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Zusammenfassung

Kolloide sind im Alltag allgegenwärtig, einschließlich zahlreicher industriellen Anwen-
dungen: beispielsweise als Dünger in der Agrikultur, oder im Bergbau zur Verbesserung
des Ertrags bei der Treibstoffgewinnung. Aber ebenfalls im akademischen Bereich wächst
das Interesse an der Erforschung von Kolloiden in den Bereichen der Physik, Chemie,
Biologie und Medizin. Ein Teilgebiet dieser Forschung, welches besonders für den in-
dustriellen Sektor von Relevanz ist, ist die Untersuchung des Verhaltens von kolloidalen
Teilchen eingebettet in ein poröses Medium; solch einen Fall findet mein beispielweise bei
Proteinmolekülen im Cytoplasma der Zellen. Diese Möleküle sind allerdings nicht starr
in ihrer Form (wie oft angenommen wird). Sie sind in der Lage sich zu verformen und
können ihre Gestalt ihrer Umgebung anpassen. Diese Eigenschaft vereinfacht es ihnen
sich durch ihre entsprechende Umgebung zu bewegen.

Das Ziel dieser Arbeit war es ein realistisches Model zu finden zur Erforschung solcher
Systeme von deformierbaren, kolloidalen Teilchen eingebetten in eine ungeordnete poröse
Matrix. Im Bestreben eines systematischen Vorgehens, untersucheten wir zuerst die sta-
tischen und dynamischen Eigenschaften von harten Teilchen, welche ihre usprünglich ku-
gelförmige Gestalt in eine ellipsoide verändern können. Darauffolgend betteten wir diese
Teilchen in eine Matrix ein, bestehend aus starren (undeformierbaren) kugelförmigen
Teilchen, wobei nur die erste Art von Teilchen die Möglichkeit besitzt sich zu bewegen.
Wir untersuchten umfangreich wie sich dabei die Fähigkeit dieser Teilchen sich zu ver-
formen auf ihre statischen und dynamischen Eigenschaften auswirkt. Dies führten wir
im Rahmen zahlreicher entsprechend entwickelter Monte-Carlo Simulationen durch. Wie
erwartet, konnten wir quantitativ verifizieren, dass eine erhöhte Fähigkeit sich zu ver-
formen sich positiv auf das Bewegungsvermögen der Teilchen auswirkt, während sie sich
durch die poröse Matrix bewegen.
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Abstract

Colloids are ubiquituous in every day life, including many industrial applications: for
instance, colloidal particles are used as fertilizers in agricultural applications or in mining
industry for improving the yield in oil recovery processes. But also in the academic sector
an increasing share of research has been dedicated during past years to colloids in the
fields of physics, chemistry, biology or medicine. One subfield of research which is of
particular relevance in industrial applications are studies of colloidal particles immersed
into a disordered porous media; such a scenario is, for instance, encountered when proteins
move through the cytoplasm of cells. These colloidal molecules are not rigid (as one often
assumes), but deformable and can strongly adapt their shape according to the surrounding
environment. This capacity enables these particles to propagate more easily through the
related environment.

The goal of this thesis was to find and to investigate a realistic system of deformable
colloidal particles confined in a disordered porous matrix. In an effort to proceed in
a systematic manner, we have first examined the static and the dynamic properties of
a system of hard particles which can deform their shape from a spherical one into an
ellipsoidal one. Then we have immersed these particles into a matrix, formed by rigid (i.e.,
undeformable) spherical particles, where the former ones represent the mobile component.
We have investigated in detail how the capacity of deformation influences the static and
the dynamic properties of the mobile particles. Investigations were carried out on large
scales with suitably developed Monte Carlo simulations. As expected, we could verify on a
quantitative level that an increased deformability enhances the mobility of the deformable
particles as they move through the matrix.
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CHAPTER 1

Introduction

In this first chapter we want to convey to the reader the motivation for writing this
thesis and also give a physical background underlying it. Over the course of this work
we will primarily give analysis of data from simulations and calculations of these. They
will represent the static structure and dynamical behavior of the presented models, and
are therefore critical for a legitimate examination of such a model. But nonetheless this
procedure can sometimes lack connections to real physical phenomena, further completing
the picture of a model. Therefore, through this chapter we want to give to the reader the
opportunity, to gain these pictures, related to the models we want to discuss. We hope
that the reader can recover them to gain a deeper understanding. However this chapter
will only provide an overall picture of the main physical backgrounds. Every chapter
will also contain another small introduction extending these pictures specifically for their
topics.

1.1 Colloids

The first concept we want to introduce in this preface is the ”colloid”. The name was
first used by Thomas Graham a Scottish chemist in 1891. He studied the diffusion of
substances through semi-permeable membranes. Hence, he defined colloids as exactly
these substances that cannot diffuse through membranes. Over his research he mainly
studied materials such as starch, dextrose or caramel etc.. Since he associated these
materials mainly through their organic nature he named them after the Greek words
κóλλα (kólla - glue) and είδoς (éıdos - kinds) - the sticky ones.

Today there exist many modern definitions of colloids, satisfying their real nature.
The main feature over which colloids are frequently defined, is that one does not need to
know the exact atomic or molecular configuration of these particles, to understand their
physical behavior. They are of sufficient size, so that quantum effects can be neglected
and can therefore be studied on a coarse grained level. But particles which get the label
colloids still have to be small enough to retain a stable mixture as a collective substance.
This means that real colloids exist within the ”mesoscopic” regime - 1µm to 1nm. Most
modern definitions of a colloidal system contain a second feature; such a system needs to
be a mixture of two substances, one which is a solvent or ”dispersed medium”, the other

1
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1.2. Flexibility of particles

one consisting of bigger particles which are immersed in the solvent. These different kind
of definitions still lead to further confusion, as frequently only the second type of particles
of this mixture carry the label colloid, even when talking about a colloidal system.

1.2 Flexibility of particles

Through the example of a protein we want to introduce another important concept of this
work. In the previous definition we claimed that it is not required to know the atomic or
molecular structure of colloids, to make predictions about their behavior. But in reality
for instance proteins consist of complex atomic structures where the pieces they consist of
will move and dislocate from their position to some extent. They exist in a great variety
of forms and structures and are not completely rigid. Proteins can deform and will adapt
to their environment accordingly. This would suggest an important role of their form
or of the atomic structure to completely understand their exact behavior. For example
enzymes can adjust their shape to fit around a ligand they move through or in general
spherical particles can fit through holes which are much narrower than their diameter
would allow by deforming themselves.
Particles which show these traits are therefore called flexible particles. The reason for the
ability of particles to deform is often closely connected to their biological function, which
makes it necessary to understand their deformability to grasp those very functions. While
real proteins have complex shapes, nonetheless, many types have an overall spherical form,
or at least it serves as a sufficient approximation. Further even though they consist of
smaller parts most retain a somewhat compact structure.
To summarize: while one needs to know the atomic structure of a protein in order to
understand its biological function, its physical properties as a single particles can be
understood without this knowledge. However to get a complete picture one needs to take
into account both views.

These two definitions - the collloid and deformability of particles - represent the
main background of this thesis. Every concept presented over the course of this work will
revolve around them. Consequently the theoretical models we want to present also revolve
around even these concepts. Therefore we structured this work into a first part giving
the mathematical foundation of the models, and three major parts revolving around their
respective models:

(i) Initially we will give details of the simulation techniques used in all models and
give a short overview of the mathematics behind all post-processing tools we will
use.

(ii) As a first major part we will thoroughly discuss a model containing deformability;
the deformable-hard-spheroid model (DHS model). We will examine changes that
deformability introduces into a system compared to one consisting solely of rigid
particles. We will look especially at the static structure, dynamic behavior and
phase transitions which may arise therefrom.

(iii) The second major part will revolve around rigid particles in a porous environment
and how to generate such systems. For that we will present the hard-sphere-
quenched-annealed model (HS-QA model) and we will look in detail at different
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Chapter 1. Introduction

manifestations of such systems.

(iv) The third and last part will combine the previous two concepts and models into
the deformable-hard-spheroid-quenched-annealed model (DHS-QA model). In
the corresponding chapter we will give a rigorous view over all capabilities that
flexible particles gain in porous confinement and which phenomenons arise.

There are many additional definitions and methods that the reader needs to know, like for
example the conventional concepts to define and predict the static structure of a system
or the dynamic behavior of particles. These concepts will be presented in the very chapter
they are used and needed, to create a fixed line which the reader can follow throughout
the thesis. Through this structure we try to set up an environment where the reader can
gain a natural feeling for the concepts.
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CHAPTER 2

Deformable hard sphere model

The goal of this chapter is to study the effects of deformability of originally spherical par-
ticles on the static and dynamic properties. To gain this information in the most simple
and computationally efficient way, we use the model of deformable hard spheres (DHS)
put forward by Batista and Miller [2]. This model will be explained in the following.

The basis of the deformable sphere model is the hard ellipsoid of revolution (HER)
model. Particles are described as hard spheres of revolution (spheroids) with equation
x2+y2

a2
+ z2

c2
= 1. HER’s are ellipsoids where two of the semi-axes have the same length

a = b 6= c, producing thus a surface of revolution. Its rotational symmetry is set to the
z-axis for the purpose of simplicity.
The potential used in the HER model is the pair potential of two hard spheroids, with
their center separated by a vector r and orientations Ω1 and Ω2.

V (r,Ω1,Ω2) =

{

0 if the partciles overlap

∞ if the particly do not overlap
(2.1)

Since the detection of overlaps for impenetrable spheroidal particles is not as simple as in
the case of hard spheres, an efficient algorithm for its detection is necessary. A practical
method will be discussed in the first section of the next chapter.

In the DHS model a particle is taken originally as a sphere with diameter σ and
volume V = πσ3

6
. Within the model it is then possible for the particles to change their

form into a spheroid of revolution through elongation. During this deformation the axes
lengths have to fulfill conditions to ensure preservation of the particle volume, thus

a =
σ

2
x

1
3 (2.2)

c =
σ

2
x−

2
3 (2.3)

introducing the aspect ratio x = a/c. Therefore it is convenient to quantify the distortion
of the spheres by x. x represents the only additional degree of freedom for the particles
in the DHS model, which is the main trait for its simplicity. In particular for an aspect
ratio of x < 1 the colloids take on a oblate form, for x > 1 a prolate form and for x = 1
the spherical (see Fig. 2.1).
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Chapter 2. Deformable hard sphere model

a

c

a

c

a

c

Figure 2.1: Shapes of deformed spheroids of revolution (left x < 1 and right x > 1)
originating from a sphere (center x = 1) with aspect ratio x = a/c (see Eqs. (2.2), (2.3))

We emphasize that these particles are described as deformable but incompressible
spheroids, while for real colloids is also possible to be compressible. However, our model
enables us to observe the influence of deformability decoupled from changes in the packing
fraction of the simulated system, which is not the case anymore when introducing com-
pressibility. Further real colloids can undergo more complex deformations than elongation
and can also deviate from a spherical form, which makes the DHS-model something like
a first-order approximation. However in most cases elongation is the first shape deforma-
tion that becomes important for colloids. [1] For a system consisting of HS particles, since
it is an athermal model, the only relevant control parameters are the particle diameter σ
and the number density ρ = N/Vsys. With N the number of particles and Vsys the volume
of the system. Commonly these two parameters are combined into the dimensionless
packing fraction of the system

φ =
NV

Vsys
=
π

6
ρσ3. (2.4)

Thus φ becomes the only relevant parameter to the thermodynamics of a HS-system.
Since in the DHS-model the volume of the particles V is preserved during deformation,
we can maintain φ as a control parameter.

The extent to which the particles deform in the DHS model is controlled by an energy
penalty. Batista and Miller [2] chose the form of the energy function of deformation they
used, with a liquid droplet in mind. The work required to deform a droplet of fixed
volume from its spherical form is proportional to its surface tension γ and the increase
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0.3
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0.5

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

−1.5 −1 −0.5 0 0.5 1 1.5

∆
A
/σ

2
π

ln(x)

∆
A
/σ

2
π

ln(x)

Figure 2.2: Solid line: increase of surface area of a spheroid (∆A) relative to a sphere of
the same volume, as a function of ln(x), x being the aspect ratio of the spheroid.
Dashed line: approximation of ∆A up to second order in ln(x).

in surface area ∆A compared to a sphere,

∆A = 2πa2 +
πc2

d
ln

(

1 + d

1− d

)

− 4π(
σ

2
)2, (2.5)

where the ellipticity d is defined, in case of a oblate spheroid, as

d =

√

1− a2

c2
=

√
1− x2, (2.6)

and in case of a prolate spheroid, as

d =

√

1− c2

a2
=

√

1− 1

x2
. (2.7)

∆A is a complicated function of x. However, visible in Fig. 2.2 it can be approximated
in a symmetric form around x = 1, then considered as a function of ln(x). Therefore the
change in surface area ∆A will be expanded around ln(x) = 0 in a Taylor series up to
second order:

∆A

σ2π
≈ 8

45
ln(x)2 +O(ln(x)3) (2.8)

Related to ∆A is a change in energy U = γ∆A, with the surface tension of a liquid
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Chapter 2. Deformable hard sphere model

droplet γ. By using Eq. (2.8) U can be expressed through

U(x) = κ ln(x)2. (2.9)

Equation (2.9) indicates a harmonic dependency on ln(x) with the spring constant κ.
This constant, the stiffness parameter κ, is related to γ via

κ =
1

2
(∆A)

′′

γ =
8

45
σ2πγ. (2.10)

(∆A)′′ denotes the second derivate of the increase in surface area as a function of ln(x). In
the limit limκ→ ∞ deformation is suppressed and one gets a simply hard sphere model.
In case of finite κ the shape of the particles undergoes thermal fluctuations which depend
on the linked parameter βκ where β−1 = kBT denotes the thermal energy. Finally the
total potential energy of a system consisting of deformable spheres is

Utot =
∑

i<j

V (r,Ωi,Ωj) +
∑

i

U(xi) (2.11)

where V is the is the hard spheroid potential (see Eq. (2.1)).

Since compared to the HS-model the DHS-model is not athermal anymore, we gain
another control parameter to the thermodynamics of a system based on the DHS-model.
A convenient parameter is βκ, which, since it will occur without exception in this paired
form, from this point on will inherit the name of κ stiffness. When talking about the
ability to deform itself we will use the term deformability.
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CHAPTER 3

Methods

This chapter gives an overview over the methods and algorithms used throughout this
thesis. First we will provide a general description of the simulation method we use with
its individual steps for simulating the motion and the shape deformation of our particles.
Next we will introduce a criterion to detect overlaps between the different possible shapes
of the particles. At last we will define some mathematical tools for analyzing the static
and dynamic properties of the simulated system of the DHS-model.

3.1 Simulation method

Throughout this thesis constant-NVT Monte Carlo simulations were performed. To reach
the necessary variety of packing fractions different particle diameters σ where used, while
all results will be presented in a way not depending on σ to allow comparability. De-
pending on the packing fraction, different numbers of particles were used, reaching from
N = 432 to 3500, to enable an appropriate statistical evaluation. As the simulation cell
a unit cube with Vsys = 1 was used, where periodic boundary conditions where applied
on all six sides.
A particle is characterized by its position r = (r1, r2, r3), its orientation, expressed via
the Euler-angles (ϕ, ϑ, ψ), and its aspect ratio x the ratio between the major and the
minor axis of the ellipsoid. (see Eqs. (2.2), (2.3))
A simulation consists of a number of sweeps, where again one sweep consists of N trial
translational moves, N rotational moves and N attempted shape deformations. These
”moves” shall be further explained in the following.

3.1.1 Translational moves

Translational moves are made by randomly choosing a particle and creating an arbitrary
displacement. This happens by shifting its coordinates (r1, r2, r3) by a spatial value
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Chapter 3. Methods

∈ [−∆rmax/2,∆rmax/2] by using a uniformly distributed random number rand() ∈ [0, 1]

r1new = r1 +∆rmax(0.5− rand())

r2new = r2 +∆rmax(0.5− rand())

r3new = r3 +∆rmax(0.5− rand()).

(3.1)

If the new coordinates do not generate an overlap with another particle the move is
accepted, otherwise rejected. The parameter ∆rmax is changed dynamically during the
simulation to guarantee an acceptance rate of the translational moves of about 50 percent.

3.1.2 Rotational moves

Since the simulated particles are in general non-spherical, it is also necessary to implement
rotational moves. During the simulation only the Euler-angles (ϕ, ϑ, ψ) of each particle
are stored. The orientation of the principal axis of a particle, a, can be calculated when
needed via the matrix S = S(ϕ, ϑ, ψ) which is a product of the conventional rotation
matrices:

S =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ









cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1



 (3.2)

The matrix given in Eq. (3.2) is applied to the unit vectors ei to obtain the corresponding
three principal axes ai of the particle

ai = Sei. (3.3)

Therefore for a trial rotation of a particle the Euler-angles of a randomly chosen particle
are changed about an angle ∈ [−∆̺max/2,∆̺max/2].

ϕnew = ϕ+∆̺max(0.5− rand())

ϑnew = ϑ+∆̺max(0.5− rand())

ψnew = ψ +∆̺max(0.5− rand()),

(3.4)

generating a new orientation. Again, the move is accepted if no overlap is created for the
new orientation, otherwise it is discarded. Also ∆̺max is dynamically changed during the
simulation to ensure a acceptance rate of the moves of about 50 percent.

3.1.3 Shape deformation

In chapter 2 the initial model this thesis is based on was presented and discussed. The
model allows to introduce deformability of the particles into the system via elongation.
The potential which controls the energy penalty for deformation is a function of ln(x) (see
Eq. (2.9)), x being the aspect ratio of the spheroid. Therefore we apply a displacement
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3.2. Overlap criterion and contact function

in shape by adding an arbitrary change to ln(x) ∈ [−∆Lmax/2,∆Lmax/2].

ln(x)new = ln(x) + ∆Lmax(0.5− rand()) (3.5)

where ∆Lmax is changed during the simulation to ensure an acceptance rate of the defor-
mations of about 50 percent. Like in the case of translational or rotational displacement
a trial change in elongation is only accepted if it does not create an overlap with another
particle.
But additionally shape deformation is related to an energy penalty (see Eq. (2.9)) which
is implemented in the simulation using a Metropolis algorithm, with the acceptance rate

p = min (1, exp(−β∆U)) = min
(

1, exp(−βκ(ln(xnew)2 − ln(xold)
2)
)

. (3.6)

An arbitrary number rand() ∈ [0, 1) is generated and compared to p, if rand() < p the
deformation is accepted, otherwise discarded.

The parameter βκ, where β−1 = kBT (kB being the Boltzmann constant and T the
temperature of the system), is used to control the deformability of the particles. This
induces ”thermal fluctuations” of the particle shape into the simulations. Beside these
natural fluctuations, the final shape of an individual after one sweep will only depend
next to the packing fraction of the system φ, on the overlap criterion specified in the
following.

3.2 Overlap criterion and contact function

Like already mentioned in the last chapter, detecting overlaps of ellipsoidal particles is
not as easy as in case of spherical particles, where comparing the inter-particle distance
with their diameter σ is sufficient. A considerably more complex method has to be used,
which has to take into account the orientations of the principal axes of the particles, in
addition to the distance of the centers of the particles. An efficient and reliable method
which fulfills these traits was devised by Perram and Wertheim [5].

In this method first a function is required that expresses the orientation of a single
particle in space. It has to be non-negative and has to satisfy the conditions

FA(r− rA,ΩA)











< 1 if r inside A

= 1 if r on the surface of A

> 1 if r outside A

(3.7)

with Ω = (ϕ, ϑ, ψ). Perram and Wertheim give a simple solution in the form of

FA(r− rA,ΩA) = (r− rA)
TA−1(r− rA) (3.8)

where an symmetric and positive definite matrix A was used

A(ΩA) =
3

∑

i=1

S(ΩA) eie
T
i ST (ΩA)h

2
i (3.9)
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Chapter 3. Methods

aA

aB
rAB

FAB

aA

aB
rAB

FAB

Figure 3.1: Visualization of the contact function. aA and aB are the main principal axes
of particle A and B respectively. rAB is the distance between the centers of particle A
and B. FAB visualizes the value of the contact function for rAB.

with the matrix S(ΩA) as in (3.2). Here ei again denote the unit vector and hi the length
of the respective semi-axis.

In order to get an adequate contact function Perram and Wertheim [5] define the
function

F (r, λ; rA, rB,ΩA,ΩB) = F (r, λ) = λFA(r− rA,ΩA) + (1− λ)FB(r− rB,ΩB) (3.10)

which depends on the positions rA, rB and the orientations ΩA,ΩB of two different ellip-
soids A and B, and on the arbitrary vector r.
For a fixed λ ∈ [0, 1] the function F (r, λ) has a unique minimum at r = r(λ), for λ = 0 it
occurs at r = rB with F (rB, 0) = 0 and for λ = 1 at r = rA with F (rA, 0) = 0. Otherwise,
F (r(λ), λ) can be shown to be concave. F (r(λ), λ) can be minimized by solving ∇F = 0,
which gives the equation

λA−1(r− rA) + (1− λ)B−1(r− rB) = 0, (3.11)

using rAB = rA − rB and the matrix

C = [λB + (1− λ)A]−1. (3.12)

The solution r(λ) of Eq. (3.11) can be expressed conveniently in two forms:

r(λ)− rA = (1− λ)ACrAB or

r(λ)− rB = −λBCrAB,
(3.13)
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3.3. Correlation functions

which enabled Perram and Wertheim to rewrite the function in Eq. (3.10) in a form
which does not contain r(λ) explicitly

F [r(λ), λ] = λ(1− λ)rT
ABCrAB. (3.14)

Maximization of this equation in λ gives the desired contact function

F (rAB,ΩA,ΩB) = max
0≤λ≤1

λ(1− λ)rT
ABCrAB











< 1 for A and B overlapping

= 1 for A and B tangent

> 1 for A and B non-overlapping

(3.15)

Perram and Wertheim also gave a geometric interpretation to their contact function. By
scaling the size of each of the ellipsoids (i = A,B) by a non-negative linear factor h̃i
they interpret the path r(λ) as the locus of points where these scaled ellipsoids externally
touch each other. The function given in Eq. (3.10) assumes the respective value of the
scaling factor, i.e.

FA[r(λ), λ] = h̃2A, FB[r(λ), λ] = h̃2B. (3.16)

Consequently the maximum of that defines the unique point on the path r(λ) where
the scaling factors are equal h̃A = h̃B = h̃ and thus the contact function of Eq. (3.16)
F (rAB,ΩA,ΩB) = h̃2. If the necessary scaling factor is smaller than 1 the particles have
to be downsized, hence, they overlap. Otherwise if it is equal to 1 the particles touch
exactly.

3.3 Correlation functions

After investigating the system using a convenient simulation technique, one also needs
the appropriate tools for analyzing its properties and to identify the influence of certain
variables of the model as compared to a reference model. Additionally, some of these eval-
uations can be compared and falsified through experiments that are viable in principal.
Some of these analysis tools will be introduced in this section.

We will divide the necessary functions into two categories:

(i) ones that give information about the static structure of the system

(ii) and others that determine dynamical properties.

In this thesis, to understand the static structure, we explicitly calculate the pair-correlation
function, the static structure factor, the distribution of aspect-ratio of the ellipsoids and
the correlation function of the orientation of the particles as a function of the pair corre-
lation.
To access the dynamical properties of the system we calculate the mean squared displace-
ment, its logarithmic derivate and the intermediate scattering function.

In this chapter only a mathematical view of the post-processing tools will be given
that leads to these functions. Over the later chapters also a more practical approach
will be taken, where we will discuss and interpret the typical important aspects of these
function, through simulation results.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 3. Methods

3.3.1 Pair-correlation function

First we will introduce the pair-correlation function (also radial distribution function
RDF). It measures how the density varies while increasing the distance from a reference
particle. Introducing n(r) as the number of particles located in the shell [r, r+δr] around
the central particle the radial distribution can be calculated with [8]

g(r) =
n(r)

∆V ρ
(3.17)

where ∆V = 4π
3
((r+∆r)3− r3) is the volume of the above spherical shell. ρ is the overall

number density of the system which in our case simply is ρ = N
Vsys

= N . Since our system

is limited by the simulation box we can calculate n(r) by simply binning the particle
separations in a histogram.

g(r) =
1

N

〈

1

∆V

N
∑∑

i 6=j

δ(r − rij)

〉

(3.18)

where rij = |ri − rj| is the absolute value of the inter-particle distance.
g(r) gives information about ”preferred” distances particles tend to position themselves
in a specific system. Due to the deformation introduced in the DHS-model the particles
gain another degree of freedom, their orientation in relation to the reference frame of the
system. Thus to get insight into the pair-wise orientation of the particles of a system Eq.
(3.18) has to be extended to

g(r, θ) =
1

N

〈

1

∆V

N
∑∑

i 6=j

δ(r − rij)
δ(θ − θij)

|sin θij|

〉

, (3.19)

where the pair-wise orientation θij is used defined by

cos θij =
aT
i aj

|ai| |aj|
. (3.20)

The vectors ai and aj denote the main principal axis of the particles i and j respectively
(see Eq. (3.3)).

3.3.2 Static structure factor

Another tool characterizing the structure of the system is the static structure factor (SSF)
S(k) with k the scattering vector. It describes how material scatters incidental radiation.
It therefore enables to interpret scattering patterns.

By calculating the static structure factor spatial correlations in reciprocal space are
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3.3. Correlation functions

measured. To obtain it we start from the Fourier transform of the one-particle density.

ρk =
N
∑

i=1

eikri . (3.21)

By multiplying this quantity with its complex conjugating and taking the ensemble av-
erage 〈·〉 we get the standard expression for the static structure factor

S(k) =
1

N

〈

ρkρ−k

〉

=
1

N

〈

N
∑

i=1

N
∑

j=1

eik(ri−rj)

〉

.
(3.22)

Liquids and amorphous materials can be considered isotropic beyond nearest- neighbor
distances [8]. In this case the scattering function only depends on the absolute magnitude
of the scattering vector k = |k|. Hence, a transfer between real and reciprocal space can
be calculated by using a one-dimensional Fourier transform. By separating the diagonal
terms (i.e. i = j) in Eq. (3.22) one obtains with Eq. (3.18) the static scattering function
in the form of

S(k) = 1 +
4πρ

k

∞
∫

0

r[g(r)− 1] sin(kr)dr. (3.23)

This formula gives us a tool for a fast calculation of the scattering function. The integral
extends over all particle separations and is evaluated by discrete integration. Since g(r)
converges fast to 1 for liquids it is sufficient to limit the integration by half of the box
length [8].

3.3.3 Mean squared displacement

A quantity to characterize a system in its dynamical properties is the mean squared
displacement (MSD). It measures the average ability of a particle to move through its
environmental medium. The MSD is defined as

δr2(t) =
1

N

〈

N
∑

i=1

|ri(t)− ri(0)|
〉

(3.24)

where ri(t) and ri(0) denote the position of the particle i ∈ [0, N ] in the simulation box
at a time t and at the time-origin t = 0 in time, respectively.

During this thesis we performed Monte-Carlo simulations, which in contrast to molec-
ular dynamics simulations do not have a real time evolution, therefore we identify the
sweeps as time steps. Additionally we have to modify Eq. (3.24) to include the drift of
the center of mass of the simulation box [2]

δr2(t) =
1

N

〈

N
∑

i=1

∣

∣

∣

(

ri(t)− rcm(t)
)

−
(

ri(0)− rcm(0)
)∣

∣

∣

2
〉

. (3.25)
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Chapter 3. Methods

Here rcm(t) and rcm(0) are the position of the center of mass at the time t and t = 0.

The Einstein-Smoluchowski-relation connects the diffusion of particles in a system
with the MSD of the particles by considering the diffusivity as a long-time-limit of the
MSD. The diffusivity is a characteristic coefficient, which measures the ability of particles
to propagate through their environment

D = lim
t→∞

δr2(t)

6t
. (3.26)

In realistic systems the MSD might not follow the relation (3.26), but might rather fulfill
the more universal law δr2(t) ∝ tz. Thus it is more convenient to define an effective
exponent z via the logarithmic derivate

z(t) =
d[log δr2(t)]

d[log t]
(3.27)

in order to identify and quantify these features at different regimes. If z(t) > 1 the
behavior is denoted as super-diffusive, while if z(t) < 1 we call it sub-diffusive. Normal
diffusion corresponds to regimes with z(t) = 1 and dynamic arrest to z(t) = 0.

3.3.4 Self intermediate scattering function

Another tool for characterizing the dynamical behavior of our systems is the self inter-
mediate scattering function (ISF) Fs(k, t). This dynamic structure factor relates both
spatial as time correlations. This function can be calculated via the correlations of the
Fourier transform of the time dependent single-particle density [3]

Fs(k, t) =
1

N

〈

ρk(t)ρ−k(0)
〉

=
1

N

〈

N
∑

i=1

N
∑

j=1

eik
(

ri(t)−rj(0)
)

〉

.
(3.28)

Again, since we use Monte-Carlo algorithm throughout this thesis, the motion of the
center of mass has to be taken into account. Therefore 3.28 has to be modified.

Fs(k, t) =
1

N

〈

N
∑

i=1

N
∑

j=1

e
ik

∣

∣

∣

∣

(

ri(t)−rj(0)
)

−
(

rcm(t)−rcm(0)
)

∣

∣

∣

∣

〉

(3.29)

The ISF encodes information about how the density correlations given by S(k) (Eq.
(3.23)) change as time progresses. It quantifies the structural relaxation of the material
and therefore gives another view of its dynamical behavior. [7]
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CHAPTER 4

Fluid phase

(a) Spheres (b) Spheroids

2.50

1.92

1.48

1.14

0.88

0.68

0.52

0.40

Figure 4.1: Two snapshots of a system in its fluid phase at a packing fraction of φ = 0.226
(a) - rigid spheres (i.e. βκ = ∞) and (b) - deformable spheres (with βκ = 5). In the
latter case the particles are colored according to their aspect ratio, red for highly oblate,
green for spherical, violet for highly prolate form, covering all the colors of the rainbow.

In the following chapters results of simulations of systems consisting of deformable spheres
are presented. All were generated by using the simulation method and the analysis tools
introduced in Chapter 3. In this chapter all systems considered will be in the fluid phase.
General behavior of the spheroids and the correlation functions will be discussed, first
their static structure and afterwards also their dynamical properties.

All simulations were performed with a constant-NVT Monte Carlo algorithm. The
simulation box is fixed at a volume of Vsys = 1 and the number of particles in the system
is N = 432. The packing fraction is controlled by increasing or decreasing the particle
diameter of initially spherical particles.
To show an adequate picture of the influence of the two control parameters state points
we examine are located on two paths in the parameter space of the DHS-model. For
every result shown βκ = ∞ denotes undeformable hard spheres.

Path I: Stiffness parameter βκ is fixed, while the packing fractions vary within φ ∈
[0.116; 0.502].
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Chapter 4. Fluid phase

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5

g
(r
)

Particle separation r/σ

a) φ = 0.301

βκ = ∞
100
10
5

Particle separation r/σ

b) βκ = ∞

φ = 0.502
0.401
0.301
0.226

Figure 4.2: Pair correlation function g(r) of a liquid system of deformable hard spheres
as a function of r in units of σ.
Panel a for a selected packing fraction of φ = 0.301, considering different values of βκ (as
labeled). Panel b results for fixed βκ = ∞, for different packing fractions (as labeled)

Path II: Stiffness parameters vary within βκ ∈ [5, 10, 100,∞], while the packing frac-
tion φ is fixed.

4.1 Static structure

For the analysis of the static structure of the fluid phase of the DHS-model, as a first
step we investigate the radial distribution function g(r) (pair correlation function) given
in Eq. (3.18).
In Figure 4.2 we present results for g(r) for various combinations of the parameter φ or
βκ. For reasons of completeness we displayed g(r) for the limit of hard spheres (βκ = ∞)
separately for selected packing fractions in the Panel b of Fig. 4.2. At r = σ we observe
the well-known sharp drop in g(r), which originates from the fact that the closest distance
of two spherical HS-particles is the diameter of the particle itself. We also observe that
the oscillations in g(r) for separations greater than σ rapidly decrease to 1. Increasing
the packing fraction φ increases the amplitudes of the oscillations, but no sharp peaks
appear up to a packing fraction of φ = 0.502.
The change in g(r) when switching to the deformable sphere model is pictured in the panel
a of Fig. 4.2. It can be seen that for reduced stiffness (i.e. smaller βκ) the discontinuity
at r = σ is softened and smaller particle separations are accessible. On the other hand a
change in the stiffness of the particles has no visible impact on the form of the oscillations
at larger distances.

As a next step we investigate the extent of deformation of our particles for given
stiffness and packing fraction. Relevant for this distribution is the energy penalty for
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4.1. Static structure
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Figure 4.3: Distribution of the aspect ratio of the deformable spheres. Panel a for selected
packing fractions φ (as labeled), with a fixed stiffness of βκ = 10. Panel b for decreasing
stiffness βκ (as labeled) with packing fraction φ = 0.226.

particle deformation which we introduced in Chapter 2 in Eq. (2.9).
In Figure 4.3 the distribution of the aspect ratio of the particles is depicted. As a
reminder, the aspect ratio x = a/c is the relation between the two semi axis lengths a, c
of the spheroid. The distribution has a maximum at x ≈ 1 which means that in general
a spherical shape is preferred. This is simply induced by our potential which is set in a
way to retract the particle elongation to that of a simple sphere if there is no additional
benefit of deformation.

Panel a of Figure 4.3 displays the aspect ratio distribution for different packing frac-
tions at a fixed stiffness of βκ = 10. There is no visible influence of the packing fraction
on the distribution, which implies that there are no additional benefits of taking on a
non-spherical form in the fluid phase, except the natural thermal fluctuations.
In Panel b of Figure 4.3 the effect of reducing βκ on the distribution of aspect ratio is
pictured. The packing fraction is fixed at φ = 0.226. For bigger values of βκ the particles
get stiffer and they are mainly spherical, deviations from x = 1 are therefore minimal. In
contrast, reducing stiffness enables the particles to access regions of greater deformation.
This means greater fluctuations in shape happen during the simulation since the energy
penalty is smaller.

The last correlation function which was calculated for the examination of the static
structure of the system is the static structure factor given in Eq. (3.23). It is displayed in
Fig. 4.4. In Panel a the SSF for different packing fractions at fixed βκ = 10 is pictured.
The most important aspect of the SSF here is the height of the first peak. It increases
with increasing packing fraction and once it passes a height of ∼ 3, the system undergoes
with a high probability a transition to a crystalline state. This criterion is commonly
known as the ”Hansen-Verlet criterion” [4].
In our system the first peak stays below 3 which indicates, that the system remains in
a fluid state for packing fractions up to φ = 0.502 (i.e. in the next Chapter we will see
that depending on the stiffness we only observe signs of an ordered state starting from
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Chapter 4. Fluid phase
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Figure 4.4: Static structure factor S(k) as a function of k for a liquid system of deformable
hard spheres. Panel a for selected packing fractions (as labeled) with a stiffness of βκ =
10. Panel b for decreasing stiffness βκ (as labeled) with packing fraction φ = 0.226.

φ = 0.52).
Panel b of Figure 4.4 depicts the behavior of the static structure factor for a fluid system
(φ = 0.226) with stiffness βκ ∈ [∞, 100, 10, 5]. For a system in a fluid state no effect of
the deformability on the form of S(k) is observed.

4.2 Dynamic properties

In our system we also want to identify phenomena like dynamic arrest, confinement or
simply free propagation, which cannot be observed via the static structure of the system.
In an effort to observe these traits we will now analyze the dynamic properties of our
system.
We start with the mean squared displacement (see Eq. (3.25)) and then give a short
overview over the intermediate scattering function (see Eq. (3.29)). We consider various
packing fractions and stiffnesses of the particles in order to obtain an overview on the
impact of deformability on the dynamic behavior of fluids.

As mentioned in Subsection 3.3.3 the MSD is a convenient tool for identifying which
type of particle motions is found in a given system. To be more specific we search for
characteristic changes in the MSD for different system parameters: free unrestrained
motion, caging or complete confinement. How these different scenarios can be identified
will be examined during the discussion of dynamical properties in the current and the
next Chapter (i.e. Subsection 5.2). Further in Chapter 6 we will investigate another
aspect of a system, namely dynamic arrest. However, first we will have a look at only
these sparsely packed systems.

Figure 4.5 shows the MSD for three such sparsely packed configurations for three
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4.2. Dynamic properties
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Figure 4.5: Comparison of the MSD δr2(t) for systems of deformable hard spheres in
the fluid phase for different stiffnesses βκ ∈ [∞, 100, 10] (as labeled) at packing fraction
fractions φ ∈ [0.116, 0.226, 0.301] (as labeled) as a function of Monte-Carlo-sweeps t.

different values of the stiffness βκ, respectively. For all datasets we observe a slope of
the MSD ∼ 1 characteristic for the regime of normal diffusion (see Subsection 3.3.3).
This implies that particles have the possibility to move unrestrained through the system,
which strengthens our assumption of fluidity taken from the static structure of sparse
packed systems. We observe no signs of confinement or caging effects by other particles.
However, we can also observe that for increasing packing fraction the MSD and therefore
the distance that the particles can propagate on average is decreasing, which seems to
be natural as the available space is decreased for increasing packing fraction, while the
system still stays in the fluid phase. At those densities the deformability of the particles
has no distinct influence on their capability to move through their surrounding.

Finally we take a look at the ISF for the sparsely packed systems. Similar as for the
MSD the different types of motions manifest in different kinds of structural relaxations
in the ISF. In general, as already mentioned in Subsection 3.3.4, the ISF encrypts how
correlations between particle positions evolve as the time progresses. System often show
a pattern of ”one-step” relaxation or ”two-step” relaxation which is a sign for caging.
Further we search for incomplete relaxation (relaxation of Fs(k, t) > 0 for arbitrary
times) which is an indicator for a crystalline structure. The importance of the IFS for
this thesis is not as high as the one of the MSD, but since the topic is analyzing the
structure on motions of particles it shall be discussed nonetheless. However, this function
will be mainly used to underline the conclusions drawn from the MSD and its logarithmic
derivative z(t).
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Chapter 4. Fluid phase
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Figure 4.6: Self intermediate scattering function F (k, t) at the maximum of the structure
factor k = 7.0 as a function of MC-sweeps t for systems of deformable hard spheres.
Panel a for selected packing fractions (as labeled) with a stiffness of βκ = 10. Panel b for
increasing stiffness βκ (as labeled) with packing fraction φ = 0.502.

Figure 4.6 shows the IFS for a variety of sparsely packed systems and different values
of stiffness. We observe an increasing time required for complete relaxation but for
the shown packing fractions we observe no signs of caging or crystallinity. Panel b of
Figure 4.6 also demonstrates the influence of deformability onto the IFS. We find that at
relatively high packing fractions a slightly decreasing relaxation time for smaller stiffness
βκ is observed. This means that at these densities changes in the value of stiffness have
an impact onto the capability of the particles to reach an equilibrium state.
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CHAPTER 5

Ordered phase

(a) Spheres (b) Spheroids
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Figure 5.1: Two snapshots of a system in an ordered phase at a packing fraction of
φ = 0.680 (a) - rigid spheres (i.e. βκ = ∞) and (b) - deformable spheres (with βκ = 5).
In the latter case the particles are colored according to their aspect ratio, red for highly
oblate, green for spherical, violet for highly prolate form, covering all the colors of the
rainbow.

When cooling a system rapidly below a certain temperature, a metastable, amorphous
state will be formed which is known as glass; the related transition is therefore called glass-
transition. Since it is amorphous (i.e. disordered) no long-range correlations between the
particle position is observed, the slowed down dynamical properties of an amorphous
system distinguish it from a fluid state.

In contrast, when cooled down slowly a fluid system can form a stable phase with
long-range correlations. Systems consisting of hard spheres form a face-centered cubic
state with a maximal packing fraction φ ∼ 0.7405.
For hard particles the state of the system is controlled by its packing fraction. As we
have seen in the previous Chapters, our system of deformable hard spheres exists in a
fluid state up to a packing fraction of φ = 0.502. Therefore, we will now take a look
at systems with a higher packing and we will analyze the effect of deformability on the
emerging phases and their properties.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 5. Ordered phase
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Figure 5.2: Static structure factor S(k) of a system of deformable hard spheres as a
function of k in units of σ. Panel a) for selected packing fractions φ (as labeled) with a
fixed stiffness of βκ = 10. For φ between 0.520 and 0.538 a strong increase in the height
of the first peak above 3 is visible, indicating a transition to an ordered state. Panel b
results for fixed φ = 0.550, for different packing fractions (as labeled).

5.1 Static structure

An excellent first indicator for a possible phase transition to an ordered phase is again
the static structure factor S(k). It is shown in panel a of Figure 5.2 for packing fractions
φ ranging between 0.502 and 0.550 for a fixed value of stiffness βκ. We observe a strong
increase in the height of the first peak for packing fractions between 0.520 and 0.538; this
maximum reaches a height of ∼ 4 which is above the Hansen-Verlet threshold [4], thus
indicating the emergence of a crystalline state or of possible transient crystallites.
Panel b of Figure 5.2 shows the effect of the deformability of the particles on the shape of
the static structure factor for fixed packing fraction φ. We observe in contrast to the fluid
state of the system a different manifestation of the second and third peak of the static
structure factor, but it gives no further indication on possible changes or a regression to
a complete fluid state for higher deformability.

In order to examine the specific structure of the emerging ordered phase we need
to resort to further post-processing tools we discussed in Chapter 3. The simplest
way to identify a possible ordered structure of a system is by calculating its radial-
distribution function g(r): If the system is completely ordered g(r) should exhibit peaks
at the positions of particles in its associated primitive cell. Figure 5.3 depicts g(r) for
various combinations of packing fractions and stiffness parameters. In the left bottom
panel of this Figure we see the change in the RDF for packing fractions ranging from
φ = 0.502 to 0.641. For a packing fraction of φ = 0.502 g(r) starts to develop a split-peak
shape at r ≃ 2σ which indicates a dense but also random packing; this peak structure
gets more distinct when reaching a packing fraction of φ = 0.538. Whether the system
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5.1. Static structure
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Figure 5.3: Radial distribution g(r) of system of deformable hard spheres as a function
of r in units of σ. Top panel for selected stiffnesses βκ (as labeled) with a fixed packing
fraction φ = 0.680 (densest generated packing). Bottom left panel for selected φ (as
labeled) with fixed βκ = 10 and bottom right panel for selected βκ (as labeled) with
fixed φ = 0.641.

is already in a state of dynamic arrest or still in a more or less liquid state cannot be
ascertained from its static structure. At a packing fraction of φ = 0.550 another peak
is emerging, located at the prior local minimum at r ≃ 1.5σ. Eventually we reach a
possible full crystal for a packing fraction of φ = 0.641 (see bottom right panel of Fig.
5.3). When analyzing the emerging sequence of peaks, we find all positions typical for
a fcc-lattice: r{1} =

√
2Φ, r{2} =

√
3Φ and r{3} =

√
6Φ, with Φ = {φ/φfcc}1/3 and

φfcc = π/(3
√
2) ≃ 0.7405, which indicates a full crystalline state at a packing fraction of

0.641.
Furthermore, the bottom right panel of Figure 5.3 shows the RDF for different values of
βκ. Here we observe a slight weakening in the distinctiveness, however, the positions of
the peaks are not affected by βκ. The small impact of the deformability on this ordered
state is possibly due to the sparse packing of the system in comparison to the maximum
packing φfcc (for spherical particles), where particles are not able to move from their
position in the fcc-lattice due to a possible non-spherical shape.
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Figure 5.4: Distribution of aspect ratio of various systems of deformable hard spheres as
a function of x. Top panels for selected packing fraction φ (as labeled) and fixed stiffness
βκ = 100 in the left panel and βκ = 5 in the right panel. Bottom panels for selected βκ
(as labeled) with a fixed packing fraction φ = 0.68 in the left panel (densest generated
packing) and φ = 0.52 in the right panel (coexistence of fluid and ordered state).

To underline this assumption we simulated a system starting from an initial body-centered
cubic configuration. We chose this initial state of an bcc-lattice because it enables to
show the effect of deformability clearly, while still retaining a reasonable simulation time,
compared to a fcc-lattice configuration at high packing fractions. The top panel of Figure
5.3 shows g(r) for this second crystalline state, obtained for a packing fraction of φbcc =
π
√
3/2 ≃ 0.6802. For a stiffness of βκ = 100, which is close to stiff particles, distinct

peaks are visible in g(r); they are located at distances r{1} =
√

4/3Φ, r{2} =
√

8/3Φ

and r{3} =
√

11/3Φ, with Φ = {φ/φbcc}1/3 and are characteristic for a bcc-lattice. When
decreasing the stiffness to βκ = 10 we observe a smearing out of the previously well-
defined peaks because of the easier deformability of the particles, which are now able to
move from their lattice position. For even lower values of stiffness (i.e. βκ = 5) some of
these peaks shrink until they are almost completely vanished.

In parallel to these structural changes we should also observe a change in the dis-
tribution of aspect ratio. It should show a form deviating from the standard Gaussian
distribution with a maximum located at x ≈ 1 (corresponding to the spherical shape).
Figure 5.4 provides a comprehensive overview over the ARD for systems in a ordered
state. First we take a look at the top left panel of the Figure. It shows systems with
packing fractions φ ∈ [0.52, 0.68] for a stiffness of βκ = 100 (undeformable particles).
We observe a weak effect of the increasing packing fractions on the ARD. The denser
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5.1. Static structure
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Figure 5.5: Particle-separation-orientation-distribution g(r, θ) for a system of deformable
hard spheres with a packing fraction φ = 0.680 and a stiffness βκ = 100 as a function of
r and θ. The inset shows g(r, θ) as a function of θ for selected values of r (as labeled).

the system becomes, the more particles get pushed towards a complete spherical shape.
This is due to the increasing confinement of the individual particles. When decreasing
the stiffness to βκ = 5 (flexible particles) compared to our prior observations, we find
a distinctively different behavior as shown in the top right panel of Figure 5.4. Again
we observe a narrowing of the distributions with increasing φ, but they are still keeping
a minimal broader shape. We also observe for the smallest packing fraction considered
φ = 0.520 that the maximum of the ARD is not located at x ≈ 1.
In the bottom panels of Fig. 5.4 we fix the packing fraction φ and vary the stiffness βκ.
For φ = 0.52 (bottom left panel, coexistence of fluid and ordered state) we observe the
same behavior as for fluid systems, the translation of the maximum and the increasing
variance of the Gaussian shape. For φ = 0.68 (bottom left panel) the ARD features the
same static position of the maximum as for unflexible particles. Additionally two new
local maxima emerge: they are located at aspect ratios xproplate ≃ 1.59 and xoblate ≃ 0.63
(due to the symmetry in Eq. (2.9) we expect the relation xoblate = 1/xprolate to hold).
These different observations (i.e. the movement of the maximum and reduction of vari-
ance) indicate that the shape and maximal aspect ratio particles can assume is controlled
by the increasing confinement at higher packing fractions. Further the development of
specific secondary maxima indicates that the particles adapt to this limitation to gain
mobility.

When looking back at our observations on the RDF at the beginning of this chapter
we still have relatively well-defined major peaks (related to the bcc-lattice) even for a
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Chapter 5. Ordered phase
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Figure 5.6: Particle-separation-orientation-distribution g(r, θ) for a system of deformable
hard spheres with a packing fraction φ = 0.680 and a stiffness βκ = 100 as a function of
r and θ. The inset shows g(r, θ) as a function of θ for selected values of r (as labeled).

rather small stiffness of βκ = 5. Thus we should take a look at a new, now available
degree of freedom of the particles, namely their orientation (see Eq. (3.19)). So far we
have neglected this property since at small packing fractions there is little hope to find
any correlation in particle orientations.

Figure 5.5 shows the particle-separation-orientation correlation function g(r, θ) for a
system with packing fraction φ = 0.68 and a stiffness βκ = 100. For the first three peaks
we observe a uniform distribution of the orientations of the particles relative to each other
(see inset): Particles are rather spherical (see also Fig. 5.4) and therefore gain no benefit
from re-orienting themselves.

Figure 5.6 shows g(r, θ), now for a system at the same packing fraction φ = 0.68
but for the case of more deformable particles (with βκ = 5). The peaks in g(r, θ) which
were pronounced for the case of βκ = 100 are now smoothened out, some others van-
ished completely (see Fig. 5.3 top panel). But there are still two highly correlated and
therefore preferred inter-particles distances in the pair-correlation function (see inset of
Fig. 5.6). We observe a distinct non-uniform distribution for particles separated by the
particle diameter σ (touching particles) and the same weakened distribution at the dis-
tance of

√

8/3σ (corresponding to a distance of nearest neighbors in a bcc unit cell). The
orientations assumed with the highest probability are θ = π ≡ 0 and π/2. This and our
observation of the emergence of secondary peaks in the ARD for increasing φ indicate
transient localized phase transitions to a denser state not accessible by spherical particles
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5.2. Dynamic properties
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Figure 5.7: Self intermediate scattering function F (k, t) for a system of deformable hard
spheres for selected packing fractions (as labeled) and a stiffness βκ = 10 at the maximum
of the structure factor k = 7.0 as a function of t.

[2]. In this state particles crystallize, while being oriented exactly by θ = 0 (π) in the
same layer of the crystal and by θ = π/2 towards particles in neighboring layers. When
reaching the highest packing fraction the spheroids take on a aspect ratio of x =

√
3.

To observe a more distinct or even complete transition to this state of ellipsoidal pack-
ing with φdense ≈ 0.77 we need to access even higher packing fractions which wont be
discussed during this work. For further information concerning this state please refer to
[2].

5.2 Dynamic properties

Finally in this chapter we will analyze the dynamic properties. By finding at which
packing fractions signs of dynamic arrest or caging set in and for which values of φ the
particles get completely trapped, we can solidify our previous conclusions.
In Figure 5.7 the ISF is shown for a comprehensive range of packing fractions. Starting
at φ = 0.116 for which, as we saw in the Chapter 4, the system is in a fluid phase. The
densest system has a packing of φ = 0.641 at which one should already have a full solid
phase following the result we found by analyzing the static structure. Hence, we observe
a full relaxation of the dynamics for low values of the packing fraction; from φ = 0.401
onwards we observe first caging effects in the ISF indicating short local confinement of
particles by ”cages” created by their surrounding neighbors.
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Chapter 5. Ordered phase
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Figure 5.8: Mean squared displacement δr2(t) for a system of deformable hard spheres
for selected packing fractions (as labeled) and a fixed stiffness βκ = 10 as a function of t.

At φ = 0.538 the ISF shows no complete relaxation to 0 which, as mentioned in the end
of the last chapter, is a sign of a transition to an arrested state. This underlines our
conclusion of a phase transition happening in the range φ ∈ [0.520, 0.538] as concluded
from the static structure. For higher packing fractions the system is completely arrested.

Finally and in order to complete our understanding of the transition into an arrested
or solid phase we have calculated the mean-squared displacement δr2(t) for a variety of
packing fractions and a stiffness of βκ = 10. The results are shown in Figure 5.8. We have
also included the logarithmic derivate of the MSD z(t) (see Eq. (3.27)) in the bottom
panel to get a better understanding of the changes and transition.
For small packing fractions (φ ∈ [0.116, 0.301]) we observe normal diffusion with z(t) ≈ 1,
i.e. typical for system in the fluid phase and unrestrained motion. At intermediate values
of φ we see that z(t) shows two regimes of diffusion: z(t) first decreases in an intermediate
time-regime and then tends towards unity. This particular shape is a sign of temporal
caging in the system. For a packing fraction above φ = 0.520 we observe z(t) = 0 which
indicates a complete confinement of the particles. This reinforces our assumptions put
forward in the previous section.
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5.2. Dynamic properties
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Figure 5.9: Mean squared displacement δr2(t) and its logarithmic derivate z(t) for a
system of deformable hard spheres for selected stiffnesses (as labeled) and a fixed packing
fractions φ = 0.520 as a function of t.

To get a complete picture of the dynamics of a DHS-system we are still missing
an analysis of the effects of deformability on the MSD. We observed in Chapter 4 that
for a system in an unordered state with a packing fraction φ < 0.52 the particles gain
no further mobility from deforming. Hence, we will start our analysis from systems at
φ = 0.52 which is shown in Figure 5.9.

We observe a plateau in δr2(t) with a long time value of z(t) ≈ 0 for a stiffness
parameter of βκ = 100. As mentioned early in this chapter this indicates a system
in an ordered state showing confinement. When decreasing βκ (i.e. βκ = 10, 5) the
system shows a normal diffusive behavior with a long-time value of z(t) ≈ 1. This can
be interpreted as that the state points of a DHS-system (φ = 0.52, βκ = 10, 5) is still in
the fluid regime while the state point (φ = 0.52, βκ = 100) is located after the transition
line of fluid to ordered state. This observation fits the calculations of the transition lines
of the DHS-model done by Batista and Miller. For further information on this topic we
refer to [2].
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CHAPTER 6

Porous media

(a) Matrix (b) Immersed fluid

4.00

2.69

1.81

1.22

0.82

0.55

0.37

0.25

Figure 6.1: Two snapshots of systems illustrating the principles of the DHS-QA model.
(a) - rigid spheres forming a spatially frozen matrix with a packing fraction φm = 0.10.
(b) - deformable spheres forming a fluid immersed into the matrix with a packing fraction
φf = 0.20 and stiffness βκ = 10. In the latter case the fluid particles are colored according
to their aspect ratio, red for highly oblate, green for spherical, violet for highly prolate
form, covering all the colors of the rainbow.

For the last chapter of this thesis we want to introduce another feature to our system
consisting of deformable colloids: we introduce a matrix of fixed, undeformable spherical
particles. This matrix is basically a subsystem of the native system consisting of a number
of ”frozen” particles, fixed in space. Such matrices are often used to simulate porous
media. They are encountered as rocks, clay, sand or ceramics. Porous materials play a
significant role in many industrial processes, for example in the purification process of
polluted water, in many chemical reactions or in silica gels. Also living cells exhibit fixed
cytoskeleton structures which act as porous media for fluids of proteins floating through
the cell. Summarizing there are many phenomena in nature which are essentially systems
of matrix and fluid elements and which require a fundamental physical or mathematical
model to be thoroughly comprehended.

In our investigation our deformable spheroids now have to move through such a matrix
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6.1. Glass transition

configuration. We have considered the matrix particles as undeformable spheres. From
now on mobile, deformable particles are called ”fluid” particles and fixed, undeformable
particles are called ”matrix” particles.
Before analyzing the behavior of this system, a number of additional definitions and
concepts are required to fully comprehend the results. They are presented in the following.

6.1 Glass transition

To understand these materials more profoundly let us first neglect porous confinement
and take a look at glasses or more general, slow liquids. In the last chapter we saw that
a liquid system which reaches a specific packing fraction undergoes a phase transition to
a state with some kind of long-range order of the particles. When slowly cooling a liquid
system such a state starts to develop in initially small regions where it may dissolve again;
however, when reaching a specific critical size these regions can grow larger and finally
spread throughout the whole system.

When cooled fast enough a system cannot generate local crystallites beyond the
critical size and will not develop a full crystalline structure despite being dense (or cooled
down) enough to reach the energetically preferred crystalline state. Such a system is called
supercooled: These systems seem to behave like a solid but have no long-range structure
like in the case of a fluid. The probably most important example for such a material is
a glass and therefore this transition is often called ”glass transition”, the corresponding
state is called ”glassy state”. It represents a meta-stable state of the system, further,
often called ”slow liquid”.
The main difference between a system in a glassy and in a liquid state (despite their
similar static structure) is that a glass displays a phenomenon called dynamic arrest. In
other words a glass shows a specific structure which hardly changes over time (similar to
a stable crystal) while a liquid changes its structure continually over time. Nonetheless
a glass still reacts to many stimuli in a manner different from that of a full solid because
the mentioned distinct differences in their structure. The main feature that differentiates
a liquid and a slow liquid are their dynamical properties. Differences between slow liquids
to full solids are found (mainly) in the static structure.

To identify whether a system has reached a state of dynamic arrest, the IFS and the
MSD are again the most practical tools. When a system undergoes a transition to a
glassy state, these two functions exhibit a pronounced change in their long time value.
The features that identify the glassy state will be further discussed over the course of this
chapter.

6.2 Theroetical concepts for the fluid immersed in

the matrix

A fluid under porous confinement is able to show an entirely different behavior concerning
transitions between different states and dynamic features. For example, the transition
temperatures between states can be shifted, or such a transition can be possibly even
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Chapter 6. Porous media

completely suppressed. The most important of these features to characterize the state of
the confined fluid in this Chapter is the time-dependent MSD δr2(t). As we have seen in
Chapter 4, a system in a fluid state obeys the diffusion law (see Eq. (3.26)) with the loga-
rithmic derivate of the MSD z ∼ 1. In the preceding Chapter 5 we learned that for dense
systems a transient subdiffusion with z(t) < 1 is observed, which corresponds to caging
effects. In contrast to a diffusive liquid which reaches a long time value lim

t→∞
z(t) = 1.

However there are also systems that show anomalous (sub-)diffusion with a long time
value 0 < lim

t→∞
z(t) < 1, such as proteins confined in cell membranes or many liquids con-

fined in porous media. Thus we observe different kinds of manifestation of the MSD δr2(t)
and its logarithmic derivate z(t) as a function of time, depending on the environment of
the particles.

In this thesis we consider equilibrated configurations. As we saw in the last chapter,
a system with a sufficiently high packing fraction will always assume a crystalline state
when given time to properly equilibrate. Therefore, we need a method to generate a
system which remains disordered. For this purpose we use the concept of the quenched-
annealed (QA) model. This model was designed to investigate systems which consist of
a disordered porous matrix and an immersed fluid.

The protocol for generating such a system consists of three steps:

(i) A disordered configuration consisting of HS particles is generated where we ap-
ply periodic boundary conditions at the walls of the cubic simulation cell; these
particles will represent the matrix.

(ii) These matrix particles are randomly moved according to the protocol discussed
in Subsection 3.1.1 until the system is equilibrated. Then a randomly chosen
equilibrium configuration is selected of these particular configurations and these
matrix particles are hence forward frozen in space.

(iii) Into the matrix new HS particles are immersed; the simulation is carried on until
this system reaches equilibrium with these new particles.

These steps have to be followed in order to generate a proper configuration of the HS-QA
model. However, in our study we want to investigate a fluid consisting of deformable
hard spheroids (instead of simple spheres) immersed into a porous matrix. Therefore we
split step (iii) into the three sub-steps which we have discussed in the Subsections 3.1.1,
3.1.2 and 3.1.3. Hence in the same way as we did in Chapter 3 to define the DHS-model,
we extend the HS-QA-model to the DHS-QA-model - we simulate next to translational
movement, rotational movement and deformation in every step to reach an equilibrium
state.

The last concept we need before analyzing our results for the DHS-QA model a theo-
retical theory we can use as a foundation and with which we can interpret possible changes
because of the deformability of the particles. One of the most successful theories for the
slowdown and dynamic arrest of glass forming systems and especially under confinement
in a matrix is the replica mode-coupling theory (RMCT)[6]. We will not go into detail
here since the HS-QA was already under thorough research in relation to the RMCT by
[7]. But we want to use some of the predictions of the RMCT for a HS-QA system.

Basically by tracking the motion of particles through time-dependent local densities
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6.2. Theroetical concepts for the fluid immersed in the matrix
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Figure 6.2: Kinetic diagram predicted by RMTC.
Depending on the packing fractions φm of the matrix and φf of the fluid, RMCT predicts
HS-QA systems to assume either a fluid, localized or glassy state (blue, green and red
areas in the diagram). These areas are separated by transition lines. The system can
undergo either a type-A, type-B or localization transition. The black arrows indicate 4
paths chosen in this thesis to analyze this phase space. (reproduced from [7])

(Eq. (3.21)) and their correlation functions (see 3.3), the theory can make predictions
about the dynamical properties and glass transitions of the system. Additionally, RMCT
also predicts another type of transition which is called ”localization transition”.
This is another sub-characterization of the fluid (non-glassy) state which shows itself in
the IFS and MSD through intermediate steps as in case of caging and especially in a
non-infinite long-time value of the MSD.

6.2.1 Kinetic diagram

To get an overview of the different states in the phase space of the DHS-QA model we will
use in particular the ”kinetic diagram” predicted by the RCMT. It is a visualization of
all possible states in the parameter space, spanned by the two parameters matrix packing
fraction φm and fluid packing fraction φf . It is depicted in Figure 6.2 and shows where,
according to the RMCT for the HS-QA model, the system is in a fluid, localized or glassy
state (blue, green and red areas).
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Chapter 6. Porous media
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Figure 6.3: Radial distribution g(r) for a DHS-QA-system calculated along the paths
I-IV (as labeled) with a stiffness βκ = 100 and various combinations of packing fractions
φm and φf (as labeled) as a function of r in units of σ.

To properly observe the different possible transitions between phases in our system
and the effect of deformability on these transitions, we will follow in our investigation
four paths in the kinetic diagram (black arrows in Fig. (6.2)), where each of these paths
should represent a different kind of transition:

Path I: The matrix has a small packing fraction φm = 0.05, while the fluid packing
fraction is varied in the interval φf ∈ [0.05, 0.50].

Path II: The matrix has an intermediate packing fraction φm = 0.10, while the fluid
packing fraction is varied in the interval φf ∈ [0.05, 0.45].

Path III: The matrix has a rather large packing fraction φm = 0.20, while the fluid
packing fraction is varied in the interval φf ∈ [0.05, 0.30].
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6.2. Theroetical concepts for the fluid immersed in the matrix

Path IV: The fluid has a packing fraction φf = 0.10, while the matrix packing frac-
tion is varied in the interval φf ∈ [0.05, 0.25].

The different types of transition lines shown in Figure 6.2 (see legend) are not of high
concern for the analysis in this chapter. But for purpose of completion it shall be men-
tioned shortly. The red line represents a type-B transition to a glassy state [7], while
the green line represents a type-A transition. [7] The main difference is that in the long
time value of the collective IFS for a type-B transition displays a jump when reaching
the transition line, while for a type-A transition it varies continuously.

All simulations of state points along path II-IV are performed with a number of
particles Ni = 400 per packing fraction φi = 0.1 (i = m, f). Along path I, to increase
the effect of the relatively small number of matrix particles (Nm = 200), the number
of particles is increased to twice the number Ni = 800 (constitutes to Nm = 400) per
packing fraction φi = 0.1 (i = m, f). Additionally to the ensemble average (see Section
3.3) an average over 5 different matrix configurations is used for all results presented
during this chapter.

6.2.2 Static structure

First of all, we have to confirm that we really operate in the domain of fluids or in the
domain of amorphous systems. For this purpose, we again look at the radial distribu-
tion g(r) and the static structure factor S(k). When reconsidering the static structure
presented in the previous chapter (Subsections 5.2 and 5.3), we saw that in case of a
crystalline state we find local maxima in the RDF at positions specific for the respective
structure.

In Figure 6.3 we observe none of these maxima for the states investigated in this
Section. From top to bottom this Figure depicts the function g(r) for each of the paths
I-IV (shown in Fig. 6.2). For this case we choose a stiffness of βκ = 100 because it
resembles an HS-system in all aspects and is therefore ideal to compare the results to the
predictions made by the RMCT. Furthermore, decreasing the stiffness βκ only reduces
the distinctness of the extrema of the static structure further as we saw over the last
chapters; this justifies our assumption that βκ = 100 serves as an appropriate value for
representing HS-particles.

For all paths investigated we observe the typical shape of the RDF of an unordered
system, which we already discussed in detail in Chapter 4. For total packing fractions
(i.e. φtot = φm+φf ) below φtot = 0.5, features typical for a system in a fluid-like state can
be observed. As we increase the fluid packing fraction (Path I: φf = 0.5, II: 0.4, 0.45 and
III: 0.3) we observe a splitting of the peak at the distance r = 2σ, this is an indicator of a
closed randomly packed system, as it is observed in amorphous or glass-forming systems.

The static structure factor S(k) is shown along the paths I-IV in Figure 6.4. As
expected we observe no indicators of crystallization in the SSF. The overall shape of S(k)
is similar to the one discussed in Chapter 4. The height of the first peak for the highest
packing fractions considered (Path I: φf = 0.5 and II: φf = 0.45) is near or slightly above
the Hansen-Verlet threshold value of ≈ 3 [4], which indicates the possible presence of
some kind of crystalline structure, while it does not suggest any kind of ordered state.
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Chapter 6. Porous media
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Figure 6.4: Static structure factor S(k) of a DHS-QA-system calculated along the paths
I-IV (as labeled) with a stiffness βκ = 100 and various combinations of packing fractions
φm and φf (as labeled) as a function of k in units of σ.

Summarizing, g(r) and S(k) indicate for none of the four paths any characteristic
features of crystallization. This observation underlines the assumption that even the
most diluted matrix already completely suppresses the features of long-range order, i.e.
of a crystalline structure.

6.2.3 Dynamic properties

Similar to the case of the DHS model (see Subsection 5.2) we will investigate the dynamic
behavior of the DHS-QA system via the MSD δr2(t) and its logarithmic time derivate
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6.2. Theroetical concepts for the fluid immersed in the matrix
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Figure 6.5: Mean squared displacement δr2(r) and its logarithmic derivate z(t) for a DHS-
QA-system calculated along path I with a stiffness βκ = 100 and various combinations
of packing fractions φm and φf (as labeled) as a function of t.

z(t). Again we will focus on the paths I-IV as they are shown in Figure 6.2.

We start with path I, results for δr2(t) and z(t) are shown in Figure 6.5. Like already
mentioned, path I follows a constant matrix packing fraction φm = 0.05. We have to
remember that in MC-simulations it is not possible to resolve the ”ballistic” or ”inertial”
regime (z(t) > 1) occurring at small times. At larger time scales MC-simulations provide
reliable results. We observe an initial subdiffusive (z(t) < 1) regime for all systems. For
the smallest fluid packing fraction, φf = 0.05, the system shows an essentially normal
diffusive behaviour over the whole simulation time, which means that the particles can
move through the rather dilute matrix in an unrestricted manner. As we increase φf ,
the system shows an increasingly strong subdiffusive regime where z(t) < 1. For longer
simulation time the system recovers normal diffusion after about 1000 sweeps. For the
highest value of fluid packing fraction, i.e. φf = 0.5, it drops down to a value of z ≃ 0.15.
This distinct subdiffusive behavior is due to caging effects when approaching the glass-
transition. [7] Still, even in this case the system still recovers a normal diffusive behaviour
after many sweeps.
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Chapter 6. Porous media

0.0

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105 106

10−4

10−3

10−2

10−1

100

101

102

103

104

105

z(
t)

MC-Sweeps t

φm = 0.10, φf = 0.05

0.10

0.20

0.30

0.40

0.45

δr
2
(t
)

βκ = 100

φm = 0.10, φf = 0.05

0.10

0.20

0.30

0.40

0.45

Figure 6.6: Mean squared displacement δr2(r) and its logarithmic derivate z(t) for a DHS-
QA-system calculated along path II with a stiffness βκ = 100 and various combinations
of packing fractions φm and φf (as labeled) as a function of t.

Results for δr2(t) and z(t) for systems along path II are visualized in Figure 6.6.
Along path II the matrix packing fraction is fixed at φm = 0.10, while the fluid packing
fraction is increased up to a value of φf = 0.45. The overall behavior of these functions
looks similar to their counterparts along path I. For φf = 0.05 the particles show a short
regime of subdiffusive behavior. This subdiffusivity becomes more distinct for higher
fluid packing fractions, where z(t) attains values distinctively below unity.
Still for φf ∈ [0.05, 0.3] the particles always recover the normal diffusive regime for larger
time scales. For a packing fraction of φf = 0.45 there is a sudden jump in z(t) a near
complete confinement. This can be interpreted as the anticipated transition to a glassy
state, because this goes further than simple caging effects. Most probable this is due to
partly confinement of the particles of an amorphous system.

Figure 6.7 depicts the MSD and its logarithmic derivate along path III with a matrix
packing fraction φm = 0.20. Along this path a significantly different type of diffusivity is
observed compared to the paths I and II. Along path III the recovery of normal diffusivity
takes a much longer time. Further a temporary region of nearly constant subdiffusion is
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6.2. Theroetical concepts for the fluid immersed in the matrix

0.0

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105 106

10−3

10−2

10−1

100

101

102

103

z(
t)

MC-Sweeps t

φm = 0.20, φf = 0.05

0.10

0.15

0.20

0.30

δr
2
(t
)

βκ = 100

φm = 0.20, φf = 0.05

0.10

0.15

0.20

0.30

Figure 6.7: Mean squared displacement δr2(r) and its logarithmic derivate z(t) for a DHS-
QA-system calculated along path III with a stiffness βκ = 100 and various combinations
of packing fractions φm and φf (as labeled) as a function of t.

observed as an intermediate regime; it is characterized by a value of z(t) ≃ 0.78 and seems
to be independent of φf . This is not predicted by RMCT where the only ”intermediate
subdiffusive” regime is observed at z(t) = 0.5 (while it is completely unknown for simple
glass forming systems). These features where also observed by Kurzidim et. al. [7], who
investigated the dynamics of HS-QA systems through molecular dynamics simulations.
They interpret this unusual behavior as to be most likely due to confinement effects
becoming more important.
These confinement effects are foreign in simple glass-forming systems where only caging
effects are observed. In this sense they differentiate these features by calling the initial
subdiffusive regime caging regime and the later the subdiffusive regime. At last for φf =
0.30 we observe again a jump in δr2(t), similar to path I, to a subdiffusive value of about
z = 0.2, which is not completely recovered.
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Chapter 6. Porous media
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Figure 6.8: Mean squared displacement δr2(r) and its logarithmic derivate z(t) for a DHS-
QA-system calculated along path IV with a stiffness βκ = 100 and various combinations
of packing fractions φm and φf (as labeled) as a function of t.

Finally δr2(t) and z(t) along path IV are shown in Figure 6.8. Now the fluid packing
fraction is kept constant at φf = 0.10 while the matrix packing fraction φm is varied.
We observe that all but the system with the lowest value of φm shows an initial caging
regime and a subdiffusive (confinement governed) regime. For a matrix packing fraction
of φf = 0.25 z(t) reaches a value as small as z = 0.5; over the whole simulated time
normal diffusion is never recovered for this case.

When reconsidering the results of Chapter 5 we do not reach total packing fractions
φtot high enough to observe particles in complete indefinite confinement (characterized
by z(t) ≃ 0) due to crystallization. Further, since we observe a high impact of φm on
the degree of subdiffusion and therefore the value of z(t), the observed features are most
probable due to the fluid particles being enclosed and confined by the local cages of matrix
particles for long time scales.
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6.3. Effects of deformability under the DHS-QA model
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Figure 6.9: Static structure factor S(k) of a DHS-QA-system calculated along path I with
a matrix packing fraction φm = 0.05 and various combinations of fluid packing fractions
φf and stiffness parameters βκ (as labeled) as a function of k in units of σ.

6.3 Effects of deformability under the DHS-QA model

By introducing deformability in the DHS-QA model as an additional parameter of the
system, we introduce new features and new additional effects. Within the well-known
framework we will look at a possible impact of the deformability on the static structure
and on the dynamic behavior of the systems. In the following we will try to disconnect
possible effects due to either the matrix packing fraction φm or the fluid packing
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Chapter 6. Porous media
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Figure 6.10: Static structure factor S(k) of a DHS-QA-system calculated along path
IV with a fluid packing fraction φf = 0.10 and various combinations of matrix packing
fractions φm and stiffness parameters βκ (as labeled) as a function of k in units of σ.

fraction φf , by focusing on differences in the effect of deformability between the first three
paths I-II and path IV.

6.3.1 Deformability and static structure

First we have a look at the static structure factor. In Subsection 6.2.2 we observed that,
depending on the position in parameter space, at the regime of glassy states (for the limit
of inflexible particles) the first peak of the SSF reaches the Hansen-Verlet threshold.
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6.3. Effects of deformability under the DHS-QA model
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Figure 6.11: Radial distribution g(r) for a DHS-QA-system calculated along path I with
a matrix packing fraction φm = 0.05 and various combinations of fluid packing fractions
φf and stiffness parameters βκ (as labeled) as a function of r in units of σ.

This indicates, as already mentioned, transient crystallites. Therefore, we first analyze
the behavior of S(k) at state points along path I for different values of stiffness.

This function is shown in Figure 6.9 for φf = 0.05 and different values of φm and βκ.
As a reminder, in the Chapters 4 and 5 we found no major impact of deformability on
the SSF for systems within the DHS model which do not show a crystalline structure.
In this respect path I is ideal to identify an impact of stiffness βκ on S(k) in combination
with an increasing fluid packing fraction φf , since the matrix packing fraction is fixed at
the smallest simulated value of φm = 0.05.
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Chapter 6. Porous media

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.5 1.0 1.5 2.0 2.5 3.0

g
(r
)

φf = 0.10

φm = 0.25, βκ = 100
10

5
1

g
(r
)

φm = 0.20, βκ = 100
10

5
1

g
(r
)

φm = 0.20, βκ = 100
10

5
1

g
(r
)

Particle separation r/σ

φm = 0.05, βκ = 100
10

5
1

Figure 6.12: Radial distribution g(r) for a DHS-QA-system calculated along path IV with
a fluid packing fraction φf = 0.10 and various combinations of matrix packing fractions
φm and stiffness parameters βκ (as labeled) as a function of r in units of σ.

Contrary to the simple DHS-system we find a dependence of the SSF on the deforma-
bility of the particles. For stiffness parameters βκ ∈ [100, 10, 5, 1] we observe a decreasing
height of the first peak of S(k) for decreasing stiffness. For small fluid packing fractions
φf = 0.10 and 0.20 the change is little, however, we observe an increasing effect when
increasing φf to 0.30 and above. For the highest fluid packing fraction φf = 0.50, where
we found out in Section 6.2 that this is a state point of the glassy regime, the height
of the first peak drops even below the Hansen-Verlet threshold of ∼ 3 for βκ < 10 (i.e.
strong deformability). This observation can be interpreted that for higher deformability
particles tend to form less local crystalline structures. In addition, it can be seen that
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6.3. Effects of deformability under the DHS-QA model

also all local oscillations in S(k) vanish for the state with the largest value of φf along
path I.

Figure 6.10 depicts S(k) for state points along path IV for stiffness parameters
βκ ∈ [100, 10, 5, 1]. Path IV is ideal to identify for possible effects of deformability
in combination with an increasing matrix packing fraction. Similar as in the case of path
I, a tendency for a smoothing of the different local maxima in S(k) can be observed for
decreasing stiffness βκ, but not as pronounced as along path I. This is most probable to
the fact that it gets less probable for fluid particles to meet in systems on path IV, due
to additional matrix particles obstructing their movement. Therefore, for all state-points
the first peak of the SSF never reaches a value higher than ≈ 1.2 and deformation of
particles cannot restrict the already less probable formation of transient crystallites.

As in the previous chapters we want to combine our observations on the static struc-
ture factor with the radial distribution function, which shows the same information about
the static structure, but with different peculiarities. In section 6.2.2 we saw split-type
peaks for r = 2σ emerging in the RDF for some state points in the glassy regime, but
overall fluid or amorphous structure over the whole phase space.
Further in Chapter 4 we found that under the DHS model the only effect of deformability
on the RDF, for state points without a full crystalline structure, is a smoothing of the
first peak of r = σ. This is due to the fact that particles with the ability to deform can
approach each other further if their aspect ratio x diverges more from unity (and there-
fore one of the two lengths a and c of the semi axis reaches below the particle diameter
σ).

Under the DHS-QA model the RDF for the same paths I-IV as before are pictured
for a range of stiffnesses βκ ∈ [100, 10, 5, 1] in the Figures 6.11 and 6.12. For Figure 6.11
on path I we observe similar properties of a smoothed form of the RDF as in the case of
the SSF. There are negligible effects of deformability for sparse fluid packing fraction, but
they increase drastically for increasing φf . For φf = 0.50 the split-type peak of r = 2σ
even completely vanishes for slightly more flexible particles of βκ = 10. The overall form
of the RDF does not show the typical form of a glassy or amorphous state, but instead
resembles a full fluid state.

Additionally, in contrast to the simple DHS model all peaks show increasing shrinkage
for increasing fluid packing fraction and deformability. For the first peak we observe the
typical progress into the region of r < σ similar to findings of Chapter 4. These traits
could indicate a shifting of the transition line for the type-B transition shown in Figure
6.2 towards the region of higher φf under decreasing stiffness.

Figure 6.12 depicts the RDF for path IV with its fixed fluid packing fraction φf = 0.10
for increasing matrix packing fraction at various stiffness parameters. In contrast to the
previous observations in case of path I we find for all configurations the same slight
decrease of the peaks in the RDF, but compared to the effect of deformability combined
with increasing fluid packing fraction it is negligible. The most apparent reason is the
same we gave for the SSF, that the separation due to matrix particles represses the
formation of crystallites, which therefore cannot be relieved through decreasing stiffness.

The last feature of our system that we will analyze, to get a profound understanding
of its static structure, is the distribution of aspect ratio (ARD) of the particles. This
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Chapter 6. Porous media
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Figure 6.13: Distribution of aspect ratio ARD(x) for a DHS-QA-system calculated along
path I with a matrix packing fraction φm = 0.05 and various combinations of fluid packing
fractions φm and stiffness parameters βκ (as labeled) as a function of x.

property gives insight into the deformation of the particles. In Chapter 4 we found out
that the general form of the ARD shows the similar features for all values of deformabilty.
This quantity is essentially a Gaussian distribution; for decreasing βκ the maximum value
of the distribution tends to move from spherical (x = 1) towards oblate (x < 1). In
addition, the variance of the distribution increases with deformability giving access to
more extreme deformations to oblate or prolate particle shapes. For systems without a
full crystalline structure a change in the packing fraction has no influence on the shape
of the ARD.

Figure 6.13 depicts different ARD’s for state points on path I. Like before the range
of stiffnesses is in βκ ∈ [100, 10, 5, 1]. Similar to our observations of Section 4.1 on the
ARD we observe the same shapes and the movement of the maximum of the distribution
towards the oblate shape (x < 1) for decreasing stiffness βκ. In contrast to these previous
results, where we analyzed systems with a similar total packing fraction, we observe now
a dependence of the ARD on the packing fraction. With increasing φf the maximum
of the distribution is moved back towards the spherical shape (x = 1). The probability
(area below the distribution) of particles being in oblate shape is decreasing, while the
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6.3. Effects of deformability under the DHS-QA model
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Figure 6.14: Distribution of aspect ratio ARD(x) for a DHS-QA-system calculated along
path IV with a fluid packing fraction φf = 0.10 and various combinations of matrix
packing fractions φm and stiffness parameters βκ (as labeled) as a function of x.

probability of particles being in prolate shape is relatively unchanged. This behavior was
previously only observed for systems in an ordered state (see Section 5.1).

Figure 6.14 depicts different ARD’s for state points on path IV. We observe for in-
creasing matrix packing fraction and constant fluid packing fraction the same obstruction
of the oblate shape of the particles as on path I, even though there is only a small fraction
of deformable fluid particles on state points of path IV (compared to the DHS-system,
where it was only observed for φtot > 0.52). This indicates that the oblate shape becom-
ing unfavorable for low total packing fractions is solely due to space being blocked by the
static matrix particles; i.e. QA-DHS-system cannot adapt as a whole to the increasing
packing fraction, like a DHS-system would do.

6.3.2 Deformability and dynamic behavior

The last feature of the DHS-QA model that we have to investigate is the effect of de-
formability on the dynamics of the particles as compared to the simple HS-QA model.
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Chapter 6. Porous media
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Figure 6.15: Mean squared displacement δr2(r) and its logarithmic derivate z(t) for a
DHS-QA-system calculated along path III with a fluid packing fraction φm = 0.20 and
various combinations of fluid packing fractions φf and stiffness parameters βκ (as labeled)
as a function of t.

There we observed different types of behaviour of the MSD δr2(t) and its logarithmic
derivate z(t). In this subsection we therefore want to take a look at how these properties
are affected by the deformations of the particles.

Since we saw that all simulated systems for path I tend to end with a long-range
value of z = 1 and therefore normal diffusion, we want to focus on path III to look into
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6.3. Effects of deformability under the DHS-QA model
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Figure 6.16: Mean squared displacement δr2(r) and its logarithmic derivate z(t) for a
DHS-QA-system calculated along path IV with a fluid packing fraction φf = 0.10 and
various combinations of matrix packing fractions φm and stiffness parameters βκ (as
labeled) as a function of t.

combined effects of varying deformability and fluid packing fraction. Along path III
for the case of undeformable particles (i.e. βκ = 100) we observed a long time sub-
diffusive behavior with lim

t→∞
z(t) ≈ 0.78. Through analyzing the form of δr2(t) and z(t)

along path IV, we observed a similar behavior for higher matrix packing fractions, where
the exact long time value of z(t) depends only on the magnitude of φm. This anomalous
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Chapter 6. Porous media

diffusion we observed is of high interest for in this subsection, hence we will focus in the
following on path III and path IV for the discussion of our results.

Figure 6.15 shows δr2(t) and z(t) for various state points along path III at different
values of βκ. From top-left to bottom-right the panels show the MSD together with z(t)
for increasing fluid packing fraction φf and a fixed matrix packing fraction φm = 0.20.
For all systems we observe clear effects of deformability. For δr2(t) we observe the typical
plateau at intermediate times reaching a normal diffusive state for low φf and a subdiffuive
state for higher values of φf at large time scales. For all state points we observe that for
increasing deformability the particles are traveling longer distances (i.e. δr2(t) reaches
higher values), which means the particles are less obstructed by their neighbor fluid or
matrix particles.

The change in mobility is even better reflected via the logarithmic derivate z(t). Its
value decreases over all time scales and values of fluid packing fractions, when increasing
deformability. For the highest shown packing fraction φf = 0.20 the anomalous diffusion
even turns into normal diffusion for the system with lowest stiffness parameter of βκ = 1.
These observations can be interpreted such that the particles gain access to paths through
the porous matrix, via deforming themselves, while these paths would not be accessible for
rigid spherical particles. Via deformation they gain their ability to move larger distances
even while being obstructed by matrix particles.
These features of the MSD suggest a further interpretation of the findings from the ARD
of Subsection 6.2.2. Particles seem to adapt to the matrix into which they are immersed
by changing into specific forms, which seem to be, according to the ARD, a more prolate
form.

Lastly we take a look at δr2(t) for varying matrix packing fraction at different de-
formabilities, where we choose path IV again, because it gives the best access to these
effects. Like before this path seems optimal to separate the effects of φm from φf . The
results are shown in Figure 6.16.
For lower matrix packing fraction we do not find any effect of deformability on the MSD
and its derivate z, visible on the two top pictures. But when reaching the regime of local-
ization with φm = 0.20, we find again that the particles regain their ability to move less
obstructed by the matrix. The meaning of this gets more clear when looking precisely at
the change in φm. Even though there is only a small increase in matrix packing fraction
compared to the left bottom picture, the right bottom picture shows big jumps in the
long-time value of z(t). This means that even though the number of matrix particles
blocking paths of fluid particles or even confining them completely is increasing, do the
fluid particles regain an even bigger part of mobility through adapting their form to the
matrix. Like this the gain access to paths and the ability to slip through holes in the
matrix which would not be possible otherwise.
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CHAPTER 7

Conclusion

Finally, this last chapter serves the purpose of summarizing all results presented through-
out this thesis and to draw a clear line to connect all these insights. Further we will
provide possible ways to carry on the research on the DHS-QA model and what could
possibly bring ways of gaining an even deeper understanding of it.

The main goal of this thesis was to give the reader a profound understanding of
the deformable-hard-spheroid model (DHS model). This includes the presentation of
what changes a system undergoes when its particles gain the ability to deform from the
usual spherical form. For this purpose we gave a fundamental overview of theoretical
calculation which build the foundation of the DHS model in Chapter 2. Further we
introduced simulation techniques used to generate configurations obeying the DHS model
in Chapter 3. Additionally, in the same chapter the statistical tools needed to derive and
calculate static and dynamic traits from these configurations were presented. We used
these tools then to compare the results from already well established and investigated
models like HS-models with the ones from the DHS-model.

To get a fundamental understanding of the physics we could draw from the variety
of simulations, we separately showed the static structure and dynamic properties of state
points in the fluid regime of the DHS-model in Chapter 4 and the ordered regime in
Chapter 5. We tried to focus in particular on the changes that occur when moving from
the fluid to the ordered state.
Over these two chapters we found the basic augmentation that deformation brings into
the DHS-model, compared to other models. Particles in a fluid phase tend to deform
randomly, therefore gain no mobility from deforming (Sections 4.1,4.2). But when local
or long-range order becomes apparent in a system, deformation shows major effects.
Rigid crystalline structures loosen when particles deform and transient crystallites tend
to have a shorter lifetime. Furthermore, particles in a system showing signs of complete
confinement regain their mobility and break this confinement only showing the traits of
short time caging instead (Section 5.2). In addition systems with high packing fractions
show correlations of inter-particle-orientation, which indicates another denser solid state,
that can be reaches by deformable particles (Section 5.1).

After discussing the DHS model thoroughly, we introduced HS-QA model which was
derived and researched by Kurzidim et. al. [7]. We combined this model with the DHS
model to gain the DHS-QA model. In the first part of Chapter 6 gave an overview
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Chapter 7. Conclusion

of the HS-QA model by using the limit of nearly rigid particles of the DHS-QA model
(Section 6.2). There we observed that even the sparsest matrix completely suppresses
the formation of long range order of a system. Therefore, the attainable states are only
fluid, localized or glassy states. (Section 5.1) Furthermore in the dynamics of the HS-QA
model we observed that many kinds of anomalous subdiffusion can be found for different
state points.

Finally, we reached the main achievement of this thesis. We introduced deformability
for the particles of the DHS-QA model and could identify the changes it causes in the
static structure and dynamics of systems of porous media. We could observe that systems
with a glassy structure can revert back to a fluid form (Section 6.3.1) and particles in
confinement regain parts of their mobility. We further found that the form the particles
assume is dependent on the matrix they move through. This means they adapt and
change their form into one necessary for moving through their environment.

Further research on the DHS-QA model could be done, by also calculating the self-
intermediate scattering function to gain additional insight on the dynamics and compare
them to the HS-QA model. In addition, it would be possible to separate the dynamical
properties like the mean-squared-displacement and the ISF into total, self and collective
parts. By doing that localization transition and type-A or B transition could be easier
identified for the DHS-QA model.
Finally by simulating more systems near the transition lines the exact form of the 3-
dimensional phase space which spans the DHS-QA model could be identified. During
this thesis we found signs of a shift in the transition lines, but we lacked a proper theo-
retical calculation method of these to further investigate these findings. But we believe
that the DHS-QA model is a good candidate to gain a profound understanding of the
physics behind many phenomena occurring e.g. in glassy materials, porous media or the
movement of proteins in our cells. It could be a good candidate to build a solid theoretical
foundation for these physical events and to gain additional knowledge, therefore for sure
is worth of further research and investigation.
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prolate form, covering all the colors of the rainbow. . . . . . . . . . . . . 16
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4.6 Self intermediate scattering function F (k, t) at the maximum of the struc-
ture factor k = 7.0 as a function of MC-sweeps t for systems of deformable
hard spheres. Panel a for selected packing fractions (as labeled) with a
stiffness of βκ = 10. Panel b for increasing stiffness βκ (as labeled) with
packing fraction φ = 0.502. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Two snapshots of a system in an ordered phase at a packing fraction of
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prolate form, covering all the colors of the rainbow. . . . . . . . . . . . . 22
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6.1 Two snapshots of systems illustrating the principles of the DHS-QA model.
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φm = 0.10. (b) - deformable spheres forming a fluid immersed into the
matrix with a packing fraction φf = 0.20 and stiffness βκ = 10. In the
latter case the fluid particles are colored according to their aspect ratio,
red for highly oblate, green for spherical, violet for highly prolate form,
covering all the colors of the rainbow. . . . . . . . . . . . . . . . . . . . . 31
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