt+1 . (5.18)

v in equation (5.18) is a running average of the past gradient information and can
be interpreted as follows. The loss surface depending on the weights can be viewed as a
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potential and the momentum term as the velocity of a ball running downhill. A change in
direction of the weight vector will not be instant because the momentum term somewhat
keeps the former direction based on the parameter ε. At t+1 vt is given prior to the
gradient evaluation, hence a update on the weights can be made before the gradient is
computed. This method is called NAG (Nesterov’s Accelerated Gradient) and is given
by

vt+1 = εvt − λ∇E(wt + εvt), wt+1 = wt + vt+1 . (5.19)

It can be shown that equation (5.19) increases learning speed compared to the usual
momentum term as seen in [40], additionally, a detailed discussion about momentum
based methods is given in that publication. The above methods keep a constant learning
rate throughout the whole training procedure. Adam is a method that uses adaptive per
parameter learning rates with the following update rules

gt+1 = ∇E(wt), wt+1 = wt − αm̂t+1/(
√
v̂t+1 + ε) (5.20)

mt+1 = β1mt + (1− β1)gt+1, m̂t+1 = mt+1/(1− β(t+1)
1 ) (5.21)

vt+1 = β2vt + (1− β2)gt+1 � gt+1, v̂t+1 = vt+1/(1− β(t+1)
2 ) . (5.22)

In equations (5.20), (5.21) and (5.22) � denotes the elementwise multiplication of
vectors, t denotes the iteration steps and is an integer starting from zero. The proposed
parameters are α=0.001, β1=0.9, β2=0.999 and ε=10-8. The ADAM optimizer is a state
of the art stochastic optimization algorithm as in detail described in [41].

5.3. Neural Network Modern Practice

In the former chapters the concept of a feed forward neural network was introduced
leading to an illustration of the main steps to derive suitable model parameters in a
supervised learning framework. As many techniques have evolved in the field of neural
networks this chapter will give insights of advances specifically used in the present work:
Namely, different activation functions, methods to prevent overfitting, methods that en-
hance the learning speed, neural network architectures that can deal with different forms
of data and methods to search for the best possible configuration of hyperparameters.

5.3.1. Activation Functions

From an historical perspective the first investigated activation function was the Sigmoid
as seen in equation (5.1). Many additional functions were introduced in the last decades,
the prominent used ones are depicted in figure 5.3 and are summarized based on [42] as
follows.
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Figure 5.3.: Depiction of different activation functions.

Sigmoid σ(x) = 1/(1 + e−x) The Sigmoid function was the first used activation function
and investigated in [38]. Finding suitable network parameters is done by firstly ini-
tializing the weights randomly and then refining the weights with backpropagation
and certain update rules as described before. The random initialization or strong
updates can lead to high/low linear combinations as an argument of the activation
function. Considering the Sigmoid function the former issue will lead into a range
of the Sigmoid function where the slope is nearly zero. Hence the neuron saturates
and the gradient will nearly vanish as it is calculated by a product seen in equation
(5.12). This circumstance is resulting in very small updates, hence training is slow.
Moreover, this function maps its inputs into the interval [0, 1] which leads to a non
zero-centered distribution of the outputs. Due to its drawbacks this function is
only used in a two-class classification problem with a single output neuron. The
output is interpreted as a probability of the input belonging to a certain class.

Tangens Hyperbolicus tanh (x) = 2σ(2x)−1 The Tangens Hyperbolicus shows the same
problem with saturation as the Sigmoid function because it is just a re-centered
Sigmoid function. However, the distribution of the outputs is now zero-centered.

ReLU ReLU(x) = max(0, x) The ReLU (Rectified Linear Unit) function does not show
the problem with a saturated gradient as the former two activation functions. It is
proposed that the learning speed strongly increases as described in [43]. In addition,
this function has a very simple gradient expression which is the input itself or zero
depending on the sign of the input. As the gradient of the ReLU function is zero
for a negative input, the whole gradient of the loss function will be zero based on
the backpropagation algorithm seen in equation (5.12). The gradient of a mini
batch is the sum of the gradients of all individual samples given by equation (5.11).
It will be non-zero if at least the activation of one sample is non-zero. Problems
arise if the update of the weights leads into a range where the inputs of the ReLU
are negative for every sample in the whole training set. Then the gradient will
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always be zero and the weight updates are always zero as well, hence this problem
is referred to as dying unit.

ELU ELU(x) = max(0, x) +min(0, α(ex−1)) The ELU (Exponential Linear Unit) does
not show the problems of saturated gradients and dying units. In addition, this
activation function shifts the average activation towards zero and increases learning
speed as described in detail in [44].

SELU SELU(x) = λ(max(0, x) + min(0, α(ex − 1))) The SELU (Scaled Exponential
Linear Unit) is an improved version of the ELU. The proposed parameters are
α=1.6732 and λ=1.0507. This activation function is examined in section 5.3.3 and
is introduced in [45].

Usually a ReLU activation function is used in conjunction with batch normalization
for every node of the network expect for the outputs. In a regression task the output
activation function is the identity, in two-class classification tasks the output node is a
Sigmoid and in a K class classification task the K outputs are normalized to one with
the log softmax function.

5.3.2. Methods for Regularization

The aim of a machine learning algorithm is to generalize features from the training data
and precisely predict the target of new, unseen data. Overfitting, however, is the opposite
as the model fits the parameters in order to remember the training data resulting in a
poor performance on new, unseen data. Depending on the number of parameters and on
the number of samples in the training data the machine learning algorithm is likely to
overfit. An intuitive example would be fitting n datapoints with a polynomial of order
n+1. The polynomial would meet every data point of the training data exactly but the
fit is meaningless because interpolation would not resemble the underlying structure of
the data due to the strong oscillations, hence overfitting occurred. In a statistical context
overfitting results from the variance of the model given the training data and competes
with the bias, both quantities define the bias variance tradeoff. A high variance in the
model connotes that by changing one training sample the model changes significantly.
Many ways of preventing the network from overfitting are proposed and often used in
combination. The following three methods are standard approaches.

Norm Penalty

The norm penalty is an additional term added to the loss function penalizing the norm
of the weights and is given by

E(w) = L(w) + λ
∑
w∈W

|w|q . (5.23)

In equation (5.23) W denotes all the adjustable parameters present in the model, q is
the power of the penalty, λ is the strength of the weight decay treated as a hyperparameter
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and L is the loss function given by the specific problem as discussed in section 5.2.1. The
above regularization is referred to as weight decay or in the case of q=2 L2 penalty.
Formally the L2 weight decay term can be derived by Bayesian statistic with the use of
a normal prior. A detailed description of norm penalty is given in [37]. Equation (5.23)
can be reformulated to an optimization problem restricted by the following condition∑

w∈W
|w|q ≤ η . (5.24)

Equation (5.24) restricts the shape and the volume of the solution in the space of
weights by η. In analogy to polynomial fitting, weight decay regularizes by tolerating
a very high number of free parameters but restricting the value of them. The same
procedure is applied in linear models namely the ridge or lasso regression. As the number
of parameters of a neural network increases with the number of layers as well as the
number of nodes per layer and additionally it is not known how many parameters work
best, weight decay is a potential method to prevent overfitting. Usually a L2 penalty is
used with the same λ for the whole set of weights.

Dropout

Dropout is a powerful tool to prevent overfitting. It is proposed in [46] and will be
summarized based on this publication. The core idea is that the mean output of many
uncorrelated neural networks improves the performance significantly by averaging out the
variance present in the outputs of many models, this is referred to as bagging. However,
it is numerically not feasible to train many networks. Therefore dropout uses one neural
network and sets many nodes at random to zero as seen in figure 5.4. By doing so a sub-
network is sampled from the 2n possible combinations considering the whole network
where n is the number of all nodes. This sampled sub-network is trained with the
backpropagation algorithm as described in the former chapter for the current iteration.
To evaluate new unseen data in principle the outputs of all sub-networks need to be
evaluated and averaged. As this is numerically impossible the whole network is used to
evaluate new data but with scaled weights pw. The parameter p is the probability to set
a node to zero while training. The former scaling ensures that the expected output of
every nodes is the same during training as well as during evaluation3. In [46] a dropout
rate of 50% is proposed with nearly 0% at the inputs, however the dropout rate can also
be treated as a hyperparameter.

Early Stopping

A way of measuring overfitting is implemented by splitting the data into three sets dis-
tinct as mentioned in section 5.2.2. In the context of a supervised learning task with

3At training time the output of a node is multiplied by zero or one which is sampled from a Bernoulli
distribution leading to an average output of p·o. As the sampling is omitted at the evaluation a
multiplication of the weights with p results in the same average output as at training time. Another
form of scaling can be done during training. To ensure the same mean the weights will be divided
by p at training time and no transformation will be applied at evaluation time.
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Figure 5.4.: Schematic of the dropout method. (a) shows the whole neural network and
(b) shows a sub-network where random nodes are set do zero with a probability of p.
This illustration is taken from [46].

iteration based learning the training set is used to train the model by adjusting the
weights as described in section 5.2 for neural networks. The evaluation set is used to
evaluate the value of the loss function at every epoch. As training is finished and the best
possible evaluation loss is archived the model can be tested on the third dataset. Based
on this dataset splits the evaluation loss as well as the training loss are monitored as a
function of the epoch. The training loss should always decrease because the minimization
is done with the training data. However, the evaluation loss will initially decrease but at
some point it will increase again due to the algorithm starting to overfit to the training
data. Usually the model parameter will be taken where the evaluation loss is minimal,
thus further training will not improve the evaluation set loss. In summary this procedure
ensures that overfitting of the model is avoided by stopping training early. The decrease
and increase of the evaluation loss is usually non-monotonic therefore a minimum in the
evaluation loss is likely to be just locally. Based on this consideration early stopping
criteria are formulated in [47] and summarized as follows. At every training epoch de-
noted by (i) the validation loss will be computed and saved. The relative increase of the
validation loss relative to the best validation loss up to epoch (i) is defined as

GL(i) = 100

(
E(i)

min∀j∈I E(j)
− 1

)
, I = {1, . . . , i} . (5.25)

Training is stopped if GL of equation (5.25) exceeds a certain percentage and the model
with the minimum evaluation error is retained. It is often observed that the evaluation
error jumps rapidly in the first training epochs which could lead to a very early stopping
based on the former criterion. An improved version should stop training if the validation
error rises slowly. This is achieved with the following definition

P
(i)
k = 1000

(
mean∀j∈IE(j)

min∀j∈I E(j)
− 1

)
, I = {i− k + 1, . . . , i} . (5.26)
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The quantity given by equation (5.26) measures how much the minimum evaluation
error deviates relative to the mean evaluation error in a running window of size k. This
quantity can be evaluated after epoch k and will be high if the evaluation error jumps
and will be low if the evaluation error smoothly rises/falls with a low slope. Based on
the above two quantities the following early stopping criterion can be defined as

PQ =
GL(i)

P
(i)
k

. (5.27)

Training will be stopped if PQ exceeds a certain limit, the model with the minimal
evaluation loss will be saved. Equation (5.27) can be interpreted as the global rise of
the validation error given by equation (5.25) weighted by the validation error oscillation
measured with equation (5.26). Resulting in a criteria which is likely to stop if the vali-
dation error slowly rises at a level above the minimum validation error and additionally
preventing the algorithm to stop in the first few training epochs. This work uses the
definition of equation (5.27) with k=5 and and a limit of PQ of 0.5. It is mentioned
that none of the above methods definitely stops training, hence a maximum epoch where
training terminates has to be defined.
Methods such as exponential smoothing or running averages are another form of com-

monly used early stopping algorithms. In summary it is important to use the model with
the minimum observed evaluation loss independent of the used early stopping criterion
in order to prevent overfitting. The only aim of the early stopping algorithm is to train
long enough to reach the best evaluation loss and furthermore prevent from training far
beyond the perfect epoch.

5.3.3. Enhancing Learning Speed

As seen in chapter 5.2 the optimization of the weights of neural networks is an ambitious
task. Some activation functions saturate or kill the gradient which slows down training
immensely. Furthermore, a neural network is a combination of distinct layers, therefore
every layer’s input distribution changes as the weights are updated at every iteration.
This is referred to as covariate shift and slows down training as well. Both problems
can be avoided if the outputs of the nodes are somehow normalized to a mean of zero
and a standard deviation of one. The following two methods do this in different ways,
namely batch normalization introduces a new normalization layer and the self normalizing
neural network introduces a new activation function that has the ability to normalize its
respective inputs.

Batch Normalization

Batch normalization was introduced by Google and is designed to prevent covariate shift
during training and thus increases learning speed. This chapter will summarize the main
concept based on the original publication seen in [48]. Batch normalization addresses the
covariate shift issue by standardizing the inputs of every layer to ensure a mean of zero
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and a standard deviation of one. This can be done by computing the covariance matrix
at every iteration step and fully standardizing the inputs of every layer. However, as this
is computationally very expensive batch norm uses two simplifications as follows.

• The features a treated independently. Hence the standard deviation and the average
will be computed per node. Which prevents the calculation of the inverse covariance
matrix.

• The average and the standard deviation are not computed over all training sample
at every iteration. Rather the mini batch is used to estimate the former quantities.

For every node two new parameters are introduced and the batch normalization of a
node (k) writes as follows

BNβ,γ(x(k)) = γ(k) x
(k) − E[x(k)]√
Var[x(k)] + ε

+ β(k) . (5.28)

In equation (5.28) BN is the standardized feature, γ and β are the new learnable
parameters, ε is a small parameter for numerical stability and the expectations and
variances are computed per feature over the mini batch. The former operation is fully
differentiable. Batch normalization keeps track of all variances and averages by com-
puting a running exponential average which is used when the model is evaluated. The
paper proposes to use the batch normalization layer before the activation function, thus
saturated gradients with the Sigmoid function and killing gradients with the ReLU can
be avoided. For convolutional neural networks the normalization will be computed over
the whole feature map instead of the single nodes.

Self Normalizing Neural Network

A SNN (Self Normalizing Neural Network) maps the mean and variance of one layer’s
activations to the next layer’s activations while the mapped means and variances remain
in an interval and additionally get drawn to a fixed point, the detailed definition as well
as a detailed discussion is given in [45]. This fixed point is depending on the following
requirements on the weights of the respective layer

ω =
n∑
i=1

ωi, τ =
n∑
i=1

ω2
i . (5.29)

In equation (5.29) n denotes the dimension of the layer’s input vector. Whereas batch
normalization introduces a new operation after every layer the proposed SNN achieves
this self normalizing property with the SELU (Scaled Exponential Linear Unit) activation
function in conjunction with a weight initialization that satisfies the conditions seen in
equation (5.29) in expectation4. The SELU function is given by

4To ensure this requirements in expectation the weights will be initialized with values sampled from a
normal distribution with a mean of zero and a variance of 1/n where n denotes the dimension of the
input vector.
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SELU(x) = λ

{
x if x > 0

α(ex − 1) if x ≤ 0 .
(5.30)

The proposed parameters are α=1.6733 and λ=1.0507. Figure 5.3 illustrates the SELU
function with the former constants. To prevent SNNs from overfitting, dropout, as
discussed in section 5.3.2, can be applied. In the paper a special method of dropout
referred to as alpha dropout is introduced. In this method nodes are randomly set to
-λα. The scaling of the weights with the dropout parameter p is done at training time.
In the paper dropout rates of 0.05 and 0.10 were found to empirically work well. SNNs
outperformed various machine learning algorithms on a variety of machine learning tasks
with typically very deep architectures.

5.3.4. Hyperparameter Search Methods

Hyperparameter search methods aim to find the best working hyperparameter configu-
ration. Typically the learning rate, weight decay, number of layers, number of nodes per
layer, dropout rate etc. are hyperparameters. In contrast weights and bias of a neural
network are not hyperparameters as they are derived in the supervised learning cycle
which is outlined in section 5.2, rather for every set of hyperparameters the supervised
learning cycle has to be carried out. Additionally, the lack of rules to derive the best
hyperparameters leads to numerous search algorithms that typically train many hyper-
parameter configurations and compare their performance. This is done based on the
training set splits as outlined in chapter 5.2.2, where the best hyperparameter configu-
ration is the one with the lowest validation set loss. A common approach is to define
a discrete hyperparameter space and train every model in order to keep the best per-
forming one. This procedure is denoted as grid search. Another approach is to sample
hyperparameters from a distribution, train many models and keep the best model based
on the evaluation loss, this is referred to as random search. In contrast to grid search
this procedure will search in a bigger hyperparameter space given the same computa-
tional budget. Yet another approach is based on Bayesian statistics. The aim of this
approach is to refine the distribution of the evaluation loss given the hyperparameters
with the Bayesian theorem in conjunction with the performance of former trained config-
urations. This work uses gird search as well as a state of the art random search algorithm
hyperband that is based on successive halving.

Successive Halving

Successive halving samples n sets of hyperparameter configuration based on given distri-
butions. Every configuration will be trained for r epochs and evaluated. The half best
performing configurations remain and get trained for another r epochs. This procedure
will be repeated for many iterations until only one configuration is left. Following the
discussion seen in [49] it is a-priori unclear if successive halving should be carried out
with a high number of initial models n and a low number of training steps r or vice versa
given the same computational budget. As seen in figure 5.5 discrimination between two
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Figure 5.5.: Typical evaluation loss of two hyperparameter configurations over the number
of epochs. The shaded areas correspond to the maximum loss deviation per model.
This illustration is taken from [49].

hyperparameter configurations can only be achieved at the epoch where the maximum
loss deviations do not overlap. Therefore a bigger per model loss deviation as well as
similar evaluation loss values would favor a smaller n and a bigger r and vice versa. As
the evaluation loss depending on the training epoch is not known in advance hyperband
introduces a progression scheme for n and r, hence many successive halving runs with
different parameters are carried out as follows.

Hyperband

The hyperband algorithm has two inputs, namely R which is the maximum number
of training epochs for one configuration and η which controls the number of thrown
out configurations at each iteration of a successive halving run. Based on the former
two input parameters the maximum number of successive halving runs is determined by
smax+1 with smax = blogη Rc. The inputs for the smax+1 successive halving runs are
given by n = d smax+1

s+1 ηse and r = Rη−s as a function of s ∈ {smax, smax − 1, . . . , 0}, this
is the outer loop. The first successive halving run with s=smax+1 leads to a maximum
number of sampled configuration which are trained for the fewest amount of epochs
controlled by n and r respectively. As s decreases less configurations are sampled but
the configurations are trained for more epochs. Approximately the overall number of
epochs is equal for every successive halving run. Based on n and r in a successive
halving run n configurations are sampled that are trained for ri = rηi epochs keeping
the ni = bnη(−i−1)c best performing configurations as a function of i ∈ {0, . . . , s}, this
is the inner loop. Hence a progression of ri and ni for every iteration of a successive
halving run is provided in an inner loop, additionally the progression of the inputs of all
successive halving runs given by r and n are provided in an outer loop. In the publication
hyperband parameters of η=3 and R=91 are proposed to suit well for a variety of tasks
and the progressions for the former parameters are summarized in table 5.1. Hyperband



5. NEURAL NETWORKS 57

Table 5.1.: Summary of the different successive halving runs that are carried out in a
hyperband run with η=3 and R=91 as input values.

s=4 s=3 s=2 s=1 s=0
i ni ri ni ri ni ri ni ri ni ri
0 81 1 27 3 9 9 6 27 5 81
1 27 3 9 9 3 27 2 81
2 9 9 3 27 1 81
3 3 27 1 81
4 1 81

can be applied on many machine learning tasks differing in the definition of resources.
The above explanation uses training epochs as resources based on supervised training
of neural networks. Lastly hyperband outperformed standard Bayesian hyperparameter
search algorithms in various experiments as seen in [49].

5.3.5. Neural Network Architectures

In chapter 5.1 the fully connected feed forward neural network with its fundamental
structure seen in equation (5.1) was introduced. This simple architecture lacks many
abilities, among others it cannot deal with data of the same structure but in different
locations such as faces in different locations of a photograph5 nor can it deal with input
vectors of different dimensions6. In the following chapters two different neural network
architectures are introduced. All the other concepts such as the optimization of the
parameters, regularization, different activation functions and hyperparameter search re-
main unchanged. Only the simple structure of a FNN given by equation (5.1) and hence
the gradient form in the backpropagation are adapted.

Convolutional Neural Network

CNNs (Convolutional Neural Networks) use as well a stacked structure of different layers
where the output of one layer is the input of the following layer, hence the information
is fed forward. But in contrast to fully connected layers seen in equation (5.9) CNNs use
convolution layers instead. A convolution is defined as

(f ∗ g)(τ) =

∫
R
f(t)g(−(t− τ))dt . (5.31)

In equation (5.31) f and g are continuous functions, the first minus sign in the argument
of g corresponds to mirroring this function which leads to the property f ∗ g = g ∗ f ,

5In principle a FNN could deal with this kind of data if every possible translation would be present in
the training data, this would lead to a very large dataset. However, a CNN (Convolutional Neural
Network) is much better suited for this task.

6A LSTM (Long-Short Term Memory Neural Network) is designed to deal with that situation.
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Figure 5.6.: Illustration of a convolution layer. Five input features are convolved with a
kernel given by three weights. The convolution is valid meaning that only values are
taken into consideration where the kernel fully overlaps with the inputs resulting in a
feature map consisting of three outputs. Usually a bias term is added to every output.

this is denoted as commutativity. As the input of a neural network is discrete and the
mirroring of g is only useful for mathematical proofs a CNN uses the following operation

(f ∗ g)(n) =

m=∞∑
m=−∞

f(m)g(m+ n) . (5.32)

The definition of equation (5.32) would be a discrete cross-correlation operation if
f would be complex conjugated. However, the above formula is the one applied in a
CNN7 and is loosely referred to as convolution even though it is technically a cross-
correlation. The discrete function f of equation (5.32) is denoted as the input, g is the
discrete kernel or filter and hence the learnable parameters, finally (f ∗ g)(n) is the output
which is denoted as the feature map. The former equation represents a one dimensional
convolution, it can easily be extended to more dimensions according to the form of the
input data8. Figure 5.6 illustrates a valid 1D convolution. In this figure five input
features are convolved with a kernel represented by three weights leading to a feature
map with three outputs. Valid connotes that only values with a fully overlapping kernel
are computed. A cross-correlation is typically used to measure the similarity between
a given pattern represented by the kernel and the input data spatially. The output is
maximized as the kernel overlaps with the fraction of the input data which is nearly of
the same shape as the kernel. For example the kernel represents the pixels of a head in a
picture. After the convolution high values in the feature map would suggest that indeed
a head is present in the picture, even more the spatial position of the face in the picture
would be derived. Furthermore, the following three properties of a CNN are from great
importance following the discussion seen in [39].

Sparse Interactions The kernel of a convolution layer is smaller as the input. This leads
7A convolution layer has typically many feature maps calculated with different kernels. Additionally,
every kernel carries a bias term. This bias is a constant added to the form seen in equation (5.32).

8For example a 1D convolution is suitable for time series data and a 2D convolution is commonly used
for image processing.
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to the fact that not all input features are directly connected to every output node
which is the case in a FNN. This property leads to smaller models and secondly a
convolution layer looks on smaller peaces of the input data and therefore extracts
features on smaller scales. This is very well suited to image recognition as details
of a picture could give more insights contrary to the whole picture. Lastly if many
convolution layers are stacked the lower layer is indirectly connected to a large
fraction of the inputs, thus CNNs look at smaller structures per layer and the
interaction of those smaller structures over many layers.

Parameter Sharing In a FNN every parameter is used once per forward pass. In contrast
a CNN uses the same kernel for the whole input. This leads to a significant decrease
in the size of the model.

Equivariant Representation Equivariance is defined as f(g(x))=g(f(x)). This property
ensures that if a feature is present in the data in different locations the resulting
feature map will be the same but shifted. For example in time series data, if a spe-
cial signal form appears in the time series at different time stamps the convolution
operation detects those special signals but in different locations in the feature map.
Therefore smaller shapes in a signal can be detected efficiently. It is noted that
a convolution is not capable of detecting other transformations such as rotation,
scaling etc..

Many details can be specified in a convolution layer. Padding means that the input
signal will be extended with zeros in order to get a specific feature map size. As the
convolution is valid the size of the feature map will be smaller as the input size, zero-
padding can prevent this. The stride determines the movement of the kernel. A stride
of one means that the kernel will convolve over the input jumping only by one input
feature. Based on the former thoughts the size of the feature map evaluates as

N =
I −K + 2P

S
+ 1 . (5.33)

In equation (5.33) N is the size of the feature map, I is the size of the input, K is the
size of the Kernel, P is the size of zero padding applied at the end and the beginning
of the input and S is the stride. As an example a convolution applied to a signal of
ten input features with a kernel size of five, a stride of one and no zero padding would
consequently result in a feature map size of six.
In summary a convolution layer applies n valid convolutions across the input data with

n different kernels as seen in equation (5.32) where additionally per kernel a bias is added
resulting in n feature maps with a size calculated by equation (5.33). The output feature
maps of one convolution layer can be the input of a following convolution layer or a
following fully connected layer. A usual CNN consists of one to three convolution layers
leading into one to three fully connected layers as suggested in [42]. As with FNNs every
element of the feature map is the argument of an activation function and the standard
methods such as dropout, batch norm, selu, etc. are used. The former introduction
briefly summarized the concept of CNNs a detailed discussion is given in [39, 42].
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Figure 5.7.: Depiction of two distinct approaches to deal with an overlying parameter
present in the data. One approach is to train a neural network for every value of
that parameter, this is depicted on the left side. On the right side one FNN with
an additional input for the parameter is trained, this is referred to as a PNN. This
illustration is taken from [50].

Parameterized Neural Network

A PNN (Parameterized Neural Network) is designed to deal with data following a similar
structure but differing based on a single parameter. In a physical context it may be the
same physical process with different parameters. For example elastic scattering processes
with different total energies. Another use case of PNNs is if the distribution of training
data differs from the distribution of the real data depending on that parameter. Again
considering elastic scattering with training data consisting of five sample with a given
energy and three samples with another given energy. This would be a kind of prior
determining the distribution of the training data based on the overlying parameter. A
machine learning algorithm is likely to learn that the data is always provided with the
same distribution as in the training data, hence it is biased. Many ways of dealing with
this kind of parameter are possible. One concept follows the idea of training a neural
network for every value of the parameter and averaging the output of all trained models
at evaluation time. Depending on the parameter a large amount of neural networks have
to be trained. A different concept is to extend the input vector of the neural network
with a single entry representing the overlying parameter itself, this is referred to as a
PNN. The former two concepts are illustrated in figure 5.7. PNNs are investigated in
[50] and summarized above. Considering CNNs, extending the inputs with the respective
parameter may result in unwanted effects. However, the additional parameter could be
introduced at the stage of fully connected layers.



6. Binary Classifier Evaluation

A binary classifier labels every input with one number representing the predicted class.
It is from great interest how the algorithm performs, hence many ways of evaluating a
binary classifier are available. A first impression can be given by the value of the loss
function for the evaluation data. Another approach is based on the outputs that can
be provided in two ways depending on the algorithm. On the one hand it can be a
number ranging from zero to one interpreted as a probability p of the respective sample
corresponding to class one and hence (1-p) is the probability for that sample belonging
to the class two. On the other hand the output can only be a binary number that assigns
every sample a class label without the framework of probabilities. In the latter case a
usual measure is the score which is defined as the percentage of the data that is labeled
right relative to all evaluated samples. The score can also be derived for classifiers in the
probability framework if every output above a certain limit is interpreted as class one
and vice versa for the other class. This cut limit is a real number between zero and one.
After a cut is applied the following quantities can be defined.

Positives (P) are all samples in the dataset that belong to the class which is defined as
positive.

Negatives (N) are all samples in the dataset that belong to the class which is defined as
negative.

True Positives (TP) is the number of samples which are labeled as positive and are
indeed positive.

False Positives (FP) is the number of samples which are labeled as positive but are
negative. Hence labeled wrong. In a statistical framework a FP is a Type I er-
ror meaning that the true null hypothesis (negative sample is indeed negative) is
rejected.

True Negatives (TN) is the number of samples which are labeled as negative and indeed
are negative.

False Negatives (FN) is the number of samples which are labeled as negative but are
positive. In a statistical framework this is denoted as Type II error meaning that
a false null hypothesis (negative sample is positive) is accepted.

True Positive Rate, Recall (TPR) is defined as the percentage of right labeled positives
TP relative to all positives P present in the dataset. With the formal definition
of TPR = TP/P = TP/(TP + FN). In a physical context the positive samples
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are signals that represent the wanted physics. Thus the TPR is referred to as the
signal surviving probability or signal efficiency. Another denotation for the TPR is
recall which answers the question how many positives are labeled as positive.

False Positive Rate (FPR) is the percentage of samples that are wrong labeled neg-
atives FP relative to all negative samples N in the dataset. The definition is
FPR = FP/N = FP/(FP + TN). In a physical context negatives represent
background that is not from interest for the wanted physics. Hence the FPR is
called background surviving probability or background leakage.

Precision is defined as the percentage of right labeled positives TP relative to all samples
labeled as positive with the formal definition of Precision = TP/(TP + FP ).
Precision answers how many of the labeled positives are indeed positive.

The above quantities are a small selection of existing values that are used to evaluate
a binary classifier, these are chosen due to their use in this present work. A more
comprehensive list can be found at [51]. As the above values are depending on the cut
limit it is from great interest to illustrate this dependency graphically. This is usually
done in two ways as follows.

6.1. Confusion Matrix

A confusion matrix plots the TP, FP, TN and FN in matrix form with a color scale to
visualize the performance of the classifier. Figure 6.1 shows the illustration of a confusion
matrix. Due to the color scale it serves as a fast visualization of the classifier. However,
for every cut limit a confusion matrix has to be created.

6.2. ROC Curve

The ROC Curve (Receiver Operating Characteristic Curve) plots the TPR versus the
FPR or in physical terms the signal efficiency over the background efficiency as a function
of the cut limit, hence the ROC curve illustrates the classifier performance for every cut
limit. The best possible classifier reaches the point (0,1), thus every sample is labeled
right. A random discriminator would be represented by a line with a slope of one and no
offset. A cut limit of zero corresponds to the point (1,1). This point is reached because
every sample would be labeled as positive thus the TPR as well as the FPR equals one.
The point of (0,0) is reached with a cut limit of one with an analogous explanation.
Figure 6.2 shows a sample ROC curve. A detailed discussion of the information present
in ROC curves can be found in [52].
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Figure 6.1.: Illustration of a confusion matrix for a binary classification problem. It
illustrates the true positives TP, false positives FP, true negatives TN as well as the
false negatives FN in matrix form for a given cut limit. Based on the confusion matrix
further quantities such as precision, recall, false positive rate etc. can be evaluated.
The color scale provides a strong visualization of the performance of the model.

Figure 6.2.: Illustration of a ROC curve. The true positive rate TPR and the false
positive rate FPR are evaluated based on the output of a classifier for different cut
limits ranging from zero to one. A perfect classifier would reach the left upper corner.
This illustration is taken from [52].



7. Results

In chapter 3 the TUM40 detector with its two different pulse shapes and the result-
ing classification problem was introduced. As this is a supervised learning task labeled
training data are required. The favored method of generating artificial pulses as well as
the three distinct generated datasets are outlined in section 4, a brief summary and the
nomenclature used in this chapter is given in table 7.1. These datasets are used to train
different neural network architectures in order to solve the TUM40 classifications task.
The training procedure is exactly done as described in chapter 5.2 with the following
specifications. In order to obtain a class probability as an output, every neural network
has one output node with a Sigmoid activation function, moreover the cross-entropy loss
function given by equation (5.4) is used. The targets are defined as follows, absorber
pulses are labeled with one and carrier pulses are labeled with zero. Every dataset used
to train the models is randomly divided into three distinct sets. 10000 pulses are used to
train the network, 5000 pulses are used to evaluate the network at every training epoch
and the remaining pulses are used to test the networks as training is finished, hence every
outlined result below is referring to the unseen test data of the respective dataset. A sin-
gle pulse consists of 8192 samples which determines the number of inputs. Additionally,
PNNs are fed with the pulse as well as the pulse height parameter discussed in section
2.3.1 resulting in 8193 input features. In chapter 5.2.2 methods of standardizing every
input feature are discussed, however the raw pulses are fed into the neural network and
the argumentation for this decision is given in appendix A. Training is done in Python
with the neural network framework PyTorch [53, 54] that provides the backpropagation
algorithm as well as many different neural network architectures and everything else
related to deep learning. Many experiments were made with the ADAM and the NAG
optimization algorithm described in section 5.2.4, the ADAM algorithm showed the over-
all best performance, thus this algorithm is exclusively used. For regularization described
in section 5.3.2 dropout and L2 were used and modeled as hyperparameters, addition-
ally, dataset splits in conjunction with the early stopping algorithm were implemented.
In order to derive meaningfully hyperparameters the hyperband algorithm and the grid
search algorithm were used as outlined in section 5.3.4, the best model was determined
by the lowest evaluation loss, furthermore the corresponding hyperparameter spaces are
defined in the following respective chapters. Intermediate results for FNNs (Section 5.1),
PNNs and CNNs (Section 5.3.5) are presented. Based on the intermediate results a final
neural network model is derived and used to analyze the real measured CRESST data.
A short summary of the real measured data is given in appendix B. Lastly the methods
discussed in section 6 are used to evaluate the performance of the neural networks.
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Table 7.1.: Nomenclature and properties of the three generated datasets described in
section 4.3 which are used to train and evaluate different neural networks.

Dataset 1 Dataset 2 Dataset 3
Template x - x

Analytic Fit Function - x -
Time Shift - x -

No Time Shift x - x
Measured Noise x x -
Simulated Noise - - x

Section 4.3.1 4.3.1 4.3.2

Table 7.2.: Summary of the hyperparameter space used to find the best performing model
for FNNs as well as PNNs.

Hyperparameter Description
nLayer Number of fully connected layers
nNodes Number of the nodes per hidden layer

progression This binary parameter determines if the number of
nodes per hidden layer is constant or exponentially de-
cays with a basis of two

p Dropout rate
nBatch Size of the mini batch
wd Parameter that determines the strength of the L2

weight decay

7.1. Results of FNNs

In a first step FNNs were trained and evaluated on dataset 1. Based on the hyperpa-
rameter space seen in table 7.2 the model depicted in figure 7.1 showed the best overall
evaluation loss. Figure 7.2 (a) displays the outputs of the neural network versus the
pulse height parameter of every pulse. The upper histogram represents all generated
absorber events and the lower histogram represents all generated carrier events. Figure
7.2 (b) shows the corresponding ROC curves for energies that are above and below 0.8
keV1 based on the pulse height parameter. In figure 7.2 (c) the confusion matrix for a
cut limit of 0.5 is seen. From about 200000 pulses only about 350 are falsely labeled
at the former cut limit. This is a great performance. In the histograms of the outputs,

1In section 2.3.3 the energy reconstruction based on the amplitude of the standard event fit is discussed.
The pulse height parameter is an estimator of the standard event fit amplitude, therefore it can be
used to reconstruct the energy of absorber events (not valid for carrier events as an energy calibration
is only done for absorber events, see also section 4.1). However, at low energies the pulse height is
likely to derive an amplitude completely dominated by noise. Hence all reconstructed energies based
on the pulse height parameter act as a rough guideline. In section 4.3 the connection between the
pulse height parameter and the scale factor is outlined.
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perfect discrimination is observed in higher energy regions, in lower energy regions falsely
labeled pulses are seen. This is due to the fact that at lower energies the amplitude of
the pulses is of the order of the noise which makes the classification more challenging.
Figure 7.3 displays the performance of the neural network architecture seen in figure

7.1 trained on dataset 1 evaluated on dataset 2. As observed the performance signifi-
cantly worsened compared to figure 7.2 as the evaluation dataset contains time shifted
events and the training set does not. Feed forward neural networks are in principle not
capable of working with shifted data as discussed in chapter 5.3.5, thus a convolutional
neural network would be more suitable. However, the performance could be improved
by training on dataset 2 as outlined below.
In figure 7.4 the performance of the neural network architecture seen in figure 7.1

trained on dataset 1 evaluated on dataset 3 is depicted. This dataset contains pulses of
much higher energies as the dataset which was used to train the neural network. As a
result the discrimination works well in the covered energy region of the training set but at
higher energies every pulse is labeled as an absorber event. This behaviour was observed
in many trained models and shows that neural networks are usually not capable of dealing
with data of similar shape but with differences in the scaling. One way of dealing with
this problem would be to include all pulse of all scales which are expected to be in the real
data. However, at higher energies the pulse shape anyhow differs as the TES saturates.
In another experiment the neural network architecture seen in figure 7.1 was trained

and evaluated on dataset 2. The performance of the model is seen in figure 7.5. Com-
paring the confusion matrix of figure 7.5 with 7.2 an one order of magnitude increase
of falsely labeled pulses is observed. This rather small increase indicates that a shift in
the pulses of 20 ms as present in the training data (dataset 2) is a rather insignificant
translation, proven by the fact that a FNN can learn data with translation if enough
variety is present in the training data. Typically that results in very large datasets but
in the former case 10000 pulses seem to be enough. Nevertheless CNNs will be examined
in the later chapters.

7.2. Results of PNNs

In the former chapter the performance of a FNN was discussed in detail. It is observed
that a FNN performs very well on non time translated data and even performs acceptable
on time-shifted pulses. However, an overlying parameter of the pulses is the amplitude
determined by the deposited energy. In the pulse generation procedure amplitudes were
uniformly sampled, hence the arbitrary assumption that the energies of the real data
are uniformly distributed is implicitly modeled in the training data. Consequently a
parameterized neural network is expected to enhance the performance as discussed in
section 5.3.5. Two possibilities are available to model the overlying parameter. Firstly
the pulse could be fit with the template and the resulting amplitude would act as the
parameter. This approach possesses many drawbacks. It is a-priori not clear which
template should be taken, additionally, the template fit is an extensive procedure as
described in [30] and moreover this work aims to skip the fitting procedure in the pulse
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(a) Visualization of the whole FNN architec-
ture.

(b) Structure of all hidden nodes. (c) Structure of the output node.

Figure 7.1.: Model of the FNN architecture trained on different datasets. (a) Overview
of the model with all layers and the number of nodes per layer. (b) Structure of every
hidden node. (c) Structure of the output node. This model is trained with the ADAM
optimizer with a mini batch size of 50, a binary cross-entropy loss function and a L2
weight decay parameter of 0.0001.
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(a) Histograms of the neural network outputs as a function of the
pulse height parameter.
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(c) Confusion matrix for the test data at a cut
limit of 0.5 on the neural network output.

Figure 7.2.: Results of the FNN presented in figure 7.1 which was trained and eval-
uated on dataset 1. (a) Output of the neural network is plotted against the pulse
height parameter. The upper histogram displays all generated absorber events and
the lower histogram displays the outputs for all generated carrier events. (b) ROC
curve of the test data for energies above and below 0.8 keV based on the pulse height
parameter. (c) Confusion matrix for the test data. Values are calculated for a cut
limit of 0.5 on the neural network output.
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(a) Histograms of the neural network outputs as a function of the
pulse height parameter.
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(c) Confusion matrix for the test data at a cut
limit of 0.5 on the neural network output.

Figure 7.3.: Results of the FNN presented in figure 7.1 which was trained on dataset
1 and evaluated on dataset 2. (a) Output of the neural network is plotted against
the pulse height parameter. (b) ROC curve of the test data for energies above and
below 0.8 keV based on the pulse height parameter. (c) Confusion matrix for the test
data. Values are calculated for a cut limit of 0.5 on the neural network output.
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Figure 7.4.: Output histograms of the FNN seen in figure 7.1 which was trained on
dataset 1 and evaluated on dataset 3. The output of the neural network is plotted
against the pulse height parameter for absorber and carrier events.

shape discrimination contrary to the methods used before as summarized in section 3.2.
The second approach is to evaluate the pulse height parameter as seen in section 2.3.1 and
use it as an estimator of the amplitude. This can be done very easy for training as well
as real data and does not require a template. However, as discussed in section 4.3.1 the
pulse height underestimates the amplitude of carrier pulses and slightly overestimates the
amplitude of absorber pulses. Another issue is that at low energies both approaches can
measure an arbitrary amplitude originating from the noise. This leads to a pulse height
which only gives a rough idea about the magnitude of the amplitude at low energies.
Due to simplicity the pulse height parameter is chosen adding an additional dimension
to the input data fed into the neural networks resulting in 8193 input features.
Figure 7.6 depicts the best performing models based on the hyperparameter space

seen in table 7.2. This model was trained and evaluated on dataset 1 and the results are
illustrated in figure 7.7. The performance of the PNN is comparable to the performance of
the FNN seen above with about only 350 pulses falsely labeled. However, because of the
issues with the pulse height parameter discussed above and moreover the implementation
in a CNN architecture is ambiguous this approach is skipped for further models.

7.3. Results of CNNs

In the former chapters FNNs as well as PNNs were trained and the performance was
examined with the conclusion that due to the pulses shifted in time a CNN is needed. In
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(a) Histograms of the neural network outputs as a function of the
pulse height parameter.
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(c) Confusion matrix for the test data at a cut
limit of 0.5 on the neural network output.

Figure 7.5.: Results of the FNN seen in figure 7.1 which was trained and evaluated
on dataset 2. (a) Output of the neural network is plotted against the pulse height
parameter. (b) ROC curve of the test data for energies above and below 0.8 keV based
on the pulse height parameter. (c) Confusion matrix for the test data. Values are
calculated for a cut limit of 0.5 on the neural network output.
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(a) Visualization of the whole PNN architec-
ture.

(b) Structure of all hidden nodes. (c) Structure of the output node.

Figure 7.6.: Model of the PNN architecture trained on different datasets. (a) Overview
of the model with all layers and the number of nodes per layer. (b) Structure of every
hidden node. (c) Structure of the output node. This model is trained with the ADAM
optimizer with a mini batch size of 50, a binary cross-entropy loss function and a L2
weight decay parameter of 0.0001.
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(a) Histograms of the neural network outputs as a function of the
pulse height parameter.
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(c) Confusion matrix for the test data at a cut
limit of 0.5 on the neural network output.

Figure 7.7.: Results of the PNN seen in figure 7.6 which was trained and evaluated
on dataset 1. (a) Output of the neural network is plotted against the pulse height
parameter. (b) ROC curve of the test data for energies above and below 0.8 keV based
on the pulse height parameter. (c) Confusion matrix for the test data. Values are
calculated for a cut limit of 0.5 on the neural network output.



74 7. RESULTS

Table 7.3.: Summary of the hyperparameter space used to find the best performing CNN
architecture.

Hyperparameter Description
nLayerCL Number of convolution layers
nFilters Number of filters of the first convolution layer
nProg Number that is added to the number of filters of the

former convolution layer in order to derive the number
of filters for the present convolution layer.

fraction The convolution layer filter size is derived as a fraction
of the input signal length

nLayerFC Number of fully connected layers
nNodes Number of the nodes per fully connected hidden layer

progression This binary parameter determines if the number of
nodes per fully connected hidden layer is constant or
exponentially decays with a basis of two

p Dropout rate
nBatch Size of the mini batch
wd Parameter that determines the strength of the L2

weight decay

principle the above lying parameter namely the pulse height as discussed in the former
chapter could be introduced in the model as an additional input at the stage of the first
fully connected layer. But due to the similar performance of a PNN compared to a FNN
as well as the issues regarding the pulse height parameter discussed before, this approach
is rejected. In figure 7.8 the best performing model based on the hyperparameter space
seen in table 7.3 is illustrated. Dataset 2 is used for training and evaluation. Moreover to
boost the performance five different CNNs with the same hyperparamter configuration
were trained and their respective outputs were averaged. This approach is denoted as
bagging (Bootstrap Aggregating) and averages out the variance present in the outputs
if the different used models are uncorrelated. In this case the CNNs are not completely
uncorrelated but the diversity originates from the random weight initialization at the
beginning of the training.
Figure 7.9 depicts the averaged outputs of the five CNNs trained and evaluated on

dataset 2. The performance of the CNN on the time-shifted data is comparable with the
performance of a FNN on the non time-shifted data. As seen in the confusion matrix at a
cut limit of 0.5 (figure 7.9 (c)) the wrongly labeled pulses are roughly doubled compared
to the FNNs performance seen in figure 7.2 (c), still this is a great performance based on
the total number of pulses. As expected in the low energy regions the discrimination is
problematic due to the signal-to-noise ratio.
To investigate the CNNs further the two filters of the first convolution layer of one

model are plotted in figure 7.10. One filter with many oscillations as well as one filter
with only one peak are seen. This could indicate that the oscillating filter observes the



7. RESULTS 75

fast rising carrier like pulse features and vice versa. However, the filters are noisy which
could indicate that the weight decay is to low or the number of trained epochs was too
low in analogy to the discussion of CNN filters seen in [42].
Figure 7.11 shows the outputs of the former described CNN model on the real mea-

sured data plotted as a function of the pulse energy given by the standard event fit in
combination with the energy reconstruction procedure seen in section 2.3.3. A brief dis-
cussion about the real data is given in appendix B. An overview of the whole energy range
is seen in figure 7.11 (a). Interestingly at the high energy region six populations at an
output of 0, 0.2, 0.4, 0.6, 0.8 and 1 are seen. This can be interpreted as a voting system
based on the bagging of five different CNNs. At 0.8 four out of the five CNNs evaluate
an output of one whereas one CNN estimates an output of zero leading to an average of
approximately 0.8. The training dataset includes only pulses with a maximum amplitude
corresponding to 11 keV derived with the pulse height parameter. Thus a similar effect
as seen with FNNs in figure 7.4 may be observed in some of the five models leading to
that voting effect. However, all five CNNs showed great performance on the dataset with
simulated noise (dataset 3). In the low energy region illustrated in figure 7.11 (b) a clear
population of pulses labeled with zero are observed. To further investigate the output of
the CNNs two cuts are performed which are described in the following chapter.

7.3.1. Cuts

Based on the CNN outputs seen in figures 7.9 and 7.11 two different cuts are applied.
Firstly the cut given by the constraint that the number of false negatives equals the
number of false positives based on the outputs on the training data (dataset 2) seen in
figure 7.9 (Equal Cut) is defined. The second cut aims to observe the upper population
seen in figure 7.11 (a) which should deliver only absorber pulses with great confidence
(High Cut). Table 7.4 summarizes the outcomes of the two former introduced cuts and
in figure 7.12 both confusion matrices are depicted based on the training data (dataset 2).
Figures 7.13 and 7.15 illustrate the energy distributions for both cuts and figure 7.14 and
7.16 represent the light yield plots for both cuts. In the context of the former mentioned
figures absorber pulses are all pulses where the CNN output is higher than the cut limit
and vice versa for carrier pulses. Both cuts observe the vast amount of carrier pulses at
the detector threshold as seen in the light yield plots. This outcome was also observed
in [26] and is now confirmed by neural networks directly acting on the raw pulses.

Table 7.4.: Summary of the two cuts based on the neural network outputs seen in figures
7.9 (a) and 7.11 (a). The respective discussion is given in section 7.3.1.

Cut Type Cut Limit Total Pulses Surviving Pulses
Equal Cut 0.3994 89985 70099/77.9%
High Cut 0.98 89985 62601/69.6%
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(a) Structure of the convolution layers with a ReLU
activation function applied to every node after the
batch normalization of the feature map.

(b) Structure of the fully connected
layers.

(c) Structure of the hidden nodes of the fully connected
layers.

(d) Structure of the output node.

Figure 7.8.: Model of the CNN trained on different datasets. (a) Structure of the two
convolution layers. No zero padding is applied and the stride is set to one. See also
equation (5.33). (b) Structure of the fully connected layers. Data flows from the
convolution layers into the fully connected layers. (c) Structure of all hidden nodes of
the fully connected layers. (d) Structure of the output node. This model is trained
with the ADAM optimizer with a mini batch size of 50, a binary cross-entropy loss
function and a L2 weight decay parameter of 0.0001.
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(a) Histograms of the averaged neural network outputs as a func-
tion of the pulse height parameter.
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(c) Confusion matrix for the test data at a cut
limit of 0.5 on the neural network output.

Figure 7.9.: Results of the averaged outputs of five CNNs seen in figure 7.8 which were
trained and evaluated on dataset 2. (a) Averaged outputs of the neural networks
are plotted against the pulse height parameter. (b) ROC curve of the test data for
energies above and below 0.8 keV evaluated with the pulse height parameter. (c)
Confusion matrix for the test data. Values are calculated for a cut limit of 0.5 on the
neural network output.
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Figure 7.10.: Illustration of the two filters of the first convolution layer from a CNN
network architecture seen in figure 7.8. This CNN was trained on dataset 2.
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(a) Overview of the averaged neural network outputs on real mea-
sured data.
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(b) Zoom view of the averaged neural network outputs on real
measured data. Zoomed in the energy region which is covered
by the training data.

Figure 7.11.: Averaged outputs of five CNNs with an architecture depicted in figure 7.8
evaluated on the real measured data. The CNNs were trained on dataset
2. (a) The averaged outputs of the neural networks are plotted as a function of the
energy which was determined with the standard event fit (details in [30]). (b) Zoom
view into the energy region until 11 keV which is approximately the maximum energy
covered by the training data.
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(a) Confusion matrix for the Equal Cut with
a limit of 0.3994 on the averaged neural net-
work output.
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(b) Confusion matrix for the High Cut with a
limit of 0.98 on the averaged neural network
output.

Figure 7.12.: Confusion matrix for the Equal Cut and the High Cut as summarized in
table 7.4. The values are based on the averaged outputs evaluated on dataset 2 of
five CNNs seen in figure 7.8 which are trained on dataset 2.
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(b) Zoom view of the energy histogram.

Figure 7.13.: Energy histograms after the Equal Cut which is summarized in table 7.4.
Absorber pulses are all pulses with a neural network output higher than the cut limit.
Vice versa for carrier pulses. (a) Energy histogram of all pulses. (b) Zoom view into
the region up to 11 keV which is approximately the maximum energy covered by the
training data.
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(a) Light yield plot.

(b) Zoom view of the light yield plot.

Figure 7.14.: Light yield plot after the Equal Cut which is summarized in table 7.4.
Absorber pulses are all pulses with a neural network output higher than the cut limit.
Vice versa for carrier pulses. (a) Light yield plot of all pulses. (b) Zoom view into
the region up to 11 keV which is approximately the maximum energy covered by the
training data.
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(a) Energy histogram.
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(b) Zoom view of the energy histogram.

Figure 7.15.: Energy histograms after the High Cut which is summarized in table 7.4.
Absorber pulses are all pulses with a neural network output higher than the cut limit.
Vice versa for carrier pulses. (a) Energy histogram of all pulses. (b) Zoom view into
the region up to 11 keV which is approximately the maximum energy covered by the
training data.
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(a) Light yield plot.

(b) Zoom view of the light yield plot.

Figure 7.16.: Light yield plot after the High Cut which is summarized in table 7.4.
Absorber pulses are all pulses with a neural network output higher than the cut limit.
Vice versa for carrier pulses. (a) Light yield plot of all pulses. (b) Zoom view into
the region up to 11 keV which is approximately the maximum energy covered by the
training data.



8. Summary and Outlook

Neural Networks are a very versatile tool which can be used in many applications ranging
from supervised, unsupervised as well as reinforcement learning. This work focuses on a
supervised learning task, namely the discrimination between two different pulse classes of
the TUM40 cryogenic detector used in CRESST. Many related applications are possible,
such as pulse shape discrimination on similar detector designs, for example the ones used
in the COSINUS experiment or discriminating between many classes contrary to two.
Furthermore, only the phonon signal was used, the outcome of additionally considering
the light signal should be investigated in the future. From great importance for the
former mentioned tasks is the training data. In order to generalize features from the
data those features have to be present in the training data. Therefore great emphasis
was laid on the outlined artificial pulse generation method as it resembles the nature of
real observed pulses.
As discussed the data consists of two different pulse shapes as well as an overlying

parameter, which is the amplitude of the pulses. A CNN and a FNN/PNN are not
capable of dealing with data of the same structure but with different scaling. This work
dealt with this issue by creating a dataset which covered pulses of many different scales
in order to have enough variety for the neural network to learn from. However, this is
a rather rough approach as the needed variety of data leads to big datasets and long
training. Another more sophisticated way of dealing with this circumstance should be
investigated in the future.
The observed pulses show an additional, important feature. Namely, the pulses are

likely to be shifted in time. It was observed experimentally that FNNs cannot deal with
this form of data, hence the use of convolutional neural networks (CNNs) delivered an
elegant way of dealing with this form of data.
In section 3.2 former ways of pulse shape discrimination were discussed. In particular

the method used in [26] which trained neural networks on the fitting parameters provided
by the standard event fit was outlined. This present work skipped the standard event
fitting procedure completely by training neural networks on the raw data. In summary a
neural network model based on CNNs was found and applied to real data. The resulting
statement is that indeed many observed low energy pulses are carrier events but also
many absorber events are observed in the low energy region. Hence this work confirms
the statement which was found in [26]. In contrast to work with data in real space, as
the former methods did, discrimination in the Fourier space is a potential method. Two
algorithms which are expected to work well together with data in the Fourier space are
SVMs (Support Vector Machines) and the optimum filter method. Neural networks can
be used as well in conjunction with data in Fourier space. These approaches should be
investigated in the future.
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Different application for neural networks in CRESST are imaginable. The introduced
method of simulating noise with the power spectral density of measured empty baselines
can be replaced by generative models based on neural networks. Promising algorithms
are GANs (Generative Adversarial Networks) and Autoencoders. Those neural network
algorithms are able to learn the distribution of the noise from empty baselines directly.
Another use-case is triggering events. In CRESST-III a continuous stream is saved

and records are selected with the optimum filter technique described in [33]. CNNs or
LSTMs could be trained on pulses such that triggering and energy reconstruction is done
in one step.



A. Discussion of Data Pre-Processing

In section 5.2.2 data pre-processing was outlined to be a crucial step for machine learning
algorithms. This is usually done by standardizing every feature according to equation
(5.8). However, for the particular structure of TUM40 data this step can result in
unwanted effects as follows. The noise ongoing present on the data can be roughly
divided into a very fast and a very slow acting component. The slow acting component
ranges over many records thus it is somewhat canceled as every record is shifted to zero by
subtracting the mean of the first 200 samples from every sample. However, the fast noise
component can roughly be modeled as white noise with a mean of approximately zero
and a very small standard deviation («1). Thus standardizing data by equation (5.8)
is numerically poor conditioned as small numbers are subtracted and small numbers
are divided. Furthermore, this effect is amplified because the data is only provided in
single precission floating point numbers. Figure A.1 illustrates the mean as well as the
standard deviations per sample for the datasets with measured noise in order to show
the order of magnitudes. Indeed skipping this data pre-processing step showed great
improvement as the same model trained on the same data with and without data pre-
processing was resulting in lower evaluation loss values by approximately one order of
magnitude. It is mentioned that in all models batch normalization or self normalizing
exponential unit activation functions were used. These concepts are discussed in section
5.3.3. It is likely that those methods provided a similar effect as the standardization given
by equation (5.8) without the numerical drawbacks as they are meant to standardize the
information flow through the neural network. In particular batch normalization uses the
same procedure as seen in equation (5.8) but with an additional constant of 0.00001 added
to the standard deviation present in the denominator for numerical stability. However,
all this techniques are applied after every layer. Hence the input features still remain
without transformation.
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(a) Dataset with measured noise and non time-shifted pulses.
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(b) Dataset with measured noise and time-shifted pulses.

Figure A.1.: Depiction of the mean as well as the standard deviation per sample for
the datasets with measured noise. These quantities are derived over the training set
consisting of 10000 pulses respectively.



B. Summary of Real Data

In order do derive meaningful pulses from all the observed data many cuts have to be
applied. Hence some stages of the data preparation have to be carried out before neural
networks can analyze the real data. A detailed outline of the used data preparation
methods is given in [30]. This work analyzes data right before the carrier cuts. 89985
pulses are provided at that stage. Additionally, every pulse is fit with the absorber and
the carrier template. Hence the energy reconstruction was carried out and the plots on
the real data are depicted as a function of the reconstructed energy and not the pulse
height parameter. Moreover the light yield parameter is given for every pulse. In principle
negative numbers for the light yield parameter are nonphysical but are observed because
in the low energy region the amplitude given by the standard event fit can be negative
resulting in a negative light yield. Also very high nonphysical values far above 1.5 are
observed and cut.
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