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We consider the ultrarelativistic limit of the spin-2 and spin-3 conformal gravity theories in three
dimensions, which leads to conformal Carrollian spin-2 gravity and its spin-3 analog. We also comment on
the generalization of the result to arbitrary spin. The holographic examples show generalization in
comparison with nonconformal Carrollian gravity.
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I. INTRODUCTION

The motivation for the research of conformal Carrollian
spin-3 gravity in 3D comes from several sides. Conformal
symmetry has been studied from number of aspects,
as a symmetry that brings extra simplifications, defines
gravity models as a toy models using which one can resolve
otherwise unresolvable issues, or as a symmetry that plays a
key role in the physics at the Planck’s energy scale [1].
Carroll symmetries have been studied due to the

connection with asymptotic symmetries of flat-space
times described by Bondi-Metzner-Sachs (BMS) group
and their relation with near horizon boundary conditions
[2,3]. BMS symmetries are isomorphic to conformal
Carrollian symmetries [4,5], and there is also a very
interesting picture which relates soft theorems and
asymptotic symmetries in QFT in asymptotically flat
space-times with memory effects. Review of advances
in this field can be found in [6]. Carroll algebra can be
obtained as an ultrarelativistic limit of Poincaré algebra,
and similarly conformal version follows from conformal
algebra [7]. The c → 0 limit is depicted in a light cone
structure which has a light cone collapsed into a line [8].
The Carrollian space-times are formed in future and past
null-infinity and conformal Carroll algebra can be viewed
as conformal extension of BMS algebra. In the near
horizon boundary conditions one obtains BMS algebra as
a composite in the terms of infinite copies of Heisenberg
algebra.
Carroll symmetries have recently been studied in relation

with higher spin theories [9] with the aim of filling the gap

of the less developed field of the higher spin extensions of
the Poincaré algebra in higher than three dimensions. In
three dimensions the situation is better, where number of
constructions has been considered [10–13]. At present,
there is a handful of complete higher spin gravity models
that have actions and avoid the nonlocality issue: (a) 3d
massless [10,14,15]; (b) 4d conformal [16,17]; (c) 4d chiral
[18] and (d) 3d conformal [19].
Higher spin gravities in three dimensions can be con-

structed consistently while containing a finite number of
higher spin-fields. In fact, one can construct infinite
number of such theories [20]. In the relativistic theory,
this is allowed by considering the action of Chern-Simons
form which has also been used in construction of the
nonconformal Carrollian theories [21]. Since higher spin
theories usually contain infinite number of higher spin
fields and only several consistent theories are known, it is
our aim to use one of them [20] and investigate what can the
ultrarelativistic limit teach us.
In the construction of the gauge theories based on the

Carrollian algebras, the ultrarelativistic limit of general
relativity in the first order formulation gives equations of
motion which are not sufficient to find all the components
of the connection fields expressed in terms of the other
fields. Those components play a role of Lagrange multi-
pliers for the constraints on the geometry [22], and carry a
physical interpretation in terms of radiative degrees of
freedom for gravity at null-distances [23,24]. Which is
what we can expect to appear here as well.
The paper is structured as follows: In Sec. II we review

the construction using which we obtain spin-2 and spin-3
cases of conformal gravities, we review conformal gravity
in three dimensions, linearization of the theory, and ultra-
relativistic limit. In Sec. III we analyze the ultrarelativistic
limit of the spin-2 case while in Sec. IV we analyze the
spin-3 case and comment generalization to arbitrary spin.
In Sec. V we consider the holography of the theories, and in
Sec. VI we conclude.
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II. CONSTRUCTION

We study Chern-Simons action

S½ω� ¼
Z

Tr

�
ω ∧ dωþ 2

3
ω ∧ ω ∧ ω

�
: ð2:1Þ

as a gauge theory for the Carollian conformal algebra.
Knowing the higher spin extension of soð3; 2Þ, (i.e.,
algebras that have soð3; 2Þ as a subalgebra and also contain
other nontrivial representations of soð3; 2Þ), we can take
the ultrarelativistic limit that gives conformal Carrollian
algebra and consider their generalization to the higher spin.
To construct finite spectrum of higher spin fields (called

Fradkin-Tseytlin fields [25]) one needs to take a nontrivial
finite-dimensional irreducible representation V of soð3; 2Þ,
such as an irreducible tensor or a spin-tensor. Then one
needs to evaluate Uðsoðd; 2ÞÞ in V, which means multiply
the generators1 TAB ¼ −TBA of soð3; 2Þ in given repre-
sentation and determine the generated algebra [20]. In
general, this algebra is denoted with hsðVÞ. Here we are
going to consider spin-2 and spin-3 fields. For that case,
one needs to take the vector representation, which is
denoted by one-cell Young diagram□. Then, the spectrum
of the corresponding algebra, hsð□Þ is the following:

ð2:2Þ

This algebra is a matrix algebra with ð3þ 2Þ2 generators
tAB which are decomposed with respect to soð3; 2Þ. The
gl3þ2 commutation relations

½tAB; tCD� ¼ −δADtCB þ δC
BtAD: ð2:3Þ

with the irreducible generators TAB ¼ −TBA, SAB ¼ SBA
and R, in the soð3; 2Þ base

TAB ¼ tAjB − tBjA; SAB ¼ tAjB þ tBjA −
2

dþ 2
tCCηAB;

R ¼ tCC; ð2:4Þ

lead to the commutation relations

½TAB; TCD� ¼ ηBCTAD − ηACTBD − ηBDTAC þ ηADTBC;

ð2:5aÞ

½TAB; SCD� ¼ ηBCSAD − ηACSBD þ ηBDSAC − ηADSBC;

ð2:5bÞ

½SAB; SCD� ¼ ηBCTAD þ ηACTBD þ ηBDTAC þ ηADTBC:

ð2:5cÞ

Here R commutes with everything because it is associated
with 1 in glðVÞ, so it can be truncated away. One obtains a
theory that contains two fields:

ω ¼ ωA;BTAB þ ωABSAB ð2:6Þ

TAB is the conformal graviton and SAB is a field similar to
the spin-three partially-massless field. From the bilinear
form of gln

Tr ðtAB; tCDÞ ¼ δA
DδC

B ð2:7Þ

one obtains invariant bilinear forms for soð3; 2Þ

Tr ðTAB; TCDÞ ¼ 2ðηADηCB − ηBDηCAÞ ð2:8Þ

Tr ðSAB; SCDÞ ¼ 2

�
ηADηCB þ ηBDηCA −

2

dþ 2
ηABηCD

�

ð2:9Þ

Before proceeding to linearizing a theory and taking the
ultrarelativistic limit, let us first remember conformal
gravity as a gauge theory in three dimensions, studied in
[26]. Fixing the commutation relations of the soð3; 2Þ
conformal algebra (for a ¼ 0, 1, 2)

½D;Pa� ¼ −Pa; ½Jab; Pc� ¼ Paηbc − Pbηac; ð2:10aÞ

½D;Ka� ¼ Ka; ½Jab; Kc� ¼ Kaηbc − Kbηac; ð2:10bÞ

½Pa; Kb� ¼ −Jab þ ηabD;

½Jab; Jcd� ¼ Jadηbc − Jacηbd − Jbdηac þ Jbcηad; ð2:10cÞ

for Pa translations, Ka special conformal transformations,
Jab Lorentz boosts and D dilatation, we can write the
connection for the soð3; 2Þ as

ω ¼ 1

2
ϖa;bJab þ eaPa þ faKa þ bD: ð2:11Þ

The action, is a standard Chern-Simons action

S½ω� ¼
Z

Tr

�
ω ∧ dωþ 2

3
ω ∧ ω ∧ ω

�
ð2:12Þ

where the curvature F ¼ dωþ 1
2
½ω;ω� is set to zero by the

equations. The components of the curvature give

F½Pa� ¼ ∇ea − b ∧ ea; ð2:13aÞ

F½D� ¼ ∇bþ em ∧ fm; ð2:13bÞ
1Here, indices A; B;… ¼ 0;…; 4 denote the indices of

soð3; 2Þ while ηAB denotes invariant metric.
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F½Ja;b� ¼ Ra;b − ea ∧ fb þ eb ∧ fa; ð2:13cÞ

F½Ka� ¼ ∇fa þ b ∧ fa; ð2:13dÞ

where we denote the Lorentz covariant derivative with
∇ ¼ dþϖ. In this notation Riemann two-form is given by
Ra;b ¼ dωa;b þ ωa;

c ∧ ωc;b. To show how one obtains the
theory when ω from the action (2.12) is only a spin
connection and eμa only dynamical variable, we have to
solve the equations and fix the gauge conditions. Our gauge
parameter is a soð3; 2Þ algebra valued 0-form,

Ξ ¼ 1

2
ηa;bLab þ ξaPa þ ζaKa þ ρD ð2:14Þ

which gives

δea ¼ ∇ξa − ρ ∧ ea − b ∧ ξa þ ηa;b ∧ ea; ð2:15aÞ

δb ¼ ∇ρþ ξm ∧ fm þ em ∧ ζm; ð2:15bÞ

δωa;b ¼ ∇ηa;b − ξa ∧ fb þ ξb ∧ fa − ea ∧ ζb þ eb ∧ ζa;

ð2:15cÞ

δfa ¼ ∇ζa þ b ∧ ζa þ ρ ∧ fa þ ηa;b ∧ fa: ð2:15dÞ

If we assume that the dreibein eaμ is invertible, we can
fix the gauge to set b ¼ 0. Now, one can write gμν ¼
eaμebνηab for the conformal metric. From the equation
F½D� ¼ 0 we obtain that faμeaν is symmetric. The equation
F½Pa� ¼ 0 we recognize as the standard torsion constraint,
which defines ϖa;b using ea. The following equation
F½Ja;b� ¼ 0 defines that faμeaν is the Schouten tensor,
while the F½Ka� ¼ 0 sets Cotton tensor Cμν ¼ 0. That
equation is the only equation which is dynamical. If we
plug these solutions for the fields back into the action
(2.12) we obtain the action of the same form, where the
only dynamical variable is ea.
Here, we want to determine the fields of this conformal

gravity theory for the conformal graviton and a spin three
field in an ultrarelativistic limit, i.e., when we have
conformal Carrollian theory. To find the spectrum of
the fields, one has to linearize a theory over the
Minkowski vacuum. We choose it to be ω0 ¼ haPa for
ha ¼ hμadxμ, where the background metric is hμa ¼ δμ

a.
The equations at the linear order and the linearized gauge
symmetries are

dωþ ω0 ∧ ωþ ω ∧ ω0 ¼ 0; δω ¼ dξþ ½ω0; ξ�:
ð2:16Þ

Here, ω0 is the background field, while ω field is the Lie
algebra valued one-form. It is valued in one of the algebras

of the so(3,2) irreducible modules obtained from the
decomposition of the hsðVÞ. In our case it will be valued
in the ultrarelativistic limit of the algebra we consider: in
the ultrarelativistic limit of the conformal algebra and in
the ultrarelativistic limit of the extension of the conformal
algebra for spin-three field described above.
For the generators tΛ the equations (2.16), with

ω ¼ ωΛtΛ and ξ ¼ ξΛtΛ, will give

dωΛtΛ þ ha ∧ ωΛ½Pa; tΛ� ¼ 0

δωΛtΛ ¼ dξΛtΛ þ ha ∧ ξΛ½Pa; tΛ� ð2:17Þ

where tΛ denotes the generators of the so(3,2) irreducible
modules TAB, SAB etc., Λ denotes indices in the light cone
coordinates Λ ¼ a;þ;−, and ηAB is corresponding metric
with ηþ− ¼ η−þ ¼ 1.
To take the ultrarelativistic limit we are going to follow

the procedure of taking Inönü-Wigner (IW) contraction
[27]. In our terminology we do this as follows. We denote
the Lie algebra from which we start with g, while h is a
subalgebra. The decomposition g ¼ hþ i denotes a direct
sum of vector spaces. The generators of the ideal i, are
rescaled with contraction parameter ϵ, such that i → ϵi.
The commutation relations then take the form

½h; h� ¼ h; ½h; i� ¼ 1

ϵ
hþ i; ½i; i� ¼ 1

ϵ2
hþ 1

ϵ
i

ð2:18Þ

which means that when taking ϵ → ∞, one obtains a well-
defined limit. For this to hold, h needs to be subalgebra of
g. If one had ½h; h� ¼ hþ ϵi the limit when ϵ → ∞ would
not be well defined.

III. SPIN-2

Let us focus on the spin-2 case with a Young module

for conformal graviton when tab ¼ −tab. The dictionary
between the generators TAB for the conformal graviton and
generators of translations, special conformal transforma-
tions, dilatation and Lorentz boosts is Pa ¼ Taþ,
Ka ¼ Ta−, D ¼ −Tþ−, Lab ¼ Tab respectively. To obtain
the generators in the ultrarelativistic limit from the gen-
erators tΛ, we perform an IW contraction [27] of the
underlying algebra, in a way that leads to the conformal
Carrollian algebra.
We introduce space-time splitting of indices where

a¼f0;i;i¼1;2g. That allows us to introduce the notation

P0 ≡H; K0 ≡ K0; J0i ≡ Bi ð3:1Þ

When we choose the subalgebra h and ideal i as

h ¼ fPi; Ki; D; Jijg; i ¼ fH;K0; Big ð3:2Þ
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starting from the conformal algebra (2.10c), we obtain the
algebra

½D;H� ¼ −H; ½D;K0� ¼ K0; ð3:3aÞ

½Bj; Pk� ¼ Hηjk; ½Bj;Kk� ¼ K0ηjk ð3:3bÞ

½H; kj� ¼ −Bj; ½Pi; K0� ¼ Bi; ð3:3cÞ

½Jij; Bl� ¼ Biηjl − Bjηil; ð3:3dÞ

i.e., conformal Carrollian algebra [7]. The Lie algebra
valued one-form now becomes

ω ¼ eiPi þ τH þ 1

2
ωi;jJij þ βjBj − bDþ fiKi þ κK0

ð3:4Þ

with an analogous decomposition of the gauge parameter

ξ¼ eiξiþ þ τξ0þ þ 1

2
ωi;jξ

i;jþ βjξ
0jþbξþ−þfiξi−þ κξ0−:

ð3:5Þ

The linearized equations of the conformal Carrollian
gravity and the gauge symmeteries read

D∶ db − hm ∧ fm ¼ 0; δωþ− ¼ dξþ− − hmξm−; ð3:6aÞ

Pi∶ dei þ hm ∧ ωm;i − hi ∧ b ¼ 0; δei ¼ dξiþ þ hmξm;i − hiξþ−; ð3:6bÞ

H∶ dτ − hi ∧ βi − h0 ∧ b ¼ 0; δτ ¼ dξ0þ þ hiξ0;i − h0ξþ−; ð3:6cÞ

tij∶ dωi;j − hi ∧ fj þ hj ∧ fi ¼ 0; δωi;j ¼ dξi;j − hiξj− þ hjξi−; ð3:6dÞ

Bj∶ dβj þ hj ∧ κ − h0 ∧ fj ¼ 0; δβj ¼ dξ0;j − h0ξj− þ hjξ0−; ð3:6eÞ

Ki∶ dfi ¼ 0; δfi ¼ dξi−: ð3:6fÞ

t0−∶ dκ ¼ 0; δκ ¼ dξ0−: ð3:6gÞ

To find the spectrum of the theory one has to solve this
system of equations. From (3.6a) the gauge invariance
allows to fix bm just like in three dimensions. That defines
ξ−m ¼ ∂mξ

þ−, and makes bm ¼ 0. Equation (3.6a) demands
that fmn ¼ fnm is symmetric field. The component m0 of
Eq. (3.6a) E½tþ−�m0 ¼ −hmaf0a þ ∂mb0 ¼ 0 gives

f0m ¼ ∂mb0: ð3:7Þ

The gauge transformations (3.6b) allow to fix antisym-
metric part of e½mjn� ¼ 0 and its trace emm ¼ 0 using ξm;

n ¼
−∂mξ

þn þ hmnξþ− and ξþ− ¼ 1
2
∂mξ

þm respectively, and
the remaining symmetric part we call eðm;nÞ ≡ ϕmn. The
corresponding equation

E½tiþ�mni ¼ −ωmni þ ωnmi þ ∂mϕni − ∂nϕmi ð3:8Þ

can be split into symmetric, antisymmetric and hook part.
The only nontrivial part, hook part, of the equation defines

ωjm;n ¼ ∂mϕnj − ∂nϕmj; ωjm;
j ¼ ∂jϕ

mj ð3:9Þ

while the antisymmetric and symmetric part are exactly
equal to zero. The m0 component of (3.6b) does not allow
for any more gauge fixing. The symmetric part of the

equation gives b0 ¼ 1
2
∂ie0i while the antisymmetric part

leads to

ω0im ¼ 1

2
ð−∂ie0m þ ∂me0iÞ: ð3:10Þ

From the gauge transformation (3.6c) one can fix τm ¼ 0

with ξ0;m ¼ ∂mξ
0þ. The mn component of the correspond-

ing equation E½t0þ�mn ¼ −βnm þ βmn ¼ 0 makes the field
βmn symmetric, while the m0 component defines
∂mτ0 ¼ β0m.
The gauge (3.6d) has all the components of the gauge

parameters fixed, which means the equation is

E½tij�mnij ¼ −hnjfmi þ hnifmj þ hmjfni − hmifnj

þ ∂mωnij − ∂nωmij ¼ 0: ð3:11Þ

The symmetric part of the equation exactly vanishes and
does not give any conditions or definitions of the field. The
antisymmetric part of the equation as well vanishes when
the definition of ωni;j is used. The Riemann component of
the equation can be contracted with the hij to define

fii ¼ −∂jωi
ij: ð3:12Þ
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The Riemann part itself gives equation constraint on the
geometry which we express in terms of the fields βij, τ0,
ϕij, in (A1) in the Appendix A.
The m0 component of the equation defines

E½tij�m0ij ¼ −∂0ωmij − f0jηmi þ f0iηmj þ ∂mω0ij ¼ 0

ð3:13Þ

whose symmetric part is zero, and in the hook part we use
f0j, ω0ij and ωmij from (3.7), (3.10), (3.9) respectively, and
τm ¼ 0 to obtain second constraint on the geometry

−∂0∂iϕjm þ 2∂0∂jϕim − ∂0∂mϕij ¼ 0 ð3:14Þ

Contraction of the constraint with him gives condition

∂0∂iϕ
ji ¼ 0 ð3:15Þ

which can be used later if necessary for simplifications. The
antisymmetric part, after insertion of ωijl, and the value for
ω0im turns out to be exact equation.
Equation (3.6e) still has one gauge parameter to fix. One

may define βmm ¼ 0 using ξ0− ¼ −∂mξ
0;m þ hm0ξm−. The

symmetric and antisymmetric part of (3.6e) will identically
vanish, while the hook part defines

κn ¼ ∂mβ
nm: ð3:16Þ

The m0 component of the equation

E½Bi�0mi ¼ ∂mβ0
i − ∂0β

mi − hmiκ0 þ h00fmi ¼ 0 ð3:17Þ

has antisymmetric part which makes relation ∂mβ0
i −

∂iβ0
m ¼ 0 symmetric, and symmetric part which allows

us to define

κ0 ¼ −∂k∂lϕl
k þ ∂m∂mτ0 ð3:18Þ

the 0th component of κμ field in terms of the τ0 and ϕmn.
It also allows us to find fmn

fmn¼∂0β
mnþhmn∂k∂kτ0−hmn∂l∂kϕ

kl−∂m∂nτ0 ð3:19Þ

in terms of the fields ϕmn, τ0 and βmn. One can notice that
all the fields can be determined in terms of the components
of the eμa and τμ. Where the remaining component of the
eμa is symmetric and traceless component while τμ is a
component that belongs to H generator, i.e., both originated
from relativistic Pa generator of translations. The unde-
termined field βmn is symmetric and traceless field.
The equations for the mn and m0 components of the

fields belonging to special conformal transformations
generator Ki, (3.6f) read

2∂0∂mβni þ ηinð∂m∂a∂aτ0 − ∂m∂b∂aϕ
abÞ − 2∂0∂nβmi

− ηimð∂n∂a∂aτ0 þ ∂n∂b∂aϕ
abÞ ¼ 0; ð3:20aÞ

− ∂0∂0β
mi þ him∂0ð−∂a∂aτ0 þ ∂b∂aϕ

abÞ þ ∂0∂i∂mτ0

þ 1

2
∂i∂m∂ae0a ¼ 0 ð3:20bÞ

and equations for the mn and m0 components of the
generator for the special conformal transformations in the 0
direction (3.6g) are

∂m∂eβ
ne − ∂n∂eβ

me ¼ 0 ð3:21Þ

−∂0∂eβ
me þ ∂m∂e∂eτ0 − ∂m∂j∂eϕ

ej ¼ 0 ð3:22Þ

respectively. The latter can be combined with a (3.20a) into
constraint on the field βmn, 2∂0∂mβni þ ηin∂0∂lβ

ml

−2∂0∂nβmi − ηim∂0∂lβ
nl ¼ 0. Taking the trace and the

constraint βmm ¼ 0 one obtains that ∂0∂lβ
ml ¼ 0 vanishes.

Inserting that into (3.22) gives relation between
∂m∂l∂lτ0 ¼ ∂m∂j∂lϕ

lj. This, combined with δim contrac-
tion of the Eq. (A1) from the Appendix gives dynamical
equation for the field ϕmn

∂m∂i∂iϕjn − ∂m∂i∂jϕni − ∂m∂i∂nϕji ¼ 0: ð3:23Þ

Wewrite the list of gauge fields in the Table I below, and we
also give a list of gauge transformations and gauge
parameters in the Appendix in Table III.

TABLE I. List of gauge fields with their corresponding gen-
erators and gauge parameters.

Generator Gauge field Gauge parameter

D bm ¼ 0 ξþ−

b0 ¼ 1
2
∂ie0i

Pi emi ≡ ϕmi ξiþ

e0i

H τm ¼ 0 ξ0þ

τ0

Jij ωjm;n ¼ ∂mϕnj − ∂nϕmj ξi;j

ω0mi − ∂0ϕmi − b0ηmi þ ∂me0i ¼ 0

Bi βmi ξ0;i

β0i ¼ ∂iτ0

Ki fmn ¼ ∂0β
mn þ hmn∂k∂kτ0

− hmn∂l∂kϕ
kl − ∂m∂nτ0

ξi−

f0m ¼ 1
2
∂m∂ie0i

K0 κn ¼ ∂mβ
mn ξ0−

κ0 ¼ −∂k∂lϕl
k þ ∂m∂mτ0
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We have obtained four remaining fields ϕmn, e0i, βmn, τ0,
and two free gauge parameters ξmþ, ξ0þ in terms of which
the others are expressed. We also got one dynamical
equation for the field ϕmn, and constraints on the geometry
which did not play a role in determination of the dynamical
equation or expressing the other gauge fields. Earlier
analyses of the Carrollian theories showed that such
constraints play a role of constraints for Lagrange multi-
pliers in the form of the undetermined fields [21,22].

IV. SPIN-3

We consider the irreducible Young module of soð3; 2Þ
when tab ¼ tba, which describes spin-3 field. As in

previous example of conformal graviton, to find the
solution of the linearized equations and fix suitably gauge
symmetries, we have to find the IW contraction analogous
to the contraction above. The commutation relations of the
generator of translations and the generators of spin three
algebra are

½Pa; tcþ� ¼ −ηactþþ; ½Pa; tc−� ¼ tac þ 1
2
tmm;

½Pa; t−−� ¼ 2ta−; ð4:1Þ

½Pa; tþþ� ¼ 0; ½Pa; tcd� ¼ −ηactdþ − ηadtcþ: ð4:2Þ

For the conformal graviton case, it was necessary to
choose H, K0 and Bi to be elements of i, so here we
proceed in the same way, choosing the generators SH, SK0,
SBi to be elements of i while the remaining generators
build h

h ¼ fSPj; SKj; tþþ; t−−; Sjk; SCg i ¼ fSH; SK0; SBig:
ð4:3Þ

The dictionary we use between the symmetric tΛ generators
SAB for the spin-3 case, and the generators denoted here is
tjþ¼SPj, tj− ¼ SKj, tjk ¼ SJjk, t00 ¼ SC, also t0þ ¼ SH,
t0− ¼ SK0, t0i ¼ SBi. The letter S in front of what one
can recognize as generators in conformal Carrollian alge-
bra, denote that they originate from the symmetric gen-
erators of tΛ. The algebra that we obtain after taking the
limit reads

½Pi; SPj� ¼ −ηijtþþ; ½Pi; SKj� ¼ SJij þ
1

2
ðSJkk þ SCÞηij; ½Pi; t−−� ¼ 2SKi−;

½Pi; tþþ� ¼ 0; ½Pi; SJjk� ¼ −ηijSPk − ηikSPj;

½Pi; SH� ¼ 0; ½Pi; SK0� ¼ SBi; ½Pi; SBk� ¼ −ηikSH;

½H; tþþ� ¼ 0; ½H; t−−� ¼ 2SK0; ½H; SKj� ¼ SBj;

½H; t−−� ¼ 2SK0; ½H; SJjk� ¼ 0: ½H; SPj� ¼ 0

so that one can write the algebra valued one-form ω and zero-form ξ as

ω ¼ seiSPi þ sτSH þ 1

2
ωijSJij þ sβiSBi þ γSCþ 1

2
ωþþtþþ þ 1

2
ω−−t−− þ sfiSKi þ sκSK0; ð4:4Þ

ξ ¼ seiξiþ þ sτξ0þ þ 1

2
ωijξ

ij þ sβiξ0i þ γξ00 þ 1

2
ωþþξþþ þ 1

2
ω−−ξ−− þ sfiξi− þ sκξ0−: ð4:5Þ

The system of linearized equations and gauge symmetries reads

tþþ∶ dωþþ − 2hk ∧ sek ¼ 0; δωþþ ¼ dξþþ − 2hkξkþ; ð4:6aÞ

SPi∶ dsei − hl ∧ ωli ¼ 0; δsei ¼ dξiþ − hlξli; ð4:6bÞ

SH∶ dsτ − hi ∧ sβi − h0 ∧ γ ¼ 0; δsτ ¼ dξ0þ − hlξl0 − h0ξ00; ð4:6cÞ

SJij∶ dωij þ hði ∧ sfjÞ þ hl ∧ sflηij ¼ 0; δωij ¼ dξij þ hðiξjÞ− þ hlξl−ηij; ð4:6dÞ

SBj∶ dsβj þ h0 ∧ sfj þ hj ∧ sκ ¼ 0; δsβj ¼ dξ0j þ h0ξj− þ hjξ0−; ð4:6eÞ

SC∶ dγ þ hi ∧ sfi ¼ 0; δγ ¼ dξ00 þ hiξi−; ð4:6fÞ
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SKi∶ dsfi þ hi ∧ ω−− ¼ 0; δsfi ¼ dξi− þ hiξ−−; ð4:6gÞ

SK0∶ dsκ þ h0 ∧ ω−− ¼ 0; δsκ ¼ dξ0− þ h0ξ−−; ð4:6hÞ

st−−∶ dω−− ¼ 0; δω−− ¼ dξ−−: ð4:6iÞ

From the first gauge condition (4.6a) we see that we
can fix ωmþþ ¼ 0 to be equal to zero, by setting
ξmþ ¼ 1

2
∂mξþþ. Since the component of the background

field hk0 vanishes, the field ω0þþ remains unfixed, and its
gauge transformation is set to δω0þþ ¼ ∂0ξþþ. The m and
n component of the equation require from the field semn ¼
senm to be symmetric, and m0 component defines

se0m ¼ 1

2
∂mω0þþ ð4:7Þ

From the equation and gauge condition (4.6b) we can
determine that the remaining symmetric part of the field
seðmiÞ ¼ 0 is zero, similarly as in relativistic case, by fixing
ξmi ¼ ∂mξiþ ¼ 1

2
∂m∂iξþþ. The zeroth component gauge

condition fixes gauge transformation of δse0i ¼
∂0ξ

iþ ¼ 1
2
∂0∂iξþþ. The symmetric and antisymmetric

mn components of the equation are zero, and only the
hook component gives the condition ωmni ¼ ωnmi which
makes ωmni ≡ ϕmni totally symmetric. The m0 compo-
nent’s symmetric and antisymmetric part fix ω0mi field in
terms of the ∂ise0m

ω0mi ¼ 1

2
ð∂mse0i þ ∂ise0mÞ; ∂mse0i ¼ ∂ise0m; ð4:8Þ

and yield this to be a symmetric tensor.
From the gauge condition (4.6c) we can already see that

the second gauge parameter is ξ0þ which will not fix any
field components. The remaining two gauge parameters,
ξ0m ¼ ∂mξ0þ and ξ00 ¼ ∂0ξ0þ fix sτm ¼ 0 and sτ0 ¼ 0
respectively. The mn component of the equation defines
sβmn ¼ sβnm to be symmetric field and sβ0m ¼ h00γm the
zeroth component to be equal to field γm. The gauge
condition and the equation from the SJij generator (4.6d)
determine the gauge parameter ξi− ¼ − 2

5
∂mξ

im and the
trace of the field ϕm

im ¼ 0. One can write the gauge
transformation for the two dimensional field ϕmni as

δωmij ¼ 1

2
∂m∂j∂iξþþ−

1

10
ð∂l∂j∂lξ

þþhmiþ∂l∂i∂lξ
þþhmjÞ

−
1

5
∂l∂m∂lξþþηij: ð4:9Þ

Due to fixing the trace of sfii ¼ 0with ξ−− ¼ − 1
2
∂iξ

i−, the
only nonvanishing component, hook component of the
equation gives ∂mωi

im ¼ 0, and

sfnm ¼ −∂iϕ
mni: ð4:10Þ

Without taking contractions, Eq. (4.6d) gives equation for
the ϕmni field

1

6
ð−ηmn∂aϕ

ija þ ηjn∂aϕ
ima þ ηjm∂aϕ

ina − ηin∂aϕ
jma

− ηim∂aϕ
jna þ ηij∂aϕ

mna þ ∂iϕjmn − 3∂jϕimn

þ ∂mϕijn þ ∂nϕijmÞ ¼ 0: ð4:11Þ
The m0 component of the equation have only hook and
symmetric part of the equation. They can be solved to
determine

sf0j ¼ −
2

5
∂iω

0ji ¼ −
1

5
∂i∂i∂jω0þþ: ð4:12Þ

From (4.6e) gauge condition we fix sβii ¼ 0 with ξ0−, we
have thus

sκm ¼ ∂jsβmj: ð4:13Þ

The m0 component gives δsβ0j ¼ ∂0ξ
0j þ ξj− and

sκ0 ¼ 1
2
∂jsβ0j. Components mn and m0 from (4.6g) give

ωn−− ¼ −∂isfni ¼ ∂i∂jϕ
nij

ω0−− ¼ −
1

2
∂isf0i ¼

1

10
∂i∂i∂j∂jω0þþ: ð4:14Þ

The mn component of (4.6h) is exactly satisfied, while m0

component gives constraint on the sβij and ϕijk fields
− 1

2
∂m∂jsβ0j þ ∂0∂lsβml − ∂i∂jϕ

imj ¼ 0. Equation (4.6i)
gives a condition on the ϕmni field ϵmn∂i∂jϕ

inj ¼ 0 and a
condition on ω0

þþ, 1
10
∂m∂i∂i∂l∂lω0

þþ − ∂0∂i∂jϕ
mij ¼ 0.

Using the constraint from (4.6i) and from (4.6h) one
obtains ϵmn∂m∂jsβ0j ¼ 0.
To present the results transparently, we write the gauge

fields with corresponding gauge parameters and generators
in the Table II, while we give the list of linearized gauge
transformations and expressions for gauge parameters, in
the Appendix, in the Table IV.
Similarly like in the previous case, we have obtained one

dynamical field ϕmni with corresponding dynamical equa-
tion and four additional remaining ω0þþ, sβmi, γm and γ0.
We also obtained constraints on the geometry, which
should play a similar role as in the spin-2 case.
Analogously one may expect that some of the remaining
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fields correspond to radiative degrees of freedom for
gravity at null-infinity.
Comment on generalization to spin-s
To determine the spectrum of the theory for the arbitrary

spin, one first has to perform IW contraction of the given
algebra. For the spin-s, the algebra prior to contraction is
going to be defined by the Young tableaux with the s-1
boxes in the first row and s-t boxes in the second row. The
generators that need to be set in the h, for analogous
consideration as in spin-2 and spin-3 cases above, are those
that have 1 and 2 components, and those that appear in the
definition of traces. That way one makes sure that the
algebra h is closed. The generators in the 0-th direction
have to be part of i. After solving the system of equations,
one can expect to obtain the lower dimensional dynamical
spin-s field, and minimally two remaining fields which
are undetermined, but are related with constraints on the
geometry, and play a role of radiative degrees of freedom at
null-infinity. One should also expect to obtain two remain-
ing gauge parameters, that determine linear gauge trans-
formations of the remaining fields.

V. CONFORMAL CARROLL SPIN-2
AND SPIN-3 GRAVITY

Conformal Carrol gravity is defined by the Chern-Simons
action (2.12) and the connection (3.4). We want to see what

kind of generalizations one obtains from conformal Carroll
algebra in comparison to the Carroll algebra. Carroll gravity
for the flat background has a line element

ds2 ¼ ρ2dϕ2 þ dρ2 ð5:1Þ

defined by eaebδab where the corresponding zweibeins take
the form e1ϕ ¼ ρ, e2ρ ¼ 1 and e2ρ ¼ e2ϕ ¼ 0. Here, ρ denotes
radial and ϕ angular coordinate periodic in 2π, ϕ ∼ ϕþ 2π.
The time component is τ ¼ dt. Following the known
procedure [28–30] we partially fix the radial gauge and
consider the connection in the form

ω ¼ b−1ðρÞðdþ ωðt;ϕÞÞbðρÞ: ð5:2Þ

We allow for the connection on the boundary to depend on t
and ϕ coordinates, but not on ρ coordinate. It is convenient to
impose the following boundary conditions

ωðs2Þ
ϕ ¼ Bi þHðt;ϕÞH þ Piðt;ϕÞPi þ J ijðt;ϕÞJij

þKiðt;ϕÞKi þK0ðt;ϕÞK0 þDðt;ϕÞD ð5:3aÞ

ωðs2Þ
t ¼ μðt;ϕÞH ð5:3bÞ

denoting with (s2) that we are considering spin-2 case. We

allow for the functions from ωðs2Þ
ϕ to vary at the boundary,

while variation of the chemical potential δμðt;ϕÞ ¼ 0
is fixed.
To find the metric formulation for these boundary

conditions we define the group element which needs to
be valued in the algebra, bðρÞ ¼ eρP2 . When the generator
in the group element commutes with generators from
the boundary conditions into generator of translations,
one obtains contribution to zweibein. Using the
Baker-Cambell-Hausdorff formula, we can determine con-
nection (5.2) and read out the components of the zweibein
and τ to be

e1ϕ ¼ J 12ðt;ϕÞρþ P1ðt;ϕÞ; e2ϕ ¼ P2ðt;ϕÞ −Dðt;ϕÞρ
ð5:4aÞ

e1ρ ¼ 0; e2ρ ¼ 1 ð5:4bÞ

τt ¼ μðt;ϕÞ; τϕ ¼ ρþHðt;ϕÞ ð5:4cÞ

That leads to the line element

ds2 ¼ ððP2ðt;ϕÞ þDðt;ϕÞρÞ2 þ ðP1ðt;ϕÞ
þ J 12ðt;ϕÞρÞ2Þdϕ2 þ 2ðP2ðt;ϕÞ
þDðt;ϕÞρÞdϕdρþ dρ2 ð5:5Þ

and

TABLE II. List of gauge fields with corresponding generators
and gauge parameters for the spin-3 conformal gravity in ultra-
relativistic limit.

Generator Gauge field Gauge parameter

Stþþ ωm
þþ ¼ 0 ξþþ

ωþþ
0

SPi semn ¼ 0 ξiþ

se0m ¼ 1
2
∂mω0

þþ

SH sτm ¼ 0 ξ0þ

sτ0 ¼ 0

SJij ωmni ¼ ϕmni ξij

ω0
mi ¼ 1

2
∂m∂iω0

þþ

SBi sβmi ξ0i

sβ0i ¼ γi

SKi sfmn ¼ −∂iϕ
mni ξi−

sf0m ¼ − 1
5
∂i∂i∂mω0

þþ

SK0 sκn ¼ −∂msβmn ξ0−

sκ0 ¼ − 1
2
∂jsβ0j

St−− ωn−− ¼ ∂i∂jϕ
nij ξ−−

ω0
−− ¼ 1

10
∂i∂i∂j∂jω0

þþ

SC γm ξ00

γ0
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dτ ¼ ðρþHðt;ϕÞÞdϕþ μðt;ϕÞdt ð5:6Þ

which allows for the two additional functions to appear in
the two dimensional line element in conformal Carroll
gravity (5.5), compared to similar line element in Carroll
gravity [21]. In general, conformal Carroll gravity is
expected to allow for the additional functions in the line
element compared to Carroll gravity. However, even with
these additional functions, one cannot eliminate the shift in
the ϕ direction, the same as in Carroll gravity.
We wonder which boundary conditions could be

imposed in the spin-3 case such that we do not have shift
in the ϕ component in the (5.6). Following the same
procedure as above, we partially fix to radial gauge and
write the connection in the form (5.2) which can depend

on t and ϕ on the boundary, but not on coordinate ρ.
The connection ωðt;ϕÞ is now of the form ωðt;ϕÞ ¼
ωðt;ϕÞðs2Þ þ ωðt;ϕÞðs3Þ. Where (s2) represents boundary
conditions for conformal gravity (spin-2 case), i.e.,
Eqs. (5.3a) and (5.3b). The additional minimal boundary
condition that we impose due to spin-3 is

ωðs3Þ
ϕ ¼ Sðt;ϕÞtþþ ð5:7Þ

and the group element bðρÞ that we choose is
bðρÞ ¼ eρP2þa2ρSP2þa3B1 . The components of the metric
for such extension of conformal Carroll gravity will have
components

eϕ1 ¼ ðP1ðt;ϕÞ þ J 12ðt;ϕÞ − a3P1ðt;ϕÞÞ eϕ ¼ P2ðt;ϕÞ þDðt;ϕÞρ ð5:8aÞ

eρ1 ¼ 0 e2ρ ¼ 1 ð5:8bÞ

τϕ ¼ Hðt;ϕÞ þ ρþ 2a2Sðt;ϕÞρþ a3P1ðt;ϕÞ τt ¼ μðt;ϕÞ ð5:8cÞ

from which we see that suitable condition on P1 and S will
lead to disappearance of the shift in the ϕ direction. For that
we had to not only add (5.7) minimal boundary condition,
but also modify the group element bðρÞ.

VI. CONCLUSION

We have studied IW contraction of the algebras corre-

sponding to the Young modules and from the

soð3; 2Þ decomposition of hsð□Þ. First of which described
conformal graviton and the second spin-3 field. The choice
of IW contraction that we took, led in the first case to the
conformal Carrollian algebra, ultrarelativistic limit of the
conformal algebra. Based on this algebra we have con-
structed an ultrarelativistic gravity theory starting from the
Chern-Simons action. For the spin-3 case, we have con-
ducted IW contraction along the same lines as for the
conformal spin-2 graviton, followed by the construction of
the gravity theory based on Chern-Simons action. It would
be conceivable to think of it as a possible spin-3 gener-
alization of the conformal Carroll gravity.
We have also studied holography of the conformal

Carroll gravity imposing the suitable set of boundary
conditions. In the metric formulation this boundary

conditions led to the generalized line element compared
to the one obtained from Carroll gravity. The line element
contained the dτ part with a shift in the ϕ direction which
was not possible to remove within Carroll or conformal
Carroll gravity. Considering the holography of spin-3
theory, we managed to find suitable projector and boundary
conditions which eliminate this shift.
As a future direction of study it would be interesting

to consider the spin-s generalization of the map between
the conformal Carroll algebras and the higher spin fields in
the metric formulation. It would be especially interesting to
see if formulation of three dimensional conformal higher
spin gravity in this limit would give additional information
on the restriction of interacting vertices in higher spin
theory.
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APPENDIX A: CONFORMAL GRAVITY EXAMPLE

Inserting the fim (3.19) into the first constraint from the Eq. (3.11) one obtains

1

2
ð−2∂0 β

jnηim þ 2∂0 β
jmηin þ 2∂0 β

inηjm − 2∂0 β
imηjn þ 4ηinηjm∂a∂aτ0

− 4ηimηjn∂a∂aτ0 − 4ηinηjm∂b∂aϕ
ab þ 4ηimηjn∂b∂aϕ

ab þ ∂i∂mϕjn þ 2ηjn∂i∂mτ0

− ∂i∂nϕjm − 2ηjm∂i∂nτ0 − ∂j∂mϕin − 2ηin∂j∂mτ0 þ ∂j∂nϕim þ 2ηim∂j∂nτ0

þ ∂m∂iϕjn − ∂m∂jϕin − ∂n∂iϕjm þ ∂n∂jϕimÞ ¼ 0 ðA1Þ

APPENDIX B: GAUGE PARAMETERS AND GAUGE TRANSFORMATIONS

In this Table III, we present the gauge parameters and linearized gauge transformations for the spin-2 case and in the
Table IV for the spin-3 case

TABLE III. List of linearized gauge transformations of the fields and gauge parameters for the ultrarelativistic
limit of the spin-2 conformal gravity.

Generator Gauge field Linearized gauge transformation Gauge parameter

D bm δbm ¼ 0 ξþ− ¼ 1
2
∂lξ

lþ

b0 δb0 ¼ 1
2
∂0∂lξ

lþ

Pi emi δemi ¼ 1
2
ð∂mξiþ þ ∂iξmþÞ − 1

2
hmi∂lξ

lþ ξiþ

e0i δe0i ¼ ∂0ξiþ

H τm δτm ¼ 0 ξ0þ

τ0 δτ0 ¼ ∂0ξ
0þ − 1

2
h00∂lξ

lþ

Jij ωjm;n δωmi;j ¼ 1
2
∂mð∂jξiþ − ∂iξjþÞ ξi;j ¼ 1

2
ð∂jξiþ − ∂iξjþÞ

− 1
2
∂lðhmi∂jξlþ − hjm∂iξlþÞ

ω0mi δω0i;j ¼ 1
2
∂0ð∂jξiþ − ∂iξjþÞ

Bi βmi δβmj ¼ −∂m∂jξ0þ þ 1
2
hjm∂l∂lξ0þ ξ0;i ¼ ∂iξ0þ

β0i δβ0
j ¼ −∂0∂jξ0þ þ 1

2
h00∂j∂lξ

lþ

Ki fmn δfmi ¼ 1
2
∂m∂i∂lξ

lþ ξi− ¼ − 1
2
∂i∂lξ

lþ

f0m δf0i ¼ 1
2
∂0∂i∂lξ

lþ

K0 κn δκm ¼ − 1
2
∂m∂l∂lξ0þ ξ0− ¼ − 1

2
∂m∂mξ0þ

κ0 δκ0 ¼ − 1
2
∂0∂l∂lξ0þ
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