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An Efficient Labeled/Unlabeled Random Finite Set
Algorithm for Multiobject Tracking

Thomas Kropfreiter, Florian Meyer, and Franz Hlawatsch

Abstract—We propose an efficient random finite set (RFS)
based algorithm for multiobject tracking in which the object
states are modeled by a combination of a labeled multi-Bernoulli
(LMB) RFS and a Poisson RFS. The less computationally de-
manding Poisson part of the algorithm is used to track potential
objects whose existence is unlikely. Only if a quantity charac-
terizing the plausibility of object existence is above a threshold,
a new labeled Bernoulli component is created and the object is
tracked by the more accurate but more computationally demand-
ing LMB part of the algorithm. Conversely, a labeled Bernoulli
component is transferred back to the Poisson RFS if the cor-
responding existence probability falls below another threshold.
Contrary to existing hybrid algorithms based on multi-Bernoulli
and Poisson RFSs, the proposed method facilitates track conti-
nuity and implements complexity-reducing features. Simulation
results demonstrate a large complexity reduction relative to other
RFS-based algorithms with comparable performance.

Index Terms—Filtering, multiobject tracking, multitarget
tracking, object detection, point processes, random finite sets,
sequential estimation.

I. INTRODUCTION

Multiobject tracking aims to estimate the time-dependent
states of an unknown, time-dependent number of objects from
a sequence of measurements [1]–[5]. This task is complicated
by a measurement-origin uncertainty, i.e., the fact that it is
unknown which measurement was generated by which ob-
ject. Most established multiobject tracking algorithms address
measurement-origin uncertainty by solving a data association
problem [1]. Here, we propose a multiobject tracking algo-
rithm that uses random finite sets (RFSs) and the framework
of finite set statistics (FISST) [2], [3] to model the object states
and measurements.

A. State of the Art
Existing RFS-based multiobject tracking methods include

the probability hypothesis density (PHD) filter [2], [6], the
cardinalized PHD (CPHD) filter [2], [7], and multi-Bernoulli
(MB) filters [2], [3], [8]. These filters do not require a data
association step. They have a low or moderate computational
complexity but can exhibit poor accuracy in more challenging
scenarios. They do not maintain track continuity, in that they
do not estimate entire trajectories of consecutive object states.
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under grant 17-19638S, and by the Office of Naval Research (ONR) under
grant N00014-21-1-2267. Parts of this paper were previously presented at
SDF 2018, Bonn, Germany, October 2018.

In many applications, track continuity is required. A widely
used approach to achieving track continuity is to model the
multiobject state by a labeled RFS [9]–[16]. Related tracking
filters include the generalized labeled multi-Bernoulli (GLMB)
filter [9], [10], [14], which is based on the GLMB RFS,
and the labeled multi-Bernoulli (LMB) filter [11]–[13], which
is based on the LMB RFS. Compared to the GLMB fil-
ter, the LMB filter incorporates certain approximations result-
ing in a much lower complexity. Recently, (G)LMB meth-
ods that are suitable for large-scale tracking scenarios [12]–
[15] and that consider information from multiple consecu-
tive measurements at each filtering step [16] have been pro-
posed. On the other hand, the track-oriented marginal multi-
Bernoulli/Poisson (TOMB/P) filter [17] is based on the union
of two unlabeled RFSs, namely, a Poisson RFS and an MB
RFS. The TOMB/P filter creates a new Bernoulli component
for each measurement and prunes Bernoulli components with
low existence probability. A modification of the TOMB/P filter
[18] transfers Bernoulli components with low existence proba-
bility to the Poisson RFS instead of pruning them; this transfer
is referred to as recycling in [18]. A “label-augmented” ver-
sion of the TOMB/P filter that maintains track continuity was
obtained in [19] by heuristically introducing labels in the for-
mulation of the TOMB/P filter.

An alternative approach to multiobject tracking with track
continuity is the paradigm of partially distinguishable popula-
tions [20]. This approach can lead to methods with a compu-
tational complexity that is linear in the number of tracks and
the number of measurements.1 Finally, track continuity can be
achieved by modeling the multiobject state as an RFS of trajec-
tories [21]–[24], where each trajectory is characterized by its
initial time, its length, and the sequence of object states it con-
tains. Algorithms based on this approach comprise the trajec-
tory PHD and CPHD filters [23], the trajectory multi-Bernoulli
mixture filter [21], and the trajectory Poisson multi-Bernoulli
mixture filter [22]. These methods can have performance ad-
vantages over the methods proposed in [9]–[15], [17]–[20],
but also a significantly increased computational complexity.

1Although relying on a different theoretical paradigm, the concept of distin-
guishable versus indistinguishable objects is partly similar to our concept of la-
beled versus unlabeled objects. However, whereas indistinguishable/unlabeled
objects are considered in both approaches as an entity (modeled by a Pois-
son RFS in our method), in our approach also unlabeled objects are tracked
within the Poisson part, i.e., the Poisson part is also updated by measure-
ments. Furthermore, in [20] track continuity is achieved by using partially
distinguishable populations, whereas in our method it is achieved by using
a labeled RFS. Finally, the two methods employ different approximations to
reduce computational complexity.
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B. Contribution

Here, we propose a multiobject tracking algorithm with
track continuity, termed LMB/P filter, that combines the
strengths of the LMB filter and the PHD filter and is inspired
by the label-augmented TOMB/P filter. We model the multi-
object state as a combination of an LMB RFS (i.e., a labeled
RFS) and a Poisson RFS (i.e., an unlabeled RFS). Whereas
in the TOMB/P filter the Poisson RFS facilitates the creation
of new Bernoulli components, the proposed LMB/P filter ex-
tends the use of the Poisson RFS to the tracking of “unlikely”
objects. Only if a quantity characterizing the plausibility of
object existence is above a threshold, the LMB/P filter creates
a new labeled Bernoulli component, and the corresponding ob-
ject is tracked within the more accurate but less efficient LMB
part. Conversely, the LMB/P filter transfers labeled Bernoulli
components to the Poisson RFS if the probability of object
existence falls below another threshold. The fact that unlikely
objects are tracked within the more efficient Poisson part re-
sults in a large reduction of computational complexity.

Our derivation of the proposed LMB/P filter is based on
a new system model for labeled/unlabeled objects in which
the multiobject state is modeled by a tuple of a labeled RFS
and an unlabeled RFS. This system model is interesting in its
own right as a basis for deriving further new labeled/unlabeled
multiobject tracking filters.

The proposed LMB/P filter is rooted in the framework of
Bayes-optimal multiobject tracking and employs several ap-
proximations to achieve computational feasibility and effi-
ciency. Since an exact implementation of the Bayes-optimal
multiobject tracking filter is computationally infeasible, cer-
tain approximations are employed by all practical multiobject
tracking algorithms. For example, in the popular PHD filter,
the posterior multiobject pdf is approximated by a Poisson
pdf. While this is a rather strong approximation, it can be mo-
tivated and justified by the fact that the PHD filter has a very
low computational complexity while still achieving good per-
formance in multiobject tracking scenarios of low to moderate
difficulty.

The proposed LMB/P filter employs a sequence of approx-
imations that are considerably less severe and more sophisti-
cated. Our goal is to combine the strengths of the PHD and
LMB filters. In fact, the LMB/P filter can be interpreted as
a combination of an LMB filter and a PHD filter that run in
parallel but not independently of each other, even though the
update relations of the PHD part are different from the update
relations of the original PHD filter. The derivation of our fil-
ter is based on approximating the posterior multiobject pdf by
a combined LMB–Poisson pdf. To further decrease the com-
putational complexity, we introduce certain additional approx-
imations and modifications. More specifically, we propose a
clustering scheme based on a new criterion in order to reduce
the complexity of data association, and we employ a flexi-
ble transfer between labeled and unlabeled objects in order
to track “unlikely” objects with low complexity and “likely”
objects with high accuracy. These approximations can be jus-
tified by the fact that they result in a low complexity and an
excellent performance even in challenging multiobject track-

ing scenarios.
This paper differs from our conference publication [25] in

that it proposes an improved label and measurement partition-
ing scheme, which results in a lower complexity; it presents
a detailed derivation of the approximations used in the up-
date step; it provides a detailed step-by-step statement of the
proposed algorithm; and it presents an improved experimen-
tal performance evaluation. Furthermore, the proposed method
differs from the TOMB/P filter with recycling [18] in that it
uses a labeled RFS in order to facilitate track continuity, it
incorporates a label and measurement partitioning scheme re-
sulting in a complexity reduction, and it updates the Poisson
RFS based on measurements that are unlikely to originate from
a labeled object.

C. Paper Organization and Notation

The remainder of this paper is organized as follows. After a
brief review of RFSs in Section II, Section III presents a sys-
tem model for labeled/unlabeled objects. The prediction step
and (exact) update step are presented in Sections IV and V, re-
spectively. In Sections VI and VII, we describe the complexity-
reducing approximations used in the update step of the LMB/P
filter. Section VIII summarizes the LMB/P filter algorithm.
Simulation results are presented in Section IX.

We will use the following notation. Vectors are denoted by
small boldface letters (e.g., x), unlabeled finite sets by capital
letters (e.g., X), and labeled finite sets by capital letters with
a tilde (e.g., X̃). Labeled states are denoted as (x, l), where
x is a state vector and l is a label. Randomness is indicated
by a sans serif font, such as in x or X. We write probability
density functions (pdfs) as f(·) or s(·) and probability mass
functions (pmfs) as p(·). The expectation operator is denoted
by E{·} and the probability by Pr{·}. Integrals are over the
entire space of the integration variable unless noted otherwise.
The superscript T indicates transposition, and IN denotes the
N×N identity matrix.

II. FUNDAMENTALS OF RFSS

A. Unlabeled RFSs

An (unlabeled) RFS X = {x(1), . . . , x(n)} is a random vari-
able whose realizations X are finite sets {x(1), . . . ,x(n)} of
vectors x(i) ∈ Rnx. Both the vectors x(i) and their number
n = |X| (the cardinality of X) are random, and the elements
x(i) are unordered. We define ρ(n) ≜ Pr{|X|= n} as the pmf
of the cardinality n = |X|. The set integral

∫
g(X)δX of a

real-valued set function g(X) is defined as described in [2].
The statistics of an RFS X can be described by the multi-

object pdf fX(X), briefly denoted f(X), or equivalently by
the probability generating functional (pgfl) [2]

GX[h] ≜
∫

hXf(X)δX.

Here, hX ≜
∏

x∈X h(x), where h : Rnx→ [0,∞) is any non-
negative vector function. The pgfl of the union X =

⋃J
j=1X

(j)

of statistically independent RFSs X(j), j ∈J ≜ {1, . . . , J} is
the product of the individual pgfls GX(j) [h], i.e,
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GX[h] =
∏
j∈J

GX(j) [h] . (1)

The PHD or intensity function λX(x) : Rnx→ [0,∞) of an
RFS X, briefly denoted λ(x), is a first-order moment of X
with the property that for any region S ⊆ Rnx, the integral∫
S λ(x)dx yields the expected number of objects whose states

are located in that region, i.e., E{|X∩S|}=
∫
|X∩S|f(X)δX .

The PHD can be obtained from the pgfl according to

λ(x) =
δ

δx
GX[h]

∣∣∣∣
h=1

, (2)

where δ
δxGX[h] denotes the functional derivative of GX[h] [2].

For a Poisson RFS, the cardinality n is Poisson distributed
with mean µ, i.e., ρ(n) = e−µµn/n! , n∈N0. For each cardi-
nality n= |X|, the individual elements x are independent and
identically distributed (iid) with some “spatial pdf” f(x). The
pgfl is [2]

GX[h] = P [h;λ] ≜ eλ[h−1], (3)

where λ[h−1] =
∫
(h(x)−1)λ(x)dx, and the PHD (intensity

function) is λ(x) = µf(x).
A Bernoulli RFS is parametrized by a probability of exis-

tence r and a spatial pdf s(x). It is either empty with probabil-
ity 1−r or it contains one element x ∼ s(x) with probability
r. The pgfl is [2]

GX[h] = B[h; r, s] ≜ 1− r + rs[h] , (4)

with s[h] =
∫
h(x)s(x)dx. A linear combination of Bernoulli

pgfls is again a Bernoulli pgfl: more specifically, for weights
γi satisfying γi≥0 and

∑
iγi=1, we have∑

i

γiB
[
h; r(i), s(i)

]
= B[h; r, s] , (5)

where

r =
∑
i

γir
(i), s(x) =

1

r

∑
i

γir
(i)s(i)(x) . (6)

An MB RFS is the union of a fixed number J of statistically
independent Bernoulli RFSs X(j), j∈J parametrized by pos-
sibly different probabilities of existence r(j) and spatial pdfs
s(j)(x). The pgfl is (cf. (1) and (4))

GX[h] =MJ
[
h; r(·), s(·)

]
≜
∏
j∈J

B
[
h; r(j), s(j)

]
, (7)

where s(j)[h] =
∫
h(x)s(j)(x)dx. Here, the superscript (·)

used in MJ
[
h; r(·), s(·)

]
indicates that MJ

[
h; r(·), s(·)

]
in-

volves the set of existence probabilities {r(j)}j∈J and the
set of spatial pdfs {s(j)(x)}j∈J .

B. Labeled RFSs
In a labeled RFS X̃, each element is a tuple of the form

(x, l) ∈ Rnx×L, where the label space L is a countable set.
Thus, a realization of X̃ has the form X̃ =

{
(x(1), l(1)), . . . ,

(x(n), l(n))
}

. The set integral
∫
g(X̃)δX̃ of a real-valued func-

tion g(X̃) can be defined as described in [3], [9]. Analo-
gously to an unlabeled RFS, the statistics of a labeled RFS
can be described by the multiobject pdf f(X̃) [3], [9], [10]
or by the pgfl GX̃[h̃] ≜

∫
h̃X̃f(X̃)δX̃ [3, p. 449], where

h̃X̃ ≜
∏

(x,l)∈X̃ h̃(x, l) with h̃ : Rnx×L→ [0,∞).

An LMB RFS X̃ is an MB RFS where for any realization X̃
each single-vector set {x} corresponding to a Bernoulli com-
ponent X(j) is augmented by a distinct label l ∈ L∗. Here,
adopting the labeling procedure of [3], the same label l is
assigned to each state realization x of a given Bernoulli com-
ponent X(j), and L∗ ⊆ L denotes the finite set of assigned
labels. To simplify the notation, we index the Bernoulli RFSs
directly by their labels l, i.e., they are denoted X(l), l∈L∗ with
corresponding existence probabilities r(l) and spatial distribu-
tions s(l)(x) [11]. The LMB RFS X̃ is completely specified
by the parameter set

{(
r(l), s(l)(x)

)}
l∈L∗ . The pgfl is given

by [3]

GX̃[h̃] = LL∗
[
h̃, r(·), s(·)

]
≜
∏
l∈L∗

B
[
h̃; r(l), s(l)

]
, (8)

with s(l)[h̃] =
∫
h̃(x, l)s(l)(x)dx (cf. (4)).

An LMB mixture (LMBM) RFS generalizes the LMB RFS
in that its pgfl is a mixture of a finite number of LMB pgfls
with identical label set L∗, i.e.,

GX̃[h̃] =
∑
i

wiLL∗
[
h̃, r(·,i), s(·,i)

]
=
∑
i

wi

∏
l∈L∗

B
[
h̃; r(l,i), s(l,i)

]
.

Here, the weights satisfy wi≥0 and
∑

iwi=1, and s(l,i)[h̃] =∫
h̃(x, l)s(l,i)(x)dx.

III. SYSTEM MODEL

In this section, we present a new labeled/unlabeled RFS-
based system model that provides statistical descriptions of
the state evolution process and the measurement process. The
proposed model is valid for all types of labeled/unlabeled mul-
tiobject state RFSs; the specific RFS type used for the multi-
object state in our LMB/P filter will be described in Section
IV. The multiobject state is composed of a labeled RFS part
and an unlabeled RFS part. The labeled RFS part encodes the
identities of the modeled objects and thus allows these objects
to be distinguished. By contrast, the objects modeled by the
unlabeled RFS part are indistinguishable.

More specifically, the multiobject state at time k−1 is con-
stituted by the tuple (X̃k−1,Xk−1) of a labeled RFS X̃k−1 and
an unlabeled RFS Xk−1. The elements of X̃k−1 are random
tuples (xk−1, l) ∈ Rnx × L∗

k−1, while the elements of Xk−1

are random vectors xk−1 ∈ Rnx. Here, xk−1 typically con-
sists of the object’s position and possibly further parameters,
and L∗

k−1 is the set of labels corresponding to X̃k−1, which
is a subset of the label space Lk−1 = {1, . . . , k−1} × N.
Each label l∈Lk−1 is a tuple of the form l = (k′, ν), where
k′ ∈ {1, . . . , k−1} represents the object’s time of birth and
ν∈N distinguishes objects born at the same time.

A. State-Evolution Model

The state-evolution model describes the statistics of the
multiobject state at time k, (X̃k,Xk), for a given multi-
object state at time k − 1, (X̃k−1, Xk−1), as detailed in
what follows. At time k − 1, an object with labeled state
(xk−1, l)∈ X̃k−1 either survives with probability pS(xk−1, l)
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or dies with probability 1−pS(xk−1, l). If it survives, its new
state xk (without the label l) is distributed according to the
transition pdf f(xk|xk−1, l), and the label is preserved by
the state transition. This means that the labels of surviving
objects do not change, and thus we denote them as l rather
than lk. The states of different objects evolve independently,
i.e.,2 (xk, l) is conditionally independent, given (xk−1, l), of
all (x′k, l

′) with l′ ̸= l and also of all states x′′k ∈ Xk. Due to
these assumptions, the multiobject state of the labeled objects
at time k, given (X̃k−1, Xk−1), is described by an LMB RFS
(see Section II-B)

X̃k =
⋃

l∈L∗
k−1

S̃k(xk−1, l) ,

where S̃k(xk−1, l) is a labeled Bernoulli RFS with existence
probability r

(l)
k = pS(xk−1, l) and spatial pdf s

(l)
k (xk) =

f(xk|xk−1, l). Thus, X̃k is characterized by the Bernoulli pa-
rameter set

{(
pS(xk−1, l), f(xk|xk−1, l)

)}
l∈L∗

k−1

.

Furthermore, at time k−1, an object with unlabeled state
xk−1 ∈ Xk−1 either survives with probability3 pS(xk−1) or
dies with probability 1−pS(xk−1). If it survives, its new state
xk is distributed according to the transition pdf f(xk|xk−1).
The states of different unlabeled objects evolve independently,
i.e., xk is conditionally independent, given xk−1, of all the
other x′k and also of the states (x′′k , l) ∈ X̃k. Accordingly, the
multiobject state of the survived unlabeled objects at time k,
given (X̃k−1, Xk−1), is modeled as an MB RFS (see Sec-
tion II-A) XS

k =
⋃

xk−1∈Xk−1
Sk(xk−1), where Sk(xk−1) is a

Bernoulli RFS with parameters rk = pS(xk−1) and sk(xk) =
f(xk|xk−1). Thus, XS

k is characterized by the Bernoulli pa-
rameter set

{(
pS(xk−1), f(xk|xk−1)

)}
xk−1∈Xk−1

.

Object birth is modeled by an (unlabeled) Poisson RFS XB
k

with mean parameter µB and spatial pdf fB(xk) and, hence,
PHD λB

k(xk) = µBfB(xk).4 Thus, the entirety of unlabeled
objects at time k, given (X̃k−1, Xk−1), is described by the
RFS

Xk = XS
k ∪ XB

k =

( ⋃
xk−1∈Xk−1

Sk
(
xk−1

))
∪ XB

k .

We assume that all newborn unlabeled object states xk∈XB
k are

independent of all x′k ∈Xk, all (x′′k , l) ∈ X̃k, and all measure-
ments (see below) zk ∈ Zk. Due to our above independence
assumptions, the RFSs XS

k and XB
k are conditionally indepen-

dent given
(
X̃k−1, Xk−1

)
.

2We note that (xk, l) is short for (xk, l= l), which denotes the state of an
object with a specific (thus, deterministic) label l, whereas (xk, l) denotes the
state of an object with an arbitrary (thus, random) label l.

3With an abuse of notation, pS(·) is used to denote both the survival prob-
ability of labeled objects (with argument (xk−1, l)) and of unlabeled objects
(with argument xk−1). A similar remark applies to the detection probability
pD(·) considered in Section III-B.

4In our system model, newborn objects may not be labeled objects. As we
will explain in Section V-A, there do exist “new” labeled objects, which are
previously unlabeled objects that are augmented by a new distinct label and
thereby are transferred from the unlabeled RFS to the labeled RFS. Thus, this
creation of new labeled objects is not modeled by a birth process as in the
LMB filter [11]; it is considered as a part of the tracking algorithm, rather
than of the system model.

B. Measurement Model
At time k, a sensor produces Mk measurements z

(1)
k , . . . ,

z
(Mk)
k , which are modeled as an (unlabeled) RFS Zk ≜

{
z
(1)
k ,

. . . , z
(Mk)
k

}
.5 The measurements may originate from a labeled

object, an unlabeled object, or clutter.
A labeled object with state (xk, l) ∈ X̃k is detected (i.e.,

it generates a measurement) with probability pD(xk, l) or is
missed (i.e., it does not generate a measurement) with proba-
bility 1−pD(xk, l). In the first case, the object generates ex-
actly one measurement zk, which is distributed according to
the likelihood function f(zk|xk, l). We assume that zk is con-
ditionally independent, given (xk, l), of all the other z′k, all the
other (x′k, l

′)∈ X̃k, and all the x′′k∈Xk. Accordingly, the mea-
surements originating from labeled objects, given (X̃k, Xk),
are modeled by an MB RFS ZL

k =
⋃

l∈L∗
k−1

ΘL
k(xk, l), where

ΘL
k(xk, l) is a Bernoulli RFS with parameters r(l)k = pD(xk, l)

and s(l)(xk) = f(zk|xk, l). Thus, ZL
k is characterized by the

Bernoulli parameter set
{(

pD(xk, l), f(zk|xk, l)
)}

l∈L∗
k−1

.
An unlabeled object with state xk ∈ Xk is detected with

probability pD(xk) or is missed with probability 1−pD(xk). In
the first case, it generates exactly one measurement zk, which
is distributed according to the likelihood function f(zk|xk).
We assume that zk is conditionally independent, given xk,
of all the other z′k, all the other x′k ∈ Xk, and all the
(x′′k , l) ∈ X̃k. Hence, the measurements originating from un-
labeled objects, given (X̃k, Xk), are modeled by an MB
RFS ZU

k =
⋃

xk∈Xk
ΘU

k (xk), where ΘU
k (xk) is a Bernoulli

RFS with parameters rk = pD(xk) and s(xk) = f(zk|xk).
Thus, ZU

k is characterized by the Bernoulli parameter set{(
pD(xk), f(zk|xk)

)}
xk∈Xk

.
Finally, the clutter-originated measurements are modeled by

a Poisson RFS ZC
k with mean parameter µC and spatial pdf

fC(zk) and, hence, PHD λC
k(zk) = µCfC(zk). It thus follows

that the overall measurement RFS at time k, given the multi-
object state (X̃k, Xk), is

Zk = ZL
k ∪ ZU

k ∪ ZC
k

=

( ⋃
l∈L∗

k−1

ΘL
k(xk, l)

)
∪
( ⋃

xk∈Xk

ΘU
k (xk)

)
∪ ZC

k .

We assume that all clutter-originated measurements zk ∈ ZC
k

are independent of all z′k∈ ZU
k and z′′k∈ ZL

k and all (xk, l)∈ X̃k

and x′k ∈ Xk. Due to our above independence assumptions,
the RFSs ZL

k , ZU
k , and ZC

k are conditionally independent given
(X̃k, Xk). We note that equivalent independence assumptions,
although possibly formulated in a different manner, underlie
many established RFS-based [2], [3] and other [1], [4] tracking
algorithms.

IV. PREDICTION STEP

Adopting a Bayesian sequential inference framework,
the fundamental quantity to be calculated recursively

5The measurement model describes the statistical dependence of the ran-
dom (unobserved) measurements on the multiobject state. Accordingly, at this
point, the measurements are considered random and thus denoted as Zk ={
z
(1)
k , . . . , z

(Mk)
k

}
. However, in the context of our tracking algorithm (see

Sections V–VIII), the measurements will be considered as deterministic (ob-
served) and will thus be denoted as Zk =

{
z
(1)
k , . . . , z

(Mk)
k

}
.
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is the joint posterior multiobject pdf of X̃k and Xk,
f(X̃k, Xk|Z1:k) with Z1:k ≜ (Z1, . . . , Zk), or equiv-
alently the joint posterior pgfl GX̃k,Xk

[h̃, h|Z1:k] ≜∫ ∫
h̃X̃khXkf(X̃k, Xk|Z1:k) δX̃k δXk. We make the simplify-

ing approximation that, at the previous time k−1, X̃k−1 and
Xk−1 are conditionally independent given Z1:k−1, so that

GX̃k−1,Xk−1
[h̃, h|Z1:k−1] = GX̃k−1

[h̃]GXk−1
[h] . (9)

(Note that in all pgfl factors and approximating pgfls, we sup-
press the conditions Z1:k−1 and Z1:k for notational simplicity.)
The above factorization will be preserved automatically over
time. That is, using the proposed algorithm—in particular, the
approximations in the update step described in Sections VI
and VII—, the joint posterior pgfl will factor into a labeled
part and an unlabeled part also at time k and at all future
times.

The pgfl factors GX̃k−1
[h̃] and GXk−1

[h] in (9) are given as
follows. We model X̃k−1 as an LMB RFS consisting of |L∗

k−1|
labeled Bernoulli RFSs with existence probabilities r

(l)
k−1 and

spatial pdfs s
(l)
k−1(xk−1), l∈L∗

k−1. Here, L∗
k−1⊆Lk−1 is the

set of labels underlying X̃k−1. Thus, according to (8),

GX̃k−1
[h̃] =

∏
l∈L∗

k−1

B
[
h̃; r

(l)
k−1, s

(l)
k−1

]
, (10)

where s
(l)
k−1[h̃] =

∫
h̃(xk−1, l)s

(l)
k−1(xk−1)dxk−1. Further-

more, we model Xk−1 as a Poisson RFS with PHD
λk−1(xk−1). Thus, according to (3),

GXk−1
[h] = P [h;λk−1] . (11)

Taken together, Eqs. (9)–(11) express the fact that all the ob-
ject states—both the labeled states, (xk−1, l)∈ X̃k−1, and the
unlabeled states, xk−1 ∈Xk−1—are conditionally independent
given Z1:k−1. A similar approximation, though formulated in
a different manner, is used by many established RFS-based
[2], [3] and other [1], [4] tracking algorithms.

The joint pgfl GX̃k−1,Xk−1
[h̃, h|Z1:k−1] in (9) represents

the joint RFS (X̃k−1,Xk−1). Since the elements of the la-
beled RFS X̃k−1 are defined on the space Rnx × L∗

k−1

and the elements of the unlabeled RFS Xk−1 on the space
Rnx, the elements of (X̃k−1,Xk−1) are defined on the space
Rnx×L∗

k−1×Rnx. Accordingly, in (9), the LMB pgfl GX̃k−1
[h̃]

(cf. (10)) describes labeled object states that are defined on the
space Rnx × L∗

k−1, and the Poisson pgfl GXk−1
[h] (cf. (11))

describes unlabeled object states that are defined on the space
Rnx.

As previously stated in Section III, the labeled state RFS,
i.e, the LMB RFS X̃k−1, allows the corresponding objects to
be distinguished, whereas the objects modeled by the unla-
beled state RFS, i.e., the Poisson RFS Xk−1, are indistinguish-
able. On the other hand, the Poisson RFS is parametrized
by a single function, i.e., its PHD, and it enables a much
more efficient representation and processing of a large num-
ber of potentially existing objects. Therefore, we will model
objects that are likely to exist by the computationally more
demanding LMB part and objects that are unlikely to exist by
the computationally less demanding Poisson part. The LMB

part guarantees track continuity and thereby allows the consis-
tent tracking of distinguishable objects over consecutive time
steps.

The proposed LMB/P filter propagates the posterior pgfl
GX̃k,Xk

[h̃, h|Z1:k] from one time step to the next. This con-
sists of a prediction step and an update step. In the predic-
tion step, the previous posterior pgfl GX̃k−1,Xk−1

[h̃, h|Z1:k−1]
given by (9)–(11) is converted into a predicted posterior pgfl
GX̃k,Xk

[h̃, h|Z1:k−1] ≜
∫
h̃X̃khXkf(X̃k, Xk|Z1:k−1)δX̃k δXk,

where f(X̃k, Xk|Z1:k−1) is the predicted posterior multiob-
ject pdf. This conversion involves the state-transition param-
eters pS(xk−1, l), f(xk|xk−1, l), pS(xk−1), f(xk|xk−1), and
λB
k(xk) = µBfB(xk) introduced in Section III-A.

The derivation of the prediction step is analogous to that in
[17] but extends it from an unlabeled to a partly labeled mul-
tiobject state. Following [17], one obtains that the predicted
posterior pgfl factors analogously to (9), i.e.,

GX̃k,Xk
[h̃, h|Z1:k−1] = GP

X̃k
[h̃]GP

Xk
[h] . (12)

Here, the factor GP
X̃k
[h̃] is of LMB form, i.e.,

GP
X̃k
[h̃] =

∏
l∈L∗

k−1

B
[
h̃; r

(l)
k|k−1, s

(l)
k|k−1

]
,

where

r
(l)
k|k−1 = r

(l)
k−1

∫
pS(xk−1, l)s

(l)
k−1(xk−1)dxk−1 , (13)

s
(l)
k|k−1(xk) =

∫
f(xk|xk−1, l)pS(xk−1, l)s

(l)
k−1(xk−1)dxk−1∫

pS(x′
k−1, l)s

(l)
k−1(x

′
k−1)dx′

k−1

,

(14)
for l ∈ L∗

k−1. We recall that r
(l)
k−1 and s

(l)
k−1(xk−1) are the

parameters of GX̃k−1
[h̃] in (10). Relations (13) and (14) equal

the prediction relations of the LMB filter [11].

The other factor in (12), GP
Xk
[h], is not a Poisson pgfl any-

more but a weighted Poisson pgfl [17]. Still following [17],
we approximate it by the pgfl of the Poisson RFS whose PHD
equals the PHD corresponding to GP

Xk
[h]. This yields

GP
Xk
[h] ≈ P [h;λk|k−1] , (15)

with

λk|k−1(xk)

= λB
k(xk) +

∫
f(xk|xk−1)pS(xk−1)λk−1(xk−1)dxk−1 . (16)

Here, we recall that λk−1(xk−1) is the PHD corresponding to
GXk−1

[h] in (11) and λB
k(xk) is the birth PHD modeling the

birth of objects as explained in Section III-A. We note that the
above Poisson pgfl approximation is also used in the prediction
step of the PHD filter [6], and in fact relation (16) equals the
prediction relation of the PHD filter [6]. We furthermore note
that the approximation can be interpreted as the minimization
of a Kullback-Leibler divergence [26].

We conclude that when the approximation (15) is used, the
prediction step preserves the LMB–Poisson form of the pre-
vious posterior pgfl GX̃k−1,Xk−1

[h̃, h|Z1:k−1].
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V. EXACT UPDATE STEP

In the update step, the predicted posterior pgfl
GX̃k,Xk

[h̃, h|Z1:k−1] is converted into the new posterior
pgfl at time k, GX̃k,Xk

[h̃, h|Z1:k]. This conversion involves
the current measurement set Zk as well as the measurement
parameters pD(xk, l), f(zk|xk, l), pD(xk), f(zk|xk), and
λC
k(zk) = µCfC(zk) introduced in Section III-B. The deriva-

tion of the update step is again analogous to that in [17]. It
turns out that GX̃k,Xk

[h̃, h|Z1:k] factors according to

GX̃k,Xk
[h̃, h|Z1:k] = G′

X̃k,Xk
[h̃, h] ḠXk

[h] , (17)

where the factor G′
X̃k,Xk

[h̃, h] represents detected objects and
the factor ḠXk

[h] undetected objects. Detected objects are la-
beled or unlabeled objects—either likely to exist or not—that
generated a measurement in the current or a previous update
step, while undetected objects are unlabeled objects that are
unlikely to exist and did not generate a measurement in the
current update step. Expressions of G′

X̃k,Xk
[h̃, h] and ḠXk

[h]

will be provided in the next two subsections.
The “exact” update step discussed in this section has a high

complexity. We emphasize that the update step of the proposed
LMB/P filter is different in that it involves several complexity-
reducing modifications and approximations, to be described in
Sections VI and VII.

A. Expression of the pgfl of Detected Objects

Next, we will provide an expression of the pgfl of detected
objects, G′

X̃k,Xk
[h̃, h]. Let Mk ≜ {1, . . . ,Mk} denote the set

of measurement indices (cf. Section III-B). We introduce the
random association vector ak ∈ ({0}∪Mk)

|L∗
k−1|, whose en-

tries a
(l)
k , l ∈ L∗

k−1 are given as a
(l)
k ≜ m ∈ Mk if the la-

beled object with state (xk, l) generates measurement z(m)
k and

a
(l)
k ≜ 0 if it does not generate a measurement. Note that in

the first case, the labeled object with state (xk, l) is detected,
and in the second case, it is missed. We call each possible
value ak of the association vector ak an association hypoth-
esis, and we call ak admissible if all the nonzero entries a

(l)
k

are different, which implies that at most one measurement is
assigned to a labeled object and no measurement is assigned
to more than one labeled object. The association alphabet Ak

is defined as the set of all admissible ak.
Using ak, a derivation analogous to [17] shows that

G′
X̃k,Xk

[h̃, h] is a mixture of pgfls, where each pgfl is the prod-

uct of an LMB pgfl LL∗
k−1

[
h̃; r

(·,a(·)
k )

k , s
(·,a(·)

k )

k

]
(see (8)) and an

MB pgfl MMak

[
h; r̄

(·)
k , s̄

(·)
k

]
(see (7)), i.e.,

G′
X̃k,Xk

[h̃, h] =
∑

ak∈Ak

wak
LL∗

k−1

[
h̃; r

(·,a(·)
k )

k , s
(·,a(·)

k )

k

]
×MMak

[
h; r̄

(·)
k , s̄

(·)
k

]
(18)

=
∑

ak∈Ak

wak

( ∏
l∈L∗

k−1

B
[
h̃; r

(l,a
(l)
k )

k , s
(l,a

(l)
k )

k

])
×

∏
m∈Mak

B
[
h; r̄

(m)
k , s̄

(m)
k

]
. (19)

Here, Mak
⊆ Mk is the index set of all measurements that

are not associated with any labeled object via ak ∈Ak; note
in particular that Mak

= ∅ indicates that all measurements

are associated with labeled objects. Expressions of r
(l,a

(l)
k )

k ,

s
(l,a

(l)
k )

k (xk) and r̄
(m)
k , s̄(m)

k (xk) will be presented shortly. Fur-
thermore, the weights wak

in (18) and (19) are given up to a
normalization constant by

wak
∝
( ∏

l∈L∗
k−1

β
(l,a

(l)
k )

k

) ∏
m∈Mak

β
(m)
k , (20)

where β
(l,a

(l)
k )

k and β
(m)
k are referred to as association weights

[17]. Note that in (19), each mixture component corresponds
to one of the admissible association hypotheses ak∈Ak. The

LMB pgfl LL∗
k−1

[
h̃; r

(·,a(·)
k )

k , s
(·,a(·)

k )

k

]
represents objects that are

likely to exist and are either detected or undetected in the cur-
rent update step, and the MB pgfl MMak

[
h; r̄

(·)
k , s̄

(·)
k

]
repre-

sents objects that are unlikely to exist but, nevertheless, are
detected in the current update step.

Next, we present expressions of β
(l,a

(l)
k )

k , r
(l,a

(l)
k )

k , and

s
(l,a

(l)
k )

k (xk) for l∈L∗
k−1 [17]. For a(l)k =m∈Mk, we have

β
(l,m)
k = r

(l)
k|k−1 b

(l,m)
k , (21)

r
(l,m)
k = 1 , (22)

s
(l,m)
k (xk) =

pD(xk, l)f
(
z
(m)
k

∣∣xk, l
)
s
(l)
k|k−1(xk)

b
(l,m)
k

, (23)

with b
(l,m)
k ≜

∫
pD(xk, l)f

(
z
(m)
k

∣∣xk, l
)
s
(l)
k|k−1(xk)dxk . Here,

r
(l)
k|k−1 and s

(l)
k|k−1(xk) were calculated in the prediction step,

see (13) and (14). Note that (22) indicates that the object
with label l exists; its state (xk, l) is distributed according
to s

(l,m)
k (xk) in (23). The plausibility of this event (i.e., that

the object with state (xk, l) exists and generates measurement
z
(m)
k ) is quantified by β

(l,m)
k in (21). On the other hand, for

a
(l)
k = 0, we have

β
(l,0)
k = 1− r

(l)
k|k−1 + r

(l)
k|k−1c

(l)
k , (24)

r
(l,0)
k =

r
(l)
k|k−1c

(l)
k

β
(l,0)
k

, (25)

s
(l,0)
k (xk) =

(
1−pD(xk, l)

)
s
(l)
k|k−1(xk)

c
(l)
k

, (26)

with c
(l)
k ≜

∫ (
1− pD(xk, l)

)
s
(l)
k|k−1(xk)dxk . Thus, the exis-

tence of the object with label l is uncertain (as described by
the existence probability r

(l,0)
k in (25)). Note that r

(l,0)
k = 0

would indicate that the labeled object with state (xk, l) does
not exist and r

(l,0)
k = 1 would indicate that the object exists

but does not generate a measurement. If the object exists, its
state (xk, l) is distributed according to s

(l,0)
k (xk) in (26). The

plausibility of these events (i.e., that the labeled object with
state (xk, l) does not exist or it exists but does not generate
a measurement) is quantified by β

(l,0)
k in (24). Note that in

the latter case, the labeled object with state (xk, l) does not
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generate a measurement in the current update step, but it did
generate a measurement in a previous update step.

Finally, expressions of β
(m)
k , r̄(m)

k , and s̄
(m)
k (xk) for m ∈

Mk are given by [17]

β
(m)
k = λC

k(z
(m)
k ) + d

(m)
k , (27)

r̄
(m)
k =

d
(m)
k

β
(m)
k

, (28)

s̄
(m)
k (xk) =

pD(xk)f
(
z
(m)
k

∣∣xk

)
λk|k−1(xk)

d
(m)
k

, (29)

with d
(m)
k ≜

∫
pD(xk)f

(
z
(m)
k

∣∣xk

)
λk|k−1(xk)dxk . Here,

λk|k−1(xk) was calculated in the prediction step, see (16),
and λC

k(z
(m)
k ) is the clutter PHD introduced in Section III-B.

Note that r̄(m)
k =1 would indicate that measurement z(m)

k orig-
inates from an unlabeled object; the state xk of that object is
distributed according to s̄

(m)
k (xk) in (29). On the other hand,

r̄
(m)
k = 0 would indicate that z(m)

k originates from clutter. The
plausibility of this event (i.e., that measurement z

(m)
k origi-

nates from an unlabeled object or from clutter) is quantified
by β

(m)
k in (27).

B. Expression of the pgfl of Undetected Objects

It remains to provide an expression of the pgfl of undetected
objects, ḠXk

[h] in (17). (Recall that an undetected object is
an unlabeled object that is unlikely to exist and did not gen-
erate a measurement in the current update step.) A derivation
analogous to [17] yields the Poisson pgfl (see (3))

ḠXk
[h] = P [h;λk] , (30)

with
λk(xk) = (1−pD(xk))λk|k−1(xk) . (31)

We note that ḠXk
[h] represents objects that are unlikely to

exist and are also undetected.
In summary, the exact update step transforms the predicted

posterior pgfl GX̃k,Xk
[h̃, h|Z1:k−1] in (12), which is approxi-

mately the product of an LMB pgfl and a Poisson pgfl, into
the new posterior pgfl GX̃k,Xk

[h̃, h|Z1:k], which, according to
(17) and our discussion above, is the product of the LMB–
MB mixture pgfl G′

X̃k,Xk
[h̃, h] in (18), (19) and the Poisson

pgfl ḠXk
[h] in (30). The exact update step also takes into ac-

count the detection of objects that are unlikely to exist. This is
achieved by the MB pgfl MMak

[
h; r̄

(·)
k , s̄

(·)
k

]
involved in (18),

which comprises one Bernoulli component for each observed
measurement.

VI. UPDATE STEP OF THE LMB/P FILTER:
FIRST APPROXIMATION STAGE

The proposed LMB/P filter is now obtained by two succes-
sive approximations of the exact update step discussed above,
which result in a significant reduction of complexity. The first
approximation stage results in a transformation of certain un-
labeled objects into labeled objects. More concretely, to re-
duce the complexity of data association, we first cluster the

L∗
k−1

Lres,tr
k

L(1)
k−1

L(1)tr
k

L(C)
k−1

L(C)tr
k

L(1)tot
k L(C)tot

k

L(1)leg
k L(1)unl

k L(C)leg
k

L(C)unl
k

L∗
k

Lunl
k

Introduced in:

Sec. III

Sec. VI-A

Sec. VI-B

Sec. VI-B

Sec. VI-B

Sec. VII-A

Sec. VII-A
Sec. VII-B

Fig. 1: Overview of the label sets involved in the approximations
described in Sections VI and VII.

LMB–MB mixture pgfl G′
X̃k,Xk

[h̃, h] in (19) into C LMB–
MB mixture pgfls. Then we transfer unlabeled objects that
were previously unlikely to exist but satisfy a suitable thresh-
old criterion to the labeled object part, which means that they
are now considered as objects that are likely to exist.

A. Partitioning of Label and Measurement Sets

The clustering of G′
X̃k,Xk

[h̃, h] is based on a partitioning of
the label set L∗

k−1 and of the measurement index set Mk =
{1, . . . ,Mk}. We partition the label set L∗

k−1 into C ∈ N
disjoint subsets, i.e.,

L∗
k−1 =

⋃
c∈C

L(c)
k−1 , (32)

where C≜{1, . . . , C}, and we partition the measurement index
set Mk into C + 1 disjoint subsets, i.e.,

Mk =

( ⋃
c∈C

M(c)
k

)
∪Mres

k . (33)

Each measurement index subset M(c)
k ⊆Mk is associated with

a corresponding label subset L(c)
k−1⊆L∗

k−1, whereas the resid-
ual measurement index subset Mres

k = Mk \ ⋃c∈C M
(c)
k is

not associated with any label set. More specifically, the parti-
tionings (32) and (33) are chosen such that for any c∈C, the
association (described by a

(l)
k ) of an object with state (xk, l),

l ∈ L(c)
k−1 with a measurement with index m is plausible for

m ∈M(c)
k and implausible for m ∈M(c′)

k with c′ ̸= c. Here,
the plausibility of an association is quantified by the associa-
tion weight β(l,m)

k in (21). An algorithm for constructing the
partitionings (32) and (33) is presented in Appendix A. This al-
gorithm uses a nonnegative threshold γC that determines L(c)

k−1,
M(c)

k , and Mres
k .

The partitionings of L∗
k−1 and Mk are illustrated in Fig. 1

and Fig. 2, respectively. The overall partitioning scheme is
similar in spirit to the classical gating procedure used, e.g., in
the joint probabilistic data association filter [1]. However, it is
different in that it considers also the (non)existence of objects,
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Mk

M(1)
k M(C)

k Mres
k

M′
k

Mres,tr
k

Introduced in:

Sec. V-A

Sec. VI-A

Sec. VI-B

Fig. 2: Overview of the measurement index sets involved in the ap-
proximations described in Sections VI and VII.

it uses the association weights β(l,m)
k as plausibility measures,

and it collects all the residual measurement indices in Mres
k .

B. Approximation of the pgfls of Detected and Undetected Ob-
jects

Based on the label and measurement partitionings described
above, we approximate the posterior pgfl GX̃k,Xk

[h̃, h|Z1:k] in
(17) according to

GX̃k,Xk
[h̃, h|Z1:k] ≈ G′

X̃k
[h̃]G′

Xk
[h] , (34)

where expressions of the factors G′
X̃k
[h̃] and G′

Xk
[h] will

be provided presently. As mentioned earlier, this approxima-
tion involves the clustering of the LMB-MB mixture pgfl
GX̃k,Xk

[h̃, h|Z1:k] into C LMB-MB mixture pgfls and the
transfer of certain unlabeled objects to labeled objects. The
clustering step combined with the pruning of implausible as-
sociation hypotheses significantly reduces the complexity of
data association. The transfer step implicates that unlabeled
objects that are likely to exist are now modeled by the la-
beled object part. A detailed description of the clustering and
transfer steps is provided in Appendix B. Most of the pgfls
involved in the approximations described in Sections VI and
VII and in Appendix B are illustrated in Fig. 3.

Labeled pgfl factor: The labeled pgfl factor G′
X̃k
[h̃] in (34)

represents objects that are likely to exist; it is given by

G′
X̃k
[h̃] ≜ LLres,tr

k

[
h̃; r̄

(·)
k , s̄

(·)
k

]∏
c∈C

G(c)[h̃] . (35)

Here, according to the derivation described in Appendix
B.3, the labeled objects represented by the LMB pgfl
LLres,tr

k

[
h̃; r̄

(·)
k , s̄

(·)
k

]
include objects that were transferred from

the set of unlabeled objects. The label set Lres,tr
k consists of

all labels l = (k,m) with m ∈Mres,tr
k , where Mres,tr

k ⊆ Mres
k

comprises all m∈Mres
k for which r̄

(m)
k ≥ γtr , with γtr being a

positive threshold. Furthermore, r̄(m)
k and s̄(m)(xk) are given

by (28) and (29), respectively.
The factors G(c)[h̃] in (35), just as the factor

LLres,tr
k

[
h̃; r̄

(·)
k , s̄

(·)
k

]
, represent labeled objects that are likely

to exist. As described in Appendix B.2, some of these ob-
jects were transferred from the set of unlabeled objects
within the respective cluster c. The underlying clustering
step, described in Appendix B.1, significantly reduces the
complexity of data association. For an expression of the

GX̃k,Xk
[h̃, h|Z1:k]

G′
X̃k,Xk

[h̃, h] ḠXk
[h]

G(1)[h̃, h] G(C)[h̃, h] MMres
k
[h]

G(1)[h̃] G(C)[h̃]
LLres,tr

k
[h̃] MM′

k
[h]

G′
X̃k
[h̃]

G(1)′[h̃] G(C)′[h̃]

G′
Xk
[h]

G∗
X̃k
[h̃]

LLunl
k
[h̃]

MLunl
k
[h] Gunl

X̃k,Xk
[h̃, h]

Gunl
Xk
[h]

G∗
Xk
[h]

Introduced in:

Sec. IV

Sec. V

Stage 1:

Sec. B.1

Sec. VI-B
Sec. VI-B

Sec. VI-B

Stage 2:

Sec.VII-A

Sec. VII-A
Sec. VII-B

Sec. VII-B

Sec. VII-B

Sec. VII-B

Fig. 3: Overview of some of the pgfls involved in the approximations
described in Sections VI and VII and in Appendix B. For simplicity
of notation, we omit the existence probabilities and spatial pdfs in
the pgfls; e.g., we write MMres

k
[h] instead of MMres

k

[
h; r̄

(·)
k , s̄

(·)
k

]
.

factors G(c)[h̃], we first introduce the random association vec-

tors a
(c)
k ∈ Ã(c)

k ≜
(
{0} ∪ M(c)

k

)|L(c)
k−1| × {0, 1}|L(c)tr

k |, where
the entries a

(c,l)
k of a realization a

(c)
k are as follows. For

l∈L(c)
k−1, a(c,l)k is defined similarly to a

(l)
k in Section V-A as

a
(c,l)
k ≜ m∈M(c)

k if the labeled object with state (xk, l) gen-
erates measurement z(m)

k and a
(c,l)
k ≜ 0 if it does not generate

a measurement. For l∈L(c)tr
k , a(c,l)k is 1 if the labeled object

with state (xk, l) with l = (k,m), m ∈M(c)
k generates mea-

surement z(m)
k and 0 if it does not generate a measurement.

Similarly to Section V-A, we call a(c)
k admissible if at most

one measurement is assigned to a labeled object and no mea-
surement is assigned to more than one labeled object. The set
A(c)

k ⊆ Ã(c)
k collects all admissible association vectors a

(c)
k .

The factors G(c)[h̃] in (35) are LMBM pgfls given by

G(c)[h̃] ≜
∑

a
(c)
k ∈A(c)

k

w
a

(c)
k

LL(c)tot
k

[
h̃; r

(·,a(c,·)
k )

k , s
(·,a(c,·)

k )

k

]
. (36)

Here, the label set L(c)tot
k is given as (see Fig. 1)

L(c)tot
k ≜ L(c)

k−1∪ L(c)tr
k , with L(c)

k−1∩ L(c)tr
k = ∅ , (37)

where the label set L(c)tr
k consists of all labels l = (k,m)

with m ∈ M(c)
k such that r̄

(m)
k ≥ γtr . Furthermore, r

(l,m)
k

and s
(l,m)
k (xk) are as follows. For l∈L(c)

k−1, they are given for
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m∈M(c)
k by (22) and (23), respectively and for m=0 by (25)

and (26), respectively. For l∈L(c)tr
k , r(l,1)k and s

(l,1)
k (xk) with

l=(k,m), m∈M(c)
k are given by (28) and (29), respectively;

furthermore, r(l,0)k =0 whereas s
(l,0)
k (xk) is not defined since

the corresponding object does not exist. Finally, the weights
w

a
(c)
k

are given up to a normalization constant as

w
a

(c)
k

∝
( ∏

l∈L(c)tot
k

β
(l,a

(c,l)
k )

k

) ∏
m∈M

a
(c)
k

β
(m)
k , (38)

where M
a

(c)
k

⊆ M(c)
k comprises all m ∈ M(c)

k that are not
associated with any object label l ∈L(c)tot

k . For l ∈L(c)
k−1, the

association weights β
(l,m)
k are given for m ∈ M(c)

k by (21)
and for m = 0 by (24), and for l∈L(c)tr

k , the β
(l,m)
k are given

for m = 1 by (27) and for m = 0 by 1. Furthermore, the β
(m)
k

are given by (27).

Unlabeled pgfl factor: The unlabeled pgfl factor G′
Xk
[h] in

(34) represents unlabeled objects that are unlikely to exist; it
is given by

G′
Xk
[h] ≜ MM′

k

[
h; r̄

(·)
k , s̄

(·)
k

]
ḠXk

[h] . (39)

Here, M′
k ≜ Mres

k \Mres,tr
k , and r̄

(m)
k and s̄

(m)
k (xk) are given

by (28) and (29), respectively. Furthermore, ḠXk
[h] is the Pois-

son pgfl given by (30) and (31). Thus, G′
Xk
[h] is an MB–

Poisson pgfl.

Summary of the first approximation stage: In summary,
in the first approximation stage, the exact posterior pgfl
GX̃k,Xk

[h̃, h|Z1:k] in (17), which is the product of the la-
beled/unlabeled pgfl G′

X̃k,Xk
[h̃, h] and the unlabeled pgfl

ḠXk
[h], is approximated by G′

X̃k
[h̃]G′

Xk
[h] in (34). Here, the

factor G′
X̃k
[h̃] is the pgfl of a labeled RFS representing objects

that are likely to exist. More specifically, it is the product of
the LMB pgfl LLres,tr

k

[
h̃; r̄

(·)
k , s̄

(·)
k

]
and the LMBM pgfls G(c)[h̃],

c = 1, . . . , C. The other factor, G′
Xk
[h], is the pgfl of an unla-

beled RFS representing objects that are unlikely to exist. More
specifically, it is the product of the MB pgfl MM′

k

[
h; r̄

(·)
k , s̄

(·)
k

]
and the Poisson pgfl ḠXk

[h]. The effect of the first approxi-
mation stage is to reduce the overall complexity (based on the
clustering described in Section VI-A) and to transfer the part
of the unlabeled RFS representing likely unlabeled objects to
the labeled RFS (as described in Appendices B.2 and B.3).
Note that the resulting creation of new labeled objects is an
inherent part of our tracking algorithm, and not due to a birth
process in our system model (cf. Section III-A).

VII. UPDATE STEP OF THE LMB/P FILTER:
SECOND APPROXIMATION STAGE

In the second approximation stage, we approximate G′
X̃k
[h̃]

in (34) and (35), which is the product of an LMB pgfl and
C LMBM pgfls, by an LMB pgfl. Furthermore, we modify
G′

Xk
[h] in (34) and (39), which is the product of an MB pgfl

and a Poisson pgfl. This modification consists of first combin-
ing G′

Xk
[h] with the “unlikely” legacy Bernoulli components

of the LMB pgfl approximating G′
X̃k
[h̃] and then approximat-

ing the resulting pgfl by a Poisson pgfl.

A. Labeled Objects

We first approximate the pgfl of labeled objects, G′
X̃k
[h̃],

by an LMB pgfl, and then we transfer labeled objects that are
unlikely to exist to the unlabeled RFS part. This transfer is
known as recycling [18].

According to (35), the pgfl of labeled objects G′
X̃k
[h̃] is the

product of the pgfl representing objects transferred from the set
of unlabeled nonclustered objects, LLres,tr

k

[
h̃; r̄

(·)
k , s̄

(·)
k

]
, and the

product of all C pgfls G(c)[h̃] representing labeled clustered
objects. To approximate G′

X̃k
[h̃] by an LMB pgfl, we first note

that the product of LMB pgfls is again an LMB pgfl, and that
LLres,tr

k

[
h̃; r̄

(·)
k , s̄

(·)
k

]
is already an LMB pgfl. Therefore, we will

approximate the LMBM pgfls G(c)[h̃], c∈C by LMB pgfls. For
this, we start from expression (36) and exploit the fact that the
weights w

a
(c)
k

, a(c)
k ∈A(c)

k in (38) satisfy
∑

a
(c)
k ∈A(c)

k

w
a

(c)
k

=1.
Thus, we are able to formally interpret these weights as the
pmf of the joint association vector a(c)k , i.e., we set

p
(
a
(c)
k

)
≜

{
w

a
(c)
k

, a
(c)
k ∈A(c)

k ,

0 , otherwise.
(40)

Expression (36) can then be rewritten as

G(c)[h̃] =
∑

a
(c)
k ∈Ã(c)

k

p
(
a
(c)
k

)
LL(c)tot

k

[
h̃; r

(·,a(c,·)
k )

k , s
(·,a(c,·)

k )

k

]
. (41)

Note that the summation over the larger set Ã(c)
k =

(
{0} ∪

M(c)
k

)|L(c)
k−1| × {0, 1}|L(c)tr

k | (i.e., larger than A(c)
k in (36)) is

possible because p
(
a
(c)
k

)
= 0 for a(c)

k ∈ Ã(c)
k \A(c)

k .
Following [17], we now approximate p

(
a
(c)
k

)
by the product

of the marginal pmfs p
(
a
(c,l)
k

)
, i.e.,

p
(
a
(c)
k

)
≈ p′

(
a
(c)
k

)
≜

∏
l∈L(c)tot

k

p
(
a
(c,l)
k

)
, a

(c)
k ∈Ã(c)

k .

Here,

p
(
a
(c,l)
k

)
≜


∑

a
(c)∼l
k ∈Ã(c)leg

k

p
(
a
(c)
k

)
, l ∈L(c)

k−1 ,∑
a

(c)∼l
k ∈Ã(c)tr

k

p
(
a
(c)
k

)
, l ∈L(c)tr

k

(42)

(recall from (37) that L(c)tot
k = L(c)

k−1∪L(c)tr
k ), where a

(c)∼l
k de-

notes a(c)
k without entry a

(c,l)
k , Ã(c)leg

k ≜
(
{0}∪M(c)

k

)|L(c)
k−1|−1

×{0, 1}|L(c)tr
k |, and Ã(c)tr

k ≜
(
{0}∪M(c)

k

)|L(c)
k−1|×{0, 1}|L(c)tr

k |−1.
We note that an efficient and scalable approximate implemen-
tation of the marginalization in (42) is provided by the belief
propagation algorithm proposed in [17]. Substituting p′

(
a
(c)
k

)
for p

(
a
(c)
k

)
in (41) and using the fact that the LMB pgfl

LL(c)tot
k

[
h̃; r

(·,a(c,·)
k )

k , s
(·,a(c,·)

k )

k

]
representing all (labeled) objects

within cluster c is the product of all corresponding labeled

Bernoulli pgfls B
[
h̃; r

(l,a
(c,l)
k )

k , s
(l,a

(c,l)
k )

k

]
(see (8)), we obtain

the following approximation of G(c)[h̃]:

G(c)′[h̃]≜
∑

a
(c)
k ∈Ã(c)

k

∏
l∈L(c)tot

k

p
(
a
(c,l)
k

)
B
[
h̃; r

(l,a
(c,l)
k )

k , s
(l,a

(c,l)
k )

k

]
.
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Using the identities
∏

l∈L(c)tot
k

=
(∏

l∈L(c)
k−1

)∏
l∈L(c)tr

k

and∑
a

(c)
k ∈Ã(c)

k

=
∑

a
(c,1)
k ∈{0}∪M(c)

k

· · ·
∑

a
(c,|L(c)

k−1
|)

k ∈{0}∪M(c)
k

×
∑

a
(c,|L(c)

k−1
|+1)

k ∈{0,1}

· · ·
∑

a
(c,|L(c)

k−1
|+|L(c)tr

k
|)

k ∈{0,1}

,

this becomes

G(c)′[h̃]

=

( ∏
l∈L(c)

k−1

∑
a
(c,l)
k ∈{0}∪M(c)

k

p
(
a
(c,l)
k

)
B
[
h̃; r

(l,a
(c,l)
k )

k , s
(l,a

(c,l)
k )

k

])

×
∏

l∈L(c)tr
k

∑
a
(c,l)
k ∈{0,1}

p
(
a
(c,l)
k

)
B
[
h̃; r

(l,a
(c,l)
k )

k , s
(l,a

(c,l)
k )

k

]
.

Using (5), this can be written as the LMB pgfl

G(c)′[h̃] = LL(c)tot
k

[
h̃; r

(·)
k , s

(·)
k

]
, (43)

where, according to (6), r(l)k and s
(l)
k (xk) are given for l ∈

L(c)
k−1 by

r
(l)
k =

∑
a
(c,l)
k ∈{0}∪M(c)

k

p
(
a
(c,l)
k

)
r
(l,a

(c,l)
k )

k , (44)

s
(l)
k (xk) =

1

r
(l)
k

∑
a
(c,l)
k ∈{0}∪M(c)

k

p
(
a
(c,l)
k

)
r
(l,a

(c,l)
k )

k s
(l,a

(c,l)
k )

k (xk) ,

(45)
and for l∈L(c)tr

k by

r
(l)
k = p

(
a
(c,l)
k =1

)
r
(l,a

(c,l)
k =1)

k , (46)

s
(l)
k (xk) = s

(l,a
(c,l)
k =1)

k (xk) . (47)

(To obtain (46) and (47), we used the fact that r(l,a
(c,l)
k =0)

k = 0

for l∈ L(c)tr
k , as mentioned in Section VI-B.) Note that (44)–

(47) are update equations for the labeled objects; more specif-
ically, (44) and (45) for the legacy Bernoulli components and
(46) and (47) for the transferred Bernoulli components. It can
be shown that our LMB approximation of the LMBM pgfls—
which is based on interpreting the weights w

a
(c)
k

as the joint
association pmf p

(
a
(c)
k

)
and approximating that pmf by the

product of its marginals—is equivalent to the LMB approxi-
mation of the LMBM pgfls that is obtained by matching the
PHD of each LMB pgfl to that of the corresponding LMBM
pgfl (similarly to [11]).

Let L(c)leg
k ⊆ L(c)

k−1 collect the labels l ∈ L(c)
k−1 of those

legacy Bernoulli components that are “likely” in the sense
that their existence probability r

(l)
k in (44) satisfies r

(l)
k ≥ γleg,

where γleg is another positive threshold. The total label set
of all “likely” legacy Bernoulli components and transferred
Bernoulli components is then given by (see Fig. 1)

L∗
k ≜

( ⋃
c∈C

(
L(c)leg
k ∪ L(c)tr

k

))
∪ Lres,tr

k , (48)

where Lres,tr
k was introduced in Section VI-B. The LMB pgfl

corresponding to L∗
k is now given by

G∗
X̃k
[h̃] ≜ LL∗

k

[
h̃; r

(·)
k , s

(·)
k

]
= LLres,tr

k

[
h̃; r̄

(·)
k , s̄

(·)
k

]∏
c∈C

LL(c)leg
k ∪L(c)tr

k

[
h̃; r

(·)
k , s

(·)
k

]
(49)

(see Fig. 3). According to (49), G∗
X̃k
[h̃] equals the product

of the LMB pgfl LLres,tr
k

[
h̃; r̄

(·)
k , s̄

(·)
k

]
involved in (35) and the

C LMB pgfls obtained by restricting the LMB pgfls in (43)
to the label sets L(c)leg

k ∪ L(c)tr
k , for all c ∈ C. This is our

final approximation of the labeled object part, i.e., of the pgfl
G′

X̃k
[h̃] in (35). That is, we have

G′
X̃k
[h̃] ≈ G∗

X̃k
[h̃] .

The “unlikely” legacy Bernoulli components correspond to
the labels l∈ L(c)

k−1 with r
(l)
k < γleg, or equivalently l∈ L(c)unl

k

≜ L(c)
k−1 \L

(c)leg
k . Instead of discarding them, as is done, e.g.,

in the LMB filter [11], we use recycling [18], i.e., we transfer
them to the unlabeled RFS part. As a consequence, these un-
likely objects are still being tracked but with a smaller com-
putational cost. A higher threshold γleg tends to imply that
fewer Bernoulli components remain in the labeled RFS part
and more are transferred to the unlabeled RFS part. In par-
ticular, when many measurements are missing (due to, e.g.,
object death or object occlusion), then r

(l)
k is decreased, and

if r
(l)
k < γleg, then the corresponding labeled Bernoulli com-

ponent will be transferred to the unlabeled RFS part. We note
that the Bernoulli components transferred to the unlabeled RFS
part comprise only legacy Bernoulli components and do not
include Bernoulli components that were transferred from the
unlabeled RFS part to the labeled RFS part in the current time
step. This is due to the fact that the corresponding label sets
L(c)
k−1 and L(c)tr

k are disjoint (cf. (37)) and, thus, Bernoulli com-
ponents that were transferred from the unlabeled RFS part to
the labeled RFS part are not transferred back in the current
time step.

B. Unlabeled Objects

We proceed by representing unlabeled and currently labeled
objects that are unlikely to exist by a Poisson RFS. Compared
to our previous use of an LMB RFS to represent objects that
are likely to exist, using a Poisson RFS reduces the com-
putational complexity at the expense of a decreased tracking
accuracy and the loss of track continuity for the respective
objects.

Consider the unlikely legacy objects defined by the label set
(see Fig. 1)

Lunl
k ≜

⋃
c∈C

L(c)unl
k . (50)

The labeled pgfl comprising the corresponding Bernoulli com-
ponents is given by LLunl

k

[
h̃; r

(·)
k , s

(·)
k

]
(see Fig. 3). We now

combine this labeled pgfl with the unlabeled pgfl G′
Xk
[h] in

(39) by defining

Gunl
X̃k,Xk

[h̃, h] ≜ LLunl
k

[
h̃; r

(·)
k , s

(·)
k

]
G′

Xk
[h] . (51)
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We recall that G′
Xk
[h] is the product of an MB pgfl and a

Poisson pgfl (see (39)), and it represents unlabeled objects that
are unlikely. Thus, the LMB–MB–Poisson pgfl Gunl

X̃k,Xk
[h̃, h]

represents the labeled and unlabeled objects that are unlikely.
To further reduce the complexity of the update step, we next

approximate Gunl
X̃k,Xk

[h̃, h] by a Poisson pgfl, i.e. (see Fig. 3)

Gunl
X̃k,Xk

[h̃, h] ≈ G∗
Xk
[h] ≜ P [h;λ∗

k] . (52)

To find the PHD λ∗
k(xk), we first “unlabel” the LMB

pgfl LLunl
k

[
h̃; r

(·)
k , s

(·)
k

]
. This results in the MB pgfl

MLunl
k

[
h; r

(·)
k , s

(·)
k

]
, wherein l∈Lunl

k is used solely to index the
Bernoulli components, and not as the label of a labeled state
(xk, l). Through this unlabeling, the mixed labeled/unlabeled
(LMB–MB–Poisson) pgfl Gunl

X̃k,Xk
[h̃, h] in (51) is converted

into the unlabeled (MB–Poisson) pgfl

Gunl
Xk
[h] ≜ MLunl

k

[
h; r

(·)
k , s

(·)
k

]
G′

Xk
[h] .

The PHD λ∗
k(xk) in (52) is now chosen as the PHD corre-

sponding to Gunl
Xk
[h]. That is, invoking (2), we set λ∗

k(xk) =
δGunl

Xk
[h]/δxk

∣∣
h=1

. Using (39), (30), and (31), this can be
shown to yield

λ∗
k(xk) =

∑
l∈Lunl

k

r
(l)
k s

(l)
k (xk) +

∑
m∈M′

k

r̄
(m)
k s̄

(m)
k (xk)

+
(
1−pD(xk)

)
λk|k−1(xk) , (53)

where r
(l)
k and s

(l)
k (xk) are given by (44) and (45), respec-

tively, r̄(m)
k and s̄

(m)
k (xk) are given by (28) and (29), respec-

tively, and λk|k−1(xk) is given by (16). The first term in (53),∑
l∈Lunl

k
r
(l)
k s

(l)
k (xk), corresponds to originally labeled objects

that are unlikely—either because the objects already disap-
peared or because no measurement was associated with them
for some time. The second term,

∑
m∈M′

k
r̄
(m)
k s̄

(m)
k (xk), cor-

responds to measurements that are not likely to originate from
any labeled objects. The third term,

(
1−pD(xk)

)
λk|k−1(xk),

corresponds to unlabeled objects that are undetected. The Pois-
son pgfl G∗

Xk
[h] defined in (52) is our final approximation of

the unlabeled object part.

VIII. THE PROPOSED LMB/P FILTER

The core of the proposed LMB/P filter algorithm is the ap-
proximate update step developed in Sections VI and VII. We
recall that this approximate update step transforms the pre-
dicted posterior pgfl GX̃k,Xk

[h̃, h|Z1:k−1], which according to
(12) is the product of the labeled pgfl GP

X̃k
[h̃] and the un-

labeled pgfl GP
Xk
[h], into the following approximation of the

new posterior pgfl GX̃k,Xk
[h̃, h|Z1:k] in (17):

GX̃k,Xk
[h̃, h|Z1:k] ≈ G∗

X̃k
[h̃]G∗

Xk
[h] .

This is the product of the LMB pgfl G∗
X̃k
[h̃], which is given

by (49) and (44)–(47), and the Poisson pgfl G∗
Xk
[h], which is

given by (52) and (53). The update relations are (44)–(47) for
the LMB parameters (existence probabilities and spatial pdfs)
and (53) for the Poisson parameter (PHD).

These update relations can be viewed as those of an LMB
filter and a PHD filter that run in parallel but not independently

of each other. The LMB part models objects that are likely to
exist and uses in the update step measurements that are likely
(plausible) to originate from these objects. It maintains track
continuity of the modeled objects and offers a better tracking
accuracy than the Poisson part. The Poisson part, on the other
hand, models objects that are unlikely to exist, and it uses in
the update step all those measurements that are unlikely (im-
plausible) to originate from a labeled object and thus likely to
originate from an unlabeled object or from clutter. Each mea-
surement is used only once in the update step, either by the
LMB part or by the Poisson part. The overall approximate up-
date step includes transfers between the labeled and unlabeled
RFS parts. That is, based on newly observed measurements,
some objects that were previously considered unlikely to exist
are considered likely to exist and vice versa. These transfers
are controlled by the thresholds γC, γtr, and γleg.

The proposed LMB/P filter algorithm is finally obtained by
cascading the prediction step (Section IV) and the approx-
imate update step (Sections VI and VII), and by adding a
detection-estimation step. Since the unlabeled RFS part rep-
resents objects that are unlikely to exist, object detection and
state estimation are based solely on the labeled RFS part. An
object with label l∈L∗

k is detected—i.e., declared to exist—if
its existence probability r

(l)
k is larger than a positive detection

threshold γD; the label l is then included in the “detected label
set” LD

k ⊆ L∗
k. Subsequently, for each detected object l ∈ LD

k ,
a state estimate is calculated according to

x̂
(l)
k =

∫
xk s

(l)
k (xk)dxk . (54)

Table I summarizes the proposed LMB/P filter algorithm.

IX. SIMULATION STUDY

A. Simulation Setup

We evaluate the performance of the proposed LMB/P fil-
ter in two two-dimensional (2D) tracking scenarios, termed
TS1 and TS2. In TS1, ten objects appear at randomly chosen
positions in the region of interest (ROI) before time k = 40
and disappear after k=150. In TS2, 20 objects appear before
k=100 and disappear after k=140; they conform to the ob-
ject generation scheme of [27], according to which all objects
move toward the point (0, 0) and simultaneously come in close
proximity around that point at k=120. The object states con-
sist of 2D position and velocity, i.e, xk= [x1,k x2,k ẋ1,k ẋ2,k]

T.
They evolve according to the nearly constant velocity mo-
tion model, i.e., xk = Axk−1 + Wuk, where A∈R4×4 and
W∈R4×2 are chosen as in [28, Sec. 6.3.2] and uk is an iid
sequence of 2D zero-mean Gaussian random vectors with in-
dependent components and component variance σ2

u = 10−4.
The sensor is located at position p= [p1 p2]

T= [0 −50]T and
has a measurement range of 300. The ROI is equal to the disk
determined by the sensor’s measurement range. Realizations
of the object trajectories for TS1 and TS2 are shown in Fig. 4.

The object-originated measurements conform to the non-
linear range-bearing model zk =

[
ρ(xk) θ(xk)

]T
+ vk. Here,

ρ(xk) ≜ ∥x′k− p∥, where x′k ≜ [x1,k x2,k]
T is the object po-

sition, and θ(xk) ≜ tan−1
( x2,k−p2

x1,k−p1

)
. Furthermore, vk is 2D
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TABLE I: Proposed LMB/P filter algorithm—recursion at time k≥1

Input: Previous existence probabilities r
(l)
k−1 and previous spatial

pdfs s
(l)
k−1(xk−1) for l ∈ L∗

k−1; previous PHD λk−1(xk−1) (in
practice, this is replaced by the previously calculated approximation
λ∗
k−1(xk−1)); measurements z

(m)
k for m∈Mk.

Output: Existence probabilities r
(l)
k and spatial pdfs s

(l)
k (xk) for

l ∈ L∗
k; approximate PHD λ∗

k(xk); object state estimates x̂
(l)
k for

l∈LD
k .

Operations:
Step 1 – Prediction:

1.1) For l ∈ L∗
k−1, calculate the predicted existence probabilities

r
(l)

k|k−1 and the predicted spatial pdfs s
(l)

k|k−1(xk) according to
(13) and (14), respectively.

1.2) Calculate the predicted posterior PHD λk|k−1(xk) according to
(16).

Step 2 – Preparations for Update:

2.1) For l∈L∗
k−1, calculate the association weights β(l,m)

k , existence
probabilities r

(l,m)
k , and spatial pdfs s

(l,m)
k (xk) according to

(21)–(23) (for m∈Mk) or (24)–(26) (for m=0).
2.2) For m ∈ Mk, calculate β

(m)
k , r̄(m)

k , and s̄
(m)
k (xk) according

to (27)–(29).
2.3) Partition the label set L∗

k−1 and the measurement index set Mk

as described in Section VI-A. This yields L(c)
k−1 and M(c)

k for
c∈ C as well as Mres

k .

2.4) Determine L(c)tr
k for c∈ C, Lres,tr

k (corresponding to Mres,tr
k ), and

M′
k as described in Section VI-B.

Step 3 – Update for Labeled Objects:
3.1) For c ∈ C, calculate the weights w

a
(c)
k

according to (38) and

the joint association pmf p
(
a
(c)
k

)
according to (40).

3.2) For c∈C and l∈ L(c)tot
k = L(c)

k−1∪ L(c)tr
k , calculate the marginal

association pmf p
(
a
(c,l)
k

)
according to (42). (An efficient

and scalable belief propagation algorithm for computing the
p
(
a
(c,l)
k

)
is presented in [17].)

3.3) For c∈ C, calculate the updated existence probabilities r
(l)
k and

spatial pdfs s
(l)
k (xk) according to (44) and (45) (for l∈L(c)

k−1)
or (46) and (47) (for l∈L(c)tr

k ).

3.4) For c∈ C, determine L(c)leg
k and L(c)unl

k as described in Section
VII-A.

3.5) Determine L∗
k according to (48) and Lunl

k according to (50).

Step 4 – Update for Unlabeled Objects: Calculate the approximate
updated posterior PHD λ∗

k(xk) according to (53).

Step 5 – Object Detection and State Estimation:
5.1) Determine LD

k as described in Section VIII.

5.2) For l ∈LD
k , calculate an object state estimate x̂

(l)
k according to

(54).

Initialization at time k=0: L∗
0=∅, λ0(x0).

zero-mean white Gaussian measurement noise with indepen-
dent components and component standard deviations σρ = 2
and σθ = 1◦. The detection probability of the sensor is modeled
as pD(xk) = pD,max exp(−∥x′

k∥2/4502) [11] with pD,max= 0.7
for TS1 and pD,max = 0.5 for TS2. Thus, the detection proba-
bility has its maximum of 0.7 for TS1 and 0.5 for TS2 at the
ROI center and decreases towards the ROI border, where it is
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Fig. 4: Examples of the true object trajectories (represented by blue
lines, starting positions indicated by blue crosses) and the corre-
sponding estimates obtained with the proposed BP-LMB/P filter (rep-
resented by red lines) for (a) TS1 and (b) TS2. The position of
the sensor is indicated by a black circle. The green circles show
the measurements of the sensor at time k = 100 within the region
[−150, 150]× [−150, 150].

0.45 for TS1 and 0.32 for TS2. The clutter pdf fC(zk) is uni-
form (in polar coordinates) on the ROI with mean parameter
µC=100 for TS1 and µC=150 for TS2.

We compare the performance of particle implementations of
the proposed LMB/P filter, the LMB filter [12], the fast LMB
filter presented in [13], and a version of the TOMB/P filter
[17], [29] that performs recycling of Bernoulli components as
proposed in [18]. We remark that our performance compari-
son does not consider algorithms with a significantly higher
complexity, such as the GLMB filter [9], [10], [14] or the
trajectory-based filters proposed in [21]–[24]. Note also that
the latter filters use Gaussian representations of spatial distri-
butions and thus presuppose a linear-Gaussian system model,
and moreover they assume a spatially constant detection prob-
ability, both of which are incompatible with the considered
measurement model. Our performance comparison uses 1,000
Monte Carlo runs for each experiment. The object trajectories
are randomly generated for each run according to the state-
evolution model described above.

The proposed LMB/P filter and the TOMB/P filter use the
belief propagation (BP) algorithm of [17] to calculate approx-
imations of the marginal association probabilities (cf. Eq. (42)
and Step 3.2 in Table I), and the fast LMB filter uses for
this task the modified BP algorithm described in [13]. We
will therefore refer to these filters as BP-LMB/P, BP-TOMB/P,
and BP-LMB, respectively. The LMB filter of [12] is based
on the Gibbs sampler and will be referred to as Gibbs-LMB.
BP-LMB/P and BP-TOMB/P use 5,000 particles to represent,
respectively, the posterior PHD of unlabeled objects and the
posterior PHD of undetected objects. Another 5,000 particles
are used by BP-LMB/P and BP-TOMB/P to represent the PHD
of newborn unlabeled objects and the PHD of newborn unde-
tected objects, respectively, but the resulting 10,000 particles
are reduced to 5,000 particles after the update step. All fil-
ters represent the spatial pdf of each Bernoulli component by
1,000 particles. BP-LMB/P, BP-LMB, and BP-TOMB/P use
20 BP iterations to calculate the approximate marginal prob-
abilities. The Gibbs sampler in Gibbs-LMB uses 100 samples
for TS1 and 1,000 samples for TS2. All filters declare an ob-
ject as detected if the existence probability of the correspond-
ing Bernoulli component exceeds γD =0.5, and when this is
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Fig. 5: MOSPA error of BP-LMB/P versus time for TS1 using pa-
rameter settings PS1 through PS4.

γtr γC γleg

PS1 10−2 10−10 10−2

PS2 10−2 10−10 10−1

PS3 10−2 10−3 10−2

PS4 10−1 10−10 10−2

TABLE II: Threshold parameter settings (PSs) used for TS1.

the case, they calculate a sample mean approximation of (54)
from the particle representation of the corresponding spatial
pdf.

The birth statistics of all filters are established using the
previous measurements z(m)

k−1, m∈Mk−1. More precisely, BP-
LMB/P and BP-TOMB/P choose their birth pdf as a mixture
of the pdfs

f̃
(m)
B (xk) ∝

∫
f(xk|xk−1)f

(
z
(m)
k−1

∣∣x1,k−1, x2,k−1

)
× fv(ẋ1,k−1, ẋ2,k−1)dxk−1 ,

for m ∈ Mk−1. Here, f
(
z
(m)
k−1

∣∣x1,k−1, x2,k−1

)
is the like-

lihood function corresponding to our measurement model
and fv(ẋ1,k−1, ẋ2,k−1) is the pdf of independent, zero-mean,
Gaussian random variables ẋ1,k−1, ẋ2,k−1 with variance 0.25.
BP-LMB and Gibbs-LMB create a new Bernoulli component
for each measurement z

(m)
k−1, m ∈ Mk−1, with spatial pdf

s
(l=(k,m))
B (xk) = f̃

(m)
B (xk). The mean number of newborn ob-

jects is µB= 0.1 for all filters. In BP-LMB/P and BP-TOMB/P,
the mean number of, respectively, unlabeled objects and un-
detected objects is initialized as 0.01.

B. Simulation Results

In Fig. 5, we study the performance of BP-LMB/P for TS1,
using four different choices of the thresholds γtr, γC, and γleg.
The figure displays the Euclidean distance based mean optimal
subpattern assignment (MOSPA) metric with cutoff parame-
ter c=20 and order p=2 [30] versus time k. Each curve is
based on a specific threshold parameter setting (PS) and was
obtained by averaging over 1,000 Monte Carlo runs. The PSs
are defined by the values of γtr, γC, and γleg specified in Ta-
ble II; in particular, PS2 uses a higher value of γleg, PS3 a
higher value of γC, and PS4 a higher value of γtr.

One can see in Fig. 5 that the lowest MOSPA curve is
achieved for PS1, i.e., for the lowest threshold values. How-
ever, a further reduction of the thresholds would not decrease

γtr γC γleg γP γT

TS1 10−2 10−10 10−2 10−3 10−3

TS2 10−3 10−10 10−3 10−4 10−4

TABLE III: Thresholds γtr, γC, and γleg used by BP-LMB/P, γP used
by BP-LMB and Gibbs-LMB, and γT used by BP-TOMB/P.

the MOSPA curves further but would result in a higher filter
runtime. If γleg is increased (as in PS2), then according to Sec-
tion VII-A, there tend to be more Bernoulli components l such
that r(l)k falls below γleg, and which are hence transferred from
the LMB part to the Poisson part. In challenging scenarios,
such as low pD(xk) and/or high clutter, it is then possible that
Bernoulli components are transferred to the Poisson part even
though the corresponding objects exist, and this will generally
reduce the tracking performance. If γC is increased (as in PS3),
then according to Section VI-A and Appendix A, this gener-
ally results in a larger number of subsets L(c)

k−1, which may
imply that some labeled objects are no longer correctly associ-
ated with the measurements and thus the tracking performance
is again reduced. Finally, if γtr is increased (as in PS4), then
according to Appendices B.2 and B.3, fewer Bernoulli com-
ponents are transferred to the labeled RFS part, which may
again result in a poorer tracking performance.

Therefore, for TS1, we will hereafter use the thresholds of
PS1. These thresholds are shown again in Table III, along with
the thresholds used in TS2. In fact, for the more challenging
TS2, we observed that the thresholds in Table III resulted in a
better MOSPA performance; in particular, we use smaller val-
ues of γtr and γleg. Table III furthermore shows the threshold
γP used by BP-LMB and Gibbs-LMB for pruning Bernoulli
components and the threshold γT used by BP-TOMB/P for
transferring Bernoulli components of the MB part of the pos-
terior state RFS to the Poisson part.

Fig. 4 shows an example of the estimated object trajectories
obtained with BP-LMB/P for TS1 and for TS2, along with the
true trajectories. One can see that the estimated trajectories
closely match the true trajectories in both scenarios.

Fig. 6 compares the MOSPA performance of BP-LMB/P,
Gibbs-LMB, BP-LMB, and BP-TOMB/P for TS1 and TS2. It
is seen that for TS1, the performance of BP-LMB/P is almost
identical to that of BP-LMB and BP-TOMB/P whereas the
performance of Gibbs-LMB is noticeably poorer. For TS2, the
results are similar except that the performance gap of Gibbs-
LMB is much larger. This performance gap is due to the fact
that Gibbs-LMB tends to ignore relevant association informa-
tion in challenging scenarios. The amount of relevant asso-
ciation information taken into account by Gibbs-LMB grows
with the number of samples used in the Gibbs sampler, but
this comes at the cost of a higher computational complexity. In
challenging scenarios such as TS2, more association informa-
tion is required to obtain good results; this explains the larger
performance gap of Gibbs-LMB in that case (even though for
TS2, our Gibbs-LMB implementation used ten times more
samples than for TS1). Overall, these results also demonstrate
the excellent performance of the BP algorithm used by BP-
LMB/P, BP-LMB, and BP-TOMB/P to compute the marginal
association probabilities.
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Fig. 6: MOSPA error of the four filters versus time for (a) TS1 and (b) TS2.
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Fig. 7: Trajectory error of the four filters versus time for TS2.

In Fig. 7, we compare BP-LMB/P, Gibbs-LMB, BP-LMB,
and BP-TOMB/P for TS2, using instead of the MOSPA metric
the trajectory metric proposed in [31] with cutoff parameter
c= 20, order p= 2, and switching penalty γ = 2. This met-
ric can be decomposed into a “location error” (the location
error of detected objects), a “false error” (caused by “false
objects”), a “missed error” (caused by “missed objects”), and
a “switching error.” Here, false objects are detected objects
that do not correspond to any object within the ground truth,
whereas missed objects are objects within the ground truth that
do not correspond to any detected object. Differently from the
OSPA metric, the trajectory metric also takes into account the
switching error caused by track switches, i.e., when a detected
object is associated with different objects within the ground
truth at different times. According to Fig. 7, the trajectory met-
ric performance of BP-LMB/P is slightly better than that of
BP-LMB and BP-TOMB/P and significantly better than that
of Gibbs-LMB. These results agree with our MOSPA results
in Fig. 6 (note the different y-axis scales used in the two fig-
ures). In addition, they show that BP-LMB/P also succeeds in
estimating object trajectories, not just individual object states.

The four error components of the trajectory metric for
TS2—i.e., location error, false error, missed error, and switch-
ing error—are shown individually in Fig. 8. Whereas for each
error component the results of BP-LMB/P, BP-LMB, and BP-
TOMB/P are quite similar, those of Gibbs-LMB are partly
very different. This can be explained by the fact that Gibbs-
LMB ignores valuable association information and thus detects
some of the objects only with a delay or not at all. As a con-
sequence, the number of missed objects is rather large, which
leads to a significantly higher missed error (Fig. 8(c)). Fur-
thermore, the smaller number of detected objects (compared

to the other three filters) in turn implies a smaller number of
false objects (Fig. 8(b)) and also lower location and switching
errors (Figs. 8(a) and 8(d)).

It can also be seen that for all filters, the missed error shown
in Fig. 8(c) is much higher than the other error components
(note the widely different y-axis scale used in Fig. 8(c) com-
pared to the other parts of Fig. 8). Thus, the missed error
dominates the overall trajectory metric, which explains why
Fig. 8(c) is similar to Fig. 7. Furthermore, the high missed er-
ror of Gibbs-LMB (compared to the other three filters) is not
compensated by the fact that the other error components are
lower. The other three filters, i.e., BP-LMB/P, BP-LMB, and
BP-TOMB/P, exhibit a similar performance, with BP-LMB/P
performing best. The latter fact can be attributed to the pro-
posed transfer scheme between the Poisson part and the LMB
part. Indeed, these simulation results suggest that our trans-
fer scheme, with an appropriate choice of the thresholds γtr,
γleg, and γC, can result in performance advantages compared
to both BP-LMB (using a pruning of Bernoulli components)
and BP-TOMB/P (using a recycling of Bernoulli components).
These advantages come in addition to the lower filter runtimes
obtained with BP-LMB/P, as reported presently.

Another trajectory metric that is closely related to the OSPA
metric is the OSPA(2) metric proposed in [32]. In Fig. 9, we
compare BP-LMB/P, Gibbs-LMB, BP-LMB, and BP-TOMB/P
for TS2, using the OSPA(2) metric with cutoff parameter c=
20, order p= 2, and window length L= 10. The results are
seen to be similar to those for the MOSPA error shown in
Fig. 6(b). We note that for window length L=1, the OSPA(2)

metric would simplify to the OSPA metric.
Table IV lists the average runtime per time (k) step required

by MATLAB implementations of the various filters on an In-
tel quad core i7-6600U CPU. Also shown is the average num-
ber of Bernoulli components per time step employed by each
filter. Again, these numbers were obtained by averaging over
1,000 Monte Carlo runs. One can see that BP-LMB/P achieves
the lowest runtimes of all filters; furthermore, it employs the
lowest numbers of Bernoulli components of all filters except
Gibbs-LMB. We note that, as is demonstrated by Fig. 6, this
low complexity of BP-LMB/P does not come at the cost of
a poorer MOSPA performance. Also, while Gibbs-LMB em-
ploys fewer Bernoulli components (especially for TS2), its
MOSPA performance for TS2 is significantly poorer.

We can conclude from the results in Figs. 6–9 and Table
IV that BP-LMB/P offers a superior performance-complexity
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Fig. 8: Individual components of the trajectory metric of the four filters versus time for TS2: (a) location error, (b) false error, (c) missed
error, and (d) switching error.
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Fig. 9: MOSPA(2) error of the four filters versus time for TS2.

Filter RT-TS1 RT-TS2 NBC-TS1 NBC-TS2
BP-LMB/P (proposed) 1.33s 5.05s 15.21 162.82
Gibbs-LMB 5.12s 7.94s 9.69 34.23
BP-LMB 5.55s 21.68s 34.15 861.96
BP-TOMB/P 10.66s 16.09s 63.33 521.93

TABLE IV: Measured complexity of the four filters for TS1 and TS2.
RT-TS1 and RT-TS2 designate the average runtime per time step, and
NBC-TS1 and NBC-TS2 designate the average number of Bernoulli
components per time step.

compromise relative to the other filters. It has a significantly
better performance than Gibbs-LMB (especially for TS2) and
also a lower runtime. When compared to BP-LMB and BP-
TOMB/P, the runtime of BP-LMB/P is much lower while
its performance is almost identical. The low runtime of BP-
LMB/P is a direct consequence of the fact that objects of
unlikely existence are modeled by the Poisson RFS. The per-
formance advantage of BP-LMB/P over Gibbs-LMB is mainly
due to the fact that BP-LMB/P takes into account more asso-
ciation information. Gibbs-LMB ignores relevant association
information, which allows it to employ fewer Bernoulli com-
ponents but also results in a poorer performance. For chal-
lenging scenarios with a high number of (closely spaced) ob-
jects and/or a low detection probability and/or strong clutter,
the number of samples used by the Gibbs sampler must be
increased significantly to obtain an acceptable MOSPA per-
formance, and this entails a higher complexity.

X. CONCLUSION

We proposed an efficient multiobject tracking algorithm that
maintains track continuity. Low complexity is achieved by a
combination of a labeled multi-Bernoulli random finite set
(RFS) and a Poisson RFS as well as complexity-reducing ap-
proximations in the update step. Objects of unlikely existence
are tracked in an efficient manner by the Poisson RFS, and
a new labeled Bernoulli component is created and maintained
only if the existence of an object is sufficiently likely. Our
simulation results showed that the proposed algorithm offers
an attractive accuracy-complexity compromise. The complex-
ity is significantly smaller than that of other RFS-based al-
gorithms with comparable performance, especially in scenar-
ios with many objects and strong clutter. Interesting direc-
tions of future research include extensions of our algorithm to
multiple-detection measurement models and multi-sensor sce-
narios [19], [33]–[36].

APPENDIX A
In Table V, we present an algorithm for constructing the par-

titionings (32) and (33). This algorithm is further explained in
the following. In Step 1, the sets Mk(l)⊆Mk comprise the
indices of all those measurements whose association with the
object with state (xk, l) is plausible. (Note that the Mk(l) for
different l∈L∗

k−1 are not necessarily disjoint.) Then, after an
initialization step in Step 2, we perform the iterative proce-
dure constituted by Step 3, which generates the label subsets
L(c)
k−1⊆ L∗

k−1, c∈ {1, . . . , C} and the corresponding measure-
ment index subsets M(c)

k ⊆Mk, c∈ {1, . . . , C}.
The generation of these subsets is done such that for each

c ∈ {1, . . . , C}, the association of an object state (xk, l),
l ∈ L(c)

k−1 with a measurement index m is plausible for
m∈M(c)

k and implausible for m∈M(c′)
k with c′ ̸= c. This is

achieved by doing the following for each l(j)∈L∗
k−1: In Step

3.1, we determine the subset C′ of those indices c∈ {1, . . . , C}
for which the measurement index subsets M(c)

k ⊆ Mk have
some elements in common with Mk(l

(j)), i.e., with the mea-
surement indices corresponding to object state (xk, l(j)); this
expresses the fact that the association between object state
(xk, l(j)) and some measurement indices from

⋃
c′∈C′ M(c′)

k is
plausible. If none of the M(c)

k has an element in common with
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TABLE V: Algorithm for constructing the partitionings (32) and (33)

Input: Label set L∗
k−1 = {l(1), . . . , l(|L

∗
k−1|)}; measurement index

set Mk; association weight β(l,m)
k ; threshold γC .

Output: Number of subsets C, label subsets L(c)
k−1, c∈ {1, . . . , C};

measurement index subsets M(c)
k , c∈ {1, . . . , C} and Mres

k .

Operations:
1) For each l∈L∗

k−1, determine Mk(l)⊆Mk as the subset of all
measurement indices m∈Mk for which β

(l,m)
k ≥ γC.

2) Initialization: Set C=1, L(1)
k−1={l(1)}, and M(1)

k =Mk(l
(1)).

3) Iteration: For j = 2, . . . , |L∗
k−1|, do the following:

3.1) Determine C′ ⊆ {1, . . . , C} as the set of all c∈ {1, . . . , C}
for which M(c)

k ∩Mk(l
(j)) ̸= ∅.

3.2) If C′= ∅, then increment C by one and set L(C)
k−1 = {l(j)}

and M(C)
k =Mk(l

(j)); else do the following:

• Select an arbitrary c ∈ C′ and set L(c)
k−1 = {l(j)} ∪⋃

c′∈C′L(c′)
k−1 and M(c)

k =Mk(l
(j)) ∪

⋃
c′∈C′M(c′)

k .

• Set C′′= ({1, . . . , C}\C′) ∪ {c} and C = |C′′|.
• Perform a reindexing whereby the indices contained in
C′′ are replaced by the new indices 1, 2, . . . , C.

4) Set Mres
k = Mk\

⋃
c∈{1,...,C} M

(c)
k .

Mk(l
(j)), i.e., if the association between object state (xk, l(j))

with any measurement index m∈⋃c∈{1,...,C}M
(c)
k is implau-

sible, then C′ is empty. In that case, C is incremented by 1, and
a new label subset and a new measurement index subset are
created as L(C)

k−1= {l(j)} and M(C)
k =Mk(l

(j)), respectively
(see Step 3.2). Otherwise, i.e., if |C′| ≥ 1, we merge all the
label subsets L(c′)

k−1 with c′ ∈ C′ as well as the considered la-
bel l(j) into one common label subset L(c)

k−1, and we merge all
the corresponding measurement index subsets M(c′)

k , c′∈ C′ as
well as Mk(l

(j)) into one common measurement index sub-
set M(c)

k (see Step 3.2, first bullet item). Here, the index c is
picked arbitrarily from C′. Next, we perform a reindexing such
that the index values in C′′≜ ({1, . . . , C}\ C′) ∪ {c} become
1, 2, . . . , |C′′|. Furthermore, we update C as C = |C′′|, so that
the new set of subset indices is given by {1, . . . , C} (see Step
3.2, second and third bullet items). Subsequently, Steps 3.1
and 3.2 are repeated for the next l(j)∈L∗

k−1 (if available).

The final number C of subsets L(c)
k−1, c ∈ {1, . . . , C} is

determined by this iterative procedure. Finally, in Step 4, the
measurement indices m∈Mk that are not part of any subset
M(c)

k are collected in Mres
k . We note that a larger threshold

γC used in the definition of the sets Mk(l) in Step 1 tends
to result in smaller subsets Mk(l), L(c)

k−1, and M(c)
k , a larger

residual set Mres
k , a larger number C of subsets L(c)

k−1 and
M(c)

k , and a higher probability of C′ being empty.

APPENDIX B

We will derive the approximation of the posterior pgfl
GX̃k,Xk

[h̃, h|Z1:k] given by (34) and subsequent equations.

B.1 Pruning and Clustering

Our approximation is based on the partitioning of the label
set L(∗)

k−1 in (32) and the partitioning of the measurement index
set Mk in (33). As described in Section VI-A, only the associ-
ations between objects with labeled state (xk, l), l ∈L(c)

k−1 and
measurements with index m ∈ M(c)

k are plausible. Thus, by
pruning all the association hypotheses ak∈Ak that associate
some l∈L(c)

k−1 with some m∈Mk\M(c)
k , we obtain a more

efficient representation of the relevant association information.
Let Arem

k ⊆Ak denote the set of the remaining (nonpruned)
ak. Note that our pruning does not include missed detections
(described by a

(l)
k = 0), i.e., all ak with a

(l)
k = 0, l ∈L(c)

k−1 are
part of Arem

k . Therefore, each ak∈Arem
k associates each object

label l ∈ L(c)
k−1 with some measurement index m∈{0}∪M(c)

k .
(Note, also, that an ak ∈Arem

k does not associate any object
label with any m∈Mres

k .)
The pruning yields the following approximation of

G′
X̃k,Xk

[h̃, h] in (18):

G′
X̃k,Xk

[h̃, h] ≈
∑

ak∈Arem
k

wak
LL∗

k−1

[
h̃; r

(·,a(·)
k )

k , s
(·,a(·)

k )

k

]
×MMak

[
h; r̄

(·)
k , s̄

(·)
k

]
. (55)

Using the fact that the Bernoulli component factors in
MMak

[
h; r̄

(·)
k , s̄

(·)
k

]
with m∈Mres

k ⊆Mak
appear in each one

of the summation terms in (55), we obtain further

G′
X̃k,Xk

[h̃, h]

≈ MMres
k

[
h; r̄

(·)
k , s̄

(·)
k

] ∑
ak∈Arem

k

wak
LL∗

k−1

[
h̃; r

(·,a(·)
k )

k , s
(·,a(·)

k )

k

]
×MMak

\Mres
k

[
h; r̄

(·)
k , s̄

(·)
k

]
. (56)

Here, the wak
are given by expression (20).

As a consequence of the pruning, all objects with labels
l∈ L(c)

k−1, i.e., corresponding to cluster c, are now associated
only with measurements of the same cluster c, m∈ {0}∪M(c)

k ,
and not with any other measurements m ∈ Mk \M(c)

k . This
implies that each entry a

(l)
k of ak ∈ Arem

k associates labels
l∈L(c)

k−1 of cluster c only with measurements m∈{0}∪M(c)
k

of cluster c. Therefore, ak (of dimension |L∗
k−1|) can be split

into C subvectors a
′(c)
k ∈

(
{0} ∪M(c)

k

)|L(c)
k−1|, c∈C of lower

dimensions |L(c)
k−1|. Here, the entry a

′(c,l)
k of a

′(c)
k , with l ∈

L(c)
k−1, is defined similarly to a

(l)
k in Section V-A as a

′(c,l)
k ≜

m ∈ M(c)
k if the labeled object with state (xk, l) generates

measurement z
(m)
k and a

′(c,l)
k ≜ 0 if it does not generate a

measurement. The admissible association vectors a
′(c)
k (where

admissibility was defined in Section V-A) are collected in the
association alphabet A′(c)

k . We can now factor the weights as

wak
=
∏
c∈C

w
a

′(c)
k

, (57)

where (cf. (20))

w
a

′(c)
k

∝
( ∏

l∈L(c)
k−1

β
(l,a

′(c,l)
k )

k

) ∏
m∈M

a
′(c)
k

β
(m)
k .
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Here, M
a

′(c)
k

⊆M(c)
k comprises all measurement indices m∈

M(c)
k that are not associated with any labeled object via a

′(c)
k ∈

A′(c)
k and, thus, originate from an unlabeled object or from

clutter. In particular, M
a

′(c)
k

= ∅ indicates that all m ∈ M(c)
k

are associated with an object with label l∈L(c)
k−1. Furthermore,

we have

LL∗
k−1

[
h̃; r

(·,a(·)
k )

k , s
(·,a(·)

k )

k

]
=
∏
c∈C

LL(c)
k−1

[
h̃; r

(·,a′(c,·)
k )

k , s
(·,a′(c,·)

k )

k

]
,

(58)

MMak
\Mres

k

[
h; r̄

(·)
k , s̄

(·)
k

]
=
∏
c∈C

MM
a
′(c)
k

[
h; r̄

(·)
k , s̄

(·)
k

]
. (59)

Using the factorizations (57)–(59) as well as the identity∑
ak∈Arem

k
=
∑

a
′(1)
k ∈A′(1)

k

· · ·∑
a

′(C)
k ∈A′(C)

k

, we can rewrite the

approximation (56) in terms of the a
′(c)
k as

G′
X̃k,Xk

[h̃, h] ≈ MMres
k

[
h; r̄

(·)
k , s̄

(·)
k

] ∏
c∈C

G(c)[h̃, h] , (60)

where

G(c)[h̃, h] ≜
∑

a
′(c)
k ∈A′(c)

k

w
a

′(c)
k

LL(c)
k−1

[
h̃; r

(·,a′(c,·)
k )

k , s
(·,a′(c,·)

k )

k

]
×MM

a
′(c)
k

[
h; r̄

(·)
k , s̄

(·)
k

]
. (61)

We note that G(c)[h̃, h] and MMres
k

[
h; r̄

(·)
k , s̄

(·)
k

]
represent clus-

tered objects and nonclustered objects, respectively, which, in
both cases, may be likely or unlikely to exist.

So far, we approximated G′
X̃k,Xk

[h̃, h] in (18) by expres-
sion (60), which is the product of the C LMB–MB mixture
pgfls G(c)[h̃, h] in (61) and the MB pgfl MMres

k

[
h; r̄

(·)
k , s̄

(·)
k

]
.

As visualized in Fig. 3, this is the first step in a series of pgfl
approximations or modifications that are used in the devel-
opment of the proposed LMB/P filter. Next, we will develop
approximations of G(c)[h̃, h] and MMres

k

[
h; r̄

(·)
k , s̄

(·)
k

]
.

B.2 Approximation of the pgfl of Clustered Objects

We will approximate the pgfl representing clustered ob-
jects, G(c)[h̃, h], by an LMBM pgfl. To this end, we recall
from Section B.1 that the MB pgfl MM

a
′(c)
k

[
h; r̄

(·)
k , s̄

(·)
k

]
in-

volved in G(c)[h̃, h] in (61) corresponds to measurements
m ∈ M(c)

k that originate from an unlabeled object or from
clutter. We want to transfer unlabeled objects that are likely to
exist, or, more specifically, (unlabeled) Bernoulli components
B
[
h; r̄

(m)
k , s̄

(m)
k

]
, m∈M

a
′(c)
k

with r̄
(m)
k ≥ γtr , to the labeled

RFS part. Here, r̄(m)
k is given by (28). This transfer is moti-

vated by the fact that the labeled RFS part guarantees track
continuity and, after further modifications that are described
in Section VII, achieves a higher tracking accuracy than the
unlabeled RFS part. The transfer is accomplished by formally
replacing the measurement index m arising in B

[
h; r̄

(m)
k , s̄

(m)
k

]
by the label l= (k,m). Let L(c)tr

k collect the labels of the trans-
ferred Bernoulli components, i.e., all l=(k,m) with m∈M(c)

k

such that r̄(m) ≥ γtr (see also Fig. 1). We note that a higher
threshold γtr tends to imply a smaller number of transferred
Bernoulli components, |L(c)tr

k |. Furthermore, since the other
Bernoulli components B

[
h; r̄

(m)
k , s̄

(m)
k

]
(with r̄

(m)
k < γtr) are

unlikely, we prune them. This is done by setting h=1 because
B
[
1; r̄

(m)
k , s̄

(m)
k

]
=1.

With these modifications, and by introducing the association
vector a

(c)
k as in Section VI-B, G(c)[h̃, h] in (61) is replaced

by G(c)[h̃] as defined in (36) (see Fig. 3). Accordingly, Eq.
(60) becomes

G′
X̃k,Xk

[h̃, h] ≈ MMres
k

[
h; r̄

(·)
k , s̄

(·)
k

] ∏
c∈C

G(c)[h̃] . (62)

B.3 Approximation of the pgfl of Nonclustered Objects

Next, we consider MMres
k

[
h; r̄

(·)
k , s̄

(·)
k

]
in (62). Simi-

larly to the measurements m ∈ M
a

′(c)
k

involved in
MM

a
′(c)
k

[
h; r̄

(·)
k , s̄

(·)
k

]
in (61), the measurements m∈Mres

k in-

volved in MMres
k

[
h; r̄

(·)
k , s̄

(·)
k

]
originate from an unlabeled ob-

ject or from clutter. As in Section B.2, we transfer objects
that are likely to exist to the labeled RFS part, and thus we
formally replace the measurement index m in each Bernoulli
component B

[
h; r̄

(m)
k , s̄

(m)
k

]
, m∈Mres

k of MMres
k

[
h; r̄

(·)
k , s̄

(·)
k

]
with r̄

(m)
k ≥ γtr by the label l = (k,m). These labels

are collected in Lres,tr
k (see Fig. 1), and the corresponding

measurement indices are collected in Mres,tr
k ⊆ Mres

k (see
Fig. 2). The remaining measurement indices are collected in
M′

k = Mres
k \Mres,tr

k (again see Fig. 2). As before, a higher
threshold γtr tends to imply a smaller number of transferred
Bernoulli components, |Lres,tr

k |.
Using these modifications, MMres

k

[
h; r̄

(·)
k , s̄

(·)
k

]
is approxi-

mated according to (see Fig. 3)

MMres
k

[
h; r̄

(·)
k , s̄

(·)
k

]
≈ LLres,tr

k

[
h̃; r̄

(·)
k , s̄

(·)
k

]
MM′

k

[
h; r̄

(·)
k , s̄

(·)
k

]
.

(63)

Inserting (63) into (62) yieldsG′
X̃k,Xk

[h̃, h]≈LLres,tr
k

[
h̃; r̄

(·)
k , s̄

(·)
k

]
×MM′

k

[
h; r̄

(·)
k , s̄

(·)
k

]∏
c∈C G

(c)[h̃]. Finally, inserting this latter
approximation into (17) and grouping terms, we obtain (34),
(35), and (39) (again see Fig. 3).
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