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Kurzfassung

Die Nachfrage nach nichtklassischen Logiken ist im Laufe der letzten Jahrzehnte stark ge-
stiegen. Insbesondere fanden derartige Logiken Anwendungen in verschiedenen Bereichen
der Informatik, wie bespielsweise der Kiinstlichen Intelligenz, der Programmverifikation,
der Wissensreprasentation oder der Funktionalen Programmierung. Im Gegensatz zur
Klassischen Logik erlauben sie oft die Behandlung von Situationen mit inkonsistenter oder
unscharfer Information. Von besonderem Interesse fiir die Informatik sind substrukturelle
Logiken, also axiomatische Erweiterungen des Lambek-Kalkiils FL. Sie verdanken ihren
Namen der Tatsache, dafl ihnen in der Darstellung im Sequentialkalkiil gewisse struk-
turelle Regeln fehlen (Vertauschung, Verdiinnung und Zusammenziehung). Die Familie
der substrukturellen Logiken umfasst eine grofle Bandbreite an nichtklassischen Logiken,
wie beispielsweise intuitionistische Logik, lineare Logik, Fuzzylogik oder intermediire
Logiken.

Eine gebrauchliche Art der Beschreibung von nichtklassischen Logiken ist als Erweiterung
bekannter Logiken durch Hilbert Axiome. Die Anwendbarkeit einer Logik ist allerdings
stark abhédngig von dem Vorhandensein eines entsprechenden analytischen Kalkiils, al-
so eines Schluflkalkiils, in welchem Beweissuche durch schrittweise Zerlegung der zu
beweisenden Formeln erfolgt. Diese Eigenschaft ermdoglicht die Implementierung analy-
tischer Kalkiile als Grundlage automatischer Beweissuchprogramme, sowie den Beweis
(meta-)mathematischer Eigenschaften wie Widerspruchsfreiheit und Entscheidbarkeit.
Typischerweise wird ein analytischer Kalkiil fiir eine Logik in zwei Schritten gewonnen:
i) Zunéchst wird der passende Kalkiil gefunden und Vollstandigkeit sowie Korrektheit
bewiesen; ii) Dann wird mittels eines Schnitteliminationsbeweises gezeigt, dafi der Kalkiil
analytisch ist. Beide Schritte sind oft sehr arbeitsintensiv, weshalb computergestiitzte
Methoden zur Einfiihrung analytischer Kalkiile sehr gefragt sind.

Eine systematische Methode zur automatischen Erzeugung von analytischen Kalkiilen
fiir eine Vielzahl nichtklassischer Logiken wurde in [CGTO08] vorgestellt. Die Methode
wurde in Folge auf substrukturelle, intermedidre und parakonsistente Logiken erweitert
[CLSZ13, CMS13] und als verschiedene in dem System Tools for the Investigation of
Nonclassical Logics (TINC) implementiert. In der vorliegenden Arbeit erweitern wir
TINC um das neue Programm InvAxiomCalc. Dieses erlaubt die Behandlung einer grofien
Klasse von Erweiterungen der multiplikativen additiven linearen Logik MALL, also eines
Fragmentes der klassischen linearen Logik ohne exponentials. InvAxiomCalc basiert
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auf dem Artikel [CST09], in welchem eine systematische Methode zur Konstruktion
von Kalkiilen fiir axiomatische Erweiterungen von MALL sowie ein allgemeiner Ansatz
fiir Schnitteliminationsbeweise eingefiihrt wurden. InvAxiomCalc akzeptiert als Einga-
be ein Axiom in der Sprache von MALL und generiert, wenn méglich, einen mittels
ETEXgesetzten Artikel, welcher den analytischen Kalkiil fiir die axiomatische Erweiterung
von MALL mit dem Eingabeaxiom beinhaltet.
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Abstract

During the last decades there have been an increasing demand for non-classical logics.
They have found application in various fields of computer science like Artificial Intelligence,
Software Verification, Knowledge Representation or Functional Programming. Unlike
classical logic, they are often capable of reasoning in situations with inconsistent or vague
information. Of particular interest in computer science are substructural logics, which
are axiomatic extensions of full Lambek Calculus FL. Their name is due to the fact
that when expressed as sequent calculi, they lack some of the structural rules (exchange,
weakening and contraction). The family of substructural logics encompasses a wide set
of nonclassical logics such as intuitionistic, linear, fuzzy, intermediate logics, and more.

A common way of defining a nonclassical logic is by adding Hilbert axioms to well known
systems. The applicability of a logic depends heavily on the existence of a corresponding
analytic calculus, i.e. a deductive system where the proof search is performed by stepwise
decomposition of the formulas to be proved. Analytic calculi are suitable for being
implemented in computational proof search algorithms and for establishing mathematical
properties of a logic such as consistency or decidability. Typically, an analytic calculus
for a logic is obtained in two steps: i) finding the calculus that represent the features
of the logic and showing that it is sound and complete, ii) showing that the calculus is
analytic by providing a proof of the cut elimination theorem. These steps often require a
laborious investigation, and therefore computer support tools for introducing analytic
calculi are very desirable.

A systematic procedure which allows for automated generation of analytic calculi for a
wide range of propositional nonclassical logics is introduced in [CGTO08]. It is followed
by a series of theoretical research over substructural, intermediate and paraconsistent
logics [CLSZ13, CMS13] whose results are implemented in the Tools for the Investigation
of Nonclassical Logics (TINC) system. In this thesis we extend TINC with a new
tool called InvAxiomCalc, which provides support for a large set of logics extending
Multiplicative Additive Linear Logic (MALL), i.e. a fragment of classical linear logic
without exponentials. InvAxiomCalc is developed along the guidelines of [CST09] which
provides a systematic procedure for generating calculi that represent the features of
axiomatic extensions of MALL and a general approach for proving the cut elimination
theorem. InvAxiomCalc accepts an axiom in MALL and generates, if possible, a paper
written in LaTeX with the analytic calculus of MALL extended with the input axiom.
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CHAPTER

Introduction

Nonclassical logics are deviations of classical logic which allow for reasoning in presence of
inconsistencies, vague information, multiple truth values, dealing with time, resources, and
more. Of particular interest in computer science are substructural logics. They encompass
a large family of nonclassical logics such as intuitionistic, fuzzy, linear, intermediate,
relevant logics, ect. During the recent decades, substructural logics have been intensively
investigated as they provide languages for modeling data structures and resources.
Additionally, computer support tools have been developed to make the theoretical results
more accessible to researches and practitioners. For instance, MUltlog [BFSZ96] is a
tool that allows for generation of calculi for many-valued logics. TINC [CS14] (Tools for
the Investigation of Nonclassical Logics) is another system developed along the lines of
MUIltlog and it consists of a set of tools that allow for generating sequent-style calculi for
large classes of substructural, intermediate and paraconsistent logics.

Nonclassical logics are often defined as systems of reasoning based on a set of axioms
and inference rules which compose a proof system or a calculus. The valid statements
of a logic are the set of all formulas that can be proved from its calculus. A convenient
framework for describing a logic is the Hilbert system which usually consists of a large
number of axioms and modus ponens as the only inference rule. A logic may have more
than one calculus. For instance, sequent calculus introduced by Gentzen in [Gen35], is
a widely used framework usually consisting of a single axiom and a large number of
inference rules. Unlike Hilbert systems, the inference rules in sequent calculus operate
over sets of formulas, called sequents, rather than single formulas. A generalised version
of the sequent calculus is the hypersequent calculus [Avr87] where the expressive power
is extended by letting the inference rules operate over sets of sequents instead of single
sequents. Sequent and hypersequent calculi also contain a reformulation of the modus
ponens, called the cut rule that is the only rule breaking the subformula property, which
states that every formula in the premises is a subformula in the conclusion of the rule.
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1.

INTRODUCTION

If all proofs in a calculus consist of step-wise decomposition of the formula to be proved,
the calculus is called analytic. The applicability of a logic depends heavily on the
availability of a corresponding analytic calculi. While a Hilbert system is convenient
for describing the features of a logic, an analytic calculus is suitable when it comes to
automated proof reasoning or the investigation of mathematical properties of a logic
such as decidability or consistency. Generally, an analytic calculus can be obtained
from a sequent calculus by showing that the cut rule is eliminable, i.e. every rule in
the system can be transformed into a proof that does not use the cut rule. Finding a
suitable calculus, showing that it is sound and complete, and then converting it to an
analytic calculus by proving cut-elimination, often requires a lot of effort. Therefore, it
is desirable to have an automated way to generate calculi for logics having already the
analyticity property.

A systematic procedure for generating analytic calculi for a wide set of extensions of
classical propositional logics is introduced in [CGT08, CGT12]. The procedure is based
on the substructural hierarchy which is a classification of the Hilbert axioms according to
the polarity of their logical connectives. In the first step, the procedure accepts an axiom
up to a certain level of the substructural hierarchy and generates an equivalent set of
(hyper)sequent rules. In a second step, the set of (hyper)sequent rules is transformed into
equivalent analytic rules. The generated analytic rules together with the (hyper)sequent
calculus of the base logic under consideration consist the (hyper)sequent calculus of the
extended logic. The systematic procedure mentioned above is implemented in one of the
tools in TINC called AxiomCALC which transforms any suitable axiomatic extension of
Full Lambek calculus with exchange and weakening FLew (i.e. intuitionistic linear logic
with weakening) into a cut-free (hyper)sequent calculus.

The subject of this thesis is to extend TINC with the implementation of the procedure
introduced in [CST09] for transforming axiomatic suitable extensions of Multiplicative
Additive Linear Logic without exponentials [Gir87] (i.e. classical linear logic without
exponentials) into a cut-free sequent or hypersequent calculus. The implementation
consists of a new tool in TINC called InvAxiomCalc which is developed in Prolog.

1.1 Overview

The thesis is organized as follows. Chapter 2 summarizes the preliminary concepts that
are used throughout the thesis. We start with a brief description of the language and
semantics of linear logic. Then, we proceed with the notions of Gentzen-style proof
theory like sequent and hypersequent calculus as well as the cut elimination theorem.
In Chapter 3 we provide a more detailed description of the algorithm in [CST09] to be
implemented. Each step is illustrated with examples that cover a reasonable amount of
corner cases and also suggests the implementation techniques. We start by describing
the algorithm that accepts an axiom in the language of MALL and determines the class
in the substructural hierarchy where the axiom belongs to. Afterwards, we provide the
details of all the required steps for transforming an axiom to a set of analytic rules.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.1. Overview

This will be possible only if the axiom resides into certain classes of the hierarchy.
Chapter 4 starts with a gentle introduction to Prolog and the language features that
we use in the implementation of InvAxiomCalc. We proceed with an architectural
description of the existing tools in TINC, and then we provide detailed information
about the implementation of InvAxiomCalc. The chapter concludes with a set of related
logic engineering tools. Chapter 5 provides a summary of the thesis contents and the
implemented tool InvAxiomCalc.
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CHAPTER

Preliminaries.

The purpose of this chapter is to provide an introduction to the basic concepts of the
Gentzen style proof theory of a fragment of classical linear logic without exponentials,
also known as Multiplicative Additive Linear Logic (MALL). We start by introducing
the language of MALL [Gir87, CST09] and briefly describing its logical connectives.
Afterwards, in Section 2.2 we describe the notions of the sequent calculus LJ and the
hypersequent calculus HLJ as introduced in [Gen35, Avr87] for Intuitionistic Logic (IL).
Section 2.3 gives a sequent and a hypersequent calculus for MALL [CST09, Gir87]. We
close this chapter with Section 2.4 which discusses analytic calculi and how to obtain
them.

2.1 The Syntax of MALL

The language that we use for MALL, consists of infinitely many (possibly indexed)
propositional variables V = {a,b,c, ...}, their duals V* = {a*,b*, ¢, ...}, the constants
{L,T,1,0}, and the logical connectives {&, %, ®, ®, —}. The formulas on this language
are generated by the grammar:

Fu=VIVH|L|T|LI0|FRF|F&F|FQF|F&F|F—F (2.1)

The capital letters A, B, C, ... are used to denote the formulas generated by the above
grammar. We write Ao— B as an abbreviation of (A — B) & (B — A), and Ag as an
abbreviation of A& 1. The Greek letters ¢, 1, ... are used to denote schematic formulas
(schemes), which are generated by a grammar similar to (2.1), but starting from formula
variables instead of propositional variables. A scheme ¢ is called atomic, if ¢ = A or
¢ = AL for some formula variable A. The capital letters A, B, C, ... are also used to
denote atomic schemes.
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2.

PRELIMINARIES.

2.1.1 The Linear Implication and the Exponentials

In classical and intuitionistic logic, by knowing that the propositions A and A D B
both hold, we can derive B without affecting the truth values of any of the premises
A or A D B. The truth values which are not affected by the application of the logical
connectives are also called stable truths, see Chapter 1 in [Gen35]. However, in real
world, the implications are often causal, i.e. the condition is modified after its use. The
process of modification of the premises is known as reaction.

For example, let A represent the action of spending 1€ on a Coke and B represent the
action of getting it. In this case, the reaction of A D B is that 1€ is spent during the
process and cannot be used a second time. The symbol —o (linear implication) is used in
linear logic for representing the causal implication.

Linear logic is also equipped with two connectives "!" (of course) and "?" (why not), called
exponentials, for expressing the iterability of the actions. These exponentials roughly
correspond to the modalities [J and ¢, eg [CZ97]. We can think of "!" as a free duplication
of an action and "?" as a discarding thereof. For instance !4 would mean to spend as
many Euros as one needs [Gir87]. In this thesis we will not consider "!" and "?".

The intuitionistic implication A D B can still be written by using — and the exponentials
as (IA) —o B, which means that B is caused by some iterations of A. However, the
subject of this thesis considers only the fragment of Linear Logic which excludes the
exponentials. In this way, the syntax still looks similar to Intuitionistic Logic, but having
additional logical connectives as explained in the following sections.

2.1.2 The Two Conjunctions

There are two conjunctions in Linear Logic, namely ® (times) and & (with). They
correspond to different meanings of the word "and". Both represent the availability of
two actions. The difference is that in the case of ® both of the actions will be performed,
whereas in case of & only one of them will. We can chose to perform either of the actions,
but not both of them simultaneously.

Let, A, B and C be three actions such that A — B and A — C. Given only this
information, there is no way of getting A — B ® C' (we can only get A® A — B® ().
However, it is possible to get the action A — B&C', which is the superimposition of both
B and C. Hence, the connective & has also disjunctive features, but it is technically not
a disjunction, as A&B — A and A& B — B are both provable, see Example 2.3.2.

2.1.3 The Two Disjunctions

In analogy with the two conjunctions described above, linear logic is also equipped with
two disjunctions:
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2.2. Gentzen Style Proof Theory

o @ (plus) is the dual of & (with) and expresses a non-deterministic choice of one
action between two possible types. Note that in & we are able to chose which
action shall be performed, but in @ the choice is non-deterministic.

o X (par) is the dual of @ (times) and expresses the dependency between two types
of actions. A% B can either be read as A+ — B or B+ —o A, which means that %
can be seen as the symmetric form of the linear implication —o.

2.1.4 The Linear Negation

An important connective in MALL is the linear negation (-)* (n4l) which is the only
negative operation of the logic.

nil is an involutive! operation which means that A+t is equivalent to A, similarly as in
classical logic. Therefore, provides possibilities to apply the De Morgan-like laws to all of
the connectives of the language. For example:

(A& Bt & Al ¢ Bt
(A% Byt & Al ® Bt

2.2 Gentzen Style Proof Theory

Proof theory studies the formalization and the structure of mathematical proofs. One
of the initiators of the proof theory is David Hilbert. In his attempts to provide a
proof for the consistency of mathematics, Hilbert suggested proof systems consisting of
a set of axioms (or axiom schemes) and a small number of inference rules, e.g. modus
ponens [Bus98|. However, Hilbert systems are not suitable for computational proof search,
as they are not analytic (see Section 2.4). In [Gen35|, Gentzen introduced the sequent
calculi LK and LJ as formal proof systems for classical and intuitionistic logic. Being
analyitc, such proof systems turned out to be more suitable for automated proof search.
This section provides a short introduction to the sequent and hypersequent calculus as
introduced by Gentzen [Gen35] and Avron [Avr87].

2.2.1 The Sequent Calculus

The sequent calculus was introduced by Gentzen [Gen35] as a formalization of proofs in
classical and intuitionistic logic. The main difference from the other proof systems (like
Natural Deduction and Hilbert-style calculus) is that, instead of manipulating a single
formula, sequent calculus operates on structures consisting of sets of formulas, called
sequents:

Definition 2.2.1. A sequent is an expression of the form I' B A where I' and A are
multisets of formulas. T' is called the antecedent and A the succedent of the sequent. If
the succedent of the sequent consist of at most one formula, then the sequent is called
single-conclusion. Otherwise, it is called multi-conclusion sequent.

'In Mathematics, a function is called involutive if it is the inverse of its own.
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o, H11

(\/ia T)

Logr Agp 10

T k11
T,6F 10

(/\ia l)

(w,1)

Lok
'¢Dy

I'Fo

I'Ey

(2,7)

TFoA

Lo, 010

T,¢F I

(As7)

(¢, 1)

T'k¢ DFT
T,¢go¢FIl

oIl Iy 11

(2,0)

T,6VoFIl

TH¢ ¢, AFT
T,AFII

(Vs0)

(cut)

Table 2.1: The sequent calculus LJ for intuitionistic logic.

In classical and intuitionistic logic, a sequent is intuitively understood as the implication
of the conjunction of all formulas in the antecedent to the disjunction of all formulas in
the succedent.

A sequent calculus consists of a set of axioms and a set of rules. A rule in sequent calculus
consists of a set of sequents {S1,...,5,} called the premises and a single sequent S called
the conclusion. It written as

Sy ... Sy
S

[rule name]

and it means that the conclusion S is inferred from the sequents of the premises S1, ..., .Sy.
Table 2.1 shows the rules and the axioms of the first sequent calculus for intuitionistic
logic LJ, in [Gen35]. The notion of derivation is also extended to sequents:

Definition 2.2.2. A derivation in a sequent calculus is a finite labelled tree with nodes
labelled by sequents and a single root (called end sequent). The leaves are labelled with
azioms and each node is connected with the (immediate) successor nodes (if any) according
to the inference rules.

Let C be a sequent calculus. We say that the sequent S is derivable if there is a derivation
in C' having S as the end sequent.

In a sequent calculus we distinguish between different types of rules:

e Logical rules are rules that introduce a logical connective. The logical rules in
Table 2.1 are (D,1), (D,7), (Ai,1), (A, ), (V,1), (V4,1). For example, considering
the (D, r) rule from LJ:

T'¢ Dokl
T,¢ oIl

(2,0)

A new formula ¢ D v is introduced in the left side of the conclusion, having D as a
logical connective, whose left and right hand side are formulas taken respectively
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2.2. Gentzen Style Proof Theory

from each premise. The formula ¢ D %, in (D,1), is called the principal formula.
The formulas ¢ and 1 in the premises from which the principal formula is derived,
are called active formulas. The rest of the components in the premises that are not
changed by the rule application, i.e. I', II, are referenced to as respectively the left
and the right context of the rule.

e Structural rules do not introduce logical connectives. They operate on the occur-
rences and positions of the formulas in a sequent. Examples of structural rules
from L.J are weakening (w, ), (w,r); contraction (c,!) and exchange, for instance:

L,k I
)T g orm

e The cut rule - an important characteristic of this rule, is that it eliminates a formula
(called the cut formula) from the premises. It corresponds to the introduction of
intermediate steps to derivations, and it is often helpful to shorten the proofs. The
cut rule can also simulate modus ponens (MP):

¢ oD
MpP) —— "
(MP) ”
to show this, we have to derive that - v from F ¢ and - ¢ D 1 by using cut.
Indeed:
vy
[
onere VG ury
ay F6 6TV Y
(cut) F 220 YR
Y

Generally in inference rules, a proof of the premises implies a proof of the conclusion.
On some cases, a proof of the conclusion, also implies a proof for each premise. Such
rules, are called invertible rules:

Definition 2.2.3. Let S1,...,5,,5 be sequents and v be a rule. r is invertible, if for
each instance
S1 ... Su

S

of r, whenever S is derivable then each S; for n = 1,...,n is also derivable.

2.2.2 The Hypersequent calculus

The sequent calculus has been one of the most preferred frameworks for defining analytic
calculi. However, it is not powerful enough to capture all interesting logics. This has
motivated the introduction of many generalizations of the sequent calculus in the last 30
years. A prominent example is the hypersequent calculus introduced by Avron in [Avr87].
Instead of single sequents, it operates on sets of sequents called hypersequents:
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GIPE () _GITEl 0 GITéokT
GITre " GIr,¢rm G|T,¢F1I

Internal

(¢, 1)

External

G (o) G|THI I
G|TrI G|THI

(ec

Table 2.2: Internal and external structural rules in HLJ

Definition 2.2.4. A hypersequent is a finite multiset T1v F Aq]...|T B A, where
each T'; = A; fori=1,...,n is a sequent, called a component of the hypersequent. A
hypersequent is called single-conclusion if all of its components are single-conclusion.
Otherwise, it is called multiple conclusion.

In classical and intuitionistic logic, the structural connective "|" that is used to separate
the sequents is interpreted as a disjunction at the meta-level.

Similarly as in sequent calculus, the rules of a hypersequent calculus consist of axioms,
logical rules, structural rules and the cut rule. The key difference, which also extends
the expressibility of a hypersequent calculus compared to the sequent calculus, is that
we can have rules that manipulate not only the formulas within one component of
a hypersequent (internal rules), but also rules that manipulate the components of a
hypersequent (external rules).

The hypersequent calculus HLJ for the intuitionistic logic can be obtained by adding
a hypersequent context G to every rule in LJ Table 2.1 and by adding the external
structural rules (ew) and (ec). Table 2.2 shows the internal and external structural rules
of HLJ.

2.3 The hypersequent calculus HMALL

In Section 2.2 we described the notions of sequent and hypersequent calculus as introduced
by Gentzen and Avron in [Gen35, Avr87] for intuitionistic logic LJ. However, the main
topic of this thesis is the fragment of linear logic without the exponentials. This section
provides a translation to linear logic of the notions given in Section 2.2. Further details,
can be found in [Gir87, CST09).

Hypersequent calculus for Multiplicative Additive Linear Logic (HMALL) is the hy-
persequent system consisting of the set of inference rules shown in Table 2.3. Each
rule in HMALL consists of sequents of formulas in the language of linear logic without
exponentials. By removing ew and ec, and by dropping the hypersequent context H from
every rule in HMALL, we obtain the sequent system MALL.
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2.3. The hypersequent calculus HMALL

Each HMALL rule consists of a set of single sided multiple conclusion sequents. A
definition of the single sided (hyper)sequents and their interpretation is given in Defini-
tion 2.3.1. Note that by sticking to the single sided multiple conclusion setting, we do not
lose any expressive power of the two sided single conclusion setting (i.e. sequents of the
form I' - A). The latter can be embedded to the former by using left/right polarities.

Definition 2.3.1. [CST09] A single sided sequent is a finite multiset of formulas, usually
written as = Ay, ..., An. A single sided hypersequent H is a finite multiset of sequents
written as - T'y|...| F Ty,. The interpretation (T')! of a sequent =T :=F Ay, ..., A, is the
formula A1 ... %A, and (- T)! = L, if n = 0. The interpretation of the hypersequent
H=FT1]...|F Ty is defined as (H)! = (FT)L, @ ... (FTL)L,.

From now on, the Greek letters I', A, X, ...are used to denote multisets of formulas,
the calligraphic letters H, G, ...to denote hypersequents and the capital letters A, B,
C, ...to denote single formulas. In inference rules, the letters I';, A, X, ... will be referred
to as multiset variables, while the letters A, B, C, ... will be referred to as formula
variables.

Similarly as in the hypersequent calculus HLJ, the rules in HMALL are classified as:

e the az rule - represents the identity principle, as it is equivalent to the two sided
hypersequent rule: H|A - A.

e logical rules - introducing a logical connective. Similarly as in HLJ, the logical rules
of HMALL can be partitioned into invertible rules: &, %%, T, L and non-invertible
rules: ®, @, 1, 0.

o structural rules - the only structural rules included in HMALL are the external
structural rules of weakening ew and contraction ec. Since linear logic emphasizes
the role of the formulas as resources, the internal structural rules of contraction
and weakening are in general not allowed.

o the cut rule - looks slightly different from the cut rule in HLJ (see Table 2.1) since
in HMALL we only deal with single sided sequents. In HMALL, the cut formulas
occur on the same side of the sequents, but they have different polarities. Similarly
as in HLJ, the cut rule in HMALL also eliminates a formula from the premises.

The notation Fg A is used to denote that the formula A is derivable in the system S.

Similarly, g I" or Fg H denote that the sequent I' or the hypersequent H is derivable in
the system S. If R is a set of rules, then we write S + R to denote the system .S extended
with the rules in R. Furthermore, we write g1 A if the formula A is derivable in the
system S + R.

Example 2.3.2. The derivation of Fyrapr (AT @ BH)RA is written as follows:

11
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ar —————— ; H|FT, A H|F AL A ew
HlF4.4 o HFT,A HIFT
H|FT| T ®H!FF,A H|+ B, A 1—
e —————
HFT HFT,A® B, A M1
HIED A o, AIFT.B T
YHFT, A0 B 2 H[FT,. A0 B HIELT
H|+T,A,B H| T, A H|-T,B N H| T
HIFT,A BB HIFT,A& B H| =T, L
Table 2.3: Hypersequent system HMALL
ar —————
AL A
1
FAte Bt A (2.2)
- (At @ BYH)®A
Similarly, we can show the derivability of - (A+ @ BY) % B by using ®s instead of ®1
Proposition 2.3.3 shows that if a sequent I' is provable in HMALL extended with an
axiom G (i.e. a rule having empty premises and the hypersequent G in the conclusion),
then I is also provable in HMALL extended with the axiom G' (i.e. the rule with empty
premises having the sequent - G/ in the conclusion).
Proposition 2.3.3. [CST09] For any sequent T' and hypersequent G, we have that
Famvarc+g U iff  bFuyarpegr T
The equivalence between two sets of rules S; and S; is defined based on the set of
sequents that can be proved by extending a base (hyper)sequent system with S; and So.
In particular:
Definition 2.3.4. [CST09] Two sets of inference rules S1 and So are equivalent in
(H)MALL iff ( HYMALL + Sy and (H)MALL + Sy prove the same sequents.
Since an axiom ¢ can be considered as a rule without premises, the definition 2.3.4 applies
also to the sets of axioms.
12
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2.4. Analytic calculi and Cut elimination

2.4 Analytic calculi and Cut elimination

An important rule in (hyper)sequent calculus systems is the cut rule:

'k¢ ¢, AFII H|FT,A H| - AL A
cut cut
I AFIL H|FT,A
(a) —cut in LJ (b) — cut in HMALL

cut is often useful to shorten the proofs. However, cut is the only rule which does not
satisfy the subformula property which states that: every formula in the premises occurs
as a subformula in the conclusion. Therefore, in a derivation tree having no occurrences
of cut, every formula occurring on a leaf is a subformula on each of its ancestors, and
therefore, also a subformula of the root, i.e. the end sequent. Such a property, is the key

for the development of the automated reasoning methods and proof-theoretic applications.

Therefore, it becomes important to remove all instances of the cut from derivations of a
calculus system. If every rule in a calculus system satisfies the subformula property, then
the system is referred to as analytic.

One way to show that a (hyper)sequent calculus system is analytic, is to show that the
cut rule in this system is admissible. Which means that the presence of the cut does not
add new derivable sequents in the system, and hence, it is closed under cut.

Another way to show that a system is analytic, is to prove the cut elimination theorem by
showing that any derivation containing an application of a cut can be transformed into a
cut-free derivations. Gentzen introduced in [Gen35] a proof of the cut elimination for
LJ, which proceeds by a double induction on the complexity of the cut formula (i.e. the
number of the logical connectives in it) and the number of consecutive sequents in the
derivation that contain the cut formula. A general proof of the cut elimination theorem
for the extensions of HMALL is given in [CST09].

13
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CHAPTER

From Axioms to Analytic Rules

In this chapter we give a description of the systematic procedure introduced in [CST09] for
transforming Hilbert axioms in the language of classical linear logic without exponentials
into equivalent analytic inference rules in the multiple-conclusion (hyper)sequent calculi,
which enjoys cut-elimination under certain conditions described through the chapter.
The procedure is based on the substructural hierarchy defined over Hilbert axioms and
uses HMALL as a base hypersequent system, see Section 2.3. Section 3.1 provides the
definition of the substructural hierarchy. Sections 3.2 and 3.3 describe the systematic
procedure respectively for the class AVp and 73:; of the substructural hierarchy. The final
step of the transformation which converts a rule constructed from 3.2 and 3.3 into an
analytic one, is given in Section 3.4.

3.1 Substructural Hierarchy

The substructural hierarchy is defined based on the invertibility of the logical inference
rules in HMALL and consists of sets of axioms P,,, NV,, for n > 0. Recall that the rules
&, %%, L and T in Table 2.3 are invertible, whereas @, ®, 1 and 0 are not.

Let A denote single proposition variables and their duals. The classes P,, and N, of the
substructural hierarchy are defined by the following grammar:

Py = A Pri1 :=Nu | Prs1 @ Prs1 | Pns1 @ Prs1 1110
(3.1)
NO = .A Nn+1 N=Fn | Nn+1 & Nn+1 ‘ Nn+1 75) Nn—f—l ’ T | 1

Note that according to the grammar (3.1) we have Py = Ny = A. Furthermore,
Ny € Ppaq and P, € N,4q for every n > 0. Proposition 3.1.1 formalizes the relation
between the classes of different levels of the substructural hierarchy.

15
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3. FrRoM AXioMS TO ANALYTIC RULES

Axiom in intuitionistic and classical version Name Rule | Class

weakening w

c: AR1 No

i A—o ARA . N2l
contraction c

c: AL A® A No

i: Ad (A— 1) excluded P
em

c: Ag At middle Py

i (A — B)g1 @ (B —o At linears Py

inearity com ,

c: (A % B)g1 @ (BE D A)gy Py

i: ((A%? — B)&((B — 1)¥* — (A — 1))) — (A — B) Nj
Nelson nel

c: (A A® B)® (B B® A)) B3 At ¥ B+ Ny

i A@ (A®" — 1) n-excluded P

23 n-em
c: A@ (AL middle P

A®" is an abbreviation for A®...® A, and AP is an abbreviation for A% ... %A

Table 3.1: Axioms and their corresponding class in substructural hierarchy [CST09]

Proposition 3.1.1. [CST09] Every axiom belongs to some Py, and some Ny, and for
all n, we have P, C Ppy1 and Ny, C Nyi1. Furthermore, A € P, iff AL € N,,.

Po——> P ——> Py ———> Py ———»

XK K

Ng——> N ——> Ny ——> N3 ———>
Figure 3.1: The Substructural Hierarchy [CST09]

Figure 3.1 depicts the hierarchy and the relation between classes where the arrow —
stands for the set inclusion C.

A similar substructural hierarchy was first introduced in [CGTO08] for formulas in the
language of Intuitionistic Multiplicative Additive Linear Logic (IMALL) where the
multiplicative or A % B is expressed through the linear implication A — B [Gir87].
The substructural hierarchy (P2, N?) for IMALL is defined as:

Piu=A P =Ny [ Pr 1 @Phiq | Pl ©@Phyy [ 110
(3.2)
Ng = A Nn+1 N \Nﬁﬂ & Nn+1 | Pn+1 — Npp | T4

16


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1. Substructural Hierarchy

(A A®B)® (B B® A)) 3 AL 3 Bt

<N2

AN

(A A®B)® (B B® A)) ¥ At

<N2 <N0,N2>

»

STV

(AR A B)® (B B® A)

AJ_
<P17 N2> <N0,N2>
SP)
A®A®B//// \\\\B®B®A
<Py > <Py >
& &
yd | N yd | AN
A A B B B A

<Po,P1> <Py, P1> <Poy,PrL> <Py, P1> <Py,P1> <Py, P1>

Figure 3.2: Identifying the class of Nelson axiom

where A is the set of positive (i.e. without negation) atomic axioms. Table 3.1 shows
some examples of axioms and their classes according to the substructural hierarchy
defined for intuitionistic linear logic (3.2) and classical linear logic (3.1). Note that some
intuitionistic axioms belong to higher level in the hierarchy then their equivalent classical
linear logic axioms. For example, the excluded middle and the Nelson azxiom belong
respectively to classes P4 and N4 according to grammar (3.2) but are brought to levels
P; and N> according to grammar (3.1).

To identify the class where a formula ¢ belongs to, one has to decompose the formula
into subformulas according to the most binding logical connectives until reaching atomic
formulas. If we know the classes of all subformulas of ¢, the class of ¢ can be determined
by utilizing the grammar (3.1). For example, Figure 3.2 shows a tree representing the
decomposition of the Nelson Aziom into subformulas. Each node of the tree is labeled
with: the subformula corresponding to the node, the class in the substructural hierarchy
where the subformula belongs to (enclosed in angle brackets <>) and the most binding
logical connective in the subformula. The root node is the Nelson axiom and the leaves
are atomic formulas. Since the classes of atomic formulas A are already defined in
grammar (3.1), we can determine the classes in the rest of the nodes by traversing the
tree bottom-up and applying the rules defined by grammar (3.1).

Proposition 3.1.2 formalizes another important observation of the structure of axioms

17
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18

T FT, A, A FI,T HIFT,0  H|FZ,A

w em —— com

FT,A “TFr.A T H|FT,A[FX,0

FILS,S,A 0 FILSAA H| T, 5, . H|FLLS,

nel n-em

FT,A,% HIFT|F 21,..., 5,

Table 3.2: Rules generated the from axioms in Table 3.1 [CST09]

belonging to certain classes of the substructural hierarchy. This observation will be used
later on for the syntactic transformations from axioms to analytic rules.

Proposition 3.1.2. [CST09] Every axiom ¢ € Ppi1 is equivalent to an axiom of the
Jorm &;(®;1; ;) where ¢; j € Ny, for each i,j. And every aziom ¢ € Ny11 is equivalent
to an axiom of the form &;(% 1 ;) where 1;,j € Py for each i, j.

To facilitate the transformation procedure, the axioms belonging to class N, are previously
translated into a normal form as defined in Definition 3.1.3:

Definition 3.1.3. [CST09] An aziom ¢ is called No — normal if it is of the shape
¢ = Bp(Di(®; Ak, ;) where each A; ;) is atomic.

From Proposition 3.1.2 it follows that every axiom in N5 can be transformed into a finite
additive conjunction (&) of Ny — normal axioms. Note that every N5 axiom in Table 3.1
is already in Mo — normal form.

In absence of weakening, only a subset 77:/3 C Ps, defined by the grammar rule (3.3), is
covered by the transformation procedure which is described in the following sections. An
example of an axiom in 73;/3 class is the linearity axiom in Table 3.1. Figure 3.3 shows
a tree representing the decomposition of the linearity aziom into subformulas and the
class in the substructural hierarchy where each subformula belongs to. The classes of
inner nodes in the tree are determined similarly as in the example in Figure 3.2 but the
grammar rule (3.3) is also used for determining the class 73;;.

Pyu=No & 1| Py@P; | P3Py |1]0 (3.3)

Proposition 3.1.4 is used to transform an axiom ¢ € ’Pé into an equivalent (w.r.t.
Definition 2.3.4) finite set of axioms {1, ...,1,}. This transformation will be used as a
preprocessing step in Section 3.3.

Proposition 3.1.4. [CST09] Every aziom ¢ € Py is equivalent to a finite set {31, ..., 1, }
of axioms such that v; = @T:il(gi,j)&l where & ; is No — normal for all i, j.
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3.2. From MNsj-axioms to Analytic Sequent Rules

(A* B B)e1 @ (BY B A)e

<Py >
®
(AL B B)ga (BY 3 A)ga
< Py > < Py >
& &
At ® B \ 1 Bt A \ 1
<N1,N2> <'Pl> <N1aN2> <’Pl>
7% Y

At B Bt A

<N07N1> <N07N1> <N0,N]_> <N0,N1>

Figure 3.3: Identifying the class of the linearity axiom. Note that Agq is an abbreviation
for A&1, see Section 2.1.

3.2 From MNs-axioms to Analytic Sequent Rules

This section provides a description of the algorithm introduced in [CST09] for transforming
the axioms within the class N5 into equivalent sequent calculus structural rules. The
description below is a reformulation, with more details, of the results in [CST09]. The
described algorithm extends the one introduced in [CGTO08] for axioms of class N3 as
defined by grammar (3.2). The transformation given by Lemma 3.2.1 (also known as the
Ackerman Lemma) is the most important step of the algorithm. The complete algorithm
is given in the proof of Theorem 3.2.2.

Lemma 3.2.1 (Ackerman Lemma). [CST09] For any aziom &, the following two sequent
rules are equivalent

3 FX, (1) and 3 -3, AW

FT,¢ FT.A

(2) (3.4)

where A is a fresh metavariable standing for multisets of formulas.

Proof. The direction (2) = (1) is shown by taking the premises of (1) and making use of
(2) to get the conclusion of (1). Since (2) has one more premise (namely - A, ¢4) than
(1), we have to instantiate the multiset variable A in this premise in such a way that we
can derive the conclusion of (1). By letting A = ¢ and using the az rule we have the
following:

ar ————
3y 3, Fg,gi@)
FT,¢
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The other direction (1) = (2) is shown by starting with the premises of (2) and using (1)
and the cut rule to obtain the conclusion of (2):

SR INTP T
FT,¢ At
FT,A

cut

Corollary 3.2.1.1. If £ € Py, then the following rules

Yy .. FX,
FT,¢

3y 3, FA
FT,A

(1) and (2) (3.5)

are equivalent to the rule:

FS o BN, FA AL A o A Apas s A,
FT,A

(3)
(3.6)
where each A; ; is atomic and m, k1, ..., ky > 0.

Proof. The equivalence (1) < (3) is a special case of the equivalence (1) < (2) of the
Ackerman Lemma 3.2.1. From Proposition 3.1.1, if £ € P; then ¢+ € N7, and therefore,
¢t is equivalent with an axiom of the form &;(%;4; ;). Then (3) is reduced to (2) by
using the invertible rules %, &, T, L. O

Note that during the transformation of a sequent rule from (1) to (2) in Lemma 3.2.1, the
formula variable £ in the conclusion is replaced with the fresh multiset variable A and a
new premise is introduced, consisting of both the multiset variable A and the negated
formula variable £+. In this way, the conclusion has one less formula variable, which is
moved to the premises.

Theorem 3.2.2. [CST09] Every Ny — axiom can be transformed into a finite set of
equivalent structural sequent rules, whose conclusion consist only of multiset variables.

Proof. Let ¢ € N3. By Proposition 3.1.2, ¢ is equivalent to a set of axioms {t1,...,%,}
where each 1; € No — normal. And therefore, each 1); is equivalent to a rule without
premises:

F&, s ims (3.7)

where each v; ; € P1. The claim follows by repeatedly applying the Asckerman Lemma
3.2.1 until every formula variable in the conclusion is replaced with a new multiset
variable. In this way, for each 1; we obtain a sequent rule whose conclusion consist only
of multiset variables. O
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3.3. From Pé-axioms to Analytic Hypersequent Rules

Example 3.2.3. This example shows the steps of applying the procedure given in the
proof of Theorem 3.2.2 to the contraction aziom A+ % (A® A) (see Table 3.1). The
aziom is already in No —normal form, hence, the algorithm will generate only one sequent
rule.

AR (A A)

inverted 2% _—
— FAL A® A

Ackerman _Lemma [ F, (AJ‘)J‘

FT, A A
3.8

Ackerm%Lemma [ F, (AJ‘)J‘ H A, (A X A)J‘ ( )

FT.A

1 1
de J\ggan FT, A FAA-RA
FT.A

. 1 1
znvtggyy c, FT, A FA, A- A

FT.A

Note that the conclusion of the obtained rule ¢ consists only of multiset variables.
Furthermore, by invoking the the invertible rules and the de Morgan laws, all of the logical
connectives are eliminated from the premises. Section 3.4 provides the final step of the
algorithm that converts ¢ into a rule that obeys the subformula property.

3.3 From Pé-axioms to Analytic Hypersequent Rules

We describe the algorithm introduced in [CST09] for transforming axioms within the
class 73;;) into equivalent structural rules in hypersequent calculus. In presence of weakening,
this algorithm covers the whole class Ps. Note that the Ackerman Lemma 3.2.1 can be
extended to the hypersequent calculus while keeping the same proof:

Lemma 3.3.1. [CST09] For any axiom &, the following hypersequent rules are equivalent

il
Gr - Gn and g1 . /gn H|F AL (3.9)
HIH | FT,¢ H|H | FT,A
where A is a fresh metavariable standing for multisets of formulas.
Corollary 3.3.1.1. If £ € Py, then the rules
ce n e n H A7 L
g1 : g and G /g H| 3 (3.10)
H|H | FT¢ H|H | FT,A
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are equivalent to the rule:

Gi o Ga MIFAAL, A HIFEA Apa, . A,
H|H | FT,A

(3.11)
where each A;; is atomic and m, k1, ..., ky > 0.

A hyperstructural rule is formally defined as follows:

Definition 3.3.2. [CST09] A hypersequent structural rule or hyperstructural rule is

HIFY, ... HI|FU,
H|Fd | ... | Fop,

(3.12)

where each ®; and V; contains only multiset variables and formula variables.

Similar to Section 3.2, the algorithm is given in the proof of the following theorem:

Theorem 3.3.3. [CST09] Every Pé—axiom is equivalent to a finite set of hyperstructural
rules where each ®1,..., P, consist of mutually distinct multiset variables.

Proof. Let ¢ € Pé. By Proposition 3.1.4, ¢ is equivalent (w.r.t. Definition 2.3.4), to
a finite set of formulas {11, ..., 9} where each v; has the form 1; = ®;(&; ;)1 with
&i.j € No —normal for all 4, j. By Proposition 2.3.3, each v; is equivalent to:

F fi,l,h e 7§i,1,mi1’ . ‘ . ‘ = fi,k,la Ce 7§i117mik (313)

where &; ;; € P1. From the ew-rule, (3.13) is equivalent to:

HlF&Gat, - &Gamal- | T F &k &itma (3.14)

On every component of (3.14) we can apply the Lemma 3.3.1 similarly as in the proof of
Theorem 3.2.2. ]

Example 3.3.4. Consider the linearity axiom which belongs to 77:;. The transformation
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3.3. From Pé-axioms to Analytic Hypersequent Rules

steps given in the proof of Theorem 3.3.3 are as follows:

F (AL % B)e1 @ (B % A)gy

- H|FA- 3 B|FB-3 A

inv?y
=~  H|FA B|FBH A

Ack. Lemma H | FT, (AJ‘)J‘
=N
H|FT, B|FB*, A

Ack.ée;nma H | F F, (14L)l H | H A,.BL
H|FT, A|lFB A

Ack. Lemma M |FT, (AN H[FA B H[FD(BYHY H[FOA
HI|FT, A|FX, ©

del\ggan , H “—F,A HH—A,BL HH—Z,B /H||_@,Al
com H|FD, AJFX, ©

Similarly as in Example 3.2.3, by invoking the invertible rules and the de Morgan laws,
all of the logical connectives are eliminated from the premises.

If the base calculus under consideration, HMALL, is equipped with the weakening rule w
(Table 3.2), then the transformation procedure can cover the whole class Ps:

Corollary 3.3.4.1. [CST09] Every axiom ¢ € Ps is equivalent to a set of hyperstructural
rules in the presence of weakening.

Proof. Similarly as in Proposition 3.1.2, an axiom ¢ € Pé is equivalent to an axiom
of the form @;(®;1;;&1)) where 1; ; € No. In the presence of weakening, we have
FMALL + w Ao—oA & 1 because!:

17
1
X w ar ————
N FAL A AL 1 o FA AL
FAL A&t lekA,AL@O (3.15)
FAL R (A& 1) FA® (At 0) '

FAT R (A& 1) & (AT (At @ 0)

'AooA & 1, is equivalent to (A+ X (A & 1)) & (A X (AT @ 0))

23
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Hence ¢ € P; is also equivalent to an axiom of the form ®i(®;1; ;). Which means that
(from Proposition 3.1.2) ¢ € P3. Therefore, in presence of weakening, 73:; is reduced to
Ps. Hence, the whole class Ps is covered by the Theorem 3.3.3.

O]

3.4 Rule Completion

This section describes the final step of the procedure for transforming, if possible,
the sequent rules obtained in Sections 3.2 and 3.3 into completed rules as defined by
Definition 3.4.3. The condition that the rules need to satisfy before applying the final
transformation step, is the acyclicity:

Definition 3.4.1. [CST09] The cut-closure CUT(r) of a (hyper)structural rule (r) is
the minimal set which contains the premises of (r) and it is closed under application
of the cut rule. A rule (r) is said to be cyclic if for some formula variable A, we have

H|FT,A A+ € CUT(r). Otherwise, (r) is acyclic. .

Example 3.4.2. The cut closure of the (c') rule obtained from the contraction axiom in
Ezample 8.2.3 is CUT(¢') = {F T, A; = A, AL AL T, A, ALY, And the cut closure of

the (com’) rule obtained in Example 3.3 is
CUT(com’) = {H|FT,A; H|FA,B+; H|FX,B; H|FO,ALH|FT,0:H| - A%}

Since, no sequent of the form H| = A, A+ ¢ CUT(c') or H|F A, At ¢ CUT (com’), then

both (') and (com’) are acyclic. Examples of cyclic rules are:

FT, A, A+ and enace - I, AL AL FAAA
FT FT,A

cancel

The following definition formalizes the notion of a completed rule, and its properties:

Definition 3.4.3. [CST09] A hyperstructural rule (1) is called completed if it satisfies
the following properties:

e No Forumula Variable (NFV): The conclusion and all premises of (1) contain only
multiset variables and hypersequent conterts.

e Linear Conclusion (LC): Each multiset variable occurs at most once in the conclu-

sion of (r).

o Subformula Property (SP): Each multiset variable occurring in the premises of (1)
also occurs in the conclusion.
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3.4. Rule Completion

The rules resulting from the procedures in Sections 3.2 and 3.3 already satisfy the (LC)
property, the (NFV) property only in their conclusion, and the (SP) property only for
their multiset variables. To convert them into completed rules, it suffices to eliminate
the formula variables from the premises. The proof of the following theorem gives also a
procedure for generating completed rules out of (hyper)sequent rules form Sections 3.2
and 3.3 by eliminating the formula variables from the premises while still preserving the
equivalence between them.

Theorem 3.4.4. [CST09] Any acyclic (hyper)structural rule (r) generated by the proce-
dures in Theorems 3.2.2 and 3.3.3 can be transformed into a completed rule.

Proof. Let (r) be an acyclic rule generated either by the procedure in Theorem 3.2.2
or 3.3.3. The proof is done by induction in the number of formula variables of r. In the
base case, if there is no formula variable in premises, then (r) is already a complete rule.
Otherwise, let A be such a formula variable, and let Q;{ and G be subsets of premises
of r containing at least one occurrence of respectively A and AL If QZ = (), then G4
can be removed. The resulting rule implies the original one by instantiating occurrences
of A with T. Similarly, if G, = (0, then gj can be removed. Otherwise, if Q;{ # () and
G4 # 0, from the acyclicity property of (r), we have the following two observations:

. AgéggandAJ—gégj.

o if some hypersequent H4 € G} (H. € G) contains more than one occurrence
of A (A1), then no hypersequent H 1 € G, (Ha € G}) contains more than one
occurrence of A+ (A).

W.lo.g. we can assume that the elements of QX have exactly one occurrence of A and the
elements of G, have one or more occurrences of AL, Hence, gj and G can be written as:
Gh={H|F 7, A:1<i<m} where m is the number of premises having one occurrence
of A;and G, = {H|F @j,Ale,...,Ajik : 1 <j<mnand j; > 1}, where n is the number
of premises having j; occurrences of A+. The set Gt = {H| + D, Vijyy ooy iy 0 1 <
j<nand1 <ij,...,i;; < m} is is the set of all hypersequents obtained by applying
the cut rule between the elements of gj and G, in every possible combination, until all
occurrences of the formula variable A are eliminated. Let 7’ be the rule obtained from r by
replacing premises gj UG, with G4“*. The new rule 7/ is equivalent to r. Indeed, ' = r
can be shown by using cut. The other direction, r = 1/, requires the instantiation of A
in the premises of r, in such a way, that each premise of r is either derivable in HMALL
or is a premise of 7’ as well. By letting A = @ngi{ we have Fpmary H|F 715, A for all
i =1,...,m. Furthermore, for each j = 1,...,n the hypersequent H| + Qj,Aj-l, .. .,Aj;
is derivable from G4 by using the & rule. Hence, after instantiating the occurrences of
A in the premises with A, we can apply the rule  and obtain the conclusion of /. This
completes the proof of the equivalence r < r’. The acyclicity of r is preserved, and the

number of formula variables occurring in its premises is reduced by 1.

O]
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3. FroM AXIOMS TO ANALYTIC RULES
Example 3.4.5. Since the rule (¢') from Example 3.2.3 is acyclic (see Example 3.4.2),
we can apply the procedure in Theorem 8.4.4 to convert it into a completed rule.
FT, A FA, AL AL
/ ’ ’ ’ 3.16
¢ FT,A (3-16)
The only formula variable occurring in the premises of (¢/) is A. QZ, G, and Qﬁf‘t are as
following:
Gh={H|FT, A}, G,y ={H|FA, AL At}
(3.17)
gq' = {H|FT, A, A}
By replacing G, U QX with Qj“t we obtain the contraction rule (c):
FTLT,A
TFTLA (3.18)
One can show that (¢) = (¢/) by taking the premises of (¢/) and applying the cut and (c)
as in the following;:
FT,A A, AL AL
-ra FT,A, A
’ il 3.19
cut FT.T.A ( )
FT,A
The other direction, (/) = (c) can be shown by instantiating A in (¢’) with I'* and using
the az as in the following:
R —
c, l_ A,F,F l_ F,F (320)
FAT
In this way, the acquired rule (c), is completed and is equivalent to the sequent rule ().
Example 3.4.6. Similarly, we can convert the acyclic rule (com') in Example 3.3.4,
into a completed rule:
H|FT,A  H|FA Bt H|FX, B H|F-O,At
com/ (3.21)
HIFD, A|FX ©
In this case, the rule has two different formula variables in the premises (A and B), and
therefore, the transformation will go through two steps. By picking first the formula
variable A we have QZ, G, and Qj“t as follows:
26
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3.4. Rule Completion

Gi={H|FT,A}, Gy={H|F6,4%}
(3.22)
Gyt ={H |- T,0}
By replacing QX UG, with g3
occurrences of A in the premises:

we obtain the following rule (com”), which has no

 H|FD,0  H|FAB-  H|FXLB
H|FT, A|FYX, ©

com/

(3.23)

Using the cut rule, we can show that (com”) = (com’). The other direction (com’) =
(com') is shown by instantiating A with © and using the az rule:

ar ——
H|FT,06 H|FAB- HI|FX,B H|F-O,6e+t
com/ (3.24)
H|FT, A|FX, ©

In the same way, we can eliminate the remaining formula variable B:

Gp={H|+-ABY}, Gi={H|-X B}
(3.25)
Gt ={M |+ A X}

And finally, by replacing Qg UGp with Q%“t we obtain the completed rule com:

H|FT,0 HI|FAY
2
TTHIFL A F Y, © (3:26)

The equivalence (com) < (com”) can be shown similarly as the equivalence (com”) <
(com’). And therefore, we also have the equivalence (com) < (com’).

27
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CHAPTER

Implementation

In this Chapter we provide a brief description of the architectural components for the
existing tools in TINC and we describe the implementation details of InvAxiomCalc.
This Chapter is organized as follows: Section 4.1 contains a gentle introduction to Prolog,
focusing on the notions that are most relevant for our implementation. In Section 4.2 we
describe the architectural components of the existing tools in TINC. Section 4.3 defines
the data structure that we use during the implementation. Section 4.4 provides the
implementation details for each component of InvAxiomCalc. Section 4.5 shows how
InvAxiomCalc displays the computed results to the user. We close the Chapter with
Section 4.6 which shows how to unit test a Prolog program, and in particular writing
Unit tests for InvAxiomCalc.

4.1 A gentle introduction to Prolog

Prolog is a typical example of logic programing paradigm. In this paradigm, a program
consists of sets of sentences in logical form expressing facts and rules about the problem
domain. Prolog uses terms as building blogs for the rules and facts. There are four type
of terms:

1. atoms - can be either:

o strings starting with a lower case letter and followed by a sequence of alphanu-
meric or underscore characters, like sings, plays, guitar, father.

e sequences of characters enclosed in single quotes, like 'John', 'Kurt',
'John sings', 'double base'.
o strings of special characters. For example @=, :—, ;. Some of these have

predefined meanings.

29
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IMPLEMENTATION

w
@)

2. numbers - can be either integers (i.e. ..., -2, -1, 0, 1, 2, ... ) or real numbers.

3. wvariables - are strings starting with an uppercase letter or underscore, and followed
by any sequence of alphanumeric characters. For example: X, Y, Z, Var, Varl,
_var, _head_of_a_list.

4. compound terms consist of an atom called ’functor’, and one or more terms called
"arguments’. The arguments are enclosed in parenthesis and separated by com-
mas. The functor has to be an atom, hence it cannot be a number or a variable.
On the other hand, arguments can be any type of terms, thus, providing the
possibility of having compound terms as arguments of another compound term.
Some compound terms could be: plays ('Kurt', guitar), sings('John'),
knows (X, father (father(Y))).

Additionally, there are two types of special compound terms: lists which are sets
of comma separated terms enclosed in square brackets like [’ Kurt’, ’John’,
guitar]; and strings which are sequences of characters enclosed in double quotes,
like "Music is great™".

Atoms and numbers are also called atomic terms, while variables and compound terms
are called predicates.

As mentioned earlier, a Prolog program consists of a finite set or rules and facts. A rule
is a statement of this form:

head :- body.

where head is a single predicate and body is a set of predicates. Predicates are also
referred as goals. The goals in the body can be separated by a comma ’,” which stands
for conjunction, or by a semicolon ’;’ which stands for disjunction of the surrounding
goals. The intuitive meaning of the whole rule is: ’if body is true, then head is also
true’.

A rule with an empty body is a fact. Facts are used to state goals that are always true.
For example, we can state that 'Kurt' plays guitar with the following fact:

plays ('Kurt', guitar).

A program is also referred to as knowledge base. One can use queries for ’asking’ the
knowledge base for satisfiability of a certain predicate. Queries are statements of the
form:

?— body.
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4.2. The System TINC

where body is a sequence of goals separated by commas or semicolons, just like the body
of the rules. Prolog will try to satisfy the body of the query, based on the facts and rules
that are given in the knowledge base. Prolog is based on the the closed world assumption
i.e. only the statements that can be deduced from the facts are considered to be true.

Another important feature of Prolog are the Definite Clause Grammars (DCGs). They
are designed to support writing parsers that build a parse tree from a given list of tokens
and for generating a flat list from a term. DCGs are generalization of context free
grammars obtained by adding arguments to nonterminal symbols. The ability to call
Prolog predicates increases their utility and expressive power. The syntax of DCG rules
is similar to the syntax of ordinary rules described above, but they use the symbol --»
rather then :- to separate the head from the body.

4.2 The System TINC

Tools for the Investigation of Nonclassical Logics (TINC) is a system developed in Prolog
that implements the theoretical results in [CGT08, CLSZ13, CMS13| and is available at
http://www.logic.at/tinc. Except for the web interface, a standard command-
line interface is also provided for the users who want to run the tools on their local
machine. TINC takes as input a logic specified via Hilbert systems or Kripke models and
it generates an analytic calculus. Additionally, it also states certain properties about the
logic, for example, it checks the sufficient condition for standard completeness. Currently,
TINC consist of the following tools, which can handle large classes of substructural,
paraconsistent and intermediate logics:

e AziomCalc - transforms suitable axiomatic extensions of Full Lambek Calculus with
exchange and weakening (Flew) into a cut-free hypersequent calculi. Furthermore,
it provides an optional feature for exploiting the generated calculus by checking a
sufficient condition for standard completeness of the given logic. It provides the
theoretical results in [CGTO08].

o Paralyzer - (Paraconsistent logic analyzer) transforms Hilbert axioms defining
paraconsistent logics into sequent calculus rules. Furthermore, it extracts non-
deterministic finite valued semantics from the obtained calculi which show the
decidability of the logics and reveal whether the calculi are analytic. It provides
the theoretical results in [CLSZ13].

o Framinator - (FRAMe condItioNs Automatically TO Rules) transforms first order
frame conditions of the form Vz3yP for quantifier free P (i.e. the class IIy of the
arithmetical hierarchy) into cut-free labeled sequent calculi. Provides the theoretical
results in [CMS13].

The general structure of the implementation of each tool is depicted in Figure 4.1. The
expected input is a formula of a specific form depending on the class of logics that
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Input Axiom

CheckInput = ComputeRules F== ::>i Exploit =—=> PrintOutput

\4
Output Rule and Paper

Figure 4.1: The general design of TINC

are covered by the tool. It is the responsibility of the first component, CheckInput,
to check whether the input meets the syntactic requirements. The second component,
ComputeRules, is the core functionality of the tool. It contains the implementation of the
systematic procedure for transforming an axiom to an equivalent set of inference rules.
The third component, Fzploit, adds an optional feature to the tool. It uses the generated
calculus to investigate the sufficient conditions of the properties of the formalized logic.
Currently it is only implemented for the AxiomCalc and Paralyzer. The last component,
PrintOutput, is responsible for displaying the result of the second and third components
to the user. Furthermore, it generates a I¥TEX document with those results.

4.3 Data structure for inference rules

The data structure chosen for representing a sequent is a list of two elements where the
first one represents the antecedent and the second one represents the succedent of the
sequent. For instance, a sequent of the form F a, b, ¢ is represented by the following list:

(1, la, b, cl]

Note that even though the scope of this thesis only deals with single-sided multi-conclusion
sequents, the antecedent is not ignored from the chosen data structure, but it is rather
represented by an empty list. In this way, it is easier to extend this implementation to
deal with sequents having non-empty antecedents. On the other hand, the succedent is
always represented by a flat list i.e. a list that doesn’t contain another list as its element.

Since hypersequents are sets of sequents, we can represent them in Prolog as list of
sequents. For instance, the hypersequent - a,b,c| F d,e, f| F g, h,i is represented in
Prolog as

( tt1, fta, b, cl1, (01, [d, e, £11, [[], [g9, h, 1]] ]

Finally, an inference rule can be represented as a list of two elements: premises which
are sets of hypersequents and conclusion which is a single hypersequent. For instance, a
rule of the following form
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Fa,blFc,d Fdelt f,g
Fa,clFd,bl-d, flFeg

would be represented in Prolog as:

t titl, tasbly, (L1,c,dl1l, C001,0d,el], [0),0£,9)]] 1,
( til,la,cll, 001, [b,d]], [0]1,0d,£]11), [[],[le,g9]] ]

Such a data structure allows for any kind of manipulation over the premises or the
conclusion of a rule.

4.4 The InvAxiomCalc tool

This section provides the implementation details of the systematic procedure for trans-
forming an axiom into an equivalent set of analytic rules. In Subsection 4.4.1 we identify
the class in the substructural hierarchy where the axiom belongs to, as defined in Sec-
tion 3.1. Subsection 4.4.2 describes the transformation of an axiom into an equivalent
N3 — normal form, see Definition 3.1.3. Subsection 4.4.3 provides the implementation
steps for transforming an axiom into a set of (hyper)sequent rules. And the implemen-
tation steps for transforming a (hyper)sequent rule into an analytic rule are given in
Subsection 4.4.4.

The subject of this thesis is to extend the TINC system with a new tool called InvAx-
iomCalc, which implements the theoretical results in [CST09]. InvAxiomCalc follows the
general design of the existing tools in TINC (Figure 4.1). It takes HMALL as a base
hypersequent calculus and axioms over the language of Multiplicative Additive Linear
Logic (i.e. classical linear logic without exponentials) to extend it. The formulas in this
language are generated from the following grammar:

Fu=VIVHL|T|LI0|FRF|F&F|FRQF|F @& F (4.1)

where V and V1 are the set of propositional variables and their duals. We will use the
convention in Table 4.1 for representing the binary connectives of the language in Prolog.
We define v and & as new infix operations in Prolog. On the other hand, the operations
x and + are predefined in Prolog and can be used for our purposes.

Even though the general architectural design of InvAxiomCalc is similar with the one in
Figure 4.1, each component contains an implementation with specific predicates related
to the tool under consideration. Table 4.2 shows the most important predicates for
each component of the new tool. The following subsections will give a more detailed
description of each component
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Logical binary connective Prolog representation

2
&
®
D

LLll

Table 4.1: Convention of the language symbols in Prolog

Component  Defined predicates

CheckInput axiom2tex

is_in class/2 finds the class of an axiom

to_n2_nromal/2 converts an Ny axiom to normal form
aths_ms_r/3 converts an axiom to set of hypersequent rules
htoa_ms_xr/2 converts a hypersequent rule to analytic

ComputeRules

print_rule/2 displays the generated rules

PrintOutput i
rntutpu tex_out/2 generates a WTEX document with the new calculus

Table 4.2: The most important Prolog predicates defined in each component

4.4.1 Identifying the Axiom’s Class

First, let’s recall the recursive definition of the substructural hierarchy as given in [CST09].
Let A be the set of atomic formulas and their negations. Then the class of axioms P, N,
for n > 0 is defined as follows:

PO n=A Pn+1 = Nn | PnJrl ®Pn+1 | PnJrl @PnJrl | 1 | 0
(4.2)
Noi=A Nn+1 a= N, | ./\/’n+1 & Nn+1 | Nn+1 % ./\/’n+1 | T | 1

Notice that in the base case, we have Ny = Py = A. Furthermore, P,y1 D N, and
Niui1 D P, and the constants reside on level 1, namely: 1,0 € Py, T, L € M.

In order to identify the class of a given axiom, we use a divide and conquer approach.
First, we decompose the axiom into sub-components according to the most binding logical
connective until ending up with atomic formulas or constant symbols. At this point, we
can identify the class of each leaf component because atomic formulas reside in both Py
and Ny, and constant symbols reside either in P; or N7. Afterwards, having the class of
two children components we can determine the class of the parent component based on
the Definition 4.2.
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We also recall the subclass Py of P3 which is defined as follows:
Pyu=No & 1| Py@P; | PsdPy|1]0 (4.3)

A Prolog implementation of the divide and conquer procedure described above, is rather
straightforward. In the Listing 4.1 is given a code snippet for checking whether an axiom
falls into class P, for n > 0. The first parameter A stands for the axiom to be checked,
while the second parameter stands for the hierarchy level of P classes. As a base case,
the predicate evaluates to true if and only if the class level is 1 and the axiom is an
(possibly signed) atomic formula, or if the axiom is either of the constants 0 or 1 and the
class level is bigger than 0. In the recursive steps, we can define the rest of possible cases
for obtaining P, classes by using recursion. Namely, a recursive step which allows for
having class P41 as a superset of class N,, (commented as case 5 in the code), and
two recursive cases which allow for having axioms in class P, as @ and ® concatenations
of axioms within the class P,, (commented in the code as case 6 and case 7).

Listing 4.1: Checking if the axiom belongs to the given positive class

is_pos_axiom(A, 1) :-
is_atom(A) . % case 1- when the axiom is an atom

is_pos_axiom(-A, 1) :-—
is_atom(A) . % case 2 - when the axiom is a negated atom

is_pos_axiom(l, N) :-
N > 0. % case 3 - the axiom is the constant 1

is_pos_axiom (0, N) :-—
N > 0. % case 4 - when the axiom is the constant 0

is_pos_axiom (A, N1) :-
N1 > 0, % case 5 - when the axiom is
N is N1-1, % in the negative class one layer below
is_neg_axiom (A, N).

is_pos_axiom(A v B, N) :-
N > O,
is_pos_axiom(A, N),
is_pos_axiom (B, N).

14 14

case 6 — when the axiom is a
concatenation of two axioms in class Pn

v

o° o

is_pos_axiom(A x B, N) :-—
N > O,
is_pos_axiom (A, N),
is_pos_axiom(B, N).

14 4

case 7 - when the axiom is a '«

concatenation of two axioms in class Pn

oe o

Checking if an axiom falls into a class N,, for n > 0 is done by replacing the constants 1,
0 by T, L (see case 3 and 4 in Listing 4.1), and by replacing the logical connectives v,
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* in the recursive steps by + and &. The predicate for checking whether an axiom falls
into the class Pé is slightly different. Since the hierarchy level in this case is fixed, there
is no need for having a second parameter for it. Atomic formulas are omitted from the
base case, but there is a new case for checking whether the axiom is of the form N5 & 1.
Listing 4.2 shows the Prolog implementation for identifying the class 73;,.

Listing 4.2: Identifying class 77;;

o\

is_pos_3prime_axiom(1l) . is in P3 prime

1
0 is in P3 prime

o\

is_pos_3prime_axiom(0) .

is_pos_3prime_axiom(A & 1) :-

[

is_neg_axiom (A, 2). % N2 & 1 is P3 prime

is_pos_3prime_axiom(A v B) :-
is_pos_3prime_axiom(A),
is_pos_3prime_axiom(B) . % P3_prime v P3_prime is also P3_prime

is_pos_3prime_axiom(A x B) :-—
is_pos_3prime_axiom(A),
is_pos_3prime_axiom(B). % P3_prime » P3_prime is also P3_prime

4.4.2 Preprocessing the given axiom

After having defined the class hierarchy to which the axiom belongs to, another preprocess-
ing step is needed before applying the systematic procedure for generating the inference
rules. In particular, if an axiom ¢ € N> then it has to be transformed into an equivalent
set of Mo — normal axioms {1, ...,1¥,}, see Proposition 3.1.2 and Definition 3.1.3. If
the axiom ¢ € Pé, then it has to be transformed into an equivalent set {¢1, ..., ¢, } of
formulas such that ¢; = ®;(x; j)&1 where each x; ; is Na — normal, see Proposition 3.1.4.

Listing 4.3 shows a code snippet for transforming a general Ny axiom into a set of
equivalent Ny — normal axioms. Since the shape of a general axiom ¢ € N is &;(% ;15 ;)
with 1; ; € P; and the shape of a general axiom in Ny — normal is %;1); ;, then the set
of formulas which ¢ is equivalent to, can be obtained by splitting ¢ on the most binding
occurrences of &. The predicate to_n2_normal/2 expects the first argument to be a
N5 axiom. The value of the second argument, will be step-wisely constructed to represent
the list of the Ny — normal axioms. If & occurs as a most binding connective (i.e. the
axiom has the form Ax1 & Ax2, see case 1 in Listing 4.3), then first a recursive call
is made to check for other & connectives in the left conjunct Ax1, and then Ax2 is
appended to the list of N5 axioms resulting from the recursive call. Otherwise, if the
axiom is atomic (case 2 in Listing 4.3) or if the most binding connection is not &
(case 3 in Listing 4.3) then the axiom is already Ny — normal and a list with a single
element is created as a resulting list.
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4.4. The InvAxiomCalc tool

Listing 4.3: Converting A5 axioms to Ny — normal

to_n2_normal (Ax1l & Ax2 , N2normall) :— % case 1
to_n2_normal (Ax1l, N2normalO), % & concatenations can be splitted
append ([Ax2], N2normalO, N2normall). % to list of conjuncts
to_n2_normal (Ax, N2normal):— % case 2

atomic (Ax),
append ([Ax], [], N2normal) .

to_n2_normal (Ax, N2normal):— % case 3
compound (Ax) ,
append ([Ax], [], N2normal).

Notice that in both cases, Ny and 77;, a set {91, ...,1;} of formulas is created which is
equivalent to the original axiom. The systematic procedure for transforming an axiom to
an inference rule, is going to be applied to each of such formulas ;. Thus, ending up
with a set of rules which are equivalent with the input axiom.

4.4.3 From Axioms to Hypersequent Rules

After the preprocessing step described above, it is time to start the first steps of the
systematic procedure. If an input axiom ¢ € N; is equivalent with the set {¢; | ¢ €
N5 — normal}, then for each v; we introduce a rule without premises:

X0 (4.4)

In particular, if we consider the Nelson axiom nel ::= (A AQ B)®(BRB®RA))RAL®B+
which is already in N5 — normal form then the rule that we introduce is:

F(A® A® B)® (B® Bo A)) B AL » BL (4.5)

having the following Prolog representation:

[]
[ [1, [((a = a*Db) v (b b x a)) + -a + -b] ] (46>

If an axiom ¢ € Py, is equivalent with the set {1 | 1b; = ®;(Xij)&1s Xij € No—normal}
then we introduce the hypersequent rule:

l_ Xi,l | | l— Xi,k (47)

In particular, if we consider the linearity axiom lin ::= (A % B)g1 @ (B+ % A)g1 € Py
then the rule that we introduce is:
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H| T H|+T,A,B H|FT,A  H|FT,B
H| T, L H|FT,A 3 B H| T, A&B

THFrT L

Table 4.3: The invertible rules of the Hypersequent system HMALL

FAL® B FBE® A (4.8)

having the Prolog representation:

(]
( (01, [-a + bll, [[],[-b + alll (4.9)

Since in (4.8) the conclusion is a hypersequent, its Prolog representation (4.8) is a list
of 2 sequents, unlike the rule (4.5) where the conclusion is a single sequent and the
corresponding Prolog representation (4.6) is a list of a single sequent.

Applying Invertible Rules The next step is to utilize the invertible rules T | 1, &
and 7% of HMALL, Table 4.3 so that we can transform the initial rules (4.4) or (4.7) into
equivalent ones, having less logical connectives. It is worth pointing out, that since v;
and x; ; are all No — normal, they do not have any outermost & logical connective, as
they are already handled in the preprocessing step. Hence, in this step, we only need to
take care of %, | and T.

The inverted % rule can be applied to a the conclusion, just by splitting v; or x;; by
the occurrence of %. For example, applying the inverted % rule to (4.5) and (4.8) will
produce the following transformation:

F(A® A® B)® (B® B® A))RALRB*
(4.10)

=~ F(A®A®B)® (B B®A)),At, Bt

FAL®B| FBt® A = FAL B| +Bt A (4.11)

Having respectively the following Prolog representations:

[ [[], [((a xa=xDb) v (bxb*a)), -a -bll ] (4.12)

[ [[1,[-a, bll, [[1,[-b, all] (4.13)

In Prolog this is achieved by recursively collecting the % concatenations in v; or x; ; into
a new list and replacing the succedent of the corresponding sequent in the conclusion
with the new list.
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4.4. The InvAxiomCalc tool

Implementing the application of the rules 1 and T is rather easy. The former is done
by searching for | elements in the succedents. If there are any, they are just removed.
The latter is done by searching for T elements in the succedents. If at least one found,
then the whole sequent is removed. At the end of this step, we obtain a rule where the
succedents of the hypersequents in the conclusion are formulas in P;.

Applying Ackerman Lemma So far, only the conclusion of the rule has been ma-
nipulated and the premises are still empty. In this step, the Ackerman Lemma 3.4 (for
the sequent calculus) or 3.3.1 (for the hypersequent calculus) are used to transform the
rule into an equivalent one, having a new premise for each formula in the succedents of
the sequents in conclusion. For example, after applying the Ackerman Lemma in (4.10)
and (4.11) we would get:

FT,(A® A® B)® (B® B® A))* A, (AL)+ F %, (Bt (4.14)
FT,A,X '
-, (ARt - A, B+ -, (BH)* FO,At (4.15)
FT,AlFXO '
Listing 4.4: Implementation of the Ackerman Lemma transformation
apply_equivalence_lemma(_, [1, [], []1, 1). % counter starts from 1

apply_equivalence_lemma (PO, P3, [H|T], C3, N2) :-

apply_equivalence_lemma(_, P1, T, Cl, NO), % recursive call

apply_to_mc_sequent (PO, P2, H, C2, NO, N1), % handles the current
sequent

N2 is NO + N1, % update the counter offset

append([C2], Cl, C3),

append (P2, P1l, P3).

apply_to_mc_sequent (PO, P2, [A, SO], Cl, NO, N1) :-
set_as_premise (SO, S1, Pl, NO, N1), % generate new premises
cl = [A, S17,

append (P1, PO, P2).

set_as_premise([], [], [1, _, 0).

set_as_premise([H|T], C1, P1l, NO, NAl) :-
N1 is NO + 1,
set_as_premise (T, CO, PO, N1, NAO),
NAl is NAO + 1, % increase counter
append ([’Y"+NO], CO, Cl), % append to new succedent in conclusion
apply_de_morgan (-H, H2), % push the negation using de Morgan
111,

append ([ [[[]1,["Y"+NO, H2]]] PO, Pl). %append premise
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Original formula Transformed formula

(o & B)* — ot @ pt
(o B)* — at ® Bt
(@ ® B)*t — at Bt
(a @ B)* — at & B+
(aL)J— — «

Table 4.4: De Morgan laws in MALL

where each I'; A, Y, © are fresh multiset variables. The Prolog implementation defines two
predicates for accessing the elements of the conclusion: apply_equivalence_lemma/4
for recursively fetching sequents, and apply_to_mc_sequent/6 for fetching the ele-
ments of the succedents. The latter makes use of yet another predicate set_as_premise/5
for adding the new multiset variable in the conclusion and for creating a new premise. A
counting index is added as a suffix to the multiset variable name, to ensure its uniqueness.
Listing 4.4 gives a code snippet of this transformation.

Since the formulas in the conclusion are moved to the premises in a negated form,
the de Morgan laws have to be invoked for pushing the negation inside the formula.
Table 4.4 shows the de Morgan laws for MALL. A divide and conquer approach is used
for implementing the transformation according to the de Morgan laws. The negated
formula is decomposed until ending up with propositional atoms and then it is merged
back by changing the logical connectives according to Table 4.4. Continuing with the
transformation of (4.14) and (4.15), we get:

T, (AL 3 AL BY&(B+ % B+ 3 AL) FAA -¥,B (4.16)

FT,A,X '

FT, A FA, —-B FX, B Fo,—A
: : : (4.17)
FT,A|F X6
Which are represented in Prolog respectively as:
[[],[Yl, (-ra + —a + -b)&(-b + -b + -a)]] [[1,[Y2,a]] [[],[Y3,b]]
(eey, tyr , vz, v3111

(4.18)
([1,[Y1l,a]] [[1,0Y2,-b]] [[],[Y3,b]] [[],[Y4,-a]] (4.19)

(eey, yi,yzil, [01,[Y3,Y4]]] '

At the end of this step, we obtain a rule whose conclusion consist of multiset variables
and premises consisting of a multiset variable and the corresponding formula variable
€ P1 in a negated form.
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4.4. The InvAxiomCalc tool

Applying Invertible Rules to Premises According to Proposition 3.1.1, if an
axiom « € Py, then the axiom a® € N] because after applying the de Morgan laws, @
is converted to & and ® is converted to %'. Hence, the formulas in the new premises
obtained from the step above have only & and % as logical connectives. The inference
rules corresponding to & and % connectives are both invertible, Table 4.3. Therefore, by
utilizing the invertible rules once again (this time for the premises) we can eliminate all
of the logical connectives from the premises.

The Prolog implementation defines the predicate apply_to_premise_sequent/2
which takes the list of existing premises as the first argument, and outputs the resulting
premises in the second argument. It is slightly different from the implementation of
applying the invertible rules to the conclusion, because in that case the & rule was
excluded since the preprocessing step eliminates the & connectives. On the other hand,
if a premise contains a formula having & as the most binding connective, it will be
separated into two premises according to the & rule. An example is the rule obtained
in (4.16) where the result of applying de Morgan laws, leads to an occurrence of & as
the most binding connective: ((A+ % A+ 2% BL)&(B+ 2% B+ %3 AL)). After applying the
inverted & rule over the premises of (4.16) we get:

T, A% AL % Bt FT,B*3BL® AL FAA -3, B

4.20
FT,A, > (4:20)

Listing 4.5 shows the part of the definition of apply_to_premise_sequent/2 which
separates a premise P of the form H| - I', A& B into two premises H| - I', Aand H|F T, B
(i.e. applies the inverse of the & rule).

Listing 4.5: Implementation of applying the inverted & rule a sequent of a premise

apply_to_premise_sequent ([ [Antecedent, Succedent] |T], P4):-
member (Ax1l & Ax2, Succedent),
apply_to_premise_sequent (T, P1l),
remove (Ax1l & Ax2, Succedent, Sl), % remove the exisitn premise

append ([Ax1], S1, S2), % adds a premise with the left conjunct
append ([Ax2], S1, S3), % adds a premise with the right conjunct
append ([ [ [Antecedent, S2]11, P1l, P3),

append ([ [ [Antecedent, S3]1], P3, P4).

The implementation for the remaining invertible rules %, 1 and T is rather easy because
they do not introduce new premises. In particular: as a result of applying the inverted L
rule, the L elements are removed from the premises, for example the premise P; : H | T, L
is converted to Pll : H | T'; premises having a T element are completely removed; and if
% occurs as a most binding connective over a formula ¢ in some premise, then the ¢ will
be replaced with the set of formulas obtained from splitting ¢ by the occurrences of %.
For example, after applying the inverted %% rule in (4.20), we get:
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FT,A+, AL, B- +T,Bt, B+, AL FAA -3, B

(4.21)
FT,A, X
having the following Prolog representation:
(e1,yl, -a, -a, -bl] (f1,yi, -b, -b, -al] [[1,[Y2,a]] [[],[Y3,b]]
(er,yr , vz, v3]]
(4.22)

As a result of this step, the formulas occurring in the premises of the rules are free from
logical connectives. Furthermore, the conclusion consist only of multiset variables which
occur with the same polarity also in the premises. This result is claimed by Theorem 3.2.2
and 3.3.3, too.

4.4.4 From Hypersequent to Analytic Rules

This step concludes the generation of the inference rules by transforming the hypersequent
rule obtained in the previous step to a completed rule (see Definition 3.4.3), i.e. a rule
which satisfies the No Forumula Variable (NFV) property, the Linear Conclusion (LC)
property and the Subformula Property (SP). The LC property is already satisfied by the
rules obtained from the previous steps, because during the application of the Ackerman
Lemma, each formula in the succedents of the conclusion is replaced with a fresh new
multiset variable, (see Theorem 3.2.2 and 3.3.3). Furthermore, the multiset variables
that are introduced in the conclusion by the Ackerman Lemma, are also introduced
in the premises with the same polarity. Hence, the NFV and SP properties are being
violated only by the formula variables occurring on the premises. For example, the
formula variables A, B and their duals in (4.21) are only occurring in the premises, while
the multiset variables are I', A and ¥ are occurring both in the premises and in the
conclusion.

This section describes the implementation of the procedure given in the proof of The-
orem 3.4.4 which cuts all of the formula variables from the premises of the generated
rule. Hence, transforming it to a complete rule. The formula variables are represented in
Prolog as atoms starting with lower case letter. On the other hand, the multiset variables
are represented as sequence of characters enclosed in quotes, starting with the uppercase
letter 'Y’ and followed by a counting index. In this way, we can distinguish between the
formula variables and the multiset variables. The presence of the formula variables in
the premises consists also the stopping criteria of the cut procedure.

Checking Acyclicity Criteria In absence of weakening rule, the cut procedure can
only be applied if the rule resulting from the previous steps is acyclic, which means
that no sequent of the form F I, A, A+ appears in the cut closure of the premises (see
Definition 3.4.1). As a result of acyclicity, if a premise has multiple occurrences of a
formula variable A (or A1) then, no premise has multiple occurrences of A+ (‘or A).


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.4. The InvAxiomCalc tool

Additionally, no premise should contain a sequent having both A+ and A at the same
time.

We define the Prolog predicate is_cyclic_on_mv/2 which accepts a list of predi-
cates and a metavariable, and it is satisfied only if the list of premises is acyclic with
respect to the given metavariable. The definition of is_cyclic_on_mv/2 contains two
clauses. The first clause, uses two helper predicates for counting the premises having
multiple occurrences of the provided metavarialbe with positive and negative polarity.
If both counters are bigger than one, then the list of premises is cyclic with. The
second clause of the definition of is_cyclic_on_mv/2 uses a third helper predicate
count_having_mixed_occurrence/3 for counting premises having occurrences of
the metavariable with both polarities simultaneously. The following Listing gives the
definition of is_cyclic_on_mv/2 and the helper predicates:

is_cyclic_on_mv (Premises, Mv) :-—
count_having multi_occurrence (Premises, Mv, R1),
count_having multi_occurrence (Premises, -Mv, R2),
R1 > O,
R2 > 0.

is_cyclic_on_mv (Premises, Mv) :-—
count_having mixed_occurrence (Premises, Mv, R1l),
R1 > 0.

count_having_multi_occurrence([], _, 0).
count_having _multi_occurrence([[[_, S11IT], Mv, NumPrMultiMv) :-—
count_having multi_occurrence (T, Mv, NumO),
count_repetitions (S, Mv, NumRepetitions),
( (NumRepetitions > 1) ->
NumPrMultiMv is NumO + 1
;NumPrMultiMv is NumO

count_having _mixed_occurrence([], _, 0).

count_having mixed_occurrence([[[_, S]1]IT], Mv, NumPrMixedMv) :-
count_having _mixed_occurrence (T, Mv, NumO),
has_mixed_polarities_mv (S, Mv, R),
NumPrMixedMv is NumO + R.

Considering the rule in (4.21), we have the following premises containing the metavari-
able A:
Ga={FT, At ALY, BY; T, BY, B, A+ A, A} (4.23)

Which are represented in Prolog as:
P2 ::= [ [[]/ [Yll —a, —ay _b]JI [[]I [er _b/ _bl _a]]/ [[]r [YZI a}] ] (424)

none of the clauses of the definition of is_cyclic_on_mv/2 is satisfied, and therefore,
the rule in 4.21 is indeed acyclic.
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N

If the rule is cyclic, then no further transformation is possible, unless the weakening rule
is present in the base calculus. A predicate convert_to_cyclic/3 is defined to use
weakening rule (w) for eliminating the occurrences of the metavariables that are making
the rule cyclic. convert_to_cyclic/3 takes a list of cyclic premises with respect to
a metavariable, and produces a list of acyclic premises. The implementation is shown in
the following Listing:

convert_to_acyclic(Premises, Mv, AcPremises) :-—
is_cyclic_on_mv (Premises, Mv),
count_having multi_occurrence (Premises, Mv, R1),
count_having multi_occurrence (Premises, -Mv, R2),
count_having mixed_occurrence (Premises, Mv, R3),
neg_free_mv (Mv, NegFreeMv),
convert_to_acyclic_on_mv (Premises, AcPremises, NegFreeMv, R1l, R2,
R3) .

convert_to_acyclic(Premises, Mv, Premises) :-
\+ is_cyclic_on_mv (Premises, Mv).

convert_to_acyclic_on_mv (CPremises, AcPremises, Mv, R1, R2, _):-
R1 > O,
rR2 > O,
apply_weakening_ on_mv (CPremises, -Mv, AcPremises).

At the end of this step, we obtain an acylic (hyper)sequent rule. A separate module
mall_acyclicity contains all the Prolog predicates for checking the acyclicity con-
ditions and invoking the weacening rule to create acyclic rules. A flag for indicating
whether weakening is required is also generated. This flag will be used later on by the
modules which print the generated results for the user.

Applying the Combinatorial Cut In this step, the set of premises QZ U gj is
replaced with the set G4 which is obtained by repeatedly applying the cut rule over
premises PZ-Jr € Q;{ and P; € G, until all occurrences of A are eliminated, see the proof
of Theorem 3.4.4. If either QX = g or G, = @ then also gg“t = @. Otherwise, gﬁl“t
will consist of premises obtained by applying each possible combination of cut between
Pi+ € gj and Pj_ € G,. W.Lg. lets assume that every premise Pi+ € gj has exactly
one occurrence of A and therefore, from the acyclicity, premises P;” € G, have one or
more occurrences of A+. The number of the new premises introduced by cutting the
occurrences of A in P with the premises in QX is given by the following formula:

(1651 + R;=1)!

NumNewPr = O

(4.25)

where R; is the number of the occurrences of At in P;". The resulting premises in get

is the union of all premises obtained by eliminating A* from every premise Pregy.
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4.4. The InvAxiomCalc tool

The Prolog implementation defines a predicate combinatorial_merge_neg/5 for
generating the list of premises resulting from cutting the occurrence(s) of a formula
variable A+ in Pj_ € Q;‘ with each Pf € gj. It takes as parameters the list of premises G,
having at least one occurrence of AL, the list of premises QZ having exactly one occurrence
of A, the formula variable to be cut A, and the size of gj. One of the parameters is used
for outputting the result of the cut. An auxiliary predicate generate_combination/6
is used for creating the combinations of the formulas from premises in Q;{ which will
be used for replacing A in Pj_. generate_combination/6 takes as parameter the
number of repetitions of A+ in P, the set QZ and the total number of combinations
to be generated (calculated with the formula (4.25)). One of the parameters is used
again for outputting the result, which in this case is the set of all combinations R of
premises Pf € gj obtained by combining k premises Pﬁ and removing the occurrences
of A, where k is the number of occurrences of A* in P;~. Yet another auxiliary predicate
create_new_premises/4 is used for creating a list of premises out of the set R and
the remaining part of P;".

Similarly, a predicate combinatorial_merge_pos/5 is defined for handling the cases
where premises P e G, have exactly one occurrence of AL and therefore, premises
in P;r S QX contain one or more occurrences of A. The behavior of the predicate is
the same as combinatorial_merge_neg/5 but the sign of the formula variable A is
inverted.

cut

Considering QX and G given in 4.23, the set G4 can be obtained by cutting A as in
the following (note that since |G§| = 1 there is only one possibility for choosing the cut
formula in each step):

FAA F T,AL AL Bt

(cut) FAA +FI,B- B- AL

FOAA - T,A, AL B T Al
T (cut) FIT,B-,B-,A
FT,AA B

(4.26)
Gt ={-T,A, A, B+; T, B+, B+ A} (4.27)

At this point, gj U G, will be replaced in 4.21 by G§** in 4.27 to obtain:

1 1 pl

T, A, A, B T, BL, BL, A +%, B (4.28)

FT,A, >

where all occurrences of A are eliminated form the premises. In a similar way we eliminate

the occurrences of B, which in this case, is the only formula variable left in the premises.

This concludes the transformation of the Nelson axiom into an analytic rule nel:

T, A, A, X FT, %, 8, A
FT,A, S

(4.29)
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4. IMPLEMENTATION

A summary of the transformation steps of the Nelson axiom ((A® A® B) ® (B® B®

A)) % A+ ® Bt into the inference rule nel, is given in the following:

F(AR A B)® (B®B® A)® At % Bt

invertible to conclusion
N

F(A®R A® B)® (B® B® A)), A+, B+

ea- lemma T, (A® A® B)® (B® B A))* A, (AL -3, (BH)*"

FT,A, >

de ]\ggan FT, (AJ‘%’AJ‘@BJ‘)&(BL@BL%)AL) |_A7A -X, B

FT,A, X

invertibl%premises FT, AJ‘, AJ‘, Bt T, BJ‘, BJ‘, At F A, A

-, B

FT,A,>

cutting A FT,A, A, B+ FT,B+, B A -3, B
FT,A, X

cutting B I—F,A, A, by }_F,Z,Z, A
FT.A. Y

(nel)

Similarly, the transformation steps for the linearity axiom are:

FAL®B| FBt® A

invertible to conclusion
—

FALY B| FBY A

eq lepma T, (Ah)+ A, B+ ¥, (BYH)t Fo,At

FT,A|F X0

de J\ggan I—F, A |—A, BL "2, B F@)AL
FT,A|F 2O

cutting A T, © A, B+ FY, B
FT,A|F X6

cutggB I—F, © I—A, by

“T.A[rne ow
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4.5. Automated Paper Generation

Note that in (4.31), after applying the de Morgan law, all of the logical connectives are
eliminated, and there is no need to apply the invertible rules to the premises.

At the end of this step, every formula variable is eliminated from the premises. Thus,
ending up with a completed rule consisting only of multiset variables and which is
equivalent with the acyclic rule given as the input to this step.

4.5 Automated Paper Generation

InvAxiomCalc represents the result of the systematic procedure in two ways. If you are

running InvAxiomCalc locally, the generated rules are displayed in the Prolog terminal.

Additionally, a Latex paper containing the transformation steps and the the set of the
generated rules is created automatically. See the appendix for some examples of the
generated papers. The preliminaries of HMALL and a description of the systematic
procedure in [CST09] are hard coded in a predefined Latex template. InvAxiomCalc
generates a file called InvAxiomCalc. sty that defines new Latex commands for the
following:

e The name of the base calculus which is either MALL or HMALL

o The Latex representation of the input axiom.

See Sections 3.2, 3.3 and the implementation in Section 4.4.3.

o A flag indicating whether the rules obtained after applying the Ackerman Lemma
are acyclic.

e A Latex representation of the analytic rules.

The generated file with the defined commands is imported as a package in the main
template and thus allowing for generating an article with the results of the systematic
procedure initiated with the axiom provided by the user. The result of InvAxiomCalc for
the Nelson axiom in N3 and Linearity axiom in 73:; (see Table 2.1) are shown respectively
in Appendix A and Appendix B. Whereas the result for the cancel axiom (A% AL)L (see
Example 3.4.2) which leads to cyclic structural rule After applying the Ackerman Lemma
is shown in Appendix C.

Definite Clause Grammar (DCG) are used to implement the translation from Prolog to
Latex. For example, the transformation of an axiom to Latex is done through axiom2tex
rule:

The Latex representation of the rules obtained after applying Ackerman Lemma.
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4. IMPLEMENTATION
Listing 4.6: Translation of an axiom from Prolog to Latex
bs —-—> [92]. % ASCII code for the backslash \
axiom2tex (—X) -—> " " axiom2texPl (X), """, axiom2tex (bot).
axiom2tex (X & Y) —-—> axiom2texP2(X), " ", bs, "& ", axiom2texP2 (Y).
axiom2tex (X v Y) —--> axiom2texP3(X), " ", bs, "oplus ",
axiom2texP3(Y) .
axiom2tex (X * Y) —-—> axiom2texP4(X), " ", bs, "otimes ",
axiom2texP4 (Y) .
axiom2tex (X + Y) —-—> axiom2texP5(X), " ", bs, "nand ",
axiom2texP5(Y) .
axiom2tex (1) ——> ",
axiom2tex (bot) —-—> bs, "bot".
axiom2tex (top) --> bs, "top".
axiom2tex (0) ——> "Q",
axiom2tex(a) -—--> "A".
axiom2tex (z) ——> "z",
axiom2texP2 (-X) ——> " ", axiom2texPl(X), """, axiom2tex (bot).
axiom2texP2 (X & Y) —-—> axiom2texP2(X), " ", bs, "& ",
axiom2texP2 (Y) .
axiom2texP2(X v Y) —-—> " (", axiom2texP3(X), " ", bs, "oplus ",
axiom2texP3(Y), ")".
axiom2texP2 (X * YY) —-—> " (", axiom2texP4(X), " ", bs, "otimes ",
axiom2texP4 (Y), ")".
axiom2texP2 (X + Y) ——> " (", axiom2texP5(X), " ", bs, "nand ",
axiom2texP5(Y), ")".
axiom2texP2 (X) --> {atomic (X);member (X, [0, 1, bot, topl)},
axiom2tex (X) .
DCGs consist of a set of grammar rules. The body of a grammar rule may contain three
type of terms: callable terms which are interpreted as references to grammar rules; code
between curly braces { ...} that is interpreted as plain Prolog code; and lists enclosed
in square brackets [...] that represent a sequence of literals. We introduce one DCG
rule for every logical connective of the language. In this way, it is possible to recursively
transform every axiom into its corresponding Latex representation. For example, the
Nelson axiom nel ::= (A® A® B) ® (B® B ® A))3AL%¥ B+ which we represent in
Prologas ((a * a » b) v (b » b = a)) + —a + —b is converted into Latex by
the axiom2tex rule as:
((A \otimes A \otimes B) \oplus (B \otimes B \otimes A))
\nand A”\bot \nand B”"\bot
Transforming a (hyper)sequent rule into Latex is performed similarly. The Prolog
representation of the sequents is transformed into Latex by the DCG rule rule2tex.
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4.5. Automated Paper Generation

Afterwards, the Latex representation of the sequents are combined to form the Latex
representation of the hypersequent rule. Listing 4.7 gives the implementation of the DCG
rule rule2tex, and Listing 4.8 gives the recursive definition of the Prolog predicate
create_hseq_rule which combines the output of rule2tex to create the full Latex
representation of a hypersequent rule in HMALL

Listing 4.7: Translation of a rule from Prolog to Latex

rule2tex (Y’ +1) --> bs, "Gamma".

rule2tex ("Y' +2) --> bs, "Delta".

rule2tex (Y’ +3) --> bs, "Sigma".

rule2tex ('Y’ +4) --> bs, "Theta".

rule2tex ('Y’ +N) -=> bs, "Lambda_{",nr2tex(N),"}".

rule2tex (a) ——> " v _npnw,

rule2tex (b) ——> " v onpnr,

rule2tex (Z2) ——> "o, ongw,

rule2tex (-X) ——> rule2tex(X), ""{", axiom2tex (bot), "}".

rule2tex ([]) ——> ",

rule2tex ([ ["HContex’] | TJ]) --> bs, "mathcal{H}", bs, ", | ",
rule2tex (7T) .

ruleZ2tex ([[[], [HITI] | [1]) ——> rule2tex([[],[HIT]]).

ruleZtex ([[[]1, [HIT]] | T2]) —-=> ruleZtex([[],[HITII) , "I",
rule2tex (T2) .

rule2tex ([[], [HIT]]) --> bs, "vdash", rule2tex([H|T]).

rule2tex ([H | [11]) -—> rulel2tex (H) .

rule2tex ([H | TJ) -—> rulel2tex(H), ",", rule2tex(T).

Listing 4.8: Creating the Latex representation of a hypersequent rule

create_hseqg _rule(Prem, Con) :-—
length (Prem,N),
member (N, [2,4]),
create_hseq _premises (Prem, TPrem),
nl,
N1 is N/2+1,
printBinPremises (1, TPrem, N1, 1),
create_hseqg conclusion(Con, TConl),
append([],TConl, TCon),
print_phrase (texNewBinCon (TCon) ) .

create_hseq premises([], []).
create_hseq _premises ([H|T], TPrem) :-—
append ([ [’HContex’]], H, H1),
rule2tex (H1, TH, []),
create_hseqg premises (T, TPreml),
append ([TH], TPreml, TPrem) .
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4. IMPLEMENTATION

4.6 Prolog Unit Tests

One of the most important Quality Assurance measurements during software development
is automatic software testing. Tests allow for validating the final system. Additionally,
they offer important advantages like:

o documentation on how the code should be used.

o validating the claims made on the Prolog implementation.

o identifying accidental changes or side effects as a result of modifying different parts
of the code.

P1Unit is a unit-tests framework which was developed for SWI-Prolog and allows for
writing unit tests in Prolog. Tests are enclosed by directives begin_tests/1, 2 and
end_tests/1. They can either be embedded within the main Prolog module, or they
can be written in separate test files which import the files to be tested. The entry points
are defined by rules using the head test (Name) or test (Name, Options), where
Name is a ground term and Options is a list of additional properties of the tests. A
simple unit tests for checking if the Nelson axiom belongs to class A5 of the substructural
hierarchy is:

Listing 4.9: Unit testing class hierarchy of Nelson Axiom

:— begin_tests(mall_hierarchy).
% expecting N_2 as the least negative class for Nelsion axiom
test (is_neg_class) :-
is_neg_class( (((a » a * b) v (b » b » a)) + -a + -b), 0, 2).

:— end_tests (mall_hierarchy).

Tests can be executed by loading the test file and running run_tests/0 or run_tests/1.
The former runs all tests defined in the loaded file, whereas the latter accepts a list of
test to execute.
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4.7. Related tools for Logic Engineering

Listing 4.10: Unit tests taken from different modules of InvAxiomCalc

% applying de Morgan laws
test (apply_de_morgan) :-
apply_de_morgan(-( a = b ), —-a + -b).

% applying invertible rules to conclusion
test (apply_to_conclusion) :-
apply_to_conclusion([[[],[ —-a + (a » a) 111, [[[],[ —-a, (a % a)

111) .

% cutting the occurrences of metavariable b

test (cut) :-
cut (
[[[[]/ [_b/ _b/ ,Y’+2/ ,Y,+l]]]l [[[]/ [’Y,+21 ,Y,+2/ _bl
"Yr+1111, [00), ["Y"+3, bl1l],
[LL01, [7Y"+3, "Y"+3, 'Y'+2, 'Y"+1111, [[[1, ['Y'+2, "Y'+2,
"Y"+3, "Y'+11111,
0

) -
% negative test case for acyclicity condition
test (is_cyclic_on_mv, fail) :-
is_cyclic_on_mv ([[[[], [a, "Y"+4]11, [[[l, [-a, "Y"+4]111, [[[1,[-a,
"Y"+1111, [([[l,[a, "Y"+1]1]1 1, a).

We have created one test file per module of InvAxiomCalc for testing the predicates that
they define. The following Listing gives some unit tests taken from different modules.
Note that we can also write negative unit tests by providing the fail option as a second
parameter on the test predicate. For more information about P1Unit, please consult
the Prolog Unit Tests official documentation [Wie].

4.7 Related tools for Logic Engineering

The idea of using computer supported tools (similar to TINC) for investigating logics has
been well explored during the last decades. For instance, MUltlog [BFSZ96] is a system
that generates a sequent calculus, a natural deduction system and clause formulation
rules for a given finitely-valued first order logic. MetTel2 [TSK12] is a tool written in
Java, for generating tableau provers from a given syntax and tableau calculus of a logical
theory. SELLF [NPR16] is a tool that takes the specification of a proof system and checks
whether it admits cut-elimination and if it is complete. The main goal of all such systems,
is to make theoretical results more accessible to the researchers and practitioners.

51


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Summary

This Chapter contains a summary of the contents of the thesis. Section 5.1 gives the
language and the hypersequent system of MALL. Section 5.2 contains an overview of the
systematic procedure for transforming axioms in the language of MALL into analytic
(hyper)structural rules. Section 5.3 summarizes InvAxiomCalc and the implementation
details.

5.1 The language and hypersequent system of MALL

We started the thesis by giving an overview on the syntax and semantics of classical
Linear Logic with focus on the Multiplicative Additive Linear Logic (MALL), i.e. the
fragment of classical linear logic without exponentials. The formulas on this language
are generated by the grammar:

Fu=VIVH|L|T|LI0|FRF|F&F|FQF|FOF|F—-F (5.1)

where {&(with), % (par), ®(times), ®(plus), — (linear implication)} are the logical con-
nectives of the language, {1, T, 1, 0} are language constants, and {V, YV} are propo-
sitional variables and their duals. The linear implication A — B can be expressed as
AL B. An important property in MALL is that the linear negation * (nil) is involutive
i.e. A*t < A. This allows for applying De Morgan-like laws over formulas in MALL as

follows:

(A& B)Y & At @ Bt

(A% Byt & Al ® Bt
Additionally, we described the basic notions of Gentzen style proof theory for sequent and
hypersequent calculus. As MALL is the subject of this thesis, we stopped at Hypersequent
calculus for Multiplicative Additive Linear Logic (HMALL), Table 5.1.
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5. SUMMARY
ar —————— tH“_F’A H|F AL A ew
HIFA A . HFT,A H[FT
H|FT| T ®”H!FF,A H|+ B, A 1—
e —————
HFT HFT,A® B, A M1
HIED A o, AIFT.B T
YHFT, A0 B 2 H[FT,. A0 B HIELT
H|+T,A,B H| T, A H|-T,B N H| T
HIFT,A BB HIFT,A& B H| =T, L
Table 5.1: Hypersequent system HMALL
5.2 The systematic procedure
The goal of the thesis was to extend the system Tools for the Investigation of Nonclassical
Logics (TINC) with a new tool InvAxiomCalc that implements the systematic procedure
introduced in [CST09] for automatic generation of axiomatic extensions of HMALL. The
procedure is based on a substructural hierarchy which is a classification of Hilbert axioms
based on the properties of the logical. The hierarchy consists of P,, and N,, classes where
n > 0. For the axioms in the language of MALL, the substructural hierarchy is defined
as below:
Poii=A Pri1 =Ny | Pot1 @ Prg1 | Pog1 ®Prs1 | 110
(5.2)
No = .A Nn+1 n=Fn |Nn+1 & Nn+1 |Nn+1 ?5’ Nn+1 ’ T | 1
where A denotes the set of single propositional variables. Note that Py = Ny = A,
Pn C Npi1, and N,, C Ppyq. Of particular interest is also the class 73;) C P3 defined as
follows:
Pyu=No & 1| Py@P; | Ps@P;|1]0 (5.3)
The systematic procedure accepts axioms up to the classes Ny, Po, 77:; and generates an
equivalent set of analytic inference rules i.e. rules that enjoy the cut-elimination property.
Altogether, the systematic procedure consists of the following steps:
1. Finds the class in the substructural hierarchy where the given axiom belongs to. If
the class is beyond N5, Py and 73:; the procedure terminates immediately.
2. Either of the following:
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5.3. The InvAxiomCalc tool

Logical connective Prolog representation
3 — +
& — &
X — *
@ — v

Table 5.2: The representation of logical connectives of MALL in Prolog.

o If the class falls within N5, transforms the axiom into a set of structural rules.

o If the class falls within Ps or 77:;, transforms the axiom into a set of hyper-
structural rules.

The transformation to (hyper)structural rules is performed based on the Ackerman
Lemma 3.2.1, Lemma 3.3.1, and applying the reverse of invertible rules % and &,
see Table 5.1.

3. Verifies the acyclicity criteria of the generated (hyper)structural rules according to
Definition 3.4.1.

4. Transforms the acyclic (hyper)structural rules into analytic rules. According to
Theorem 3.4.4 every acyclic rule generated from step 2 can be converted into a
Completed Rule (see Definition 3.4.3). The proof of Theorem 3.4.4 serves also as a
general procedure of the transformation.

5.3 The InvAxiomCalc tool

InvAxiomCalc is build based on the steps in Section 5.2. Similar to the rest of the tools
in TINC, InvAxiomCalc is implemented in Prolog. We defined new Prolog operators to
represent the logical connectives of MALL as in the Table 5.2.

We make use of List data structures in Prolog for representing sequents, hypersequents,
and rules. A sequent in Prolog is represented as a list of two elements where the first is a
flat List representing the antecedent and the second is also a flat List representing the
succedent of the sequent. Naturally, a hypersequent is represented as a List of sequents.
A hyperstructural rule in Prolog is represented as a list of two elements: the first is a
List of hypersequents representing the premises of the rule, and the second is a single
hypersequent representing the rule conclusion. See Section 4.3 for a detailed description
of the data structure we use for representing sequents, hypersequents and rules.

InvAxiomCalc consists of the following main modules:

e invac_hierarchy - this module is responsible for deriving the class in the
substructural hierarchy where the given axiom belongs to. The input axiom is
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5.

SUMMARY

56

decomposed into subformulas until ending up with atomic propositional variables.
Afterwards, the class where the axiom belongs to is derived based on the recursive
Definitions 5.2 and 5.3.

e invac_hyperstructural - generates a set of (hyper)structural rules that are
equivalent with the given axiom. A new rule without premises and the input axiom
in the succedent of the conclusion is introduced. The transformation consist of
three steps: 1) applies the reversed % rule (see Table 5.1) in the conclusion of the
introduced rule until all most binding %' connectives are eliminated. 2) applies the
Lemma 3.2.1 or Lemma 3.3.1 to introduce a new premise for each element of the
conclusion. 3) applies the reversed % and & rules to the introduced premises until
all logical connectives are eliminated.

e invac_acyclicity - computes the cut-closure (see Definition 3.4.1) of premises
in the generated rule and verifies if it is acyclic w.r.t. all propositional variables.

e invac_analytic - converts the acyclic (hyper)structural rules into Completed
Rules (see Definition 3.4.3) by applying all combinations of the cut rule.

e invac_grammar - provides Prolog DCG grammars for verifying the syntax of the
input axiom and converting Prolog representations of axioms, sequents, hyperse-
quents, and rules into KXTEX.

e invac_axiom2rule - is the parent module which puts together the functionalities
of all modules.

A web interface for accessing InvAxiomCalc is available at logic.at/tinc/webinvaxiomcalc.
The results are presented to the user through an automatically generated paper. Some
examples of generated papers are shown in Appendix A, Appendix B and Appendix C.
InvAxiomCalc is also available as a command line tool, in which case the results are not
only printed into the terminal but the IXTRX sources to create a paper are also generated.
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An analytic calculus for MALL extended with
the axiom

(AR A B)® (B B A)B AL) X Bt

InvAxiomCalc*

May 9, 2019

Abstract

This paper defines an analytic sequent calculus for MALL extended
with the (Hilbert) axiom (A® A® B)® (B® B® A)® A*)® B*. The
calculus is generated by the PROLOG-program InvAziomCalc, which im-
plements the procedure in [2].

1 Introduction

Non-classical logics are often defined by adding Hilbert axioms to known sys-
tems. The usefulness of these logics, however, heavily depends on the avail-
ability of calculi which admit cut-elimination and the subformula property (i.e.,
analytic calculi).

These calculi, in which the proof search proceeds by stepwise decomposition
of the formulas to be proved, are indeed a prerequisite for the development of
automated reasoning methods, and also key to establish essential properties of
the formalized logics.

We introduce an analytic calculus for the logic obtained by extending Mul-
tiplicative Additive Linear Logic (MALL) with the axiom (A® A® B)® (B®
B® A)® A1) % BL. The calculus is generated via a PROLOG-implementation
of the procedure in [2].

2 Preliminaries

The formulas of MALL are built over the language of classical linear logic
without exponentials [3]. The language consists of propositional variables V =
{a,b,c,...}, their duals V* = {a*,b",ct,...}, the constants {1, T,1,0} and
the logical connectives {&, B, ®, ®}.

The base calculus we deal with is the sequent system for MALL (see Ta-
ble 1), which we will simply call MALL. Metavariables A, B,C,... denote
formulas, and ', A, ... denote finite multisets of formulas. We only consider
single-sided multi-conclusion sequents i.e., sequents whose left-hand side (LHS)

*http://www.logic.at/tinc
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az ————— . FT,A AL A 1
Ha.4 «“ FT,A F1
® FT,A o FI,B kT
'FT,AeB *Fr,Ae B FT, L
T o FIoA FB,A
FT,T FT,A9 B, A
FT,A B FT,A FI,B
FT,A 3B FT,A& B

Table 1: The sequent calculus MALL

is empty and right-hand side (RHS) consists of a (possibly empty) set of for-
mulas. In inference rules we will refer to I', A, X, ... as multiset variables and
A, B,C,... as formula variables.

The notion of a proof in MALL is defined as usual. Let R be a set of rules. If
there is a proof in MALL extended with R (MALL + R, for short) of a sequent
Sy from a set of sequents S, we say that Sy is derivable from S in MALL+R

and write S l_MALL+R So . We write l_MALL+R aif @ l_MALL+R .
Definition 1 (Equivalent Rules) Given two sets of inference rules Ry and

Ro, we say that Ry and Rs are equivalent in MALL iff MALL+ Ry and MALL+ Ro
prove the same set of sequents.

If R = {r} is a singleton, we write MALL+r instead of MALL+R. An axiom
 is a rule without premises. Thus, the above definition applies also to (sets of)
axioms.

Definition 2 (Structural Rules) A sequent structural rule v is a rule of the
form:

F U, . Y, (1)
FHao
where each ¥; and ® contains only multiset variables and formula variables.

Definition 3 (Acyclic Rules) The cut-closure CUT(r) of a structural rule
r is the minimal set which contains the premises of r and is closed under the
application of the cut rule. A rule r is said to be cyclic if for some formula
variable A, we have - T, A, A+ € CUT(r). Otherwise, r is acyclic.

2.1 Substructural Hierarchy

The substructural hierarchy is a syntactic classification of Hilbert axioms. It has
been introduced in [1] for formulas of Full Lambek calculus with exchange (FLe).
In [2], the classification was adapted for formulas of MALL as follows:

Definition 4 (Substructural Hierarchy) [2] Let A be a set of atomic for-
mulas. For n > 0, the sets P,,N,, of formulas are defined via the following
grammar:

PO o= A Pn+1 L= Nn | Pn+1 ®Pn+1 | Pn+1 ®Pn+1 | 1 | 0

No = A Nn+1 =P, |Nn+1 & Nn+1 |Nn+1 z Nn+1 | T ‘ 1
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Py——» P, ——>» Py ———» P; ———» -

XK

No——> Ny ——> Ny —— Ny ——>

Figure 1: The substructural hierarchy [2]

A graphical representation of the substructural hierarchy is depicted in Figure 1.
Note that the arrows — stand for inclusions C of the classes.

3 From axioms to analytic rules

The axiom ¢ = (A® A® B) ® (B® B® A)® AL)% Bt is within the class
N> of the substructural hierarchy [2]. The transformation of ¢ into equivalent
sequent rule is performed in two steps:

1) The algorithm in [2, Section 4] is used to transform ¢ into the following
equivalent structural rule:

FBY,BHANT A4
FAL AL BLT -3, B (3)
FT,A, S

Note that the acyclicity condition is satisfied by the structural rule (3), which
is the prerequisite for the second step.

2) The Rule Completion algorithm from [2, Section 6] is used to transform (3)
into the following analytic sequent rule:

Y, S,AT FAAST @
FT,A S

Theorem 5 (Soundness and Completeness.) The aziom (AQ A® B) ®
(B® B® A)% AL) % B is equivalent to the newly generated rule (4).

Proof. See [2].

Theorem 6 (Cut-Elimination.) MALL extended with the newly generated
rule (4) admits cut elimination.

Proof. See [2], which contains a general, syntactic cut-elimination procedure.

Corollary 7 MALL extended with the rule (4) admits the subformula property.

References

[1] A. Ciabattoni, N. Galatos, and K. Terui. From axioms to analytic rules
in nonclassical logics. In IEEE Symposium on Logic in Computer Science
(LICS 08), pages 229-240, 2008.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

[2] A. Ciabattoni, L. Strafiburger, and K. Terui. Expanding the realm of sys-
tematic proof theory. In Proceedings of Computer Science Logic (CSL 09),
LNCS, pages 163-178, 2009.

[3] J.-Y. Girard. Linear Logic In Theoretical Computer Science, Vol. 50, pages
1-101, 1987.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

APPENDIX

Linearity Axiom

Output of InvAxiomCalc on

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

63

qny a8pajmoud| INoA

S8ylolqie


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

An analytic calculus for HMALL extended with
the axiom ((A1 % B)&1) @ ((B+ % A)&1)

InvAxiomCalc*

May 9, 2019

Abstract
This paper defines an analytic hypersequent calculus for HMALL
extended with the (Hilbert) axiom ((A* % B)&1) @ ((B+ % A)&1). The
calculus is generated by the PROLOG-program InvAziomCalc, which im-
plements the procedure in [2].

1 Introduction

Non-classical logics are often defined by adding Hilbert axioms to known sys-
tems. The usefulness of these logics, however, heavily depends on the avail-
ability of calculi which admit cut-elimination and the subformula property (i.e.,
analytic calculi).

These calculi, in which the proof search proceeds by stepwise decomposition
of the formulas to be proved, are indeed a prerequisite for the development of
automated reasoning methods, and also key to establish essential properties of
the formalized logics.

We introduce an analytic calculus for the logic obtained by extending Mul-
tiplicative Additive Linear Logic (HMALL) with the axiom ((A+ % B)&1) ®
((B+ % A)&1). The calculus is generated via a PROLOG-implementation of
the procedure in [2].

2 Preliminaries

The formulas of HMALL are built over the language of classical linear logic
without exponentials [3]. The language consists of propositional variables V =
{a,b,c,...}, their duals V* = {a*,b",ct, ...}, the constants {1, T,1,0} and
the logical connectives {&, B, ®, ®}.

The base calculus we deal with is the hypersequent system for HMIALL (see
Table 1), which we will simply call HMALL. Metavariables A, B, C, ... denote
formulas, and T',A,... denote finite multisets of formulas. We only consider
single-sided multi-conclusion sequents i.e., sequents whose left-hand side (LHS)
is empty and right-hand side (RHS) consists of a (possibly empty) set of for-
mulas. In inference rules we will refer to I', A, X, ... as multiset variables and
A,B,C,... as formula variables.

*http://www.logic.at/tinc
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ar —————— HIFT, A HIF AL, A ow M
HlFA A cut HFT, A HIFT
H|FT|FT H|FT,A H|F B,A 1

ec ® H| 1

H|FT H|FT,A® B, A
o, HIFT.A o, UFDB T —_

"HFT,A0B >H|FT,A0B HIFD,T

H|FT,A,B H|FT, A H|FT,B L _MIFT
H|FT,A 3B HIFT,A& B HIFT, L

Table 1: The hypersequent calculus HMALL

Definition 1 (Hypersequents) A hypersequent H is a multiset S; | --- |

Sn where each S; for i = 1,...,n is a sequent, called a component of the
hypersequent.
The symbol “ | 7 is intended to denote disjunction at the meta-level. The

notion of proof in HMALL is defined as usual. Let R be a set of rules. If there
is a proof in HMALL extended with R (HMALL+R, for short) of a sequent S
from a set of sequents S, we say that Sy is derivable from & in HMALL+R and

write & l_HMALL-i-R So . We write }_HMALL-&-R aif @ l_HMALL+R:> Q.

Definition 2 (Equivalent Rules) Given two sets of inference rules Ry and
Ry, we say that Ry and Ro are equivalent in HMALL iff HMALL+R; and
HMALL+Rs prove the same set of sequents.

If R = {r} is a singleton, we write HMALL+r instead of HMALL+R. An
axiom ¢ is a rule without premises. Thus, the above definition applies also to
(sets of) axioms.

Definition 3 (Hyperstructural Rules) A hyperstructural rule r is a rule of

the form:
H| =Ty H| -,

1
HIF y]...|F Oy S

where each ®; and ¥; contains only multiset variables and formula variables.

Definition 4 (Acyclic Rules) The cut-closure CUT(r) of a hyperstructural
rule r is the minimal set which contains the premises of v and is closed under
the application of the cut rule. A rule r is said to be cyclic if for some formula
variable A, we have H| =T, A, A+ € CUT(r). Otherwise, r is acyclic.

2.1 Substructural Hierarchy

The substructural hierarchy is a syntactic classification of Hilbert axioms. It has
been introduced in [1] for formulas of Full Lambek calculus with exchange (FLe).
In [2], the classification was adapted for formulas of HMALL as follows:

Definition 5 (Substructural Hierarchy) [2] Let A be a set of atomic for-
mulas. For n > 0, the sets Py, N, of formulas are defined via the following
grammar:
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Py——» P, ——>» Py ———» P; ———» -

XK

No——> Ny ——> Ny —— Ny ——>

Figure 1: The substructural hierarchy [2]

Pou=A Pri1 i =Npy | Pos1 @Pra1 | Pos1®Pry1 | 110

N() :S:A Nn+1 w=Fn |Nn+1 & Nn+1 INTL-‘rl 7? Nn+1 | T ‘ 1

A graphical representation of the substructural hierarchy is depicted in Figure 1.
Note that the arrows — stand for inclusions C of the classes.

3 From axioms to analytic rules

The axiom ¢ = ((A+ % B)&1) @ ((B+ 2 A)&1) is within the class P; of the sub-
structural hierarchy [2]. The transformation of ¢ into equivalent hypersequent
rule is performed in two steps:

1) The algorithm in [2, Section 5] is used to transform ¢ into the following
equivalent hyperstructural rule:

H|F3,A H|+-T,B
H|FO,B-  H|FA AL (3)
H|+F2,0[FT,A

Note that the acyclicity condition is satisfied by the hyperstructural rule (3),
which is the prerequisite for the second step.

2) The Rule Completion algorithm from [2, Section 6] is used to transform (3)
into the following analytic hypersequent rule:

HIFAY  H|FOT

4
H|FX,0/FT,A @)

Theorem 6 (Soundness and Completeness.) The aziom ((A+ % B)&1) @
(B A)&1) is equivalent to the newly generated rule (4).

Proof. See [2].

Theorem 7 (Cut-Elimination.) HMALL extended with the newly generated
rule (4) admits cut elimination.

Proof. See [2], which contains a general, syntactic cut-elimination procedure.

Corollary 8 HMALL extended with the rule (4) admits the subformula prop-
erty.
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An analytic calculus for MALL extended with
the axiom (A% AL)+

InvAxiomCalc*

May 9, 2019

Abstract

This paper defines a sequent calculus for MALL extended with the
(Hilbert) axiom (A% AY)®. Furthermore, in presence of weakening w,
an analytic calculus is defined for MALLA4w extended with (A% A-)+.
The calculus is generated by the PROLOG-program InvAziomCale, which
implements the procedure in [2].

1 Introduction

Non-classical logics are often defined by adding Hilbert axioms to known sys-
tems. The usefulness of these logics, however, heavily depends on the avail-
ability of calculi which admit cut-elimination and the subformula property (i.e.,
analytic calculi).

These calculi, in which the proof search proceeds by stepwise decomposition
of the formulas to be proved, are indeed a prerequisite for the development of
automated reasoning methods, and also key to establish essential properties of
the formalized logics.

We introduce a calculus for the logic obtained by extending Multiplicative
Additive Linear Logic (MALL) with the axiom (A% A+)L. The calculus is
obtained by extending the sequent system for MALL with a structural rule
equivalent to the axiom. In presence of weakening w we also define an analytic
calculus for MALL+w extended with (A% AL)L. The calculus is generated via
a PROLOG-implementation of the procedure in [2].

2 Preliminaries

The formulas of MALL are built over the language of classical linear logic
without exponentials [3]. The language consists of propositional variables ¥V =
{a,b,c,...}, their duals V* = {a*,bt,c*,...}, the constants {1, T,1,0} and
the logical connectives {&, B, ®, ®}.

The base calculus we deal with is the sequent system for MALL (see Ta-
ble 1), which we will simply call MALL. Metavariables A, B,C,... denote
formulas, and T', A,... denote finite multisets of formulas. We only consider

*http://www.logic.at/tinc


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

az ————— . FT,A AL A
Ha.4 «“ FT,A F1
o, _FDA o, DB T
'FT,AeB *Fr,AeB FT, L
T o FIoA FB,A
FT,T FT,A9 B, A
FT,A B FT,A FI,B
FT,A 3B FT,A& B

Table 1: The sequent calculus MALL

single-sided multi-conclusion sequents i.e., sequents whose left-hand side (LHS)
is empty and right-hand side (RHS) consists of a (possibly empty) set of for-
mulas. In inference rules we will refer to I', A, X, . .. as multiset variables and
A, B,C,... as formula variables.

The notion of a proof in MALL is defined as usual. Let R be a set of rules. If
there is a proof in MALL extended with R (MALL + R, for short) of a sequent
Sy from a set of sequents S, we say that Sy is derivable from S in MALL+R

and write S FNFALLL g So - We write FpIALL g @ if 0 FMALL R @

Definition 1 (Equivalent Rules) Given two sets of inference rules Ry and
R5, we say that Ry and Ry are equivalent in MALL iff MALL+ R, and MALL+ R,
prove the same set of sequents.

If R = {r} is a singleton, we write MALL+r instead of MALL+R. An axiom
 is a rule without premises. Thus, the above definition applies also to (sets of)
axioms.

Definition 2 (Structural Rules) A4 sequent structural rule v is a rule of the

form:
U . U,
- (1)

F o

where each ¥; and ® contains only multiset variables and formula variables.

Definition 3 (Acyclic Rules) The cut-closure CUT(r) of a structural rule
r is the minimal set which contains the premises of r and is closed under the

application of the cut rule. A rule r is said to be cyclic if for some formula
variable A, we have =T, A, A+ € CUT(r). Otherwise, v is acyclic.

2.1 Substructural Hierarchy

The substructural hierarchy is a syntactic classification of Hilbert axioms. It has
been introduced in [1] for formulas of Full Lambek calculus with exchange (FLe).
In [2], the classification was adapted for formulas of MALL as follows:

Definition 4 (Substructural Hierarchy) [2] Let A be a set of atomic for-
mulas. For n > 0, the sets P,,N,, of formulas are defined via the following
grammar:
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Py——» P, ——>» Py ———» P; ———» -

XK

No——> Ny ——> Ny —— Ny ——>

Figure 1: The substructural hierarchy [2]

7)0 o= -A Pn—i—l o= Nn | Pn—i—l ®Pn+l | Pn—i—l @Pn+l | 1 | 0
(2)
NO "= A Nn+1 = Fn |Nn+1 & Nn+1 |Nn+1 z Nn+1 | T ‘ 1

A graphical representation of the substructural hierarchy is depicted in Figure 1.
Note that the arrows — stand for inclusions C of the classes.

3 From axioms to analytic rules

The axiom ¢ = (A® AL)L is within the class Ny of the substructural hierar-
chy [2]. The transformation of ¢ into equivalent sequent rule is performed in
two steps:

1) The algorithm in [2, Section 4] is used to transform ¢ into the following
equivalent structural rule:

FA AL T
—FT ®)

Note that the acyclicity condition is not satisfied by the structural rule (3).
Therefore, the second step cannot be performed without the presence of the
weakening rule w:

T
YTT.A )

2) The Rule Completion algorithm from [2, Section 6] is used to transform (3)

into the following analytic sequent rule:

T (5)
In presence of weakening this leads to an analytic rule equivalent to the
axiom. Hence we have:

Theorem 5 (Soundness and Completeness.) The aziom (A® AL)*L
o is equivalent in MALL to the rule (3).
e is equivalent in MALL+w to the rule (5).
Proof. See [2].
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Theorem 6 (Cut-Elimination.)
o MALL extended with the newly generated rule (3) admits cut elimination.

o MALL+w extended with the newly generated rule (5) admits cut elimina-
tion and the subformula property.

Proof. See [2], which contains a general, syntactic cut-elimination procedure.
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Glossary

active formula the formulas in the premises of a rule from where the principal formula
is derived. 9

end sequent the last sequent occuring in a derivation. 8, 13
formula variable a variable representing a single formula or an axiom. 11

InvAxiomCalc New tool in TINC which allows for automatic generation of analytic
calculi for axiomatic extensions of classical linear logic without exponentials.. xi—xiii,

2, 3, 29, 33, 47, 51, 53-56

invertible rule a rule where a proof of the conclusion, also implies a proof for each its
premises. 9, 11, 55

MetTel2 a tool for generating tableau provers from specifications of a syntax and a
tableau calculus for a logical theory [TSK12].. 51

multiset variable a variable representing a multi set of formulas. 11

MUItlog a system which takes as input the specification of a finitely-valued first-order
logic and produces a sequent calculus, a natural deduction system, and clause
formation rules for this logic [BFSZ96].. 51

PlUnit A Prolog unit-test framework which was initially developed for SWI-Prolog. 50,
51

principal formula the formula introduced by a logical rule. 9

SELLF a tool that takes the specification of a proof system and checks whether it
admits cut-elimination and if it is complete [NPR16].. 51

stable truth truth values which are not affected by the application of the logical
connectives. For example, if we know A, and A D B we can derive B without
affecting the truth value of A.. 6

subformula property a property of a rule indicating that every formula in the premises
is a subformula in the conclusion. 1, 13

81
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Acronyms

DCG Definite Clause Grammar. 31, 47-49, 56
Flew Full Lambek Calculus with exchange and weakening. 31

HMALL Hypersequent calculus for Multiplicative Additive Linear Logic. 10-13, 15, 23,
25, 33, 38, 47, 49, 53, 54, 77

IL Intuitionistic Logic. 5

IMALL Intuitionistic Multiplicative Additive Linear Logic. 16

LC Linear Conclusion. 24, 25, 42

MALL Multiplicative Additive Linear Logic. xi—xiii, 2, 5, 7, 10, 40, 47, 53-55, 77
NFV No Forumula Variable. 24, 25, 42

SP Subformula Property. 24, 25, 42

TINC Tools for the Investigation of Nonclassical Logics. xi, xiii, 1-3, 29, 31-33, 51, 54,
55, 75, 81

W.l.g. Without loss of generality. 44

83


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[Avr87]

[BFSZ96]

[Bus9sg]

[CGTO8]

[CGT12]

[CLSZ13]

[CMS13]

[CS14]

Bibliography

Arnon Avron. A constructive analysis of RM. J. Symb. Log., 52(4):939-951,
1987.

Matthias Baaz, Christian G. Fermiiller, Gernot Salzer, and Richard Zach.
Multlog 1.0: Towards an expert system for many-valued logics. In Automated
Deduction - CADE-13, 13th International Conference on Automated Deduction,
New Brunswick, NJ, USA, July 30 - August 3, 1996, Proceedings, pages 226—
230, 1996.

Samuel R. Buss. Chapter i - an introduction to proof theory. In Samuel R.
Buss, editor, Handbook of Proof Theory, volume 137 of Studies in Logic and
the Foundations of Mathematics, pages 1 — 78. Elsevier, 1998.

Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. From axioms to
analytic rules in nonclassical logics. In LICS, pages 229-240. IEEE Computer
Society, 2008.

Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. Algebraic proof
theory for substructural logics: Cut-elimination and completions. Ann. Pure
Appl. Logic, 163(3):266—290, 2012.

Agata Ciabattoni, Ori Lahav, Lara Spendier, and Anna Zamansky. Automated
support for the investigation of paraconsistent and other logics. In LFCS,
volume 7734 of Lecture Notes in Computer Science, pages 119-133. Springer,
2013.

Agata Ciabattoni, Paolo Maffezioli, and Lara Spendier. Hypersequent and
labelled calculi for intermediate logics. In TABLEAUX, volume 8123 of Lecture
Notes in Computer Science, pages 81-96. Springer, 2013.

Agata Ciabattoni and Lara Spendier. Tools for the investigation of substruc-
tural and paraconsistent logics. In Logics in Artificial Intelligence - 14th
European Conference, JELIA 2014, Funchal, Madeira, Portugal, September
24-26, 2014. Proceedings, pages 18-32, 2014.

85


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[CST09]

[CZ97]

[Gen35]

[Gir87)
[NPR16]

[TSK12]

[Wie]

86

Agata Ciabattoni, Lutz Stralburger, and Kazushige Terui. Expanding the
realm of systematic proof theory. In CSL, volume 5771 of Lecture Notes in
Computer Science, pages 163—178. Springer, 2009.

Alexander V. Chagrov and Michael Zakharyaschev. Modal Logic, volume 35 of
Ozford logic guides. Oxford University Press, 1997.

Gerhard Gentzen. Untersuchungen iiber das logische schlieflen i und ii. Math-
ematische Zeitschrift, 39:176-210, 1935.

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1-102, 1987.

Vivek Nigam, Elaine Pimentel, and Giselle Reis. An extended framework for
specifying and reasoning about proof systems. J. Log. Comput., 26(2):539-576,
2016.

Dmitry Tishkovsky, Renate A. Schmidt, and Mohammad Khodadadi. The
tableau prover generator mettel2. In JELIA, volume 7519 of Lecture Notes in
Computer Science, pages 492-495. Springer, 2012.

Jan Wielemaker. Prolog unit tests.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Overview

	Preliminaries.
	The Syntax of MALL
	Gentzen Style Proof Theory
	The hypersequent calculus HMALL
	Analytic calculi and Cut elimination

	From Axioms to Analytic Rules
	Substructural Hierarchy
	From N2-axioms to Analytic Sequent Rules
	From P3'-axioms to Analytic Hypersequent Rules
	Rule Completion

	Implementation
	A gentle introduction to Prolog
	The System TINC
	Data structure for inference rules
	The InvAxiomCalc tool
	Automated Paper Generation
	Prolog Unit Tests
	Related tools for Logic Engineering

	Summary
	The language and hypersequent system of MALL
	The systematic procedure
	The InvAxiomCalc tool

	Output of InvAxiomCalc on Nelson Axiom
	Output of InvAxiomCalc on Linearity Axiom 
	Output of InvAxiomCalc on Cancel Axiom
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Bibliography

