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Abstract

Dust explosions pose a risk for many different industries. Materials which are normally
harmless can set off a disastrous deflagration inside closed vessels, due to their dispersion
and high specific surface area. To mitigate the effects of such an event, explosion suppres-
sion devices can be installed. They detect an explosion, and shoot an extinguishing agent
into the vessel, preventing it from rupture.

The commonly used models to predict the behaviour of a dust explosion are based on
a one-dimensional approximation. Thus, these models are only valid for perfect spheres
where ignition happens in the centre. For vessels of a different geometry, empiric shape
factors have to be used. Additionally, the velocity field and the shape of the flame front
cannot be predicted. For industrial applications, the correct prediction of the pressure-
time evolution of an explosion event is most important.

In this thesis, the models used to design such devices are improved. We make the following
assumptions: An explosion happens in a closed vessel. Initially, there is quiescent fluid
which is assumed to be an ideal gas. The fuel and oxidiser are premixed. Friction, heat
conduction and heat loss to the surroundings are neglected. The flame front is assumed
to be infinitely thin. Thus, we consider it to be a gasdynamic discontinuity.

Since the thickness of the flame is neglected, the front is intrinsically unstable. This
instability is called Darrieus-Landau instability and was first discovered in the 1940s.
However, experiments showed that plane, stable flame fronts are possible. Thus, over
the last decades scientists improved the so-called ‘flame sheet’ models, where the flame is
infinitely thin. Those improvements included mechanisms of stabilisation.

Dust explosions are inherently turbulent. Turbulence can distort the flame front. Here, an
averaged, smooth flame front is assumed. The burning velocity, i.e. the relative velocity
of the flame front with respect to the unburnt gas just ahead of it, depends on the local
curvature and the thermodynamic state. This is similar to the Markstein model for laminar
combustion.

Experimental data show that the typical speeds induced by a deflagration are much smaller
than the speed of sound. Thus, an asymptotic expansion with respect to small squares
of a reference Mach number leads to negligible errors. However, in that case, major
simplifications are achieved: The leading-order pressure and the divergence of the flow
field are time-dependent only. Each material element preserves its entropy, except at the
flame front, where entropy is produced.

Due to the special structure of the problem, Helmholtz decomposition is applied to the
velocity field. This yields a divergence-free and irrotational part of the velocity and a
scalar and vector potential. Both potentials are governed by Poisson’s equations. The
geometry of the vessel is assumed to have a symmetry axis. Thus, three-dimensional,
rotational symmetric simulations are possible.
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Abstract

At the flame front, the entropy, the vorticity and the normal velocity experience a jump.
To fulfil these jump conditions, Lagrangian mesh points moving with the flow are used.
Additionally, a boundary element method, called panel method, is used to find the scalar
potential. The vector potential is found by spectral methods, using sine, cosine and Bessel
functions.

Two different methods are used to verify the implementation. First, comparison of the
full simulations with the one-dimensional theory shows excellent agreement. Second, the
results from the linear stability analysis were reproduced using a simpler model, for de-
scribing unconfined combustion inside a channel with almost no pressure change.

Comparison of the simulation results with experimental data yields the effective burning
velocity at reference state. The available data suggest a linear dependency of the burning
velocity on the deflagration index. Additionally, the shape of the flame front and the flow
field can be visualised, which cannot be done by the simple one-dimensional approxima-
tions. Future extensions could account for different ratios of specific heats in unburnt and
burnt gas, or to consider explosion venting and an influence of the vessel walls on the
burning velocity.
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Kurzfassung

Staubexplosionen stellen für viele Industriezweige eine große Gefahr dar. Aufgrund der
feinen Verteilung, und damit einhergehend großen spezifischen Oberfläche können selbst
Materialien, die unter normalen Umständen nicht explosiv sind, eine verheerende Deflagra-
tion in geschlossenen Behältern auslösen. Um die Auswirkungen eines solchen Ereignisses
abzuschwächen, gibt es Explosionsunterdrückungsanlagen. Diese erkennen eine begin-
nende Explosion, und bringen ein Löschmittel in den Kessel ein, was ein Bersten verhin-
dert.

Die bisher verwendeten Modelle zur Vorhersage von Staubexplosionen basieren auf einer
eindimensionalen Vereinfachung, welche nur für einen kugelförmigen Kessel mit zentrischer
Zündung gültig ist. Für alle anderen Geometrien müssen empirische Formfaktoren verwen-
det werden. Weiters kann keine Vorhersage des Geschwindigkeitsfelds oder der Form der
Flammenfront gemacht werden. Für industrielle Anwendungen ist die richtige Vorhersage
des Druckverlaufs einer Staubexplosion essentiell.

In dieser Arbeit werden die zur Auslegung solcher Anlagen verwendeten Modelle ver-
bessert und erweitert. Die Modellannahmen sind die folgenden: Eine Explosion breite
sich in einem geschlossenen Behälter, gefüllt mit ruhendem Fluid, welches als ideales
Gas angenommen wird, aus. Edukte der Verbrennung seien ideal vermischt. Reibung,
Wärmeleitung und Wärmeverlust an die Umgebung seien vernachlässigbar. Die Flammen-
front sei unendlich dünn; sie wird somit als eine gasdynamische Diskontinuität modelliert.

Aufgrund der Annahme, die Dicke der Flamme sei vernachlässigbar klein, entstehen in-
trinsische Instabilitäten, welche die Front deformieren. Dieses Phänomen, auch Darrieus-
Landau-Instabilität genannt, wurde zuerst Mitte des vergangenen Jahrhunderts beschrie-
ben. Nachdem in Experimenten aber die Existenz stabiler Flammenfronten gezeigt wurde,
entwickelten eine Reihe von Wissenschaftlern verbesserte Modelle, welche Stabilisierungs-
mechanismen beinhalten.

Staubexplosionen sind inhärent turbulent. Turbulente Schwankungsbewegungen der Ge-
schwindigkeit können zu einer fein strukturieren, rauen Flammenfront führen. Hier be-
trachten wir eine gemittelte, glatte Flammenfrontfläche. Die Flammengeschwindigkeit,
also die relative Geschwindigkeit der Flammenfront bezogen auf die Geschwindigkeit des
unverbrannten Gases, hängt von der lokalen Krümmung und dem thermodynamischen
Zustand ab. Das Modell ähnelt dem Markstein-Model für laminare Verbrennung.

Der Vergleich mit Experimenten zeigt, dass die typischen Geschwindigkeiten, welche bei
Deflagrationen auftreten, sehr viel kleiner sind als die Schallgeschwindigkeit. Daher führt
eine asymptotische Entwicklung nach kleinen Quadraten der Mach-Zahl zu einem vernach-
lässigbaren Fehler, ermöglicht aber wesentliche Vereinfachungen des Modells: So ist der
Druck in führender Ordnung nur eine Funktion der Zeit; gleiches gilt für die Divergenz des
Geschwindigkeitsfelds. Weiters ist jedes materielle Fluidelement isentrop, ausgenommen
direkt an der Flammenfront, wo Entropie produziert wird.
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Kurzfassung

Durch die spezielle Struktur des zu lösenden Problems ist eine Aufteilung des Geschwin-
digkeitsfelds nach Helmholtz in einen divergenz- und einen rotationsfreien Anteil sinnvoll.
Dies führt auf zwei zu lösende Poisson-Gleichungen für das Skalar- und Vektorpotential,
um die Gesamtgeschwindkgeit zu erhalten. Weiters werden nur Geometrien berücksichtigt,
welche eine Symmetrieachse besitzen. Dies ermöglicht dreidimensionale, aber rotation-
ssymmetrische Simulationen.

An der Flammenfront müssen Bedingungen bezüglich des Sprungs der Feldgrößen En-
tropie, Wirbelstärke und Normalgeschwindigkeit erfüllt werden. Dies geschieht einerseits
mittels Lagrange-Gitterpunkten, welche sich mit der Strömung mitbewegen, und ander-
erseits über die Art der Verfolgung der Flammenfront. Das Skalarpotential wird mithilfe
von Randelementmethoden, genannt Panel-Vefahren, berechnet. Für die Bestimmung
des Vektorpotentials werden spektrale Methoden, Entwicklungen nach Kreis- und Bessel-
Funktionen, verwendet.

Um die Implementierung zu verifizieren, wurden zwei Ansätze verfolgt: Einerseits zeigt
der Vergleich einfacher Simulationen in einem unendlich langen Zylinder und einer Kugel
eine perfekte Übereinstimmung zur eindimensionalen Theorie. Andererseits wurde mittels
eines vereinfachten Modells, eine offene Kanalströmung ohne wesentlichen Druckanstieg,
die lineare Stabilitätsanalyse nachvollzogen.

Der Vergleich der Simulationsergebnisse mit experimentellen Daten ermöglicht die Bes-
timmung der effektiven Flammengeschwindigkeit. Die verfügbaren Daten lassen einen
linearen Zusammenhang zwischen Flammengeschwindigkeit und Deflagrationsindex ver-
muten. Weiters kann die Flammenfrontposition und das Strömungsfeld visualisiert wer-
den, etwas, das die eindimensionalen Modelle nicht können. Mögliche Erweiterungen wären
die Berücksichtigung von unterschiedlichen Isentropenkoeffizienten in unverbranntem und
verbranntem Gas, oder die Berücksichtigung von Explosionsentlüftungen und ein Einfluss
der Kesselwand auf die Flammengeschwindigkeit.
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1. Introduction

When dealing with fine-grained, suspended dust inside closed geometries, there is always
the risk of an explosion. The earliest report in literature of a so-called ‘dust explosion’
dates back as early as 1785 [1]. On 14th December of that year, a flour warehouse was
damaged by a rather small explosion of wheat flour in Turin, Italy. The dry weather
resulted in a low moisture content of the organic powder, and a gas lamp ignited the
suspended particles.

Back then, the hazard of suspended, explosible and small particles was not very well
known. Nowadays, many different industries, like metal, wood, food, coal and mines,
pharmaceutical and plastics industries are affected by the risk of a dust explosion. There-
fore, men and women responsible for the safety of industrial plants have to be aware of the
risk and possible mitigation strategies against dust explosions. The five factors leading
to a dust explosion are given in Fig. 1.1b, which is valid for both detonations and defla-
grations. Since many dust explosions are of the second type, this work deals only with
dust deflagrations. A more physical reasoning for considering only deflagrations is given
in Chapter 3.
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(a) Fire triangle [2].
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(b) Dust explosion pentagon [3].

Figure 1.1.: (a) Fire triangle and (b) dust explosion pentagon. When one of the factors
that are necessary to cause an explosion are not present, no ignition and fire
can happen.

In the last century, dust explosions killed hundreds of people in many different industries.
Tabs. 1.1 and 1.2 show the deaths caused by dust explosion events in the United States of
America between 1900–1956 and in Western Germany between 1965–1980, respectively.
Thus, over the last decades, there were a vast number of publications, technical reports
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1. Introduction

and standards published, all of them trying to answer the question of how to recognise
and evaluate the risk, and how to prevent loss and damage to people and material.

Table 1.1.: Casualties caused by dust explosions in the USA between 1900–1956, sorted
by industry type [1, Tab. 1.3].

industry number of explosions fatalities injured material loss

wood and bark 162 38 160 $11.4 mio
food and feed 577 409 1061 $75.8 mio
metals 80 108 198 $3.2 mio
plastics 61 44 121 $3.7 mio
coal excl. mines 63 30 37 $1.6 mio
paper 9 0 0 $0.5 mio
others 171 47 193 $4.3 mio

1123 676 1770 $100.4 mio

There are three different strategies to reduce the chance of an explosion or to lower its
impact on workers and equipment: (I) preventing a dust-air mixture from becoming ex-
plosible, by e.g. using inert gas or lowering the concentration of dust, (II) removing possible
sources of ignitions, like electrical spark discharge or hot surfaces, and (III) mitigating the
impact of an explosion [4]. Here, we focus on the third approach by providing better mod-
els and numerical tools for the calculation of explosion events. The five necessary factors
to cause a dust explosion [3] are forming the dust explosion pentagon, shown in Fig. 1.1b.
For gas fires, only three preconditions are needed to cause an explosion [2]. Thus, this is
also called the fire triangle, and shown in Fig. 1.1a.

Table 1.2.: Casualties caused by dust explosions in the Federal Republic of Germany be-
tween 1965–1980, sorted by industry type [1, Tab. 1.4].

industry number of explosions fatalities injured

wood 113 12 124
food and feed 88 38 127
metals 47 18 91
plastics 46 18 98
coal and peat 33 7 39
paper 7 0 0
others 23 10 13

357 103 492

Different approaches are possible to prevent a dust explosion from becoming a disaster. In
principle, all technical equipment could be designed to withstand the explosion pressure,
i.e. the maximum pressure which occurs after complete combustion of the explosible ma-
terial. While this method is successfully used for smaller vessels, it is clear that it cannot
be applied to all parts of an industrial plant due to cost, size and weight limitations.
The second strategy is to install vents which open when the pressure inside a vessel exceeds
a critical value. This method is simple and reliable, as there are no moving parts involved.
However, it cannot be applied in case of toxic materials and the venting itself can also be
dangerous to people near the venting location.
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1. Introduction

The third approach is to suppress an already starting explosion, as shown in Fig. 1.2. When
an explosion is detected, the suppression device is activated. It shoots an extinguishing
agent into the vessel, which quenches the explosion. While this method has proven to be
very effective, it is much more involved and complex than the first two options.

explosible dust-air
mixture

suppression device

hPa
0

10

20

30

explosion detection device

possible start of explosion

extinguishing agent

Figure 1.2.: Closed vessel containing a suspended, explosible dust-air mixture. It is pro-
tected by a suppression device on top (detail on the left), and an explosion
detection system (right).

All countermeasures against gas and dust explosions rely on models to predict the key
properties of such an event: the location and propagation of the flame front, the rate
of pressure rise in the vessel and the maximum pressure. The level of detail, illustrated
in Fig. 1.3, can range from very simple, zero- or one-dimensional approximations up to
models with hundreds of chemical reactions combined with computational fluid dynamics
(CFD).

When looking into literature, a gap between industrial application and scientific research
is apparent: On one hand, models for gas combustion processes have become very detailed
and complex [5, 6], as shown in Fig. 1.3 on the right side. They include models for chemical
equilibria and kinetics, account for mass and heat transport and many different species.
Additionally, the flame front has to be resolved numerically. Additionally, models with
an infinitely thin flame front are also common in three-dimensional computational fluid
dynamics simulations of laminar combustion. However, most numerical front tracking
algorithms lead to a smeared interface.

On the other hand, one-dimensional approximations [1, 7, 8] are used in industry, providing
fast and easy-to-understand models for the design of explosion countermeasures [9]. Those
methods by themselves cannot account for non-spherical geometries. Instead, empirical
shape parameters have to be used. Furthermore, they assume isentropic or isothermal
conditions and neglect the thickness of the flame front, as outlined in Fig. 1.3 on the left.

The approach shown in the middle of Fig. 1.3 combines both model types. The flame front
is assumed to be infinitely thin, but the flame-flow interaction and influence of the vessel
walls are not neglected.
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increasing complexity

‘simple’ 1D models

• ideal gas

• isentropic/isothermal

• infinitely thin flame front
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• system of ODE

‘intermediate’ models

• ideal gas

• isentropic

• infinitely thin flame front

• axisym. 3D geometries

• Euler equations

r

‘full’ 3D CFD
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• any change of state

• resolved flame front

• arbitrary 3D geometries

• Navier–Stokes equations
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T̃u T̃1 T̃b

Figure 1.3.: Three different approaches when modeling confined deflagration.

1.1. State of the Art in Industrial Applications

The aim in all models currently used in the process industry is the correct prediction of the
time-pressure curve [7, 4, 1, 8]. The main approach is to derive semi-analytical expressions
for the rate of pressure rise for centric explosions inside a sphere [10, 11, 12, 13]. Most
commonly used are so-called integral models. By applying the total mass and energy
balance for unburnt and burnt gas, a non-linear, ordinary differential equation for the
pressure is derived [8]. Many integral models make at least the following assumptions [1]:
(I) the flame front is infinitely thin (except for the three-zone models [11]), (II) the burning
velocity is small compared to the speed of sound, implying a spatially uniform pressure
and (III) the explosible fluid is an ideal gas with material parameters that do not depend
on pressure or temperature.

In contrast to theoretical modelling, the experimental investigation of dust explosions is
very well established. Beginning in the 1960s at the US Bureau of Mines, there have
been many different, standardised apparatus developed. One of the first was the so-called
Hartmann bomb, a 1.2 L, cylindrical vessel. However, the cylindrical shape caused much
heat losses to the surrounding, and distortion of the flame front from the spherical shape.
Additionally, the possibility for upscaling the experimental results to larger, industrial-
sized vessels was limited. In the 1980s, a 20 L sphere became the most used testing
device to determine the properties of dispersed dusts. It was standardised later [14]. It is
commonly seen as the apparatus with the smallest volume that provides results for reliable
upscaling [15]. Thousands of different dusts have been tested and analysed experimentally,
using standard test bombs [16]. Nowadays, standard dust explosion experiments are also
done using a 1 m3 sphere [17].

For industrial applications, the deflagration index K̃St plays an important role to quantify
the hazard and strength of a dust explosion. It is defined as the product of the maximum
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Table 1.3.: Classification of the hazard of suspended dust by the deflagration index [18].
dust explosion class K̃St, bar m/s characteristics typical material [19]

St 0 0 no explosion silica
St 1 1 to 200 weak explosion charcoal, sulfur, sugar
St 2 200 to 300 strong explosion cellulose, wood flour
St 3 > 300 very strong explosion aluminium, magnesium

rate of pressure rise (dp̃/dt̃)max multiplied by the cubic root of the vessel volume Ṽ 1/3
v :

K̃St =
(dp̃

dt̃

)
max

Ṽ 1/3
v . (1.1)

The tilde denotes that a quantity is dimensionful. The most common unit of K̃St is
bar m/s. It allows to classify the strength of a dust explosion, see Tab. 1.3. In practice,
the deflagration index is not directly determined from experimental data, but extracted
from a fit of a one-dimensional approximation to the experiments. Many different models
used in the industry suggest that K̃St is a parameter to quantify a dust and the initial
turbulence. It is independent of the geometry of the vessel [1].

Other important characteristic quantities for dust explosions are the lower explosion limit,
the maximum pressure after complete, adiabatic combustion p̃max, the concentration of
the dust particles and the burning velocity s̃eff [20, 21].

Eq. (1.1) is also called the ‘cubic root law’, and for one-dimensional integral models, the
maximum rate of pressure change occurs at the end of the explosion [22]. It is used for
upscaling the experimental results, which are often obtained in rather small vessels, to
vessel sizes relevant to the industry [4]. However, the ‘cubic root’ law is only valid under
the assumptions made in the beginning of this section. Additionally, upscaling requires
that both vessels are geometrically similar.

Errors in upscaling become significant for relative flame thicknesses of above 1 % [23],
which is defined as the actual flame thickness divided by the characteristic vessel length,
e.g. the (equivalence) radius of the vessel.

In industrial applications, dust-air mixtures are commonly described as ideal gas with
modified material parameters. This approach is chosen because modelling dust explosions
in every detail is almost impossible: One would have to consider particle burning, mul-
tiphase flow and radiation [8], to name just a few examples showing the complexity of
the physical phenomena. Such a level of detail is unfeasible in industrial applications.
Additionally, the approach of treating the millions of differently sized, suspended parti-
cles and air as one fluid is working remarkably well, as comparison of model results with
experimental data have shown [8].

Due to the different nature of gas and dust deflagrations, the flame thickness is larger
in the latter case under the same conditions (pressure, temperature). For gases, the
range is typically below one centimetre [24]. For dust explosions, the flame is often much
thicker than 10 cm [23]. This results in a point of inflection in the pressure-time curve of
confined dust combustion. The maximum rate of pressure rise is no longer at the end of
the explosion, but occurs earlier, as seen in Fig. 1.4b. This makes the deflagration index
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unavailable using only experimental data. Thus, the results from a one-dimensional model
that approximates the pressure-time curve in the early stages of the combustion process
is needed. However, the numeric value of K̃St depends on the choice of model [8], making
comparisons between different approaches impossible.
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(a) Gas explosion.
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(b) Dust explosion.

Figure 1.4.: Schematic diagram of typical pressure-time curves of a (a) gas explosion [25]
and (b) dust explosion [1] in a sphere with centric ignition. In the case of a gas
explosion, the rate of maximum pressure rise is near the end of the explosion,
since the flame is usually very thin. For dust explosions, the reaction zone is
much thicker and the maximum rate of pressure rise is much earlier.

The point of inflection in the pressure-time curve for dust explosions is caused by the finite
and rather large flame thickness. Consider two spherical explosions: For one, the flame
front shall be very thin. The rate of pressure rise is proportional to the surface area of the
flame front. Since the flame front is thin, the influence of the vessel walls are negligible
even when the flame front is very close to the wall. This results in a pressure-time history
shown in Fig. 1.4a.

Now, assume that the flame front has a significant thickness. Then, parts of the flame
already start to touch the vessel wall during earlier stages of the explosion. This results
in a reduced combustion rate, and the maximum rate of pressure rise occurs at an earlier
point of time during the explosion event, shown in Fig. 1.4b. Other factors which lead to
a point of inflection in the pressure-time curve are an eccentric ignition, a non-spherical
vessel shape and heat loss to the surroundings.

Another important difference between gas and dust deflagrations is the presence of turbu-
lence [26, 27]. Dust particles have to remain suspended in the gas phase, to be ignitable.
Thus, without turbulence, there would be no dust explosions. Contrary, premixed gas
explosions can occur even in a quiescent fluid. Thus, laminar deflagration is only known
for gas combustion.

With the increasing computational possibilities, numerous studies using three-dimensional
CFD methods were published in recent years. Van Wingerden used an existing combustion
simulation code, FLACS, and implemented a dust explosion model [28]. The burning
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velocity was assumed to increase linearly with the intensity of the turbulence, and it also
depends on the temperature. However, no particles were modeled. Instead, the dust
particles were approximated by a fluid phase.

In the early 2000s, there was a project funded by the European Union [29] to develop
a CFD tool, called ‘Dust Explosion Simulation Code (DESC)’, to predict dust explosion
behaviour in complex geometries [30]. However, the program is not publicly available.

Collecutt et al. simulated the explosion of an underground coal dust explosion event [31].
Additionally, they model an active explosion barrier consisting of a ring of water injectors.
Instead of considering individual, micron-sized dust particles, the authors tracked parcels
of particles, where each parcel consisted of many particles. The exchange of heat, mo-
mentum, energy and mass between parcels and the gas phase was considered as well, and
a model was used to account for the energy transfer by radiation. Since their model was
rather complex, the spatial discretisation was limited and computation times were high.

Bind et al. modeled gas and dust explosions inside a 20 L apparatus [32]. Their simulation
was done with the commercial software Fluent 6.3.26. They modeled the dust particles as
fluid phase. Thus, micro-scale particle effects were neglected.

Murillo and colleagues have investigated the behaviour of suspended particles and the
influence of the ignition delay on the distribution of the particles [33, 34]. They modeled
aluminium particles, using the commercial CFD tool Fluent. No explosion or chemical
reactions were present in the simulations. Instead, the authors focused on characterising
dust-air mixtures and validation with experimental data.

CFD simulations enable industrial researchers to study fundamental aspects of dust dis-
persion, flame-flow interaction and the influence of a non-spherical vessel geometry without
relying on empirical shape parameters. Empirical shape parameters, often expressed as
the surface ratio of the vessel compared to the surface of the equivalence sphere, are used
in integral models to account for the non-spherical vessel shape.

However, the computational demand for fully three-dimensional simulations is very high.
Thus, this approach often requires simplifications, like averaging over discrete volumes
instead of resolving individual particles. Additionally, CFD simulations require meshing
of the computational domain, and post-processing, which can be very time consuming for
complex geometries. For commercial CFD codes, costs for licenses have to be considered.

1.2. New Approach

Here, we extend the one-dimensional integral models to account for flame-flow interaction
and the influence of a non-spherical vessel shape. So, all assumptions made in those types
of models are also applied here. It is out of scope for this thesis to derive new or improve
currently used combustion models for gas or dust deflagrations.

The main new aspects of this work are the coupling of the flame with the flow and the
influence of the geometry of the vessel compared to the one-dimensional models, which do
not have to consider the momentum balance. Here, the local balance equations, the full,
compressible Euler equations for low Mach number flow are solved. This allows to include
the influence of the vessel walls from first principles. Thus, no empirical shape parameters
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Figure 1.5.: An infinitely thin flame front inside a closed vessel. The geometry and explo-
sion are assumed to be rotational symmetric about the dash-dotted axis.

are necessary. Furthermore, the numerics allow an easy and straightforward extension to
any description of the burning velocity.

One assumption is that the flame front is infinitely thin, the so-called ‘flame sheet’ model.
Here, the flame front separates fresh, unburnt gas from already combusted, hot burnt gas.
Since this approach yields a hydrodynamically unstable flame front [35], an additional
stabilisation mechanism has to be included. One-dimensional models do not need such
a mechanism, because there, the symmetry constraints do not allow any instability to
develop.

Furthermore, the vessel geometry is assumed to be symmetric about a rotation axis, see
Fig. 1.5. This is reasonable since many vessels in industry can be approximated by such
geometries. Additionally, gravity, viscosity and heat conduction are neglected, which leads
to an isentropic model.

Laminar combustion is only known for premixed gases. In theory, it could also be possible
for dusts in zero gravity environments. There, dust particles do not settle down. Under
normal conditions, turbulence is needed to distribute the small particles into air, and to
keep them suspended. Turbulence interacts with the flame front, and leads to a wrinkled
flame front. Here, we assume an average flame front position [36] which moves with an
effective burning velocity s̃eff. It accounts for all influences of turbulence and increased
combustion rate due to flame front wrinkling, chemical reactions and composition, thermo-
dynamic state and so on. Thus, the stabilisation mechanism is assumed to be sufficiently
strong to keep the flame front smooth. Details are given in Section 2.1.

Eckhoff [37] gives an overview over expected future trends in dust explosion research. In
the conclusions, he states that ‘substantial progress is foreseen in mathematical modelling
of dust cloud generation and flame propagation processes in dust clouds. It is anticipated
that such models will gradually replace conventional empirical equations’ (emphasis by the
original author). In this thesis, we develop a new, simple yet very helpful mathematical
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procedure to answer the question, how the flame interacts with the flow and boundaries,
i.e. the walls of the vessel.

1.3. Overview of the Thesis

In Chapter 2, we present a full description of the model, i.e. all governing equations,
boundary and jump conditions and kinematics of the flame front. There, we keep the
formulation as general as possible without any restrictions regarding the geometry of the
vessel. Also, we discuss the stability of the plane, infinitely thin flame front in unconfined
combustion.
In Chapter 3, we assume low Mach number flow and expand all quantities with respect to a
small reference Mach number. Thus, the resulting equations are simplified. This expansion
leads to interesting results, e.g. that the pressure depends on time only in leading order.
After applying Helmholtz decomposition on the velocity field, the equations governing the
flow field reduce to two different types of Poisson’s equations for the scalar and vector
potential.
In Chapter 4, the one-dimensional, symmetric solutions for an infinitely long cylinder
and a sphere are presented. They are used to verify the results of the full simulations.
Additionally, three commonly used models in the process industry are described in more
detail.
In Chapter 5, the numerical algorithm is explained. We give an overview of the temporal
and spatial discretisation. The assumption of equal ratios of specific heats in unburnt and
burnt gas is introduced. Also, the velocity field is partitioned, which leads to smaller and
easier-to-solve sub-problems. In order for this procedure to work, the solution procedure
consists of multiple steps. The spatial discretisation method is closely adapted to the
structure of the governing equations. Next, the algorithm for the tracking of the flame
front is explained. It is tracked with marker points which move with the front. Since
this algorithm can become unstable, and the flame front itself is unstable, we present a
re-seeding and stabilisation algorithm for the moving of the marker points as well. Then,
the solution algorithm for the Poisson’s equations are presented. Details are given to solve
Laplace’s and Poisson’s equation, using boundary element methods, called panel methods,
and Fourier-Bessel transformations. Additionally, the interpolation from a moving mesh
to an equally spaced, fixed Cartesian mesh is explained.
In Chapter 6, the influence of the spatial discretisation on the solution is discussed. Then,
the implementation is verified by comparing the solution obtained by the full implemen-
tation with the one-dimensional models. Additionally, the results of the linear stability
analysis are reproduced, using a channel geometry under (almost) isobaric conditions.
In Chapter 7, results are presented for the flame-flow interaction and comparison with
experiments are given. The shape of the flame front and the flow field is visualised for
different vessel geometries, initial explosion locations and reaction enthalpies. The com-
parison with experimental data yields values for the burning velocity, which seems to
increase linearly with the deflagration index.
In Chapter 8, the main findings and conclusions of this thesis are outlined. We discuss
the new aspects of this work, and possible future improvements are given. Also, some
limitations of the model and the numerical implementation are discussed.
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This work aims to make a natural extension of one-dimensional global integral models to
include the effect of flame-flow interaction and geometry influence. Thus, a combustion
model and a flow model are needed. The first one leads to a relation for the burning
velocity, whereas the second one yields the balance equations and jump relations.

2.1. Combustion Model

When modelling premixed combustion, there are many different phenomena that have
to be considered: chemical reactions, including reaction rates and equilibria, flame-flow
interaction, turbulence, species transport, heat and mass transfer in the form of molecular
diffusion. Thus, performing a very detailed analysis can only be done for basic combustion
processes under simple boundary and initial conditions.

For example, a detailed chemical reaction scheme for the combustion of methane, called
GRI-Mech 3.0, includes more than 300 reactions and 50 different species [38]. When taking
into account that methane is the simplest hydrocarbon, it is clear that more complex
chemical reactions cannot be modelled in every detail. Thus, models for the combustion
of higher hydrocarbons are not as detailed as GRI-Mech 3.0 [39, 40, 41].

Dust explosions are heterogeneous reactions, i.e. reactions involving liquid or solid reac-
tants. Additionally, many phenomena have to be considered: diffusion of the oxidiser to
the solid surface, external and internal heat transfer, pyrolysis and change of size of the
particle [8]. One can imagine that finding a model that can describe a cloud of millions of
differently sized, burning particles is out of reach even for today’s supercomputers.

The ‘flame sheet’ approximation, shown in Fig. 2.1a, is the state of the art in modeling of
flame propagations in the process industry. It reduces combustion and chemical reactions
to the burning velocity s̃eff and the reaction enthalpy ∆h̃f . The burning velocity is defined
as the relative normal velocity of the infinitely thin flame front with respect to the velocity
of the unburnt gas just ahead of the front. Thus, it is a measure of the local burning rate,
and in general depends on many different things, including the chemical reaction scheme,
the thermodynamic state and flow conditions. The assumption of an infinitely thin flame
front leads to a problem of hydrodynamical nature: The combustion process reduces to
the propagation of a surface where heat is instantaneously released.

Another possible approximation are the ‘reaction sheet’ models, shown in Fig. 2.1b. They
resolve a finite-size, outer transport zone, where the concentration of the fuel and oxidiser
is reduced, and the fluid is pre-heated. The actual combustion takes place in the infinitely
thin reaction sheet. The third main approach is to resolve the reaction zone as well, see
Fig. 2.1c. This requires a detailed description of the chemical reactions inside the usually
very thin reaction zone.
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(a) Flame sheet approach.
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(b) Reaction sheet approach.
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(c) Resolved flame front.

Figure 2.1.: Possible simplifications of the structure of the flame front in laminar, pre-
mixed, plane, unconfined and steady combustion [5, Fig. 7.2.1]. (a) A flame
sheet model does not resolve any flame structure. (b) A reaction sheet model
assumes that the chemical reactions take place in an infinitely thin zone, and
the fluid is pre-heated in a finite-sized pre-heat zone. (c) The resolved flame
front has a transport zone and a thin reaction zone.
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When dealing with turbulent combustion, an effective flame speed s̃eff is assumed which
includes all influences of turbulence: flow distortion, additional wrinkling and a higher
burning rate. In general, the effective flame speed is higher than the laminar burning
velocity, s̃eff > s̃L [42]. The literature review at the beginning of this chapter focuses on
three different topics: (I) models for laminar combustion, (II) influences of turbulence on
combustion and (III) influence of the thermodynamic state on the burning velocity.

Models for the Laminar Burning Velocity

Many different approaches have been developed over the last 80 years to model the laminar
burning velocity s̃L for gas explosions. The simplest possible assumption, introduced by
Darreius [43] and Landau [44], is to assume that the burning velocity is constant. However,
this leads to a very pronounced instability which eventually wrinkles the flame front. Such
strong instabilities contradict observation from experiments [35], where stable, plane flame
fronts have been reproduced. To remedy this problem, stabilisation mechanisms have been
included into the model. Some approaches use ad-hoc assumptions [45, 46, 47], and some
derive s̃L from first principles [48, 49, 50, 51].

Table 2.1.: Overview of the different models for the laminar burning velocity, adapted
from [51, Tab. 1]. Not all models can capture all different instability types,
and provide stabilisation mechanisms. DL: Darrieus & Landau [43, 44]; M:
Markstein [45]; KDKW: Karlovitz et al. [46]; E: Eckhaus [47]; S: Sivashin-
sky [48]; CW: Clavin & Williams [50]; MM: Matalon & Matkowsky [49]; CMK:
Class, Matkowsky and Klimenko [52].

initials of authors DL M KDKW E S CW MM CMK

postulated (p)/derived (d) p p p p d d d d

flame speed relation
stretch χ/curv. c/strain s const c χ c, s — χ χ —
ode/pde in time t, space x — — — — t — — t, x

jump conditions
Darrieus–Landau + + + + + + + +
surface compression − − − − − − + +
Marangoni − − − − − − − +

instabilities n.c. not captured; stabilisation impossible (−)/possible (+)
Darrieus–Landau − + + + + + + +
cellular n.c. n.c. n.c. n.c. − + + +
pulsating n.c. n.c. n.c. n.c. − n.c. n.c. +

From a hydrodynamical point of view, all models presented here assume that the flame
front is infinitely thin. Thus, for the flow, the flame is a sharp interface, where density,
velocity and pressure experience a jump. However, some consider the structure of the
flame front by means of asymptotic expansion. An overview over the models presented in
this section is given in Tab. 2.1.
All flame sheet models experience different kinds of instabilities and most include stabili-
sation mechanisms. There are three different kind of instabilities observed: the Darrieus-
Landau instability, cellular and pulsating flames. The first one is present in all models
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and is due to the hydrodynamical instability when treating the flame as infinitely thin.
Cellular flames contain separated, luminous regions, also called cells and can appear in
the Bunsen burner flame. Pulsating flames occur when heat conduction is considered, and
the activation energy exceeds a critical value [53].

In 1951, Markstein [45] postulated the existence of a phenomenological quantity and a
dependency of s̃L on the local curvature of the flame front:

s̃L =
(
1− µL̃κ̃+ . . .

)
s̃0

L.

s̃0
L is the burning velocity of the plane flame front, µ is an empirical dimensionless pa-
rameter, L̃ is a characteristic length of the order of the flame thickness and κ̃ is the local
curvature of the flame front. With his empirical extension, he introduced a low-pass filter
mechanism: High-frequency perturbations are damped. This leads to a partially stable,
wrinkled flame front, where cusps can form, pointing towards the burnt gas, as shown in
Fig. 2.2. For stabilisation, µ must be positive. However, for some fuels, this does not hold,
leading to amplified instabilities and cell formation occurs faster [6]. Later, the product
µL̃ was called the Markstein length l̃Ma. Since Markstein postulated the relation for the
burning velocity, the determination of µ and L̃ is not possible with his approach. Later,
with the help of asymptotic analysis of the structure of the flame front, it was possible to
derive the Markstein length for laminar flow with a simple reaction mechanism [35]:

l̃Ma =
(

σ

σ − 1

∫ σ

1

λth(x)
x

dx+ (Leeff − 1) Ze
2 (σ − 1)

∫ σ

1

λth(x)
x

ln σ − 1
x− 1dx

)
l̃diff. (2.1)

unburnt gas

burnt gas

flame front

λ̃s

Figure 2.2.: A wrinkled flame front moves towards the bottom. The most unstable wave-
length is λ̃s, assuming that the Markstein model is used.

Ze is the Zel’dovich number, a parameter which relates activation energy to the tem-
perature of the burnt gas, Leeff is the effective Lewis number (ratio of thermal to mass
diffusivity), a weighted average of the individual Lewis numbers of the fuel and oxidiser,
σ is the expansion ratio, i.e. the density of the unburnt gas divided by the density of
the burnt gas, λth is the thermal conductivity, which depends on the temperature, and
l̃diff is the diffusion length scale. Note, that Eq. (2.1) is not a universal expression; de-
pending on the choice of reference state, and reaction mechanism, the Markstein length is
different [54].

Karlovitz et al. [46], from the US Bureau of Mines, assumed that the laminar burning
velocity was influenced by the velocity gradient of the flow, i.e. the flame stretch. They
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T̃ , c̃

x̃

unburnt gas flame front, l̃f � L̃ref burnt gas

T̃u

T̃b

Temperaturec̃u

Concentration
of reactants

T̃u T̃1 T̃b

Pre-heat zone Reaction zone

Concentration of
intermediate products

Figure 2.3.: Simplified structure of a plane flame front. In the pre-heat zone, the temper-
ature of the gas rises due to heat conduction. Due to the strong dependence
of the reaction rate on temperature, chemical reactions only take place inside
the reaction zone [55], which is normally much thinner than the pre-heat zone.

write that ‘[f]lame propagation apparently is arrested by the strong velocity gradient of
the flow which exists in the boundary layer’, when considering flames in pipes. Arguing
that a strong velocity gradient also leads to a flame stretch, the combustion heat released
is distributed over a larger volume of burnt gas, and this effect has to lead to a reduced
burning velocity. Following their derivations, flame propagation in the vicinity of solid
walls can be interrupted due to large velocity gradients.
Similarly, Eckhaus [47] proposed a burning velocity that depends on the local curvature
and the acceleration of the flame front. He assumes that the flame front consists of two
zones, a pre-heat zone and a reaction zone, as shown in Fig. 2.3. He assumed a sim-
ple second-order reaction of fuel and oxidiser forming the products. When considering
flow quantities, the flame front can be seen as infinitely thin, implying l̃f � L̃ref. Again,
complete closure of the problem is not possible, since the determination of empirical pa-
rameters which appear in the model remains unsolved. Later, Markstein adopted this idea
and extended his original model [56].
All three proposed mechanisms are postulated, rather than derived and assume that there
is a characteristic length in the order of the flame thickness. Also, not all parameters can
be determined consistently within the scope of the models.
One of the first to apply the method of matched asymptotic expansions to account for the
structure of the flame front was Sivashinsky [48]. He considered different zones: a very
thin reaction zone, a preheat zone, a hydrodynamic structure zone and a dissipative zone.
In the hydrodynamic zone, viscosity can be neglected up to leading order of the asymptotic
expansion. Thus, the flow is that of an ideal and incompressible fluid. The dissipative
zone is conceptually similar to the boundary layer of viscous flow. Here, dissipative effects
like viscosity play an important role and have to be considered. The resulting relation for
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the flame front velocity is an ordinary differential equation in time. With the assumption
that one reactant is a weak trace, the reaction reduces to a monomolecular reaction, i.e.
a first-order reaction. He considered his model to be valid only for stationary flames,
because of stabilisation considerations.

Matalon and Matkowsky also considered the structure of the flame [49]. They assume that
the front can be separated into two regions: a thin flame zone, where transport processes
dominate, and a much thinner inner reactive zone, where the actual combustion takes
place. The thickness of the first zone δ depends on the length scale of diffusion, which is
normally small compared to the characteristic length of the problem, thus δ � 1. The
thickness of the second zone εδ is assumed to be very small compared to the first zone,
as shown in Fig. 2.4. ε is assumed to be inversely proportional to the activation energy
of the chemical reaction ε ∝ 1/Ẽ. Normally, the reaction activation energy is high, thus
ε � 1. By applying the method of matched asymptotic expansions, they derive a flame
speed relation which depends on the stretch of the flame front. Clavin and Williams [50]
apply similar concepts, but only consider very small perturbations and nearly uniform
flow. Thus, their flame speed relation is a linearisation of the model of Matalon and
Matkowsky [52].

unburnt gas

burnt gas

flame zone, O(δ)

reaction zone, O(εδ)

Figure 2.4.: Structure of the flame front according to Matalon and Matkowsky [49, Fig. 3].

In 2003, Class, Matkowsky and Klimenko presented a what they called ‘unified’ model
of flames as gasdynamic discontinuities [52]. The advantage of their model is that it is
valid for arbitrary Lewis numbers, in contrast to the models of Sivashinsky, valid only for
Lewis numbers not near one (Le� 1 or Le� 1) and Matalon and Matkowsky/Clavin and
Williams, which are valid for Lewis numbers near one (Le ≈ 1). They derive a new flame
speed relation, a partial differential equation in space and time, and new jump conditions
for arbitrary Lewis numbers. Their model captures all three types of instabilities, and also
provides stabilisation mechanisms and a high-wavenumber cutoff.
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Combustion and Turbulence
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Ka = 1, l̃η = l̃f

Figure 2.5.: Depending on the ratio of length scales and velocity scales for combustion and
turbulence, different regimes are postulated by Peters [36, Fig. 2.8].

Turbulence is a very active field of research. Due to its mathematical complexity, averaging
approaches are most commonly used to cope with the properties of turbulent flow [57].
Combustion and turbulence combines two very complex topics. Thus, only very general
aspects of turbulent combustion are outlined in this section.
When considering the length scales for combustion and turbulence, many different regimes
of combustion can be identified. Length and time scale for combustion are defined as [36, 5]:

l̃f = ν̃

s̃L
, t̃f = ν̃

s̃2
L
. (2.2)

ν̃ is the kinematic viscosity. Assuming a Schmidt number Sc = ν̃/D̃ of unity, the viscosity
ν̃ and diffusivity D̃ are interchangeable in Eq. (2.2). With the turbulent integral length
scale l̃t and the turbulent intensity ũ′, we define a Reynolds number:

Re = ũ′ l̃t

s̃L l̃f
. (2.3)

The smallest scales in turbulent flow are the Kolmogorov time t̃η, length l̃η and velocity
ũη scales. Those scales are defined as having a Reynolds number of unity [57], and are
obtained by dimensional analysis. Thus, two turbulent Karlovitz numbers are introduced.
The first one relates the flame scales and the turbulent scales and is defined as [36]:

Ka = t̃f
t̃η

= l̃2f
l̃2η

=
ũ2
η

s2
L
. (2.4)
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It compares the flame front time scales with the Kolmogorov time scales of the turbulent
flow. Thus, it quantifies the impact of turbulent fluctuations on the outer, pre-heat and
diffusion zones. With the help of the reaction zone thickness l̃δ, a second Karlovitz number
can be defined as the ratio of the reaction zone thickness divided by the Kolmogorov length
scale. It is a measure of the impact of the turbulent eddies on the most inner, reaction
zone and reads as [36]:

Kaδ = l̃2δ
l̃2η
. (2.5)

Turbulence produces statistical fluctuations of the flow field. Depending on the ratio of
the length scales for combustion and turbulence, many different combustion regimes have
been identified [36, Fig. 2.8]. Assume that Re > 1: For Ka < 1, the reaction and diffusion
processes inside the flame front are much faster than the turbulent time scales. Thus,
in this limit, the flame structure is not influenced by the turbulent fluctuations and the
entire combustion process is embedded in the much bigger turbulent eddies [36].

When the laminar burning velocity is bigger than the turbulent intensity, a wrinkled flame
front develops and the hydrodynamic instabilities dominate. When the turbulence gets
more intense, corrugated flamelets are observed up until Ka = 1.

When the flame time is larger than the turbulent time scale, Ka > 1, the outer regions of
the flame, i.e. diffusion and pre-heat zones, are influenced by the turbulent fluctuations
and thin reaction zones develop.

When the typical size of the turbulent eddies is in the order or smaller than the reaction
zone thickness, the most inner, reaction zone is heavily influenced by turbulence. This
implies that Kaδ > 1, and the influence of the turbulent fluctuations on the chemical
reactions becomes important. Thus, the presence of turbulence leads to quenching and
re-ignition. This regime is dominated by broken reaction zones.

mass flux

turbulent velocity profile

averaging

flame front

s̃L

Ãt

avg. flame front

s̃t

Ãavg

Figure 2.6.: The turbulent burning velocity is defined as the relative velocity of an averaged
flame front. Here, a stationary averaged flame is shown. The unburnt gas
comes from the left with a turbulent velocity profile [36, Fig. 2.21].
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To simplify the analysis of premixed, turbulent combustion, an average flame front can be
defined, as shown in Fig. 2.6. Note, that for Kaδ > 1, this approach cannot be justified
anymore. The average flame front has a uniform speed, which is chosen such that the
mass flux of burning fluid remains the same [36]:

s̃LÃt%̃u = s̃tÃavg%̃u. (2.6)

Since the turbulent flame front is wrinkled, Ãt > Ãavg, the turbulent burning velocity is
bigger than the laminar burning velocity s̃t > s̃L.

Dependency of the Flame Speed on the Thermodynamic State

All models presented so far assume unconfined combustion. When modelling combustion
inside a closed geometry, however, the pressure rises considerably. When also considering
the influence of the vessel walls, this renders the problem of confined combustion more
difficult than the open-channel, almost constant pressure combustion. An additional re-
lation to obtain the change of pressure is required. Furthermore, the strong dependency
of the burning velocity on the thermodynamic state has to be considered [5, 58, 59]. In
the following, empirical relationships which include dependencies on both pressure p̃ and
temperature of the unburnt gas T̃u are reproduced from literature.

It is common practise to fit relations which express the dependency of the burning velocity
on the thermodynamic state to experimental data. One commonly used relation for the
dependency of the burning velocity on temperature and pressure is [60, 61, 62, 7]:

s̃eff =
(
T̃u

T̃ref

)α
f(p̃/p̃ref) s̃0

eff.

α is often found to be 2, and f is an arbitrary function which accounts for the dependency
of the burning velocity on the pressure.

Babkin and Kozachenko [60] suggested a laminar burning velocity for methane-air mixtures
with 9.5 % methane:

α = 2, f(p̃/p̃ref) = 3.18− 1.53 log10
p̃

p̃ref

Reference quantities are Tref = 100 ◦C and p̃ref = 1 atm. It is valid for a pressure range
from 1 atm to 23 atm. For higher pressures, between 23 atm to 70 atm, they suggest:

α = 1.47, f(p̃/p̃ref) = 9.06
(
p̃

p̃ref

)−0.646+0.0509(T̃ /T̃ref)
.

Here, f additionally depends on the temperature of the unburnt gas. For different methane
concentrations, they get different expressions.

Iijima and Takeno [61] proposed a dependency on pressure, temperature and equivalence
ratio:
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f(p̃/p̃ref) = 1 + β ln p̃

p̃ref
.

Their reference values are T̃ref = 291 K and p̃ref = 1 atm. α, β and s̃0
eff depend on the type

of fuel and the equivalence ratio, i.e. the ratio of fuel to oxidizer concentration divided by
the ratio of fuel to oxidizer concentration at stoichiometric conditions.
Metghalchi and Keck [62] assumed a similar expression:

f(p̃/p̃ref) =
(
p̃

p̃ref

)β
.

The reference state is T̃ref = 298 K and p̃ref = 1 atm. Again, α and β are parameters fitted
to experimental data, and depend on the equivalence ratio.
Nagy and Verakis [7] used an empirical relation, where the coefficients are fitted to exper-
imental data, including dust explosion experiments:

α = 2, f(p̃/p̃ref) =
(
p̃

p̃ref

)β
. (2.7)

The parameter β is usually between 0.1 and 0.5.

Choice of Model

Here, we consider the combustion of a premixed, homogeneous fluid inside a closed ge-
ometry. Additionally, the flow is assumed to be turbulent, with isentropic and frozen
turbulence. This is reasonable since the early stages of an explosion are most important
to industrial applications, where the change of turbulence is assumed to be negligible. The
effective flame speed depends on the thermodynamic state and local curvature:

s̃eff =
(
1− κ̃l̃stab.t

)( T̃u

T̃ref

)2 (
p̃ref
p̃

)β
s̃0
eff. (2.8)

s̃0
eff is the flame speed of an unperturbed, plane flame front at reference conditions (T̃ref,
p̃ref). The dependency on temperature of the unburnt gas T̃u and pressure p̃ are modelled
according to Nagy and Verakis [7].
The parameter l̃stab.t is the turbulent analogon to the laminar Markstein length. In this
model, it acts as a stabilisation parameter, to prevent the infinitely thin flame front from
wrinkling. It can be interpreted as a turbulent length scale. However, in this work, its
value is not determined from asymptotic analysis or experimental data, but chosen such
that the flame front remains sufficiently smooth in the simulations.
As outlined before, this stabilisation is necessary because the approximation of the flame
front as an infinitely thin sheet neglects mechanisms and features of real combustion pro-
cesses. The motivation behind this dependency comes from asymptotic analysis, where
the Markstein length can be derived for laminar flow, cf. Eq. (2.1). For turbulent combus-
tion, Peters developed a G equation model which is a level-set method for the tracking of
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the flame front. In his approach, he shows that the averaged turbulent flame front has a
burning velocity which depends on the local curvature of the front [36]:

∂Ḡ

∂t̃
+ ˜̄u · ∇Ḡ = s̃0

t |∇Ḡ| − D̃t ˜̄κ|∇Ḡ|.

A bar denotes the average of a quantity, Ḡ is the averaged level-set function, where the
flame front is at Ḡ(x̃, t̃) = G0, ˜̄κ is the curvature of the averaged flame front and D̃t is the
turbulent diffusivity.

This work aims at improving already existing, simple one-dimensional models used in the
industry. Thus, a very simple model for the flame speed is used. The most straightforward
approach is to assume a constant flame speed. However, it has to include some sort of
stabilisation mechanism, since the infinitely thin flame front is hydrodynamically unsta-
ble. One-dimensional models do not need such a mechanism, since here, the symmetry
constraints do not allow for any instability to develop. Eq. (2.8) should be seen as a model
for an effective flame speed of a sufficiently smooth flame front. Thus, only the average
position of the flame front is known.

2.2. Flow Model

For the flow model, we make the following assumptions: Unburnt and burnt gases are ideal
gases. The material parameters are different for the unburnt and burnt fluids, but do not
depend on the thermodynamic state. Gravity, heat conduction and friction are neglected
and the vessel wall is adiabatic [63]. A similar approach to model confined combustion has
been taken by Markstein [56], Matalon [64] and Matalon and Metzener [65]. Rastigejev
and Matalon [66, 67] simulated unconfined combustion using the same approximations as
here.

The fluid flow in the unburnt and burnt gas is described by the Euler equations. They
express the principles of conservation of mass, momentum and energy with non-linear,
partial differential equations. For the flow, the flame front is treated as a gasdynamic
discontinuity where the physical quantities experience a jump. Thus, additional relations
connecting the physical variables before and after the discontinuity are needed, called
jump conditions. Additionally, the specification of the kinematics of the flame front, and
the boundary and initial conditions complete the formulation of the flow model.

Here, we use the divergence form of the balance equation, also called conservative form.
The equation for the conservation of mass relates density changes with the divergence of
the flow field [68]:

∂%̃

∂t̃
+ ∇̃ · (%̃ũ) = 0̃. (2.9)

The momentum balance connects pressure and flow field:

∂ (%̃ũ)
∂t̃

+ ∇̃ · (%̃ũũ) = −∇̃p̃. (2.10)
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The energy balance states that the change of total energy is equal to the work done by
pressure forces:

∂
(
%̃
(
ẽ+ ũ2/2

))
∂t̃

+ ∇̃ ·
(
%̃
(
ẽ+ ũ2/2

)
ũ
)

= −∇̃ · (p̃ũ) . (2.11)

%̃ is the density, t̃ is the time, ∇̃ is the Nabla operator, ũ is the velocity field, p̃ is the
pressure, ũ · ũ = ũ2 and ẽ is the specific internal energy, i.e. the internal energy per unit
of mass.

A tilde denotes that the quantity has a dimension. The dot between two vector fields
denotes the inner product a·b = aibi, where the subscript ‘i’ stands for the three directions
in space (Einstein notation). No dot between the product of two vector fields denotes the
outer product ab = aibj .

The ideal gas equation connects pressure, density and temperature:

p̃ = %̃R̃T̃ , (2.12)

where R̃ is the specific gas constant and T̃ is the temperature. The reaction enthalpy ∆h̃f
is part of the internal energy of the unburnt gas ẽu:

ẽu = c̃v,uT̃ +∆h̃f = 1
γu − 1

p̃u
%̃u

+∆h̃f . (2.13)

γ is the ratio of specific heats and c̃v is the specific heat at constant volume. R̃, c̃v and
γ are in general different in unburnt and burnt gas, denoted by the subscripts ‘u’ and ‘b’,
respectively. Eq. (2.12) and R̃ = c̃v/(γ−1) have been used for Eq. (2.13). The temperature
does not appear in the problem formulation. The internal energy of the burnt gas reads
as:

ẽb = 1
γb − 1

p̃b
%̃b
. (2.14)

Initially, at t̃ = 0̃, the gas is at rest and has a uniform initial temperature and pressure,
denoted with the subscript ‘i’:

ũ(x̃, 0̃) = 0̃, p̃(x̃, 0̃) = p̃i, %̃(x̃, 0̃) = %̃i.

At the vessel wall the normal velocity must vanish:

ũ(x̃v, t̃) · nv = 0̃.

x̃v is the location of the vessel wall and nv is the unit normal vector of the vessel wall
which points outside of the vessel. The gas itself is divided into two phases, unburnt and
burnt gas, by the flame front, as shown in Fig. 2.7. The effective flame speed s̃eff is defined
as the relative normal velocity of the smooth flame front with respect to the unburnt gas
at the flame front ũu:
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ũu

ũf
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(a) Cross-section of the flame front.
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ũb
nũn
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(b) Top view of flame front.

Figure 2.7.: (a) The flame front velocity ũf has a relative velocity (−s̃eff) in normal direc-
tion nf with respect to the velocity of the unburnt gas ũu. (b) The tangential
velocity ũt is continuous across the flame front [69, Fig. 2].

s̃eff = (ũf − ũu) · (−nf) . (2.15)

nf is a unit vector normal to the flame front pointing into the burnt gas. The flame front
velocity ũf is the sum of the velocity of the unburnt gas just ahead of the flame front and
the burning velocity in normal direction, as shown in Fig. 2.7a:

ũf = dx̃f
dt̃

= ũu − s̃effnf , (2.16)

Since velocity, density and pressure are discontinuous at the flame front, jump conditions
are required to obtain a physically meaningful solution in the unburnt and burnt gas.
Those conditions connect mass, momentum and energy fluxes on both sides of the flame
front. To derive the jump conditions, we need the conservation equations in integrated
formulation.
Let us assume a control volume Ṽ (t̃) which moves with a velocity ũ. ∂Ṽ denotes the
surface of the control volume. Then, Reynold’s transport theorem states that the total
change of an arbitrary quantity b̃ in Ṽ is [70]:

d
dt̃

y

Ṽ

%̃b̃dṼ =
y

Ṽ

∂(%̃b̃)
∂t̃

dṼ +
{

∂Ṽ

%̃b̃ (ũ · n) dÕ, (2.17)

Here, Gauß’ Theorem was used. It states that the integral over the divergence of a vector
field b̃ over a closed volume Ṽ is equal to the integral over the vector field over the surface
∂Ṽ of the volume, if the vector field is continuously differentiable:

y

Ṽ

∇̃ · b̃ dṼ =
{

∂Ṽ

b̃ · ndÕ.
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Applying Reynold’s transport theorem and Gauß’ theorem to the balance equations, using
a control volume which moves with the flame front velocity ũf , yields the balance equations
in integral formulation. The conservation of mass, Eq. (2.9), yields:

d
dt̃

y

Ṽ

%̃ dṼ +
{

∂Ṽ

%̃ (ũ− ũf) · ndÕ = 0, (2.18)

The momentum balance, Eq. (2.10), reads as:

d
dt̃

y

Ṽ

%̃ũdṼ +
{

∂Ṽ

%̃ũ (ũ− ũf) · ndÕ = −
{

∂Ṽ

p̃ndÕ, (2.19)

The energy balance, Eq. (2.11), is:

d
dt̃

y

Ṽ

%̃
(
ẽ+ ũ2/2

)
dṼ +

{

∂Ṽ

%̃
(
ẽ+ ũ2/2

)
(ũ− ũf) · ndÕ = −

{

∂Ṽ

p̃ũ · ndÕ. (2.20)

flame front
unburnt gas

burnt gas
control volume

Figure 2.8.: A control volume which encloses the flame front. It is moving with the velocity
of the flame front.

The jump conditions are obtained by choosing a volume which encloses parts of the flame
front, as shown in Fig. 2.8. When the control volume becomes infinitely thin, i.e. it
approaches the flame front, all volume integrals vanish in Eqs. (2.18), (2.19) and (2.20),
since they are much smaller than the surface integrals. Thus, the jump of the mass flux
reads as, cf. Eq. (2.18):

%̃u (ũu − ũf) · nf = %̃b (ũb − ũf) · nf . (2.21)

The jump of momentum flux and pressure is obtained from Eq. (2.19):

(%̃uũu (ũu − ũf) + p̃uI) · nf = (%̃bũb (ũb − ũf) + p̃bI) · nf , (2.22)

and the jump of the energy flux and work done by pressure is obtained from Eq. (2.20):

(
%̃u (ũu − ũf)

(
ẽu + ũ2

u/2
)

+ p̃uũu
)
·nf =

(
%̃b (ũb − ũf)

(
ẽb + ũ2

b/2
)

+ p̃bũb
)
·nf . (2.23)
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With the help of Eq. (2.15), the jump conditions are simplified. The superscript ‘n’ denotes
the component of a vector normal to the flame front. The mass balance across the flame
front reads as:

%̃us̃eff = %̃b (ũn
f − ũn

b) . (2.24)

For the momentum flux and jump of pressure, we get:

%̃us̃effũu + p̃unf = %̃us̃effũb + p̃bnf , (2.25)

and for the energy flux:

%̃us̃eff
(
ẽu + ũ2

u/2
)

+ p̃uũ
n
u = %̃us̃eff

(
ẽb + ũ2

b/2
)

+ p̃bũ
n
b. (2.26)

Eq. (2.25) can be split into a normal part:

%̃us̃effũ
n
u + p̃u = %̃us̃effũ

n
b + p̃b, (2.27a)

and a tangential part:

ũt
u = ũt

b. (2.27b)

The superscript ‘t’ denotes the component of a vector at the flame front in tangential
direction.

2.3. Non-dimensional Formulation

A non-dimensional formulation is obtained by scaling all physical quantities with charac-
teristic values. To get the non-dimensional density % and pressure p, the initial density %̃i
and the initial pressure p̃i are used:

%̃ = %̃i%, p̃ = p̃ip. (2.28)

The velocity is scaled with s̃0
eff, and the characteristic length scale is the reference length

of the vessel L̃ref:

ũ = s̃0
eff u, x̃ = L̃ref x. (2.29)

In this problem, the time scale is chosen as the ratio of the characteristic length divided
by the characteristic velocity, L̃ref/s̃

0
eff. The specific internal energy and reaction enthalpy

are scaled with the initial pressure divided by the initial density p̃i/%̃i:

t̃ = (L̃ref/s̃
0
eff) t, ẽ = (p̃i/%̃i) e, ∆h̃f = (p̃i/%̃i)∆hf . (2.30)
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The non-dimensional formulation of the problem is obtained by inserting the scaled quanti-
ties, Eqs. (2.28) to (2.30), into all governing equations. When using this scaling approach,
five non-dimensional numbers can be identified. For the definition of one of those numbers,
the speed of sound c̃i at reference conditions is needed:

c̃2
i :=

(
∂p̃

∂%̃

)
s=const,i

= γup̃i
%̃i

.

c̃i is used to define a reference Mach number Mref:

Mref = s̃0
eff
c̃i
.

The first non-dimensional number is proportional to the squared reference Mach number
and it appears in the non-dimensional momentum and energy balances:

ε = M2
ref
γu

. (2.31)

The second non-dimensional number is the (turbulent) stabilisation number St, defined as
the ratio of the (turbulent) stabilisation length l̃stab.t divided by the characteristic length
L̃ref. It appears in the non-dimensional burning velocity:

St = l̃stab.t
L̃ref

. (2.32)

The third non-dimensional quantity is the non-dimensional reaction enthalpy ∆hf . It
influences the ratio of initial pressure and end pressure and it appears in the jump condition
for the internal energy. The fourth and fifth non-dimensional numbers are the ratio of
specific heats of unburnt, γu, and burnt gas, γb.

The scaling is not unique. For example, one could have chosen ∆h̃f as a characteristic
enthalpy, and used it for scaling the internal energy. Then, the non-dimensional numbers
which appear would be different.

The non-dimensional mass balance is obtained by scaling Eq. (2.9):

∂%

∂t
+∇ · (%u) = 0. (2.33)

Scaling Eq. (2.10) yields the non-dimensional momentum balance:

ε

(
∂(%u)
∂t

+∇ · (%uu)
)

= −∇p. (2.34)

The non-dimensional energy balance reads as, cf. Eq. (2.11):

∂(%
(
e+ εu2/2

)
)

∂t
+∇ ·

(
%u
(
e+ εu2/2

))
= −∇ · (pu) . (2.35)
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2. Physical Model

For the caloric equation of state, scaling Eq. (2.13) yields the internal energy of the unburnt
gas:

eu = 1
γu − 1

pu
%u

+∆hf . (2.36)

For the burnt gas, the non-dimensional caloric equation of state is obtained by scaling
Eq. (2.14):

eb = 1
γb − 1

pb
%b
. (2.37)

The scaled initial and boundary conditions simplify to:

%(x, 0) = p(x, 0) = 1, u(x, 0) = 0, un(xv, t) = 0.

Scaling Eq. (2.8) yields:

seff = (1− κSt) (pu/%u)2 /pβ. (2.38)

Thus, the velocity of the flame front uf is:

uf = dxf
dt = uu − seffnf . (2.39)

Inserting the scaling quantities into Eqs. (2.24), (2.26) (2.27a) and (2.27b) yields the jump
conditions in non-dimensional form. For the jump of the mass flux, we get:

%useff = %b (un
f − un

b) . (2.40)

The jump of normal momentum and pressure reads as:

εseff%uu
n
u + pu = εseff%uu

n
b + pb. (2.41a)

The tangential component of the jump of momentum flux is:

ut
u = ut

b. (2.41b)

For the jump of energy flux and work done by pressure, we obtain:

%useff
(
eu + εu2

u/2
)

+ puu
n
u = %useff

(
eb + εu2

b/2
)

+ pbu
n
b. (2.42)
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x

y

flame front, basic state

sL = 1

wrinkled flame front
sL > 1

sL < 1

burnt gas

unburnt gas

Figure 2.9.: Schematic drawing of the base state of the unconfined, two-dimensional com-
bustion (top) and a wrinkled flame front (bottom), moving into quiescent,
unburnt gas. The Markstein mechanism works as follows [45]: Regions where
the flame front points towards the burnt gas, κ < 0, have an amplified burning
velocity (marked with a circle), and vice versa (marked with an ellipse).

2.4. Stability of the Flame Front

When treating the flame front as a gasdynamic discontinuity, intrinsic instabilities are
observed [35]. The stability analysis presented here is valid for unconfined combustion, i.e.
the velocity field is (almost) divergence-free. For stability, the viscosity plays a secondary
role [66]. Also, a laminar combustion is assumed.

The mass balance, Eq. (2.33), reduces to the condition of zero divergence of the flow field:

∇ · u = 0. (2.43)

The base flow is a parallel velocity profile with a plane flame front, as shown in Fig. 2.9 on
the top. The undisturbed flame front, located at y = −t, moves into quiescent gas with a
velocity of v = −1 (base state). Thus, the velocity in x direction vanishes, u = 0, and in
y direction, it is a piece-wise constant function:

v =
{

0 y < −t,
σ − 1 y > −t.

(2.44)

The density is a piece-wise constant function, and σ = %u/%b is the density ratio of the
unburnt and burnt gas. Here, it is constant [66, 51]:
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2. Physical Model

% =
{

1 in the unburnt gas,
σ−1 in the burnt gas.

(2.45)

Since temperature and pressure in the unburnt gas are constant, the laminar burning
velocity reads as:

sL = 1− κMa. (2.46)

Here, the Markstein number Ma = l̃Ma/l̃ref is used, since we are dealing with laminar
combustion. For the pressure, the following is obtained:

p =
{

1 y < −t,
1− ε (σ − 1) y > −t.

(2.47)

The jump of pressure is usually very low, since ε � 1 for slow combustion. Since the
laminar burning velocity sL depends on the curvature, high frequency instabilities are
damped. In the analysis by Markstein, the linearised Euler equations combined with the
linearised interface conditions, Eqs. (2.44), (2.45) and (2.47), were solved in the limit of
ε→ 0. This analysis yields a relation for the growth rate α of a disturbance with the wave
number k [56, 66]:

(σ + 1)α2 + 2 (1 + Ma k)σk α−
(
σ−1 − 1− 2Ma σ k

)
σk2 = 0. (2.48)

When the growth rate is positive, the corresponding perturbation mode is unstable. The
critical wave number kc is obtained by setting α = 0:

kc = 1
2
σ − 1
σ

1
Ma . (2.49)

All perturbations with k > kc have a negative growth rate, i.e. they are damped. Vice
versa, distortions with a wave number k < kc have a positive growth rate, which means
that they are unstable. Thus, the Markstein model exhibits a high wave number cut-off.
For Ma → 0, the critical wavenumber becomes infinitely large, kc → ∞. This implies
that sL is constant, corresponding to the Darreius-Landau model, and perturbations of all
wave numbers are unstable.

This concept is also valid for the stability of the averaged, infinitely thin, turbulent flame
front, when the burning velocity depends on the local curvature of the (averaged) front.
Thus, the result of this stability analysis, Eq. (2.49), is used to verify the flame front
tracking algorithm in Chapter 6.
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3. Expansion for Small Mach Numbers

Typical flame speeds for gas combustion are below 1 m/s [71, 24, 72]. For dust, they are
a little higher, between 1 m/s to 5 m/s for organic dust, and between 10 m/s to 20 m/s
for aluminium dust [73]. Note, that for dust explosions, turbulence plays an important
role [8], thus, the burning velocities are higher [74]. Since the speed of sound in air at
normal conditions is about 300 m/s, an expansion of the governing equations under the
assumption of small squared reference Mach numbers, i.e. ε� 1, is justified. Expanding
an arbitrary quantity b yields:

b(x, t) = b0(x, t) + εb1(x, t) + . . . . (3.1)

b0 is the leading-order quantity, and %1 is the second-order quantity. All other higher order
terms do not appear in the formulation.

We show that only the leading-order quantities – with the exception of the pressure –
are necessary to obtain a closed problem formulation. Amongst others, the small Mach
number approximation has been applied by Markstein [56], Buckmaster [75], Matalon [64]
and Law [5]. It allows a simplification of the governing equations. However, with this
approach, the transition from slow deflagrations to detonations cannot be described, since
it is a supersonic process involving shock waves [76].

3.1. Governing Equations

Expansion of the governing equations is done by expanding all quantities with respect
to ε, cf. Eq. (3.1). Then, terms with equal powers of ε are collected. For the leading
order equations, this can also be done by formally setting ε = 0. Thus, the leading-order
conservation of mass is obtained from Eq. (2.33):

∂%0
∂t

+∇ · (%0u0) = 0. (3.2)

Expanding Eq. (2.34) yields:

∇p0 = 0. (3.3)

The energy balance of leading-order, expanding Eq. (2.35), reads as:

∂(%0e0)
∂t

+∇ · (%0u0e0) = −∇ · (p0u0) . (3.4)
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3. Expansion for Small Mach Numbers

In Eqs. (3.2), (3.3) and (3.4), the velocity appears only in divergence form ∇ · u. This
implies that the flow field has to be calculated by the second-order momentum balance:

∂(%0u0)
∂t

+∇ · (%0u0u0) = −∇p1. (3.5)

Dividing Eq. (3.5) by the density, taking the curl and applying basic vector calculus
identities yields a transport equation for the vorticity ω0 = ∇× u0:

∂(%0ω0)
∂t

+∇ · (%0u0ω0) = %0 (ω0 · ∇u0 − ω0∇ · u0) + 1
%0
∇%0 ×∇p1. (3.6)

For the caloric equation of state of the unburnt gas, Eq. (2.36), we get:

eu,0 = 1
γu − 1

pu,0
%u,0

+∆hf . (3.7)

For the burnt gas, the leading-order internal energy is obtained from Eq. (2.36):

eb,0 = 1
γb − 1

pb,0
%b,0

. (3.8)

Expanding the initial and boundary conditions yields:

%0(x, 0) = p0(x, 0) = 1, u0(x, 0) = 0, un
0(xv, t) = 0.

Expanding the jump condition for mass, Eq. (2.40) yields:

%u,0seff = %b,0
(
un

f,0 − un
b,0

)
. (3.9)

For the jump of normal momentum and pressure, we expand Eq. (2.41a):

pu,0 = pb,0, (3.10a)

and for the tangential part, Eq. (2.41b) expands to:

ut
u,0 = ut

b,0. (3.10b)

For the jump of energy flux and work done by the pressure, expansion of Eq. (2.42) yields:

%u,0seffeu,0 + pu,0u
n
u,0 = %u,0seffeb,0 + pb,0u

n
b,0. (3.11)
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3. Expansion for Small Mach Numbers

3.2. Leading-order Formulation

Eq. (3.3) shows that there is no leading-order pressure gradient in the unburnt and burnt
gas, and Eq. (3.10a) implies that there is no pressure jump across the flame front. Thus,
the leading-order pressure is time-dependent only. Using p0 = P and p1 = p′ yields:

p(x, t) ∼ P (t) + εp′(x, t), (3.12)

with a time-dependent only leading-order pressure P (t) which is used in thermodynamic
calculations and a second-order pressure correction p′(x, t) which depends on time and
location. A similar conclusion has been drawn by Emmons in 1958. In his analytical
treatment of the combustion process in an unconfined geometry, the author says that
‘for many purposes the process [combustion] may be considered one of constant pressure’.
Furthermore, he states that it ‘is not permissible, however, to assume that the whole flow
process [...] is a constant pressure process’ [77, pp. 601–602]. When doing a small Mach
number expansion, the pressure is time-dependent only up to leading order. However, the
small pressure fluctuations cannot be neglected. Thus, the second-order pressure has to
be included in the problem description.
In the following, all other quantities are of leading-order, and we drop the subscript ‘0’:

%0 → %, u0 → u, ω0 → ω, e0 → e.

With the material derivative, i.e. the change of a quantity along a streamline,

D(∗)
Dt = ∂(∗)

∂t
+ u · ∇(∗),

the divergence of the velocity field is obtained from Eq. (3.2):

∇ · u = −1
%

D%
Dt , (3.13)

and the second-order momentum balance, Eq. (3.5), is equal to:

∇p′ = −1
%

Du
Dt . (3.14)

Using the definition of the enthalpy h = e + p/% and the material derivative, Eq. (3.4)
reads as:

%
Dh
Dt = dP

dt , (3.15)

which reduces to the isentropic change of state equation, valid everywhere in the flow field
except at the flame front:

1
%

D%
Dt = 1

γ

1
P

dP
dt . (3.16)
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3. Expansion for Small Mach Numbers

This implies that the entropy remains constant for each material element, except when
crossing the flame front. A material element is an infinitely small fluid volume which
moves with the flow. Eq. (3.16) is not valid at the flame front. The entropy s is:

s = ln P

%γ
, or exp s = P

%γ
. (3.17)

In the unburnt gas, su ≡ 0 and in the burnt gas, the entropy increases, sb > 0. The
divergence of the velocity field in the unburnt and burnt gas is time-dependent only, as
seen when putting Eq. (3.16) into Eq. (3.13):

∇ · u = −1
%

D%
Dt = −1

γ

1
P

dP
dt . (3.18)

Since the initial density %i = 1 and the entropy are uniform, the flow is isentropic and the
leading-order pressure P is time-dependent only, the density in the unburnt gas remains
uniform:

%u(t) = P 1/γu . (3.19)

Combining Eqs. (3.6) and (3.14) yields:

Dω
Dt = ω · ∇u− ω∇ · u+ 1

%

Du
Dt ×∇%. (3.20)

Combining Eqs. (3.9), (3.11) and (3.19) and using the fact that P depends only on time
yields the density ratio:

σ = %u
%b

= γb − 1
γb

(
γu

γu − 1 +∆hfP
(1−γu)/γu

)
. (3.21)

Since the right-hand side of Eq. (3.21) is a function of time only, the density in the burnt
gas just behind the flame front is also uniform. For the jump of normal velocity, we use
Eqs. (3.9) and (3.21) and get:

un
u − un

b = (σ − 1) seff = γb − 1
γb

(
γb − γu

(γu − 1) (γb − 1) +∆hfP
(1−γu)/γu

)
seff, (3.22)

and the entropy sb at the flame front reads as:

exp sb = σ1/γb . (3.23)

The effective burning velocity seff can be zero when the curvature is large enough, κ = 1/St.
However, it can never be below zero, since this would imply a ‘reverse’ combustion, i.e.
burnt gas is transformed to unburnt gas, which would contradict the 2nd law of thermody-
namics. The special case seff = 0 means that locally there is no combustion and the flame
front is just passively transported with the flow. Using the isentropic relations for an ideal
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3. Expansion for Small Mach Numbers

gas, the dependence of seff on the temperature can be expressed with the leading-order
pressure:

seff = (1− κSt)P 2(γu−1)/γu−β. (3.24)

For confined combustion, the lowest density, corresponding to the highest entropy and
highest temperature, is at the location of the initial explosion. Considering the first
material element which combusts (at the initial pressure Pi = 1), the ratio of the density
and the entropy have a maximum for all non-trivial cases, i.e. ∆hf > 0:

max σ = γb − 1
γb

(
γu

γu − 1 +∆hf

)
. (3.25)

Thus, the density of the burnt gas has a minimum and the temperature has a maximum
at the initial explosion location. The rise in temperature due to burning and the adiabatic
compression after combustion are non-linear effects. Thus, there is a substantial temper-
ature gradient, also called Flamm-Mache gradient [25, 55, 8], in the burnt gas, especially
in later stages of the process. This can lead to very high temperatures at the location of
the initial explosion and re-illumination, as observed in experiments [55].

Pressure Rise

Integration of the divergence of the velocity over the volume of the vessel Vv yields an
equation for the rise of the pressure. With Eq. (3.18), we get:

y

Vv

∇ · udV =
y

unburnt
∇ · u dV +

y

burnt
∇ · udV = −

(
Vu
γu

+ Vb
γb

) 1
P

dP
dt . (3.26)

vessel wall

vessel

nv

flame front Γnf

n1

S1
n2

S2

burnt
gas

unburnt
gas

Figure 3.1.: Integration path to obtain an expression for the change of pressure.
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Since the velocity u is not continuously differentiable at the flame front, we have to exclude
the flame front from the integration path which is shown in Fig. 3.1. Using Gauß’ theorem,
we write:

y

Vv

∇ · u dV =
{

vessel wall
u · nv dO +

x

S1

u · n1 dO

+
{

Γb

u · nf dO −
{

Γu

u · nf dO +
x

S2

u · n2 dO. (3.27)

Γ is the flame front surface and S1 and S2 are curves from the vessel wall to the flame
front which coincide.

The first integral on the right-hand side is zero due to the boundary condition at the vessel
wall, and the second and last term cancel each other out due to n1 = −n2 and S1 = S2.
Thus, we get:

y

Vv

∇ · udV =
{

f.f.
(un

b − un
u) dO, (3.28)

where f.f. stands for flame front. Combining Eqs. (3.26) and (3.28) yields an ordinary,
non-linear differential equation for the pressure:

(
Vu
γu

+ Vb
γb

) 1
P

dP
dt =

{

f.f.
(un

u − un
b) dO = (σ − 1)

{

f.f.
seff dO > 0. (3.29)

Since σ > 1 and seff > 0, the pressure rise is always positive.

3.3. Decomposition of the Velocity Field

We decompose the velocity field in an irrotational ∇ϕ and a divergence-free part ∇×ψ.
This allows us to find the solution to two easier sub-problems [78]:

u = ∇ϕ+∇×ψ. (3.30)

Taking the divergence of Eq. (3.30), we get:

∇ · u = ∇ · ∇ϕ+∇ · ∇ ×ψ︸ ︷︷ ︸
=0

= ∇2ϕ, (3.31)

and using Eq. (3.18), we get:

∇2ϕ = −1
γ

1
P

dP
dt . (3.32)

Taking the curl of Eq. (3.30), we get:
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∇× u = ω = ∇×∇ϕ︸ ︷︷ ︸
=0

+∇×∇×ψ = −∇2ψ +∇ (∇ ·ψ) . (3.33)

Without loss of generality, we set ∇ ·ψ = 0 and get:

∇2ψ = −ω, (3.34)

where the vorticity ω is obtained by solving Eq. (3.20). The density gradient can be
expressed with the gradient of the entropy, Eq. (3.17):

1
%
∇% = −1

γ
∇s. (3.35)

Putting Eqs. (3.18) and (3.35) into Eq. (3.20) yields:

Dω
Dt = ω · ∇u+ 1

γ

1
P

dP
dt ω + 1

γ
∇s× Du

Dt . (3.36)

Initially, the unburnt gas is at rest, implying a vanishing vorticity. Since friction is ne-
glected and the fluid is barotropic, i.e. the density is only a function of the pressure, the
velocity in the unburnt gas is irrotational for all times [79]. In the burnt gas, we cannot
conclude that there is no vorticity a priori, since in general, the flame front produces vor-
ticity [80, 81, 82]. Additionally, the gradient of the pressure correction, i.e. the material
derivative of the velocity, and the gradient of the entropy function are not necessarily
parallel. This results in a non-zero source term on the right side of Eq. (3.36). Thus,
the vorticity transport equation has to be solved only in the burnt gas and γ = γb in
Eq. (3.36).

We only consider two-dimensional or three-dimensional, rotational symmetric geometries.
Thus, the vorticity has just one component in the z or ϑ direction, respectively. In two
dimensions, ω = ω2Dez. Additionally, the first term on the right-hand side of Eq. (3.36)
is equal to zero, since ez and ∇u are perpendicular and the cross product has only a
non-zero component in z direction:

Dω2D

Dt = 1
γb

1
P

dP
dt ω

2D + 1
γb

(
∇s× Du

Dt

)
· ez. (3.37)

For three-dimensional, rotational symmetric geometries, ω = ω3Deϑ and the velocity
gradient in direction of the vorticity is ur/r [68, Eq. (W) of Table A.7-2, p. 835], where
ur is the velocity component in radial direction. The cross product has only a component
in ϑ direction:

Dω3D

Dt =
(
ur
r

+ 1
γb

1
P

dP
dt

)
ω3D + 1

γb

(
∇s× Du

Dt

)
· eϑ. (3.38)
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3.4. Jump of the Vorticity

With the decomposition of the velocity, we decoupled the divergence and the curl of the
velocity field. Therefore, we need an additional jump condition for the vorticity. Matalon
et. al. [82] considered the vorticity distribution inside the flame zone, and also got an
expression for the jump of vorticity. However, they assume unconfined combustion with
zero-divergence flow. Hayes [83] derived an expression for the jump of the tangential
vorticity for a gasdynamic discontinuity in unsteady, compressible flow. It states that the
vorticity tangential to the discontinuity experiences a jump:

[ω] = n×
(
∇t (%ur) [1/%]− 1

%ur

(
Dtut

Dt + us
Dtn

Dt

)
[%]
)
. (3.39)

[(∗)] = (∗)b−(∗)u denotes the jump of a quantity, ∇t(∗) denotes the gradient in tangential
direction along the flame front and Dt(∗)/Dt denotes the tangential part of the material
derivative of a point on the flame front which moves with the tangential velocity of the flow.
ur and us are the relative and absolute normal velocity of the discontinuity, respectively.
Here, ur = seff and us = un

u + seff.

flame front at time step (n)

x
(n)
f

n
(n)
f

u
(n)
u

u
t,(n)
u

u
(n)
f

flame front at time step (n+ 1)

x
(n+1)
f

u
(n+1)
u

u
t,(n+1)
u

∆u
t,(n+1)
u

Figure 3.2.: Difference of the tangential velocity of the unburnt gas at the flame front
between two time steps. Here, ∆t = 1. For realistic values of the time step,
∆t � 1, the position of the flame front on the top would be much closer to
the one on the bottom.

Dtut
u/Dt is the change of the tangential velocity ut

u when moving with the flame front
velocity uf in tangential direction, as shown in Fig. 3.2:
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Dtut
u

Dt =
(

lim
∆t→0

(
∆ut

u
)
· et

∆t

)
et,

and the same is defined for the normal vector nf .

Using Eq. (2.38) and since the density in the unburnt gas is uniform, the tangential gradient
of the mass flux through the flame front reads as:

∇t (%seff) = −%uSt∇tκ. (3.40)

The vorticity ahead of the discontinuity vanishes, since the flow in the unburnt gas is irro-
tational, thus [ω] = ωb. The vorticity for two-dimensional or three-dimensional, rotational
symmetric flow has only a part in the z or ϑ direction, respectively. For the vorticity at
the flame front in the burnt gas, we get from Eq. (3.39):

ωb = −
(
%uSt∇tκ[1/%] + 1

%useff

(
Dtut

Dt + (un
u + seff) Dtnf

Dt

)
· et[%]

)
. (3.41)

Using Eqs. (3.19) and (3.21), we get [1/%]:

[1/%] = 1
%b
− 1
%u

= (σ − 1)P−1/γu , (3.42)

and [%] is obtained with Eq. (3.21):

[%] = %b − %u = 1− σ
σ

P 1/γu . (3.43)
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Here, we present one-dimensional approximations of an explosion inside a sphere with
centric ignition. Those kind of models are most commonly used in the process indus-
try. In general, this approach cannot account for the flame-flow interaction because the
momentum balance is not included in the derivations.

In the first section, the model presented in Chapter 3 is reduced to one-dimensional geome-
tries. The resulting system of ordinary differential equations are solved within seconds,
compared to simulations of the ‘full’ model which take a couple of hours on modern com-
puters. Thus, explosions inside spheres and infinitely long cylinders can be simulated. In
the next section, three different approaches used in the process industry are presented.

4.1. Symmetrical Solutions for an Infinitely Long Cylinder and
Sphere

To obtain results for an infinitely long cylinder and a sphere with centric ignition, the
model presented in Chapter 3 is reduced to a one-dimensional, symmetrical description.
This implies that all vectors, when expressed in polar or spherical coordinates, only have
a radial component, e.g. for the velocity, u = uer, where er is the unit vector in radial
direction, as shown in Fig. 4.1. Thus, we only consider radial components which are always
normal to the flame front. The flame front remains a sphere or cylinder and the vorticity
vanishes, ω = 0.

ignition
r

rf 1

burnt
gas

unburnt
gas

uf

vessel wall

flame front

Figure 4.1.: One-dimensional approximation: an infinitely long cylinder or sphere.
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In this section, we derive a system of ordinary differential equations for the leading-order
pressure P and the radius of the flame front rf , which is governed by Eq. (2.39):

drf
dt = uu(rf , t) + seff. (4.1)

The difference of the velocity of unburnt and burnt gas at the flame front is, cf. Eq. (3.22):

uu(rf , t)− ub(rf , t) = γb − 1
γb

(
γb − γu

(γu − 1) (γb − 1) +∆hfP
(1−γu)/γu

)
seff. (4.2)

As shown in the next two subsections, the velocity of the unburnt gas always points
away from the flame front towards the vessel wall, whereas the velocity of the burnt gas
always points towards the origin. Solutions of this one-dimensional models are shown in
Chapter 6, where they are compared to the results from the full model.

Infinitely Long Cylinder

The divergence of the velocity in a polar coordinate system, with no components or de-
pendencies in azimuthal direction [68, Eq. (A) of Table A.7-2, p. 834], reads as:

∇ · u = 1
r

∂ (ru)
∂r

= −1
γ

1
P

dP
dt , (4.3)

with the general solution

u(r, t) = −r2
1
γ

1
P

dP
dt + f(t)

r
. (4.4)

f(t) is a function dependent on time only and has to be chosen such that all boundary
conditions are fulfiled. In the unburnt gas, the velocity must vanish at the vessel wall,
uu(1, t) = 0. Thus, we get:

uu(r, t) = r

2
1
γu

1
P

dP
dt
(
r−2 − 1

)
> 0. (4.5)

In the burnt gas, fb(t) = 0 since ub(0, t) must be finite. Thus, the velocity of the burnt
gas reads as:

ub(r, t) = −r2
1
γb

1
P

dP
dt < 0. (4.6)

Inserting Eqs. (4.5) and (4.6) into Eq. (4.2) yields the change of pressure:

1
P

dP
dt = 2 (γb − 1)

rf

γb−γu
(γu−1)(γb−1) +∆hfP

(1−γu)/γu

1 +
(
r−2

f − 1
)
γb/γu

seff. (4.7)
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Inserting Eq. (4.5), evaluated at the flame front r = rf , into Eq. (4.1) gives the flame
speed:

drf
dt = rf

2
1
γu

1
P

dP
dt
(
r−2

f − 1
)

+ seff. (4.8)

For an infinitely long cylinder, the curvature is κ = 1/(2r). Thus, we get a non-linear
ordinary differential equation for the pressure:

1
P

dP
dt = 2 (γb − 1)

rf

γb−γu
(γu−1)(γb−1) +∆hfP

(1−γu)/γu

1 +
(
r−2

f − 1
)
γb/γu

(
1− St

2rf

)
P 2(γu−1)/γu−β, (4.9)

and the flame front radius:

drf
dt = rf

2
1
γu

1
P

dP
dt
(
r−2

f − 1
)

+
(

1− St
2rf

)
P 2(γu−1)/γu−β, (4.10)

subject to the initial conditions P (0) = 1 and rf(0) = rf,i > St/2.

Sphere

The divergence of the velocity in spherical coordinates, with no components or dependen-
cies on the azimuth or the inclination, reads as [68, Eq. (A) of Table A.7-3, p. 836]:

∇ · u = 1
r2
∂
(
r2u

)
∂r

= −1
γ

1
P

dP
dt , (4.11)

with the general solution

u(r, t) = −r3
1
γ

1
P

dP
dt + f(t)

r2 . (4.12)

Adaption to the boundary conditions yields for uu(r, t):

uu(r, t) = r

3
1
γu

1
P

dP
dt
(
r−3 − 1

)
> 0, (4.13)

and ub(r, t):

ub(r, t) = −r3
1
γb

1
P

dP
dt < 0. (4.14)

Evaluating the difference of uu and ub at the flame front yields an equation for the pressure
rise:

1
P

dP
dt = 3 (γb − 1)

rf

γb−γu
(γu−1)(γb−1) +∆hfP

(1−γu)/γu

1 +
(
r−3

f − 1
)
γb/γu

seff. (4.15)

40



4. State of the Art in Industrial Applications

Inserting Eq. (4.13), evaluated at the flame front r = rf into Eq. (4.1) gives the flame
speed:

drf
dt = rf

3
1
γu

1
P

dP
dt
(
r−3

f − 1
)

+ seff. (4.16)

The curvature of a sphere is the inverse of its radius, κ = 1/r. Thus, the ordinary
differential equation for the pressure reads as:

1
P

dP
dt = 3 (γb − 1)

rf

γb−γu
(γu−1)(γb−1) +∆hfP

(1−γu)/γu

1 +
(
r−3

f − 1
)
γb/γu

(
1− St

rf

)
P 2(γu−1)/γu−β, (4.17)

and for the flame front radius, we get:

drf
dt = rf

3
1
γu

1
P

dP
dt
(
r−3

f − 1
)

+
(

1− St
rf

)
P 2(γu−1)/γu−β, (4.18)

subject to the initial conditions P (0) = 1 and rf(0) = rf,i > St.

4.2. Commonly Used Models in Industry

Most commonly used in industry are the so-called global integral models. They are derived
using the global mass and energy balances, and can only be solved for spheres with centric
ignition. The flow field itself is not considered, since the local momentum balance is not
used. Three different areas of physics have to be addressed [8]: (I) spatial structure of the
problem, (II) thermodynamics and (III) combustion progress.
The spatial structure is often a two- or three-zone model, where the flame front thickness
is completely neglected (two zones), or it is resolved using simplified assumptions (three
zones). For the thermodynamics, isothermal and isentropic models are most commonly
used. The combustion progress is often modelled with the fractional pressure rise relation.
It equates the fraction of burnt mass to the fraction of pressure rise [25, 55]:

m̃b
m̃tot

= P̃ − P̃i

P̃max − P̃i
. (4.19)

m̃b is the mass of the burnt gas, m̃tot is the total mass, i.e. the mass of unburnt and burnt
gas. For the industry models, Eq. (4.19) replaces the differential equation for the flame
front radius, Eqs. (4.10) and (4.18), from the previous section.
This assumption is only valid for ideal gases with constant specific heats and equal number
of moles in unburnt and burnt gas, and perfect mixture, i.e. no temperature gradients
in burnt and unburnt gas [8]. It was first derived by Lewis and von Elbe [55]. The
assumption of a vanishing temperature gradient in the burnt gas does not hold for confined
combustion [84, 25, 55]. It is an approximation which introduces errors in the order of
10 % [8]. Thus, the relation is criticised because of oversimplifications [85] and it leads to
systematic errors [86]. Despite this limitations, it is often used in the industrial design
process of dust explosion suppression devices.
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All of the relations presented here are only valid for spherical vessels. A straightforward
extension to arbitrary, non-spherical geometries is not easily possible [87]. Shape parame-
ters which quantify the deviation from a spherical vessel are used. In the following, three
different modelling approaches are presented here: the simple model introduced by Nagy
and colleagues from the U.S. Bureau of Mines [10, 7], a more complex model by Nomura
and Tanaka [87] and the more advanced modelling by Bradley and Mitcheson [11].

Isothermal and Isentropic Model by Nagy, Conn and Verakris

One of the first to derive a mathematical model to describe dust explosions as premixed
combustion of an ideal gas in closed geometries were Nagy, Conn and Verakis [10, 7]. They
assume a centric ignition inside a closed vessel and implicitly an infinitely thin flame front.
The authors differentiate between isothermal and isentropic conditions. Thus, they obtain
two different descriptions for the rate of pressure change. By assuming that the unburnt
and burnt fluid is an ideal gas, they take an averaging approach to better account for
the properties of dust particles. This is done by adapting the ratio of specific heat. The
burning velocity depends on the pressure and temperature according to Eq. (2.7). The
influence of the geometry of the vessel is taken into account by shape factors. To account
for turbulence, an empirical parameter is introduced which increases the burning rate. By
taking experimental data, they conclude that the influence of turbulence leads to a five
times larger burning velocity.

In their isothermal model, they assume that the temperatures of the unburnt and burnt
gas remain the same throughout the explosion. For the ordinary differential equation for
the rate of pressure rise, they get [1]:

dP̃
dt̃

= 3s̃0
eff

r̃vP̃i

(
P̃e − P̃i

)1/3
P̃ 2/3

e

(
P̃ − P̃i

)2/3
P̃ 1/3. (4.20)

The effective burning velocity is assumed to be independent of the pressure, thus β = 0.
When using this model, the deflagration index reads as:

K̃St = (36π)1/3 P̃e

P̃i

(
P̃e − P̃i

)
s̃0
eff. (4.21)

The choice of the effective burning velocity enables experimenters to adapt the pressure-
time curve obtained from Eq. (4.20) to experimental data.

For isentropic conditions, the compression results in an increase in temperature of the
unburnt and burnt gas, and the pressure equation reads as:

dP̃
dt̃

= 3γs̃0
effP̃

β
ref

r̃vP̃
2−1/γ
i

(
P̃ 1/γ

e − P̃ 1/γ
i

)1/3 (
P̃ 1/γ − P̃ 1/γ

i

)2/3
(
P̃e

P̃

)2/3γ

P̃ 3−2/γ−β. (4.22)

Nagy et al. conclude that by including the dependency of the burning velocity on the
pressure, Eq. (4.22) produces better results when compared to experimental data than
Eq. (4.20). When using the adiabatic approach and setting β = 0, the deflagration index
reads as:
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K̃St = (36π)1/3
(
P̃e

P̃i

)2−1/γ (
P̃ 1/γ

e − P̃ 1/γ
i

)
P̃ 1−1/γ

e s̃0
eff. (4.23)

The approach of Nagy and his colleagues was a very practical one: First, they had much
experimental data to validate their model and find good material parameters. Next, in
their derivations, they introduce a number of ad-hoc assumptions and simplifications,
based on estimation of scales or constraints of validity. As mentioned, only spherical
explosion events can be described by their model.

Particle Shells Model by Nomura and Tanaka

Nomura and Tanaka [87] did a detailed analysis of dust explosion propagation inside
spherical and non-spherical vessels. They assume that single-sized particles are distributed
uniformly on surfaces with radii (n− 1) L̃, n = 2, 3, . . . (shells of particles) from the centre
of the vessel. The average distance between neighbouring particles L̃ can be estimated
with:

L̃ =
(
%̃s
c̃d

)1/3
d̃p.

c̃d is the dust concentration, %̃s is the particle density and d̃p is the particle size. When
the dust cloud is ignited in the centre of the vessel, the explosion is assumed to be the
successive burning of neighbouring particles.
The burning velocity is defined as the velocity of the flame which travels from one shell of
particles to the next. Thus, they get:

s̃eff = L̃

∆t̃n
.

∆t̃n is the time interval for the propagation of the flame from the (n − 1)th to the (n)th
particle shell. For n→∞, this time reaches a constant value. Thus, s̃eff is constant.
They consider heat transfer between the solid and gas phase, the change of moles in
unburnt and burnt gas and derive an expression for the rate of pressure rise in a closed
vessel:

dP̃
dt̃

= γuP̃
1−1/γu

(
P 1/γu

e − P 1/γu
i

) dM̃(t)/dt̃
M̃i

. (4.24)

M̃(t) is the total mass of burnt particles and can be approximated by:

M̃(t) = 8m̃i
∆t̃3

t̃3.

m̃i is the initial mass of all particles, and ∆t̃ = ∆t̃n→∞ is the constant limit time interval
that the flame front takes to travel from one particle shell to the next. According to
Eckhoff, this corresponds to a slightly adapted fractional pressure rise relation [1]:
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m̃b
m̃tot

= P̃ 1/γ − P̃ 1/γ
i

P̃
1/γ
e − P̃ 1/γ

i
.

For the deflagration index, they obtain:

K̃St = γud̃pP̃e
∆t̃

(36π%̃s
c̃eff

)1/3
1−

(
P̃i

P̃e

)1/γu
 . (4.25)

c̃eff is the effective dust concentration, i.e. the actual dust concentration for fuel-lean
combustion, and the stoichiometric dust concentration for fuel-rich combustion.

Nomura and Tanaka also consider flame propagation in a cylindrical vessel. However, they
assume that the flame remains spherical until it touches the wall, and then the shape of
the flame front is taken to be a cut-off sphere which fits into the cylinder. As shown in
Chapter 7, this can only be a crude approximation to the actual shape of the flame front.

Advanced Modelling by Bradley and Mitcheson

Bradley and Mitcheson did a detailed analysis of the spherical combustion of gases [11].
In their computer model, they consider eleven different chemical species and account for
temperature-dependent material parameters using data from NIST-JANAF databases.
Their algorithm consists of an iterative solving procedure (cf. Fig. 3 in their paper). The
flame front is modelled as having a varying thickness over time which has to be calculated
in each time step.

They divide the combustion process into much smaller subprocesses. Thus, a small mass
element dm̃u burns at constant pressure. The reactants do not transform immediately, but
instead have to pass through the reaction zone. There, it is pre-heated, and eventually
reaches its ideal equilibrium temperature. The combustion of each small mass element
leads to small pressure increment. They also calculate trajectories of particles. With their
results, they conclude that flow reversal happens at the flame front, and that the highest
speeds occur at the beginning near the flame front in the unburnt gas. This model is called
‘computer model’ by the authors, since it can only be simulated with advanced numerical
tools1.

One of their results was that the burning velocity is not constant, but has to depend on
the current thermodynamic state. Otherwise, deviations from experiments become too
large. They also conclude that the pressure can be approximated by a simple power law
of the time, dP̃ /dt̃ ∝ t̃3.5. Again, the extension to arbitrary shapes of the boundary was
not done.

1In Section 8.5.3 of his book [8], Ogle presents an adiabatic model which he states was developed by
Bradley and Mitcheson. However, this model was formulated by other authors, which becomes clear
when reading the original paper [11]. Fig. 8.6 from Ogle [8, page 436] does not correspond to the
model presented in the corresponding section. Instead, this figure shows results from the more complex
computer model with a finite and variable flame thickness, i.e. the advanced model by Bradley and
Mitcheson, presented in this section here.
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The numerical algorithm presented in this chapter is closely adapted to the structure of
the expanded governing equations from Chapter 3. We need methods to keep track of a
moving discontinuity, solve Poisson’s equations and the vorticity transport equation, and
account for the jump of entropy and vorticity at the flame front.
Some of these tasks are easily done on a Lagrangian mesh, i.e. a mesh where the mesh
points move with the flow, and others on a fixed, Eulerian mesh. For example, the entropy
is constant for each material element, except when crossing the flame front. Thus, the
entropy is most conveniently described on a Lagrangian mesh. When a point of this mesh
jumps over the flame front, the corresponding value of the entropy is increased. On the
other hand, a Poisson’s equation is solved most conveniently on a regular, Cartesian grid
using Fourier transformations. Thus, two types of meshes are used.
In Section 5.1, the assumption that the ratio of specific heats is the same in the unburnt
and burnt gas, i.e. γu = γb ≡ γ, is introduced. While it seems to be a limitation, others
have used it in their analysis as well [7, 8] with good agreement to experimental data. All
governing, expanded equations relevant to the numerical algorithm are presented.
In Section 5.2, the velocity field is split into four different parts. This allows to take ad-
vantage of features of the governing equation. As an example, the fact that the divergence
of the velocity field is time-dependent only is used to simplify the algorithm.
In Section 5.3, the solution procedure is given. Since the velocity field consists of different
parts, a well thought-out design of the sequence of numerical calculations is necessary.
In Section 5.4, the temporal discretisation of the vorticity transport equation and pressure
change is given. Since the vorticity is evaluated on moving mesh points, the material
derivative corresponds to the change of a quantity defined on moving mesh points.
In Section 5.5, details about the spatial discretisation are given. Four different discreti-
sation schemes are explained, and the calculation of the entropy gradient on a distorted
grid using central finite differences is outlined. Also, the simple tracking algorithm of the
flame front is described, which is tracked with marker points.
In Section 5.6, panel methods are explained. They are normally used for calculation of
the flow around an airfoil. However, here they serve two purposes: (I) They enable us to
combine the tracking of the flame front and the fulfilment of the jump condition for the
normal velocity at the front. (II) The boundary condition at the vessel wall, a vanishing
normal velocity, is satisfied using panel methods.
In Section 5.7, mathematical details on Fourier-Bessel transformations are given. We apply
this concept to find a solution to a general Poisson’s equation, and thus, find the vector
potential. In the function space of Fourier functions, differential equations are solved with
simple algebraic operations on the Fourier coefficients. Thus, taking the curl of the vector
potential is also done in the Fourier space.
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5.1. Full Problem Formulation

The two physical quantities that determine the velocity field are the scalar potential, cf.
Eq. (3.32):

∇2ϕ = ∇ · u, (5.1)

and the vector potential, cf. Eq. (3.34):

∇2ψ = −ω. (5.2)

Then, the velocity field is given by:

u = ∇ϕ+∇×ψ. (5.3)

The divergence of the velocity is given by Eq. (3.13):

∇ · u = −1
γ

1
P

dP
dt , (5.4)

and the pressure change is obtained from Eq. (3.29):

1
γ

1
P

dP
dt = σ − 1

Vv

{

f.f.
seff dO. (5.5)

The vorticity is governed by Eq. (3.37):

Dω2D

Dt = 1
γ

1
P

dP
dt ω

2D + 1
γ

(
∇s× Du

Dt

)
· ez, (5.6)

or Eq. (3.38):

Dω3D

Dt =
(
ur
r

+ 1
γ

1
P

dP
dt

)
ω3D + 1

γ

(
∇s× Du

Dt

)
· eϑ. (5.7)

Jump Conditions

The density ratio σ is obtained by setting γu = γb in Eq. (3.21):

σ = 1 + γ − 1
γ

∆hfP
(1−γ)/γ , (5.8)

and the jump of normal velocity is obtained from Eq. (3.22):

un
u − un

b = (σ − 1) seff = γ − 1
γ

∆hfP
(1−γ)/γseff. (5.9)
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The entropy of a material element in the burnt gas reads as, Eq. (3.23):

exp sb = σ̂1/γ , (5.10)

where σ̂ denotes the ratio of densities at the time when the material element crossed the
flame front. Additionally, it is constant for a material element:

D exp sb
Dt = 0. (5.11)

The burning velocity depends on the thermodynamic pressure, cf. Eq. (3.24):

seff = (1− κSt)P 2(γ−1)/γ−β. (5.12)

Eq. (3.41) yields the vorticity of the burnt gas just behind the flame front:

ωb = −
(
%uSt∇tκ[1/%] + 1

%useff

(
Dtut

Dt + (un
u + seff) Dtnf

Dt

)
· et[%]

)
. (5.13)

5.2. Partition of the Velocity

Consider Eq. (5.1), which is valid everywhere except at the flame front, and Eq. (5.9),
which relates the normal velocity of the unburnt and burnt gas at the flame front. The
flame front itself is modeled as a discontinuity sheet where heat is instantaneously released.
This implies a singular source of divergence or, putting it differently, a volumetric source
term. The solution of Eq. (5.1) can be expanded to include the effect of the jump of
normal velocity and the boundary condition at the vessel wall,

ϕ = ϕp + ϕd + ϕv. (5.14)

These three scalar potentials correspond to three parts of the velocity field which are called
up = ∇ϕp, ud = ∇ϕd and uv = ∇ϕv, respectively.

ϕp is one particulate solution to Eq. (5.1). Looking from a physical point of view, it is
induced by the negative divergence of the flow field:

ϕp = −1
γ

1
P

dP
dt
x · x

6 . (5.15)

Since it is explicitly given, it does not require any computational mesh. The corresponding
velocity field reads as:

up = −1
γ

1
P

dP
dt
x

3 . (5.16)

ϕd and ϕv are solutions to Laplace’s equation with different boundary conditions:
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∇2ϕd = 0, ∇2ϕv = 0. (5.17)

ϕd is obtained by solving a boundary value problem at the flame front. It is necessary to
fulfil the jump condition for the normal velocity at the flame front, Eq. (5.9):

ϕd = σ − 1
4π

{

f.f.

seff
||x− xf ||

dO. (5.18)

Thus, ud = ∇ϕd fulfils the jump condition at the flame front, Eq. (5.9):

ud = σ − 1
4π

{

f.f.

(x− xf) seff
||x− xf ||3/2 dO. (5.19)

ϕv is determined such that ∇ϕv has a vanishing normal component at the vessel wall. It
is determined by solving a boundary value problem at the vessel wall.

In general, the vorticity ω yields a non-zero vector potential ψ, cf. Eq. (5.2), and a
non-zero velocity in unburnt and burnt gas. This is the fourth part of the velocity field
uω = ∇ × ψ. Note, that uω still has to be irrotational in the unburnt gas, although it
is the direct result of the non-zero vorticity in the burnt gas. Finding uω requires a grid
in the whole computational domain. Since it is obtained by a spectral method, a regular,
fixed Cartesian grid is used.

At the vessel wall, x = xv, the normal part of the velocity must vanish, u(xv, t) ·nv = 0.
To simplify the algorithm, neither up, ud, uω nor the sum of those three parts fulfil
this boundary condition. Instead, boundary conditions which are more appropriate to the
solution method are applied. Thus, uv = ∇ϕv is chosen such that the wall normal velocity
is:

uv · nv = − (up + ud + uω) · nv = un,ind.
v . (5.20)

This corresponds to a second boundary value problem, defined at the vessel wall (v.w.),
where qv has to be found such that Eq. (5.20) is fulfiled:

ϕv = 1
4π

{

v.w.

qv
||x− xv||

dO. (5.21)

The resulting velocity uv = ∇ϕv reads as:

uv = 1
4π

{

v.w.

(x− xv) qv

||x− xv||3/2 dO. (5.22)

To summarise, the total velocity consists of four different parts:

u = up + ud + uω + uv. (5.23)

Thus, the velocity fulfils all boundary and jump conditions.
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5.3. Solution Procedure

Since the equations for the different parts of the velocity are coupled in a non-linear way,
we use an explicit time discretisation scheme. Assume that we have all relevant quantities,
the velocity field uold, pressure Pold, pressure change (dP/dt)old, vorticity ωold and the
entropy in the burnt gas sb,old, given at the previous time step, denoted by the subscript
‘old’.

The flowchart of the time-discrete algorithm is given in Fig. 5.1. First, the gradient of
the entropy ∇s and the material derivative of the velocity Du/Dt is calculated, using the
entropy, pressure and velocity from the previous time step. Then, the vorticity transport
equation is solved, which yields the new vorticity field ω. With the new vorticity, we find
a new vector potential ψ, and a new vector potential velocity uω.

For the velocity part due to heat release at the flame front ud, we need the pressure
from the previous time step and the location of the flame front. This enables us to solve
Eq. (5.18). Old pressure and old pressure rise are used to obtain the velocity part up
induced by the spatially uniform divergence from Eq. (5.16).

Now, we have three parts of the velocity. To get uv, we calculate the induced normal veloc-
ity at the vessel wall and solve a Laplace’ equation with appropriate boundary conditions,
cf. Eq. (5.21).

With the total velocity field, we move the flame front to its new position, and calculate
the new pressure, pressure rise and update the entropy, where necessary.

5.4. Time Discretisation

The material derivative of the velocity and vorticity, cf. Eqs. (5.6), are discretised with
a first-order scheme. Since the material derivative is evaluated on a Lagrangian mesh, it
reads for an arbitrary quantity b as:

(Db
Dt

)(n+1)
≈ b(n+1) − b(n)

∆t
. (5.24)

The pressure equation, Eq. (5.5), is discretised with a first-order explicit Euler scheme.
The right-hand side is evaluated at the previous time step and the discretised equation
reads as:

1
γ

1
P (n)

P (n+1) − P (n)

∆t
= σ(n) − 1

Vv

{

f.f.(n)

s
(n)
eff dO. (5.25)

Thus, the new pressure is:

P (n+1) =

1 +

(
σ(n) − 1

)
γ∆t

Vv

{

f.f.(n)

s
(n)
eff dO

P (n). (5.26)
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Calculate ∇s and Du/DtPrevious time step
Pold, uold
sold

Solve vorticity transport equation

∇s, Du/Dt
uold, ωold

Solve vector potential equation

ω

Calculate uω

ψ

Calculate ud
Pold

Calculate up
Pold, (dP/dt)old

Calculate uv and the total velocity u

uω

ud

up

Move flame front
uu

Calculate P and s

A(Γ )

Next time step
P , dP/dt
s, u, ω

Figure 5.1.: Flowchart of the solution procedure.

The vorticity transport equation is discretised with a first-order semi-implicit Euler scheme
on Lagrangian mesh points. The change of pressure, the velocity, the gradient of the
entropy and the material derivative of the velocity are evaluated at the previous time
step. The time-discrete two-dimensional vorticity equation is obtained from Eq. (5.6) and
reads as:

ω2D,(n+1) − ω2D,(n)

∆t
=
(1
γ

1
P

dP
dt

)(n)
ω2D,(n+1) + 1

γ

(
∇s× Du

Dt

)(n)
· ez. (5.27)

For three-dimensional, axisymmetric geometries, Eq. (5.7) yields:

ω3D,(n+1) − ω3D,(n)

∆t
=
(
ur
r

+ 1
γ

1
P

dP
dt

)(n)
ω3D,(n+1) + 1

γ

(
∇s× Du

Dt

)(n)
· eϑ. (5.28)

5.5. Spatial Discretisation

We use four different spatial discretisation schemes: two with non-moving meshes, for the
vessel wall and the Cartesian background mesh, and two meshes which move with the flow
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and with the flame front, respectively. An illustration is given in Fig. 5.2.

z

r
0 1

1

∆fix

∆

(a) t = 0

z

r
0 1

1

(b) t > 0

Figure 5.2.: Spatial discretisation of a rotational symmetric geometry: The flame front (×)
and vessel wall ( ) are discretised by marker points. Additionally, a moving
mesh (�), with an initial distance between two neighbouring points of ∆, and
a fixed, regular Cartesian grid (- - ), with a distance of ∆fix are used.

The initial flame front location, marked by a cross in Fig. 5.2a, and its initial radius are
given. Marker points are placed equally spaced along the initial flame front. Additionally,
Lagrangian mesh points denoted by squares in Fig. 5.2a are distributed equally spaced
inside the vessel. They move with the flow, as shown in Fig. 5.2b. The initial distance
between two neighbouring mesh points is ∆. The background mesh, a regular Cartesian
grid, fixed in space and has a distance of ∆fix between two grid points. It is shown with
dashed lines in Fig. 5.2
For each time step, we have to move the Lagrangian mesh points to their new position.
If a point crosses the flame front, its entropy and vorticity are updated according to the
jump conditions, Eqs. (5.10) and (5.13), respectively. Then, the gradient of the entropy
in the burnt gas is obtained by a central finite difference scheme on an arbitrary distorted
grid. Details on the gradient calculation are given in Appendix B.
The flame front is represented by Nf connected marker points xf,i as shown in Fig. 5.3.
The points move with the front, and form a polygon. The vessel wall is represented by
Nv connected vessel wall points xv,i. The connection line between two neighbouring flame
front or vessel wall points is called a panel. Along the arc length of each panel, a singular
volumetric source density distribution q is prescribed. For the flame front panels, the
strength qf,i is equal to the jump of normal velocity, cf. Eq. (5.9). The source strength of
the vessel wall panels is determined by the jump condition of a vanishing normal velocity.
The flame front points move with the flow. Thus, the new position of each marker point
at time step (n+ 1) is:

x
(n+1)
f,i = x

(n)
f,i +∆tu

(n)
f,i . (5.29)
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flame front

flame front panels

unburnt gas

burnt gas

xf,i
xf,i+1

nf,i

xc
f,i

Figure 5.3.: Connected marker points xf,i represent the flame front. The line between two
adjacent points is called ‘panel’.

uf,i is the sum of the unburnt velocity and the normal vector times the burning velocity:

u
(n)
f,i = u

(n)
u,i + s

(n)
eff,in

(n)
i . (5.30)

The velocity of the unburnt gas is evaluated in the middle between two marker points xc
f .

Thus, it has to be interpolated using linear interpolation. Also, the normal vector is not
directly available at the flame front points but found by a linear interpolation scheme:

uint
u,i =

liu
c
u,i−1 + li−1u

c
u,i

li + li−1
, nint

i = lini−1 + li−1ni
li + li−1

. (5.31)

uint
u,i and nint

i are the interpolated velocity of the unburnt gas and normal vector, respec-
tively, at the ith flame front point xf,i, li is the length of the ith panel, uc

u,i is the velocity
of the unburnt gas evaluated in the middle between two adjacent panel points xc

f,i and ni
is the normal vector of the ith panel.
The effective flame speed is calculated using the pressure of the previous time step:

s
(n)
eff,i =

(
1− κ(n)

i St
) (
P (n)

)2(γ−1)/γ−β
. (5.32)

Details on the calculation of the curvature are given in Appendix B.

Stabilisation of the Front Moving Algorithm

When choosing a sufficiently small stabilisation number, the flame front is partially un-
stable. This leads to a wrinkling of the flame front. In order to avoid an unphysical
front tracking, we iteratively reseed the marker points during each time step, as shown
in Fig. 5.4. Osher and Sethian give some details about the inherent instability of the
marker particles approach when dealing with discontinuities with curvature-dependent
speeds [88]. An unphysical front tracking includes self-intersection and panels which are
too close together.
Two parameters have an influence on the reseeding algorithm: the average panel length
lavg and the minimum angle αmin two adjacent panels have to enclose. During each time
step, all panels are checked for (I) length and (II) angle. If a panel is too short, it is
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before

l < 0.5lavg

after
(a) Panel too short.

before

α < αmin

after
(b) Panel too sharp.

before

l > 2lavg

after
(c) Panel too long.

Figure 5.4.: The stabilisation and re-seeding algorithm of the flame front tracking ensures
that the flame front does not self-intersect. (a) Too short panels are cut out.
(b) If the angle between two adjacent panels is too small, the middle flame
front marker point is removed. (c) Too long panels are split by introducing
new marker points [69, Fig. 4].

removed as shown in Fig. 5.4a. When the angle between two adjacent panels is too small,
as shown in Fig. 5.4b, the centre point is removed. When a panel becomes too long, as
shown in Fig. 5.4c, new marker points are introduced. Special care has to be taken when
there are more than one consecutive too short panels.

Note, that this stabilisation algorithm is used only for the unconfined channel combustion,
to verify the front tracking algorithm. For confined combustion, stability of the flame front
has to be ensured by choosing a sufficiently large turbulent stabilisation number. Other-
wise, a cusp would lead to a singularity in the vorticity distribution, and the numerical
algorithm would become unstable. Also, unstable modes need time to develop and a
coarser discretisation of the flame front numerically damps instabilities. Thus, a smaller
time step and a lager number of flame front panels also requires a larger stabilisation
number (up to the limit of total stability).

5.6. Panel Methods

Panel methods are mainly used in aerodynamics to calculate the flow around airfoils under
the assumption of irrotational and inviscid flow [89]. The basic idea is to superimpose
fundamental solutions of Laplace’s equation – in case of low Mach number flow – to fulfil
all boundary conditions. The boundary geometry is approximated by straight lines, called
‘panels’. Along each panel, a singular source is prescribed. The strength of the sources of
all panels is determined by solving a linear system of equations [90, 91].

Here, we adapt the panel methods as follows: The flame front and vessel wall are discretised
by panels. By prescribing a singular source distribution at a panel, the normal velocity
experiences a jump when crossing the panel, whereas the tangential velocity does not
change. We use this feature to fulfil the jump condition of the normal velocity at the
flame front. The sum of the velocities of all flame front panels ud is the solution to the
boundary value problem at the flame front, Eq. (5.18).

For the vessel wall panels, we have to fulfil the boundary condition of a vanishing normal
velocity at the boundaries. Thus, the source strength distribution for those panels are
solution to a linear system of equations. In principle, this corresponds to a panel method
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for internal flow. The sum of the velocities induced by all vessel wall panels uv is the
solution to Eq. (5.21).

In the first two parts, the fundamental solution of the velocity induced by a single panel
for two-dimensional and rotational symmetric panels is derived. Then, the application of
the panel method to find a solution to Eqs. (5.19) and (5.22) is outlined.

Two-dimensional Panels

One fundamental solution ϕ to Laplace’s equation, corresponding to a point source with
a strength q at xs in two dimensions, is:

ϕ = q

2π ln ||x− xs|| . (5.33)

The velocity is simply the gradient of the potential ϕ:

u = ∇ϕ = q

2π
x− xs
||x− xs||

. (5.34)

When dealing with two-dimensional potential flow, it is convenient to switch to a complex
notation. Thus, we have the complex location z = x+iy, where x and y are the Cartesian
coordinates (x, y) and i =

√
−1 is the imaginary unit. Similarly, we define a complex

velocity U = u− iv, where the velocity in Cartesian coordinates is u = (u, v).

When integrating the velocity per unit length along a panel which connects the two com-
plex points z1 and z2, we get the complex velocity induced by a single panel with a source
strength q:

U = q

2π
||z1 − z2||
z1 − z2

ln z − z2
z − z1

. (5.35)

ln is the complex-valued logarithm. When z = z1 or z = z2, i.e. at the panel edges, the
velocity is singular. It is clear that the velocity in Cartesian coordinates is:

u = <(U), v = −=(U). (5.36)

< and = are the real and imaginary part of a complex number, respectively.

Three-dimensional, Rotational Symmetric Panels

In three dimensions, one fundamental solution ϕ to Laplace’s equation with a point source,
located at xs, is:

ϕ = q

4π
1

||x− xs||
. (5.37)

The resulting velocity is the gradient of ϕ:
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u = q

4π
x− xs

||x− xs||3
. (5.38)

To obtain the velocity of a single panel, we have to integrate the velocity per unit area
over the surface of a panel. In the case of rotational symmetric geometries, a panel is
represented by a truncated cone, see Fig. A.1 in Appendix A. For the velocity in radial
direction ur, we obtain:

ur = q

π

1∫
0

(rp(s)− r) d(s)
m(s)

√
1 +m(s)

(
(m(s)− e(s)) E(m′(s)) + K(m′(s))

)
ds. (5.39)

K and E are the complete elliptic integrals of the first and second kind, respectively [92].
m, d and e are parameters which depend on the geometry of the panel and the location
of the point x. For details, see Appendix A. The velocity uz in the z direction reads as:

uz = q

π

1∫
0

(zp(s)− z) d(s) E(m′(s))√
1 +m(s)

ds. (5.40)

Application to the Flame Front and Vessel Wall

Along each panel i of the flame front and vessel wall, a constant source strength density
qi is prescribed. For the flame front panels, qf,i has to be chosen such that the jump
conditions for the normal velocity is fulfiled. For the vessel wall panels, qv,i is determined
by a linear system of equations, to fulfil the boundary condition at the vessel wall, i.e. the
normal velocity must be zero.

For the flame front panels, qf,i is equal to the jump of the normal velocity, Eq. (5.9):

qf,i = un
u,i − un

b,i = (σ − 1) seff,i. (5.41)

seff depends on the local curvature and the pressure. The velocity induced by Nf flame
front panels reads as:

ud =
Nf∑
i=1

qf,iu
s
f,i. = (σ − 1)

Nf∑
i=1

seff,iu
s
f,i. (5.42)

us
f,i is the velocity induced by the ith flame front panel with a source strength density

qs
f,i = 1.

The velocity uv is the sum of all velocities induced by the source strength densities of the
Nv vessel wall panels. Thus, Eq. (5.22) yields:

uv =
Nv∑
i=1

qv,iu
s
v,i. (5.43)
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us
v,i is the velocity induced by the ith vessel wall panel with a source strength density

qv,i = 1. We know the value of the normal velocity at the vessel wall from Eq. (5.20). This
yields Nv linear equations for the unknown source strengths qv,i:

Nv∑
i=1

qv,iu
s
v,i · nv,j = un,ind.

v,j (5.44)

nv,j is the normal vector of the jth panel, pointing outside of the vessel. The (Nv ×Nv)
matrix A = Aij = us

v,i ·nv,j describes the normal velocity induced by the source strength
density qv,i of panel i at the centre of panel j. It is also called the influence matrix and
is well-known from classical panel methods used in aerodynamics [91]. Thus, the source
strength of the vessel wall panels qv is the solution to the following system of equations:

Aijqv,j = un,ind.
v,i . (5.45)

5.7. Fourier-Bessel Transformations

This section explains the concepts which are used to find the velocity induced by the
vorticity and vector potential. Expanding a function in the Fourier-Bessel function spaces
allows us to transform a function f from the Euclidean space to the Fourier-Bessel function
space. The Fourier-Bessel transform is a superposition of sine, cosine and Bessel functions
that approximate f in the L2 (two-dimensional geometries) and L2∗ (axisymmetric ge-
ometries) space. In the Fourier-Bessel function space, differential and integral equations
can be solved by performing simple algebraic operations on the Fourier-Bessel coefficients.

Normally, the discrete Fourier transformation is performed on a regular, equally spaced
Cartesian grid. Here, we want to find the Fourier-Bessel coefficients for ω. However,
the vorticity is defined on a moving, non-regular grid, where the transformation to the
Fourier-Bessel function space is not readily possible. Thus, an interpolation scheme is
needed to find values of ω on a regular, non-moving Cartesian grid. This interpolation
is combined with the transformation of ω into the Fourier-Bessel function space. Then,
the solution to Poisson’s equation can easily be found and yields the vector potential ψ.
With this, the velocity part due to vorticity uω can be obtained by taking the curl of ψ.
Finally, uω is transformed back into the Euclidean space.

Two-dimensional Fourier Transformation

We consider the function system:

{cos(2π(kx+ ly)), sin(2π(kx+ ly)), k = 0, . . . ,∞, l = 0, . . . ,∞} . (5.46)

It forms a complete orthogonal function system on the function space:

L2 =
{
f : [0, 1]2 → R

∣∣∣x f2 dx dy <∞
}
. (5.47)
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Let f(x, y) : L2([0, 1]2 → R) be a periodic function with period one in x and y direction.
Then, it can be expanded into a Fourier series with N and M modes:

f(x, y) ≈
N∑
k=0

M∑
l=0

(akl cos(2π(kx+ ly)) + bkl sin(2π(kx+ ly))) , (5.48)

with

lim
N,M→∞

∣∣∣∣∣
∣∣∣∣∣f −

N∑
k=0

M∑
l=0

(akl cos(2π(kx+ ly)) + bkl sin(2π(kx+ ly)))
∣∣∣∣∣
∣∣∣∣∣
2

= 0. (5.49)

akl and bkl are the Fourier coefficients and can be obtained by integration. Note, that
b00 ≡ 0, since the corresponding sine function is zero.

Solving Poisson’s Equation in Two Dimensions

We need to find solutions to the vector Poisson’s equation in z direction, Eq.(5.2). The
Laplace operator in z direction applied to the vector potential ψ in Cartesian coordinates
reads as:

[
∇2ψ

]
z

= ∂2ψ

∂x2 + ∂2ψ

∂y2 = −ω(x, y). (5.50)

The vector potential ψ = ψez and the vorticity ω = ωez only have a component in z
direction. Expanding ψ yields:

ψ =
∞∑
k=0

∞∑
l=0

(aψ,kl cos(2π(kx+ ly)) + bψ,kl sin(2π(kx+ ly))) . (5.51)

Expanding ω yields:

ω =
∞∑
k=0

∞∑
l=0

(aω,kl cos(2π(kx+ ly)) + bω,kl sin(2π(kx+ ly))) . (5.52)

By inserting the expanded vorticity and vector potential, Eqs. (5.51) and (5.52), into
Eq. (5.50) and comparing the coefficients, we get for aψ,kl:

aψ,kl =
{

0 k = 0 and l = 0,
−aω,kl/(4π2(k2 + l2)) else,

(5.53)

and bψ,kl:

bψ,kl =
{

0 k = 0 and l = 0,
−bω,kl/(4π2(k2 + l2)) else.

(5.54)
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The Curl Operator in Two Dimensions

Expanding the velocity uω,x in x direction into a Fourier series yields:

uω,x =
∞∑
k=0

∞∑
l=0

(ax,kl cos(2π(kx+ ly)) + bx,kl sin(2π(kx+ ly))) . (5.55)

The expanded velocity uω,y in y direction reads as:

uω,y =
∞∑
k=0

∞∑
l=0

(ay,kl cos(2π(kx+ ly)) + by,kl sin(2π(kx+ ly))) . (5.56)

To get the velocity field uω = (uω,x, uω,y), we take the curl of the vector potential, cf.
Eq. (5.3). For uω,x, we get:

uω,x = ∂ψ

∂y
. (5.57)

uω,y reads as:

uω,y = −∂ψ
∂x

. (5.58)

Inserting the expanded quantities, Eqs. (5.51) and (5.55), into Eq. (5.57) and comparing
the coefficients yields ax,kl:

ax,kl = 2πlbψ,kl = − 1
2π

l

k2 + l2
bω,kl, (5.59)

and bx,kl:

bx,kl = −2πlaψ,kl = 1
2π

l

k2 + l2
aω,kl, (5.60)

Putting Eqs. (5.59) and (5.60) into Eq. (5.55), uω,x reads as:

uω,x = 1
2π

∞∑
k=0

∞∑
l=0

l

k2 + l2
(aω,kl sin(2π(kx+ ly))− bω,kl cos(2π(kx+ ly))) . (5.61)

Inserting the expanded quantities, Eqs. (5.51) and (5.56), into Eq. (5.58), comparing the
coefficients and using Eqs. (5.53) and (5.54) yields ax,kl:

ay,kl = −2πkbψ,kl = 1
2π

k

k2 + l2
bω,kl, (5.62)

and by,kl:

by,kl = 2πkaψ,kl = − 1
2π

k

k2 + l2
aω,kl. (5.63)

58



5. Solution Algorithm

Putting Eqs. (5.62) and (5.63) into Eq. (5.56), uω,y reads as:

uω,y = 1
2π

∞∑
k=0

∞∑
l=0

k

k2 + l2
(bω,kl cos(2π(kx+ ly))− aω,kl sin(2π(kx+ ly))) . (5.64)

Axisymmetric Fourier-Bessel Transformation

We consider the function system in cylindrical coordinates (r, z):

{J1(λkr) cos(2πlz), J1(λkr) sin(2πlz), k = 1, . . . ,∞, l = 0, . . . ,∞} . (5.65)

It forms a complete, orthogonal function system on the function space:

L2∗ =
{
f : [0, 1]2 → R

∣∣∣x rf2drdz <∞
}
. (5.66)

λk is the kth root of J1(λk) = 0. Jν is the Bessel function of the first kind, solution to the
differential equation [93],

d2Jν(r)
dr2 + 1

r

dJν(r)
dr +

(
1− ν2

r2

)
Jν(r) = 0. (5.67)

Let f(r, z) : L2∗([0, 1]2 → R) be a function in cylindrical coordinates (r, z) with no depen-
dency on ϑ direction. It is periodic in z direction with period one, and vanishes at r = 1,
f(1, z) = 0. Then, it can be expanded into a Fourier-Bessel series:

f(r, z) ≈
N∑
k=1

M∑
l=0

J1(λkr) (ckl cos(2πlz) + dkl sin(2πlz)) , (5.68)

with

lim
N,M→∞

∣∣∣∣∣
∣∣∣∣∣f(r, z)−

N∑
k=1

M∑
l=0

J1(λkr) (ckl cos(2πlz) + dkl sin(2πlz))
∣∣∣∣∣
∣∣∣∣∣
2∗

= 0. (5.69)

ckl and dkl are called Fourier-Bessel coefficients. Since the function space is orthogonal,
they can be obtained by integration. Note, that dk0 ≡ 0, since the corresponding sine
function is zero.

Solving Poisson’s Equation in the Axisymmetric Case

We need to find solutions to the vector Poisson’s equation in ϑ direction, Eq. (5.2). The
vector Laplace operator ϑ direction in cylindrical coordinates, with no dependence on ϑ
(rotational symmetric), applied to the vector potential ψ reads as [68, Eq. (N) of Table A.7-
2, p. 834]:
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[
∇2ψ

]
ϑ

= ∂2ψ

∂r2 + 1
r

∂ψ

∂r
− ψ

r2 + ∂2ψ

∂z2 = −ω(r, z), (5.70)

In the axisymmetric case, the vector potential ψ = ψeϑ and the vorticity ω = ωeϑ only
have a component in the ϑ direction. Expanding ψ yields:

ψ(r, z) =
∞∑
k=1

∞∑
l=0

J1(λkr) (cψ,kl cos(2πlz) + dψ,kl sin(2πlz)) . (5.71)

Expanding ω yields:

ω(r, z) =
∞∑
k=1

∞∑
l=0

J1(λkr) (cω,kl cos(2πlz) + dω,kl sin(2πlz)) , (5.72)

A coordinate transformation of Eq. (5.67) with ν = 1 yields:

(
d2

dr2 + 1
r

d
dr −

1
r2

)
J1(λkr) = −λ2

kJ1(λkr). (5.73)

Thus, the Laplace operator can be expressed with:

(
∂2

∂r2 + 1
r

∂

∂r
− 1
r2 + ∂2

∂z2

)
J1(λkr) (cψ,kl cos(2πlz) + dψ,kl sin(2πlz)) =

−
(
4π2l2 + λ2

k

)
J1(λkr) (cψ,kl cos(2πlz) + dψ,kl sin(2πlz)) . (5.74)

By inserting the expanded vorticity and vector potential, Eqs (5.71) and (5.72), into
Eq. (5.70), using Eq. (5.74) and comparing the coefficients, we get for cψ,kl:

cψ,kl = − cω,kl
4π2l2 + λ2

k

, (5.75)

and dψ,kl:

dψ,kl = − dω,kl
4π2l2 + λ2

k

. (5.76)

The Curl Operator in the Axisymmetric Case

Expanding the velocity uω,r in r direction yields:

uω,r =
∞∑
k=1

∞∑
l=0

J1(λkr) (cr,kl cos(2πlz) + dr,kl sin(2πlz)) . (5.77)

To get the velocity field uω = (uω,r, uω,z), we take the curl of ψ = ψeϑ. For uω,r, we
get [68, Eq. (G) of Table A.7-2, p. 834]:

60



5. Solution Algorithm

uω,r = −∂ψ
∂z
, (5.78)

Inserting the expanded quantities, Eqs. (5.71) and (5.77), into Eq. (5.78), comparing the
coefficients and using Eqs. (5.75) and (5.76) yields cr,kl:

cr,kl = 2πldψ,kl = − 1
2π

l

l2 + (λk/2π)2dω,kl, (5.79)

and dr,kl:

dr,kl = −2πlcψ,kl = 1
2π

l

l2 + (λk/2π)2 cω,kl. (5.80)

Putting Eqs. (5.79) and (5.80) into Eq. (5.77), uω,r reads as:

uω,r = 1
2π

∞∑
k=1

∞∑
l=0

l

l2 + (λk/2π)2 J1(λkr) (cω,kl sin(2πlz)− dω,kl cos(2πlz)) . (5.81)

uω,z can be determined with [68, Eq. (I) of Table A.7-2, p. 834]:

uω,z = 1
r

∂(rψ)
∂r

. (5.82)

To solve Eq. (5.82), we need the identity [93, Eq. (9.1.30)]:

( 1
rk

d
dr

)k
(rνJν(r)) = rν−kJν−k(r), (5.83)

with k = 1 and ν = 1:

1
r

d(rJ1(r))
dr = J0(r). (5.84)

Applying a simple transformation, we get:

1
r

d(rJ1(λkr))
dr = λkJ0(λkr). (5.85)

Inserting the expanded vector potential, Eq. (5.71), into Eq. (5.82), using Eqs. (5.75),
(5.76) and (5.85) yields cz,kl:

cz,kl = λkcψ,kl = − λk
4π2l2 + λ2

k

cω,kl, (5.86)

and dz,kl:

dz,kl = λkdψ,kl = − λk
4π2l2 + λ2

k

dω,kl. (5.87)
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With Eqs. (5.86) and (5.87), the expanded velocity uω,z in z direction reads as:

uω,z = −
∞∑
k=1

∞∑
l=0

λk
4π2l2 + λ2

k

J0(λkr) (cω,kl cos(2πlz) + dω,kl sin(2πlz)) . (5.88)

Note, that J0 is used here.

Finding the Best-fit Transform on an Arbitrary Grid

Expanding the vorticity ωi, which is defined at the M moving mesh points xi, yields for
two-dimensional geometries:

ωi ≈
N/2−1∑
k=0

N/2−1∑
l=0

(aω,kl cos(2π(kxi + lyi)) + bω,kl sin(2π(kxi + lyi))) , (5.89)

and in the axisymmetric case:

ωi ≈
N∑
k=0

N/2−1∑
l=0

J1(λkri) (cω,kl cos(2πlzi)) + dω,kl sin(2πlzi))) . (5.90)

N is the number of grid points of the fixed, Cartesian grid, N = 1/∆fix. The well-known
formulas for the inverse discrete Fourier transform cannot be applied when the data is
given on a non-equidistant grid. Since the vorticity is defined at arbitrary locations,
Eqs. (5.89) and (5.90) are in general not satisfied. Thus, the solution is to find the best-
fit coefficients. The best-fit coefficients are defined as the coefficients that minimise the
norm of the residual. For two-dimensional geometries, this corresponds to the following
minimisation problem:

min
akl,bkl

 M∑
i=1

ωi − N/2−1∑
k=0

N/2−1∑
l=0

(aω,kl cos(2π(kxi + lyi)) + bω,kl sin(2π(kxi + lyi)))

2
 .
(5.91)

In the axisymmetric case, the minimisation problem reads as:

min
ckl,dkl

 M∑
i=1

ri

ωi − N∑
k=1

N/2−1∑
l=0

J1(λkri) (cω,kl cos(2πlzi) + dω,kl sin(2πlzi))

2
 . (5.92)

In matrix-vector form, Eq. (5.91) reads as:

min
ej

 M∑
i=1

ωi(xi, yi)− K∑
j=1

Tijej

2
 , (5.93)
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and Eq. (5.92) yields:

min
ej

 M∑
i=1

ri

ωi(ri, zi)− K∑
j=1

Tijej

2
 , (5.94)

T = Tij is the transformation matrix and e = ej is a vector with all non-trivial Fourier
coefficients of length K. Note, that b00 and dk0 in Eqs. (5.91) and (5.92) are meaningless,
since the corresponding sine function is identical to zero. Thus, they have to be excluded
from e. Otherwise, the transformation matrix would be singular. We demand that T ᵀ ·T is
invertible, i.e. there are more data points ωi than the total number of coefficients,M > K.
Thus, the solution e to Eq. (5.93) is unique and given by [94]:

TkiTijej = Tkiωi, (5.95)

For the solution to Eq. (5.94), a simple transformation is used to obtain Eq. (5.95):

√
riTij → Tij ,

√
riωi → ωi. (5.96)

The coefficient vector is obtained by:

ej = (TklTlj)−1 Tkiωi. (5.97)

(∗)−1 denotes the inverse of a matrix. (T ᵀ · T )−1 · T ᵀ = (TklTlj)−1Tki is called the pseudo
inverse.
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Verification of the implementation is done with two different approaches: First, the solu-
tion of the one-dimensional model, presented in Section 4.1, is compared to the result of
the full model, which is also able to simulate an explosion inside an infinitely long cylinder
and a sphere with centric ignition. Next, the flame front tracking algorithm is verified
by comparing results from unconfined combustion inside a channel with almost constant
pressure to the linear stability analysis. In the first section, the choice of the numerical
parameters is explained.

6.1. Choice of Numerical Parameters

There are a number of numerical parameters that have to be set. Those parameters are
the initial distance between two moving mesh points ∆, the number of flame front panels
Nf , the number of vessel wall panels Nv and the time step ∆t. The right choice ensures
that the discretisation is good enough to resolve the flame front and capture the influence
of the vorticity while keeping the computational efforts in limits. With the help of ∆, the
program chooses the distance between two fixed grid points∆fix such that the minimisation
problem of finding the Fourier coefficients of the vorticity is unique.
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Figure 6.1.: Influence of the spatial discretisation on the pressure-time and pressure rise-
time curves in a cylinder. Four different levels of discretisation are shown
(Nv/Nf/∆).

The stabilisation number has to be large enough to guarantee a smooth flame front inter-
face. Numerical experiments showed that a value of St = 0.01 is large enough to achieve
this. When using only Nf = 30 flame front panels, the panels are so large that individual
flame front panels become visible, see Figs. 6.3c and 6.3d. Thus, the flame front would
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be underresolved. For Nf = 75, there are no individual panels visible any more, shown in
Fig. 6.3b. To ensure high accuracy, Nf = 150 is chosen, see Fig. 6.3a.
The initial distance between two neighbouring, moving mesh points ∆ influences the ac-
curacy of the numerical solution of the vorticity transport equation. The influence of the
vorticity is stronger in later stages of the combustion process. Since it is only non-zero
in the burnt gas, enough grid points have to be inside the flame front. When choosing
∆ = 0.05, there are 16 Fourier modes available in each direction, ∆fix = 0.0625. Also, the
number of moving mesh points in the burnt gas is sufficiently large, as shown in Fig. 6.4a,
for t = 0.06. For ∆ = 0.1, only 8 Fourier modes are available in each direction, and the
number of points inside the flame front becomes very low, as shown in Fig. 6.4d. Thus,
∆ = 0.05 is chosen for the simulations.
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Figure 6.2.: The difference in pressure and pressure rise of two different numbers of vessel
wall and flame front panels are shown. Basis of the comparison are the results
from the simulation with the largest number (820/150) of panels of vessel wall
and flame front (Nv/Nf).

The choice of the time step depends on the spatial discretisation. A finer spatial discreti-
sation, especially of the flame front, calls for a smaller time step, because the numerical
algorithm becomes unstable if the time step is too large. Additionally, a larger stabili-
sation number also requires a smaller time step. Otherwise, the flame front tracking is
numerically unstable. Here, it is found that when St = 0.01 and Nf = 150, ∆t = 5× 10−6

is low enough to ensure a stable front tracking. For cylindrical vessels, the number of vessel
wall panels is set to Nv = 820. To avoid numerical problems with the panel method, the
corners were rounded.
Fig. 6.1 shows the influence of the spatial discretisation on the pressure. All simulations
with ∆ = 0.05 yield a very similar pressure history. In the simulation with ∆ = 0.1, the
flame front touches the vessel wall at a significantly later time t = 0.0954. Thus, the end
pressure is larger as well, compared to the other three simulations.
To quantify the influence of the spatial discretisation, the difference of the pressure and
pressure rise is computed and shown in Fig. 6.2. The basis for the comparison are the
results from the simulation with the largest number of vessel wall and flame front panels
(Nv = 820/Nf = 150). As expected, a better resolved vessel wall and flame front yields
less deviation. The choice of Nv = 820 yields good results while keeping the simulation
time low.
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(a) Nv = 820, Nf = 150, ∆ = 0.05.
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(b) Nv = 420, Nf = 75, ∆ = 0.05.

0

0.02

0.04

0.06

0.08 0.0927

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5

z

r

(c) Nv = 220, Nf = 30, ∆ = 0.05.
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(d) Nv = 220, Nf = 30, ∆ = 0.1.

Figure 6.3.: Influence of the spatial discretisation on the shape of the flame front in a
cylinder. The position of the flame front is shown for different times.
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(a) Nv = 820, Nf = 150, ∆ = 0.05.
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(b) Nv = 420, Nf = 75, ∆ = 0.05.
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(c) Nv = 220, Nf = 30, ∆ = 0.05.
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(d) Nv = 220, Nf = 30, ∆ = 0.1.

Figure 6.4.: Influence of the spatial discretisation on the velocity in a cylinder for time
t = 0.06. The position of the flame front is shown for different times.
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6.2. Comparison with the One-dimensional Model

The solution of the combustion inside an infinitely long cylinder or a sphere, where the
ignition is at the centre, is known from the simplified, one-dimensional model, as outlined
in Chapter 4.

For an infinitely long cylinder, Eqs. (4.9) and (4.10) have to be solved for γu = γb. For
the pressure, the differential equation reads as:

dP
dt = 2 (γ − 1)∆hfrf

(
1− St

2rf

)
P 2−1/γ−β, (6.1)

and the equation for the radius of the flame front is:

drf
dt = rf

2
1
γ

1
P

dP
dt
(
r−2

f − 1
)

+
(

1− St
2rf

)
P 2(γ−1)/γ−β. (6.2)

For a sphere, setting γu = γb in Eq. (4.17) yields:

dP
dt = 3 (γ − 1)∆hfr

2
f

(
1− St

rf

)
P 2−1/γ−β, (6.3)

and Eq. (4.18) yields:

drf
dt = rf

3
1
γ

1
P

dP
dt
(
r−3

f − 1
)

+
(

1− St
rf

)
P 2(γ−1)/γ−β, (6.4)

In this section, the pressure, pressure rise, radius and absolute flame speed are plotted
against time. In all figures, the line with no markers is obtained by the simulation of the
full model, and the line marked with a triangle is the result of the ordinary differential
equations of the one-dimensional model. If the curves for equal β would deviate, this
would imply that the implementation is not correct. Since the lines with and without
markers coincide, no errors in the implementation have been found by this verification
step.

The pressure-time curves show an exponential increase in time, see Figs. 6.5a and 6.6a.
The reaction enthalpy ∆hf is chosen such that the end pressure is pe ≈ 9. With decreasing
β, the pressure rise reaches a significant higher maximum value, as shown in Figs. 6.5b
and 6.6b. β = 0.5 implies that the burning velocity is almost independent of pressure and
temperature for γ = 1.4, as evaluation of the exponent of the second term in Eq. (6.2)
indicates.

Due to the non-zero stabilisation number, the radius-time curve has a point of inflection,
see Figs. 6.5c and 6.6c. Thus, the resulting flame front speed curves have a maximum,
shown in Figs. 6.5d and 6.6d.

All results show that the full simulation almost perfectly matches the solution of the
one-dimensional model. The parameters of the simulation were: ∆t = 10−5/5× 10−5

(two-dimensional / axisymmetric case), ∆ = 0.05, ∆fix = 0.0625, St = 0.01, γ = 1.4,
ri = 0.02, ∆hf = 20, Nf = 150 and Nv = 800.
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Figure 6.5.: Comparison of the (a) pressure, (b) pressure-rise, (c) radius and (d) flame
speed-time curves of the full simulation and the one-dimensional model for
an infinitely long cylinder with centric ignition. The corresponding curves
coincide.
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Figure 6.6.: Comparison of the (a) pressure, (b) pressure-rise, (c) radius and (d) flame
speed-time curves of the full simulation and the one-dimensional model for a
sphere with centric ignition. The corresponding curves coincide.
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6.3. Comparison with Channel Flow
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Figure 6.7.: Unconfined combustion: the flame front in a periodic channel. It moves to-
wards the bottom into quiescent, unburnt gas [69, Fig. 5].

A simplified model is used to verify the implementation of the flame front tracking.
Unconfined, planar, laminar combustion inside a channel of width 2 is assumed. At
the walls at x = −1 and x = 1, periodic boundary conditions are prescribed, e.g.
u(x = 2, y) = u(x = 0, y). Since the pressure and the density are in leading order
spatially uniform, the vorticity is not considered. The goal is to verify the range of stable
and unstable perturbation modes as described in Section 2.4.

The flame front is assumed to be periodic in the x direction, and moves in the negative
y direction into quiescent, unburnt gas, as shown in Fig. 6.7. To account for the periodic
boundary conditions, the method of mirrored panels has been applied to get the funda-
mental solution for the velocity induced by a single panel [95]. The following parameters
were used in the simulations: ∆t = 10−5, St = 0.0416, σ = 6, γ = 1.4, αmin = 120◦,
lavg = 5× 10−3 and Nf = 400. Note, that the number of flame front panels changes with
time.

The critical wavenumber is kc = 10. This implies that all disturbances with a higher
wavenumber, k > kc, are stable and damped, and all disturbances with a lower wavenum-
ber, k < kc are unstable and amplified.

To test the front tracking algorithm, an initially sinusoidal flame front is chosen, t = 0.
In Fig. 6.8a, the initial wavenumber is ki = 9 < kc. Thus, this mode should be amplified
according to linear stability analysis. In Fig. 6.8b, the initial wavenumber is ki = 11 > kc,
which should result in a damping of this mode.

As shown in Fig. 6.8, the front tracking algorithm can reproduce the results from the
linear stability analysis. For t = 0.2, the amplitude of the initial sine function grows the
corresponding mode is unstable (Fig. 6.8a), and the sine function is damped when the
corresponding mode is stable (Fig. 6.8b).

However, there are more unstable, low wave number instabilities which eventually develop,
as can be seen for times t > 0.4. When comparing the results obtained from this simple
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implementation to a level-set implementation, good agreement is found [66]. However,
the method presented here has simulation times of only a few minutes, whereas other
numerical implementations take much longer.
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Figure 6.8.: Verification of the flame front tracking algorithm: The initial wavenumber at
time t = 0 of the disturbance is (a) below and (b) above the critical wavenum-
ber kc = 10.
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In this chapter, selected results obtained with the presented simulation framework are
shown. Input data for the simulations are the vessel wall points, numerical and material
parameters. For each recorded time step, the results from each simulation include the
position of the flame front, the leading-order pressure and position, velocity, entropy and
vorticity of the moving mesh points.
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(c) Flow field for t = 0.06.
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Figure 7.1.: Visualisation of the results of a simulation of an explosion with centric ignition
inside a cylinder with an aspect ratio of 0.75. (a) The position of the flame
front is drawn for different times. The flow field inside the vessel for (b)
t = 0.02 and (c) t = 0.06 is shown. (d) The pressure-time and (d) pressure
rise-time curve are plotted.

An overview of the obtained results is given in Fig. 7.1. The flame front position is drawn
with a thin line, whereas the vessel wall is illustrated with a thick line, as seen Fig. 7.1a.
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A cross marks the initial explosion location on the dash-dotted symmetry axis. In the
example, the ignition is in the centre of the cylinder. The time step between two flame
front curves is constant for each figure. Here, it is ∆t = 0.2. Additionally, the front
position of the last recorded time step, i.e. the time where the flame front touches the
wall, is given.

The flow field is shown in Figs. 7.1b and 7.1c for two different times t = 0.02 and t = 0.06,
respectively. The velocity field is evaluated at the moving mesh points. Thus, the position
of the velocity arrows changes with time, as seen when comparing Figs. 7.1b and 7.1c. The
arrow inside the box in the lower part of the figure shows the non-dimensional velocity
scaling.

Main result for industrial application is the pressure-time curve, as shown in Fig. 7.1d.
In this example, the flame front touches the vessel wall when the pressure is about P ≈
2.6. The pressure rise-time curve is shown in Fig. 7.1e. It is relevant for calculating the
deflagration index.

Generally, one three-dimensional simulation takes about 2 h to 5 h on a 32-core worksta-
tion. The program makes extensive use of parallelisation techniques [96] to fully exploit
the multi-core CPU and uses very little main memory. The run time strongly depends on
the geometry of the vessel, the computer hardware and the chosen material and numerical
parameters. It also depends on the location of ignition: Since the simulation stops once
the flame front touches the wall, an off-centric ignition often leads to a shorter simulation
time.

The chapter is structured as follows: The first section contains results which highlight the
features and advantages of this model and implementation. The most important factors
which influence the explosion process are shown. Comparing the pressure-time curves
of the 1D model to the full model shows no significant differences when the volume of
the vessels are the same. In the second section, comparison of experimental data with
simulation results are given. In total, eleven different pressure-time curves of real dust
explosions are compared.

7.1. Flame-flow Interaction

Since the flame front has an impact on the velocity field, and vice versa, different effects
which change the explosion process can be identified. Among those, the shape of the
vessel, the ignition location and the reaction enthalpy are shown in this section. If not
noted differently, the following parameters were used in the simulations of this section:
γ = 1.4, ∆hf = 20, β = 0.2, ∆ = 0.05, ∆t = 5× 10−6, 150 flame front panels and 820
vessel wall panels.

When changing the initial location of the explosion, a couple of different things happen:
First, an off-centric ignition leads to a different contact time. The contact time is the
time when the flame front first touches the vessel wall and the simulation stops. The
change of the initial location of explosion can result in a later contact time, as shown in
Fig. 7.3. Here, the contact time decreases from te = 0.092 to te = 0.0615. This happens
for all cylindrical vessels. When the vessel shape is more complex, an ignition closer to the
centre can lead to a smaller contact time, as shown when comparing Fig. 7.9a to Fig. 7.9b.
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Figure 7.2.: Influence of the initial explosion location zi on the pressure-time and pressure
rise-time curves in a cylinder. The curves almost perfectly coincide.

Here, the contact time increases from te = 0.0436 to te = 0.0504. Centric ignition is
defined as ignition in the middle of the symmetry axis zi = 0.5.
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(b) zi = 0.6.

0

0.02

0.04 0.06

0.0646

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5

z

r

(c) zi = 0.7.

Figure 7.3.: Influence of the initial explosion location zi on the flame front in a cylinder.
The position of the flame front is shown for different times.

For cylindrical vessels, ignition off the centre of the symmetry axis also results in a loss of
symmetry about z = 0.5, as shown when comparing Figs. 7.11e and 7.11f with Fig. 7.11d.
This also implies a flame front which deviates significantly from a spherical shape at the
end stage of the explosion, as shown in Fig. 7.3c. However, in the early process of an
explosion, the influence of the vessel boundaries on the shape of the flame front is not
very pronounced. This leads to an almost spherical flame front and symmetric flow field
even for very off-centric ignition locations, see Fig. 7.11c. Also, the speed of the gas in the
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Figure 7.4.: Influence of the aspect ratio of a cylindrical vessel on the shape of the flame.
The position of the flame front is shown for different times.

vicinity of the vessel wall is very low, cf. Figs. 7.11a, 7.11b and 7.11c.

Although the flow field is strongly influenced by the location of ignition, the pressure-time
and pressure rise-time curves almost perfectly coincide, as shown in Fig. 7.2. The only
notable difference is the pressure when the flame front touches the wall: It is much larger
for centric ignition since the simulation stops later.
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Figure 7.5.: Influence of the aspect ratio of a cylindrical vessel on the pressure-time and
pressure rise-time curves.

The impact of the aspect ratio, i.e. the ratio of the height to diameter, of a cylindrical
vessel on the shape of the flame front is shown in Fig. 7.4. Fig. 7.12 is an overlay of all
vessel shapes and flame fronts of Fig. 7.4. Three different aspect ratios, 0.75, 1 and 1.25,
were chosen, and ignition is always in the centre of the vessel.
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As before, the flame front remains spherical during the first stages of the combustion
process and is almost independent of the vessel shape, see e.g. time t = 0.02. For a vessel
with a larger aspect ratio, the flame front touches the sidewalls first, Fig. 7.4c, whereas
for cylinders with lower aspect ratios, the top walls are reached first, Figs. 7.4a and 7.4b.
Up until about t ≈ 0.04, no significant difference of the flame fronts between the three
different vessels is seen, Fig. 7.12.
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Figure 7.6.: Influence of the initial explosion location zi on the pressure-time and pressure
rise-time curves in a complex geometry. The curves almost perfectly coincide.

The velocity field, shown in Fig. 7.13, changes quantitatively for cylindrical vessel with
different aspect ratios. For earlier times, t = 0.02, the speed of the fluid in the unburnt
gas near the flame front is higher for vessels with a lower aspect ratio, e.g. for an aspect
ratio of 0.75, see Fig. 7.13a, compared to the other two vessel shapes, Figs. 7.13b and
7.13c. Since ignition is at the centre, the flow field shows an additional symmetry about
z = 0.5. For later stages, the flow field inside the vessels with the largest aspect ratio is
influenced mostly by the side walls of the vessel, Fig. 7.13f. The velocity field of the other
two vessels is more influenced by the top and bottom walls, Figs. 7.13d and 7.13e.
The pressure-time and pressure rise-time curves are significantly different when the aspect
ratio of the vessel changes, as shown in Fig. 7.5. For an aspect ratio of 0.75, the flame
front touches the vessel wall last, at t = 0.0959. However, the final pressure is lower than
the one from more elongated vessels. This is due to the higher mass fraction of unburnt
gas. The highest final pressure is reached when the aspect ratio is unity. Interestingly, the
highest pressure rise is obtained in the most elongated vessel. This can be explained with
the higher surface of the flame front, since the pressure change is directly proportional to
it.
To show the capabilities of the newly developed method, a non-cylindrical vessel was
simulated. The geometry is cylindrical on the top, and has a cone at the bottom. It could
be a dust collector. When the initial explosion location is varied, the flame front touches
the vessel wall at different times, as shown in Fig. 7.9. However, due to the more complex
geometry, a centric ignition, Fig. 7.9a, does not necessarily imply a longer simulated time.
Here, the contact time for one eccentric ignition is te = 0.0504, see Fig. 7.9b, compared to
te = 0.0436 for centric ignition. Even when the location of ignition is chosen very close to
the vessel wall, the flame front remains spherical up until t ≈ 0.02, cf. Fig. 7.9c.
The velocity field for two different times is shown in Fig. 7.14. For t = 0.02, the flame
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Ṗ

(b) Pressure rise-time curve.

Figure 7.7.: Comparison of the pressure-time and pressure rise-time curves of the full and
one-dimensional model in the complex geometry with zi = 0.2. The one-
dimensional model assumes a sphere which has the same volume as the geom-
etry of the full model. The curves almost perfectly coincide.

front is close to the vessel wall for two cases, Figs. 7.14a and 7.14c. However, the influence
of the vessel boundaries is still rather small, which results in an almost spherical flame
front and a vanishing velocity field in the vicinity of the walls. For later times, the flame
front gets closer to the walls, and eventually becomes more distorted, Fig. 7.14d.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 10 20 30 40 50 60 70

∆hf = 10
∆hf = 20
∆hf = 40

t× 10−3

P

(a) Pressure-time curve.

0

100

200

300

400

0 10 20 30 40 50 60 70

∆hf = 10
∆hf = 20
∆hf = 40

t× 10−3

Ṗ
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Figure 7.8.: Influence of reaction enthalpy ∆hf on the pressure-time and pressure rise-time
curves in a complex geometry.

The pressure-time and pressure rise-time curves for different ignition locations almost
coincide, see Fig. 7.6. The same trend as for cylindrical vessels is observed: The only
difference is the final pressure before the simulation stops.
The comparison of the full and one-dimensional model shows almost no impact on the
pressure-time and pressure rise-time curves, see Fig. 7.7. The one-dimensional simulation
was done with a sphere which has the same volume as the complex geometry. This result
is remarkable, since the geometry is not very well approximated by a sphere, and the flame
front deviates significantly from a spherical shape.
A larger reaction enthalpy ∆hf results in a higher end pressure pe. Additionally, the
explosion is much more violent and faster. Three different values of ∆hf , 10, 20 and 40,
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were studied. The flame front moves much faster when the reaction enthalpy is larger,
as shown in Fig. 7.10. Note, that time between two consecutive flame front positions is
not equal for the three cases (∆hf = 10: ∆t = 0.02, ∆hf = 20: ∆t = 0.01, ∆hf = 40:
∆t = 0.005). Also, the hydrodynamical instability is more pronounced for a larger reaction
enthalpy. This manifests itself in the slightly buckled flame shape during the later stages
of the explosion for ∆hf = 40 (Fig. 7.10c).
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Figure 7.9.: Influence of the initial explosion location zi on the shape of the flame front
in a more complex geometry. The position of the flame front is shown for
different times

As expected, a larger reaction enthalpy yields a higher final pressure, and a higher pressure
rise, as shown in Fig. 7.8. The flow field for ∆hf = 10 is almost non-existant (Figs. 7.15a
and 7.15d), compared to ∆hf = 20 (Figs. 7.15b and 7.15e) and ∆hf = 40 (Fig. 7.15c
and 7.15f). This also explains why for a higher reaction enthalpy, the flame front adapts
much more to the vessel wall: Imagine a vanishing reaction enthalpy ∆hf → 0. Then,
there would be no flow field at all, and the flame front would just be transported passively
through quiescent gas. This also implies that it would remain perfectly spherical, since
there is no influence of the vessel boundaries. Contrary, a very high reaction enthalpy
yields much higher speeds. This results in a more pronounced influence of the vessel wall
on the flow field, resulting in a more distorted flame front. Thus, the flame adapts more
to the shape of the vessel when ∆hf is increased.
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Figure 7.10.: Influence of the reaction enthalpy ∆hf on the shape of the flame front in a
more complex geometry. The position of the flame front is shown for different
times.
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Figure 7.11.: Influence of the initial explosion location zi on the flow field for t = 0.02
(top) and t = 0.06 (bottom) in a cylinder.
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Figure 7.13.: Influence of the aspect ratio of a cylindrical vessel on the flow field for t = 0.02
(top) and t = 0.06 (bottom).
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Figure 7.14.: Influence of the initial explosion location zi on the flow field for t = 0.02
(top) and t = 0.03 (bottom) in a complex geometry.
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Figure 7.15.: Influence of the reaction enthalpy ∆hf on the flow field for t = 0.01 (top) and
t = 0.02 (bottom) in a complex geometry. Note, that the velocity arrows are
scaled differently from left to right.
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7.2. Comparison with Experiments

Data from eleven different experiments, conducted in three different vessels, are avail-
able [97]. The experiments were done by IEP Technologies in Germany. All vessels are
cylinders with an aspect ratio of one and rounded top and bottom edges. The vessel walls
were not insulated. An overview over all experiments is given in Tab. 7.1. The dust inside
the vessel was a standard test dust. The deflagration index was varied by changing the
ignition delay. The ignition delay is the time interval between dispersion of the dust par-
ticles and the actual ignition. It is known from experiments [98, 99] that a larger ignition
delay time leads to a less violent explosion, since the initial turbulence induced by the
injection of the dust particles decays over time [100]. Thus, a longer ignition delay leads
to lower values of K̃St.

Table 7.1.: List of experiments [97] and simulation parameters.
name K̃St Ṽv p̃e/p̃i ∆hf s̃0

eff p-t curve

A16 248 bar m/s 1 m3 9.5 39.2 1.30 m/s Fig. 7.18
A19 161 bar m/s 1 m3 9.2 37.7 1.00 m/s Fig. 7.19
A21 67 bar m/s 1 m3 8.5 34.5 0.55 m/s Fig. 7.20
D1 260 bar m/s 5 m3 9.3 38.2 1.45 m/s Fig. 7.21
D2 265 bar m/s 5 m3 9.1 37.3 1.55 m/s Fig. 7.22
D4 178 bar m/s 5 m3 8.9 36.4 1.03 m/s Fig. 7.23
D5 62 bar m/s 5 m3 8.3 33.6 0.42 m/s Fig. 7.24
C2 249 bar m/s 10 m3 8.8 35.9 1.33 m/s Fig. 7.25
C3 236 bar m/s 10 m3 9.2 37.7 1.26 m/s Fig. 7.26
C4 161 bar m/s 10 m3 9.5 39.2 0.91 m/s Fig. 7.27
C6 96 bar m/s 10 m3 9.1 37.3 0.62 m/s Fig. 7.28

Ignition was done with two 5 kJ pyrotechnic ignitors. The pressure was recorded with
two piezoelectric pressure measurement chains. The range of reported end pressures was
between 8.3 bar to 9.5 bar. The deflagration index was calculated using the isothermal
model by Nagy et al., cf. Eq. (4.21), and is between 62 bar m/s to 265 bar m/s, and the
volume of the vessels were 1 m3, 5 m3 and 10 m3. Since all vessels are cylindrical with an
aspect ratio of one, they are geometrically similar.
For the simulations, material parameters for a corn starch-air mixture were taken from
literature, γ = 1.22 and β = 0.36 [7]. This set of parameters yields a burning velocity that
is almost independent of pressure and temperature. The reaction enthalpy ∆hf was chosen
such that the (dimensionless) end pressure pe after complete combustion of the simulation
matches the experimental end pressure. The shape of the vessel was approximated by a
cylinder with an aspect ratio of unity and rounded corners, as shown in Fig. 7.16. Thus,
the additional flanges which were present on the vessels from the experiments were not
considered in the geometry of the simulations. Since the model assumes an adiabatic
vessel wall, heat losses to the surroundings during the explosion were not considered in
the simulations.
The flame front and vessel wall were discretised with Nf = 150 and Nv = 820 panels,
respectively. The stabilisation number was St = 0.01, the initial radius ri = 0.02, the time
step ∆t = 5× 10−6 and the distance between two mesh points ∆ = 0.05. Ignition is in
the centre of the z axis.
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Figure 7.16.: Geometry of the vessel used for the simulations. It has an aspect ratio of
one, and the corners are rounded. The explosion starts at the centre, and
the initial flame front radius is ri = 0.02.

Result of the experiments are the pressure-time curves. They start at an arbitrary start
time t̃ = −1 s and end at time t̃ = 4 s. Thus, all pressure-time curves in this section
are shifted so that the reported ignition time is at a dimensionless time t = 0. The
pressure is given as gauge pressure, and its unit is bar. The experimental pressure-time
curves are shifted by 1 bar, since p̃ref = 1 bar. Additionally, the experimental data are
non-dimensionalised by scaling the time to find the best fit to the simulations. With the
available data, it is not possible to predict the experimental pressure-time curves.

It turns out that the shift to the reported ignition time does not suffice for good agreement
between simulations and experiments. This can be due to an additional delay between the
injection of the ignitors and the actual ignition of the suspended dust cloud. Thus, the
pressure-time curves of the simulations are shifted in time. The necessary shift of each
sample is chosen such that the final pressure from the simulation lies on the experimental
pressure-time curve. The shift to of each individual simulation curve is reported in the
figure caption. This delay is especially pronounced for experiments no. A16, D1, D2, C3
and C4 (Figs. 7.18, 7.21, 7.22, 7.25, 7.26 and 7.27), where an additional shift of more
than t = 0.04 has been introduced. For two experiments, A21 and D5, very little delay is
found (Figs. 7.20 and 7.24). By shifting the simulation data, excellent agreement between
simulations and experiments is achieved.

From the characteristic reference time used to scale the experimental data, the burning
velocity at reference conditions s̃0

eff can be computed. s̃0
eff is in the range of 0.42 m/s to

1.55 m/s. Fig. 7.17 illustrates the dependency of s̃0
eff on the deflagration index. It seems

like the burning velocity increases linearly with the deflagration index. However, too little
experimental data is available to validate this statement.
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Figure 7.18.: Pressure-time curves of the simulation and experiment no. A16, 1 m3 cylin-
der, K̃St = 248 bar m/s, offset to = 0.045.
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Figure 7.19.: Pressure-time curves of the simulation and experiment no. A19, 1 m3 cylin-
der, K̃St = 161 bar m/s, offset to = 0.026.
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Figure 7.20.: Pressure-time curves of the simulation and experiment no. A21, 1 m3 cylin-
der, K̃St = 67 bar m/s, offset to = 0.014.

89



7. Results & Discussion

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

experiment
simulation

t× 10−3

P

Figure 7.21.: Pressure-time curves of the simulation and experiment no. D1, 5 m3 cylinder,
K̃St = 260 bar m/s, offset to = 0.057.
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Figure 7.22.: Pressure-time curves of the simulation and experiment no. D2, 5 m3 cylinder,
K̃St = 265 bar m/s, offset to = 0.073.
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Figure 7.23.: Pressure-time curves of the simulation and experiment no. D4, 5 m3 cylinder,
K̃St = 178 bar m/s, offset to = 0.034.
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Figure 7.24.: Pressure-time curves of the simulation and experiment no. D5, 5 m3 cylinder,
K̃St = 62 bar m/s, offset to = 0.009.
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Figure 7.25.: Pressure-time curves of the simulation and experiment no. C2, 10 m3 cylin-
der, K̃St = 249 bar m/s, offset to = 0.037.
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Figure 7.26.: Pressure-time curves of the simulation and experiment no. C3, 10 m3 cylin-
der, K̃St = 236 bar m/s, offset to = 0.05.
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Figure 7.27.: Pressure-time curves of the simulation and experiment no. C4, 10 m3 cylin-
der, K̃St = 161 bar m/s, offset to = 0.127.
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Figure 7.28.: Pressure-time curves of the simulation and experiment no. C6, 10 m3 cylin-
der, K̃St = 96 bar m/s, offset to = 0.03.
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8. Conclusion

An extension of the simple one-dimensional approximations for confined dust deflagration
is presented. The resulting model accounts for flame-flow interactions and the influence
of the non-spherical vessel wall. The numerical implementation is restricted to rotational
symmetric geometries.

The aim of this thesis was to develop a reliable tool for explosion simulations. The imple-
mentation has been verified using simple test cases. The comparison with experimental
data indicates that the burning velocity increases linearly with the deflagration index.
However, more experiments have to be conducted to affirm this result.

Key Findings

By means of asymptotic expansion, the full model has been reduced significantly, as out-
lined in Chapter 3. This results in a problem statement with the following features: The
flow is isentropic, except at the flame front where entropy is produced. The velocity diver-
gence and leading-order pressure are time-dependent only. The unburnt gas has a uniform
density and temperature, and the flow in the unburnt gas is irrotational.

First, we considered two-dimensional geometries. The results for two-dimensional geome-
tries show a deviation of more than 30 %, when comparing the maximum rate of pressure
rise in an infinitely long cylinder with the one in a sphere (Figs. 6.5b and 6.6b). Thus,
approximating three-dimensional geometries by two-dimensional models seems unlikely to
produce better results than the one-dimensional theory. This is also the reason why no
two-dimensional results were shown in Chapter 7.

One additional aim of this work was to consider three-dimensional geometries. Due to the
numerical complexity, only axisymmetric three dimensional geometries were considered.
An axisymmetric geometry has an axis of rotation. Thus, the geometry and all quantities
can be described by two independent variables (r, z) in cylindrical coordinates.

The results presented in Section 7.1 show the following: The shape of the flame front
remains spherical during a rather large period of the explosion (Figs. 7.3, 7.4, 7.9 and
7.10). Only at later stages of the explosion, or when the ignition is off-centre, the flame
front adapts significantly to the vessel shape (Fig. 7.4c). For vessels that have a more
complex shape, the flame front can no longer be approximated by a sphere anymore
(Figs. 7.9 and 7.10). Additionally, the reaction enthalpy has a major impact on the flame
and flow field. (Fig. 7.10). The location of ignition does not change the pressure-time and
pressure rise-time curves, except that the final pressure is different (Figs. 7.2 and 7.6).

One would expect that the pressure history in an arbitrarily shaped vessel deviates signif-
icantly from the one obtained by the one-dimensional approximation inside a sphere with
the same volume as the vessel. However, it is remarkable that this is not the case: The
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one-dimensional model from Section 6.2 predicts almost the same pressure-time curve than
the full model, for a complex geometry (Fig. 7.7). The reason behind this remains unclear:
When taking a look at the governing equations, it is not obvious that the pressure-time
curve is independent from the vessel shape. Also, in this case the flame front adapts to
the shape of the vessel and becomes non-spherical (Fig. 7.9b).

Limitations

The assumptions behind the model limit its applicability: First, it is assumed that the
vessel wall is adiabatic. In experiments, this is almost never the case. However, the
deflagration happens on a much faster time scale compared to heat conduction. Addition-
ally, viscosity, thermal diffusion and gravity are neglected. Including those effects is not
possible in the numerical framework of the implementation presented in this thesis.

The numerical treatment of the tracking of the flame front comes with a number of lim-
itations. One is that the flame front has to remain stable by choosing a sufficiently high
stabilisation number. A wrinkled flame front would lead to singularities in the jump of
the vorticity, because the gradient of the curvature of the flame front is singular at a cusp.
Additionally, the combination of moving marker points and the panel method does not
cope well with a non-smooth flame front. However, the one-dimensional models currently
used ignore the intrinsic hydrodynamic instabilities due to the symmetry constraints. For
dust explosions, the instability does not play an important role, because the flame has a
stabilising effect.

The simulation stops when the flame front touches the vessel wall. This is necessary, since
the burnt gas is very hot and the heat loss to the surroundings is neglected. Once the
flame front touches the vessel wall, there is a steep temperature gradient inside the vessel
wall. Thus, the assumption of adiabatic boundaries becomes invalid. This can be a serious
limitation: Consider a very elongated cylindrical vessel. After ignition, the flame front
touches the vessel wall very early. Thus, only the first stages of the combustion process
can be simulated. However, this problem could be solved by including a mechanism to
slow down the flame front in the vicinity of the vessel wall. Eq. (2.8) could be extended:

s̃eff =
(
1− κ̃l̃turb.Ma

)( T̃u

T̃ref

)2 (
p̃ref
p̃

)β (
1− exp

(
d̃n

d̃∗

))
s̃0
eff.

d̃n is the wall normal distance of the flame front from the vessel wall, and d̃∗ is a wall-
influence parameter. This would lower the burning velocity when the flame front ap-
proaches the vessel wall. Thus, the pressure-time curve would experience a point of in-
flection and the maximum rate of pressure rise would not be at the end of the simulation
anymore.

Future Improvements

In the numerical implementation, the ratios of specific heats in unburnt and burnt gas
were assumed to be equal. This was done because the divergence of the velocity field
becomes time-dependent only. Thus, a great simplification of the numerical procedure
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was possible. However, accounting for different values of γ could be doable: One would
have to find two different particulate solutions to Eq. (3.32) for unburnt and burnt gas.
The resulting jump of the velocity at the flame front would have to be compensated by
an additional boundary value problem at the flame front. This can be done by placing
singular source and vortex sources along the flame front, to compensate for the jump of
normal and tangential velocity, respectively.

In the industry, explosion vents are used to reduce the impact of an explosion on men
and material. As a future extension, one could include such a feature in the framework
of this implementation. However, one key assumption was that locally, the speed remains
low compared to the speed of sound. In the vicinity of the explosion vent, this condition
does not always hold. Thus, one would have to be very careful when including explosion
venting in the future.

Two very basic models for the burning velocity have been combined. Due to the flexibility
of the implementation, more complex descriptions of seff can be included in the numerical
framework. A simple addition would be to introduce a dependency of the burning velocity
on the normal distance of the vessel wall, as described before.

The numerical implementation is currently not optimised for maximum performance.
Many numerical integrals and functions have to be evaluated millions of times. Cur-
rently, this is done without any optimisation. In the future, look-up tables and smart
interpolation could yield significantly lower simulation run times.

Unique Aspects of this Work

The flame-flow interaction and the influence of the vessel wall on the flame front are the
main new features, compared to the simple one-dimensional models, presented in this the-
sis. In the scientific literature, often only two-dimensional geometries are used. This poses
a serious limitation for industrial applications, since no vessel types can be approximated
by such geometries. Here, rotational symmetric, three-dimensional explosion events can
be successfully simulated. This serves as a robust base for more advanced, but feasible
explosion modelling in the process industry.

96



A. Rotational Symmetric Panel Velocity

In three dimensions, the potential of a point source is proportional to the inverse distance.
q is the source strength per area:

ϕ = q

4π
1

||x− xs||
, (A.1)

or, with r′ = ||x− xs||:

ϕ = q

4π
1
r′
. (A.2)

This formulation has the advantage that it is independent of the choice of the coordinate
system. Fig. A.1 shows an axisymmetric panel, which is a truncated cone. The task is to
integrate the inverse of the distance r′ from an arbitrary point (r, z) in the ϑ = 0 plane
over the surface of the truncated cone:

ϕ = q

4π

{ 1
r′

dO. (A.3)

With dO = rp dϑ′p dzp, Eq. (A.3) reads as:

ϕ = q

4π

z2∫
z1

2π∫
0

rp
r′

dϑ′p dzp = q

2π

z2∫
z1

π∫
0

rp
r′

dϑ′p dzp. (A.4)

The integration over the panel angle ϑ′p is done only between 0 and π because of the
symmetry of the panel. In the ϑ = 0 plane, (r1, z1) and (r2, z2) are the start and end point
of the panel, respectively. For a rotational symmetric panel, as shown in Fig. A.1, we get
for r′ in cylinder coordinates (r, ϑ, z):

r′ =
√(

r2 + r2
p − 2rrp cosϑ′p

)
+ (z − zp)2. (A.5)

Here, the law of cosines has been used and xp = (rp, ϑ
′
p, zp) is a point on the surface of

the panel. By some simple transformations, we get for r′:

r′ =
√

(r − rp)2 + (z − zp)2 + 4rrp sin2 ϑ′p/2. (A.6)

Combining Eqs. (A.4) and (A.6) yields:
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A. Rotational Symmetric Panel Velocity
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(b) r-ϑ plane.

Figure A.1.: A rotational symmetric panel is a truncated cone. It is used to discretise flame
front and vessel wall in the axisymmetric case. The total velocity induced by
one panel is the surface integral of the velocity density over the surface of the
panel. r′ is the distance from an arbitrary point (r, z) in the ϑ = 0 plane to
a surface element dO of the panel.
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A. Rotational Symmetric Panel Velocity

ϕ = q

2π

z2∫
z1

π∫
0

rp dϑ′p dzp√
(r − rp)2 + (z − zp)2 + 4rrp sin2 ϑ′p/2

. (A.7)

Transforming ϑ′p/2 = ϑp yields:

ϕ = q

π

z2∫
z1

π/2∫
0

rp dϑp dzp√
(r − rp)2 + (z − zp)2 + 4rrp sin2 ϑp

. (A.8)

For the velocity in radial direction ur, we get:

ur = ∂ϕ

∂r
= − q

π

z2∫
z1

π/2∫
0

(r − rp) + 2rp sin2 ϑp(
(r − rp)2 + (z − zp)2 + 4rrp sin2 ϑp

)3/2 rp dϑp dzp. (A.9)

The velocity uz in z direction reads as:

uz = ∂ϕ

∂z
= − q

π

z2∫
z1

π/2∫
0

z − zp(
(r − rp)2 + (z − zp)2 + 4rrp sin2 ϑp

)3/2 rp dϑp dzp. (A.10)

Next, we show that Eqs. (A.9) and (A.10) can be expressed with the help of complete
elliptic integrals. We divide enumerator and denominator by ((r − rp)2 + (z − zp)2)3/2

and get for ur:

ur = − q

2π

z2∫
z1

π/2∫
0

(r − rp) + 2rp sin2 ϑp(
(r − rp)2 + (z − zp)2

)3/2
1(

1 +m sin2 ϑp
)3/2 rp dϑp dzp, (A.11)

and uz:

uz = − q

2π

z2∫
z1

π/2∫
0

z − zp(
(r − rp)2 + (z − zp)2

)3/2
1(

1 +m sin2 ϑp
)3/2 rp dϑp dzp, (A.12)

where m is:

m = 4rrp

(r − rp)2 + (z − zp)2 . (A.13)

We introduce a parameter s ∈ [0, 1] as follows:

zp(s) = z1 + s (z2 − z1) , rp(s) = r1 + s (r2 − r1) .

With dzp = (z2 − z1) ds, ur reads as:
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ur = − q
π

1∫
0

π/2∫
0

(r − rp(s)) + 2rp(s) sin2 ϑp(
(r − rp(s))2 + (z − zp(s))2

)3/2
rp(s) (z2 − z1)(

1 +m(s) sin2 ϑp
)3/2 dϑp ds, (A.14)

and uz reads as:

uz = − q
π

1∫
0

π/2∫
0

z − zp(s)(
(r − rp(s))2 + (z − zp(s))2

)3/2
rp(s) (z2 − z1)(

1 +m(s) sin2 ϑp
)3/2 dϑp ds. (A.15)

By rewriting Eq. (A.14), we get for ur:

ur = − q
π

1∫
0

(r − rp(s)) d(s)
π/2∫
0

1 + e(s) sin2 ϑp(
1 +m(s) sin2 ϑp

)3/2 dϑp ds, (A.16)

and for Eq. (A.15), we get uz:

uz = − q
π

1∫
0

(z − zp(s)) d(s)
π/2∫
0

1(
1 +m(s) sin2 ϑp

)3/2 dϑp ds, (A.17)

with

d(s) = rp(s) (z2 − z1)(
(r − rp(s))2 + (z − zp(s))2

)3/2 , (A.18)

and

e(s) = 2rp(s)
r − rp(s) . (A.19)

We need to evaluate integrals of the form,

π/2∫
0

sin2 φ(
1 +m sin2 φ

)3/2 dφ, (A.20)

and

π/2∫
0

1(
1 +m sin2 φ

)3/2 dφ. (A.21)

With the complete elliptic integral of the first kind, K, defined as [92, Eq. (17.3.1)],
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K(m) =
π/2∫
0

1√
1−m sin2 φ

dφ, (A.22)

and the complete integral of the second kind, E, defined as [92, Eq. (17.3.3)],

E(m) =
π/2∫
0

√
1−m sin2 φ dφ, (A.23)

we can express Eq. (A.21) easily [101, Eqs. (19.2.7) and (19.6.1)]:

π/2∫
0

1(
1 +m sin2 φ

)3/2 dφ = E(−m)
1 +m

. (A.24)

For Eq. (A.20), the solution is obtained using a computer algebra system:

π/2∫
0

sin2 φ(
1 +m sin2 φ

)3/2 dφ = (1 +m) K(−m)− E(−m)
m (1 +m) , (A.25)

A simple transformation φ = π/2−θ yields the complete elliptic integral of first kind with
negative parameter:

K(−m) = 1√
1 +m

K(m′), (A.26)

and of second kind:

E(−m) =
√

1 +mE(m′), (A.27)

with m′ = m/(1 +m). With Eqs. (A.24), (A.25), (A.26) and (A.27), we finally obtain ur:

ur = q

π

1∫
0

(rp(s)− r) d(s)
m(s)

√
1 +m(s)

(
(m(s)− e(s)) E(m′(s)) + K(m′(s))

)
ds, (A.28)

and uz:

uz = q

π

1∫
0

(zp(s)− z) d(s) E(m′(s))√
1 +m(s)

ds. (A.29)
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B. Numerical Details

In this chapter, some details about the numerical implementation are given. The im-
plementation of the model described in the previous chapters was done in a computer
program written in the C programming language. Additionally, the GSL library [102]
was used for numerical integration and evaluation of elliptic integrals and Bessel func-
tions. The CBLAS interface was used for basic linear algebra [103]. Output was done
using the HDF5 library [104]. Pre and post processing tools were written in the Python
programming language.

Calculation of the Curvature

xf,i−1

xf,i

xf,i+1

rκ1

origin of circumscribed circle
(outside of figure)

Figure B.1.: The first radius of curvature rκ1 at a point xf,i of the flame front is approxi-
mated by the radius of the circumscribed circle (- - ) of the triangle which is
formed by the point and its adjacent neighbours xf,i±1.

The total curvature κ is the mean of the two main curvatures κ1, κ2:

κ = 1
2 (κ1 + κ2) , (B.1)

and the main curvature is the inverse of the main curvature radius rκi :

κi = 1
rκi

(B.2)

In 2D, one main curvature is zero, κ2 = 0. Thus, the total curvature κ2D reads as:

κ2D = κ1
2 . (B.3)

rκ1 is the radius of the circumscribed circle of three neighbouring points, see Fig. B.1.
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For rotational symmetric geometries, one curvature is the inverse radius of the circum-
scribed circle, as described before. The other main curvature is obtained by the inverse
radius of the sphere which has its origin on the rotation axis, and touches the middle of
one panel, cf. Fig. B.2.

r
κ
2

Figure B.2.: The radius of the circumscribed sphere inside a truncated cone is the second
radius of curvature rκ2 .

Interpolation of the Material Derivative of the Velocity

The velocity at each panel edge is singular [90]. When a Lagrangian mesh point jumps
over the flame front near the edge of a panel, its velocity in the vicinity of panel edges
is interpolated using the next available non-interpolated value. If none exist, i.e. at the
beginning of the simulation, it is set to zero.

Gradient Calculation on a Distorted Grid

Assume that we have a central point xij = xc, and its four neighbours: xi−1,j = xl (left),
xi+1,j = xr (right), xi,j−1 = xb (bottom) and xi,j+1 = xt (top). To obtain the gradient of
a quantity b which is defined on those grid points, we expand b into a Taylor series about
the central point xc. For Cartesian coordinates, we get:
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bc ≈ bc (B.4)

bl ≈ bc −∆xl ∂b

∂x

c
−∆yl ∂b

∂y

c
+ (∆xl)2

2
∂2b

∂x2

c
+ (∆yl)2

2
∂2b

∂y2

c
, (B.5)

br ≈ bc +∆xr ∂b

∂x

c
+∆yr ∂b

∂y

c
+ (∆xr)2

2
∂2b

∂x2

c
+ (∆yr)2

2
∂2b

∂y2

c
, (B.6)

bb ≈ bc −∆xb ∂b

∂x

c
−∆yb ∂b

∂y

c
+ (∆xb)2

2
∂2b

∂x2

c
+ (∆yb)2

2
∂2b

∂y2

c
, (B.7)

bt ≈ bc +∆xt ∂b

∂x

c
+∆yt ∂b

∂y

c
+ (∆xt)2

2
∂2b

∂x2

c
+ (∆yt)2

2
∂2b

∂y2

c
. (B.8)

∆x and ∆y are the x and y distances between the centre point and the corresponding
point, e.g. ∆xl = xc − xl and ∆yt = yt − yc. In cylindrical coordinates, x has to be
replaced by the radius r, and y by the height z.

Now, we multiply Eqs. (B.4) to (B.8) with coefficients ac, al, ar, ab and at, respectively:

acbc ≈ acbc, (B.9)

albl ≈ al
(
bc −∆xl ∂b

∂x

c
−∆yl ∂b

∂y

c
+ (∆xl)2

2
∂2b

∂x2

c
+ (∆yl)2

2
∂2b

∂y2

c)
, (B.10)

arbr ≈ ar
(
bc +∆xr ∂b

∂x

c
+∆yr ∂b

∂y

c
+ (∆xr)2

2
∂2b

∂x2

c
+ (∆yr)2

2
∂2b

∂y2

c)
, (B.11)

abbb ≈ ab
(
bc −∆xb ∂b

∂x

c
−∆yb ∂b

∂y

c
+ (∆xb)2

2
∂2b

∂x2

c
+ (∆yb)2

2
∂2b

∂y2

c)
, (B.12)

atbt ≈ at
(
bc +∆xt ∂b

∂x

c
+∆yt ∂b

∂y

c
+ (∆xt)2

2
∂2b

∂x2

c
+ (∆yt)2

2
∂2b

∂y2

c)
. (B.13)

In order to get an expression for the gradient, we make the sum of Eqs. (B.9) to (B.13)
and write:
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acbc + albl + arbr + abbb + atbt ≈
(
ac + al + ar + ab + at

)
︸ ︷︷ ︸

=0

bc

+
(
−al∆xl + ar∆xr − ab∆xb + at∆xt

)
︸ ︷︷ ︸

=1/0 (for x/y direction)

∂b

∂x

c

+
(
−al∆yl + ar∆yr − ab∆yb + at∆yt

)
︸ ︷︷ ︸

=0/1 (for x/y direction)

∂b

∂y

c

+
(
al (∆xl)2

2 + ar (∆xr)2

2 + ab (∆xb)2

2 + at (∆xt)2

2

)
︸ ︷︷ ︸

=0

∂2b

∂x2

c

+
(
al (∆yl)2

2 + ar (∆yr)2

2 + ab (∆yb)2

2 + at (∆yt)2

2

)
︸ ︷︷ ︸

=0

∂2b

∂y2

c
. (B.14)

For the gradient, the first, fourth and fifth term in brackets on the right-hand side have to
vanish. Depending on the direction of the gradient, either the second or third term have
to be one, and the other zero. Thus, the discretised gradient is the linear combination of
the values of b at the five involved grid points. The partial derivative with respect to x
reads:

∂b

∂x

c
≈ ac

xb
c + al

xb
l + ar

xb
r + ab

xb
b + at

xb
t, (B.15)

The coefficients ax are solution of the system of equations:


1 1 1 1 1
0 −∆xl ∆xr −∆xb ∆xt

0 −∆yl ∆yr −∆yb ∆yt

0 (∆xl)2 (∆xr)2 (∆xb)2 (∆xt)2

0 (∆yl)2 (∆yr)2 (∆yb)2 (∆yt)2




ac
x

al
x

ar
x

ab
x

at
x

 =


0
1
0
0
0

 . (B.16)

Similarly, the partial derivative with respect to y reads as:

∂b

∂y

c
≈ ac

yb
c + al

yb
l + ar

yb
r + ab

yb
b + at

yb
t. (B.17)

The coefficients ay are solution to the linear system of equations:


1 1 1 1 1
0 −∆xl ∆xr −∆xb ∆xt

0 −∆yl ∆yr −∆yb ∆yt

0 (∆xl)2 (∆xr)2 (∆xb)2 (∆xt)2

0 (∆yl)2 (∆yr)2 (∆yb)2 (∆yt)2




ac
y

al
y

ar
y

ab
y

at
y

 =


0
0
1
0
0

 . (B.18)
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This central finite difference scheme is used to calculate the gradient of the entropy and
the material derivative of the velocity. It is only needed for Lagrangian points which are
in the burnt gas. Mesh points inside the burnt gas and in the vicinity of the flame front do
not always have four neighbours which are inside the burnt gas. In such a case, suitable
one-sided finite difference schemes are applied.

Initialisation

All numerical parameters are either provided or default values are used. The vessel wall
panels are read from a file. Its location is mapped to a square with [0, 1 −∆fix]2. If the
provided vessel wall points are outside of this square, the vessel is shifted and scaled, i.e.
a geometrically similar vessel is found that fits in the area of computation. This is needed
because then, Fourier transformations become easier. Then, the flame front is initialised
as a sphere, with given initial radius and location. Next, the moving mesh points are
evenly distributed inside the vessel. Additionally, points outside of the vessel are placed
since it has to be guaranteed that the value of the vorticity outside the vessel is equal to
zero for the least-square problem, Eq. (5.95).

Linear Equation Solver

Solving a linear system of equations is needed for finding (I) the source strengths of the
vessel wall panels, (II) the coefficients for the finite differences gradient scheme and (III)
the best Fourier transformation on the fixed mesh. Here, a direct, self-written linear
equation solver was implemented, using LU decomposition. Pivoting was not necessary,
since the matrices are diagonally dominant.

Elliptic Integrals and Bessel Functions

Routines provided by the GNU Scientific Library were used to evaluate elliptic integrals
and Bessel functions [102]. No performance optimisation was done, i.e. no lookup table
or interpolation between already known values. Since the argument to those functions is
limited between zero and one, a faster implementation is possible in the future.

Numerical Integration

To evaluate the integral equations for rotational symmetric panels, a numerical inte-
gration scheme is required. Here, the ‘CQUAD doubly-adaptive integration’ routine
gsl_integration_cquad from the GNU Scientific Library is used. This function imple-
ments the Clenshaw-Curtis quadrature rules [105]. It automatically divides the integration
interval into smaller sub-intervals adaptively, i.e. a smaller interval where a larger error
is observed. This function can handle most types of singularities and divergent integrals
according to the manual [102].
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B. Numerical Details

Solving a System of ODE

To solve a system of non-linear ordinary differential equations, a standard Python function
from SciPy was used [106]. This is needed to solve the coupled system of ODE for the
one-dimensional model.

Program Options

To run a simulation, one can specify a number of parameters, either via command line
options, or by writing a configuration file. If no value is provided, a default value is used.
All parameters are listed in Tab. B.1.

Table B.1.: Command line options for the flamier program, name: name of the parameter
in the configuration file, option: name of the corresponding command line
option.
name/option description default

front-panel-angle/-a minimum angle αmin between two front panels 0
beta/-b pressure-dependency β of sL 0

config/-c name of the configuration file —
delta/-d initial distance ∆ between moving mesh points 0.05

end-time/-e end time 1
front-panel-number/-f number of flame front panels 150

h5file/-H name of HDF5 output file result.h5
reaction-enthalpy/-h reaction enthalpy ∆hf 20

interpolation-area/-i radius of the interpolation area for Du/Dt 1
gamma/-k ratio of specific heats γ 1.4

front-panel-length/-L average front panel length lavg 1
log/-l name of log file stdout

markstein-length/-M Markstein number Ma 0.01
mode/-m mode of simulation: periodic, twodim, rotsym rotsym

workdir/-o working directory of the simulation .
init-radius/-r initial radius of the flame front ri 0.01

time-step/-t time step ∆t 5× 10−6

wavenumber/-W initial wavenumber of the flame front ki 5
write-interval/-w number of time steps between two writes 20

init-x/-x initial x location of the explosion 0
init-y/-x initial y/z location of the explosion 0
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