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We consider the ultrarelativistic limit of the spin-2 and spin-3 conformal gravity theories in three
dimensions, which leads to conformal Carrollian spin-2 gravity and its spin-3 analog. We also comment on
the generalization of the result to arbitrary spin. The holographic examples show generalization in

comparison with nonconformal Carrollian gravity.
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I. INTRODUCTION

The motivation for the research of conformal Carrollian
spin-3 gravity in 3D comes from several sides. Conformal
symmetry has been studied from number of aspects,
as a symmetry that brings extra simplifications, defines
gravity models as a toy models using which one can resolve
otherwise unresolvable issues, or as a symmetry that plays a
key role in the physics at the Planck’s energy scale [1].

Carroll symmetries have been studied due to the
connection with asymptotic symmetries of flat-space
times described by Bondi-Metzner-Sachs (BMS) group
and their relation with near horizon boundary conditions
[2,3]. BMS symmetries are isomorphic to conformal
Carrollian symmetries [4,5], and there is also a very
interesting picture which relates soft theorems and
asymptotic symmetries in QFT in asymptotically flat
space-times with memory effects. Review of advances
in this field can be found in [6]. Carroll algebra can be
obtained as an ultrarelativistic limit of Poincaré algebra,
and similarly conformal version follows from conformal
algebra [7]. The ¢ — O limit is depicted in a light cone
structure which has a light cone collapsed into a line [8].
The Carrollian space-times are formed in future and past
null-infinity and conformal Carroll algebra can be viewed
as conformal extension of BMS algebra. In the near
horizon boundary conditions one obtains BMS algebra as
a composite in the terms of infinite copies of Heisenberg
algebra.

Carroll symmetries have recently been studied in relation
with higher spin theories [9] with the aim of filling the gap
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of the less developed field of the higher spin extensions of
the Poincaré algebra in higher than three dimensions. In
three dimensions the situation is better, where number of
constructions has been considered [10-13]. At present,
there is a handful of complete higher spin gravity models
that have actions and avoid the nonlocality issue: (a) 3d
massless [10,14,15]; (b) 4d conformal [16,17]; (c) 4d chiral
[18] and (d) 3d conformal [19].

Higher spin gravities in three dimensions can be con-
structed consistently while containing a finite number of
higher spin-fields. In fact, one can construct infinite
number of such theories [20]. In the relativistic theory,
this is allowed by considering the action of Chern-Simons
form which has also been used in construction of the
nonconformal Carrollian theories [21]. Since higher spin
theories usually contain infinite number of higher spin
fields and only several consistent theories are known, it is
our aim to use one of them [20] and investigate what can the
ultrarelativistic limit teach us.

In the construction of the gauge theories based on the
Carrollian algebras, the ultrarelativistic limit of general
relativity in the first order formulation gives equations of
motion which are not sufficient to find all the components
of the connection fields expressed in terms of the other
fields. Those components play a role of Lagrange multi-
pliers for the constraints on the geometry [22], and carry a
physical interpretation in terms of radiative degrees of
freedom for gravity at null-distances [23,24]. Which is
what we can expect to appear here as well.

The paper is structured as follows: In Sec. II we review
the construction using which we obtain spin-2 and spin-3
cases of conformal gravities, we review conformal gravity
in three dimensions, linearization of the theory, and ultra-
relativistic limit. In Sec. III we analyze the ultrarelativistic
limit of the spin-2 case while in Sec. IV we analyze the
spin-3 case and comment generalization to arbitrary spin.
In Sec. V we consider the holography of the theories, and in
Sec. VI we conclude.
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https://orcid.org/0000-0001-8080-9448
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.124065&domain=pdf&date_stamp=2022-06-27
https://doi.org/10.1103/PhysRevD.105.124065
https://doi.org/10.1103/PhysRevD.105.124065
https://doi.org/10.1103/PhysRevD.105.124065
https://doi.org/10.1103/PhysRevD.105.124065
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

IVA LOVREKOVIC

PHYS. REV. D 105, 124065 (2022)

II. CONSTRUCTION

We study Chern-Simons action

ﬂ@—/n

as a gauge theory for the Carollian conformal algebra.
Knowing the higher spin extension of so(3,2), (i.e.,
algebras that have so(3,2) as a subalgebra and also contain
other nontrivial representations of so(3,2)), we can take
the ultrarelativistic limit that gives conformal Carrollian
algebra and consider their generalization to the higher spin.

To construct finite spectrum of higher spin fields (called
Fradkin-Tseytlin fields [25]) one needs to take a nontrivial
finite-dimensional irreducible representation V of so(3, 2),
such as an irreducible tensor or a spin-tensor. Then one
needs to evaluate U(so(d,2)) in V, which means multiply
the generators' T4z = —Tgs of 50(3,2) in given repre-
sentation and determine the generated algebra [20]. In
general, this algebra is denoted with h3(V). Here we are
going to consider spin-2 and spin-3 fields. For that case,
one needs to take the vector representation, which is
denoted by one-cell Young diagram [1. Then, the spectrum
of the corresponding algebra, §3(0J) is the following:

bs() =Oel=He[Tos.

2
a)/\dw—i—ga)/\w/\w. (2.1)

(2.2)

This algebra is a matrix algebra with (3 4 2)? generators
148 which are decomposed with respect to so(3,2). The
gl3,, commutation relations

[IAB, ch] == —SADICB + 5CBIAD. (23)
with the irreducible generators T,5 = —T'ga, Sap = Spa
and R, in the s0(3,2) base
Tan = tap — taias S,pg=1 tpia — tCnan.

AB = 1A — IB|a AB = Ta|p T+ Ip|a dralc NAB
R — tCC, (24)

lead to the commutation relations

[TAB» TCD} =ngcTap —NacTsp —MepTac + NapTses
(2.5a)

[TAB’ SCD} = NpcSap — NacSep + MepSac — NapSaes
(2.5b)

lHere, indices A.,B,...=0,...,4 denote the indices of
s0(3,2) while 5,5 denotes invariant metric.

[Sas:Scp) = necTap + 1acTep +1pTac +1apTpc-
(2.5¢)

Here R commutes with everything because it is associated
with 1 in gl(V), so it can be truncated away. One obtains a
theory that contains two fields:

w = CUA’BTAB + O)ABSAB (26)
T 4 is the conformal graviton and S, is a field similar to
the spin-three partially-massless field. From the bilinear
form of g,

Tr(l‘AB, tCD) = 5AD5CB (27)
one obtains invariant bilinear forms for so(3, 2)
Tr(Tap. Tcp) = 2(Mapfcs — Nsphca) (2.8)

2
Tr(Sap. Scp) = 2(’7AD’1CB + Npplca — ar 2’7AB’7CD)

(2.9)

Before proceeding to linearizing a theory and taking the
ultrarelativistic limit, let us first remember conformal
gravity as a gauge theory in three dimensions, studied in
[26]. Fixing the commutation relations of the so(3,2)
conformal algebra (for a =0, 1, 2)

[D.P]=—P%,  [J P =Py — PPy, (2.10a)

[D. K] = K@, [J9b, K¢] = Kebc — Kbyee, (2.10b)

[Pa,Kb] — _Jab + nabD’

[Jab ch] — Jad,,lbc _Jac’,]bd _de],lac +ch]7ad (ZIOC)
for P? translations, K¢ special conformal transformations,
J Lorentz boosts and D dilatation, we can write the
connection for the so(3,2) as

1
®= Ewa’blab +e'P, + f°K,+bD.  (2.11)
The action, is a standard Chern-Simons action
2
S[co]:/Tr a)/\da)—f—ga)/\a)/\w (2.12)

where the curvature F = dw + 4 [w, ] is set to zero by the
equations. The components of the curvature give
F[P* =Ve*—b A €“, (2.13a)

FID] = Vb + e, A f7, (2.13b)
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F{J“'b} — Rab _ pa p fb 1 eb A fe, (2130)

F[K*| =V f*+b A f4, (2.13d)
where we denote the Lorentz covariant derivative with
V = d 4 w. In this notation Riemann two-form is given by
R4 = do*? + 0%, A @“". To show how one obtains the
theory when @ from the action (2.12) is only a spin
connection and e, only dynamical variable, we have to
solve the equations and fix the gauge conditions. Our gauge
parameter is a so(3,2) algebra valued 0-form,

2= %navaab +EP, 4K, +pD  (2.14)

which gives
8¢t =VE —pAe—bAE %y A e, (2.15a)
Sb=Vp & AL+ e, AL (2.15b)

5wa,b:vr]a.b_é:a Afb+§bAfa—€aA§b+€bAca,
(2.15c¢)

SF =V A bAC A ity AF (2.15d)

If we assume that the dreibein ey is invertible, we can

fix the gauge to set b =0. Now, one can write g,, =
e,‘je,’jnah for the conformal metric. From the equation
F[D] = 0 we obtain that f{e,, is symmetric. The equation
F[P%] = 0 we recognize as the standard torsion constraint,
which defines @’ using e“. The following equation
F[J*’] = 0 defines that f4%e,, is the Schouten tensor,
while the F[K“] =0 sets Cotton tensor C,, = 0. That
equation is the only equation which is dynamical. If we
plug these solutions for the fields back into the action
(2.12) we obtain the action of the same form, where the
only dynamical variable is e®.

Here, we want to determine the fields of this conformal
gravity theory for the conformal graviton and a spin three
field in an ultrarelativistic limit, i.e., when we have
conformal Carrollian theory. To find the spectrum of
the fields, one has to linearize a theory over the
Minkowski vacuum. We choose it to be wy = h*P,, for
h® = h,“dx*, where the background metric is h,* = §,°.
The equations at the linear order and the linearized gauge
symmetries are

do+ oy Ao+ o A wy =0, Sdw = d& + [wy, &].

(2.16)

Here, w, is the background field, while w field is the Lie
algebra valued one-form. It is valued in one of the algebras

of the so(3,2) irreducible modules obtained from the
decomposition of the h3(V). In our case it will be valued
in the ultrarelativistic limit of the algebra we consider: in
the ultrarelativistic limit of the conformal algebra and in
the ultrarelativistic limit of the extension of the conformal
algebra for spin-three field described above.

For the generators ¢ the equations (2.16), with
o = o™ty and & = My, will give

doy + h* A @[P,,14] =0

Sty = dEMty + h® A EMP,, 1A] (2.17)
where ¢t} denotes the generators of the so(3,2) irreducible
modules T 45, S5 etc., A denotes indices in the light cone
coordinates A = a, +, —, and #? is corresponding metric
withn,_ =n_, =1

To take the ultrarelativistic limit we are going to follow
the procedure of taking Inonii-Wigner (IW) contraction
[27]. In our terminology we do this as follows. We denote
the Lie algebra from which we start with g, while }j is a
subalgebra. The decomposition g = fj + t denotes a direct
sum of vector spaces. The generators of the ideal i, are
rescaled with contraction parameter e, such that i — et.
The commutation relations then take the form

1

D=0 (0= lhri [ =g

(2.18)

which means that when taking ¢ — oo, one obtains a well-
defined limit. For this to hold, § needs to be subalgebra of
g. If one had [§, §] = § + et the limit when ¢ — oo would
not be well defined.

III. SPIN-2

Let us focus on the spin-2 case with a Young module H

for conformal graviton when ¢,, = —f,,. The dictionary
between the generators 745 for the conformal graviton and
generators of translations, special conformal transforma-
tions, dilatation and Lorentz boosts is P, =T,
K,=T,.,D=-T,_, L,, =T, respectively. To obtain
the generators in the ultrarelativistic limit from the gen-
erators t*, we perform an IW contraction [27] of the
underlying algebra, in a way that leads to the conformal
Carrollian algebra.

We introduce space-time splitting of indices where
a={0,i;i=1,2}. That allows us to introduce the notation

P()EH, K()EK(), JOiEBi (31)
When we choose the subalgebra § and ideal i as
h= {Pi’Ki’DinjL i= {H’ KOaBi} (3-2)
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starting from the conformal algebra (2.10c), we obtain the
algebra

[D.H] = -H, [D. Ko = K. (3.3a)
[B/, PX] = Hy/¥, [B/, K¥] = KOk (3.3b)

[H,ki] = —BJ, [Pi, K% = B, (3.3¢)
[JU,B'| = Biy/' — Bin'!, (3.3d)

i.e., conformal Carrollian algebra [7]. The Lie algebra
valued one-form now becomes

D: db—h, N f"=0,
P;: de' + hy, AN @™ —h' Ab=0,
H: dt—h; A —h' A b =0,
i do™ —h' A fI+ R A f1=0,
B;: dpl +hi Ak—=h A f1 =0,
K, dfi =0,
to— dk = 0,

To find the spectrum of the theory one has to solve this
system of equations. From (3.6a) the gauge invariance
allows to fix b,, just like in three dimensions. That defines
&, = 0,67, and makes b,, = 0. Equation (3.6a) demands
that f,,, = f.. 1S symmetric field. The component m0 of
Eq. (3.6a) E[t,_]" = =" f%, + 0"b° = 0 gives
fFom = ompO. (3.7)
The gauge transformations (3.6b) allow to fix antisym-
metric part of e|,,,; = 0 and its trace e, = O using &, " =
=0 + hy,"EY and £ =10, respectively, and
the remaining symmetric part we call e(,, ,) = ¢,,,. The
corresponding equation
E[tiJr}mni — _wmni + wnmi + am¢ni _ an¢mi (38)
can be split into symmetric, antisymmetric and hook part.
The only nontrivial part, hook part, of the equation defines
a}/‘m,n — amd)nj _ an¢mj, wjm,j — 8j¢mj (39)
while the antisymmetric and symmetric part are exactly
equal to zero. The m0 component of (3.6b) does not allow
for any more gauge fixing. The symmetric part of the

. 1 .. . .
w = €lPi +TH+§C()Z']JI‘J‘ +ﬂ]BJ - bD +flKi +KKO
(3.4)
with an analogous decomposition of the gauge parameter
) 1 . . )
§=e; & 420 +§wi.jfl’] + B, + g+ fi8 + K0
(3.5)

The linearized equations of the conformal Carrollian
gravity and the gauge symmeteries read

St = dEt™ — h,, &, (3.6a)
Se' = dEt 4 h,Em — hiEtT, (3.6b)
6t = d&% 4 h &0 — pOE, (3.6¢)

b’ = dEW — hiEI~ 4 hIE-, (3.6d)
P = d&% — WO~ + W, (3.6e)
Sff = de-. (3.6f)

ok = deo. (3.62)

[
equation gives b° =19,¢” while the antisymmetric part
leads to

a)Oim —

(=0 e 4 e, (3.10)

N[ =

From the gauge transformation (3.6c) one can fix z,, =0
with &%, = 0,,£°F. The mn component of the correspond-
ing equation E[ty,|"™" = —p"" + ™" = 0 makes the field
P symmetric, while the m0 component defines
om 0 _— ﬂOm‘

The gauge (3.6d) has all the components of the gauge
parameters fixed, which means the equation is

E[tl_j]mnij — _hnjfmi + hm’fmj + hmjfm' _ hmifnj

+ 0" @" — "™ = 0. (3.11)
The symmetric part of the equation exactly vanishes and
does not give any conditions or definitions of the field. The
antisymmetric part of the equation as well vanishes when
the definition of "’/ is used. The Riemann component of
the equation can be contracted with the h;; to define

fii = —aja)l” (312)
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The Riemann part itself gives equation constraint on the
geometry which we express in terms of the fields f7, 7°,
@', in (Al) in the Appendix A.

The m0 component of the equation defines

E[tij]mOij — _aOa)mij _ij,,lmi +f0i’1mj + 8ma)0ij =0
(3.13)

whose symmetric part is zero, and in the hook part we use
1%, 0% and @™ from (3.7), (3.10), (3.9) respectively, and
7,, = 0 to obtain second constraint on the geometry

—8085¢j’" + 2606145”” - 608m¢ij - 0 (314)

Contraction of the constraint with %;,, gives condition

0p0:p’ =0 (3.15)
which can be used later if necessary for simplifications. The
antisymmetric part, after insertion of "/, and the value for
"™ turns out to be exact equation.

Equation (3.6¢) still has one gauge parameter to fix. One
may define 3, = 0 using &%~ = —3,,E%" + h,,°m~. The
symmetric and antisymmetric part of (3.6e) will identically
vanish, while the hook part defines

K" = 0,p". (3.16)
The m0 component of the equation
E[B]y" = 0"py" — O™ — h™kg + ho’f™ =0 (3.17)

has antisymmetric part which makes relation 9"f," —
O'By™ = 0 symmetric, and symmetric part which allows
us to define
Ko = —8k81¢1k + 3”’8m10 (318)

the Oth component of x, field in terms of the 70 and ¢™".
It also allows us to find f™"
fmn — 8Oﬂmn + hmnakak,[o _ hmnalak¢kl _ amanTO (3.19)
in terms of the fields ¢™", 7 and ™. One can notice that
all the fields can be determined in terms of the components
of the ¢,“ and 7,. Where the remaining component of the
e, is symmetric and traceless component while 7, is a
component that belongs to H generator, i.e., both originated
from relativistic P, generator of translations. The unde-
termined field ™" is symmetric and traceless field.

The equations for the mn and m0O components of the
fields belonging to special conformal transformations
generator K, (3.6f) read

Zaoamﬁni + nin(amaaaaTO _ amabaad)ab) _ zaoanﬁmi
— 7"™(9"8,89Ty + 0"0),0,4"") = 0, (3.20a)

— 9y0pP™ 4 h'™y(—0,0Ty + 0,0,4") + 0y0' 0" 1

1.
+ Ealamaae(’“ =0 (3.20b)
and equations for the mn and m0 components of the
generator for the special conformal transformations in the 0
direction (3.6g) are

"9, pm — "9, = 0 (3.21)

—9p0,p"¢ 4 0"9,0°T° — 0"9,;0,4) =0 (3.22)
respectively. The latter can be combined with a (3.20a) into
constraint on the field g™, 20,0"p" + n"d,0,p™
—20,0"f™ — n"9y0,p" = 0. Taking the trace and the
constraint #",, = 0 one obtains that 9,0,™ = 0 vanishes.
Inserting that into (3.22) gives relation between
omd'9yry = 0,,0,0,¢". This, combined with §;, contrac-
tion of the Eq. (A1) from the Appendix gives dynamical
equation for the field ¢™"

0,,0;0'p’" — 0", P — " 0;0" P’ = 0. (3.23)
We write the list of gauge fields in the Table I below, and we

also give a list of gauge transformations and gauge
parameters in the Appendix in Table III.

TABLE I. List of gauge fields with their corresponding gen-
erators and gauge parameters.

Generator Gauge field Gauge parameter

D b =0 e

Pi emi = ¢mi 5i+
eOi

H M = §0+
TO

Jij wjm.ln — am¢n; _ an¢lmj ‘ flj
wOmt _ 80¢ml _ bon”” + ameOI =0

B; p &
ﬁOi — aiTO

Ki fmn — aoﬂmn + hmnakak,ro é:i_

_ hmnalak¢k1 _ amanTo
me — %ama.eOi
i
K, K" = 8mﬁmn 50_

KO = —8k81¢1k —+ 8”’8,,,10
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We have obtained four remaining fields ¢, %, p"", 79,
and two free gauge parameters &+, £ in terms of which
the others are expressed. We also got one dynamical
equation for the field ¢™", and constraints on the geometry
which did not play a role in determination of the dynamical
equation or expressing the other gauge fields. Earlier
analyses of the Carrollian theories showed that such
constraints play a role of constraints for Lagrange multi-
pliers in the form of the undetermined fields [21,22].

IV. SPIN-3

We consider the irreducible Young module of so(3,2)
[ [ ] when t,, = t,,, which describes spin-3 field. As in
previous example of conformal graviton, to find the
solution of the linearized equations and fix suitably gauge
symmetries, we have to find the IW contraction analogous
to the contraction above. The commutation relations of the
generator of translations and the generators of spin three
algebra are

[Pa’ tc+] = _nact++v [Pav tc—] = tac +%tmm’

[Pas 1] =21, (4.1)

[Py, SPj| = —nijt 4,

[Pi,t.] =0, [

[P;,SH| =0, [P;, SKy] = SB;,
[H,t,.] =0, [H,1__] = 28K,
[H, l__] — 2SKO, [H,SJJk] — 0

[P;.SK;| = SJ;; + = (ST* + SC)nyj.

[Pa’ t++] = 0’ [Pav tcd] = _nacthr - ”adthr' (42)

For the conformal graviton case, it was necessary to
choose H, K, and B; to be elements of i, so here we
proceed in the same way, choosing the generators SH, SK,
SB; to be elements of © while the remaining generators
build

f):{SPj,SKj,[++,t__,Sjk,SC} 1:{SH,SK0,SBZ}

(4.3)

The dictionary we use between the symmetric t* generators
S48 for the spin-3 case, and the generators denoted here is
Ht =SPi - = SKJ, t/k = SJ*, {90 = SC, also 't = SH,
P~ = SK° % = SB!. The letter S in front of what one
can recognize as generators in conformal Carrollian alge-
bra, denote that they originate from the symmetric gen-
erators of t*. The algebra that we obtain after taking the
limit reads

[P,.1__] =2SK,_.

P;, Sfjk] = —ﬂijSPk - ﬂikSPj’

[P;, SBi] = —nySH,

so that one can write the algebra valued one-form w and zero-form & as

. 1 .. ) 1 1 .
w = se'SP; + stSH + EwUSJU + sp'SB; + ySC + Ew**t++ +-wi__+ sf'SK; + skSK,,

) 1 . ) 1 1 )
£ = sy + 578" 4 S0 Pl 4 yE + ST ET 4 S@TTET 4 sl + sl

The system of linearized equations and gauge symmetries reads

fyg: dot™ =2h; A sek =0,
SP;: dse' —h; A o' =0,
SH : dst—h; Aspi—hO Ay =0,
STt doU 4+ hU A sf) +hy A sfln =0,
SB;: dspl + hO A sfl+hi A sk=0,
SC: dy +hi A sf; =0,

4.4
5 (4.4)
4.
3 5 (4.5)
St = dETT — 2 ERT, (4.6a)
Ssel = det — el (4.6b)
55T = dEOT — hyE0 — O£, (4.6¢)
S = dET + hUEN~ 4 £yl (4.6d)
Sspl = dEV + hOEI~ + higd~, (4.6¢)
Sy = d&® + n'g;, (4.6f)
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SK;: dsfi+h Ao~ =0,
SKy: dsk +h° A o™~ =0,
St__: do~™ =0,

From the first gauge condition (4.6a) we see that we
can fix @™ =0 to be equal to zero, by setting
gt =1omErT. Since the component of the background
field hy, vanishes, the field @+ remains unfixed, and its
gauge transformation is set to 6w’ = 9°&7F. The m and
n component of the equation require from the field se””" =
se"™ to be symmetric, and m0 component defines

1
seOm — _0mw0++

(4.7)

From the equation and gauge condition (4.6b) we can
determine that the remaining symmetric part of the field
se!™) = 0 is zero, similarly as in relativistic case, by fixing
gmi = gmET = 29mO'ETT. The zeroth component gauge
condition fixes gauge transformation of dse,’ =
DoE™ =4000'ETT. The symmetric and antisymmetric
mn components of the equation are zero, and only the
hook component gives the condition @™ = @™ which
makes @™ = ¢™" totally symmetric. The m0 compo-
nent’s symmetric and antisymmetric part fix ©”" field in
terms of the 9'se™”

Omi_1 m 00 i« ,0m m,0i — 9i,0m
® —5(8 se’ + O0'se’™), 0"se” = 0'se’, (4.8)
and yield this to be a symmetric tensor.

From the gauge condition (4.6¢) we can already see that
the second gauge parameter is £+ which will not fix any
field components. The remaining two gauge parameters,
Eom — gmEd+ and £ = JOLF fix s7”" =0 and s7° =0
respectively. The mn component of the equation defines
sp™ = sp" to be symmetric field and sf," = hy’y™ the
zeroth component to be equal to field y”. The gauge
condition and the equation from the SJ;; generator (4.6d)
determine the gauge parameter &~ = —20,,™ and the
trace of the field ¢,,” = 0. One can write the gauge
transformation for the two dimensional field ¢ as

1 . 1 ; ' - j
S — Eamajaz§++ _1_0(8181815++hm1 + alalal§++hm])
1 -
—3818m815++n”. (4.9)
Due to fixing the trace of sf;/ = 0 with &7~ = =19, the

only nonvanishing component, hook component of the
equation gives d,,w;" = 0, and

Ssft = d&= 4+ hig—, (4.6g)
Ssk = dEO= + ho&—, (4.6h)
S = dé . (4.61)
SfT = =i (4.10)

Without taking contractions, Eq. (4.6d) gives equation for
the ¢ field

(_ﬂm’18u¢ija + r]jnaa(ﬁima + njmaa¢ina
_ nimaaqﬁjna + nijag¢mna + ai¢jmn _ 3aj¢imn
+ 8m¢ijn + an¢ijm) =0.

_ nina ¢jma

A=

(4.11)

The m0 component of the equation have only hook and
symmetric part of the equation. They can be solved to
determine

sf0 = —%aiaﬁﬂ = —éa,-a"afw"**- (4.12)

From (4.6e) gauge condition we fix sf; = 0 with £°~, we
have thus

sK™ = 0;sp™. (4.13)
The mO component gives &sfy/ = 9y + &~ and
sk’ = 10,sp%. Components mn and m0 from (4.6g) give

Wt = _8isfni — aiaj¢zzij

o' =— % O;sf = 1—10 0,0'0;0/ "t . (4.14)
The mn component of (4.6h) is exactly satisfied, while m0
component gives constraint on the s and ¢* fields
—10m9;sPy’ + 00ysp™ — 0:0 ™ = 0. Equation (4.6i)
gives a condition on the ¢™" field ¢,,,0,0;¢" = 0 and a
condition on w, ", 150"0,0'0,0'wy T — 9,0,0,¢™7 = 0.
Using the constraint from (4.6i) and from (4.6h) one
obtains ¢,,,0"0;sp% = 0.

To present the results transparently, we write the gauge
fields with corresponding gauge parameters and generators
in the Table II, while we give the list of linearized gauge
transformations and expressions for gauge parameters, in
the Appendix, in the Table IV.

Similarly like in the previous case, we have obtained one
dynamical field ¢ with corresponding dynamical equa-
tion and four additional remaining &®*, 58", y™ and y,.
We also obtained constraints on the geometry, which
should play a similar role as in the spin-2 case.
Analogously one may expect that some of the remaining
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TABLE II. List of gauge fields with corresponding generators
and gauge parameters for the spin-3 conformal gravity in ultra-
relativistic limit.

Generator Gauge field Gauge parameter

Sty W, = gt
g "

SP; sey, =0 g+
se)" =10"wy T

SH st =0 g0+
st° =0

SJij (Umni — (I)mni fij
womi — %amaiw0++

SB; sp" &
sho' =7

SK; s = =0 &
sfo™ = —ga,-afa'”on

SK, sk = —=0,,sp™" &0
sk9 = —%Ojsﬁoj

St__ " = 8,-8/»(]5’”7 &
Wy =150,00,0/wy "

SC Ym &
70

fields correspond to radiative degrees of freedom for
gravity at null-infinity.

Comment on generalization to spin-s

To determine the spectrum of the theory for the arbitrary
spin, one first has to perform IW contraction of the given
algebra. For the spin-s, the algebra prior to contraction is
going to be defined by the Young tableaux with the s-1
boxes in the first row and s-t boxes in the second row. The
generators that need to be set in the §, for analogous
consideration as in spin-2 and spin-3 cases above, are those
that have 1 and 2 components, and those that appear in the
definition of traces. That way one makes sure that the
algebra ) is closed. The generators in the O-th direction
have to be part of i. After solving the system of equations,
one can expect to obtain the lower dimensional dynamical
spin-s field, and minimally two remaining fields which
are undetermined, but are related with constraints on the
geometry, and play a role of radiative degrees of freedom at
null-infinity. One should also expect to obtain two remain-
ing gauge parameters, that determine linear gauge trans-
formations of the remaining fields.

V. CONFORMAL CARROLL SPIN-2
AND SPIN-3 GRAVITY

Conformal Carrol gravity is defined by the Chern-Simons
action (2.12) and the connection (3.4). We want to see what

kind of generalizations one obtains from conformal Carroll
algebra in comparison to the Carroll algebra. Carroll gravity
for the flat background has a line element
ds?> = p*d¢?* + dp? (5.1)
defined by e“e”5,,;, where the corresponding zweibeins take
the form ejy = p, e; = 1 and e, = ej = 0. Here, p denotes
radial and ¢ angular coordinate periodic in 27z, ¢ ~ ¢p + 2.
The time component is 7 = dt. Following the known
procedure [28-30] we partially fix the radial gauge and
consider the connection in the form
0= b7 (p)(d + (1. ))b(p). (5.2)
We allow for the connection on the boundary to depend on ¢

and ¢ coordinates, but not on p coordinate. It is convenient to
impose the following boundary conditions

0y = B+ H(t.p)H + Pi(1.$)P; + T (1)

+’Ci([, ¢)K, +ICO(I, ¢>K0 +D<t, Q’))D (533)

o) = u(t.p)H (5.3b)
denoting with (s,) that we are considering spin-2 case. We

(s2)

allow for the functions from @ p  to vary at the boundary,

while variation of the chemical potential Su(z, ) =0
is fixed.

To find the metric formulation for these boundary
conditions we define the group element which needs to
be valued in the algebra, b(p) = e”">. When the generator
in the group element commutes with generators from
the boundary conditions into generator of translations,
one obtains contribution to zweibein. Using the
Baker-Cambell-Hausdorff formula, we can determine con-
nection (5.2) and read out the components of the zweibein
and 7 to be

e;:\712(t»¢)P+771(f,¢), €%¢:P2(l‘»¢)_p(ﬁ¢)ﬂ

(5.4a)
e, =0, e2=1 (5.4b)
7 = u(t. ), 1, =p+H(t $) (5.4c)

That leads to the line element

ds®> = ((P»(t.9) + D(t.4)p)* + (Pi(t. ¢)
+ T (. ¢)p)?)de? + 2(Pa (1, §)

+D(1, $)p)dpdp + dp* (5.5)

and
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dr = (p + H(t.¢))dp + u(z. §)dt (5.6)

which allows for the two additional functions to appear in
the two dimensional line element in conformal Carroll
gravity (5.5), compared to similar line element in Carroll
gravity [21]. In general, conformal Carroll gravity is
expected to allow for the additional functions in the line
element compared to Carroll gravity. However, even with
these additional functions, one cannot eliminate the shift in
the ¢ direction, the same as in Carroll gravity.

We wonder which boundary conditions could be
imposed in the spin-3 case such that we do not have shift
in the ¢ component in the (5.6). Following the same
procedure as above, we partially fix to radial gauge and
write the connection in the form (5.2) which can depend

|

ey’ = (Pi(t.¢) + Ta(t.¢) — asPi(t. $))

1
e, =0

7, = H(t, }) +p +2a,5(t.p)p + a3 Py (t, p)

from which we see that suitable condition on P; and S will
lead to disappearance of the shift in the ¢ direction. For that
we had to not only add (5.7) minimal boundary condition,
but also modify the group element b(p).

VI. CONCLUSION
We have studied IW contraction of the algebras corre-
H and [ [ | from the

50(3,2) decomposition of s(0J). First of which described
conformal graviton and the second spin-3 field. The choice
of IW contraction that we took, led in the first case to the
conformal Carrollian algebra, ultrarelativistic limit of the
conformal algebra. Based on this algebra we have con-
structed an ultrarelativistic gravity theory starting from the
Chern-Simons action. For the spin-3 case, we have con-
ducted IW contraction along the same lines as for the
conformal spin-2 graviton, followed by the construction of
the gravity theory based on Chern-Simons action. It would
be conceivable to think of it as a possible spin-3 gener-
alization of the conformal Carroll gravity.

We have also studied holography of the conformal
Carroll gravity imposing the suitable set of boundary
conditions. In the metric formulation this boundary

sponding to the Young modules

on ¢t and ¢ on the boundary, but not on coordinate p.
The connection w(z,¢) is now of the form w(z, ) =
o(t, )% + w(t,$)%3). Where (s,) represents boundary
conditions for conformal gravity (spin-2 case), i.e.,
Egs. (5.3a) and (5.3b). The additional minimal boundary
condition that we impose due to spin-3 is

oy = S(t. )y (5.7)

and the group element b(p) that we choose is
b(p) = efP2r@rSPrtasBi - The components of the metric
for such extension of conformal Carroll gravity will have
components

ey =Par(t.¢) +D(t.d)p (5.8a)
=1 (5.8b)
7 = u(t, $) (5.8¢)

|

conditions led to the generalized line element compared
to the one obtained from Carroll gravity. The line element
contained the dr part with a shift in the ¢ direction which
was not possible to remove within Carroll or conformal
Carroll gravity. Considering the holography of spin-3
theory, we managed to find suitable projector and boundary
conditions which eliminate this shift.

As a future direction of study it would be interesting
to consider the spin-s generalization of the map between
the conformal Carroll algebras and the higher spin fields in
the metric formulation. It would be especially interesting to
see if formulation of three dimensional conformal higher
spin gravity in this limit would give additional information
on the restriction of interacting vertices in higher spin
theory.
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APPENDIX A: CONFORMAL GRAVITY EXAMPLE
Inserting the £ (3.19) into the first constraint from the Eq. (3.11) one obtains

M| —

(_280 ﬁjnnim + 280 ﬁjm”in + 2(90 ﬂinnjm _ 280 ﬂim’,]jn + 4]1inl1jmauaal.0

_ 4”lim”lj”8aaa70 _ 4’7in’7jmabaa¢ab + 4’7im77jn8baa¢ab + aiam¢jn + annaiam,[()
_ 8ian¢jm _ znjmaian,[o _ ajam¢in _ 2}7inajam10 + 8j8n¢im + znimajan,[o
+ am8i¢jn _ amaj¢in _ anai¢jm + anajd)im) =0

(A1)

APPENDIX B: GAUGE PARAMETERS AND GAUGE TRANSFORMATIONS

In this Table III, we present the gauge parameters and linearized gauge transformations for the spin-2 case and in the

Table IV for the spin-3 case

TABLE III.  List of linearized gauge transformations of the fields and gauge parameters for the ultrarelativistic

limit of the spin-2 conformal gravity.

Generator Gauge field Linearized gauge transformation Gauge parameter
D bm Sh™ =0 §+— — %81514—
b by = £0p0,E""
P; emi SeM = %(amgﬁ 4 aiéer) — %h'"iazé:[+ §i+
o0 el = §Ogit
H " 61, =0 &+
70 510 — 80§0+ _ %hOOGIé:IJr
‘lij wlmn SawMii = %am (aj§i+ _ 8i§j+) 61] — %(aj£l+ _ ai§j+)
_%8l(hmi6j§l+ _ hjmaig#)
@i S — %80(8/‘514 —9iEiT)
Bi ﬂmi 5ﬁmj — _amajé:O-%— + %hjmal8150+ ‘,:O,i — ai§0+
p 8Py’ = —0p0 ET + 1 h° 07 0,E
K; fmn 5fmi — %8"’8i8161+ fi_ — % aialfH
me 5f0i _ %C{)Oaiazfl+
KO K" 5Km = _%amalalgo+ 50_ = _%amamg(H»
K k0 = —%8031815(”
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TABLE IV. List of linearized gauge transformations and gauge parameters for the ultrarelativistic limit of the

spin-3 conformal gravity, C = —_%.
Generator Gauge field Linearized gauge transformations Gauge parameter
Sl‘++ wm++ STt =0 §++
o) " St = 9yt
SPi S€mn 5semn =0 §m+ = %6"l§++
seOm 5se0i _ %808i§++
SH st 6st,, =0 g0+
s7° osty =0
S‘]ij a)mm' 5wmij — %8’”81'8"5** + Calamal§++’,’ij é—mi _ %am8i§++
+% (8lajal§++hmi + alaialg_*—-khmj)
wOmi 5w0mi — %80aiamé++
SB,- Sﬁmi 5Sﬂmi — amai§0+ _ %hmi81815++ é:Om _ 8m§0+
SﬂOi (SSﬁoi = 803i§0+ + Ch003i8181§++
SK,- sfmn 5sf’"i — Camalalai§++ _ %hmiajananajéwur fi_ — Canlamai§++
SfOi 5sf0i _ C6081818i5++
SK, sk" Ssk" = —10"0,0'8F &= =179,
SKO 5SKO = —%80618150+ - %hooaia,na”’8i§++
St__ W, ™" S = —£9"0,0,, M ETT £ = =5$0,0,0m9 e
Wy~ 5a)0__ = J—anaiamamai§++
Stoo Ym 5ym = 81118050Jr + Calalam§++ h00§00 = 80§0+
r° 8y0 = 990"
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