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Kurzfassung

Die Emulation von Traktionsbatterien ermöglicht das Testen von elektrischen und hybri-

den Antriebssträngen unter exakt reproduzierbaren Bedingungen. Dabei dient ein Bat-

teriemodell zur Vorgabe eines Sollverhaltens anhand einer Strom-Spannungskennlinie,

welches durch einen synchronen mehrphasigen Tiefsetzsteller nachzubilden ist. Dieses

Konzept wird als Impedanzregelung bezeichnet und stellt hohe Anforderungen an Ge-

nauigkeit, Führungsverhalten und Störgrößenunterdrückung. Die vorliegende Arbeit be-

schäftigt sich daher mit dem Entwurf hierfür geeigneter Regelungsstrategien.

Typischerweise kommen dabei Regelungsmethoden auf Basis von Pulsweitenmodulation

(PWM) zum Einsatz. Diese erzielen für stationäre Betriebspunkte hohe Genauigkeit,

sind in ihrem dynamischen Verhalten allerdings Finite Control-Set-modellprädiktiven

Reglern (FCS-MPC) unterlegen. Die geringe Zeitauflösung von FCS-MPC hingegen

schränkt die Genauigkeit dieser Methode ein und erfordert sehr hohe Abtastraten.

Um beide Vorteile zu kombinieren, wird Predictive Pulse Pattern Control (PPPC)

vorgestellt. Dabei wird zunächst ein geeignetes Pulsmuster ausgewählt, dessen Schalt-

zeitpunkte durch Minimieren eines Kostenfunktionals gewählt werden. Auf diese Art

und Weise wird sowohl für stationäre als auch transiente Bedingungen eine hohe Re-

gelgüte erzielt. Das zugehörige beschränkte quadratische Problem lässt sich mittels

state-of-the-art Methoden effizient lösen. Nichtsdestrotz stellt der Rechenaufwand des

PPPC-Verfahrens je nach verfügbarer Rechenkapaziät eine Einschränkung dar. Aus die-

sem Grund wird darüberhinaus ein PWM-basierter Command Filtered Backstepping

(CFBS) Ansatz vorgeschlagen. Dieser erlaubt es, mit geringem Rechenaufwand unter

Berücksichtigung von Eingangs- und Zustandsbeschränkungen den geschlossenen Kreis

asymptotisch im Sinne von Lyapunov zu stabilisieren.

Die hohe Güte der vorgestellten Verfahren wird anhand von Simulationsergbnissen nach-

gewiesen. Die CFBS-Methode wird darüber hinaus durch experimentelle Versuche an

einem Testsystem validiert.
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Abstract

Traction battery emulation enables repeatable conditions for testing of electric and

hybrid electric vehicle powertrains. Thereby the current-voltage characteristics is ex-

tracted from a virtual battery model and is provided as a setpoint to a synchronous

multiphase buck converter (SMPB). This concept is called impedance control and goes

along with high requirements on accuracy, tracking performance and disturbance rejec-

tion. This thesis deals with the design of suitable control strategies to this purpose.

Typically, carrier-based pulse width modulation (PWM) approaches are used that

achieve good steady-state performance but are inferior to Finite Control-Set model

predictive control (FCS-MPC) in transient response. However, the steady-state perfor-

mance of FCS-MPC is usually poor as the time resolution is limited by the sampling

rate.

In order to combine both advantages, the Predictive Pulse Pattern Control (PPPC)

method is presented. A minimal switching effort pulse pattern is selected whose switch-

ing instants are obtained by minimizing an objective function, resulting in high accu-

racy and fast dynamic response. The associated constrained quadratic program can be

solved efficiently with state-of-the-art methods. Nevertheless, the computational cost

can be a restriction for platforms with limited computational power. For this reason,

the PWM-based Command Filtered Backstepping (CFBS) approach is proposed as al-

ternative with little computational cost that incorporates input and state constraints

and inherently guarantees asymptotic stability in the sense of Lyapunov.

Simulation results demonstrate the high performance of the suggested control strategies.

Beyond that, the CFBS method is also validated experimentally on a hardware test

bed.
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Chapter 1

Introduction

Electric drives will more and more assist and replace combustion engines in the auto-

motive sector. Reasons are numerous: high efficiency, small size and weight, energy

recuperation and possibly zero-emissions, to name a few. This trend poses new chal-

lenges on powertrain validation not only involving mechanical but also electric test

environments including the traction battery. However, using real traction batteries to

achieve defined operating conditions is a costly and time consuming task which also in-

volves safety hazards [1]. For these reasons, traction battery emulators are used instead

to emulate the electric characteristics under repeatable conditions based on a battery

model considering state of charge, state of health, temperature, aging effects, etc. Due

to high power levels up to hundreds of kilowatts an efficient switched mode power sup-

ply is preferred to a linear power supply which would suffer from extensive conversion

losses. The switching converter structure does not only significantly complicate the

control problem but also causes voltage and current ripples that do not normally occur

in batteries and hence, have to be kept at a minimum. Therefore, a powerful control

strategy needs to be elaborated, that allows fast output voltage tracking with high

accuracy and load current rejection to achieve robust battery impedance emulation.

Finite control-set model predictive control (FCS-MPC) is a promising candidate for

this purpose with high dynamic performance compared to carrier-based pulse width

modulation (PWM) approaches while avoiding unnecessarily high switching frequencies

that would increase switching losses [2]. However, the limited time resolution often leads

to poor steady-state performance and can only be overcome with higher sampling rates

that dramatically increase the computational burden [3]. The aim of this master thesis

is to resolve the limitations of the conventional FCS-MPC method by

1. improving the time resolution to achieve high accuracy, and

2. formulating efficient algorithms that can be implemented in real-time on an

embedded platform with limited computational power.
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1.1 Organization 2

To this end, two different control strategies are presented. Firstly, a tailored approach

called predictive pulse pattern control (PPPC) that achieves high performance for tran-

sient and steady-state operating conditions with feasible computational demand is pro-

posed. At each time step, a pulse pattern with minimal switching effort is selected whose

switching instants are chosen such that an objective function is minimized, yielding in

high tracking accuracy.

Secondly, the Command Filtered Backstepping (CFBS) [4] control framework is adapted

and suggested as a PWM-based computational efficient alternative that includes input

and state constraints and achieves asymptotic stability in the sense of Lyapunov. Fi-

nally, it is shown how the search space of a FCS-MPC formulation can be dramatically

reduced by Backstepping-based dynamic pruning, enabling longer prediction horizons

and thus, higher time resolution. The control strategies are compared and the high

performance is demonstrated by simulation and experimental results.

1.1 Organization

The remainder of this work is organized as follows. In chapter 2 the battery emulator

system is described and a mathematical model is derived. Consequently, the require-

ments for the control loop are formulated. The control design is treated in detail in

chapter 2. The FCS-MPC framework is introduced before the PPPC and CFBS control

strategies are presented as viable concepts to overcome the limitations of FCS-MPC.

Suitable optimization techniques are discussed in chapter 4. Moreover, a Backstepping-

based method to dynamically prune the search space of an integer quadratic program

is proposed. Simulation and experimental results are presented in chapter 5. The sug-

gested control strategies are compared in transient and steady-state performance as

well as in the associated computational effort. Chapter 6 closes with a conclusion and

remaining open challenges.
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Chapter 2

System description and model

This chapter describes the concept of nonlinear power source emulation in general

and the specific characteristics and architecture of a traction battery emulator. A

mathematical model of the DC-DC converter and the unit under test is derived to

serve for the control design.

2.1 Nonlinear power source emulation

Recently, there has been growing interest in using nonlinear power source emulators

instead of real power sources such as batteries, photovoltaic arrays, fuel cells or ther-

moelectric generators for testing and development purposes [5]. This is due to several

advantages they provide over real power sources:

• reduced cost

• reduced time effort

• repeatable conditions

• improved safety .

A detailed review of existing implementations is given in [5]. Common to all nonlinear

power source emulators is that the electric characteristics of the power source of interest

is given by a reference model and shall be tracked as fast and accurate as possible by

regulating a DC-DC converter. The load current is measured and fed to the reference

model that provides the setpoint for the control unit which in turn adds a feedback loop

that has to be considered as it modifies resulting closed loop dynamics [6]. A voltage

source model as depicted in fig. 2.1 with open circuit voltage voc and complex impedance

Z can serve as basis for the electric impedance emulation. A suitable reference model

is crucial therefore. In [7] a data-driven approach to find a generic battery model using
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2.2 Battery Emulation 4

voc v∗
2

Z

i2

Figure 2.1: Nonlinear power source emulation based on a reference model pro-

viding a setpoint v∗
2 for the control unit.

local model networks is suggested which is extended in [6] to achieve battery impedance

emulation. A different application of mechanical impedance emulation of a panthograph

current collectors is presented in [8].

This thesis focuses on the related output voltage tracking problem only.

2.2 Battery Emulation

A schematic illustration of an electric or hybrid electric vehicle is shown in fig. 2.2a.

The internal combustion engine (ICE) is omitted in the former case. The engine control

unit (ECU) controls the ICE and the voltage source inverter (VSI) which handles the

power flow between the electric motor and traction battery. Fig. 2.2b shows the test

bed of an electric or hybrid electric powertrain including the traction battery emulator,

also described in [1]. The electric drive is flanged to a dynamometer to emulate the

Battery

Inverter

E-Motor

ICE

ECU

(a) Electric or hybrid electric vehicle powertrain.

Inverter

E-Motor

Battery Emulator

Dynamometer

Test Bed Automation

ECU
VehicleModel

Battery Model

(b) Electric powertrain test bed.

Figure 2.2: Interacting components of a traction battery emulation system.

mechanical load based on a vehicle model. The battery response on the other hand

is extracted from a battery model and emulated by a battery emulator (BE). The BE

is essentially a buck-type DC-DC converter and its associated control problem is the

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


2.3 DC-DC converter model 5

main focus of this thesis. The VSI and electric drive on the other hand refer to the unit

under test (UUT) in this setup.

2.3 DC-DC converter model

The DC-DC conversion in a BE is achieved with a synchronous multiphase buck con-

verter (SMPB) topology as depicted in fig. 2.3. The rectifier dynamics are neglected,

hence, DC-link capacitance C0 is considered to be high enough to assume constant

DC-voltage link voltage V0. The insulated-gate bipolar transistors (IGBT) semicon-

ductor switches T1 − T8 are driven by the control unit with binary, complementary

signals Sa − Sd ∈ u = {0, 1}. The resistances of phase inductors L1a
− L1d

are

modeled with R1a
− R1d

respectively. The filter capacitance is denoted by C1, L2

and R2 can model a cable impedance or an additional output filter together with

C2. The generic UUT model consists of C2 and RL. Define the state vector as

iL1a
, iL1b

, iL1c
, iL1d

UUT

C0V0

Control Unit

v∗

2
Sd

AC

ScSbSa

Rectifier

v1 C1 v2 C2 RL

i2 iL
R2L2i1

T1 T3 T5 T7

T2 T4 T6 T8

i1, v1, i2, v2

Battery Model î2

L1a iL1a

R1a

L1b
iL1b

R1b

L1c iL1c

R1c

L1d
iL1d

R1d

Figure 2.3: Battery emulator comprising a synchronous multiphase buck con-

verter including cable and UUT model.

x =
[

iL1a
iL1b

iL1c
iL1d

v1 i2 v2

]T
, the input vector as u =

[

Sa Sb Sc Sd

]T

and let the ohmic share of the load current be the disturbance input d = iL. The
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2.4 UUT model 6

system dynamics can then be written as

ẋ =





















−R1a

L1a
0 0 0 − 1

L1a
0 0

0 −
R1b

L1b

0 0 − 1
L1b

0 0

0 −R1c

L1c
0 − 1

L1c
0 0

0 0 0 −
R1d

L1d

− 1
L1d

0 0
1

C1

1
C1

1
C1

1
C1

0 − 1
C1

0

0 0 0 0 1
L2

−R2

L2
− 1

L2

0 0 0 0 0 1
C2

0





















x

+





















V0

L1a
0 0 0

0 V0

L1b

0 0

0 V0

L1c
0

0 0 0 V0

L1d

0 0 0 0

0 0 0 0

0 0 0 0





















u +





















0

0

0

0

0

0

− 1
C2





















d, (2.1)

with i1 = iL1a
+ iL1b

+ iL1c
+ iL1d

.

2.4 UUT model

As depicted in fig. 2.3, the UUT is modelled as an ohmic load RL with input capacitance

C2. In general, RL is time-variant and unknown. The related current iL cannot be

measured directly.

Voltage source inverters (VSI) that power electric drives are a major challenge when

tightly speed regulated, as they keep the output power constant regardless of input

voltage variations [9]. This behaviour is known as constant power load (CPL) and can

cause negative impedance instability [9, 10]. The voltage-current characteristics and

nonlinear model is depicted in fig. 2.4a and 2.4b. The nonlinear relation is given by

iL =
P

v2

, (2.2)

with constant power P . Apparently, validity of this model is restricted to a minimum

voltage that results in a feasible current. Depending on the control approach discussed
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2.4 UUT model 7

iL

v2

r0 = ∆v2

∆iL

< 0

iL0

v20

v2 · iL = P = const

(a) Voltage-current characteristics.

v2 C2 CPL

i2 iL = P
v2

(b) Nonlinear CPL model.

v2 C2 r0

i2

v20

iL0

(c) Small-signal model linearized around (v20
, iL0

).

Figure 2.4: Constant power load (CPL) model.

in detail in chapter 3, the CPL nonlinearity can directly be handled or has to be

linearized at first. Linearizing (2.2) around an operating point (v20
, iL0

) gives

iL ≈ iL0
+

∂

∂v2

P

v2

∣
∣
∣
∣
∣
v20

,iL0

(v2 − v20
) = iL0

−
P

v2
20

(v2 − v20
), (2.3)

which simplifies with P = v20
iL0

to

iL ≈ 2iL0
−
iL0

v20

v2. (2.4)

This leads by introducing the equivalent resistance r0 = −
v20

iL0

to the small-signal model

depicted in fig. 2.4c, similarly to [9, 11].
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2.5 Coupled linearized model 8

2.5 Coupled linearized model

Combining the DC-DC converter model (2.1) with small-signal model of the UUT (2.4)

results in the coupled dynamics

ẋ =





















−R1a

L1a
0 0 0 − 1

L1a
0 0

0 −
R1b

L1b

0 0 − 1
L1b

0 0

0 −R1c

L1c
0 − 1

L1c
0 0

0 0 0 −
R1d

L1d

− 1
L1d

0 0
1

C1

1
C1

1
C1

1
C1

0 − 1
C1

0

0 0 0 0 1
L2

−R2

L2
− 1

L2

0 0 0 0 0 1
C2

− 1
C2r0





















︸ ︷︷ ︸

A

x

+





















V0

L1a
0 0 0

0 V0

L1b

0 0

0 V0

L1c
0

0 0 0 V0

L1d

0 0 0 0

0 0 0 0

0 0 0 0





















︸ ︷︷ ︸

B

u +





















0

0

0

0

0

0

− 2
C2





















︸ ︷︷ ︸

e

z, (2.5)

with z = iL0
.

The discrete-time dynamics of (2.5) has the form

xk+1 = Φck + Γuk + gz, x(0) = x0 (2.6a)

yk = cTxk, (2.6b)

with the output v2, hence, cT =
[

0 0 0 0 0 0 1
]

. The dynamic matrix Φ, input

matrix Γ and disturbance vector g are given by

Φ = exp (ATs) , (2.7a)

Γ =
∫ Ts

0
exp (Aτ) dτB , (2.7b)

g =
∫ Ts

0
exp (Aτ) dτe, (2.7c)

where Ts denotes the sampling time.
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2.6 Reduced order model 9

2.6 Reduced order model

As discussed in [12], for identical phases, hence,

L1a
= L1b

= L1c
= L1d

and (2.8)

R1a
= R1b

= R1c
= R1d

, (2.9)

the full order model (2.5) can be simplified by lumping phase inductors and correspond-

ing resistances to one common inductance L1 = 1
4
L1a

and resistance R1 = 1
4
R1a

to the

reduced form

ẋr =











−R1

L1
− 1

L1
0 0

1
C1

0 − 1
C1

0

0 1
L2

−R2

L2
− 1

L2

0 0 1
C2

− 1
C2r0











︸ ︷︷ ︸

Ar

xr +











V0,r

L1

0

0

0











︸ ︷︷ ︸

Br

ur +











0

0

0

− 2
C2











︸ ︷︷ ︸

er

z (2.10a)

y = cT
r xr, (2.10b)

with xr =
[

i1 v1 i2 v2

]T
, cT

r =
[

0 0 0 1
]

, ur = S and V0,r = V0

4
. Thereby

S ∈ {0, 1, 2, 3, 4} refers to the number of active phases, thus, S =
∑

j∈P Sj, with the set

of phases P = {a, b, c, d}.

2.7 Virtual input reduced order model

A different reduced order model than in section 2.6 is stated here that considers i1

instead of switching states as virtual control input. Hence, xv =
[

v1 i2 v2

]T
and

uv = i1 . Consequently, model (2.10) yields

ẋv =








0 − 1
C1

0
1

L2
−R2

L2
− 1

L2

0 1
C2

− 1
C2r0








︸ ︷︷ ︸

Av

xv +








1
C1

0

0








︸ ︷︷ ︸

Bv

uv +








0

0

− 2
C2








︸ ︷︷ ︸

ev

z (2.11a)

y = cT
v xv, (2.11b)

where cT
v =

[

0 0 1
]

. This lumped model with virtual current control input as well as

the lumped model of section 2.6 are used for control and observer design in the next

chapter. Both discrete-time dynamics have the form as (2.6), with Φr, Γr, gr, Φv, Γv

and gv of appropriate dimensions. They are calculated as (2.7) in section 2.5.
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2.8 Battery Emulator Test Bed 10

2.8 Battery Emulator Test Bed

The BE laboratory setup is depicted in fig. 2.5.

Figure 2.5: Battery emulator laboratory setup.
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Chapter 3

Control Design

A BE has to achieve fast and accurate output voltage tracking of a reference extracted

from a battery model. The control design of the BE is crucial for tight coupling be-

tween the physical test bed and the battery model. Moreover, the current needs to

be equally balanced among the phases while respecting safe operating condition limits.

The switching input structure poses further challenges on the control design. Finally,

stability has to be guaranteed for the entire operating range with a high degree of

uncertainty towards UUT including negative impedance instability [9].

For these reasons, this chapter elaborates two different control frameworks, namely

model predictive control (MPC) and backstepping (BS) control, and discusses suitabil-

ity and limitations to achieve the above mentioned goals.

3.1 Related literature

This section reviews the MPC and BS frameworks and gives an overview of the concepts.

3.1.1 Model predictive control

Model predictive control (MPC) has become an attractive and well-established control

strategy for power electronic converters and drives [2]. One of the major advantages

over traditional control approaches is that it allows intuitively incorporating constraints

and nonlinearities [13] as well as requirements such as switching losses [14]. The basic

idea is to use a system model to predict the state and output evolution over a prediction

horizon Np when applying an input sequence of control horizon length Nc. Usually Nc is

chosen shorter than Np, in this case the input is held constant for time steps beyond Nc.

The input sequence is chosen to minimize a cost function while respecting constraints

on states and inputs by solving an optimization problem. Only the first element of the

optimal input sequence is actually applied and the procedure is repeated at the next
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3.1 Related literature 12

time step to close the loop in a receding horizon policy [15]. The principle of model

predictive control (MPC) is illustrated in fig. 3.1.

Output reference
Past Future

Predicted output

Planned input
Input constraints

input

Past
output

kk −
1

k −
2

k +
1
k +

2
k +

N
p

yk

uk

Applied

k +
N

c −
1

Control horizon

Prediction horizon

t

y∗
k

Figure 3.1: Principle of model predictive control for the SISO-case. The input

sequence uk is chosen such that the output tracking error

‖y∗
k − yk‖

2 is minimized over the prediction horizon Np. Beyond

the control horizon Nc the input is held constant with uk+Nc−1.

Out of uk only the first element uk is applied and the procedure is

repeated at k + 1, following the receding horizon policy.

The MPC framework can be classified based on the associated type of optimization

problem, i.e., whether it is an integer optimization problem or not [3]. Classical MPC on

the one hand is based on state-space averaging [16] and consequently uses a continuous

control input, the duty cycle, and pulse width modulation (PWM) which yields in a fixed

switching frequency. Continuous control strategies yield good steady-state performance

whereas the switching frequency limits transient performance.

Direct or finite control-set MPC (FCS-MPC) on the other hand directly manipulates the

switching states, omitting the need of a modulator which results in general in a variable

switching frequency. The switching sequence from a finite control-set that minimizes a

cost function is applied by using the receding horizon principle. FCS-MPC achieves very

high dynamic performance compared to modulator-based approaches [17] while avoiding

unnecessarily high switching frequencies that would increase switching losses. However,

the steady-state performance is limited by time resolution that results from sampling
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3.1 Related literature 13

rate and prediction horizon. This is due to the exponentially growing computational

burden with the number of input switches and prediction horizon. Therefore FCS-

MPC may not be suitable for applications where high tracking accuracy is required [3].

Another drawback of the FSC-MPC method is that the steady-state will be a limit

cycle implying convergence of state variables to a bounded invariant set which leads to

the formulation of practical asymptotical stability instead of asymptotic stability [18].

The authors of [19] suggested an improved sphere decoding algorithm (SDA) firstly

introduced for a three-phase voltage source inverter (VSI) in [20] to reduce the com-

putational cost of the underlying integer optimization problem. Implementation of the

SDA is discussed in chapter 4 and the FCS-MPC will serve as a reference for later

comparisons in chapter 5. A different approach to achieve longer prediction horizons is

to approximate the tail cost using approximate dynamic programming as proposed in

[21].

In order to unify high steady-state and transient performance, model predictive pulse

pattern control for a three-phase VSI was proposed in [22] and validated experimentally

for a five-phase VSI in [23]. A computational efficient field programmable gate array

(FPGA) implementation using the fast gradient method (FGM) is presented in [24].

The approach modifies switching instants of optimal pulse patterns to achieve reference

stator flux vector tracking. A two loop structure using a linear quadratic regulator

(LQR) to provide a reference state flux for the model predictive pulse pattern control

method was proposed in [25]. A similar predictive optimal switching strategy for an

AC-DC converter using active and reactive power references suggested in [26] and [27]

is restricted to unconstrained problems.

A review of applications of MPC in power electronics is given in [28] and a summary

of recent developments can be found in [3]. A continuous MPC formulation for battery

impedance control was presented in [1].

3.1.2 Backstepping Control

The Backstepping (BS) method [29, 30] is a nonlinear Lyapunov-based control frame-

work that can be used for systems in so called strict-feedback form, also known as lower

triangular form
ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

...

ẋn = fn(x1, x2, ..., xn) + gn(x1, x2, ..., xn)u.

(3.1)

It is a systematical approach to derive a control law in a recursive manner that asymp-

totically stabilizes the closed loop. Due to its underlying structure it is also refered to
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3.2 Cascade control 14

as integrator backstepping. BS is a similar approach to feedback linearization [30, 31]

without the drawback of cancelling useful nonlinearities, giving additional flexibility.

The idea is to construct a Lyapunov function for a subsystem and a virtual control

input that stabilizes it. This procedure is repeated and the initial Lyapunov function

extended until a control law for the real input is found that yields asymptotic stability

of the closed loop. In some cases the invariance principle of Krasovskii-LaSalle [30] is

needed to prove not only stability but asymptotic stability. The integrator backstepping

method was applied for impedance control of an electrohydraulic system in [32].

3.2 Cascade control

This thesis proposes a cascade control structure as depicted in fig. 3.2 that decouples

the voltage tracking problem and disturbance rejection in the outer loop from coping

with the switching dynamics in the inner loop. Due to different dynamics of voltage

y

w

x̂

îL

i∗

1 uVoltage
Controller

Current
Controller SMPB

v∗

2

Kalman
Filter

Figure 3.2: Cascade control structure with outer voltage control loop and inner

current loop.

and current, the two loop strategy allows increasing time resolution in the inner loop

related to current without necessity of very long prediction horizons for the outer loop

voltage tracking problem, which is a similar motivation as in [33]. Fig. 3.3 illustrates

the different time scales of the inner and outer loop with different prediction intervals.

The finite control set is only considered in the inner loop. A Kalman Filter estimates

the states x̂ and unknown load îL based on measureable state vector w. Moreover, it

is used to compensate the computational delay of one sampling period that occurs for

computational demanding strategies based on MPC for instance. The Kalman Filter

design is discussed in section 3.8.

3.2.1 Outer loop - voltage control

The outer loop provides a continuous reference current i∗1 for the inner loop such that

the output voltage is tracked accurately and load variations are compensated. While
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3.2 Cascade control 15

tk+1

Inner Outer loopi∗
1

tk tk+Np

tk+2Tp ...

v∗
2

loop

Figure 3.3: Different time scales of the inner and outer control loop.

the outer loop is not restricted to a specific control strategy, two variants are suggested

in this thesis:

1. a continuous MPC that provides a reference current by minimizing the voltage

tracking error over the prediction horizon and considering current limits on i1,

2. a less computational demanding approach with drawbacks is to implement a

Linear Quadratic Regulator (LQR) with anti-windup instead.

Both approaches will use the reduced order model with current as virtual control input

from section 2.11 for the control design.

Constrained optimal voltage control

This subsection discusses a model predictive control problem with input constraints on

virtual input i∗1 only. The discrete-time prediction model for the virtual input model

(2.11) is given by

xv,k+1 = Φvxv,k + Γvuk (3.2a)

yk = cT
v xv,k. (3.2b)

The optimal control sequence is found by minimizing the quadratic objective function

Jk =
Np−1
∑

i=1

qi(y
∗

k+i − yk+i)
2 +

Nc−1∑

i=0

riu
2
v,k+i, (3.3)

with the reference value y∗
k and weighting factors qi and ri that penalize the control

error and control effort. Tuning qi and ri results in a tradeoff between tracking conver-

gence and control effort. The optimization problem can be formulated in dense form

with input constraints only that can be solved highly efficiently using the fast gradient

method. Details on the resulting optimization problem are discussed in chapter 4.

To achieve offset-free tracking due to model uncertainty or presence of constant dis-

turbances, as well as to penalize only relative instead of absolute control effort, the
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3.2 Cascade control 16

prediction model can be extended with the absolute control input that represents a

disturbance state and control move ∆uk = uv,k − uv,k−1 as control input [34], hence,

[

xv,k+1

uv,k

]

=

[

Φv Γv

0 1

] [

xv,k

uv,k−1

]

+

[

Γv

1

]

∆uk (3.4a)

yk =
[

cT
v 0

]
[

xv,k

uv,k−1

]

. (3.4b)

The objective function for the extended model is given by

Jk =
Np−1
∑

i=1

qi(y
∗

k+i − yk+i)
2 +

Nc−1∑

i=0

ri(∆uk+i)
2. (3.5)

Such a formulation comes with the drawback that the constraint on i1 does not only im-

ply an input constraint but a state constraint which complicates solving the associated

optimization problem.

Unconstrained optimal voltage control

Although the formulation in the previous subsection is highly computationally efficient,

another method with minimal computational cost as it can be calculated offline is

presented in this subsection. To achieve zero steady-state error in presence of model

mismatch or constant disturbances, the state vector xv,k is extended with an error

integral state xI,k+1, i.e.,

[

xv,k+1

xI,k+1

]

=

[

Φv 0

−cT
v 1

]

︸ ︷︷ ︸

Φu

[

xv,k

xI,k

]

+

[

Γv

0

]

︸ ︷︷ ︸

Γu

uu,k +

[

0

1

]

y∗

k (3.6a)

yk =
[

cT
v 0

]
[

xv,k

xI,k

]

. (3.6b)

This allows designing a discrete-time LQR [35] with state feedback law

uu,k =
[

kT
x kI

]

︸ ︷︷ ︸

kT

[

xv,k

xI,k

]

︸ ︷︷ ︸

xu,k+1

. (3.7)

Minimizing the infinite horizon objective function

J∞(xv,0) =
∞∑

k=0

xT
u,kQuxu,k + uu,kruuu,k (3.8)
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3.2 Cascade control 17

yields the optimal feedback gain

kT = −(ru + ΓT
u PuΓu)−1ΓT

u PuΦu, (3.9)

where Pu is the solution of the discrete-time algebraic Ricatti equation (DARE)

Pu = ΦT
u P Φu −ΦT

u PuΓu(ru + ΓT
u PuΓu)−1ΓT

u PuΦu + Qu. (3.10)

The state weighting matrix has diagonal structure

Qu = quI (3.11)

with

qu =
[

qu,v1
qu,i2

qu,v2
qu,xI

]T
(3.12)

and control weight

rv. (3.13)

Instead of explicitly considering constraints on the reference current that is treated as

virtual control signal uv,k = i∗1, an anti-windup strategy is applied when virtual control

saturation occurs. Hence, the actually applied control signal is

ũu,k =







i1,max if uu,k > i1,max

i1,min if uu,k < i1,min

uu,k (3.7) otherwise.

(3.14)

Consequently, error integration is frozen when saturation occurs and error contribution

would further increase the absolute value of the error integral state.

3.2.2 Inner loop - current control

The inner loop considers the switching system structure and has to achieve tight current

tracking. The three different schemes

1. Finite Control-Set MPC (FCS-MPC),

2. Predictive Pulse Pattern Control (PPPC) and

3. Backstepping (BS) Control

are discussed in the next sections.
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3.3 Finite Control-Set MPC 18

3.3 Finite Control-Set MPC

The full order model (2.6) of the SMPB has four binary inputs that result in 24 = 16

possible switching combinations with the finite control set U = u × u × u × u and

u = {0, 1}. When equal phases are assumed the reduced order model (2.10) with

one input yielding in 5 switching combinations only can be used instead to reduce the

computational cost. The associated finite control set is denoted as U = {0, 1, 2, 3, 4}.

This exploits the fact that each phase has an equal current contribution and the voltage

dynamics of the first filter capacitance v1 is determined only by the number of phases

that are on (active) and off (inactive). As listed in table 3.1 the switching combinations

grow exponentially with the prediction horzion Np. For this reason the reduced order

Table 3.1: The switching combinations grow exponentionally with the predic-

tion horizon.

Prediction horizon
Switching combinations

Full order Reduced order

1 16 5

2 256 25

3 4096 125

4 65536 625

5 1048576 3125

6 16777216 15625

model is used to find the optimal number of active phases in a first step. The second

step is to switch specific phases accordingly such that current is equally balanced. The

former problem is referred to as total switching problem (TSP) and the latter as current

balancing problem (CBP).

The two step approach of subsequently solving the TSP and CBP is illustrated in fig.

3.4.

3.3.1 Total switching problem

The total switching problem (TSP) is to find the number of active switches needed to

track the reference current. Therefore, an associated FCS-MPC problem is formulated

in the following. The input sequence and state sequences over the control horizon Nc

and prediction horizon Np respectively are notated as

Uk =
[

uk uk+1 · · · uNc−1

]T
(3.15)
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3.3 Finite Control-Set MPC 19

yS Sa − SdTSP CBP SMPB
i∗1

{0, 1, 2, 3, 4}
[

0 0 0 0
]T

[

0 0 0 1
]T

[

0 0 1 0
]T

...

∈ ∈

Figure 3.4: Two step current tracking approach.

Xk =
[

xT
r,k+1 xT

r,k+2 · · · xT
r,Np

]T
. (3.16)

The state sequence can then be expressed as

Xk = Axr,k + BUk, (3.17)

where

A =











Φr

Φ2
r

...

ΦNp
r











, B =












Γr 0 · · · 0

ΦrΓr Γr 0
...

...
. . . . . . 0

ΦNp−1
r Γr · · · ΦrΓr Γr












. (3.18)

Consequently, the current output sequence

Yk =
[

yi,k+1 yi,k+2 · · · yi,Np

]T
(3.19)

is calculated as

Yk = C(AXk + BUk) = F Xk + GUk, (3.20)

where

C =








cT
i

...

cT
i







, yi,k =

[

1 0 0 0
]

︸ ︷︷ ︸

cT
i

xk. (3.21)

Let the output reference trajectory at time step k be

Y ∗

k =
[

i∗1 i∗1 · · · i∗1

]T
∈ R

Np , (3.22)

λu denote a tuning factor that increases the switching cost, uk−1 refer to the previ-

ously applied input and Vf (xk+Nc
) denote the terminal cost. The objective function is

formulated as

Jk = ‖Y ∗

k − Yk‖
2
Ω

+ λu‖T Uk −Euk−1‖
2
Σ

+ Vf (xk+Nc
), (3.23)
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3.3 Finite Control-Set MPC 20

where

T =















I 0 · · · · · · 0

−I I 0 · · ·
...

0 −I I 0 0

...
...

. . . . . .
...

0 · · · · · · −I I















, E =











I

0

...

0











(3.24)

and

Vf (xr,k+Nc
) = ‖x∗

r,k+Nc
− xr,k+Nc

‖2
P

= (x∗

r,k+Nc
− xr,k+Nc

)TP (x∗

r,k+Nc
− xr,k+Nc

)

= x∗T
r,k+Nc

P x∗

r,k+Nc
− 2x∗T

r,k+Nc
P xr,k+Nc

+ xT
r,k+Nc

P xr,k+Nc
.

(3.25)

The objective function Jk has three goals:

1. output voltage tracking

2. minimizing switching effort

3. guarantee stability due to a terminal cost .

When the weighting matrices Ω and Σ preserve diagonal structure, they allow to put

emphasis on the tracking or switching goal for the corresponding prediction instance.

The Np-step-ahead state prediction at sample instance k is given by

xr,k+Np
= ΦNp

r xr,k + BNp
Uk, (3.26)

where BNp
denotes the last row of B.

State constraints

Due to the switching system structure the inputs are constrained to the finite control

set U . However, also the current i1 needs to be constrained to ±i1,max in order to ensure

safe operating conditions. To this end, the state space is partitioned to determine the

feasible input set Uf ⊆ U that ensures the current constraint is not violated. This can

be easily done by solving

Uk = B−1
i (ilimit −Aixr(j)), (3.27)

where ilimit is a vector of length Np with entries that refer to an active constraint, hence

i1 = ±i1,max for the corresponding upper and lower switching constraint respectively.

The matrices Ai and Bi refer to Np state predictions projected to i1 and xr(j) is a
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3.3 Finite Control-Set MPC 21

suitably fine resoluted slice j of the partitioned state space. The feasible set has to

be reduced when the resulting entries for Uk are inside the maximum allowed control

set U . When online determing the optimal switching sequence, the current state is

interpolated to the nearest slice of state partitions and the control set of consideration

is adapted accordingly to the smallest finite control set that respects the current con-

straint. Besides this direct approach, the current can also be assumed to be constrained

from the outer loop which would make this step obsolete.

Integer Quadratic Program

Expanding (3.23) yields

Jk = ‖Y ∗

k − (F xk + GUk)‖2
Ω

+ λu‖T Uk −Euk−1‖
2
Σ

+x∗T
k+Nc

P x∗

k+Nc
− 2x∗T

k+Nc
P (ΦNp

r xk + BNp
Uk)

+(ΦNp

r xk + BNp
Uk)TP (ΦNp

r xk + BNp
Uk)

= ‖Y ∗

k − F xk‖
2
Ω
− 2(Y ∗

k − F xk)TΩGUk + UT
k GTΩGUk

+λuUT
k T TΣT Uk − 2λu(Euk−1)

TΣT Uk + λu‖Euk−1‖
2
Σ

+x∗T
k+Nc

P x∗

k+Nc
− 2x∗T

k+Nc
P (ΦNp

r xk + BNp
Uk)

+(ΦNp

r xk)TP ΦNp

r xk + 2(ΦNp

r xk)TPBNp
Uk + (BNp

Uk)TPBNp
Uk.

(3.28)

The control and prediction horizon shall have equal length, thus, N = Nc = Np. The

objective function (3.28) can then be written in compact form as a integer quadratic

program (IQP)

Jk = Λk + 2θT
k Uk + UT

k QUk, (3.29)

with
Λk = ‖Y ∗

k − F xk‖
2
Ω

+ λu‖Euk−1‖
2
Σ

+ x∗T
k+NP x∗

k+N

−2x∗T
k+NP ΦN

r xk + (ΦN
r xk)TP ΦN

r xk

(3.30)

θk = ((F xk − Y ∗

k )T
ΩG− λu(Euk−1)

TΣT + (ΦN
r xk − x∗T

k+N)TPBN)T (3.31)

Q = GTΩG + λuSTΣT + BT
NPBN . (3.32)

It can be seen that Λk is time varying but independent of the decision variable Uk.

Moreover, Q is a constant matrix, hence, only θk needs to be calculated online. The

terminal cost shall be zero for further analsyis, hence Vf = 0, or P = 0.

The optimal switching sequence is obtained by solving

U ∗
k = argmin

Uk

Jk

subject to |i1(tk+i)| ≤ i1,max, i = 1, . . . , N

Uk ∈ Uf × · · · × Uf .

(3.33)
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3.3 Finite Control-Set MPC 22

Integer Least Squares Problem

As shown in [36] minimizing the IQP (3.29) is equivalent as solving the associated

integer least squares (ILS) problem with respect to the unconstrained optimum. For

Q > 0 the IQP (3.29) can be reformulated to the equivalent ILS problem, that is

minimizing the euclidean distance

‖HUk − Ũunc,k‖
2
2 (3.34)

to the transformed unconstrained optimal solution

Ũunc,k = HUunc,k. (3.35)

The unconstrained optimal solution is given by

Uunc,k = −Q−1θ (3.36)

and the unique lower triangle matrix H can be found with the Cholesky decomposition

HTH = Q. (3.37)

An efficient algorithm to solve such an ILS problem is discussed in the following chapter

in section 4.2.2.

3.3.2 Current balancing problem

The current balancing problem (CBP) is to distribute the current equally among the

phases with the constraint given by S, the solution of the TSP that corresponds to

the number of active phases per time step. As not only one element of the switching

sequence U ∈ UN
f is applied but the whole sequence that corresponds to the considered

prediction interval TP, the state evolution has to be predicted consequently to determine

individual switching states at intersampling time steps during TP. The prediction model

corresponds to the one used for the Kalman Filter design in section 3.8. The optimal

individual switching sequence is obtained by minimizing the objective function

JCBP = (∆iL14
)2 + λsw(∆S)2

subject to S ∈ U :
∑

S = S.
(3.38)

for the entire control horizon. Thereby ∆iL14
denotes the maximum individual phase

current difference of the one-step phase current predictions and ∆S is the sum of

switching actions when applying the candidate switching combination. The former

ensures phase current do not diverge but remain in a tight band and the latter penal-

izes switching actions with the weight λsw. The objective function has to be evaluated

only for entries S > 0 and S < 4, as S = 0 and S = 4 imply S =
[

0 0 0 0
]T

and

S =
[

1 1 1 1
]T

respectively.
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3.4 Predictive Pulse Pattern Control

The control strategy for the SMPB described in this section is inspired by the model

predictive pulse pattern control method for an induction motor suggested in [22]. The

proposed PPPC scheme allows two switching actions1 per phase within the prediction

interval Tp that is typically chosen to be equal the sampling period Ts. Therefore, a

set of four optimal pulse patterns (OPP) which differ in simultaneously active phases

is defined to cover each operating point. As summarized in table 3.2, pattern A allows

0 or 1 simultaneously active phases, pattern B allows 1 or 2, etc.

Table 3.2: Switching sequences for the set of pulse patterns.

Period
Pattern A Pattern B Pattern C Pattern D

Sa Sb Sc Sd Sa Sb Sc Sd Sa Sb Sc Sd Sa Sb Sc Sd

t0 ≤ t < t1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0

t1 ≤ t < t2 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1

t2 ≤ t < t3 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1

t3 ≤ t < t4 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1

t4 ≤ t < t5 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1

t5 ≤ t < t6 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1

t6 ≤ t < t7 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1

t7 ≤ t < t8 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1

Using these pulse patterns implies reducing the number of possible control sequences

and therefore degrades control performance in general as it affects reachability [37]. A

detailed analysis in the context of principle control moves is given in [38]. The pulse

patterns are optimal in the sense of minimal switching effort as only one switching state

is changed at each switching instant t1− t7, yielding in a fixed switching frequency. An

example of a switching sequence for pulse pattern A is depicted in fig. 3.5.

The objective function

Jk =
8∑

i=1



(i∗k − i1(ti))
2 +

∑

j∈P

ψj

(
1

4
i∗k − iL1j

(ti)
)2


 , P = {a, b, c, d} (3.39)

1 In fact, each pulse pattern contains one phase that switches only one time as the patterns are

defined such that the corresponding second switching coincides with the end of the prediction

interval. This way one decision variable can be eliminated while the possible switching sequence

remains unchanged.
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tk tk+1

tt1 t2 t3 t4 t5 t6 t7

TP

Sa

Sb

Sc

Sd

Figure 3.5: Example of a switching scheme for pulse pattern A.

comprises the sum current tracking error as well as the phase current tracking error

at each switching instant and at the end of the prediction interval tk+1 with weighting

factors ψj. The former will result in minimal sum current ripple and the latter is

required to establish equal current balancing. By using the small ripple approximation

[16] and approximating the voltage drop on phase resistances with the average phase

current iavg
L1j

, the current predictions used in (3.39) can be expressed for each pulse

pattern (sequence of switching states Sj depends on the OPP) recursively as

iL1j
(ti+1) = iL1j

(ti) +
(

Sj(ti)V0 − v1(t0)−R1j
i
avg
L1j

)
(ti+1 − ti)

L1j

,

with j ∈ P, i = 0, . . . , 7. (3.40)

Schematic current predictions for the set of pulse patterns are depicted in fig 3.6. The

optimal vector of switching instants t∗ =
[

t1 t2 t3 t4 t5 t6 t7
]T

is obtained by

solving the boundary control problem and t8 = tk+1

t∗ = argmin
t

Jk

subject to ti ≤ ti+1, i = 0, . . . , 7,
(3.41)

with t0 = tk. It shall be noted that the current constraint is assumed to be han-

dled by the outer loop while the inner PPPC loop only accomplishes current tracking.

Therefore, the switching ripple of the current has to be considered in the current limit.

However, the state-space could easily be partitioned to find maximal on-times that can

be added to the constraints of problem (3.41).

In contrast to a conventional FCS-MPC formulation as in section 3.3, the current predic-

tions are based on the continuous-time dynamics which decouples time resolution from

sampling rate and therefore yields in high accuracy as predictions include intersampling

instants.
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tk tk+1

t

iL1a

t1 t2 t3 t4 t5 t6 t7

iL1b
iL1c

iL1d

i1

TP

(a) Pattern A: 0 or 1 active phases.

tk tk+1

tt1 t2 t3 t4 t5 t6 t7

i1

TP

iL1a
iL1b

iL1c
iL1d

(b) Pattern B: 1 or 2 active phases.

tk tk+1

tt1 t2 t3 t4 t5 t6 t7

i1

TP

iL1a
iL1b

iL1c
iL1d

(c) Pattern C: 2 or 3 active phases.

tk tk+1

tt1 t2 t3 t4 t5 t6 t7

i1

TP

iL1a
iL1b

iL1c
iL1d

(d) Pattern D: 3 or 4 active phases.

Figure 3.6: Current prediction at time instant k based on decision variables

t1− t7 for different pulse pattern switching sequences that differ in

number of simultaneously active phases.

The objective function (3.39) is a function of the pulse pattern p and can be rewritten

as

Jk(p) = ‖i∗

k − (F (p)xr,k + Gk(p)tk) + K(p)‖2
Ψ
, p ∈ {A,B,C,D}, (3.42)

where xr,k =
[

iL1a ,k iL1b
,k iL1c ,k iL1d

,k v1,k

]T
. The first eight elements of i∗ are the

sum current reference values i∗1 and the last four elements are the phase current reference

values, hence 1
4
i∗1. The decision variables that are the entries of tk are normalized by

Tn = TP in order to improve the condition of the problem. The matrices F (A)−F (D),

Gk(A)−Gk(D), K(A)−K(D) and Ψ are defined in the appendix A.

Eventually t∗ can be obtained by solving the standard quadratic problem

min 1
2
tT

k Hktk + fT
k tk

subject to ti ≤ ti+1, i = 0, . . . , 7,

Hk = 2GT
k ΨGk,

fk = 2(F xr,k + K − i∗
k)T

ΨGk

(3.43)D
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3.4 Predictive Pulse Pattern Control 26

with a conventional quadratic solver as discussed in chapter 4. The computational

complexity is comparable with the problem formulated in [1], where a real-time capable

active-set algorithm was verified with experimental results.
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3.5 Backstepping control

This section treats the systematic derivation of a backstepping control law for the

system described chapter 2. Rewriting system dynamics (2.1) into strict-feedback

form (3.1) with state vector x =
[

v2 i2 v1 iL1a
iL1b

iL1c
iL1d

]T
, input vector

u =
[

Sa Sb Sc Sd

]T
and disturbance d = iL gives

ẋ1 = f1(x1) + g1x2 − g1d

ẋ2 = f2(x1, x2) + g2x3

ẋ3 = f3(x1, x2, x3) + g3(x4 + x5 + x6 + x7)

ẋ4 = f4(x1, x2, x3, x4) + g4u1

ẋ5 = f5(x1, x2, x3, x5) + g5u2

ẋ6 = f6(x1, x2, x3, x6) + g6u3

ẋ7 = f7(x1, x2, x3, x7) + g7u4,

(3.44)

with

i1 = x4 + x5 + x6 + x7 = iL1a
+ iL1b

+ iL1c
+ iL1d

(3.45)

and

f1(x1) = 0, g1 =
1

C2

,

f2(x1, x2) = −
R2i2 + v2

L2

, g2 =
1

L2

,

f3(x1, x2, x3) = −
i2

C1

, g3 =
1

C1

,

f4(x1, x2, x3, x4) = −
R1a

iL1a
+ v1

L1a

, g4 =
V0

L1a

,

f5(x1, x2, x3, x5) = −
R1b

iL1b
+ v1

L1b

, g5 =
V0

L1b

,

f6(x1, x2, x3, x6) = −
R1c

iL1c
+ v1

L1c

, g6 =
V0

L1c

,

f7(x1, x2, x3, x7) = −
R1d

iL1d
+ v1

L1d

, g7 =
V0

L1d

.

(3.46)

The dynamics of the integrated voltage error ev2I
and voltage error ev2

are given by

ėv2I
=ev2

= v2 − v2d
(3.47)

ėv2
=v̇2 − v̇2d

= −v̇2d
+ g1i2 − g1d. (3.48)
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Introducing the virtual input

i2 = α1(e, v̇2d
) =

1

g1

(−βIev2I
− βvev2

+ v̇2d
) + d, (3.49)

let the error dynamics ė become linear such that it can be written as





ėv2I

ėv2





︸ ︷︷ ︸

ė

=





0 1

−βI −βv





︸ ︷︷ ︸

Ae





ev2I

ev2





︸ ︷︷ ︸

e

. (3.50)

Let

V1(e) = eTPee, Pe > 0, P T
e = Pe (3.51)

be a Lyapunov candidate function. Its time derivative along the trajectories of (3.44)

is given by

V̇1(e) = eTAT
e Pee + eTPeAee. (3.52)

The Lyapunov equation

AT
e Pe + PeAe + Q = 0 (3.53)

has for every Q > 0 and a Hurwitz matrix Ae a unique solution, such that

V̇1(e) = −e2
v2I
− e2

v2
< 0, (3.54)

which asymptotically stabilizes the equilibrium. The closed loop performance can be

tuned with parameters βI and βv that can be determined by placing the eigenvalues of

Ae.

In a next step, V1 is augmented by the quadratic deviation of i2 from its ideal trajectory

z1 = i2 − α1(e), which results in

V2(e, i2) = V1(e) +
γ1

2
(i2 − α1(e))2, γ1 > 0 (3.55)

and its time derivative along the trajectories of (3.44)

V̇2(e, i2, v1) =
∂V1

∂ev2I

ev2
+
∂V1

∂ev2

(−v̇2d
+ g1i2 − g1d)

+ γ1z1 (f2 + g2v1 − α̇1(e))

=
∂V1

∂ev2I

ev2
+
∂V1

∂ev2

(−v̇2d
+ g1α1 − g1d)

+ γ1z1

(

f2 + g2v1 − α̇1(e) +
g1

γ1

∂V1

∂ev2

)

.

(3.56)
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Considering v1 as virtual input, the ideal trajectory is given by

v1 = α2(e, z1) =
1

g2

(

−k1z1 − f2 + α̇1(e)−
g1

γ1

∂V1

∂ev2

)

, (3.57)

which asymptotically stabilizes the closed loop, as

V̇2(e, z1) =
∂V1

∂ev2I

ev2
+
∂V1

∂ev2

(−v̇2d
+ g1α1(e)− g1d)

− γ1k1z
2
1 < 0.

(3.58)

Augmenting V2 by the quadratic deviation of v1 from the ideal trajectory results in

V3(e, i2, v1) = V2(e, i2) +
γ2

2
(v1 − α2(e, z1))

2,

γ2 > 0.
(3.59)

Substituting v1 = z2 + α2(e, z1) leads to

V̇3(e, z1, z2) =
∂V1

∂ev2I

ev2
+
∂V1

∂ev2

(−v̇2d
+ g1α1(e)− g1d)

− γ1k1z
2
1 + γ1g2z1z2

+ γ2z2(f3 + g3i1 − α̇2(e, z1)).

(3.60)

Recursively, i1 is considered as virtual input and the ideal trajectory

i1 = α3(e, z1, z2) =
1

g3

(

−k2z2 −
γ1

γ2

g2z1 − f3 + α̇2(e, z1)

)

(3.61)

asymptotically stabilizes the closed loop, as

V̇3(e, z1, z2) =
∂V1

∂ev2I

ev2
+
∂V1

∂ev2

(−v̇2d
+ g1α1(e)− g1d)

− γ1k1z
2
1 − γ2k2z

2
2 < 0.

(3.62)

Taking into account that i1 = iL1a
+ iL1b

+ iL1c
+ iL1d

and equal current distribution

among the four half-bridges is desired, V3 can be augmented as

V4(e, i2, v1, iL1
, iL2

, iL3
, iL4

) = V3(e, i2, v1)

+
γ3

2

(

iL1a
−
α3(e, z1, z2)

4

)2

+
γ3

2

(

iL1b
−
α3(e, z1, z2)

4

)2

+
γ3

2

(

iL1c
−
α3(e, z1, z2)

4

)2

+
γ3

2

(

iL1d
−
α3(e, z1, z2)

4

)2

,

(3.63)D
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with the error states

z3 = iL1a
−
α3(e, z1, z2)

4
z4 = iL1b

−
α3(e, z1, z2)

4

z5 = iL1c
−
α3(e, z1, z2)

4
z6 = iL1d

−
α3(e, z1, z2)

4
.

(3.64)

The time derivative of (3.63) along the solutions of (3.44) is given by

V̇4 =
∂V1

∂ev2I

ev2
+
∂V1

∂ev2

(−v̇2d
+ g1α1(e)− g1d)

− γ1k1z
2
1 − γ2k2z

2
2 + γ2g3z2(z3 + z4 + z5 + z6)

+ γ3z3

(

f4 + g4u1 −
α̇3(e, z1, z2)

4

)

+ γ3z4

(

f5 + g5u2 −
α̇3(e, z1, z2)

4

)

+ γ3z5

(

f6 + g6u3 −
α̇3(e, z1, z2)

4

)

+ γ3z6

(

f7 + g7u4 −
α̇3(e, z1, z2)

4

)

.

(3.65)

Finally, a control law for each half-bridge that asymptotically stabilizes the closed loop

trajectories of (3.44), thus V̇4 < 0, can be derived as

u1 =
1

g4

(

−k3z3 −
γ2

γ3

g3z2 − f4 +
α̇3(e, z1, z2)

4

)

u2 =
1

g5

(

−k4z4 −
γ2

γ3

g3z2 − f5 +
α̇3(e, z1, z2)

4

)

u3 =
1

g6

(

−k5z5 −
γ2

γ3

g3z2 − f6 +
α̇3(e, z1, z2)

4

)

u4 =
1

g7

(

−k6z6 −
γ2

γ3

g3z2 − f7 +
α̇3(e, z1, z2)

4

)

.

(3.66)

The tuning parameters γ1, γ2 and γ3 reduce the deviation from the desired behaviour

given by α1, α2 and α3 respectively, while the corresponding coupling-terms are neces-

sary for stability in the Lyapunov function time derivative. As a rule of thumb, they

should be chosen such that
g1 ≪ γ1

γ1g2 ≪ γ2

γ2g3 ≪ γ3.

(3.67)
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Instead of deriving a separate control law for each half-bridge, when equal phase con-

figurations are assumed, such that

L1a
= L1b

= L1c
= L1d

(3.68)

R1a
= R1b

= R1c
= R1d

(3.69)

holds, one could also use the lumped model (2.10) and introduce the deviation term of

the ideal i1 trajectory

z3 = i1 − α3(e, z1, z2). (3.70)

Let

g
4

=
V0

L1

(3.71)

f
4

= −
R1i1 + v1

L1

. (3.72)

This gives by augmenting V3 with the quadratic deviation of i1 from the ideal trajectory

the Lyapunov function candidate

V40
(e, i2, v1, i1) = V3(e, i2, v1) +

γ
3

2
(i1 − α3(e, z1, z2))

2
,

γ
3
> 0.

(3.73)

Its time derivative follows then as

V̇40
=

∂V1

∂ev2I

ev2
+
∂V1

∂ev2

(−v̇2d
+ g1α1(e)− g1d)

− γ1k1z
2
1 − γ2k2z

2
2 + γ2g3z2z3

+ γ
3
z3

(

f
4

+ g
4
u0 − α̇3(e, z1, z2)

)

.

(3.74)

It can be seen that the closed loop trajectories of (3.44) can be asymptotically stabilized

with the single control law

u0 = α4(e, z1, z2, z3)
1

g
4

(

−k3z3 −
γ2

γ
3

g3z2 − f 4
+ α̇3(e, z1, z2)

)

, (3.75)

such that V̇40
< 0. The corresponding control structure is depicted in Fig. 3.7.

The conventional backstepping method described in this section does not consider input

nor state constraints. Furthermore, the computation of the virtual control laws α1, α2

and α3 and its derivatives become more and more demanding as the system order

increases. To overcome both of these issues, an extension that uses so called command

filters is addressed in the next section.
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α1 α2

ev2I

α3 α4

x1 x2 x3 x4α̇1 α̇2 α̇3

u0v2d

− − − −

ev2
z1 z2 z3

v̇2d d

1
z−1

Figure 3.7: Backstepping control structure for the single control law case as

defined in (3.75). The virtual control signals αi and its time deriva-

tives have to be calculated explicitly for the next stage.

3.6 Command Filtered Backstepping

Command Filtered Backstepping (CFBS) is a modification of the conventional back-

stepping method which brings two interesting advantages [4]. In contrast to the simple

notation, analytical expressions of the time derivatives of the virtual command sig-

nals αi with i = {1, . . . , 4} get more and more complicated for higher order systems.

CFBS allows to derive them with a simple filtering approach. Secondly, input and state

constraints can be considered while guaranteeing stability with Lyapunov arguments.

Moreover, CFBS is not restricted to systems in strict-feedback form as the conventional

approach. CFBS can also be extended to the adaptive case to deal with parameter

uncertainties as shown in [39].

Define the tracking errors

z̃i = xi − xic
(3.76)

and the compensated tracking errors

vci
= z̃i − ξi, (3.77)

with saturation signals ξi, i = 1, ...4. Thereby z̃1 denotes the output voltage tracking

error defined as

z̃1 = x1 − x1c
= v2 − v2d

. (3.78)

Consider the Lyapunov candidate function

Ṽ1 =
1

2
v2

c1
(3.79)

and its time derivative along trajectories of (3.44)

d

dt
Ṽ1 = vc1

(f1 + g1x2 − g1d− ẋ1c
− ξ̇1)

= vc1
(f1 + g1(z̃2 + x2c

) + g1(α̃1 − ξ2)− g1(α̃1 − ξ2)− g1d− ẋ1c
− ξ̇1)

= vc1
(f1 + g1 (z̃2 − ξ2)

︸ ︷︷ ︸

vc2

+g1α̃1 + g1(x2c
− α̃1 + ξ2)− g1d− ẋ1c

− ξ̇1).

(3.80)D
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3.6 Command Filtered Backstepping 33

Considering α̃1 as virtual input command

α̃1 =
1

g1

(−k1z̃1 − f1 + ẋ1c
) + d (3.81)

and choosing

ξ̇1 = g1(x2c
− α̃1 + ξ2)− k1ξ1 (3.82)

then (3.80) becomes
d

dt
Ṽ1 = −k1vc1

(z̃1 − ξ1)− g1vc1
vc2

= −k1v
2
c1
− g1vc1

vc2
.

(3.83)

Thus, the cross-coupling term g1v1v2 needs to be compensated in the next step, to

achieve asymptotic stability, hence ˙̃V1 < 0. It can further be seen that ξ1 has PT1-

dynamics with plant parameter g1 and control parameter k1.

Augmenting (3.79) with the quadratic compensated tracking error v2
c2

gives the Lya-

punov function candidate

Ṽ2 = Ṽ1 +
γ̃2

2
v2

c2
(3.84)

and its time derivative along the solutions of (3.44)

d

dt
Ṽ2 = −k1v

2
c1
− g1v1c

v2c
+ γ̃2vc2

(f2 + g2x3 − ẋ2c
− ξ̇2)

= −k1v
2
c1
− g1v1c

v2c

+ γ̃2vc2
(f2 + g2(z̃3 + x3c

) + g2(α̃2 − ξ3)− g2(α̃2 − ξ3)− ẋ2c
− ξ̇2) =

= −k1v
2
c1
− g1v1c

v2c

+ γ̃2vc2
(f2 + g2 (z̃3 − ξ3)

︸ ︷︷ ︸

vc3

+g2α̃2 + g2(x3c
− α̃2 + ξ3)− ẋ2c

− ξ̇2).

(3.85)

The virtual input command α̃2 has to compensate the cross-coupling term which is

achieved by

α̃2 =
1

g2

(−k2z̃2 − f2 + ẋ2c
−
g1

γ̃2

vc1
), (3.86)

while ξ̇2 takes again PT1-dynamics

ξ̇2 = g2(x3c
− α̃2 + ξ3)− k2ξ2, (3.87)

which gives for (3.85)

d

dt
Ṽ2 = −k1v

2
c1
− γ̃2k2vc2

(z̃2 − ξ2)− γ̃2g2vc2
vc3

=

= −k1v
2
c1
− γ̃2k2v

2
c2
− γ̃2g2vc2

vc3

(3.88)
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3.6 Command Filtered Backstepping 34

and leaves another cross-coupling term that has to be canceled in the next step.

By augmenting (3.84) with the quadratic compensated tracking error v2
c3

another Lya-

punov function candidate

Ṽ3 = Ṽ2 +
γ̃3

2
v2

c3
(3.89)

can be found. Its time derivative along the solutions of (3.44) takes the form

d

dt
Ṽ3 = −k1v

2
c1
− γ̃2k2v

2
c2
− γ̃2g2v2c

v3c
+ γ̃3vc3

(f3 + g3x4 − ẋ3c
− ξ̇3)

= −k1v
2
c1
− γ̃2k2v

2
c2
− γ̃2g2v2c

v3c

+ γ̃3vc3
(f3 + g3(z̃4 + x4c

) + g3(α̃3 − ξ4)− g3(α̃3 − ξ4)− ẋ3c
− ξ̇3) =

= −k1v
2
c1
− γ̃2k2v

2
c2
− γ̃2g2v2c

vc3

+ γ̃3vc3
(f3 + g3 (z̃4 − ξ4)

︸ ︷︷ ︸

vc4

+g3α̃3 + g3(x4c
− α̃3 + ξ4)− ẋ3c

− ξ̇3).

(3.90)

The cross-coupling term can be compensated with the ideal virtual input command

α̃3 =
1

g3

(−k3z̃3 − f3 + ẋ3c
− g2

γ̃2

γ̃3

vc2
), (3.91)

while applying PT1-dynamics for ξ̇3 such that

ξ̇3 = g3(x4c
− α3 + ξ4)− k3ξ3. (3.92)

This results for (3.90) in

d

dt
Ṽ3 = −k1v

2
c1
− γ̃2k2v

2
c2
− γ̃3k3vc3

(z̃3 − ξ3)− γ3g3vc3
vc4

=

= −k1v
2
c1
− γ̃2k2v

2
c2
− γ̃3k3v

2
c3
− γ̃3g3vc3

vc4
,

(3.93)

which leaves another cross-coupling term that has to be canceled in the last step.

As in the section before, the approach can easily be applied to generate four different

control laws for each half-bridge. Nevertheless, only the single control law using the

lumped model (2.10) will be addressed here.

Consequently, (3.89) is augmented with the quadratic compensated tracking error v2
c4

,

which gives

Ṽ4 = Ṽ3 +
γ̃4

2
v2

c4
(3.94)

and its time derivative along the solutions of (3.44)

d

dt
Ṽ4 = −k1v

2
c1
− γ̃2k2v

2
c2
− γ̃3k3v

2
c3
− γ̃3g3v3c

v4c
+ γ̃4vc4

(f4 + g4uc − ẋ4c
− ξ̇4)

= −k1v
2
c1
− γ̃2k2v

2
c2
− γ̃3k3v

2
c3
− γ̃3g3v3c

v4c

+ γ̃4vc4
(f4 + g4(uc − α̃4) + g4α̃4 − ẋ4c

− ξ̇4).

(3.95)
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3.6 Command Filtered Backstepping 35

The cross-coupling term can be compensated with the ideal, unconstrained input com-

mand

α̃4 =
1

g4

(−k4z̃4 − f4 + ẋ4c
− g3

γ̃3

γ̃4

vc3
), (3.96)

with

ξ̇4 = g4(uc − α̃4)− k4ξ4. (3.97)

This results for (3.95) in

d

dt
Ṽ4 = −k1v

2
c1
− γ̃2k2v

2
c2
− γ̃3k3v

2
c3
− γ̃4k4vc4

(z̃4 − ξ4)

= −k1v
2
c1
− γ̃2k2v

2
c2
− γ̃3k3v

2
c3
− γ̃4k4v

2
c4
< 0.

(3.98)

The constrained input command uc that is actually applied is the output of the last

command filter CF4. The whole structure is depicted in Fig. 3.8.

α̃1

g1

s+k1

α̃2

g2

s+k2

CF1

ξ1

−
vc2

vc1

−−

α̃3

g3

s+k3

CF2

vc3

−−

α̃4

g4

s+k4

CF3

vc4

−−

CF4

ξ2 ξ3 ξ4

−

x1 x2 x3 x4

= v2d

ẋ1c
ẋ2c

ẋ3c
ẋ4c

x2c
x3c

x4c
ucx1c

− − − −

z̃1 z̃2 z̃3 z̃4

d

Figure 3.8: Command filtered backstepping structure. The virtual control sig-

nals α̃i are computed as defined in (3.81), (3.86), (3.91) and (3.96)

use the tracking errors z̃i and the time derivative of the filtered

previous virtual control signal. The command filters (CF) allow

imposing magnitude and rate constraints and provide the reference

and its derivation for the next stage.

The command filter structure with natural frequency ωn and damping coefficient ζ is il-

lustrated in Fig. 3.9. As in this work magnitude saturation is sufficient, the continuous-

time state-space representation can be written as



ẋic

ẍic



 =




0 1

−ω2
n −2ζωn








xic

ẋic



+




0

ω2
n



 sat (α̃i−1), (3.99)

which has to be discretized for an implementation on a digital control unit. Thereby,

care must be taken to respect the Nyquist-theorem regarding the choices of ωn and the

sample-rate. The authors in [4] suggest choosing ωn > ki+1, such that xi+1c
and ẋi+1c

accurately track α̃i and d
dt
α̃i.

The great advantage of backstepping control is that it inherently stabilizes the closed

loop in the sense of Lyapunov while ki > 0, i = 1, ..., 4 and γ̃i > 0, i = 2, 3, 4. However,
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ω2
n

2ζωn
2ζωn

1
s

α̃i−1

− −
1
s

Magnitude
constraint

Rate
constraint

xic

ẋic

Figure 3.9: Command filter structure for i = 2, 3, 4. For an implementation on

a digital control unit, the discrete-time state-space representation

of (3.99) has to be used.

tuning these parameters becomes increasingly complex with higher system order as they

all influence the closed loop performance. For this reason, the backstepping method

can alternatively also be applied only in the inner loop, similarly as the aforementioned

FCS-MPC and PPPC method using the two loop structure discussed in 3.2. This

approach will be derived in the next section.

3.7 Inner Loop Command Filtered Backstepping

In the previous section, the backstepping method was used to systematically derive a

stabilizing control law beginning from the output voltage v2. In each stage, a virtual

control signal was derived until the last stage, where the real control signal could be

applied. Here instead, a desired reference for the sum phase current i∗1 , possibly from

an outer loop, will be considered. The associated approach is referred to as Cascaded

Backstepping (CBS). A similar approach of reference tracking of a LQR virtual control

signal was suggested in [40] to control an active suspension system.

Denote the compensated tracking error as

vc = i1 − i
∗

1
︸ ︷︷ ︸

z

−ξ, (3.100)

with the unconstrained and constrained reference current i1 and i∗1 and tracking error

z. Consider the following Lyapunov function candidate

V =
1

2
v2

c (3.101)

and its time derivative along the solutions of (3.44)

V̇ = vc(f4 + g4(u− u
0
c) + g4u

0
c −

d

dt
i∗1 − ξ̇). (3.102)

Choosing the ideal, filtered and constrained input command as

u0
c = α =

1

g4

(−kz̃ − f4 +
d

dt
i∗1), (3.103)
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3.7 Inner Loop Command Filtered Backstepping 37

with

ξ̇ = g4(u− u
0
c)− kξ, (3.104)

results for (3.102) in
V̇ = kvc(−z + ξ)

= −kv2
c < 0.

(3.105)

Due to the flexible structure of the backstepping framework, the CFBS method pre-

sented in section 3.6 can also be used in the outer loop described in section 3.2 instead.
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3.8 Observer Design

This chapter discusses the design of a stationary Kalman Filter to provide state esti-

mations for the controller as described in chapter 3. This allows to

• reconstruct unmeasurable states

• improve quality of measured states

• compensate the computational delay

• increase robustness by estimating unknown disturbances .

The observer model is derived from model (2.1) and extending the state vector with the

disturbance iL, hence xo =
[

iL1a
iL1b

iL1c
iL1d

v1 i2 v2 iL
]T

. Let the equivalent

resistance be r0 →∞ and consider the disturbance as constant but unknown

d

dt
iL = 0. (3.106)

The disturbance input vector

bd =
[

0 0 0 0 0 0 − 1
C2

]T
(3.107)

is discretized with

h =
∫ Ts

0
exp (Aτ) dτbd. (3.108)

The discrete-time observer model is given by




xk+1

iL,k+1



 =





Φ h

0 1





︸ ︷︷ ︸

Φo




xk

iL,k





︸ ︷︷ ︸

xo,k

+




Γ

0





︸ ︷︷ ︸

Γo

uo,k, (3.109a)

wm =
[

Cm 0
]

︸ ︷︷ ︸

Co

[

xo,k

iL,k

]

. (3.109b)

with the vector of measurable states wk = Cmxk. In this work it is assumed that each

state but the unknown disturbance is measurable, hence Cm = I. The observer has

Luenberger structure with the update law

x̂o,k+1 = Φox̂o,k + Γouo,k −L(wk −Cmx̂o,k) (3.110a)

= (Φo −LCm)x̂o,k + Γouo,k + LCmxk. (3.110b)
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3.8 Observer Design 39

The stationary Kalman gain L is given by

L = ΦoPoC
T
o (Ro + CoPoC

T
o )−1, (3.111)

where Po is the stationary solution (Po = Po,k = Po,k+1) of the DARE

Po = ΦoPoΦ
T
o −ΦoPoC

T
o (Ro + CoPoC

T
o )−1CoPoΦ

T
o + Qo. (3.112)

An important distinction to the control methods that consider the quantized input

structure is that the observer considers the average input uo,k ∈ [0, 4] over one sampling

period Ts. This can be done without performance degradation as the control signal is

updated exactly with the sampling period2. The weighting matrices Qo > 0 and Ro > 0

refer to the covariance of process and noise measurement noise respectively, assuming

uncorrelated white noise. They have diagonal structure

Qo = qoI (3.113)

Ro = roI, (3.114)

with

q0 =
[

q0,iL1a
q0,iL1b

q0,iL1c
q0,iL1d

q0,v1
q0,i2

q0,v2

]T
(3.115)

r0 =
[

r0,iL1a
r0,iL1b

r0,iL1c
r0,iL1d

r0,v1
r0,i2

r0,v2

]T
. (3.116)

By increasing q-values the convergence rate of the corresponding state estimation is

raised. Increasing r-values on the other hand puts less confidence on the corresponding

measurement which reduces sensitivity on measurement noise.

2Obviously the actuators can switch (using a direct pulse generator as in the case of PPPC or FCS-

MPC or a pulse width modulator in the case of a backstepping-based approach) several times within

Ts, however they run in open loop and the control signal is only updated at multiples of Ts.
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Chapter 4

Optimization Techniques

In spite of considerable recent advances in semiconductor technology, the main concern

when using MPC in power electronics is solving the resulting optimal control problem

in real-time, hence, within one sampling interval, on embedded platforms with limited

computational resources [2]. This chapter discusses effective optimization techniques to

solve the constrained quadratic programs (QP) formulated in chapter 3.3 and 3.4. These

cases require solving a QP with integer and continuous decision variables respectively.

4.1 Overview

QP-solvers can be classified in online- and offline-solvers. Solving offline-QPs in the

context of MPC by means of multiparametric programming is also known as explicit

MPC (eMPC) and enables real-time implementations as the online effort reduces to

finding the optimal solution in look-up-tables after partitioning the state space into

polyhedral regions and using piecewise affine (PWA)-models, [41, 42, 43]. However,

the drawbacks are high memory requirements especially for larger problems, a lack

of flexibility when it is favorable to change parameters online as well as limitation to

constant reference setpoints within the prediction horizon [44]. Therefore, this work

focuses on online solution approaches. QPs can be further distinct by condensed or

sparse formulation. The condensed form eliminates states as a function of the initial

state and decision variables as opposed to a sparse formulation where the future inputs

and states are considered as decision variables. The condensed form therefore allows

input constraints only whereas the sparse form addresses state constraints as well.

However, some state constraints, such as absolute constraints, can be easily transformed

to input constraints such that condensed form is preserved.
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4.2 Integer quadratic programming 41

4.2 Integer quadratic programming

This section discusses methods to solve the integer quadratic program (IQP) of the

form (3.29).

4.2.1 Exhaustive search

Exhaustive search algorithm (ESA) is the simplest approach to solve the IQP (3.29)

and accomplishes this by evaluating the underlying objective function J for each pos-

sible input combination and choosing the input sequence with minimal cost. The one

prediction horizon ESA is listed in alg. 1. As the prediction horizon is one, the TSP

and CBP are combined and solved directly using the optimal value of the finite control

set U. However, the associated computational burden grows exponentially with the

Algorithm 1 Exhaustive search algorithm

1: function u∗(k) = ESA(x(k),u(k − 1))

2: J∗ ← ∞; u∗(k) = u(k − 1)

3: for each u ∈ U do

4: x(k + 1) ← Ax(k) + Bu

5: ∆u ←
∑

u(k)− u(k − 1)

6: if J(x(k + 1),∆u) < J∗ then

7: J∗ ← J(x(k + 1),∆u)

8: u∗(k) ← u

9: end if

10: end for

11: end function

number of (binary) input switches m and prediction horizon N . For the SMPB de-

scribed in chapter 2, this gives m = 4 and therefore 24·N possible switching sequences.

For this reason this approach is only feasible for short prediction horizons not longer

than 2 [14, 45, 17] and is not further considered.

4.2.2 Sphere Decoding Algorithm

The Sphere Decoding Algorithm (SDA) is a branch-and-bound algorithm suggested in

[20] to solve an IQP efficiently by reformulating it as an integer least squares (ILS)

problem as in section 3.3. The idea is to discard input candidates that are outside

of a sphere centered in the unconstrained solution and which radius is successively

tightened. The algorithm is presented in a recursive manner in [20]. Despite the
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4.3 Quadratic programming with continuous variables 42

compact notation this difficults implementation on embedded platforms as recursions

are often not supported by code generation tools. Therefore, a nonrecursive SDA is

formulated and listed in alg. 2. The recursion is avoided by using a last in first out

stack that allows pushing elements to the stack and popping elements from it. The

algorithm takes the transformation matrix H , the unconstrained solution Uu and the

initial sphere radius ρ0 as arguments and returns the optimal switching sequence U ∗.

The initial sphere radius is crucial for the performance as it will determine how many

candidate solutions can be discarded. As suggested in [20], the initial radius is set to

ρ0 = ‖Uu −HUs‖
2
2, (4.1)

where the suboptimal solution Us is set to the previous optimal switching sequence

shifted by one time step. In the following H(i,1:i) refers to the first i elements of the i-th

row of H and Uu,i denotes the i-th element of Uu. The lower and upper constraints on

the input are determined as discussed in section 3.3. The SDA also allows early ter-

mination when reaching the maximum number of iterations. In this case a suboptimal

solution can be obtained by rounding the unconstrained solution and projecting each

element of the switching sequence to the feasible set Uf .

4.3 Quadratic programming with continuous

variables

This section discusses methods to solve the quadratic program with continuous decision

variables of the form (3.43) that occurs for the PPPC method in section 3.4.

The authors of [46] showed that although the sparse form increases the problem’s di-

mension, the computational and memory demand grow linear with the horizon length

as opposed to quadratic or cubic growth using the condensed form, which makes it

favorable for long prediction horizons. Furthermore, the number of states and inputs is

decisive to suitability of one of both forms. Most MPC algorithms are tailored to either

the sparse or condensed form as they exploit the problem’s structure and consequently

favour one of them [47].

The most widely used iterative approaches for continuous quadratic MPC problems

are the interior-point method, active-set method [48], both second order methods, and

recently in this context, first-order methods such as the fast gradient method (FGM)

[49, 50] or the alternating direction method of multipliers (ADMM) [51, 52]. Key

criteria for a fast execution time of the FGM is a computational efficient projection

on the constraint set, a so called simple set [53]. Tremendous effort has been evoked

to provide state-of-the-art MPC code generation tools tailored for embedded platforms

implementing interior-point solvers [54, 55, 56], the FGM [57, 58] and the active-set

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


4.3 Quadratic programming with continuous variables 43

Algorithm 2 Nonrecursive sphere decoding algorithm

1: function U ∗ = SDA(H ,Uu, ρ0)

2: i ← 1

3: d2 ← 0

4: ρ ← ρ0

5: doNextLevel ← 1

6: while stackSize > 0 or doNextLevel == 1 do

7: if doNextLevel == 1 then

8: doNextLevel ← 0

9: ustart ← 0

10: else

11: U ← pop

12: ustart ← pop

13: i ← pop

14: d2 ← pop

15: end if

16: for each u ∈ Uf do

17: if u ≥ max(ustart, lowerConstraint(i)) and u ≤ upperConstraint(i) then

18: Ui ← u

19: d′2 ← ‖Uu,i −H(i,1:i)U1:i‖
2
2 + d2

20: if d′2 ≤ ρ2 then

21: if i < N then

22: push ← d2

23: push ← i

24: push ← u+ 1

25: push ← U

26: ustart ← 0

27: i ← i+ 1

28: d2 ← d′2

29: doNextLevel ← 1

30: break

31: else

32: U ∗ ← U

33: ρ2 ← d′2

34: end if

35: end if

36: end if

37: end for

38: end while

39: end function
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4.4 Backstepping-based dynamic pruning 44

method [59]. A performance benchmark is given in [60] and [61]. As this field has been

extensively discussed in literature further details will be omitted.

4.4 Backstepping-based dynamic pruning

This section presents a Backstepping-based method to dynamically prune suboptimal

switching sequences in order to reduce the search space related to a FCS-MPC problem.

A similar approach using a Lyapunov candidate function to prune instable switching

sequences was suggested in [62]. The SDA proposed in 4.2.2 allows to calculate long

horizon FCS-MPC problems by discarding suboptimal candidates. However, the num-

ber of required iterations rises dramatically for transients, limiting feasible horizon

lengths.

Instead of considering each entry in the finite control set, the cascaded backstepping

(CBS) method is used to reduce the feasible set Uf in the SDA algorithm 2 to two

for each time step. Thereby the continuous CBS output is considered and the adjacent

lower and upper integer switching state reduce to the candidate switching states. As the

procedure has to be done for each time step, a simple Kalman Filter like (pure simulator,

without measurement apparently) prediction with the continuous CBS signal is made

to prune the search space for the entire prediction horizon. Although this may lead to

suboptimal solutions, simulation results in chapter 5 demonstrate that the performance

is marginally affected while the solution space can be shrinked significantly.
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Chapter 5

Results

This chapter presents the simulation and measurement results as well as an analysis

of the underlying computational demand of the proposed control algorithms. They

were implemented in Matlab/Simulink in discrete-time with a sampling rate of fs =

16 kHz and single precision.

5.1 Simulation results

This section analyses and compares the transient and steady-state performance of the

control strategies.

5.1.1 Steady-state performance

The figures 5.1a-5.1d illustrate the steady-state maximum ripple of output voltage v2,

sum phase current i1 and average phase current 1
4
(iL1a

+ iL1b
+ iL1c

+ iL1d
) as well

as the resulting total switching frequency fS for varying prediction horizon lengths N

using the SDA to find the optimal switching sequence for the FCS-MPC problem in the

inner loop. Morevover, the PPPC and CBS performance is depicted as a comparison -

their corresponding horizontal positions are irrelevant. Both outperform the FCS-MPC

even when using long prediction horizons. It can clearly be seen that the performance

saturates and the benefit of further increasing the prediction horizon decreases while

the computational demand rises exponentially. The switching frequency of the FCS-

MPC increases linearly with the prediction which reduces voltage and current ripple.

PPPC and CBS on the other hand achieve a constant switching frequency of 64 kHz

with lower ripples.
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(a) Maximum output voltage ripple.
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(b) Sum current switching frequency.
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(c) Maximum sum current ripple.
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(d) Maximum phase current ripple.

Figure 5.1: FCS-MPC steady-state performance for varying prediction horizon

lengths N .

5.1.2 Comparing FCS-MPC with PPPC

The PPPC-strategy is compared with FCS-MPC using a prediction horizon of N = 8,

both using the same prediction interval. Therefore, both controllers can apply N dif-

ferent switching states within one sampling period. Fig. 5.2a-5.2d show phase currents

and switching states for a setpoint step from 0 V to 350 V with the current limit set

to 150 A per phase. The corresponding output voltage and sum phase currents are

depicted in fig. 5.3a and 5.3c. The PPPC achieves tighter current tracking while both

controllers accomplish a transition time of 2.5 ms and suffer from a computational delay

of one sampling period. Load step performance is depicted in fig. 5.3b and 5.3d. As

expected, both controllers achieve good disturbance rejection below 2 ms for a constant
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5.1 Simulation results 47

power load with 125 kW without significant differences. Steady-state performance with-

out load is depicted in fig. 5.4a-5.4d. Due to limited time resolution, FCS-MPC clearly

performs worse than PPPC in steady-state. The former achieves an average phase and

sum peak-to-peak current ripple of 55.8 A and 25 A, and an average phase and sum

switching frequency of 14.9 kHz and 41.2 kHz. PPPC on the other hand accomplishes

an average phase and sum peak-to-peak current ripple of 41.9 A and 9.9 A, and a phase

and sum switching frequency of 16 kHz and 64 kHz. The peak-to-peak output voltage

ripple is 391 mV for the FCS-MPC versus 42.2 mV for the PPPC.
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(a) Phase currents for FCS-MPC.
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(b) Phase currents for PPPC.
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(d) Switching states for PPPC.

Figure 5.2: Setpoint step from v2 = 0 V to v2 = 350 V.
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(a) Comparison of output voltage.
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(c) Comparison of sum phase current.
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Figure 5.3: (a) and (c): Setpoint step from v2 = 0 V to v2 = 350 V. (b) and

(d): Load disturbance rejection when enabling a constant power

load with 125 kW.
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(a) Phase currents for FCS-MPC.
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(c) Switching states for FCS-MPC.
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(d) Switching states for PPPC.

Figure 5.4: Steady-state performance at v2 = 350 V without load.
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5.1.3 Comparing CBS with PPPC

In this section the cascaded backstepping (CBS) method is compared with the PPPC

while both use the same MPC in the outer loop. The CBS provides a continuous

duty cycle for an underlying pulse width modulator. Fig. 5.5a and 5.5c compare the

output voltage v2 and sum phase current i1 for a setpoint step from 0 V to 350 V. Both

controllers respect the current limit of 600 A balanced among the phases as illustrated

in fig. 5.6c and 5.6d. For a setpoint change there is no significant difference and both

controllers settle in 2.5 ms. Fig. 5.5b and 5.5d show disturbance rejection when a

125 kW CPL is enabled. In this case the PPPC outperforms the CBS approach with

faster recovery time. Steady-state performance is illustrated in fig. 5.6a for the CBS

and in fig. 5.6b for the PPPC. As expected, both perform well with an average phase

and sum peak-to-peak current ripple of 42.15 A and 10.3 A for the former and 41.9 A

and 9.9 A for the latter. Both achieve an average phase and sum switching frequency

of 16 kHz and 64 kHz. The peak-to-peak output voltage ripple is 50 mV for the CBS

versus 42.2 mV for the PPPC. The phase currents for a step from v2 = 0 V to v2 = 350 V

are depicted in 5.6c for the CBS and in 5.6d for the PPPC. The latter achieves tighter

current control around the setpoint which outlines the overall superior performance of

the PPPC.
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(a) Comparison of output voltage.
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(b) Comparison of output voltage.

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Time in ms

-100

0

100

200

300

400

500

600

700

C
u
rr
e
n
t
in

A

PPPC

CBS

(c) Comparison of sum phase current.
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(d) Comparison of sum phase current.

Figure 5.5: (a) and (c): Setpoint step from v2 = 0 V to v2 = 350 V. (b) and

(d): Load disturbance rejection when enabling a constant power

load with 125 kW.
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(a) Steady-state phase currents for CBS.
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(b) Steady-state phase currents for PPPC.
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(c) Transient phase currents for CBS.
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(d) Transient phase currents for PPPC.

Figure 5.6: Steady-state performance at v2 = 350 V with load iL = 350 A and

transient performance for a setpoint step from v2 = 0 V to v2 =

350 V.
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5.1.4 Comparing CBS with CFBS

As already mentioned the CBS applies the backstepping procedure only in the last step

which simplifies the tuning in comparison with the full order CFBS. Fig. 5.7a-5.7d

show a comparison of the output voltage and sum phase current. Furthermore, the

CBS comprises a shorter pipeline than the CFBS which applies a filter in each step

of the cascade that results in an increased delay. For this reason, the CBS achieves a

superior transient performance while there is no noticeable difference in steady-state

performance depicted in fig. 5.8a and 5.8b, as it is determined by the underlying pulse

width modulation.
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(b) Comparison of output voltage.
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(c) Comparison of sum phase current.
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(d) Comparison of sum phase current.

Figure 5.7: Comparison of CBS and CFBS. (a) and (c): Setpoint step from

v2 = 0 V to v2 = 350 V. (b) and (d): Load disturbance rejection

when enabling a constant power load with 125 kW.
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(a) Phase currents for CBS.
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(b) Phase currents for PPPC.

Figure 5.8: Steady-state performance at v2 = 350 V with load iL = 350 A.
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5.1.5 Outer Loop Variants

So far the MPC suggested in section 3.2 was used in the outer loop. As discussed, a

LQR or the CFBS method can be used instead to provide a virtual reference current i∗1
for the inner loop. In that case, the CFBS scheme is only used to provide i∗1 while the

current tracking itself is delegated to the inner loop. The output tracking is depicted

using in fig. 5.9c, 5.9b and 5.9c for the MPC, LQR and CFBS in the outer loop

respectively. Each controller employs the PPPC in the inner loop. It can be seen that

the MPC achieves the best performance and the anti-windup strategy of the LQR yields

poor performance when current saturation occurs. CFBS performs only slightly worse

than the MPC but suffers from a current limit violation in the transient. This could be

avoided with further tuning on the expense of dynamic response.
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(c) CFBS.

Figure 5.9: Outer loop variants with PPPC in the inner loop. (a): MPC, (b):

LQR, (c): CFBS.D
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5.1.6 Load estimation

The Kalman Filter does not only provide state estimations for the feedback but also an

estimation of the unknown load current iL. Fig. 5.10a shows the disturbance rejection

capabilities for a load step and the corresponding load estimation in fig 5.10b.
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(a) Load step disturbance rejection.
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Figure 5.10: Output voltage v2 and sum phase current i1 load recovery with

MPC in the outer and the PPPC in the inner loop and the corre-

sponding load disturbance estimation for a constant disturbance.

5.2 Computational Effort

This section analyzes the computational effort of the proposed control strategies. To this

end, the simulations were done on a dSpace MicroAutoBox real-time platform with a

processor clock of 900 MHz. This embedded platform has a comparable computational

power as the digital signal processor (DSP) employed in the test bed described in

section 2.8. As the plant was also simulated on the MicroAutoBox, the associated

integer input sequence was transformed to the corresponding duty cycle for one sampling

period Ts. This was necessary as the full switching dynamics requires a significantly

higher sampling rate which would be infeasible to simulate in real-time. However, the

purpose of this measure was merely to evaluate the computational demand which does

not necessitate the accurate dynamics. The turnaround time tt is the time needed to

complete the task that performs all necessary calculations. The real-time threshold is

therefore a turnaround time of 62.5 µs. As the real-time criteria could not be met for

each operating point and configuration, the simulations were not done with a hard real-
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time constraint that would stop the task from execution which still allows to measure

the required computational time.

5.2.1 FCS-MPC

The FCS-MPC problem is solved using the SDA which requires only relatively few it-

erations to find the optimal solution in steady-state. However, as depicted in fig. 5.11,

the number of required iterations rises dramatically during transient operating condi-

tions such as setpoint changes or load steps. This is due to the warm start capabilities

of the SDA and needs to be considered for a real-time implementation. Table 5.1 lists
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(a) Sum phase current and output voltage.
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(b) Turnaround time and required iterations.

Figure 5.11: The SDA requires significantly more iterations to find the optimal

solution during transients which increases the turnaround time tt.

the required iterations for a setpoint change from v2 = 0 V to 0 V for the ES, SDA and

SDA with dynamic pruning (SDA+DP) using different prediction horizon lengths. It

shall be mentioned that these values are not absolute upper limits but correspond to

the described scenario and might be higher for other cases. Although the SDA greatly

reduces the required iterations in comparison with ES, they can be further decreased

significantly using dynamic pruning. Fig. 5.12 depicts this relationship on a logarithmic

scale.

Fig. 5.13a, 5.13c illustrate the required iterations and associated turnaround time for

N = 4 and N = 8 using the SDA. There is no limit imposed on the maximum iterations

which yields therefore the optimal solution. This is in contrast to fig. 5.13b and 5.13d

where the SDA+DP was used and no more than 15 and 110 iterations were allowed for

N = 4 and N = 8 respectively. Such an early stop will yield a suboptimal solution. The

iteration limits were therefore chosen properly such that the performance degradation
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Table 5.1: Required iterations for varying prediction horizon.

Prediction horizon
Iterations

ES SDA SDA+DP

2 25 10 4

3 125 39 9

4 625 120 18

5 3125 307 28

6 15625 683 57

8 390625 2979 112

10 9765625 11627 347

16 1.5259× 1011 486755 10561

2 3 4 5 6 7 8
Prediction horizon N

100

101

102

103

104

105

106

R
eq
u
ir
ed

it
er
a
ti
o
n
s

ES
SDA
SDA+DP

Figure 5.12: Maximum required iterations for transient operating condition on

a logarithmic scale.

is negligible. Fig. 5.13e and 5.13f show the turnaround time using the SDA+DP with

no limit on the iterations in the former and maximum 2000 iterations in the latter case.

Fig. 5.14a shows a comparison of the turnaround time of the SDA and the SDA+DP.

Although the required iterations grow exponentially for both cases as shown in fig.

5.12, it can be seen that the cost per iteration can be reduced for higher prediction

lengths using the SDA. SDA+DP on the other hand follows the opposite trend. This

is due to the additional computational cost of running the backstepping algorithm in

parallel for the dynamic pruning. Nevertheless, it can be seen, that the turnaround

time is significantly reduced in comparison with the SDA. The turnaround time of the

SDA+DP is illustrated in more detail in fig. 5.14b.
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(b) N = 4 with DP and max. 15 iterations.
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(f) N = 16 with DP and max. 2000 iterations.

Figure 5.13: FCS-MPC computational cost for varying prediction horizons N

with and without dynamic pruning (DP).
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Figure 5.14: Turnaround time for FCS-MPC.
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5.2.2 PPPC

The PPPC problem is solved using a FGM-implementation provided by the FiOrdOs

toolbox [57]. The associated dual problem is solved with 1 outer iteration, outer accu-

racy tolerance εo = 1 and inner accuracy tolerance εi = 10. Either condition leads to an

early termination. The required turnaround time for different maximum inner iteration

limits is depicted in fig. 5.15a, 5.15b and 5.15c. It can be seen that, just like the SDA,

the FGM algorithm also requires more iterations during transients as it also addresses

a warm starting approach. Although the computational demand can be clearly reduced

by limiting the allowed iterations, it is still above the required threshold of 65 µs. How-

ever, as already mentioned, a QP of comparable complexity could be solved in real-time

with a tailored active set solver presented in [1]. For this reason, the PPPC strategy can

be considered as real-time capable - nevertheless, the implementation would go beyond

the scope of this thesis and will therefore be omitted.

5.2.3 Backstepping-based control

The required turnaround time for the CBS and CFBS method is depicted in fig. 5.16a

and 5.16b. As expected, both can be calculated with little computational effort well

below the real-time threshold. In contrast to the FCS-MPC and PPPC approach the

turnaround time is almost constant regardless of the operating condition.
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Figure 5.15: Computational demand for PPPC.
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Figure 5.16: Computational demand for backstepping-based control.
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5.3 Experimental results

The CFBS method with one common duty cycle could be tested in the test bed described

in section 2.8 with system parameters listed in appendix B and controller parameters

listed in appendix C. The Matlab/Simulink code generation tool was used to for

an implementation on an embedded DSP at a sampling rate of 16 kHz. The filtered

measurements were directly fed to the control loop, omitting the use of an observer.

Therefore, also the load current estimation was missing which lead to poor disturbance

rejection. Moreover, the observer could not be used to compensate the computational

delay. Instead, the states were extrapolated for one time step using the system dynam-

ics. Fig. 5.17a and 5.17c show the output voltage for a setpoint step from v2 = 100 V

to v2 = 350 V and the corresponding duty cycle. The poor performance was due to a

model-plant-mismatch, as the controller assumed a DC-link of V0 = 820 V while the

test bed was configured to V0 = 675 V, which explains the different ratio of output

voltage to duty cycle. Fig. 5.17b and 5.17d depict the output voltage and sum phase

current when a constant load current of iL = −100 A is injected. Due to the missing

disturbance estimation the disturbance rejection fully relies on the error integration

which was clearly not aggressive enough for a satisfying performance. The integral gain

would need to be increased a lot which would also deteriorate transient performance for

setpoint steps. Nevertheless, the basic functionality of the CFBS method could be val-

idated. Further improvements as the inclusion of the observer and suitable coefficient

tuning however could only be done in simulation but not verified on the test bed due

to lack of time. These improved coefficients are also listed in appendix C.
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Figure 5.17: Setpoint change and load step on test bed.
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Chapter 6

Conclusion

This thesis proposed two control strategies to overcome the limitations of conventional

FCS-MPC. The tailored PPPC approach allows fast tracking during transients as well as

high performance in steady-state for a SMPB. While conventional PWM-based control

strategies achieve good steady-state performance, their transient response is limited by

the switching frequency. FCS-MPC on the other hand provides fast transient response

but performs poorly in steady-state due to limited time resolution and resulting high

computational effort when increasing the sampling rate. The PPPC strategy achieves

both goals by solving a constrained quadratic program that can be solved efficiently

with state-of-the-art methods.

The CFBS approach on the other hand is suggested as a PWM-based alternative with

little computational cost. Its strength lies in flexibility, straight-forward implementation

and inherently guaranteeing asymptotical closed loop stability in the sense of Lyapunov.

Simulation results demonstrate the high performance of the PPPC strategy for transient

and steady-state operating conditions that outperform the CFBS in dynamic response.

Moreover, the CFBS approach could also be validated experimentally on the hardware

test bed.

Finally, a Backstepping-based strategy to dynamically prune the search space of the

integer quadratic program associated to the FCS-MPC is presented. The computational

cost can be reduced significantly which enables longer prediction horizons.

6.1 Outlook

So far PPPC could only be validated with simulation results. The next goal is to prove

the real-time capability of the method and validate it on a test bed. Moreover, the

set of pulse patterns could be extended to pulse patterns that explicitly cover transient

switching sequences to further improve the performance. Another interesting aspect is

increasing the number of phases of the SMPB. A great advantage of the PPPC method
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is that the computational cost scales linearly with the number of switches in contrast

to FCS-MPC, which grows exponentially.
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Appendix A

Pulse Pattern Prediction Matrices

The objective function (3.42) for patterns p ∈ {A,B,C,D} is given by

Jk(p) = ‖i∗

k − (F (p)xr,k + Gk(p)tk) + K(p)‖2
Ψ
, (A.1)

with Gk(p) = G0(p)+G1
k(p). As already mentioned in section 3.4, the decision variables

are normalized with Tn = TP to improve the condition of the problem. The associated

prediction matrices are defined as

F (A) =




































1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1−R1a
a 1−R1b

b 1−R1c
c 1−R1d

d −abcd

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




































, (A.2)
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F (B) =






































1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1−R1a
a 1−R1b

b 1−R1c
c 1−R1d

d −abcd

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1−R1d

d

2
−
d

2






































, (A.3)

F (C) =







































1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1−R1a
a 1−R1b
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c 1−R1d
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a

2
0 1 0 0 0
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, (A.4)
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F (D) =
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, (A.5)

G0(A) = V0
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a 0 0 0 0 0 0

a −b b 0 0 0 0
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a
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G0(B) = V0













































a 0 0 0 0 0 0

−b ab 0 0 0 0 0

−b a b 0 0 0 0

−b a −c bc 0 0 0
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, (A.7)

G0(C) = V0
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G0(D) = V0
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−d a −a abcd 0 0 0

−d a −a b acd 0 0

−d a −a b −b abcd 0

−d a −a b −b c abd

−d a −a b −b c −c

0
a

2
0 0 0 0 0

0 0 0 b 0 0 0

0 0 0 0 0 c 0

−
d

2
0 0 0 0 0 0











































, (A.9)

G1
k(A) =
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G1
k(B) =
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G1
k(C) =

















































∆i01 0 0 0 0 0 0

0 ∆i01 0 0 0 0 0

0 0 ∆i01 0 0 0 0

0 0 0 ∆i01 0 0 0

0 0 0 0 ∆i01 0 0

0 0 0 0 0 ∆i01 0

0 0 0 0 0 0 ∆i01

0 0 0 0 0 0 0

0 0 0 0
∆i0L1a

2
0 0

0 0 0
∆i0L1b

2
0 0

∆i0L1b

2
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2
0 0 0 0
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2
0
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2
0 0 0 0
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G1
k(D) =
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, (A.13)

K(A) =




































0

0

0

0

0

0

0

0

0

0

0

0




































, K(B) =






































0

0

0

0

0

0

0

0

ad

0

0

d

2






































, K(C) =






































0

0

0

0

0

0

0

0

abd
a

2
0

d

2






































, K(D) =
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with

a =
1

L1a

Tn, b =
1

L1b

Tn, (A.15)

c =
1

L1c

Tn, d =
1

L1d

Tn, (A.16)

ab = a+ b, ac = a+ c, (A.17)

ad = a+ d, bc = b+ c, (A.18)

cd = c+ d, abc = a+ b+ c, (A.19)

abcd = a+ b+ c+ d, acd = a+ c+ d, (A.20)

bcd = b+ c+ d, abd = a+ b+ d. (A.21)

The autonomous phase current gradients (excluding impact of V0) are given in accor-

dance with (3.40) and normalized switching instants by

∆i0L1j
=
(

−v1(t0)−R1j
i
avg
L1j

)

j, j ∈ P = {a, b, c, d}, (A.22)

and hence

∆i01 =
∑

j∈P

∆i0L1j
. (A.23)

Note that the matrices G0(A)−G0(D) can be calculated offline while G1
k(A)−G1

k(D)

depend on the current state and have to be evaluated online. The weighting matrix is

defined as

Ψ =




































1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 ψa 0 0 0

0 0 0 0 0 0 0 0 0 ψb 0 0

0 0 0 0 0 0 0 0 0 0 ψc 0

0 0 0 0 0 0 0 0 0 0 0 ψd




































. (A.24)
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Appendix B

System Parameter

The system parameters are listed in table B.1.

Table B.1: Parameters of the BE.

Parameter Nominal value

DC-link capacitance C0 ∞

DC-link voltage V0 820 V

Lumped filter inductance L1 75 µH

Lumped inductor resistance R1 2.5 mΩ

Filter capacitance C1 1575 µF

Cable inductance L2 10 µH

Cable resistance R2 50 mΩ

Load input capacitance C2 2300 µF

Sampling rate fs 16 kHz

Maximum sum inductor current i1,max ±600 A

Load power (CPL) P up to 160 kW
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Appendix C

Controller Parameters

Table C.1: LQR with i1 as virtual control input.

Parameter Value

qu,v1
0

qu,i2
0

qu,v2
75

qu,xI
1

rv 1

kx,1 -5.7865

kx,2 -0.0866

kx,3 -8.5522

kI 0.8848

Table C.2: FCS-MPC.

Parameter Value

λu 1

λsw 1× 106

Ω I

Σ I
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Table C.3: PPPC.

Parameter Value

ψa 19

ψb 19

ψc 19

ψd 19

Table C.4: CFBS (1 phase, simulation setup).

Parameter Value

k1 6× 103

k2 1.5× 104

k3 1× 103

k4 6× 103

kI 187.5

γ̃1 1

γ̃2 g2

γ̃3 γ2g3

γ̃4 γ3g4

ωu 5.0265× 104 rad s−1

ωi2
5.0265× 104 rad s−1

ωv1
2× 104 rad s−1

ωi1
9× 104 rad s−1

ζu 1

ζi2
1

ζv1
1

ζi1
1
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Table C.5: CFBS (1 phase, experimental setup).

Parameter Value

k1 5× 103

k2 3× 104

k3 5× 102

k4 6× 103

kI 312.5

γ̃1 1

γ̃2 g2

γ̃3 γ2g3

γ̃4 γ3g4

ωu 5.0265× 104 rad s−1

ωi2
5.0265× 104 rad s−1

ωv1
1× 104 rad s−1

ωi1
5.0265× 104 rad s−1

ζu 1

ζi2
1

ζv1
1

ζi1
1
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Table C.6: Kalman Filter design (reduced order).

Parameter Value

qo,i1
1000

qo,v1
1

qo,i2
1000

qo,v2
1

qo,iL
100

ro,i1
1

ro,v1
1

ro,i2
1

ro,v2
1

Table C.7: Kalman Filter design (full order).

Parameter Value

qo,iL1a
− qo,iL1d

100

qo,v1
1

qo,i2
100

qo,v2
1

qo,iL
200

ro,iL1a
− ro,iL1d

1

ro,v1
1

ro,i2
1

ro,v2
1
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Appendix D

Listing of MATLAB Setup

File Description

start_here.m Main file. Initializes simulation environment

init_LQR.m Initialize Linear Quadratic Regulator

init_i1MPC Initialize Outer loop MPC

init_PPC.m Initialize (Predictive) Pulse Pattern Control

init_CBS.m Initialize Cascade Backstepping

init_CFBS.m Initialize Command Filtered Backstepping

init_FCSMPC.m Initialize Finite Control Set-MPC

kalman_design.m Reduced order Kalman Filter

kalman_design_full.m Full order Kalman Filter
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