
A Systematic Investigation of
Illicit Money Flows in the DeFi

Ecosystem

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Sebastian Luzian, BSc
Registration Number 01327570

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Matteo Maffei
Assistance: Bernhard Haslhofer

Vienna, 10th November, 2022
Sebastian Luzian Matteo Maffei

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Sebastian Luzian, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. November 2022
Sebastian Luzian

iii

Danksagung

An dieser Stelle möchte ich all jenen danken, die mich bei der Fertigstellung dieser Arbeit
und in meinem Studium unterstützt haben.

An erster Stelle gilt mein Dank meinem Betreuer Bernhard Haslhofer und seinen Kollegen
vom Complexity Science Hub. In zahlreichen Meetings haben wir die Forschung, die für
die Fertigstellung dieser Arbeit notwendig war, diskutiert und vorangetrieben. Ich habe
immer hilfreiches Feedback und Unterstützung erhalten und jedes Treffen, das wir hatten,
hat wesentlich zur Fertigstellung dieser Masterarbeit beigetragen.

Ein großes Dankeschön geht auch an alle, die mich während meines Studiums generell
unterstützt haben. Insbesondere möchte ich mich bei meiner Familie bedanken, ohne
deren Unterstützung die Fertigstellung dieser Arbeit nicht möglich gewesen wäre.

Auch möchte ich mich bei allen meinen Freunden bedanken, die mich während meiner Zeit
in Wien unterstützt haben. Ohne die Unterstützung von euch allen hätte das Schreiben
dieser Arbeit und auch das Studium selbst nur halb so viel Spaß gemacht.

v

Acknowledgements

At this point, I would like to thank all those, who supported me in the completion of my
studies and this thesis.

First and foremost, my thanks go to my supervisor Bernhard Haslhofer, and his colleagues
from the Complexity Science Hub. In numerous meetings, we discussed and advanced the
research that was necessary to complete this thesis. I have always received helpful feedback
and support and every meeting we had contributed significantly to the completion of
this Master‘s thesis.

A big thank you also goes to everybody that generally supported me during my studies.
In particular, I would like to thank my family without whose support completing the
thesis would have never been possible.

I would also like to thank all my friends who supported me during my time in Vienna.
Without the support from all of you, writing this thesis, as well as studying in general
would have only been half the fun.

vii

Kurzfassung

Mit der immer populärer werdenen Blockchaintechnologie und deren Anwendungsge-
bieten, traten in den letzten Jahre auch immer wieder betrügerische Aktivitäten in
den Vordergrund. Durch die oft inhärent bereitgestellte Pseudo-Anonymität von Block-
chains, sowie ein Mangel an Regulierung der sich darauf befindenden Applikationen
werden betrügerische Tätigkeiten bedingt. Hinzu kommt die relative Neuheit dezentraler
Transaktionssysteme und deren weitreichende Möglichkeiten.

Dezentrale Protokolle, Computerprogramme in der Form von Smart Contracts (SCs),
zählen zu den neusten Bausteinen innovativer Finanzsysteme. Dieses neue Paradigma der
Dezentralisierung, besser bekannt als Decentralized Finance (DeFi), hat sich in den letzten
Jahren zu einem der am schnellsten wachsenden Segmente der Kryptobranche entwickelt.
Eine Vielzahl an DeFi Plattformen welche das Investieren, Leihen und Verwalten von
Vermögenswerten ermöglichen, entstanden auf verschiedenen Blockchains. Die Ethereum
Blockchain beheimatet eine Vielzahl an DeFi Protokollen, stellt eine robuste Infrastruktur
für SCs bereit und weist hohe Nutzungsraten auf. Die Tatsache, dass DeFi Protokolle auch
Finanztransaktionen ohne Identifikationsanforderungen ermöglichen, machen sie attraktiv
für den Transfer illegaler Gelder, welche aus betrügerischen Aktivitäten stammen.

Ziel dieser Arbeit ist es, durch quantitative Methoden zu erforschen wie betrügerische
Addressen mit dem DeFi-Sektor in Zusammenhang stehen. In einer Websuche sammeln
wir Ethereum-Adressen, die mit betrügerischen Aktivitäten in Verbindung stehen. Die
gefundenen Adressen und ein Datensatz von DeFi Protokollen werden verwendet um
Transaktionsdaten des Ethereum-Netzwerks anzureichern. Wir untersuchen das resul-
tierende Netzwerk in einer Graphdatenbank und heben Transaktionsflüsse sowie deren
Beziehung zu DeFi-Protokollen hervor. In einer Transaktionsanalyse vergleichen wir
verschiedene betrügerische Aktivitäten und deren Verbindung zu DeFi-Protokollen.

Unsere Analysen zeigen, dass besonders Decentralized Exchanges (DEXs) betrügerisch
erworbene Gelder erhalten. Uniswap (ein Open-Source-Protokoll für die Bereitstellung
von Liquidität und den Handel mit Ethereum Request for Comments (ERC-20) Tokens)
ist besonders stark betroffen. In einer genaueren Analyse zeigen wir daher auch wie
Tokens innerhalb des Uniswap Protokolls getauscht werden, und welche ERC-20 Tokens
bevorzugt von betrügerischen Adressen verwendet werden. Durch eine Untersuchung von
Message Traces erforschen wir wie sich betrügerische Addressen dezentrale Protokolle
zunutze machen, und wie Transaktionen innerhalb des Protokolls ablaufen.

ix

Abstract

With the increasingly popular blockchain technology and its areas of application, illicit
activities have repeatedly shown to be a problem in recent years. The lack of regula-
tion, combined with the fact that pseudo-anonymity is intrinsically provided by most
blockchains and their applications, makes them popular platforms to launder money
coming from illegal activities like scams, exploits and hacks. The relative novelty of
decentralized transaction systems and their far-reaching possibilities additionally add to
this phenomenon.

Decentralised protocols in the form of Smart Contracts (SCs) - computer programs that
run on the blockchain - are one of the many innovative building blocks of new financial
systems. This new paradigm of decentralisation, better known as Decentralized Finance
(DeFi), has become one of the fastest-growing segments in the crypto industry in recent
years. A variety of DeFi platforms that enable investing, lending and managing assets
have emerged on different blockchains. Ethereum is one of these blockchains. It provides
a robust infrastructure for SCs, has a big user base and is home to a variety of protocols.
The fact that DeFi protocols also enable financial transactions without identification
requirements makes them attractive for the transfer of illicit funds originating from
fraudulent activities.

The aim of this work is to provide a better insight into how fraudulent transaction activities
on the Ethereum blockchain are related to DeFi protocols, through quantitative methods.
In a web search, we collect a dataset of Ethereum addresses related to fraudulent activities.
The found addresses and a dataset of DeFi protocols are used to enrich transaction data
of the Ethereum network. We examine the resulting network in a graph database and
highlight transaction flows and their relation to DeFi protocols. In a transaction analysis
we compare different fraudulent activities and their connection to DeFi protocols.w

Our analysis shows that Decentralized Exchanges (DEXs) are common receivers of
fraudulent funds. Uniswap (an open-source protocol for providing liquidity and trading
Ethereum Request for Comments (ERC-20) tokens is particularly affected. In a more
detailed analysis, we therefore also show how tokens are exchanged within the Uniswap
protocol, and which ERC-20 tokens are preferentially used by fraudulent addresses. By
examining message traces, we gain insight into how fraudulent addresses take advantage
of decentralised protocols and how transactions within the protocol take place.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 2
1.3 Overview . 4

2 Background 7
2.1 Ethereum . 7
2.2 Decentralized Finance (DeFi) . 17
2.3 Criminal activities on the Ethereum blockchain 20
2.4 Network analytics methods . 27

3 Data and Methods 31
3.1 Dataset collection . 31
3.2 Data normalization . 37
3.3 Network construction . 39
3.4 Topology analysis . 42

4 Analysis & Results 45
4.1 Fraudulent activities and their connection to DeFi 45
4.2 Analysis of transactions and transaction activity 52
4.3 Analysis of transaction schemes . 55

5 Discussion 67
5.1 Summary of insights . 67
5.2 Limitations . 68
5.3 Future work . 69

6 Conclusion 71

xiii

List of Listings 73

List of Figures 75

List of Tables 76

List of Algorithms 76

Acronyms 77

Bibliography 79

CHAPTER 1
Introduction

1.1 Motivation
In recent years, cryptocurrencies and blockchain-based tokens have had a revolutionary
impact on the traditional banking system. Built on Distributed Ledger Technology (DLT),
decentralized protocols in the form of Smart Contracts (SCs) [Sza96] have become the new
building blocks for innovative financial systems. This new paradigm of decentralization,
known as Decentralized Finance (DeFi) has become a fast-growing segment of the financial
markets. DeFi platforms provide a multitude of applications ranging from lending and
borrowing services for tokens or cryptocurrencies to platforms that allow speculating
on price movements or earning interest in bank-like accounts. Due to cryptographic
techniques, these financial systems - and the different services they provide - do not
require trusted parties like banks and other intermediaries anymore and centralized
regulation is no longer common [But14].

While these advancements towards decentralization certainly have great potential in
the banking industry [OEC20], many possibilities for fraudulent activities have emerged
in decentralized financial systems as well [HRM+21, TM20, Wro21, SS21]. As DeFi
protocols allow to carry out financial transactions without identification requirements,
this makes them attractive for the transfer of illicit funds coming from illegal activities
[Wro21].

“As the demand for cryptocurrencies increases, it provides opportunities for criminals to
hide behind the presumed privacy and anonymity. Identifying these cryptocurrency-related
crimes have posed challenges for law enforcement due to the cross-border nature of
transactions, the use of evasion technology to mask the identity of users, and inconsistent
regulations.” [KC20]

The lack of regulation, combined with the built-in properties of pseudonymity and
irreversible transactions makes DeFi a popular ecosystem for illegal activities like scams,

1

1. Introduction

exploits and hacks. Victims of scams often realize too late, that their transactions can
never be undone, and their money is lost forever. Exploits target the lack of security in
the newly formed space and try to obtain funds by force or social engineering. Hacks
are often only discovered after substantial damage was done, and in most cases, there
is no way to recover the stolen funds. As hiding one’s identity in a decentralized space
is very simple, it is easy for newcomers to construct fraudulent schemes as there are
only limited ways for law enforcement to ever finding out about their operations. Luring
people to send cryptocurrency in hope of good investments or quick potential profits,
without the fear of being caught leads to an increasing number of entities developing new
techniques and threats to extract money from unknowing victims. Without any regulatory
measurements that could actually prevent these entities from doing so, this trend will
likely continue. As DLT’s main purpose is to enable anonymous transactions between
participants, cryptocurrencies like Ethereum are also widely used to launder money
coming from various types of criminal activities including theft, fraud, extortion, drug
trafficking, trafficking of counterfeit goods, human trafficking and even child pornography
[Eur21b].

To gain a better understanding of how illegally obtained funds move in the newly formed
decentralized space, we give an insight into how DeFi applications are used by fraudulent
entities in order to manage, invest and swap funds relatively anonymously. By doing so
we will provide a better understanding of how different DeFi protocols on the Ethereum
blockchain are connected to a range of illegal activities.

1.2 Aims
While the research in the area of cryptocurrency scams has made great contributions
in the past [BLL+21, XWL+20, CGC+20, WLZZ21], there is still a lot of knowledge to
gain, when decentralized financial applications are involved. As DeFi protocols have
no centralized entity that could help people restore their assets [Har19], they became a
popular target for scammers and hackers. These fraudulent entities not only purposefully
attack DeFi protocols and their underlying technology, but they also use the very same
protocols to swap, transfer and invest their stolen funds in order to make them untraceable
or to gain even bigger profits. Inconsistent regulations and easily implementable evasion
techniques further make it difficult for regulatory entities to take action. Decentralized
financial applications are a particularly affected area of fraudulent activities, as it is one
of the emerging application fields of decentralized protocols.

The goal of this thesis is to gain a better understanding of how illicitly obtained funds
are sent around in the decentralized ecosystem, and how DeFi protocols on Ethereum are
utilized to store and manage funds. We purposefully chose to concentrate our efforts on
the Ethereum blockchain, as most decentralized protocols are built on Ethereum [CB20].
In our thesis, we therefore show how fraudulent entities on the Ethereum blockchain
are connected to each other, as well as to DeFi protocols. We present a reproducible
method that allows us to gain a better understanding of how illicit transactions and

2

1.2. Aims

DeFi protocols on the Ethereum network are related, and how and to which extent these
protocols are used by fraudulent entities.

To show how fraudulent activities and their transaction behavior are connected to the
decentralized financial space, and how much value is involved, we enrich aggregated
transaction data of the Ethereum Network with two datasets. First, we enrich the network
with metadata of fraudulent addresses. The fraudulent addresses, associated with various
illegal activities, are found by web search and are grouped by their respective category of
fraud. Secondly, we enrich the data with addresses of different DeFi protocols along with
their types and other metadata.

By combining the aggregated transaction data with the sets of fraudulent addresses and
DeFi addresses, we construct a network with all the needed metadata for us to investigate
transaction activities between illicit entities and DeFi protocols.

Based on this network’s topology we conduct an empirical analysis to show different
network metrics, as part of a network study. We show how fraudulent entities are
connected to each other and how fraudulent entities are connected to DeFi protocols. By
analyzing the network´s transactions we highlight entities or groups of entities related to
fraudulent transactions, and show to which protocols these fraudulent actors transfer
the most value. By looking at different DeFi protocols we show the cumulative amount
of fraudulent funds received over time, as well as possible revenues of different illegal
activities.

Our work also investigates what protocols are of particular interest for fraudulent entities,
and how different DeFi protocols are used in order to manage and trade crypto tokens
for other assets or fiat currency. Common similarities regarding transaction behaviour
are highlighted, and differences between different types of decentralized protocols are
shown. For this case, we provide a detailed analysis of fraudulent transactions connected
to the most used DeFi protocol and show how this specific protocol is used to swap the
blockchain’s native currency to different tokens, which can then be managed and utilized.

Following a top-down approach (first investigating the network as a whole, then going
into more detail about the network’s connections, and finally investigating different
transaction patterns) we answer the following research questions:

RQ 1: What types of fraudulent activities are conducted on the Ethereum blockchain, and
how are participating nodes connected to the DeFi sector?

RQ 2: What amounts of funds belonging to illicit activities can we identify flowing to
DeFi? Are there certain protocols, that are targeted more heavily in comparison to
other protocols? What type of protocols are affected most?

RQ 3: In which ways are illicitly obtained funds being transferred to DeFi protocols? Are
there identifiable transaction schemes that can be observed?

3

1. Introduction

1.3 Overview
In this section, we give a brief overview of our thesis. The remainder of the thesis is
structured in the following way:

Chapter 2 Background: In this chapter, we introduce the Ethereum blockchain, its
account models, aspects of state and transaction, SCs as well as tokens and token systems.
We also describe different types of DeFi protocols and criminal activities on the Ethereum
blockchain.

1. We cover the basics of the Ethereum blockchain as well as its account models.

2. We show how state and transactions work on Ethereum.

3. We take a look at SCs and provide an overview of how decentralized protocols can
be built, and why they are so promising.

4. We highlight tokens and token systems so we can understand what they are used
for and why decentralized protocols heavily make use of them.

5. Different types of DeFi protocols are shown and an insight into various criminal
activities on the Ethereum blockchain is given.

Chapter 3 Methodology: In this chapter, we show in more detail how our data was
gathered, how our network was constructed, and how the different analyses of network
topology, transactions, and traces are conducted.

1. By conducting a web search, we collect illicit Ethereum addresses that were included
in databases or blacklists of wallet providers as well as different on-chain analysis
tools.

2. Using the 6869 found addresses, we enrich the network’s aggregated transaction
data to identify fraudulent addresses and their properties.

3. We additionally enrich the network’s data to identify a set of 1407 DeFi addresses
of 4 different types (assets, derivatives, dex, and lending) belonging to different
decentralized protocols such as AAVE, Uniswap, Sushiswap, and others.

4. In a network study, we describe the constructed network and give a basic summary
of the network’s statistics.

Chapter 4 Results: In the results section we show how fraudulent entities are connected
to the DeFi space. For this, we draw comparisons between different fraudulent activities
as well as DeFi protocols in a transaction analysis. In a more detailed trace analysis, we
show which trace patterns occur the most, and how illicitly obtained funds move inside
the most heavily used protocol.

4

1.3. Overview

1. As results of the network study, we show statistics regarding the neighbours of
fraudulent nodes and DeFi protocols as well as local clustering coefficients. We also
show the number of fraudulent addresses directly connected to DeFi protocols of
different categories.

1. By analyzing the given transaction data, we show which protocols are used more
frequently. We find that decentralized exchanges do not only have a high amount
of relationships with other nodes, but we also find that they receive the biggest
amounts of illicitly obtained funds.

2. In a more detailed trace analysis, we show which trace patterns occur the most, and
how illicitly obtained funds move inside the most heavily used protocols. We also
show how funds are converted to different tokens with the use of these protocols.

3. We show the most common traces related to the most used protocol and give an
insight into how Ether is swapped within this protocol.

4. Last but not least, we check common similarities inside of trace patterns and see if
there are any particular tokens that are heavily used by fraudulent entities.

Chapter 5 Discussion: In this chapter, we will summarize our insights, show limitations
to our analysis and talk about possible future extensions of the work conducted in this
thesis. Chapter 6 Conclusion: We finish the thesis with a conclusion of our methods
and findings by giving a concise summary of our results.

5

CHAPTER 2
Background

The field of cryptocurrencies, which was essentially introduced to the public by the
creation of Bitcoin, is still relatively young. Although a similar ledger by the name of
KARMA existed even 5 years prior to Bitcoin, Vishnumurthy et al. [VCS03] only used
their blockchain in a peer-to-peer filesharing application, where they prevented actors
to freeload on resources. When Bitcoin was introduced around 2009 [Nak08], it had a
broader general scope, as it was the first ledger to have proof-of-work-secured tokens
that could not only be applied to one use case, but rather it became the first global,
decentralized transaction ledger with many of the application fields we talked about
earlier. After the introduction of Bitcoin, it didn’t take long until other distributed
ledgers started to show up as well.

One of those ledgers was Ethereum which was publicly launched on July 30, 2015. With
the possibility to exchange funds in a non-authorized way plus the possibility to execute
arbitrary code on the blockchain, Ethereum quickly grew to the second largest blockchain,
counting as many as 500,000 active addresses every day, as of February 28, 2022.

In the following chapters, we give a brief introduction to Ethereum and explain the main
concepts which are particularly relevant to understanding this thesis: accounts, state,
transactions, blocks, SCs as well as message calls and token systems. We also take a
glimpse at how transactions are stored on the blockchain to understand how the data
we want to investigate in this thesis can be obtained. Further, we explain what exactly
defines a DeFi protocol and why this sub-part of protocols comprises the main interest
of our investigations.

2.1 Ethereum
People familiar with blockchain and cryptocurrency concepts most certainly also have
heard of the Ethereum blockchain and the same-named native currency Ethereum

7

2. Background

(ETH) (also denoted as Ξ). Ethereum is a second-generation blockchain and its SC
capabilities make it popular for the creation of decentralized applications. With a market
capitalization of over $300,000,000,000 Ethereum is the second largest blockchain after
Bitcoin, according to market cap, and currently trading at $2,605.19 per Ethereum token.

2.1.1 Basics

Before the Ethereum blockchain was launched, there were as few as 18 other cryptocurren-
cies in existence yet1, of which Bitcoin and Litecoin appeared first in 2009 and 2011. Two
years later, in November 2013, Vitalik Buterin published a white paper [But14] explaining
the fundamental concepts of Ethereum. Following Buterins early work, there were 7 more
people, that are today considered co-founders of Ethereum: Charles Hoskinson, Gavin
Wood, Anthony Di Iorio, Amir Chetrit, Jeffrey Wilcke, Mihai Alisie, and Joseph Lubin.
They helped realize the project in the years to come until the Ethereum blockchain went
live on July 30, 2015. Ethereum is not only the blockchains name and the name of the
blockchain’s native currency, but rather Ethereum is an actively developed open-source
project2 that attempts to build generalized technology on which all transaction-based
state machine concepts may be built [Woo14].

As the main focus of this thesis is transactional behaviour and investigating fraudulent
accounts, we will purposefully leave out some details about Ethereum, as they are not
necessary to understand the scientific work we will conduct. What we will look at are
the basic principles and terms, that are used, as well as all the parts that are necessary
in order to understand the main concepts of this work.

Ethereum is a peer-to-peer network like Bitcoin, that uses an alternative protocol for
decentralized applications. As Ethereum’s specification was partly derived from the
ideas of Bitcoin, it is also often referred to as an alt-coin (alternative coin). In this
section we will mainly focus on five main parts which are relevant for this thesis, being
accounts, state & transactions, Smart Contracts as well as message calls (sometimes
also referred to as internal transactions), and token systems. One of the main goals
of Ethereum is to facilitate transactions between consenting entities, without the need
for a trustful environment. This means, that two individuals can come to a specific
agreement, without having to trust each other in any way, because the agreement will
be enforced autonomously [Woo14]. Ethereum, taken as a whole, can also be viewed
as a transaction-based state-machine, that begins with a genesis state, which over time
transforms to another state whenever a transaction is executed [Woo14]. This world-state
is referred to as σ. From this world-state σ, we can deduce information on account
balances, transactions that led to this state, as well as any other information that can be
represented by a computer [Woo14].

1https://en.wikipedia.org/wiki/List_of_cryptocurrencies
2https://github.com/ethereum

8

https://en.wikipedia.org/wiki/List_of_cryptocurrencies
https://github.com/ethereum

2.1. Ethereum

2.1.2 Accounts
In Ethereum accounts are stateful entities comprised of 4 different fields:

• nonce: represents the number of transactions sent from this address or the number
of contract creations made by this account

• balance: a value referring to the number of Wei (the smallest subdenomination of
ETH) owned by an address

• storageRoot: a 256-bit hash that encodes the content in the storage of the account

• codeHash: a hash of EVM code that this account stores

Figure 2.1: Externally Owned Accounts and Code Accounts

9

2. Background

In Ethereum, there are two different account types: accounts that have no Ethereum
Virtual Machine (EVM) code associated with them, and accounts that do. In practical
terms, we refer to these two different types of accounts as Externally owned accounts
(EOAs) and Code accounts (CAs), informally also referred to as SCs. In Section 2.1.5
we will investigate the functionality of SC in more detail. An Ethereum address that
identifies an EOA (also often referred to as a user account) is comprised of 160 bits,
meaning that an account address contains 40 hexadecimal digits:

Example: 0xb794F5279a39494cE8396eA0bfffBA7413579268

Most of the time, the address is prefixed with the common identifier for the hexadecimal
representation “0x”. CAs have the same format as EOAs and are indistinguishable
from them, given only the address is known. But contract accounts are distinguishable
from user accounts by checking if the codeHash field is the hash of an empty string e.g.
σ[a]c = KEC(()). If the hash is not the hash of an empty string, then there is code
stored within this account, and the account therefore must be a CA. User accounts are
associated with their respective private key, such that only authorized users can access
EOAs (given they know the private key that is associated). Contract accounts do not
have any association with private keys, rather their key is based on the code the contract
contains itself, and anybody can interact with it. The address of a contract is computed
from information that is based on the creator of the contract.

2.1.3 State & Transactions
In this section, we will describe the two most important aspects of Ethereum: state
and transactions. State and transactions are the two core concepts that the Ethereum
blockchain builds upon. This is why Ethereum is often also referred to as a transaction-
based state machine. A transaction is a cryptographically signed instruction, that when
executed on one state will result in a new state. This behaviour is formally defined in the
Ethereum yellow paper as: σ′ = Υ(σ, T) where Υ denotes the Ethereum state transition
function, with T being the transaction and σ the current state onto which transaction T
will be executed. The σ′ notation denotes the post-transactional state.

Of course, not every state change is also automatically valid, and in fact, invalid state
changes occur all the time. Fortunately, for the scope of this work, we will not have to
worry about how invalid state transitions are handled, as only already verified states end
up on the blockchain. As the transaction data we investigate in this thesis comes from a
valid state of the blockchain it means that all the transactions that led to this state must
also be valid.

If a valid state transition denoted by σt+1 ≡ Υ(σt, T) occurs, it has a chance of being
included in the next block of the blockchain. If the transaction is included in the next
block is dependent on different factors. How the creation of blocks (mining) functions as
well as how blocks are built is briefly explained in Section 2.1.4, although this functionality
of the Ethereum blockchain is not too relevant for the work in this thesis. For our use
case, it is sufficient to know, that transactions represent valid state transitions, and that

10

2.1. Ethereum

states can save arbitrary data such as account balances for example. Figure 2.2 shows a
simplified version of how transactions are included in the blockchain.

block block blockprevious
blocks

...

transactions
from: 0xe5b913f91f2b90c5cd04d711e1eb3214c56dba98
to: 0x1f9840a85d5af5bf1d1762f925bdaddc4201f984
msg: "sending 1.4 ETH"
value: 1400000000000000000

Figure 2.2: How transactions are included into the blockchain

The Ethereum yellow paper states that there are two different types of transactions:

• transactions which result in message calls, and

• transactions which result in the creation of new accounts with code (this is also
referred to as contract creation)

We will talk about the creation of contracts and the resulting code accounts in the section
Smart Contracts, but for now, let us investigate the transactions that are denoted as
message calls:

In the case of executing a message call, there are a few required parameters that are of
interest for our work. These parameters consist of the sender (s), transaction originator
(o), recipient (r), available gas (g), value (v), and gas price (p), d which stands for the
data that can be specified as input for this specific call, as well as e which describes
the depth of the message-call/contract-creation stack. For us, only the sender, the
recipient as well as the sent data, and the transferred value are of interest, as those are
the main parts of a transaction we need to know, in order to investigate it. In case of
executing a transaction referring to contract creation, an additional byte array i is also
sent along. The additional parameter i describes the initialization EVM code, that is
used to instantiate a callable contract on the Ethereum blockchain.

11

2. Background

2.1.4 Blocks & Mining

A block consists of a collection of transactions that are run on a current state. The
blocks themselves lay the foundation for the blockchain, the ledger recording the series
of transactions by utilizing cryptographic hash functions such that prior blocks can be
referenced uniquely. We can denote a block B as B ≡ (BH , BT , BU) where BT is a series
of transactions (T0, T1, ...), BH is the block header that contains a variety of information
such as the reference to its parent, a timestamp and many other things. BU refers to a
list of ommer block headers (ommer blocks are blocks that have a parent equal to the
present block’s parent’s parent). As we know that there are many transactions in one
block there is also a block-level state transition function Π which is written as follows:

Π(σ, B) ≡ Ω(B, Υ(Υ(σ, T0), T1)...)

Where Ω is the block-finalization state transition function for block B. Ω is also responsible
for rewarding block creators with a mining reward and should incentivize participants of
the blockchain to put computational effort into creating new valid blocks (mining). As
block creation is a substantial part of how the Ethereum blockchain functions, we wanted
to mention it here shortly, but note that it has no further significance in the scope of our
thesis.

Now that we have a simplified overview of transactions and how transactions that were
triggered by external actors are stored in blocks, we will also take a closer look at how
message calls, calls which can also be triggered by code execution of a contract, are
handled. We will also look at how CAs work and show how traces of executable SC
functions can be investigated for an even more detailed analysis.

2.1.5 Smart Contracts & Message Traces

Smart Contracts, often also referred to as distributed apps (or short dApps), have
become very popular in the last years. But it was quite some time ago when the term
Smart Contract was first introduced by Nick Szabo in the late 1990s when he wrote and
published the article “Smart Contracts: Building Blocks for Digital Markets” [Sza96].
His idea was to use a distributed ledger to store real-world contract information. The
contracts should be embedded in the hardware and software we deal with, in such a way
as to make breach of contract expensive for the breacher [Sza96]. In his view, there were
some major objectives that would be addressed by creating cryptographically secured
protocols in opposition to having contracts that have to be secured by physical force
(like arrest or confiscation). His vision was to create contracts that would be observable,
verifiable, immutable, and enforceable [Sza96].

In simpler terms, SCs on Ethereum are computer programs deployed onto the blockchain.
They are pieces of code that can be triggered to execute, they are able to hold data
and make transactions to other SCs such that they update their state according to the
specification that was programmed into them when the contract was initially deployed.

12

2.1. Ethereum

The exact execution model of SCs would go beyond the scope of this thesis, nevertheless,
we want to briefly show some applications of SCs as Ethereum allows for SC possibilities
in various fields.

For example, SC can be used to fund projects and cryptographically make sure that the
funding will only reach the project’s managers in case the funding is fully completed,
and is returned to the investors otherwise. Banks can use them to issue loans as well as
to automate payment processes. Insurance companies can use contracts to help them
process claims, and there are a lot more options when it comes to applicable fields and
use cases. One of the spaces using the capabilities of SCs extensively is DeFi.

On the Ethereum blockchain, SCs are initialized by setting EVM code as a parameter
when creating a new account. Contract creation can either fail or successfully alter the
state in which the contract will persist from this point on. On contract creation, different
restrictions can be set. This mechanism known as modifiers allows us to change the
behaviour of functions inside a SC. Modifiers can, for example, be used to make sure
not every user can interact with the contract in the same way. We can think of this
mechanism as giving certain privileges to different accounts. This feature of restriction is
needed for a variety of software-engineering-specific nuances, as the code set on contract
creation is immutable and cannot be changed thereafter. For example, it makes it possible
for privileged entities to update their software by using certain patterns, for example,
proxies.

After a contract successfully has been created, everybody owning an account can now
interact with the contract by the means of message calls. For a message call, there are a
few parameters that are of particular interest for our thesis:

• transaction originator EOA address from which the initial message call originated

• transaction_hash a unique identification hash for the transaction this message
belongs to

• sender the address (CA or EOA) that initiated the message call

• recipient (usually) the account whose code is to be executed

• value the value that is associated with the trace

• input data the input data of the message call

• function_signature the signature of the function that is called (we can derive
this signature from the input data)

In particular, we can look at all the different addresses that sent and received message
calls, in order to trace all function calls, not only calls executed by EOAs but also from
SCs themselves. In cases where SCs call functions of other SCs, an execution chain of
message calls can be constructed.

13

2. Background

These so-called message traces emerge as contracts call functions of other contracts in
order to execute some logic. By calling code that resides in other contracts, arbitrary
code can be executed, side effects can occur and data or value transfers can be triggered.
Because of their different applicability, traces may contain hundreds of message calls, as
a result of a single transaction triggered by an EOA.

Message calls from SCs to other SCs are also often referred to as internal transactions. In
Figure 2.3 we can see a trace of a message call of length 8. It consists of 4 direct sub-traces
(0, 1, 2, 3), one of them having 3 sub-traces itself (3|1, 3|2, 3|3). The edge denoted as tx
is the initial transaction from an EOA triggering all the other message calls. By looking
at the first 4 bytes of the input data which is provided in the message call (the so-called
function signature), we can check which exact function of a SC was called in each step of
the trace. In the figure, we can see the function signatures of every message call appended
to each edge of the graph. The most important trace properties of the same trace in its
raw tabular form can be seen in table 2.1. We can see that the first transaction going
to the address of the Uniswap V2 Router is associated with a value transfer of 2 ETH,
and the function that is called is swapExactETHForTokens(...). In this manner, we
can follow the whole trace of the transaction giving us a better understanding of what
happens on the blockchain, not only on a transactional value-transfer level but also on a
logical, semantic level.

2

1

3|1

3|2

3|0

FRAUD Uniswap
V2 Router

Uniswap
ETH/USDT

LP

EtherToken

Tether
USDT

Stablecoin

tx

swapExactETHForTokens
(uint256,address[],
address,uint256)

getReserves()

deposit()

transfer(address,uint256)

balanceOf(address)

swap
(uint256,uint256,
address,bytes)

0

3

transfer(address,uint256)

balanceOf(address)

Fraudulent user

Figure 2.3: Trace showing a swap from ETH to USDT visualized as graph

14

2.1. Ethereum

tx_id from to value hex_signature text_signature
tx 0xd5edf. . . 0x7a250. . . 2.0 0x7ff36ab5 swapExactETHForTokens(...)
0 0x7a250. . . 0x0d4a1. . . 0 0x0902f1ac getReserves()
1 0x7a250. . . 0xc02aa. . . 0 0xd0e30db0 deposit()
2 0x7a250. . . 0xc02aa. . . 0 0xa9059cbb transfer(...)
3 0x7a250. . . 0x0d4a1. . . 0 0x022c0d9f swap(...)
3|0 0x0d4a1. . . 0xdac17. . . 0 0xa9059cbb transfer(...)
3|1 0x0d4a1. . . 0xc02aa. . . 0 0x70a08231 balanceOf(...)
3|2 0x0d4a1. . . 0xdac17. . . 0 0x70a08231 balanceOf(...)

Table 2.1: Message trace from figure 2.3

2.1.6 Tokens and Token Systems
The definition of what a token exactly is, and what a token is used for depends on context,
and there are different views on what should be labeled as a token and what should be
labeled as cryptocurrency.

A token can generally be seen as some unit managed by a token contract. Although the
management by contract is not necessary, e.g. alt-coins are also often labeled as tokens.
As there is no exact definition of what a token can describe, and what its utilities are,
we want to mention two main takes on crypto tokens:

1. Any cryptocurrency is a token because - technically - all crypto assets can be
described as such.[Blo22]

2. Tokens are crypto assets that run on top of another cryptocurrency’s blockchain.[Blo22,
Fra22]

Although Bitcoin and Ethereum are more commonly referred to as cryptocurrencies
instead of tokens, basically all other alt-coins (alternative coins) are mostly addressed as
tokens, whether they are native tokens running on their own blockchain or not. Since we
only investigate data inside the Ethereum ecosystem we can go with the second approach
and state that tokens are a special form of SCs, running on top, and making use of,
the Ethereum blockchain. Far more important than actually coming up with a solid
definition for what a token exactly is, is the variety of different use cases that tokens and
token systems provide.

Crypto-tokens mainly emerged after the launch of Ethereum in 2015, as by the use of
its general-purpose programming language it became very easy to create decentralized
applications and also tokens that these applications would use. There is a variety of
different tokens, such as DeFi tokens, governance tokens, Non fungible tokens (NFTs),
security tokens, and utility tokens serving different purposes.

As the Ethereum whitepaper states: "Token systems have many applications ranging from
sub-currencies representing assets such as USD or gold to company stocks, individual

15

2. Background

tokens representing smart property, secure unforgeable coupons, and even token systems
with no ties to conventional value at all, used as point systems for incentivization."
[But14]

The primary building blocks of all tokens on the Ethereum blockchain are SCs. Basically
all token contracts have at least one thing in common, which is the possibility for entities
to transfer tokens between each other. A simple implementation of a token transfer can
be seen in Listing 2.1.

f u n c t i o n t r a n s f e r (address r e c e i v e r , u i n t amount) p u b l i c r e t u r n s (bool) {

r e q u i r e (amount <= b a l a n c e s [msg . sender]) ;

b a l a n c e s [msg . sender] = b a l a n c e s [msg . sender] − amount ;

b a l a n c e s [r e c e i v e r] = b a l a n c e s [r e c e i v e r] + amount ;

emit Trans fe r (msg . sender , r e c e i v e r , amount) ;

r e t u r n t r u e ;
}

Listing 2.1: Basic transfer function of a token contract

Of course, this implementation is a very basic example of a token transfer and as seen in
the listing, there is no other use-case tied to this token, besides the actual transfer. As
we have a very wide range of what a SC can actually define, there is also a wide range of
functions that a token can exhibit. DeFi tokens for example implement functions used in
traditional financial systems such as lending, saving, and trading tokens in a variety of
ways. Governance tokens give holders the possibility to participate in votes regarding
different issues, for example, an upgrade to a decentralized application. Access-control
features can also be implemented using governance tokens. NFTs are used to represent
ownership rights for real-world or virtual assets and are heavily used to issue digital
artworks and in-game items [PKPD22, FP21]. Security tokens are assets for example
used to represent partial ownership of a company like traditional shares.

With such a variety of different tokens, there emerged the need for a unified specification,
as to make sure tokens could also interact with each other, also on different blockchains,
in a standardized way. For this purpose different token standards emerged over time:

• ERC-20 The Ethereum Request for Comments (ERC-20) token standard was
proposed in November 2015 and implements an Application Programming Interface
(API) that provides functionalities such as token transfers, getting the current
token balance of an account, getting the total supply of all tokens available and
third party spending approvements. Over 500,000 ERC-20 compatible tokens are
deployed on the Ethereum blockchain, making it a viable standard.

• ERC-721 The ERC-721 token standard is a non-fungible token standard, meaning
that contrary to the ERC-20 specification where all tokens are the same, this
standard ensures, that all tokens are different. Therefore tokens from this standard
can be used to represent ownership over digital or physical assets [ESES18].

16

2.2. Decentralized Finance (DeFi)

• ERC-777 ERC-777 defines a backward compatible standard with ERC-20 specifi-
cation that allows for more advanced interactions with tokens. With this standard
operators can for example send tokens on behalf of other addresses.

• ERC-1155 The so-called Multi-Token Standard provides functionalities for con-
tracts to manage multiple tokens at once. It was originally introduced in 2018,
as it became clear that the ERC-20 and ERC-721 standards were responsible for
a lot of redundant bytecode on the Ethereum blockchain, plus they had limited
functionality in some cases [RCC+18].

The ERC-20 token standard is by far the most commonly used standard on the Ethereum
blockchain, as it was the first standard that became widely accepted, and a lot of other
standards build upon it today. The ERC-20 token standard enables tokens to easily
interact with wallets, exchanges, and a range of SCs, also in the DeFi space, that use
ERC-20 functionality to ensure compatibility.

In Listing 2.2 we can see the standard ERC-20 methods, that an ERC-20-compatible
SC must implement. Because we know what the different standardized functions are
designed for, they will provide us with insight into what different message traces do
internally, when one of these functions is called.

f u n c t i o n name () p u b l i c view r e t u r n s (s t r i n g)

f u n c t i o n symbol () p u b l i c view r e t u r n s (s t r i n g)

f u n c t i o n dec imals () p u b l i c view r e t u r n s (u int8)

f u n c t i o n t o t a l S u p p l y () p u b l i c view r e t u r n s (uint256)

f u n c t i o n balanceOf (address _owner) p u b l i c view r e t u r n s (uint256 balance)

f u n c t i o n t r a n s f e r (address _to , u int256 _value) p u b l i c r e t u r n s (bool s u c c e s s)

f u n c t i o n transferFrom (address _from , address _to , u int256 _value) p u b l i c r e t u r n s (bool s u c c e s s)

f u n c t i o n approve (address _spender , u int256 _value) p u b l i c r e t u r n s (bool s u c c e s s)

f u n c t i o n a l lowance (address _owner , address _spender) p u b l i c view r e t u r n s (u int256 remaining)

Listing 2.2: ERC-20 Methods

For example, if we see a transfer() function being called in an ERC-20-compatible token,
we can conclude that there were tokens transferred from the owner of the contract to
some other entity. This will become useful for us as we will try to understand what
different message traces do in chapter 4.3.

2.2 Decentralized Finance (DeFi)
In this chapter, we will explain more thoroughly what contracts are considered as
decentralized finance and why DeFi is an important topic to investigate when it comes to
illicit transaction behaviour.

17

2. Background

If we think about financial transactions today, what probably comes to most people’s
minds, is some form of bank. With the help of banks, they can send and receive money
to and from others. The banks are responsible for handling all the legal conditions, they
guarantee that our money will be safe, and they make our money accessible via debit and
credit cards, as well as ATM machines and Internet portals, where we can easily view and
manage our holdings. Banks are intermediaries, that provide us with the services we need
in our economic world every day. They easily let us connect with others, without having
to establish trust ourselves, and they handle transactions in a reliable and fast manner.
Although banks provide great benefits, they often also enjoy substantial power in shaping
the economic landscape, and they can leverage their power to maximize self-interests,
raising concerns over their monopoly power [CB20].

With the growing concerns over regulatory power in the last decades, blockchain technology
and its applications make the perfect substitute for large-scale financial institutions. With
decentralized platforms and cryptographically backed trust mechanisms, blockchain-based
financial systems can eliminate the need for intermediaries, and help to make financial
services more accessible, transparent and maintainable. DeFi is a collection or a subset
of SCs that facilitate functions and frameworks, such that people from all around the
world can interact with these contracts. People can use the different contracts to save,
invest, access, and manage their money in a decentralized way. According to Werner et
al. [WPG+21] there are four main properties that a perfect DeFi system should exhibit.
It should be:

1. Non-custodial: participants have full control over their funds at any point in time

2. Permissionless: anyone can interact with financial services without being censored
or blocked by a third party

3. Openly auditable: anyone can audit the state of the system, e.g., to verify that
it is healthy

4. Composable: its financial services can be arbitrarily composed such that new
financial products and services can be created (similar to how one is able to create
new Lego models based on a few basic building blocks)

It is these properties, that inherently differentiate decentralized systems from their
centralized counterparts. Over time centralized institutions have accumulated a lot of
power, and now that their systems are established, it is hard to restructure the monopoly
position of such big players. Their internal structure is often not visible to outsiders, and
it is hard to monitor and correctly regulate centralized systems. DeFi systems on the
other hand are transparent and there are (theoretically) no single authorities that are in
control of regulation.

As DeFi systems have a great variety of applications, the total value locked in DeFi had
first reached $25 billion in December 2020 and has since then reached over $100 billion

18

2.2. Decentralized Finance (DeFi)

by the end of 2021 only to come back down about $75 billion as of March 2022. The
most prominent application areas where DeFi has already set foot are assets, exchanges,
lending services, derivatives, and payment services. These are only some of the main use
cases that DeFi offers, but there are many more, and it would take a long time to list
every single one of them, as there are hundreds of different protocols already deployed on
various blockchains. Therefore we will only look at the most prominent application areas,
mentioned above, and explain how DeFi managed to replace or at least supplement the
given centralized systems we are so used to.

• Assets: DeFi assets are tokens that utilize SCs to provide additional features to
regular assets. On the one hand, the tokens can be seen as simple investments, but
on the other, the token could be responsible for community-driven decision-making,
participating in stake pools, or yield farming, which involves lending your tokens
to gain yield by interest rates or transaction fees. DeFi assets often have multiple
usecases, and they come in a lot of different forms. DeFi protocols of the asset
category are for example Badger3 or Convex4 among many others.

• Decentralized Exchanges (DEXs): A DEX let you trade different tokens for
other tokens at any time you like. It is like exchanging currencies on a regular
exchange, with the difference, that the market will not be closed like a regular
market. DEXs function 24 hours a day, every day of the year. Examples of
well-known DEXs are Uniswap5, Sushiswap6 or 0x7, but there are many more.

• Lending and Borrowing Services: In decentralized systems, for somebody to
get a loan, it is not necessary to provide personal information. Neither the borrower
nor the lender have to identify themselves and they don’t even have to know each
other. Still, they can come to a mutual agreement on what terms they want to
borrow or lend their money. The main advantage of the decentralized setting is
that you are not only having access to funds in the custody of your personal bank,
but rather to all the available funds at that given time. No more does it matter,
what your location is, or what lending programs your bank offers. By having a lot
of people offer loans on their own terms, loans become accessible for everybody,
and interest rates can improve as there is more competition in the market. Even
loans without collateral (flash loans) are possible in DeFi, which would basically be
impossible in the current centralized setting. Some known lending and borrowing
services are Aave8, Compound9 and Maker10.

3https://badger.com/
4https://www.convexfinance.com/
5https://uniswap.org/
6https://sushi.com/
7https://www.0x.org/
8https://aave.com/
9https://compound.finance/

10https://makerdao.com/

19

https://badger.com/
https://www.convexfinance.com/
https://uniswap.org/
https://sushi.com/
https://www.0x.org/
https://aave.com/
https://compound.finance/
https://makerdao.com/

2. Background

• Derivatives: Derivatives work in a very similar way as their centralized coun-
terparts do. Derivatives are contracts deriving their value from underlying assets,
commodities, or indices. They are mostly used to hedge the risk associated with
crypto-exposure, but also for speculation. Again, the beneficial part of decentraliza-
tion is, that everybody has access to these derivatives, and they can even be created
by anybody. Synthetix11 and dYdX12 are among the most common protocols.

• Payment Services: Payment services also work very likewise to their centralized
counterparts. If two entities want to exchange value, there needs to be a fast system
that handles the transaction, in such a way, that transferred value can be used
immediately after it was sent. Specifically focusing on simple transactions, there
have emerged multiple protocols and networks, that solely focus on improving trans-
action throughput whilst not lacking in privacy and security. Celar13, Connext14

or Matic15, just to mention a few, all provide services in this sector of DeFi.

As DeFi has emerged as one of the biggest application fields of cryptocurrencies, there
is also an ever-growing amount of scams and illegal activities that involve the above-
mentioned protocols and their provided functionality. DeFi, often being loosely regulated,
is a welcoming opportunity for fraudulent entities to launder their money using these
protocols. There are a lot of different criminal activities related to Ethereum and protocols
in general, which we cover in a bit more detail in the next section.

2.3 Criminal activities on the Ethereum blockchain
As the 2021 Crypto Crime Report from Chainalysis states, illicit activity represented
2.1% of all cryptocurrency transaction volume in 2019, or roughly $21.4 billion worth
of transfers. In 2020, the illicit share of all cryptocurrency activity fell to just 0.34%,
with one of the reasons being, that the overall economic value almost tripled in 2019.
Nevertheless this 0.34% still accumulates to about $10.0 billion in illicit transaction
volume [Cha21]. The Crypto Crime Report has also shown, that DeFi is becoming a
more and more prominent destination of stolen cryptocurrency in the last 2 years and
that "DeFi protocols received 17% of all funds sent from illicit wallets in 2021, up from
2% the previous year. That translates to a 1,964% year-over-year increase in total value
received by DeFi protocols from illicit addresses, reaching a total of $900 million in 2021"
[Cha22].

The history of criminal activities related to cryptocurrencies basically started as soon as
the first cryptocurrency came around. As technology and society have progressed, so have
criminal activities and their applications. The connectedness of the Internet makes it an

11https://www.synthetix.io
12https://dydx.exchange/
13https://www.celer.network/
14https://www.connext.network/
15https://polygon.technology/

20

https://www.synthetix.io
https://dydx.exchange/
https://www.celer.network/
https://www.connext.network/
https://polygon.technology/

2.3. Criminal activities on the Ethereum blockchain

easy task to spread malicious information all around the globe, while staying relatively
anonymous. Fraud, scams and pyramid schemes, all of which existed prior to the Internet,
have now become activities, that can target an even bigger audience ever more easily.
The predominant use case that cryptocurrency provides in relation to illegal activities is
the process of laundering money, such that it is hard to trace where funds originally came
from. As the European Union Agency for Law Enforcement EUROPOL states, "Recent
years have seen cryptocurrency increasingly used as part of criminal activities and to
launder criminal proceeds. Criminals have also become more sophisticated in their use of
cryptocurrencies. In addition to using cryptocurrencies to obfuscate money flows as part
of increasingly complex money laundering schemes, cryptocurrencies are increasingly
used by criminals as a means of payment or as an investment fraud currency." [Eur21a]

To better understand different illicit schemes and how these are orchestrated, we will
briefly explain the main activities that make out some of the illegal proceedings connected
to cryptocurrencies.

2.3.1 Scams & Fraud
As a lot of institutions point out, scams and fraud are not quite the same thing, but
successful scams or frauds almost always lead to monetary loss for the victims. Scamming
is considered to be the little brother of fraud as it is not quite as sophisticated in
orchestration and also potential revenues are often considered to be lower. A scam may
be perpetrated by a small group or even a single entity, often making use of false promises.
The sophistication of fraud is considered to be higher, often conducted by a group of
insiders, and the possible amounts involved in frauds are considered to be higher also.
Nevertheless, the two terms are quite often used interchangeably. As the annual report on
the criminal use of cryptocurrency by Chainalysis shows, scamming is the most frequently
identified illicit activity in the crypto space. Their reporting shows that over half of all
the detected activities (54%) were related to scams, which accounted for $2.6 billion in
2021. [Cha21]

When it comes to trading and investing, most retail investors rely on trusted exchanges,
to get their hands on cryptocurrencies. Fiat money is transferred to a bank account
that belongs to the exchange, and in return, the investor gets some cryptocurrency,
based on the current exchange rate. But exchanges are not the only way to get your
hands on cryptocurrencies, and they are also not the only way to trade crypto assets
for fiat money or other currencies. Peer-to-peer (P2P) trading is often used to transfer
funds between two or more entities without the need of any intermediaries. As P2P
basically skips the identification process and can be used by anybody whenever they
want, it is the predominant way of transacting money pseudonymously from one entity
to another. As there is no real way to identify a person or entity behind an arbitrary
address, without sophisticated investigations, P2P transactions are often used in all kinds
of scams [ByB22].

A common scheme is to promote tokens by using various websites and social media to

21

2. Background

trick people into investing in certain tokens. People are lured by high potential profits and
fake communities that back up those frauds. The founders of the tokens often artificially
inflate the price and then leave with the majority of the money before investors realize
that the promised use case or investment opportunity was just a stunt to obtain their
money. This method is known as exit scams, as the fraudsters "exit" with a lot of money,
often resulting in the burst of the price bubble. Other schemes rely on hacked social
media accounts to promote free giveaways of coins or tokens if you send a certain amount
of tokens in the first place. These so-called giveaway scams are a form of advance fee
fraud, a category of crime that covers myriad versions of the same basic premise: I have
something valuable to give you; to release it, send me a payment ([GSD04] as cited in
[Mac22]). Of course, there are no free coins to be obtained in a giveaway scam, and the
amount of cryptocurrency sent to the address responsible for doubling or tripling the
victim’s coins is just lost once the transaction is executed.

Another subcategory of scams are pump and dump schemes in various forms, where
groups of people promote to artificially raise the price of a coin by buying lots of coins
at a certain time. Just after the collective buying should start, the promoters then sell
large amounts of the agreed-upon cryptocurrency, in which they had been invested way
before everybody else got on board. This often dumps the price and leaves the scammed
buyers with prices well below their buying price, and no way to regain their losses in the
near future. Pump and dump schemes are illegal, however, cryptocurrency exchanges
are, for the moment, unregulated and difficult to police and those involved often escape
prosecution [B+18]. Other fraud schemes involve promoting investment opportunities
or trading signals or even sophisticated simulated trading environments just to get a
hold of personal information, subscription fees, or initial money deposits. Basically, the
possibilities for fraud are endless, and in combination with pseudonymity, it certainly is
an easy opportunity to make money in an illicit way.

2.3.2 Exploits
Since cryptocurrency has been around, multiple protocols have become targets of so-
phisticated hacks, whether it was the exploit of certain bugs or social engineering, that
led to huge amounts of stolen funds. DeFi-related hacks have accounted for 76% of all
major hacks in 2021, and users have lost more than $361 million to attacks on DeFi
platforms in 2021, as CipherTrace states in their Cryptocurrency Crime and Anti-Money
Laundering Report in August [Cip21].

In 2016 the hack of the Decentralized Autonomous Organization (DAO) made headlines.
Somebody had discovered an exploit in the Smart Contract code that was deployed to the
Ethereum blockchain. At its peak, the DAO contract held over 12 million Ethereum, of
which the attacker managed to drain 3.6 million, today worth over $160 million. The hack
only occurred merely one year after the blockchain was launched in 2015, and because
of the huge amount of stolen funds, the Ethereum community made the controversial
decision to hard-fork the Ethereum blockchain. The original chain with the stolen funds
is today known as Ethereum Classic, while the blockchain that got reset to a point in

22

2.3. Criminal activities on the Ethereum blockchain

time before the hack occurred, is today known as Ethereum. But we don´t have to look
all the way back to 2016 to find exploits that gained large amounts of tokens. Just in
the beginning of 2022 alone, over 50 exploits have been reported in the REKT database
of DEFIYIELD16. As the Ethereum blockchain is still the go-to SC platform it is no
surprise, that there are numerous big Ethereum-related exploits listed just in the last
few years.

In August 2021 the Poly Network project, a DeFi application providing cross-chain
transactions, got targeted by an undisclosed attacker, who drained over $600 million
in different cryptocurrencies from a Smart Contract to external wallet addresses. The
exploit was conducted by exploiting a security flaw, that allowed the hacker to execute
transactions only reserved for privileged entities. In the aftermath of the exploit, the
attacker surprisingly returned all of the funds, earning him the name "Mr. White Hat".

Also in 2021, a Play-to-earn NFT platform - Vulcan Forged - also reported it had suffered
an attack, and a big amount of the token’s total supply (nearly 9%), worth $140 million
at that time, was stolen. To the luck of investors, the platform was capable of returning
the stolen tokens to everybody that was affected, but not all projects are this fortunate.

Two months earlier, Cream Finance - another DeFi project - also reported major losses
as an attacker exploited a SC by using a flash loan attack. These attacks work by
creating an arbitrage opportunity by using lent tokens in a favorable way to exploit
artificially created price discrepancies. This attack shows, that even after continuous
security improvements of SCs there can still be exploitable parts, as this was the third
time Cream Finance was hacked in 2021, losing $37 million in February, $29 million in
August, and $130 million in the latest attack.

BadgerDAO, Compound Labs, EasyFi, and many others are all among projects in the
DeFi space, that suffered exploits responsible for multi-million dollar losses. And the
list does not stop there. Attentive readers might have noticed, that we only mentioned
protocols, that reside on the Ethereum blockchain. Looking at the full picture shows an
even more devastating reality of a total of $3 billion in lost funds, of which only 30.9%
happened on the Ethereum blockchain, or had ETH tokens involved. It also shows, that
only about $700 million were ever returned, of which the hacker of the Poly Network is
responsible for $600 million. As of 28th of March 2022, they listed 2730 malicious acts of
which 934 targeted Ethereum-based protocols. 134 entries are listed as exploits. Also,
the biggest losses are attributed to exploits. We can clearly see, that DeFi has become
one of the main targets of hackers and malicious entities, especially as financial services
are the ones where the money resides, giving attackers an outlook to make huge profits
when targeting DeFi protocols.

2.3.3 Ponzi Schemes
In the 1920s, an Italian crook named Charles Ponzi caught investor’s attention by
promising extraordinarily high returns within just a few months. What he claimed was

16https://defiyield.app/rekt-database

23

https://defiyield.app/rekt-database

2. Background

an investment in international mail coupons, turned out to be one of the biggest scam
schemes known to that date. In its essence, a Ponzi scheme pays earlier investors with
investments of later investors [WAH12], without making any or only little legitimate
earnings itself. Therefore Ponzi schemes need a constant flow of new money with which
earlier investors can be paid. The non-transparent schemes often gained popularity
among new investors, as the potential success of the investment is proven and promoted
by early adapters. The Ponzi schemes work as long as newer and bigger investors can be
found, but sooner or later all Ponzi schemes meet the same fate of rapid collapse, unable
to pay the promised profits.

Recruiting new investors was certainly a time-consuming task back in 1920, but since then
a lot has changed, and today the Internet provides the basis for easier recruitment as well
as easier promotion of fraudulent schemes all around the globe. Although Ponzi schemes
as well as their detection and analysis on the Ethereum blockchain are well-researched
[CZC+18, BCCS20, YJX+21, ZYL+22], SCs implementing Ponzi schemes show up in the
hundreds. Persisted on the blockchain, Ponzi schemes written as SCs have the appearance,
as if the constant flow of new investors is even more certain than in the real world, as
the contract will exist on the blockchain forever, with no way for regulatory entities to
remove it. This creates a false sense of continuity and the suggestion that the scheme
can go on forever. This sense of continuity combined with the promise of quick returns
even leads sophisticated investors to join these schemes. Even though they understand
the fraud - they still hope to profit by joining early [MHC12]. With SCs often no bigger
than 200 lines of code, anybody can become the new Charles Ponzi.
pragma s o l i d i t y ^ 0 . 5 . 0 ;
import " @openzeppel in / c o n t r a c t s /math/SafeMath . s o l " ;

c o n t r a c t Doubler {

us ing SafeMath f o r u i n t ;

address payable p u b l i c owner ;

s t r u c t User {
address payable addr ;
u i n t amount ;

}

User [] p u b l i c u s e r s ;
u i n t p u b l i c c u r r e n t l y P a y i n g = 0 ;
u i n t p u b l i c t o t a l U s e r s = 0 ;
u i n t p u b l i c totalWei = 0 ;
u i n t p u b l i c tota lPayout = 0 ;
bool p u b l i c a c t i v e ;

c o n s t r u c t o r () p u b l i c {
owner = msg . sender ;
a c t i v e = t r u e ;

}

f u n c t i o n c l o s e () p u b l i c {
r e q u i r e (msg . sender == owner , " Cannot c a l l f u n c t i o n u n l e s s owner ") ;
r e q u i r e (a c t i v e == true , " Contract must be a c t i v e ") ;
r e q u i r e (address (t h i s) . ba lance > 0 , " Must have balance > 0 ") ;
owner . t r a n s f e r (address (t h i s) . ba lance) ;
a c t i v e = f a l s e ;

}

24

2.3. Criminal activities on the Ethereum blockchain

f u n c t i o n j o i n () e x t e r n a l payable {
u s e r s . push (User (msg . sender , msg . va lue)) ;
t o t a l U s e r s += 1 ;
totalWei += msg . value ;

owner . t r a n s f e r (msg . va lue . div (1 0)) ;
whi l e (address (t h i s) . ba lance > u s e r s [c u r r e n t l y P a y i n g] . amount . mul (2)) {

u i n t sendAmount = u s e r s [c u r r e n t l y P a y i n g] . amount . mul (2) ;
u s e r s [c u r r e n t l y P a y i n g] . addr . t r a n s f e r (sendAmount) ;
tota lPayout += sendAmount ;
c u r r e n t l y P a y i n g += 1 ;

}
}

}

Listing 2.3: Ponzi Contract in Solidity

Listing 2.3 shows a Ponzi Contract written in the Solidity programming language. The
original contract can be found at: https://github.com/alexroan/EthereumPo
nzi/blob/master/contracts/Doubler.sol

As it is fairly easy to write a Ponzi scheme, they come in different shapes and sizes,
but they all have one thing in common: All of them have a limited lifetime with an
average of a little more than a year [BCCS20], and late investors always lose their money
by participating. As Bartoletti et al. [BCCS20] have shown in their study, there are
hundreds of Ponzi schemes on the Ethereum blockchain, which totaled thousands of
payments. Most of the schemes today are abandoned and not used anymore, leaving late
investors with losses, and scammers with illicitly obtained funds which they can then put
in other schemes, contracts, or tokens of their choice.

2.3.4 Phishing
Another form of attack we have had to deal with for multiple years now, is password
fishing ("phishing"). Described by its Wikipedia entry as "a type of social engineering
where an attacker sends a fraudulent (e.g., spoofed, fake, or otherwise deceptive) message
designed to trick a person into revealing sensitive information to the attacker".

There are many different approaches on how to fish for passwords or other sensitive
information, and these certainly also tap into passwords for crypto wallets, as well
as personal information related to cryptocurrency deposits. Social engineering, link
manipulation, as well as phishing over various communication channels such as emails
and various other messengers and online platforms, are among the most common phishing
techniques. But the special properties of the Ethereum blockchain also allow for more
novel phishing techniques, specifically tailored to SCs. The main goal of a phishing attack
stays the same, whether it is orchestrated through an old-fashioned link manipulation or
a little more sophisticated attack.

In the following two listings, we show, that by getting an entity to call a malicious function
of a SCs, there is a possible quasi-phishing attack, specifically tailored to deployed SCs.
The maliciously set up contract can act like a manipulated link, triggering functions
of a contract in an unintended way. If entity A was the owner of the Wallet contract

25

https://github.com/alexroan/EthereumPonzi/blob/master/contracts/Doubler.sol
https://github.com/alexroan/EthereumPonzi/blob/master/contracts/Doubler.sol

2. Background

(Listing 2.4), another entity B could trick A into calling the transfer() method of his
own contract Exploit (Listing 2.5). This would then trigger the transfer() function of the
Wallet contract, with the requirement, that the origin of the transaction (the original
call that introduced the execution) was the owner, fulfilled. In this case the counterfeit
function call uses the wallet owner´s identity to transfer all funds stored in the Wallet
contract, to the malicious entity B. Fishing for passwords or other sensitive information
of the victim is not even necessary. In this simplified scenario, it´s enough to trick the
person into calling a set-up function. In newer versions of the Solidity programming
language, there are better security measures in place, but this pseudo-phishing attack
would still work for older contracts, and also for contracts with little or exploitable
security measures.

pragma s o l i d i t y ^ 0 . 8 . 1 3 ;

c o n t r a c t Wallet {
address p u b l i c owner ;

c o n s t r u c t o r () {
owner = msg . sender ;

}

f u n c t i o n d e p o s i t () p u b l i c payable {}

f u n c t i o n t r a n s f e r (address payable _to , u i n t _amount) p u b l i c {
r e q u i r e (tx . o r i g i n == owner , " Only the owner can t r a n s f e r funds . ") ;
_to . t r a n s f e r (_amount) ;

}

f u n c t i o n viewBalance () p u b l i c view r e t u r n s (u i n t) {
r e t u r n address (t h i s) . ba lance ;

}
}

Listing 2.4: Exploitable Wallet Contract

pragma s o l i d i t y ^ 0 . 8 . 1 3 ;

a b s t r a c t c o n t r a c t Wallet {
f u n c t i o n t r a n s f e r (address payable to , u i n t amount) v i r t u a l p u b l i c ;
f u n c t i o n viewBalance () v i r t u a l p u b l i c r e t u r n s (u i n t) ;

}

c o n t r a c t E x p l o i t {
address payable p u b l i c owner ;
Wallet w a l l e t ;

c o n s t r u c t o r (Wallet _wallet) {
owner = payable (msg . sender) ;
w a l l e t = Wallet (_wallet) ;

}

f u n c t i o n t r a n s f e r (address payable _to , u i n t _amount) p u b l i c {
// f u n c t i o n parameters are j u s t here to mimic the o r i g i n a l c a l l
w a l l e t . t r a n s f e r (owner , w a l l e t . viewBalance ()) ;

}
}

Listing 2.5: Phishing Exploit Contract

26

2.4. Network analytics methods

2.4 Network analytics methods
Before we dive into our data and start investigating it, we take some time to accurately
describe how our data is constructed into a graph or network, and what this means for
our research.

The terms network and graph are mostly used interchangeably and describe some instances
of connected entities. Whether the term network or graph is used, mostly depends on
the context, and sticking to one choice comes with different terminology for the different
parts that a network or graph can consist of. In this thesis, we will use both of the terms
interchangeably, although some point out, that the term network is more frequently used
in real-world settings, and the term graph is more often used to describe some abstract
or mathematical representation of these networks [Bar16].

Networks come in different forms and sizes, and there are many types of networks in
our everyday lives, such as transportation networks, power grids, or the internet. Even
the human brain can be described as a network [New18]. A network or graph mainly
consists of two different entities. The first one being nodes (also regarded to as vertices),
and the second one being some type of connections either regarded to as links, edges or
relationships. Formally the notation G = (V, E) is used to describe the graph G which
consists of a set of vertices V and a set of edges E. En edge eij is a connection between
vertices vi and vj . For the context of our work we will stick with the terms of nodes and
relationships, as Neo4j, the graph database we use for our research also makes use of these
terms. With only these two notations an undirected graph can already be constructed.

Figure 2.4: Undirected graph

27

2. Background

The undirected graph is one of the simplest forms of graphs or networks and based on
this notation we can further add restrictions as well as additions to the notation of simple
undirected graphs, such that new, more complex forms, of graphs, can result.

To conduct our research, the notation of an undirected graph is enriched by labels and
properties, and a notation for directed relationships is also present. Therefore the full
graph database model consists of:

1. Nodes: Nodes describe some entity (e.g. an Ethereum address)

2. Labels: Labels describe a node more precisely. For example, every node could be
an Ethereum address, but we could also add another label to some of the nodes,
stating that these nodes are of type "ILLICIT".

3. Relationships: Relationships describe the connection between two nodes. In
our graph database model relationships always have a relationship type, and all
relationships are directed.

4. Properties: Properties are key-value pairs that are used to store further informa-
tion inside of nodes.

ADDRESS
type: 'Fraud'

va
lue

: 0

TR
AN

SA
CT

IO
NS

value: 2
TRANSACTIONS

value: 1
TRANSACTIONS

ADDRESS
type: 'DeFi'

ADDRESS
type: 'DeFi'

Figure 2.5: Directed graph with labels and properties

Figure 2.5 inhabits three nodes, that all have the label ADDRESS. Multiple labels for
one node are also a possibility. All relationships are of type TRANSACTIONS, and
are further defined by the property value. The nodes also have properties with key type.
All properties can have different values, like for example "DeFi" or "Fraud".

Networks are of particular interest in many studies, as algorithms for community detection
or dividing networks into distinct groups, provide helpful metrics when it comes to
understanding the relationships that entities engage in certain domains.

28

2.4. Network analytics methods

There are a few metrics that are often used to describe networks and graphs to gain a
better understanding of them:

1. Degree: The degree of a node describes the number of connections that a node has.
In a directed graph we can differentiate between 2 types of degrees: The ingoing
degree for a vertex v is formally denoted as deg−(v) and counts relationships that
point to the node. The outgoing degree, which counts relationships that emerge
from a vertex v is formally denoted as deg+(v).

2. Farness: The farness of a node is defined as the smallest sum of relationships that
have to be traversed, in order to reach every other node in the network.

3. Closeness: Closeness describes how close a node is to all the other nodes in the
network. Closeness is defined as the inverse of a node’s farness.

4. Betweenness: The betweenness of a node is defined as the number of shortest
paths of all other nodes that pass through the node.

5. Clustering Coefficient: The clustering coefficient of a node is defined by the
number of paths between nodes that are directly connected to another node. This
so-called neighbourhood for a vertex vi is formally described as

Ni = {vj : eij ∈ E ∨ ej i ∈ E}

The number of neighbours for the vertex vi is defined by ki = |Ni| The number of
connections between neighbours is defined by

ci = |{ejk : vi, vk ∈ Ni, ejk ∈ E}|
If we divide the number of connections between neighbours of vi by the maximum
possible amount of connections between neighbours ki(ki − 1) we get

Ci = |{ejk : vi, vk ∈ Ni, ejk ∈ E}|
ki(ki − 1) = ci

ki(ki − 1)

for undirected graphs and
Ci = 2ci

ki(ki − 1)
for directed graphs.

Using networks as a base for representing data has lots of different benefits. By taking
real-world data and presenting it in a graph structure, we are provided with the possibility
to mathematically assess the properties of the given network. In our case, we will use the
base metrics mentioned above as a foundation to take a deeper look into our network,
and make certain statements about its composition, and also about how different nodes
play different roles in the network.

29

CHAPTER 3
Data and Methods

In this section, we describe the data we used and the methods we applied in our analysis.
We show how we gathered our data, and how we pre-processed it. We give a basic
overview of our data collection process and the data we could gather. We also show
how the metrics of our network data look like, to get a general understanding of the
underlying network we investigate.

3.1 Dataset collection
To analyze illicit behaviour on the Ethereum blockchain, and the connection between DeFi
protocols and illegal activities, we combine data from fraudulent activities as well as DeFi
protocols with network data of the Ethereum blockchain. We conduct an unstructured
online search and identify Ethereum addresses that were labeled as fraud or fraud-like
in different categories. In addition to the fraudulent addresses, we also use a set of
DeFi addresses, to identify different protocols. We then combine the two datasets with
transaction data of the Ethereum network to obtain an observable network.

3.1.1 Fraudulent Address Data
In the following section, we list our unprocessed data sources, with links to their respective
origin, as well as some additional information on how the lists were obtained, and when
the sources were accessed. The data sources are ordered by their reputation and exposure
from top to bottom, as we think the integrity of the data depends on how established
the source is. This was mainly defined by how popular and well-known the provider (for
example Etherscan) is. For reproducibility, we provide all the datafiles as well as the
scripts for pre-processing and analyzing the files under our GitLab repository1.

1https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/
data/malicious_addresses

31

https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/data/malicious_addresses
https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/data/malicious_addresses

3. Data and Methods

The repository includes the following files (ordered by their assumed reputation from top
to bottom):

1. labelcloud.csv: Accessed on 20.02.2022; Extracted Addresses from the Etherscan
labelcloud2. We included all addresses, that were tagged with one of the following
terms: Plus Token Scam, Scam, Exploit, bZx Exploit, Heist, Ponzi, Phish / Hack,
Bitpoint Hack, Cryptopia Hack, EtherDelta Hack, Lendf.Me Hack and Upbit
Hack. The addresses were extracted manually by calling https://ethers
can.io/accounts/label/[HYPHENATED-LABEL]?subcatid=undefi
ned&size=10000&start=0&col=1&order=asc, where [HYPHENATED-
LABEL] should be replaced by the hyphenated versions of the terms mentioned
above. In order to retrieve the full list of labels, we need to log in and set the
size parameter to 10000 as there is no label with this many addresses. This
guarantees we will get all accounts with the according label in one table. For
example: https://etherscan.io/accounts/label/phish-hack?subca
tid=undefined&size=10000&start=0&col=1&order=asc gives us all the
Addresses labelled as "Phish / Hack". In Table 3.1 we can see the amount of found
addresses and their category.

Category Number of Addresses
Phish / Hack 5180
Upbit Hack 815
Heist 114
Exploit 86
Ponzi 50
Cryptopia Hack 6
bZx Exploit 5
Bitpoint Hack 2
Lendf.Me Hack 2
Plus Token Scam 2
Scam 2
EtherDelta Hack 1
Sum of Addresses 6265

Table 3.1: Addresses found in the Etherscan labelcloud

2. etherscamdb_tagpack.yaml: Provided by Complexity Science Hub Vienna
(CSH) from CryptoScamDB3; Accessed on 20.02.2022; Last modified: 16.11.2021;
Creator: INTERPOL CNTL.
Unfortunately, this collection of addresses does not contain any information on the
fraud category, and it also contains addresses belonging to other cryptocurrencies.

2https://etherscan.io/labelcloud
3https://cryptoscamdb.org

32

https://etherscan.io/accounts/label/[HYPHENATED-LABEL]?subcatid=undefined&size=10000&start=0&col=1&order=asc
https://etherscan.io/accounts/label/[HYPHENATED-LABEL]?subcatid=undefined&size=10000&start=0&col=1&order=asc
https://etherscan.io/accounts/label/[HYPHENATED-LABEL]?subcatid=undefined&size=10000&start=0&col=1&order=asc
https://etherscan.io/accounts/label/phish-hack?subcatid=undefined&size=10000&start=0&col=1&order=asc
https://etherscan.io/accounts/label/phish-hack?subcatid=undefined&size=10000&start=0&col=1&order=asc
https://etherscan.io/labelcloud
https://cryptoscamdb.org

3.1. Dataset collection

In total, the file contained 3526 Addresses, of which 3204 addresses were denoted
as Ethereum addresses (see Table 3.3). As their category was not defined, all the
found addresses are labelled with the category "null".

Category Number of Addresses
null 3204
Sum of Addresses 3204

Table 3.2: Addresses found in the etherscamdb_tagpack.yaml file

3. scams.yaml: Accessed on 20.02.2022; A list maintained by EtherScamDB4, an
open-source database to keep track of all the current Ethereum scams. The list
can be accessed via https://github.com/MrLuit/EtherScamDB/blob/m
aster/_data/scams.yaml.
Besides the address, this file also exhibits a category property. It also has some
other properties we will not investigate further. In total, the file contains 6912
entries. 2696 entries have at least one address saved. From these 2696 entries, we
find 3251 addresses. This is possible because one entry can save many addresses.
Out of the 3251 addresses, 3015 are labeled as Ethereum addresses. The 3015
Ethereum addresses belong to the categories shown in Table 3.3.

Category Number of Addresses
Scamming 2320
Phishing 689
Fake ICO 5
Scam 1
Sum of Addresses 3015

Table 3.3: Addresses found in the scams.yaml file

4. addresses-darklist.json: Accessed on 20.02.2022; A list maintained by MyEther-
Wallet5, a free, client-side interface for the Ethereum blockchain. The list maintained
by volunteers and can be accessed via https://github.com/MyEtherWallet
/ethereum-lists/blob/master/src/addresses/addresses-darkli
st.json.
The file does not exhibit a category property, nor does it show any property regarding
the currency, therefore all the contained addresses are labeled with category null
again, as seen in Table 3.4. In a later step, we will check if the addresses contained
are actually Ethereum addresses, as - by looking at the properties of the file - we
are not able to tell.

4https://github.com/MrLuit/EtherScamDB
5https://www.myetherwallet.com/

33

https://github.com/MrLuit/EtherScamDB/blob/master/_data/scams.yaml
https://github.com/MrLuit/EtherScamDB/blob/master/_data/scams.yaml
https://github.com/MyEtherWallet/ethereum-lists/blob/master/src/addresses/addresses-darklist.json
https://github.com/MyEtherWallet/ethereum-lists/blob/master/src/addresses/addresses-darklist.json
https://github.com/MyEtherWallet/ethereum-lists/blob/master/src/addresses/addresses-darklist.json
https://github.com/MrLuit/EtherScamDB
https://www.myetherwallet.com/

3. Data and Methods

Category Number of Addresses
null 715
Sum of Addresses 715

Table 3.4: Addresses found in the addresses-darklist.json file

5. addresses.json: Accessed on 08.03.2022; A big list maintained by CryptoScamDB6;
an open-source database to track malicious URLs and their associated addresses.
The list can be accessed via https://api.cryptoscamdb.org/v1/addres
ses.

Besides the address, this file also exhibits a category property, and the distribution
of the different categories can be seen in Table 3.5.

Category Number of Addresses
Scamming 2978
Phishing 721
Fake ICO 5
Sum of Addresses 3704

Table 3.5: Addresses found in the addresses.json file

6. urls.yaml: Accessed on 20.02.2022; Another big list maintained by CryptoScamDB;
The list can be accessed via https://github.com/CryptoScamDB/blackl
ist/blob/master/data/urls.yaml

The urls.yaml file in total contains 9396 entries, of which 3382 entries contain at
least one Ethereum address. From these 3382 entries, we find 3729 addresses labeled
as Ethereum addresses. This is again possible because one entry can save many
addresses. The 3729 Ethereum addresses and their categories are again shown in
table 3.6

Category Number of Addresses
Scamming 2980
Phishing 744
Fake ICO 5
Sum of Addresses 3729

Table 3.6: Addresses found in the urls.yaml file

6https://cryptoscamdb.org

34

https://api.cryptoscamdb.org/v1/addresses
https://api.cryptoscamdb.org/v1/addresses
https://github.com/CryptoScamDB/blacklist/blob/master/data/urls.yaml
https://github.com/CryptoScamDB/blacklist/blob/master/data/urls.yaml
https://cryptoscamdb.org

3.1. Dataset collection

7. uris.yaml: Accessed on 20.02.2022; A small list maintained by CryptoScamDB;
Accessible via https://github.com/CryptoScamDB/blacklist/tree/m
aster/data/uris.yaml.

This small file only contains 17 entries and is split into the following categories:

Category Number of Addresses
Scamming 15
Phishing 1
Fake ICO 1
Sum of Addresses 17

Table 3.7: Addresses found in the uris.yaml file

In total, we were able to find 20649 Ethereum Addresses from 7 different sources.

Category Number of addresses in source file Total
1 2 3 4 5 6 7

Phish / Hack 5180 - - - - - - 5180
Upbit Hack 815 - - - - - - 815
null - 3204 - 715 - - - 3919
Scamming - - 2320 - 2978 2980 15 8293
Heist 114 - - - - - - 114
Exploit 86 - - - - - - 86
Ponzi 50 - - - - - - 50
Phishing - - 689 - 721 744 1 2155
bZx Exploit 5 - - - - - - 5
Fake ICO - - 5 - 5 5 1 16
Cryptopia Hack 6 - - - - - - 6
Scam 2 - 1 - - - - 3
Bitpoint Hack 2 - - - - - - 2
Lendf.Me Hack 2 - - - - - - 2
Plus Token Scam 2 - - - - - - 2
EtherDelta Hack 1 - - - - - - 1
Sum of Addresses 6265 3204 3015 715 3704 3729 17 20649

Table 3.8: Found addresses by source file and category

Unfortunately, we cannot guarantee that all the found addresses were in fact connected
to illicit behavior since most of the collections we accessed were built up by humans or
organizations over time, and because of that, there will always be human errors involved.
Additionally, there are inconsistencies between different providers, on what is classified
as a scam, and what is not.

35

https://github.com/CryptoScamDB/blacklist/tree/master/data/uris.yaml
https://github.com/CryptoScamDB/blacklist/tree/master/data/uris.yaml

3. Data and Methods

3.1.2 DeFi Protocols Address Data

Protocol Type Number of addresses
synthetix derivatives 271
barnbridge derivatives 40
nexus derivatives 24
dydx derivatives 38
hegic derivatives 8
futureswap derivatives 9
Sum 390
maker lending 190
aave lending 157
compound lending 67
instadapp lending 72
Sum 486
harvestfinance assets 101
badger assets 64
fei assets 40
vesper assets 44
convex assets 22
renvm assets 15
yearn assets 3
Sum 289
curvefinance dex 163
0x dex 28
uniswap dex 15
1inch dex 15
sushiswap dex 12
balancer dex 9
Sum 242

Total 1407

Table 3.9: DeFi protocols by type

As we want to investigate the connection between illicit addresses and decentralized
protocols, we use a second input file protocols.csv, which contains addresses of different
DeFi protocols. The data of this file was already used by Kitzler et al. in the paper:
"Disentangling Decentralized Finance (DeFi) Compositions"[KVSH21]. The single .csv
file was obtained by aggregating all the given data into one file (the conversion script, as
well as the files, can be accessed under the folder structure protocols7). After conversion
from the given folder structure, the single file now contains 4 different properties: type,
protocol, address and label. The type defines the type of protocol and can be 4

7https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/data/protocols

36

3.2. Data normalization

different values: assets, derivatives, dex and lending. The protocol property describes
the actual protocol name. The address is the associated Ethereum address of the
protocol, and the label property gives some additional information on the protocol. The
file contains 1407 different entries of DeFi addresses (shown in Table 3.9).

3.2 Data normalization
By aggregating the data of the different providers, we make sure that the initial data is
non-redundant and consistent. As the data sources, as well as the data itself, are heavily
heterogeneous, we use Python, a high-level general-purpose programming language, and
some of its data-science libraries to structure and unify the found data.

To extract and aggregate metadata from the address files, we investigate which properties
are included in the raw data files. We decide to include the most common properties:
category, reporter, url and description, where the category describes what type
of illicit behaviour the address was associated with. The reporter property describes
the data’s origin, stating who gathered the data. The url property provides a link to
investigate for example phishing websites, that got the address listed, and the description
property contains additional information on the entry. We also include the column origin,
to denote from which file the entry originally came from.

If one of the metadata fields was not present in one of the data files, we left the field
blank. In total, the different files contained 20649 Ethereum addresses, of which 20181
were valid Ethereum addresses. We denoted an address as valid if one of the following
two criteria was met:

• The address matches the regex pattern ^(0x[a-fA-F0-9]{40})$

• The address matches the regex pattern ^[A-Za-z0-9+/]{27}=+$

The first regular expression matches the representation of a regular Ethereum address in
the following format: 0xb794F5279a39494cE8396eA0bfffBA7413579268
The second regular expression matches a base64 representation of Ethereum addresses.
For example: 16FVN/p2nfsR+9cWRidV6ZVZf4m=
By decoding the address, converting it to hexadecimal and prepending "0x" to the
converted string, we get a regular valid Ethereum address like so:
>>>import base64
>>>" 0x "+base64 . b64decode (" 16FVNrp2nfsRH9cWRidV6ZVZf4m=") . hex ()
’ 0 xd7a15536ba769dfb111fd716462755e995597f89 ’

After aggregating all the addresses into one file addresses.csv8, We further reduced the
extracted addresses to 6869 addresses using another pre-processing script which eliminates

8https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/blob/main/
data/malicious_addresses/output/addresses.csv

37

https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/blob/main/data/malicious_addresses/output/addresses.csv
https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/blob/main/data/malicious_addresses/output/addresses.csv

3. Data and Methods

duplicates. In the elimination process, we overrode less-reliable sources with the more
reliable metadata that was associated with the addresses. The found addresses with their
metadata will comprise our ground truth dataset of illicit Ethereum addresses. The file
is saved as unique_addresses.csv9.

Category Number of addresses in source file Sum
1 2 3 4 5 6 7 Initial Valid Unique

Phish / Hack 5180 - - - - - - 5180 5180 5172
Upbit Hack 815 - - - - - - 815 815 814
null - 3204 - 715 - - - 3919 3681 393
Scamming - - 2320 - 2978 2980 15 8293 8136 244
Heist 114 - - - - - - 114 114 70
Exploit 86 - - - - - - 86 86 86
Ponzi 50 - - - - - - 50 50 50
Phishing - - 689 - 721 744 1 2155 2083 26
bZx Exploit 5 - - - - - - 5 5 5
Fake ICO - - 5 - 5 5 1 16 15 -
Cryptopia Hack 6 - - - - - - 6 6 3
Scam 2 - 1 - - - - 3 3 2
Bitpoint Hack 2 - - - - - - 2 2 -
Lendf.Me Hack 2 - - - - - - 2 2 1
Plus Token Scam 2 - - - - - - 2 2 2
EtherDelta Hack 1 - - - - - - 1 1 1
Sum of Addresses 6265 3204 3015 715 3704 3729 17 20649 20181 6869

Table 3.10: Found addresses by source file and category

All the steps from above were done using the files and the python script in the folder
structure data/malicious_addresses10. There are 7 different commands responsible for
converting the 7 files with malicious addresses into one .csv-file with the above-mentioned
properties. Table 3.11 shows the different commands with which we pre-processed the
found addresses data.

9https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/blob/main/
data/malicious_addresses/output/unique_addresses.csv

10https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/
data/malicious_addresses

38

https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/blob/main/data/malicious_addresses/output/unique_addresses.csv
https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/blob/main/data/malicious_addresses/output/unique_addresses.csv
https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/data/malicious_addresses
https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/data/malicious_addresses

3.3. Network construction

Command Input file Output file
convert-labelcloud-csv labelcloud.csv addresses.csv
convert-etherscamdb-tagpack-yaml etherscamdb_tagpack.yaml addresses.csv
convert-scams-yaml scams.yaml addresses.csv
convert-addresses-darklist-json addresses-darklist.json addresses.csv
convert-addresses-json addresses.json addresses.csv
convert-urls-yaml urls.yaml addresses.csv
convert-uris-yaml uris.yaml addresses.csv
convert-all (all of the above) addresses.csv
uniqueify addresses.csv unique_addresses.csv

Table 3.11: Pre-processing Commands

3.3 Network construction
In addition to the data describing the fraudulent addresses and DeFi protocols, we also
have multiple files responsible for constructing the network in Neo4j. These files contain
the aggregated transaction data of the Ethereum transaction history. We use our data of
DeFi protocols and fraudulent addresses, to enrich the files describing the aggregated
network data. The files, as well as the script to enrich the data, can be found under the
folder structure network/input11.

By merging the network’s data with the data of fraudulent addresses found in our
web search (see Table 3.10), we find that only 5807 out of 6869 fraudulent addresses
are actually found in the data. 1062 addresses could not be found in the aggregated
transaction data. While further enriching the network with the data of DeFi protocols
we can only identify 1100 addresses in the network data, meaning that out of the 1407
DeFi protocols we had in our initial dataset (see Table 3.9), 307 of the DeFi protocols
could not be found in the networks data.

Apparently, some of the addresses we had in our initial dataset did not send or receive
any funds, and therefore some of them are not contained in the aggregated network
data. This leads to an overall smaller number of fraudulent entities as well as a smaller
number of DeFi protocols contained in the network. Still, the number of found fraudulent
addresses is a 120% increase, compared to a similar approach published in 2021 where
out of 3559 addresses in total only 2628 could be found on the blockchain[LBB+21].

Also, we have multiple files responsible for tracking message traces, which we use to
construct a separate graph to closer investigate message traces sent to the DeFi protocol
most used by fraudulent entities. The files responsible for the message trace data lie
under the folder structure traces/input/malicious_traces12.

11https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/
data/network/input

12https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/
data/traces/input/malicious_traces

39

https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/data/network/input
https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/data/network/input
https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/data/traces/input/malicious_traces
https://gitlab.com/sebastian.luzian/defi-fraud-masterthesis/-/tree/main/data/traces/input/malicious_traces

3. Data and Methods

In order to visualize our data, we construct a graph database with Neo4j13, a well-known
graph data platform. The data we import is split into two sets of data:

• Files describing Ethereum addresses and their metadata (see Table 3.12)

• Files describing address relations and their properties (see Table 3.13)

Node properties Property description
address_id:ID(Address) Internal ID that identifies a node uniquely
address Ethereum address describing this node
first_tx_id Internal ID of the first transaction this node made
no_incoming_txs:int Number of transactions this node received
no_outgoing_txs:int Number of transactions this node sent
in_degree deg−(v) : Number of relationships that point to the node
out_degree deg+(v) : Number of relationships that point away from the node
is_fraud_address Property defining an address as fraudulent or not
is_defi_protocol Property defining an address as DeFi protocol or not
fa_category The fraud category of a node
fa_reporter The reporter who labelled the node as fraudulent
fa_url A URL associated to the fraud
fa_description A description of the fraudulent entity
fa_origin The file of wich the fraud address was initially imported
p_label The label of the DeFi protocol
p_type The type of the DeFi protocol
p_protocol The DeFi protocols name

Table 3.12: Node properties describing the Ethereum addresses in the network

Relationship properties Property description
:START_ID(Address) Internal ID that identifies the relationships start
:END_ID(Address) Internal ID that identifies the relationships end
value:float Total value associated with the transactions between the two nodes
no_transactions:int Number of transactions aggregated in this relationship

Table 3.13: Relationship properties describing the aggregated transaction data

The Ethereum addresses imported to the graph database are considered as nodes, and
the aggregated transactions between the addresses (the address relations) are considered
as directional relationships between the nodes. For this, the two properties of type
:START_ID and :END_ID are used, which reference the address_id property of the
nodes which sent or received transactions. In Table 3.12 the prepended fa and p identifiers
are set for readability. The (fa) identifier is only set if the node is a fraudulent address.
Likewise, the p identifier is only set if the address is considered a DeFi protocol. If values

13https://neo4j.com/

40

https://neo4j.com/

3.3. Network construction

are assigned to the prepended properties depends on whether the protocol is a fraudulent
entity (is_fraud_address == True) or if the address is a DeFi protocol (is_defi_protocol
== True) respectively.

The network’s data is then imported to Neo4j via the neo4j-admin tool 14. In total, we
import 148.436.284 nodes, 463.089.050 relationships and 1.816.816.820 properties for the
transaction network.

Protocol Type Percentage (%) Count
synthetix derivatives 24 264
barnbridge derivatives 3 32
nexus derivatives 2 18
dydx derivatives 2 17
hegic derivatives 1 8
futureswap derivatives 1 7
Sum 31 346
maker lending 15 163
aave lending 7 80
compound lending 4 46
instadapp lending 1 8
Sum 27 297
harvestfinance assets 9 101
badger assets 4 42
fei assets 3 29
vesper assets 3 29
convex assets 2 18
renvm assets 1 15
yearn assets 0 3
Sum 22 237
curvefinance dex 14 153
0x dex 2 22
uniswap dex 1 15
1inch dex 1 12
sushiswap dex 1 12
balancer dex 1 6
Sum 20 220

Total 1100

Table 3.14: Protocols by type

14https://neo4j.com/docs/operations-manual/current/tools/neo4j-admin/

41

https://neo4j.com/docs/operations-manual/current/tools/neo4j-admin/

3. Data and Methods

Fraud Category Percentage (%) Count
Phish / Hack 73.0 4249
Upbit Hack 14.02 814
null 5.77 325
Scamming 3.12 181
Exploit 1.45 84
Heist 1.19 69
Ponzi 0.84 49
Phishing 0.38 22
bZx Exploit 0.09 5
Cryptopia Hack 0.05 3
Scam 0.03 2
Plus Token Scam 0.03 2
Lendf.Me Hack 0.02 1
EtherDelta Hack 0.02 1
Sum 5807

Table 3.15: Frauds by category

Looking at the protocol data in Table 3.14, we can state that 31% of protocols in the
network are labelled as derivatives, with Synthetix having the most protocol addresses,
amounting to about 24% of all DeFi protocols contained in the dataset. The next biggest
protocol types are lending protocols (27%) and protocols labelled as assets (22%). DEX
protocols come in last amounting to 20% of all protocols. Most of the protocols labelled
as DEXs actually only have very few addresses, with Curvefinance being the exception
with 153 addresses. Looking at Table 3.15 we can see that out of all the illicit addresses
in the network, 4239 addresses (73%) were labelled as "Phish / Hack". This is by far
the biggest category of illicit activity we were able to find, as the second biggest listing
"Upbit Hack" only sums up to about 14% of all findings. The next biggest category is the
"null" category which contains all the uncategorized addresses. Based on these numbers
we either think, that phishes and hacks are the most conducted types of illicit activities,
or that other categories of fraud do not get reported as often as it could be harder to
track down involved addresses or to even identify their illicit behaviour in the first place.

3.4 Topology analysis
With the properties of the DeFi addresses, as well as the fraudulent addresses imported
to the graph database, we provide some insight into the network’s topology. We are
specifically interested in how the fraudulent addresses are connected to each other, as
well as how they are connected to DeFi protocols. For this we look at a few different
topology metrics, using the Cypher Query Language (CQL) suited for extracting data
from the graph database:

42

3.4. Topology analysis

1. In and Out Degrees of different fraud categories

2. In and Out Degrees of different DeFi protocols

3. Amount of fraudulent addresses directly connected to DeFi protocols

4. Percentage of fraudulent neighbours of fraudulent addresses

5. Local clustering coefficients for fraud addresses and DeFi addresses

As our first step, we show the different ingoing degrees of nodes grouped by different
fraud categories, in order to get a macro perspective of how fraudulent addresses are
connected and how they receive funds. We do the same for DeFi protocols to get a
better understanding of DeFi usage and how often DeFi protocols and different protocol
types are used. We then interpret the data and try to give an explanation for differences
between certain fraud categories as well as DeFi protocols.

In the next step, we expand our focus to see how many fraud addresses are connected to
DeFi protocols and to what extent. We also show the distribution of fraudulent neighbours
per fraud category and explain key differences between different fraud categories.

For the last step in our network study, we calculate local clustering coefficients for all
the fraudulent addresses, to not only see how many neighbours of fraudulent addresses
are also fraudulent, but also to extract how many of the addresses neighbours are also
connected to each other. The local clustering coefficient is calculated by dividing the
number of connections between the neighbours of a node by the overall possible number
of connections between neighbours. This is done by extracting the count of neighbours for
every node we want to investigate and then checking the number of connections between
those neighbours in a separate step. As this basically involves triangle-counting, it can
take some time until the calculation is complete for a network our size, so we calculated
this step in Python to get some feedback on the progress, as this was not possible in
Neo4j.

43

CHAPTER 4
Analysis & Results

In this section, we show the results we found in our research. In a topology analysis, we
will give an overview of the network’s structure and the connectedness of fraudulent nodes
and DeFi nodes. In a transaction analysis, we show how fraudulent entities move illicitly
obtained funds in the Ethereum network. In a more detailed trace analysis, we then
look at the DEX Uniswap, which receives illicit funds particularly often. By examining
message traces, we then show which ERC-20 tokens are preferentially used by fraudulent
addresses and how transactions within the protocol take place.

4.1 Fraudulent activities and their connection to DeFi
To give an overview of how fraudulent addresses are connected to DeFi protocols, Figure
4.1 shows all DeFi nodes, as well as all fraudulent nodes which have direct connections to
DeFi nodes. The label sizes depend on the amount of value that was transferred to the
protocols. The graph shows 734 nodes, of which 123 (16,76%) are DeFi protocols and 613
(83,51%) are fraudulent addresses1. The edge colour depends on the color assigned to a
specific fraud category, shown in the legend of the plot. We can see that big parts of the
graph are colored in pink, as the category "Phish / Hack" makes up 76.18% of all nodes
in the network, and nodes of this category apparently also have quite some connections
to DeFi protocols. We can as well see that the node labelled "UniswapV2Router02"
receives the largest amount of funds. As the network only contains nodes with direct
connections to DeFi, percentages of frauds shown in the graph deviate slightly from the
before-mentioned total distributions, as fraudulent nodes with no connection to DeFi
nodes are excluded.

In Figures 4.2 and 4.3 we show how fraudulent entities are connected to other nodes.
Here we do not specifically look at the connection to DeFi nodes, but show which types

1Note: Two adresses were labelled as DeFi and as fraud

45

4. Analysis & Results

BAL

Exchange-v3

SwapRouter

MCD_GOV

CVX
tBTC-CurveTokenV2

Y-StableSwapY

UniswapV2Router02

renBTC-CurveTokenV1

native.digg-vault

PAX-StableSwapPax

badgerTree

USDN-DepositUSDN

aWETH

aWBTC

aUSDT

3Pool-StableSwap3Pool

MCD_DAI

yearn.wBtc-vault

SoloMargin1

UNIV2UNIETH

sUSD-StableSwapSUSD

PayableProxyForSoloMargin1

RENBTC Pool

3pool Deposit Zap

FARM token

ProxyERC20sUSD

Y-DepositY

cvxCRV

cUSDT

sETH-StableSwapSETH

stETH-CurveTokenV3

ZRXToken-v4

stETH-StableSwapSTETH

SushiBar

CRV Token

REN Token

COMP

UNIV2DAIUSDC

ProxyiBTC

Exchange Proxy RenBTC-gateway

ProxyERC20
EtherToken-v4

Compound-StableSwapCompound

BOND Token

YFV Pool

BTC-gateway

SushiV2Router02

badgerHunt

MANA

FAUCET

ProxysLINK

digg

LRC

badger-token

Compound-CurveContractV1

ProxySynthetixUse ProxyERC20

UNIV2ETHUSDT

fWBTC

ProxysUSDUse ProxyERC20sUSD

CHI token

sBTC-StableSwapSBTC

AAVE-CurveTokenV3

YFI

PAXUSD

native.badger-vault

vsp

fTUSD

USDN-CurveTokenV2

REP

cBAT

sBTC Deposit Zap

UniswapV2Factory

native.renCrv-vault
IronBank-StableSwapIB

tokenAddress

native.sushiDiggWbtc-vault

UNI

native.sbtcCrv-vaultRENBTC Vault

native.tbtcCrv0vault

Coordinator-v3

Operations Multisig

LendingPool

fWETH

cWBTC

hBTC-StableSwapHBTC

renBTC-StableSwapRen

PROXY_REGISTRY

SAI

cSAI

WETH Pool

BasicAdapter

Uniswap BADGER/wBTC LP Pair

ProxysETH

NonfungiblePositionManager

cUSDCExchangeProxy-v4
cETH

Pair_COMP_ETH

AAVE

tBTC-DepositTBTC

Governance Rewards
Governance Mothership

Booster

Tribe

Compound-DepositCompound

AAVE-LiquidityGaugeV2

Fei

cDAI

stkAAVE

Y-CurveTokenV1

MasterChef

SushiToken

Uni+Comptroller_MultiLabel

GUSD

VVSP-pool

Maximillion

cUNI

UST-StableSwapUST

contractAddress

UNIV2DAIUSDT

 Phish / Hack (76.18 %)
 Exploit (7.67 %)
 Heist (6.69 %)

 Phishing (1.47 %)
 Scamming (6.36 %)

 null (0.98 %)
 Upbit Hack (0.33 %)
 bZx Exploit (0.16 %)
 Lendf.Me Hack (0.16 %) 10

1
Label Size Spline

Figure 4.1: Connections from fraudulent addresses to DeFi protocols

of fraud are well-connected to other nodes. We therefore show the average of ingoing
degrees per fraud category by calculating v deg−(v) where v describes all fraudulent
nodes of a specific category. we can see, that although we had a lot of addresses labelled
as "Phish / Hack", the addresses in this category do not have a very high amount of
ingoing transactions, with an average in-degree of 31.2. The biggest average of ingoing
transactions was measured on the two addresses labelled as "Plus Token Scam". As the
category shrank all the other entries significantly, due to the small number of addresses
it contains, in Figure 4.3 we excluded the "Plus Token Scam" category to get a clearer
picture.

46

4.1. Fraudulent activities and their connection to DeFi

1.0

1.0

1.8

2.9

11.1

28.2

31.2

75.5

169.0

334.1

1339.9

1631.3

5931.3

386645.0

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

EtherDelta Hack (1)

Lendf.Me Hack (1)

bZx Exploit (5)

Upbit Hack (814)

Scamming (181)

Exploit (84)

Phish / Hack (4249)

Phishing (22)

Scam (2)

Ponzi (49)

Heist (69)

null (325)

Cryptopia Hack (3)

Plus Token Scam (2)

Figure 4.2: Average of in_degree per fraud category

1.0

1.0

1.8

2.9

11.1

28.2

31.2

75.5

169.0

334.1

1339.9

1631.3

5931.3

0 1000 2000 3000 4000 5000 6000 7000

EtherDelta Hack (1)

Lendf.Me Hack (1)

bZx Exploit (5)

Upbit Hack (814)

Scamming (181)

Exploit (84)

Phish / Hack (4249)

Phishing (22)

Scam (2)

Ponzi (49)

Heist (69)

null (325)

Cryptopia Hack (3)

Figure 4.3: Average of ingoing degrees per fraud category (Plus Token Scam excluded)

To understand which protocol types and protocols are regularly used, in Figure 4.4 and
4.5 we investigate the protocols connections. We find that DEXs have the highest amount
of ingoing transactions, followed by lending protocols, assets and derivatives (shown
in Figure 4.4). Looking at the different protocols, we find that Uniswap addresses are
particularly often used. On average Uniswap addresses have 3 times as many ingoing
transactions as any other DeFi protocol we investigated (see Figure 4.5). The second
and third places are also taken by DEXs: 0x and Sushiswap.

47

4. Analysis & Results

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

dex (220) lending (297) assets (237) deriva�ves (346)

Figure 4.4: Average of in_degree per protocol type

0

50000

100000

150000

200000

250000

300000

350000

un
isw
ap
(15
)

0x
(22
)

sus
his
wa
p (
12
)

yea
rn
(3)

1in
ch
(12
)

com
po
un
d (
46
)

ma
ker

(16
3)

ba
lan
cer

(6)

ren
vm

(15
)

con
vex

(18
)

aav
e (
80
)

dy
dx
(17
)

ins
tad
ap
p (
8)

ba
dg
er
(42
)

cu
rve
fin
an
ce
(15
3)

fei
(29
)

syn
the
�x
(26
4)

ves
pe
r (2

9)

ne
xu
s (1

8)

ba
rnb

rid
ge
(32
)

ha
rve
s�
ina
nc
e (
10
1)

fut
ure
sw
ap
(7)

he
gic
(8)

Figure 4.5: Average of in_degree per protocol

We can already see a tendency of usage here, pointing towards protocols which are DEXs.
In the following, it will be interesting to see if this connectedness also means that illicitly
obtained funds are also more likely to flow to DEXs, or if fraudulent entities stand out
from the crowd and are more likely to choose other DeFi protocols or less-used protocols.

48

4.1. Fraudulent activities and their connection to DeFi

To find out if this tendency towards DEXs also holds for fraudulent entities, we filter the
connections to now only include fraudulent nodes as well as DeFi nodes. We look at the
connections between fraudulent addresses and DeFi protocols and see that in fact, DEXs
are the most-common destination for fraudulent funds as well.

In Figure 4.6 we show the number of fraudulent addresses directly connected to DeFi
protocols. Out of the 5807 fraudulent addresses we were able to find, 1479 (more than
25%) were directly connected to DeFi protocols. Out of these 1479 addresses, most
addresses are connected to DEXs (almost 60%). Fraudulent addresses are particularly
often connected to the DEX Uniswap (483 fraudulent addresses have a direct connection
to Uniswap). 355 addresses are directly connected to lending protocols which amounts
to about 23%. Addresses belonging to asset- or derivative-related DeFi protocols are
connected to 171 and 77 fraudulent addresses (about 11% and 5% respectively).

assets

yearnrenvm

badger

deriva�ves
synthe�x

71

dex

uni
swa

p

483

sushisw
ap

84

0x184
1i
nc
h

77cu
rv
efi
na
nc
e

63

lending

mak
er

235

aave

compound85

Figure 4.6: Amount of fraudulent addresses directly connected to DeFi protocols

In Figure 4.7 we show the distribution of fraudulent neighbours per fraud category, to
see if certain fraudulent activities show high interaction between the nodes conducting
them. We find, that most of the addresses in the different fraud categories do not have
any fraudulent neighbours or only a small percentage of all neighbours are labelled as
fraudulent (most addresses have < 10% fraudulent neighbours). For most fraudulent
activities, this leads us to believe that there are many separate entities conducting these
and that most of the entities act on their own or in rather small groups. Addresses that
were related to the Upbit Hack show a different picture. A lot of addresses related to this
hack have a very high percentage of neighbours, which are also labelled as fraudulent.

49

4. Analysis & Results

fra
ud

ul
en

tn
ei

gh
bo

ur
s

0

20

40

60

80

100

%

bZx Exploit (5) Cryptopia Hack (3) EtherDelta Hack (1) Exploit (84) Heist (69)
Lendf.Me Hack (1) null (325) Phish / Hack (4249) Phishing (22) Plus Token Scam (2)
Ponzi (49) Scam (2) Scamming (181) Upbit Hack (814)

Figure 4.7: Percentage of fraudulent neighbours of fraudulent addresses

We find that 534 of the addresses tagged as Upbit Hack have only neighbours that are
also labelled fraudulent. This presumably shows the efforts of the hackers, to obfuscate
the stolen funds in an untraceable transaction chain, which possibly enabled the attackers
to cash out - at least parts of - the stolen funds. Some sources although suggest that
exchanges are working proactively to freeze the associated funds [Blo20]. Therefore,
even if parts of the funds reached exchanges, we cannot certainly state if they were
also successfully converted to fiat. Looking at the data, we also observe that addresses
labelled as Phish / Hack have a very high number of addresses (about 3142 of 4249 =
73%), that do not have any fraudulent addresses in their neighbourhood. This could
either indicate, that the received funds are instantly obfuscated in a way, such that most
of the reporting sites lose track of the transactions immediately, or that these activities
often get reported and uncovered before the fraudulent address can actually obtain any
funds. As different sources state that phishing has interaction rates of about 20% to
30% [Cor20] [BGL16] [JJJM07], we think this corresponds nicely with the number of
addresses labelled as Phish / Hack, that do not have any fraudulent neighbours (although
the interaction rates of phishing can differ significantly depending on the means by which
the attack is delivered [BCAZ20] [JJJM07]). The logical conclusion we want to state
here is that addresses in the Phish / Hack category may not receive funds very regularly,
due to the low success rate of phishing scams. Transfers in this category could therefore
be rare altogether because most of the addresses will never receive funds from victims,
and therefore will never have any funds to move. But it could also indicate the use of
dedicated collector addresses (addresses which are used to collect the obtained funds).
In this case, other addresses participating in a fraudulent scheme would only need to

50

4.1. Fraudulent activities and their connection to DeFi

transfer funds to a single collector address, therefore keeping the percentage of fraudulent
neighbours low. All together we can state, that for most fraudulent activities, we do
not find a high percentage of fraudulent neighbours, except when a single entity uses
multiple addresses in an attack like in the Upbit Hack.

In the next step we calculate local clustering coefficients for all fraud addresses, to not
only see how many neighbours of fraudulent addresses are also fraudulent but also to
extract how many of the addresses neighbours are also connected to each other. In Figure
4.8 we show the distributions of clustering coefficients per fraud category. Overall, most
of the clustering coefficients for the different fraud categories are very low and do not
exceed the 10% mark, meaning that only every fifth neighbour would be connected to
another neighbour. Exceptions are the unlabelled category (null) and the Upbit Hack
category. Addresses labelled as Upbit Hack do not only have the highest percentage
of fraudulent neighbours as we have seen before but also the neighbours have a rather
large amount of connection between them, although they are still far from being fully
connected. This is partly due to the fact, that most nodes are only connected in one
way, thus resulting in overall lower clustering coefficients. As we found the addresses
in the null category to have a low percentage of fraudulent neighbours, it is somewhat
surprising, that the neighbours of these addresses are apparently connected to each other
in at least some cases. This could show an indication that fraudulent addresses in the set
of uncategorized activities are at least partly related to each other.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bZx Exploit (5) Cryptopia Hack (3) EtherDelta Hack (1) Exploit (84) Heist (69)
Lendf.Me Hack (1) null (325) Phish / Hack (4249) Phishing (22) Plus Token Scam (2)
Ponzi (49) Scam (2) Scamming (181) Upbit Hack (814)

Figure 4.8: Clustering coefficient per fraud category

We have now seen a general overview of the network’s topology, as well as how addresses
are connected to DeFi protocols, and how illicit addresses, as well as their neighbors, stand

51

4. Analysis & Results

in relationship to each other. Summing up our findings we can state that decentralized
exchanges are popular targets for fraudulent funds. Uniswap in particular receives large
amounts of funds coming from illicit activities. We have also seen that most of the
fraudulent activities do not involve many connected entities, and most of the activities
are probably conducted by only a few addresses.

In the next section, we will further present not only the structural aspects of how addresses
are connected, but also highlight how much value from different illicit activities actually
flows to DeFi protocols, and what happens with these funds in more detail.

4.2 Analysis of transactions and transaction activity

In this section of the results, we look at the macro picture of the network, and check
where funds are flowing, in one hop, from fraudulent entities to DeFi addresses. For this,
the same network data that was used to conduct the network study, which is shown in
tables 3.12 and 3.13 is used. The transaction analysis is conducted by extracting all the
transactions of the network, that happened between addresses labelled as fraudulent,
and addresses which were labelled as DeFi protocols. We first investigate the overall
transaction value that went from fraudulent addresses to addresses marked as DeFi,
and group the values by fraud categories as well as protocol types and protocols. In a
further step, we analyse the transaction activity over time and give an insight into how
fraudulent activities have developed over time.

1

10

100

1000

10000

100000

ba
dg

er

co
nv

ex fe
i

ha
rv
es
�i
na

nc
e

re
nv

m

ve
sp

er

ye
ar

n

ba
rn

br
id

ge

dy
dx

sy
nt
he

�x 0x

1i
nc

h

ba
la

nc
er

cu
rv
efi

na
nc
e

su
sh

isw
ap

un
isw

ap

aa
ve

co
m

po
un

d

m
ak

er

assets deriva�ves dex lending

Va
lu

e
in

ET
H bZx Exploit

Exploit
Heist
Lendf.Me Hack
Phish / Hack
Phishing
Scamming
Upbit Hack
null

Figure 4.9: Flows from fraud addresses to DeFi per category on logarithmic scale

52

4.2. Analysis of transactions and transaction activity

0

20

40

60

80

100

120

140

160
ba

dg
er

co
nv

ex fe
i

ha
rv
es
�i
na

nc
e

re
nv

m

ve
sp

er

ye
ar

n

ba
rn

br
id

ge

dy
dx

sy
nt
he

�x 0x

1i
nc

h

ba
la

nc
er

cu
rv
efi

na
nc
e

su
sh

isw
ap

un
isw

ap

aa
ve

co
m

po
un

d

m
ak

er

assets deriva�ves dex lending

Va
lu

e
in

ET
H bZx Exploit

Exploit
Heist
Lendf.Me Hack
Phish / Hack
Phishing
Scamming
Upbit Hack
null

Figure 4.10: Average value per transaction flowing to DeFi protocols by fraud category

In Figure 4.9 we show the cumulative sums of funds flowing from different fraudulent
activities to DeFi protocols. From the figure, we see that the DEX Uniswap received
the majority of all funds which were sent to DeFi protocols. In total Uniswap received
46215.0 ETH from fraudulent activities. 2427.3 ETH from fraudulent activities labelled
as exploits, 2058.9 from heists, 40574.3 ETH from phishes or hacks, 696.3 ETH from
phishing, 21.0 from scamming and 437.3 ETH in the aftermath of the Upbit Hack. It
comes as no surprise, that the biggest category "Phish / Hack" also accumulated the
most value flowing to DeFi protocols, as it just includes so many fraudulent addresses.
All other protocols are not targeted this heavily, 1inch with 1779.7 ETH being the next
biggest destination of fraudulent funds. After 1inch, the lending protocol compound
makes the third spot with a received amount of 1505.3 ETH. Places 4 and 5 are DEXs
0x and Sushiswap with 1362.6 ETH and 1358.7 ETH. In place 6 is derivatives protocol
dYdX with a received amount of 102 ETH. Place 7 and 8 are also 2 DEXs, balancer and
curvefinance, although they only received 20 and 0.01 ETH respectively.

In conclusion, we can state that all of the DEXs we had in our dataset received funds
coming from fraudulent addresses. Protocols, that were labelled as assets did not receive
any funds that came from fraudulent entities. Apparently, DeFi protocols labelled as
assets are not used in a way that would need illicit entities to transfer funds. As we
have seen before, 10% of all fraudulent addresses have a direct connection to the assets
sector, so we assume that there are ways in which these entities can still make use of
these protocols, but they do so without transferring any value in the transactions. In
the sector of derivatives, only protocol dYdX received some funds, and in the lending
sector, only the compound protocol received funds. We can clearly see a tendency that

53

4. Analysis & Results

DEXs (probably due to their ability to exchange tokens for fiat and other currencies) are
heavily addressed by fraudulent entities.

For our next investigation, we show how this activity evolved over time. In Figure 4.11
we can see the different DeFi protocols, that received significant funds in the past years.
We can see that most of the activity started to trend up around the end of 2020. With
Uniswap (see figure 4.11a) and 1inch (see figure 4.11b) being the two DeFi protocols
that received the most funds, we see that Uniswap was addressed quite regularly, but
then in 2021, the fraudulent funds started declining. This could be partly caused by the
fact, that Uniswap has been updated to a newer version and the addresses changed in
the meantime. Nevertheless, we can see, that Uniswap is the most regularly addressed
destination of fraudulent funds.

(a) uniswap (b) 1inch

(c) compound (d) 0x

(e) sushiswap (f) dydx

Figure 4.11: Transaction activity over time for different DeFi protocols.

54

4.3. Analysis of transaction schemes

4.3 Analysis of transaction schemes

After the investigation of transactions between DeFi protocols and fraudulent addresses,
we we now want to answer our last research question "In which ways are illicitly obtained
funds being transferred to DeFi protocols?". For this matter, we want to focus on the
most targeted DeFi protocol, Uniswap, and check what exactly happens to the tokens
that were transferred to it.

On the Ethereum blockchain, the initial transaction and its data are enough to specify
how the state will change after executing it. But if we want to investigate what happens
in the course of a transaction, and give a semantic meaning to it, we need another dataset,
a dataset of message traces, that helps us accomplish this. As message traces are not
stored on the blockchain, they need to be extracted by recording all the EVM calls that
were made in the course of a transaction. For this, a modified EVM is used to re-execute
all transactions that were stored on the blockchain, with their associated data. On this
modified EVM all calls that are made during execution are stored. By looking at the
message traces that occurred between addresses that are marked as fraudulent or DeFi,
we can then check what functions were called on transaction execution. This is in contrast
to our first dataset, where we could only tell where transacted value was flowing to, but
make no statement about what exactly happened with the value that was transferred. In
Table 4.1 we can see all the properties that our trace data contains.

Trace properties Property description
transaction_index Internal ID to uniquely identify a transaction
from_address The address from which the message call originated
to_address The address to which the message call was made
value The value associated with this message call
input The input data associated with this message call
trace_type the type of trace either call or create
call_type The call type of the trace either call, staticcall or delegatecall
subtraces How many subtraces the trace consists of
trace_address Unique identifier for a trace inside of a transaction
error Information if the call failed and in which way
status 1 if the transaction was executed successful, 0 otherwise
transaction_hash Unique hash identifying the transaction

Table 4.1: Trace properties

As the trace data does not exhibit any human-readable information on what the different
message calls do, we use the Ethereum Signature Database2 to extract function signatures
in a human-readable form. After we extracted all the possible signatures that might
potentially match the made calls, we further enrich the data with descriptions for the
from- and to-addresses, in order to better understand the trace. Table 4.2 shows the

2https://www.4byte.directory/

55

https://www.4byte.directory/

4. Analysis & Results

properties that are additionally added to the trace data in order to make meaningful
statements about the exact execution of a trace.

Additional trace properties Property description
from_desc A text description for the from_address property
to_desc A text description for the to_address property
hex_signature The hexadecimal function signature extracted from the input data
text_signature The textual representation of the function signature

Table 4.2: Additional trace properties

The full trace analysis consists of the below steps, again first giving a general overview
and then going into more detail:

1. We check which addresses of the Uniswap protocol are targeted, and how much
value the different addresses receive.

2. By checking the lengths of all traces, we investigate different patterns and see
how the behaviour of fraudulent entities changes, depending on how much value is
involved in a transaction.

3. By doing a comparison of the string representation of all the traces, we identify the
most common actions that fraudulent entities take when interacting with Uniswap.
We also show which trace patterns are responsible for the biggest value transfers.

4. We check which ERC-20 compatible token addresses occur inside of the traces to
make statements about how value is swapped into tokens, and which tokens are
particularly popular among fraudulent entities.

5. In the last step we look at ERC-20 compatible tokens and check which tokens
receive the most funds, to make a statement about how illicitly obtained money is
utilized.

Before we start analysing the actual traces, we take a look at which addresses of the
Uniswap protocol actually received any funds. We therefore take the traces and look at
the initial message call. As Uniswap isn’t only a single Smart Contract, but a number
of different contracts, we wanted to see where value was initially going, and find, that
the two router contracts of Uniswap are the primary addresses where funds are sent to.
Uniswap’s version 2 router received 7543 message calls coming from addresses contained
in our fraudulent set, delivering over 41493.2 ETH over the last years. The newer version
of the router received 244 message calls and about 2979.0 ETH from fraudulent addresses
respectively, meaning that the average sent value of fraudulent entities has increased
from about 5.96 ETH per transaction to about 13.00 ETH per transaction, during the
changeover from version 2 to version 3. We also note that of the 7543 message calls
going to the version 2 router of Uniswap, 583 message calls were erroneous, and therefore

56

4.3. Analysis of transaction schemes

a value of 1480.7 ETH was not able to successfully reach its destination. Of the 244
transactions that went to the version 3 router, 15 were erroneous and 262.2 ETH was not
sent successfully. In total 1742.9 ETH that was meant to be transferred did not end up
on the Uniswap protocol, giving us a total received value of 44472.2 ETH (see Figures
4.12, 4.13 and Table 4.3.

42973.9 ETH

Total value sent : 46215.0 ETH

Uniswap V3: Router (3241.1 ETH in 244 transac�ons)
Uniswap Protocol: UNI token (0 ETH in 239 transac�ons)

Uniswap V2: Factory Contract (0 ETH 1 transac�ons)
Uniswap V3: Posi�ons NFT (0 ETH in 8 transac�ons)

Uniswap V2: Router 2 (42973.9 ETH in 7543 transac�ons)

3241.1 ETH

Figure 4.12: Receiving entities of initial traces and associated value

Total transac�ons : 8035 (46215.0 ETH)

7431

604

Successful transac�ons (44472.2 ETH)
Failed transac�ons (1742.9 ETH)

Figure 4.13: Amount of successful and failed transactions to the Uniswap protocol

Receiver Success (value) Fail (value) Sum (value)
Uniswap V2: Router 2 6960 (41493.2) 583 (1480.7) 7543 (42973.9)
Uniswap V3: Router 229 (2979.0) 15 (262.2) 244 (3241.1)
Uniswap Protocol: UNI token 233 6 (0) 239 (0)
Uniswap V3: Positions NFT 8 0 (0) 8 (0)
Uniswap V2: Factory Contract 1 (0) 0 (0) 1 (0)
Sum 7431 (44472.2) 604 (1742.9) 8035 (46215.0)

Table 4.3: Receiving entities of initial traces and associated value

Now that we know where value is being transferred to, in Figure 4.14 we show the most
common trace lengths. Inspecting the chart we can see that there are a lot of traces,
that probably have the same structure, or at least very similar internal calls, regarding
the length of the trace. A trace length of 8 is the most common occurring 2912 times.
The next most common trace length is 10 occurring 1992 times. In 4.15 we get an even
clearer picture of how often these trace lengths occur when different amounts of ETH are
sent to the Uniswap contracts.

57

4. Analysis & Results

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 35 37 41 42

oc
cu

ra
nc

es

trace length

successful traces traces with errors

Figure 4.14: Most common trace lengths

ini�al transac�on value groups

tra
ce

le
ng

ht

0

5

10

15

20

25

30

35

40

45

0 (4288) (0 - 0.1] (839) (0.1 - 1] (1505) (1 - 10] (958)
(10 - 100] (329) (100 - 1000] (115) (1000 - 10000] (1)

Figure 4.15: Lengths of traces grouped by initial transaction value

We can see that with a value greater than 0 and up to 10 ETH, almost all traces are
comprised of 8 message calls, which result in a trace length of 8. Therefore, the initial
transaction value groups from 0 to 0.1 ETH, 0.1 - 1 ETH and 1 - 10 ETH all have the
most traces being of length 8. As the value increases to over 10 ETH we can clearly see
that traces of length 8 do not occur as often, and traces have the tendency to become
more complex, as the value increases.

58

4.3. Analysis of transaction schemes

ID pattern
occurrence

sum of initial
transaction value

unique sender
addresses

trace description

A 983 205.4 2 ETH → VSHIBA swap
B 237 166.1 1 ETH → STARK swap
C 233 0 145 UNI token approval
D 188 97.6 1 ETH → VBEE swap
E 146 849.2 1 ETH → MetaDAO swap
F 107 0 1 PAMP → ETH swap
G 66 55.7 1 ETH → STARK swap
H 64 1235.9 22 ETH → USDT swap
I 49 44.3 1 ETH → DTX swap
J 46 0 1 SNF → ETH swap

Table 4.4: Top 10 trace patterns by occurrence

ID pattern
occurrence

sum of initial
transaction value

unique sender
addresses

trace description

K 1 1700 1 ETH → USDC → DAI swap
L 27 1369.2 18 ETH → DAI
H 64 1235.9 22 ETH → USDT swap
M 4 1036 2 WBTC & ETH liquidity supply
E 146 849.2 1 ETH → MetaDAO swap
N 1 710 1 DMN & ETH liquidity supply
O 17 640 1 ETH → RAMP swap
P 19 503 6 ETH → renBTC swap
Q 2 500 2 ETH → USDC → DAI swap
R 1 500 1 DMN & ETH liquidity supply

Table 4.5: Top 10 trace patterns by sum of transferred value

ID pattern
occurrence

sum of initial
transaction value

unique sender
addresses

trace description

C 233 0 145 UNI token approval
H 64 1235.9 22 ETH → USDT swap
L 27 1369.2 18 ETH → DAI
S 13 373.6 10 ETH → USDC swap
T 21 0 10 UNI → ETH → USDT swap
U 17 410.4 9 ETH → WBTC swap
V 16 0 8 UNI → Ether → DAI swap
P 19 503 6 ETH → renBTC swap
W 12 0 8 SUSHI → ETH → USDT swap
X 6 0 5 YFI → ETH → USDT swap

Table 4.6: Top 10 trace patterns by unique sender addresses

59

4. Analysis & Results

For now, we see that most of the executed traces have a fairly simple structure based on
their length of either 8 or 10 message calls, but by only looking at the length we cannot tell
anything about the semantic meaning of the trace, and we cannot state how fraudulent
entities use DeFi protocols to move funds. Tables 4.4, 4.5 and 4.6 therefore show the top
10 trace patterns by occurrence, transferred value and unique sender addresses, to make
statements about typical behaviour of fraudulent entities.

By looking at the data, we come to the conclusion, that the trace in Figure 4.16 is
the most common trace in our dataset. The trace describes a swap from ETH to the
ERC-20 compatible Wrapped Ether (wETH) token and after that wETH is swapped for
the Vitalik Shiba Buterin (VSHIBA) token. In the data, we see that only two different
addresses were responsible for the 983 times this exact message call sequence was executed
(only the value is differing). Although two different addresses are used, it can be assumed,
that all of the swaps to this token are probably from the same entity, as it is unlikely
that two unrelated scammers used the same token almost 1000 times. This would not
be uncommon if we would inspect some well-known ERC-20 token like wETH or Tether
Stablecoin (USDT), but as this token can clearly be identified as a scam token (one of
the entities responsible for the 983 calls holds 22% of the whole token supply), it can be
assumed that these two addresses are from the same entity. In total, the two addresses
swapped about 205.4 ETH for this token. This could have been an effort to raise the
price of the token in a pump and dump scheme, but we do not know for sure why these
two entities choose to operate this way. As this swap seems like a special occurrence, we
cannot say that this is typical illicit behaviour, and we therefore continue to investigate
more of the found patterns.

3

2

1

0
3|2

3|1

3|0

FRAUD
Token

Uniswap
(UNI)

Uniswap
V2

VSHIBA

tx
approve()

getReserves()

deposit()

transfer(address,uint256)

swap
(uint256,uint256,
address,bytes)

transfer(address,uint256)

balanceOf(address)

balanceOf(address)

Token
VSHIBA

Token
Wrapped

Ether

Figure 4.16: Trace A: ETH (Ethereum) → VSHIBA (Vitalik Shiba Buterin) swap

60

4.3. Analysis of transaction schemes

The second-most found trace pattern follows the exact same trace structure, except that
the token involved in the swap is a different one. In this case, StarkWare (STARK) is
the involved token, and again there are not a lot of addresses that behave this way, in
fact, it is only one address, responsible for 237 transactions resulting in a total value of
around 166.1 swapped ETH.

3

2

1

0
3|2

3|1

3|0

FRAUD
Token

Uniswap
(UNI)

Uniswap
V2

STARK 4

tx
approve()

getReserves()

deposit()

transfer(address,uint256)

swap
(uint256,uint256,
address,bytes)

transfer(address,uint256)

balanceOf(address)

balanceOf(address)

Token
StarkWare

Token
Wrapped

Ether

Figure 4.17: Trace B: ETH (Ethereum) → STARK (StarkWare) swap

The third-most executed trace pattern is more interesting to investigate as it was executed
233 times by 145 different addresses. As this trace is executed by many different entities,
it shows a typical use case that fraudulent entities are aware of and use regularly. The
trace itself describes an approval to spend Uniswap (UNI) tokens by some other address.
Basically, all this trace pattern does, is call the standard ERC-20 approve() function
on the UNI tokens contract, to allow another address to access and transfer a specified
amount of tokens with the permission of the transaction initiator.

FRAUD
Token

Uniswap
(UNI)

tx
approve()

Figure 4.18: Trace C: UNI (Uniswap) token approval

As there is no associated value for this kind of message - the approved amount is specified
inside the message’s call data - this behaviour could be used to obfuscate token transfers
in a not very sophisticated way. For explorers only looking at transaction-value-flows
between different Ethereum accounts, the amount of approved tokens remains hidden, as

61

4. Analysis & Results

they are only investigating the value that was associated with the message call, which in
this case is zero. As the amount of approved tokens can still be accessed by processing
the message’s input, this is not a very sophisticated form of obfuscation and it remains
debatable if obfuscation is really the intention here.

As illicit entities often use multiple addresses to distribute their holdings and activities,
this is another assumption on why this approval is used so often. In a research paper
about email spams in the Bitcoin ecosystem [PCRHC19], Paquet-Clouston et al. hint
that multiple addresses involved in spamming schemes are likely connected. Just like
email spammers often use a range of different addresses, crypto scammers often distribute
their accounts as well. Approving one or more addresses for token transfers could then
be used to collect funds from a pool of other fraudulent addresses. Additionally, holding
(and therefore being able to swap) UNI tokens has a range of benefits for fraudulent
addresses. Probably the biggest advantage comes from the fact that holding UNI enables
the holder to swap the tokens for basically any other available token at any point in time.
An attacker can therefore quickly swap tokens and specify who can access them, making
it a little bit harder for investigators to track down the illicit activity.

In Table 4.4 we have seen the patterns which occurred the most often, but these traces
are only responsible for a small portion of funds which were sent to the Uniswap protocol.
In Table 4.5 we not only look at the occurrence of traces but sort the traces by the sum
of their initial transaction values. This gives us a better indication of which transaction
schemes are used to swap big amounts of ETH. The first entry again is not very interesting
to look at (besides its high value of 1700 ETH), as it is only a single transaction, and
therefor again a special occurrence. In 4.19 we see the structure of the trace.

1|2

0|2

1|
2|

0

1

0|2|1

0|2|0

0

0|
3

0|
1

1|3

1|1

0|0

1|
3|

0

1|
2|

0|
0

1|
1|

0

0|
0|

0

1|
0

FRAUD
Uniswap

V3
Router

Uniswap
V3

DAI-USDC

Uniswap
V3

USDC 2
Centre:

USD Coin

?
Dai

StableCoin

tx: exactInput((bytes,address,uint256,uint256,uint256))
0: swap(address,bool,int256,uint160,bytes)
0|0: transfer(address,uint256)
0|0|0: transfer(address,uint256)
0|1: balanceOf(address)
0|2: uniswapV3SwapCallback(int256,int256,bytes)
0|2|0: deposit()
0|2|1: transfer(address,uint256)
0|3: balanceOf(address)
1: swap(address,bool,int256,uint160,bytes)
1|0: transfer(address,uint256)
1|1: balanceOf(address)
1|1|0: balanceOf(address)
1|2: uniswapV3SwapCallback(int256,int256,bytes)
1|2|0: transfer(address,uint256)
1|2|0|0: transfer(address,uint256)
1|3: balanceOf(address)
1|3|0: balanceOf(address)

tx Token
Wrapped

Ether

Figure 4.19: Trace L: ETH (Ethereum) → USDC(USD Coin) → DAI (Dai Stablecoin)
swap

62

4.3. Analysis of transaction schemes

The second and third entries however are more interesting and show, that fraudulent
entities particularly often swap their obtained ETH for Stablecoins of MakerDao (DAI)
and USDT. In total 1369.2 ETH was swapped for DAI in 27 transactions coming from
18 different addresses, leading to an average transaction volume of about 50.7 ETH. The
USDT Stablecoin occurred in 64 transactions coming from 22 unique senders summing
up to a total value of 1235.9 ETH and an average transaction value of 19.3 ETH per
transaction. The trace structure of both swaps can be seen in 4.20 and 4.21.

3

2

1

0
3|2

3|1

3|0

Uniswap
V2 Router

Uniswap
DAI/ETH

LP

swapExactETHForTokens
(uint256,address[],address,uint256)

getReserves()

deposit()

transfer(address,uint256)

swap
(uint256,uint256,
address,bytes)

transfer(address,uint256)

balanceOf(address)

balanceOf(address)

Dai
StableCoin

Token
Wrapped

Ether
FRAUD tx

Figure 4.20: Trace L: ETH (Ethereum) → DAI (Dai Stablecoin) swap

3

2

1

0
3|2

3|1

3|0

Uniswap
V2 Router

Uniswap
ETH/USDT

LP

swapExactETHForTokens
(uint256,address[],address,uint256)

getReserves()

deposit()

transfer(address,uint256)

swap
(uint256,uint256,
address,bytes)

transfer(address,uint256)

balanceOf(address)

balanceOf(address)

USDT
StableCoin

Token
Wrapped

Ether
FRAUD tx

Figure 4.21: Trace H: ETH (Ethereum) → USDT (US Dollar Tether) swap

63

4. Analysis & Results

We can also see that these two traces, as well as the Uniswap token approval (shown in
Figure 4.21) are also among the top traces when we order by the number of different
sender addresses, meaning that these are common transactions that fraudulent addresses
execute (see Table 4.6).

In Table 4.7 we show matching transaction hashes, by which anybody can identify
the found pattern. The value associated with the transaction can vary from the value
associated to the shown transaction hashes, but the trace structure for all the patterns
mentioned in tables 4.4 and 4.5 are identical to the structure of the listed transaction
hashes.

ID transaction_hash
A 0xbb483ef1a994b22de626ddc50ee704930c610fcc4f8a9a6d157215c39507c51c
B 0x59d3dc1ec09b2057e29f24e90ce678b60d2aff2a8dd2b3f4bec54d5b0f15460d
C 0xf18e97814b2d6332dd221247265d432e3a6f7c09097bae36efd33998b2a16627
D 0xd032c3f7c54e9a7450990021708a063d3e18e19238c3c6811d9aedcb4c4310f0
E 0xd0270ed2a7f0349e748ae7c40c811974fc3e968392d4ccf4425757e45335e40c
F 0x6b34b92bf30ddb4d308cf45f09e64af5a6a753f51e1820170e064a0445b5e39a
G 0x6331309b1af2566e792a6146b0311937de65763a4c036a325bc68be57dd4e866
H 0x8dde2c222968afcb443dcdf30c6135eb7b89757f3d57d7409ef4ef5b067c8853
I 0x377873e8acbd254f62b250c89b8f9861347cf7bd24184f432e925f60a1d06bcd
J 0x3f5698e5eae12dcdadcce8bbbc727286ab2d1c7e70bc5459050b860e24084ffb
K 0x2207b5c4abd07f699ec5a5289f06d6f9b746d9d87a120fed2d8935d1eee23ce9
L 0xacc3f46aede9dbc71ad8f52ef1765a2d7d3e9364ff541c6c373cc28f6fb538e0
M 0xfc15a9152acc9ff9dc78bcb5b483c62971f7bfd988257578e753175a2ee6ffa5
N 0x6c9eccf0f3b4f3ec21337fab65e0da2c9a4d6aeab7fb4a3c3787069d90908f79
O 0xda2aa7f39cd7dc39922da38247b525556382bb3c6377a5abe8079aaeabf72af8
P 0xe0b326c67015902de03e35ab43e802393e4f3064e6dce831c510bfa8cb5edad0
Q 0x8c02254d5c27e9e07c58069bbc91ac8d7c1bbb10020ab806efb30de7f79deded
R 0x6c267fd75b2ad5a3fe59d001387b7b8d0ead3b880d853941414bfcc6bb6bc822
S 0xc33c718223fb0a89cc75aeb11d77ff3ac9e85a6facab65de0182eacb887603c5
T 0xf53f8b0844f4ad4f1c2053556e7468e4d417dc7279761a3bdb7f0ee195cad033
U 0xf3b1846f63cf7990bbd0183c85625e3b0e10c68f9f9800fdfea64ae569909ace
V 0xee469c25728e9bb240b4810014e6b1dd5348d73619c842059daf1b31404a9246
W 0x4e384d25a1e89e669654913557a2476ef9aefe0cdac696176411ee9ec43cf751
X 0xbba02ac329cd003b7183650e110776fa9fcc65a011c7efadeba8faa3047c2302

Table 4.7: List of transaction hashes to identify trace structures

As we find that most of the traces can be identified to be token swaps, we also wanted
to find out which tokens are widely used by fraudulent entities. For this purpose, we
check inside the trace data which token addresses appear most often. We then show how
much value was sent directly to the token contracts. We also show the sum of initial
values, in case a specific token was involved. In table 4.8 we show that ETH is always
first swapped to wETH. This presumably is an internal Uniswap specification and the
conversion happens internally without the transactor specifically stating that value should

64

4.3. Analysis of transaction schemes

first be swapped to wETH. Because of this behavior, we can see that besides wETH
no other token in the top 25 occurring tokens directly receives any ETH in column vd.
Column vs shows the sum of initial values of the traces if the token occurred inside of
them. Column vs therefor gives a better indication of how much ETH fraudulent entities
actually use in swaps with other tokens. Besides the wETH token contract, the Uniswap
V2 Factory Contract, DAI, a special Token with no Nametag by Centre3 and USDT are
in the top 5 of the most occurring tokens.

Concluding the trace analysis we can state, that fraudulent addresses make use of DeFi
protocols in many different ways, although a lot of them also follow simple, more common,
approaches. They use DEXs to store their funds and approve other addresses to move and
manage them regularly. They also regularly swap ETH for a variety of different ERC-20
tokens. Stablecoins are among the top tokens fraudulent addresses swap, possibly showing
that they regularly try to cash out their stolen funds. We also saw that likely single
entities are responsible for lots of transactions, and that there are many different schemes
and unique trace patterns. 2465 of the 3145 found traces are unique regarding their
structure, showing that fraudulent entities use the Uniswap protocol in many different
ways. One of the most used functionalities they use is Uniswaps token approval method,
which allows for an easy "transfer" of funds between addresses. For these approvals,
conducting further research could be interesting, to find out which addresses got approved
by fraudulent entities.

3https://www.centre.io/

65

https://www.centre.io/

4. Analysis & Results

ER
C

-2
0

to
ke

n
ad

dr
es

s
to

ke
n

na
m

e
oc

cu
ra

nc
e

v d
v s

v a

0x
c0

2a
aa

39
b2

23
fe

8d
0a

0e
5c

4f
27

ea
d9

08
3c

75
6c

c2
W

ra
pp

ed
Et

he
r

(W
ET

H
)

21
63

9
44

42
0.

7
44

47
2.

2
2.

1
0x

5c
69

be
e7

01
ef

81
4a

2b
6a

3e
dd

4b
16

52
cb

9c
c5

aa
6f

U
ni

sw
ap

V
2:

Fa
ct

or
y

C
on

tr
ac

t
14

34
0

28
76

8.
3

20
.1

0x
6b

17
54

74
e8

90
94

c4
4d

a9
8b

95
4e

ed
ea

c4
95

27
1d

0f
D

ai
St

ab
le

co
in

61
1

0
41

21
.3

6.
7

0x
a2

32
7a

93
8f

eb
f5

fe
c1

3b
ac

fb
16

ae
10

ec
bc

4c
bd

cf
Fi

at
To

ke
nV

2_
1*

29
4

0
24

66
.8

8.
4

0x
da

c1
7f

95
8d

2e
e5

23
a2

20
62

06
99

45
97

c1
3d

83
1e

c7
T

he
th

er
:

U
SD

T
St

ab
le

co
in

13
14

0
18

66
.3

1.
4

0x
22

60
fa

c5
e5

54
2a

77
3a

a4
4f

bc
fe

df
7c

19
3b

c2
c5

99
W

ra
pp

ed
BT

C
:W

BT
C

To
ke

n
19

6
0

16
82

.1
8.

6
0x

bb
2b

80
38

a1
64

01
96

fb
e3

e3
88

16
f3

e6
7c

ba
72

d9
40

U
ni

sw
ap

V
2:

W
BT

C
14

1
0

16
54

.1
11

.7
0x

a4
78

c2
97

5a
b1

ea
89

e8
19

68
11

f5
1a

7b
7a

de
33

eb
11

U
ni

sw
ap

V
2:

D
A

I
34

1
0

14
11

.4
4.

1
0x

0d
4a

11
d5

ee
aa

c2
8e

c3
f6

1d
10

0d
af

4d
40

47
1f

18
52

U
ni

sw
ap

V
2:

U
SD

T
93

8
0

13
72

.4
1.

5
0x

68
bc

fb
dd

cc
b1

65
0c

be
58

4e
b8

0c
dd

0a
6e

46
ad

13
4c

U
ni

sw
ap

V
2:

M
ET

A
57

32
7

0
94

2.
3

2.
9

0x
67

95
a9

60
3e

99
92

41
75

60
47

9b
07

ba
04

c5
f0

dd
79

e4
M

et
a

D
ao

(M
ET

A
)

32
8

0
94

2.
3

2.
9

0x
1b

7d
e8

86
7c

20
2a

95
fb

19
2e

3f
96

9d
7d

b8
fb

3a
98

82
R

A
M

P
D

EF
I(

R
A

M
P)

74
0

90
5

12
.2

0x
77

e0
e8

7b
3f

1a
13

36
41

9b
2c

39
a2

ee
11

27
10

83
41

3b
U

ni
sw

ap
V

2:
R

A
M

P
11

75
0

90
5

12
.1

0x
03

74
a1

44
f7

99
bc

64
ec

00
c0

3d
bb

90
65

ad
19

e8
4c

4e
D

ra
cu

la
N

et
wo

rk
(D

M
N

)
10

0
73

0
73

0x
96

4a
b3

34
f7

4a
ed

16
04

b8
06

ed
29

9b
42

2e
41

e9
9d

35
U

ni
sw

ap
V

2:
D

M
N

2
11

0
73

0
66

.4
0x

99
22

4c
18

42
4b

6c
23

a2
1d

e6
2e

bb
b2

26
d6

a0
06

2c
45

U
ni

sw
ap

V
2:

N
IX

68
0

61
5

9.
0

0x
ff7

c3
b7

f4
e4

26
00

97
a3

3c
9d

cc
29

1b
9d

1b
af

2e
db

5
Fa

ke
_

Ph
ish

in
g4

52
6

76
0

61
5

8.
1

0x
ca

53
97

a1
61

19
59

e6
10

3f
19

fe
89

19
5b

2e
94

ab
62

31
R

ee
fF

in
an

ce
(R

EE
F)

12
0

54
0

45
0x

2b
46

5a
15

e6
72

15
fb

16
7f

49
7d

32
4c

dc
79

ba
b3

1e
11

U
ni

sw
ap

V
2:

R
EE

F
1

12
0

54
0

45
0x

81
fb

ef
47

04
77

6c
c5

bb
a0

a5
df

3a
90

05
6d

2c
69

00
b3

U
ni

sw
ap

V
2:

re
nB

T
C

48
0

50
3.

0
10

.5
0x

e2
d6

cc
ac

3e
e3

a2
1a

bf
7b

ed
be

2e
10

7ff
c0

c0
37

e8
0

R
en

ER
C

20
Lo

gi
cV

1*
56

0
50

3.
0

9.
0

0x
1b

3c
27

ef
72

48
54

1e
90

b0
cb

49
09

25
71

e5
6d

ee
3e

93
dr

ac
ul

a.
ne

tw
or

k
(D

M
N

)
6

0
50

0
83

.3
0x

c6
bd

e0
36

a9
be

17
68

95
51

0c
65

eb
ba

84
16

c1
9f

72
e4

U
ni

sw
ap

V
2:

D
M

N
3

7
0

50
0

71
.4

0x
1c

cc
46

38
22

8a
3f

57
4a

30
91

97
93

4f
3e

5f
53

2d
f0

00
ye

ar
nX

.fi
na

nc
e

(Y
FF

)
8

0
50

0
62

.5
0x

47
37

8f
a8

f5
62

28
75

ef
c4

94
b0

6f
22

c7
d7

a6
56

05
46

U
ni

sw
ap

V
2:

Y
FF

5
8

0
50

0
62

.5

Ta
bl

e
4.

8:
Li

st
of

to
ke

n
ad

dr
es

se
s,

de
sc

rip
tio

n
v d

:
su

m
of

va
lu

e
di

re
ct

ly
se

nt
to

th
e

to
ke

n
ad

dr
es

s
v s

:
su

m
of

in
iti

al
va

lu
es

if
to

ke
n

oc
cu

rs
in

th
e

tr
ac

e
v a

:
av

er
ag

e
va

lu
e

pe
r

tr
an

sa
ct

io
n

(v
s
/o

cc
ur

an
ce

)
*T

ok
en

s
di

d
no

t
ha

ve
a

na
m

e
ta

g
on

h
t
t
p
s
:
/
/
e
t
h
e
r
s
c
a
n
.
i
o
/

th
er

ef
or

th
e

co
nt

ra
ct

na
m

e
wa

s
us

ed

66

https://etherscan.io/

CHAPTER 5
Discussion

We now summarize the conducted work in the thesis, show limitations to our approach
and propose some fields of study that could be interesting for future research. First, we
reiterate and summarize our work and findings. We then talk about limitations that
occurred during our research. In the last part of this chapter, we further discuss potential
refinements and future extensions for this research.

5.1 Summary of insights
DeFi protocols, which are non-custodial, permissionless financial services that run on
top of the blockchain have gained significant amounts of interest in the past years.
Assets, DEXs, lending and borrowing services as well as derivatives are among the top
applications which the DeFi sector provides. With all these application fields, criminal
activities related to this sector have also been on the rise. In 2020, illicit activity in the
crypto space represented 0.34% of all transaction volume amounting to $10.0 billion. A
near 20-fold increase of illicit funds flowing to DeFi during 2021 shows why this work is
interesting.

In our web search, we found 20.181 fraudulent addresses, of which 6869 unique addresses
remained, showing that a lot of providers have the same information accessible on the
web. A variety of criminal activities like scams, exploits and hacks, Ponzi schemes and
phishing attempts were identified.

In our topology analysis, we show that different fraud categories have different ingoing
degrees indicating that certain categories attract more attention from presumably un-
knowing users. We also find that most of the fraudulent entities have only little fraudulent
neighbours and low clustering coefficients. The biggest chunk of found addresses in our
dataset (over 70% of them) are labelled as "Phish / Hack". Most of the addresses related
to the "Phish / Hack" category have low ingoing degrees, and no or only little fraudulent

67

5. Discussion

neighbours. Nevertheless, this category is in charge of the biggest sums flowing to DeFi.
While this category was responsible for the biggest total sums flowing to DeFi, addresses
with no categorization have the highest average transaction value flowing to DeFi.

In our analysis of transactions we find that, on the other end of fraudulent transactions,
DEXs receive the biggest parts of funds. DEX Uniswap in particular is the main
destination of illicit funds, although the cumulative sum of funds flowing to the Uniswap
protocols in our dataset is not growing as fast as it did a few years ago.

To show fraudulent activities related to the most used protocol in more detail, we moved
from the network perspective to a more detailed analysis of transaction schemes. By
investigating trace data of an additional dataset of transactions which were sent to the
Uniswap protocol we find that Uniswap token approvals are among the most common
traces, probably used to manage and transfer funds without the need for an actual value
transfer from one address to another. Swaps with high amounts of associated transaction
values to USDT, DAI and other Stablecoins, are used by a number of unique illicit nodes,
leading us to think that swaps to Stablecoins are quite popular among fraudulent entities.
On the other hand, we also show that fraudulent addresses make use of DeFi protocols
in many different ways and that we cannot speak of common fraudulent behavior when
DeFi protocols like Uniswap are involved.

5.2 Limitations
During our work, we encountered some limitations and difficulties, which we want to
mention in the below section, in hope that these remarks will be beneficial for future
researchers investigating similar topics.

First, we want to mention that we cannot guarantee that all the addresses found by
our web search were in fact connected to illicit behaviour, as errors such as wrong
categorization or even completely wrong listings in the found datasets cannot be ruled
out. We want to conclude the three main issues we encountered looking for data:

1. Lack of reliable data sources: Although public data sources provide APIs and
full sets of addresses can be found, there are a lot of alleged providers, that have
old data states, or have stopped collecting data altogether. We often encountered
blank web pages or very small lists of addresses with no way to find out where the
addresses came from. We can assume those addresses were tagged as scams or have
some connection to illicit activities, but we will never know for sure.

2. Wrong categorization: Although some data providers like Etherscan1 have a
good reputation when it comes to collecting and tagging scam addresses, we don’t
really know where these addresses came from, and what the criteria was that got
them listed or tagged as possible scam address. We therefore have no knowledge if

1https://etherscan.io/

68

https://etherscan.io/

5.3. Future work

the addresses are only included in the dataset because somebody at some point
in time decided to include them, or if there is evidence-based data that lead to
the entry. The same issue must be considered for the actual tagging of the data.
We cannot be sure, that everything that is tagged as “scam” can also be viewed
as a scam, or if different providers maybe have different views on what actually
comprises a scam.

3. User-generated lists: In a user-generated list, users of crypto wallets or services
have the possibility to report fraudulent activities and get addresses blacklisted. Of
course, this also leaves the possibilities for wrong listings, as well as stale entries,
that were listed once, and not removed in case of wrong accusation.

In conclusion, we cannot state with certainty, that every single entry in our dataset is
actually a fraudulent entity, and investigating further in this matter would be suitable
for future work. Nevertheless, we still think that most of the addresses listed are correct
and well suited for our purpose, as we made sure to only include trustful sources, that
have some reputation when it comes to providing data.

An intentional limitation of this thesis was our decision to only focus on DeFi protocols.
As the DeFi sector is rapidly growing, we wanted to focus our efforts on the field of
decentralized financial protocols. But as the effects of fraudulent activities are likely also
affecting other areas, widening the scope of the investigation would pose an opportunity
to further understand how fraudulent entities on the Ethereum blockchain operate.

In the course of writing this thesis, we also noticed that the data on we based our results
is changing rapidly, and therefore reevaluations for this matter will always be a necessity
to stay up to date with the latest data.

Last but not least, the manual investigation of traces we conducted in our thesis presented
us with some difficulties. As there was no possibility to concisely check if a trace was
a swap, an approval or anything else, we manually checked the traces’ structure and
applied semantic meaning to it. As there is no categorization for trace data, for now this
was our only option but further efforts in this direction could be beneficial for future
researchers.

5.3 Future work
In this thesis, we presented how illicit transaction behaviour is connected to DeFi
protocols, and which protocols are destinations of illicit funds. Our transaction and
trace analyses give a good insight into how funds move on the Ethereum blockchain, but
there is still a lot of room for improvement that would be suitable for future work. The
following ideas present some of the possibilities of how this work could be extended in
the future.

Manual data classification As we show, the unreliable, user-generated data in our
thesis is a limitation to how exact our analysis is. Doing a manual data classification on

69

5. Discussion

potentially fraudulent addresses and dividing categories like "Phish / Hack" into more
fine-grained sub-categories would be beneficial for further investigations.

Updating set of DeFi protocols As in this thesis we use the same set of DeFi protocols
already used in the paper of Kitzler et al.[KVSH21] (Nov. 2021), we think that updating
the set of DeFi protocols could also lead to new findings. We mainly think that more
decentralized protocols in various spaces could have been introduced in the meantime, so
updating the set and keeping it up to date could refine future results.

Expanding dataset of malicious addresses As Li et al. [LBB+21] have shown,
the set of malicious addresses can be expanded by using different network clustering
mechanisms. Their approach has shown to expand the set by a big amount from 3559
to 23,638 addresses, although the total amount of value sent in transactions was only
marginally increased. Using different heuristics to expand the dataset, and comparing
the deviation of the resulting addresses, could therefore hold great potential for future
work.

Investigating token approvals In our thesis we show that many fraudulent entities use
Uniswap’s internal UNI token and its approve() function in order to allow other addresses
to manage and transfer funds. Investigating these function calls to see for which address
an approval was invoked would give an even better insight and maybe this approach
could even be used to further expand the dataset of fraudulent addresses For this case,
the messages call data would need more investigation in order to make clear statements
about fraudulent addresses and their relation via approvals. This method is particularly
interesting as any approach based on networks connected by simple Ethereum transactions
can easily miss relationships via approval, as the nodes are seemingly separated by a
reliable intermediary node, for example a DEX like Uniswap.

Expanding to other blockchains Expanding the focus of this work to other blockchains
with native support for SCs, one could show how fraudulent activities are conducted in a
different ecosystem. As Ethereum is not the only blockchain that uses SCs, this would be
an interesting field to investigate. Making out differences or similarities between different
blockchains would therefore definitely be another interesting field of research.

70

CHAPTER 6
Conclusion

In our work, we provided insight into how fraudulent transaction activities on the
Ethereum blockchain are connected to the Decentralized Finance (DeFi) ecosystem. By
web search, we were able to find 6869 unique Ethereum addresses which were labelled
fraudulent. The found addresses as well as aggregated transaction data of the whole
Ethereum blockchain were used to populate a graph database. The graph database
was then used to conduct a topology analysis, in order to understand how fraudulent
entities are connected to the DeFi sector. Based on our network data we showed that
fraudulent entities heavily use DeFi applications to manage and transfer funds. We show
that Decentralized Exchanges (DEXs) receive the biggest parts of illicit funds, as they
can be used to swap the blockchains native currency to a variety of other ERC-20 tokens.
DEX Uniswap in particular is the main destination for fraudulent transactions. To gain a
better understanding of this matter, we used another dataset of message traces showing
which transactions exactly were executed on the Uniswap protocol. By analysing the
message traces sent to the DEX we found that UNI token approvals are among the
most common transactions. Likely, these transactions are used by fraudulent entities
to manage and transfer funds without the need for an actual value transfer from one
entity to another. We also show that fraudulent entities make use of a variety of tokens,
indicating that fraudulent actors use wildly different approaches when it comes to hiding,
investing or managing their funds. In summary, our thesis provides a macro perspective
into fraudulent activities on the network level as well as a more detailed perspective on a
transaction-based level to show which DeFi protocols are used by fraudulent entities in
which ways. With the DeFi sector becoming more and more popular, understanding how
fraudulent entities make use of certain DeFi protocols is a first step towards a broader
general analysis of illicit activities and their connection to decentralized protocols.

71

List of Listings

2.1 Basic transfer function of a token contract 16
2.2 ERC-20 Methods . 17
2.3 Ponzi Contract in Solidity . 24
2.4 Exploitable Wallet Contract . 26
2.5 Phishing Exploit Contract . 26

73

List of Figures

2.1 Externally owned accounts and Code accounts 9
2.2 Transactions included in blocks . 11
2.3 Trace showing a swap from ETH to USDT visualized as graph 14
2.4 Undirected graph . 27
2.5 Directed graph . 28

4.1 Connections from fraudulent addresses to DeFi protocols 46
4.2 Average of ingoing degrees per fraud category 47
4.3 Average of in_degree degrees per fraud category (Plus Token Scam excluded) 47
4.4 Average of ingoing degrees by protocol type 48
4.5 Average of ingoing degrees per protocol 48
4.6 Amount of fraudulent addresses directly connected to DeFi protocols . . . 49
4.7 Percentages of fraudulent neighbours . 50
4.8 Clustering coefficient per fraud category . 51
4.9 Flows from fraud addresses to DeFi on logarithmic scale 52
4.10 Average value per transaction flowing to DeFi protocols by fraud category 53
4.11 Transaction activity over time . 54
4.12 Receiving entities of initial traces and associated value 57
4.13 Amount of successful and failed transactions to the Uniswap protocol . . 57
4.14 Most common trace lengths . 58
4.15 Lengths of traces grouped by initial transaction value 58
4.16 Trace A: VSHIBA swap . 60
4.17 Trace B: STARK 4 swap . 61
4.18 Trace C: Uniswap (UNI) token approval . 61
4.19 Trace L: DAI swap . 62
4.20 Trace L: DAI swap . 63
4.21 Trace H: USDT swap . 63

75

List of Tables

2.1 Message trace from figure 2.3 . 15

3.1 Addresses found in the Etherscan labelcloud 32
3.2 Addresses found in the etherscamdb_tagpack.yaml file 33
3.3 Addresses found in the scams.yaml file 33
3.4 Addresses found in the addresses-darklist.json file 34
3.5 Addresses found in the addresses.json file 34
3.6 Addresses found in the urls.yaml file . 34
3.7 Addresses found in the uris.yaml file . 35
3.8 Found addresses by source file and category 35
3.9 DeFi protocols by type . 36
3.10 Found addresses by source file and category 38
3.11 Pre-processing Commands . 39
3.12 Node properties describing the Ethereum addresses in the network . . . 40
3.13 Relationship properties describing the aggregated transaction data . . . 40
3.14 Protocols by type . 41
3.15 Frauds by category . 42

4.1 Trace properties . 55
4.2 Additional trace properties . 56
4.3 Receiving entities of initial traces and associated value 57
4.4 Top 10 trace patterns by occurrence . 59
4.5 Top 10 trace patterns by sum of transferred value 59
4.6 Top 10 trace patterns by unique sender addresses 59
4.7 List of transaction hashes to identify trace structures 64
4.8 List of ERC-20 tokens . 66

76

Acronyms

API Application Programming Interface. 16, 68

CA Code Account. 10, 12, 13

CQL Cypher Query Language. 42

DAI MakerDao. 63, 65, 68

DAO Decentralized Autonomous Organization. 22

DeFi Decentralized Finance. ix, xi, xiii, 1–5, 7, 13, 15–20, 22, 23, 31, 36, 37, 39–43, 45,
47–49, 51–55, 60, 65, 67–71, 75, 76

DEX Decentralized Exchange. ix, xi, 19, 42, 45, 47–49, 53, 54, 65, 67, 68, 70, 71

DLT Distributed Ledger Technology. 1, 2

EOA Externally Owned Account. 10, 13, 14

ERC-20 Ethereum Request for Comments. ix, xi, 16, 17, 45, 56, 60, 61, 65, 73

ETH Ethereum. 7, 9, 14, 23, 53, 56–58, 60–65

EVM Ethereum Virtual Machine. 10, 11, 13, 55

NFT Non-Fungible token. 15, 16, 23

P2P Peer-to-peer. 21

SC Smart Contract. ix, xi, 1, 4, 7, 8, 10, 12–19, 23–25, 70

STARK StarkWare. 61

UNI Uniswap. 61, 62, 70

USDT Tether Stablecoin. 60, 63, 65, 68

77

VSHIBA Vitalik Shiba Buterin. 60

wETH Wrapped Ether. 60, 64, 65

78

Bibliography

[B+18] Paul Barnes et al. Crypto currency and its susceptibility to speculative
bubbles, manipulation, scams and fraud. Journal of Advanced Studies in
Finance (JASF), 9(2):16, 2018.

[Bar16] Albert-László Barabási. Network Science, volume 27, page 6. Cambridge
University Press, 2016.

[BCAZ20] Pavlo Burda, Tzouliano Chotza, Luca Allodi, and Nicola Zannone. Testing
the effectiveness of tailored phishing techniques in industry and academia:
A field experiment. In Proceedings of the 15th International Conference on
Availability, Reliability and Security, ARES ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[BCCS20] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and Roberto Saia.
Dissecting ponzi schemes on ethereum: Identification, analysis, and impact.
Future Generation Computer Systems, 102:271, 2020.

[BGL16] Zinaida Benenson, Freya Gassmann, and Robert Landwirth. Exploiting
curiosity and context: How to make people click on a dangerous link despite
their security awareness. 2016.

[BLL+21] Massimo Bartoletti, Stefano Lande, Andrea Loddo, Livio Pompianu, and
Sergio Serusi. Cryptocurrency scams: Analysis and perspectives. IEEE
Access, 9:Abstract, 2021.

[Blo20] Cylynx Blog. Tracing the trail of the upbit hack. https://www.cyly
nx.io/blog/tracing-the-trail-of-the-upbit-hack/, 2020.
Accessed: 2022-05-11.

[Blo22] Coinbase Blog. What is a token? https://www.coinbase.com/lea
rn/crypto-basics/what-is-a-token, 2022. Accessed: 2022-06-13.

[But14] Vitalik Buterin. A next generation smart contract & decentralized applica-
tion platform - ethereum white paper. https://ethereum.org/669c9
e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_But
erin_2014.pdf, 2014.

79

https://www.cylynx.io/blog/tracing-the-trail-of-the-upbit-hack/
https://www.cylynx.io/blog/tracing-the-trail-of-the-upbit-hack/
https://www.coinbase.com/learn/crypto-basics/what-is-a-token
https://www.coinbase.com/learn/crypto-basics/what-is-a-token
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf

[ByB22] ByBit. How to avoid p2p crypto scams and fraud. https://learn.by
bit.com/bybit-p2p-guide/how-to-avoid-p2p-crypto-scams-
fraud/#2, 2022. Accessed: 2022-04-24.

[CB20] Yan Chen and Cristiano Bellavitis. Blockchain disruption and decentralized
finance: The rise of decentralized business models. Journal of Business
Venturing Insights, 13:1,3, 2020.

[CGC+20] Weili Chen, Xiongfeng Guo, Zhiguang Chen, Zibin Zheng, and Yutong
Lu. Phishing scam detection on ethereum: Towards financial security for
blockchain ecosystem. In IJCAI, pages 4506–4512, 2020.

[Cha21] Chanalysis. Chainalysis crypto crime report. https://go.chainalys
is.com/rs/503-FAP-074/images/Chainalysis-Crypto-Crime-
2021.pdf, 2021. Accessed: 2022-03-08.

[Cha22] Chanalysis. Defi takes on bigger role in money laundering but small group
of centralized services still dominate. https://blog.chainalysis.c
om/reports/2022-crypto-crime-report-preview-cryptocu
rrency-money-laundering/, 2022. Accessed: 2022-03-16.

[Cip21] CipherTrace. Cryptocurrency crime and anti-money laundering report.
https://ciphertrace.com/cryptocurrency-crime-and-ant
i-money-laundering-report-august-2021/, 2021. Accessed:
2022-03-28.

[Cor20] Terranova Worldwide Corporation. Gone phishing tournament global bench-
mark report 2020. page 6, 2020.

[CZC+18] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin Zheng, and Yuren
Zhou. Detecting ponzi schemes on ethereum: Towards healthier blockchain
technology. In Proceedings of the 2018 World Wide Web Conference, WWW
’18, page 1409–1418, Republic and Canton of Geneva, CHE, 2018. Interna-
tional World Wide Web Conferences Steering Committee.

[ESES18] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. Eip-721:
Non-fungible token standard. In Ethereum Improvement Proposals, no. 721,
January 2018. 2018.

[Eur21a] Europol. Cryptocurrencies - tracing the evolution of criminal finances.
https://www.europol.europa.eu/cms/sites/default/files/
documents/Europol%20Spotlight%20-%20Cryptocurrencies%2
0-%20Tracing%20the%20evolution%20of%20criminal%20finan
ces.pdf, 2021. Accessed: 2022-03-26.

[Eur21b] Europol. Cryptocurrency related searches - europol. https://www.eu
ropol.europa.eu/search?q=cryptocurrency, 2021. Accessed:
2022-01-17.

80

https://learn.bybit.com/bybit-p2p-guide/how-to-avoid-p2p-crypto-scams-fraud/#2
https://learn.bybit.com/bybit-p2p-guide/how-to-avoid-p2p-crypto-scams-fraud/#2
https://learn.bybit.com/bybit-p2p-guide/how-to-avoid-p2p-crypto-scams-fraud/#2
https://go.chainalysis.com/rs/503-FAP-074/images/Chainalysis-Crypto-Crime-2021.pdf
https://go.chainalysis.com/rs/503-FAP-074/images/Chainalysis-Crypto-Crime-2021.pdf
https://go.chainalysis.com/rs/503-FAP-074/images/Chainalysis-Crypto-Crime-2021.pdf
https://blog.chainalysis.com/reports/2022-crypto-crime-report-preview-cryptocurrency-money-laundering/
https://blog.chainalysis.com/reports/2022-crypto-crime-report-preview-cryptocurrency-money-laundering/
https://blog.chainalysis.com/reports/2022-crypto-crime-report-preview-cryptocurrency-money-laundering/
https://ciphertrace.com/cryptocurrency-crime-and-anti-money-laundering-report-august-2021/
https://ciphertrace.com/cryptocurrency-crime-and-anti-money-laundering-report-august-2021/
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol%20Spotlight%20-%20Cryptocurrencies%20-%20Tracing%20the%20evolution%20of%20criminal%20finances.pdf
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol%20Spotlight%20-%20Cryptocurrencies%20-%20Tracing%20the%20evolution%20of%20criminal%20finances.pdf
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol%20Spotlight%20-%20Cryptocurrencies%20-%20Tracing%20the%20evolution%20of%20criminal%20finances.pdf
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol%20Spotlight%20-%20Cryptocurrencies%20-%20Tracing%20the%20evolution%20of%20criminal%20finances.pdf
https://www.europol.europa.eu/search?q=cryptocurrency
https://www.europol.europa.eu/search?q=cryptocurrency

[FP21] Allan Fowler and Johanna Pirker. Tokenfication - the potential of non-
fungible tokens (nft) for game development. In Extended Abstracts of the 2021
Annual Symposium on Computer-Human Interaction in Play, CHI PLAY
’21, page 152–157, New York, NY, USA, 2021. Association for Computing
Machinery.

[Fra22] Jake Frankenfield. Crypto tokens. https://www.investopedia.com
/terms/c/crypto-token.asp, 2022. Accessed: 2022-06-13.

[GSD04] P. Grabosky, R. Smith, and G. Dempsey. Electronic theft: Unlawful
acquisition in cyberspace. International Journal of Law and Information
Technology, 06 2004.

[Har19] Christopher G. Harris. The risks and challenges of implementing ethereum
smart contracts. In 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pages 104–107, 2019.

[HRM+21] J.T. Hamrick, Farhang Rouhi, Arghya Mukherjee, Amir Feder, Neil Gan-
dal, Tyler Moore, and Marie Vasek. An examination of the cryptocur-
rency pump-and-dump ecosystem. Information Processing & Management,
58(4):Abstract, 2021.

[JJJM07] Tom N. Jagatic, Nathaniel A. Johnson, Markus Jakobsson, and Filippo
Menczer. Social phishing. Commun. ACM, 50(10):94–100, oct 2007.

[KC20] Sesha Kethineni and Ying Cao. The rise in popularity of cryptocurrency
and associated criminal activity. International Criminal Justice Review,
30(3):325–344, Abstract, 2020.

[KVSH21] Stefan Kitzler, Friedhelm Victor, Pietro Saggese, and Bernhard Hasl-
hofer. Disentangling decentralized finance (defi) compositions. CoRR,
abs/2111.11933, 2021.

[LBB+21] Jiasun Li, Foteini Baldimtsi, Joao P. Brandao, Maurice Kugler, Rafeh Hulays,
Eric Showers, Zain Ali, and Joseph Chang. Measuring illicit activity in
defi: The case of ethereum. In Matthew Bernhard, Andrea Bracciali, Lewis
Gudgeon, Thomas Haines, Ariah Klages-Mundt, Shin’ichiro Matsuo, Daniel
Perez, Massimiliano Sala, and Sam Werner, editors, Financial Cryptography
and Data Security. FC 2021 International Workshops, pages 197–203, Berlin,
Heidelberg, 2021. Springer Berlin Heidelberg.

[Mac22] Simon Mackenzie. Criminology towards the metaverse: Cryptocurrency
scams, grey economy and the technosocial. The British Journal of Crimi-
nology, 02 2022. azab118.

[MHC12] Tyler Moore, Jie Han, and Richard Clayton. The postmodern ponzi
scheme: Empirical analysis of high-yield investment programs. In Angelos D.

81

https://www.investopedia.com/terms/c/crypto-token.asp
https://www.investopedia.com/terms/c/crypto-token.asp

Keromytis, editor, Financial Cryptography and Data Security, pages 41–56,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[Nak08] Satoshi Nakamoto. Bitcoin whitepaper. 2008.

[New18] Mark Newman. Networks, pages 89–92. Oxford University Press, 2018.

[OEC20] OECD. Digital disruption in banking and its impact on competition. http:
//www.oecd.org/daf/competition/digital-disruption-in-f
inancial-markets.htm, 2020. Accessed: 2022-01-17.

[PCRHC19] Masarah Paquet-Clouston, Matteo Romiti, Bernhard Haslhofer, and Thomas
Charvat. Spams meet cryptocurrencies: Sextortion in the bitcoin ecosystem,
2019.

[PKPD22] Andrew Park, Jan Kietzmann, Leyland Pitt, and Amir Dabirian. The
evolution of nonfungible tokens: Complexity and novelty of nft use-cases.
IT Professional, 24(1):9–14, 2022.

[RCC+18] Witek Radomski, Andrew Cooke, Philippe Castonguay, James Therien, Eric
Binet, and Ronan Sandford. Eip-1155: Multi token standard. In Ethereum
Improvement Proposals, no. 1155, June 2018. 2018.

[SS21] Sean Stein Smith. Decentralized finance & accounting – implications, con-
siderations, and opportunities for development. The International Journal
of Digital Accounting Research, pages 129–153, 07 2021.

[Sza96] Nick Szabo. Smart contracts: Building blocks for digital markets, 1996.

[TM20] David Towmey and Andrew Mann. Fraud and manipulation within cryp-
tocurrency markets. In Carol Alexander and Douglas Cumming, editors,
Corruption and Fraud in financial markets: Malpractice, Misconduct and
Manipulation, chapter 8, pages 205–249. John Wiley & Sons, 2020.

[VCS03] Vivek Vishnumurthy, Sangeeth Ch, and Emin Sirer. Karma : A secure
economic framework for peer-to-peer resource sharing, 06 2003.

[WAH12] Anne M Wilkins, William W Acuff, and Dana R Hermanson. Understanding
a ponzi scheme: Victims’ perspectives. Journal of Forensic & Investigative
Accounting, 4(1):1–19, 2012.

[WLZZ21] Jiajing Wu, Jieli Liu, Yijing Zhao, and Zibin Zheng. Analysis of cryptocur-
rency transactions from a network perspective: An overview. Journal of
Network and Computer Applications, 190:103139, 2021.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger, berlin version b8ffc51 – 2022-02-21. pages 1–2, 2014.

82

http://www.oecd.org/daf/competition/digital-disruption-in-financial-markets.htm
http://www.oecd.org/daf/competition/digital-disruption-in-financial-markets.htm
http://www.oecd.org/daf/competition/digital-disruption-in-financial-markets.htm

[WPG+21] Sam M. Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Do-
minik Harz, and William J. Knottenbelt. Sok: Decentralized finance (defi).
CoRR, abs/2101.08778:2, 2021.

[Wro21] Christoph Wronka. Financial crime in the decentralized finance ecosystem:
new challenges for compliance. Journal of Financial Crime, ahead-of-
print(ahead-of-print), Jan 2021.

[XWL+20] Pengcheng Xia, Haoyu Wang, Xiapu Luo, Lei Wu, Yajin Zhou, Guangdong
Bai, Guoai Xu, Gang Huang, and Xuanzhe Liu. Don’t fish in troubled
waters! characterizing coronavirus-themed cryptocurrency scams. In 2020
APWG Symposium on Electronic Crime Research (eCrime), pages 1–14,
2020.

[YJX+21] Shanqing Yu, Jie Jin, Yunyi Xie, Jie Shen, and Qi Xuan. Ponzi scheme
detection in ethereum transaction network. In Hong-Ning Dai, Xuanzhe Liu,
Daniel Xiapu Luo, Jiang Xiao, and Xiangping Chen, editors, Blockchain and
Trustworthy Systems, pages 175–186, Singapore, 2021. Springer Singapore.

[ZYL+22] Yanmei Zhang, Wenqiang Yu, Ziyu Li, Salman Raza, and Huaihu Cao.
Detecting ethereum ponzi schemes based on improved lightgbm algorithm.
IEEE Transactions on Computational Social Systems, 9(2):624–637, 2022.

83

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aims
	Overview

	Background
	Ethereum
	Decentralized Finance (DeFi)
	Criminal activities on the Ethereum blockchain
	Network analytics methods

	Data and Methods
	Dataset collection
	Data normalization
	Network construction
	Topology analysis

	Analysis & Results
	Fraudulent activities and their connection to defi
	Analysis of transactions and transaction activity
	Analysis of transaction schemes

	Discussion
	Summary of insights
	Limitations
	Future work

	Conclusion
	List of Listings
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

