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1 Scanning Thermal Microscopy

1.1 Lateral resolution

In FigureS1 a and b the topography and the corresponding thermal resistance image are

shown as acquired simultaneously. We estimate the thermal lateral resolution from thermal

resistance profiles with two signal levels corresponding to 3 and 4 layers of Franckeite. As

a resolution criterion, we use the 10 − 90% of the lateral distance of this change. We find

lateral resolution varying from 37− 48nm. Thus the tip radius is between 74 and 96nm (see

Figure S1 d).

Figure S1: (a,b) Topography (a) and Thermal Resistance (b) images acquired simultaneously
in high vacuum at Tsample = 156K. (c) SEM image of the tip used for the experiments
(d)Thermal resistance profiles obtained from the thermal resistance image (in image (b) the
lines where the profiles were taken are shown with the corresponding color) With dotted
lines is the 10− 90% (96, 74, 80nm ) of the lateral distance where thermal resistance changes
between 3 and 4 layers of franckeite.
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1.2 Thermal resistance with temperature

Figure S2: Thermal resistance RX as a function of temperature for the different thickness
areas of franckeite sample.
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2 Ultrasonic Force Microscopy

Figure S3: (a,b) Topography (a) and UFM (b) images acquired simultaneously. With dashed
lines the profiles plotted at (c) and (d) are shown. (c,d) Two different profiles of topography
(blue) and UFM-amplitude (red).

To probe the nanomechanical properties of franckeite we use Ultrasonic Force Microscopy

(UFM), an AFM based technique which is shown to be highly sensitive to surface and sub-

surface structures of 2D-materials.S1,S2 Areas with few layers, appear darker meaning that

are of lower stiffness whereas thicker areas and SiO2 are brighter, therefore of higher stiffness.

The profiles of the topography and UFM images (see Figure S3 c and d) show an increase

of stiffness with the thickness with the thicker areas being slightly less stiff than the SiO2

substrate. UFM is sensitive to the features beneath 2D materials, and this phenomena can

be attributed to the probing of the non-uniform adhesion between the franckeite film and

the substrate as a consequence of the corrugations present on the substrate surface, which
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affects the adhesion uniformity of the flake. The thick part of the franckeite present a stiffness

comparable with the substrate value. In this case, the flake is excessively thick for the UFM

sensing to the characteristic of the substrate-flake interface. Therefore, the contact stiffness

is determined by the bulk stiffness of franckeite.
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3 Diffusive thermal transport model

We express the thermal SThM measured resistance as a sum of resistances: RX = Rt +Rint +

Rs, where Rt is the SThM tip thermal resistance, Rint the tip-franckeite thermal boundary

resistance and Rs is the sample spreading resistance. We estimate Rt out of the franckeite

free SiO2 area (see SI) and express express Rint as Rint/πρ
2, where Rint is the SiO2-franckeite

interface thermal resistivity and ρ is the tip radius which we obtained from the thermal

images and SEM imaging of the SThM tip (see Supporting Information note 1). Rs of

a layered material on a substrate is expressed as a function of the layer thickness and the

thermal conductivities of the substrate and the material.S3–S6 Since the thermal conductivity

of SiO2 is known,S7 RX is determined by the only remaining unknowns: kl and Rint. We

also account for thermal transport anisotropy and we define kc and ki for the cross-plane

and in-plane thermal conductivity, respectively. For very thin areas (10 layers) compared

to the tip diameter (80nm), the heat flow from the tip to the substrate is almost verticalS8

and we use an isotropic model with kl = kc and rint as fitting parameters. For thicker areas

this assumption is not valid and we use an orthotropic model considering both kc and ki (see

Experimental section and Supporting Information note 3 for more details on the modeling

procedure).

In more detail, the measured thermal resistance can be divided in three resistances in

series:

Rm = Rtip +R(tip−sample) +Rspr (1)

Rtip and Rtip−sample can be assumed to be non-thickness dependent. To obtain the tip

thermal resistance Rtip, we subtracted from the measurement of the silicon oxide substrate

the spreading resistance of the oxide and the oxide-oxide tip sample resistance. The values

of Rtip obtained lie between 2 and 4.5 ×106 KW−1. Those values are in good agreement with

values reported elsewhere.S4,S9

Rtip−sample can be written as rint/πp
2 where rint is the silicon oxide-franckeite contact
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resistivity and p is the probe contact radius (40 nm in our case – as estimated by SEM and

image analysis). rint is unknown and will be used as a fitting parameter later.

The spreading resistance Rspr for a layer on substrate is a function of the thickness teff

and layer and substrate thermal conductivities, klayer and ksub.
S3,S4 As the substrate is silicon

oxide, its thermal conductivity is known across a wide temperature range [REF]. To include

the resistivity between the layer and the substrate teff is defined as : teff = t + rintklayer

Where t is the physical thickness. The analytical expression giving the thermal spreading

resistance, Rspr, is given by:S3

Rspr(t) =
1

πklayera

∫ ∞
0

1 +K exp
(
−2ξteff

a

)
1−K exp

(
−2ξteff

a

)
 J1(ξ) sin(ξ)

dξ

ξ2
(2)

With K =
1−ksub/klayer
1+ksub/klayer

.

However, this expression is valid for an isotropic material and does not account for any

anisotropy that could arise in 2D materials. In 2D materials, we can usually define k⊥

and k‖ as the cross-plane and in-plane thermal conductivities. Such a system, symmetric

along the vertical axis, is called orthotropic. The equation for the spreading resistance given

above can include both in-plane and cross-plane conductivities by performing the following

transformation:S10

klayer →
√

(
k⊥
k‖

) (3)

teff →

√
k‖
k⊥
t+ rintklayer (4)

The final fitting equation is thus:

Rm = Rtip + rint/πp
2 +Rspr(t) (5)

This equation contains three fitting parameters, rint, k‖, k⊥.

We performed the fitting in two steps. First, we assume that in extremely thin layers most
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of the thermal transport is vertical. This is supported by the comparison between the layer

thickness of few nanometers and the probe diameter around 80 nm. With this assumption,

we fitted the smallest layers with an isotropic model, disregarding any anisotropy. The

results of this fit are the parameters rint and k⊥. Using those results, we then input them as

parameters to fit thicker layers with the only fitting parameters being then k‖.

As a results of this process, we obtained the three parameters rint, k‖, k⊥.

Another possibility of fitting process is to have the same two steps but instead of using

both parameters rint and k⊥ as inputs for the second fitting step, just using rint as input and

fit k⊥, k‖.

The results of this second fitting method are displayed in Figure S4.

Figure S4: Fitting results of the two possible methods. In the first method (1 - circles), we
first fit thin layers of Franckeite with the isotropic model and obtained rint and k⊥. From
these results, we then used rint to fit thick layers with the orthotropic model to obtain k⊥
and k‖. In the second method (2 - squares), we used rint and k⊥ for fitting the orthotropic
model to thick layers and obtained k‖.
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Finally, as our thermal conductivity’s results come from a non-linear fitting method, it is

not straight forward to deduct the error on these quantities. We thus consider that the errors

of our measurements propagates to the thermal conductivities results. For each temperature,

we have thermal resistance measurement error. We chose the highest error of that set of

measurements, normalised and applied it to the corresponding thermal conductivity.

We can then evaluate our model and fitting method by considering the worst cases in the

thermal conductivity values. Taking minimal and maximal values and plugging them into

our orthotropic model shows us (Figure S6) that our findings lie in a realistic range.

Figure S5: Comparison between the minimal and maximal values of thermal conductivity’s
used in the orthotropic model compared to the experimental data for T = 187K.
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Figure S6: Relative change of thermal conductivity with temperature. The anisotropy is
decreasing with temperature possibly due to activation of some phonon modes
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4 Computational Methods

4.1 Geometry optimization

The geometry optimisation of franckeite unit cell was performed using the SIESTAS11 im-

plementation of density functional theory (DFT), to the force tolerance of 10 meV/Å with

a double- polarized basis set (DZP) and the Generalized Gradient Approximation (GGA)

functional with Perdew-Burke-Ernzerhof (PBE) parameterization. A real-space grid was

defined with an equivalent energy cut-off of 350 Ry.

4.2 Phonon dispersion relation

From the optimised unit cell geometry of franckeite, we construct a super-cell shown in

figure 1a and construct dynamical matrix as described below for each supper-cell (k0) as

well as coupling matrix elements (K1) to the neighbouring cell in H/Q/H/Q configuration

(see Figure 1a). We then calculate phonon dispersion relation using these k0 and k1 and the

method described in.S12

4.3 Phonons transport and thermal conductivity

Following the method described inS12 S13 S14 each atom was displaced from the relaxed op-

timised position in the positive and negative x, y and z directions with 0.01Å. For each

displacement, the forces F in three directions on all atoms were then calculated and used

to construct the dynamical matrix D=K/M where the mass matrix M and Hessian ma-

trix K obtained from finite differences. To satisfy momentum conservation, the diagonal

terms in K is calculated by negative of sum of off-diagonal terms. The phonon transmis-

sion then can be calculated from the relation Tp = Trace(ΓL(ω)G(ω)ΓR(ω)G†(ω)) where

ΓL,R = i(
∑

L,R(ω) −
∑†

L,R(ω)) describes the level broadening due to the coupling to the

left L and right R electrodes,
∑

L,R(ω) are the retarded self-frequencies associated with this

coupling and G = (ω2I −D −
∑

L−
∑

R)−1 is the retarded Green’s function, where D and
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I are the dynamical and the unit matrices, respectively. The phonon thermal conductiv-

ity κp at temperature T is then calculated from κp(T ) = h̄/2π
∫∞

0
ωTp(ω)(∂f/∂T ) where

f = 1/(eh̄ω/kBT −1) is Bose–Einstein distribution function and and kB are reduced Planck’s

and Boltzmann’s constants, respectively.

4.4 Electron transport

To calculate electronic properties of the device formed by franckeite, from the converged

DFT calculation, the underlying mean-field Hamiltonian H was combined with our quantum

transport code, GollumS12.S13 This yields the transmission coefficient for electrons of energy

E (passing from the source to the drain) via the relation T = Trace(ΓL(E)G(E)ΓR(E)G†(E))

where ΓL,R = i(
∑

L,R(E) −
∑†

L,R(E)) describes the level broadening due to the coupling

between left L and right R electrodes and the central scattering region,
∑

L,R(E) are the

retarded self-energies associated with this coupling and G = (E −H −
∑

L−
∑

R)−1 is the

retarded Green’s function, where H is the Hamiltonian and S is the overlap matrix obtained

from SIESTA implementation of DFT.

4.5 Thermoelectric properties

The electronic contribution of the thermal conductance κe = (L0L2 − L2
1)/hTL0 and the

Seebeck coefficient S = L1/eTL0 are calculated from the electron transmission coefficient

T(E) where the momentums Ln =
∫
dE(E−EF )n(−∂fd/∂E) and fd = (e((E−EF )/kBT ) +1)−1

is the Fermi-Dirac probability distribution function, T is the temperature, EF is the Fermi

energy, e is electron charge and h is the Planck’s constant.

4.6 Tight Binding Model

4.7 Device structure for DFT calculations
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Figure S7: Tight binding model. (a) two level systems representing Q and H layers where
two ball is connected to a spring constant to each other and to two 1D semi-infinite lead
of ball and springs, (b) Transmission probability Tp for phonons with energies h̄ω and (c)
thermal conductance when the spring constant between the levels are different.

Figure S8: Device structure for DFT calculations. The figure shows the super-cell for phonon
band structure calculations (boxes shown with black lines) and device structure consist
of franckeite leads connected to franckeite scattering region. The phonon transport Tp(ω)
through such a structure is equal to the number of open phonon conduction channels shown
in figure 3 of the main text.
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5 Sample Fabrication

Few-layer franckeite flakes are exfoliated from bulk material and transferred on a SiO2 sub-

strate thermally grown on a Si wafer. The bulk franckeite material (San Jose Mine, Oruro

City, Bolivia) is first scratched with a scalpel on an adhesive tape, resulting in thin chips

of material. These chips are then thinned-down by repeatedly bringing the tape in contact

with itself and peeling it off. Once a significant amount of thin material is obtained, a

polydimethylsiloxane (PDMS) stamp is used to exfoliate franckeite from the adhesive tape.

Transmission-mode optical microscopy is then employed to identify the thin flakes prior

transfer on the SiO2/Si substrate (as described by Castellanos-Gomez et al.S15).
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Portal, D. The SIESTA method for ab initio order-N materials simulation. Journal of

Physics: Condensed Matter 2002, 14, 2745.

(S12) Sadeghi, H. Theory of Electron, Phonon and Spin Transport in Nanoscale Quantum

Devices. Nanotechnology 2018, 29, 373001.

(S13) Ferrer, J.; et al., GOLLUM: a next-generation simulation tool for electron, thermal

and spin transport. New Journal of Physics 2014, 16, 093029.

(S14) Sadeghi, H.; Sangtarash, S.; Lambert, C. Cross-plane enhanced thermoelectricity and

phonon suppression in graphene/MoS2 van der Waals heterostructures. 2D Materials

2016, 4, 015012.

(S15) Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Van

Der Zant, H. S.; Steele, G. A. Deterministic transfer of two-dimensional materials

by all-dry viscoelastic stamping. 2D Materials 2014, 1, 011002.

S-17


