
A SAT Attack on Rota’s Basis Conjecture
Markus Kirchweger !

Algorithms and Complexity Group, TU Wien, Autria

Manfred Scheucher !

Institut für Mathematik, Technische Universität Berlin, Germany

Stefan Szeider !

Algorithms and Complexity Group, TU Wien, Autria

Abstract
The SAT modulo Symmetries (SMS) is a recently introduced framework for dynamic symmetry
breaking in SAT instances. It combines a CDCL SAT solver with an external lexicographic minimality
checking algorithm.

We extend SMS from graphs to matroids and use it to progress on Rota’s Basis Conjecture
(1989), which states that one can always decompose a collection of r disjoint bases of a rank r

matroid into r disjoint rainbow bases. Through SMS, we establish that the conjecture holds for all
matroids of rank 4 and certain special cases of matroids of rank 5. Furthermore, we extend SMS
with the facility to produce DRAT proofs. External tools can then be used to verify the validity of
additional axioms produced by the lexicographic minimality check.

As a byproduct, we have utilized our framework to enumerate matroids modulo isomorphism
and to support the investigation of various other problems on matroids.

2012 ACM Subject Classification Mathematics of computing → Matroids and greedoids; Mathe-
matics of computing → Solvers; Hardware → Theorem proving and SAT solving

Keywords and phrases SAT modulo Symmetry (SMS), dynamic symmetry breaking, Rota’s basis
conjecture, matroid

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.4

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.6616343 [25]
Dataset (Data for Rank 4): https://doi.org/10.5281/zenodo.6616373 [24]

Funding M.K. and S.S. were supported by the Austrian Science Fund (FWF), project P32441, and
from the Vienna Science and Technology Fund (WWTF), project ICT19-065. M.S. was supported
by the DFG Grant SCHE 2214/1-1.

1 Introduction

Over the last years, SAT (solving propositional satisfiability) and CP (constraint program-
ming) have emerged as powerful tools for finding small (counter)examples for problems from
various branches of discrete mathematics, such as extremal combinatorics, graph theory, or
combinatorial geometry; see, e.g., [3, 9, 12, 16, 21, 27, 28, 29, 32, 39, 40, 43, 44]. The main
task is to find a combinatorial object with specific properties or determine that such an object
does not exist. Since the search space typically grows extremely fast, symmetry-breaking
techniques are essential in that context. Symmetry breaking tries to avoid considering several
symmetric copies of the same object. The two main approaches to symmetry breaking in the
context of SAT and CP are
1. static symmetry breaking, where the encoding of the desired property is enhanced by

additional constraints that break the symmetry (e.g., [8, 11]), and
2. dynamic symmetry breaking, where symmetries are broken dynamically during the solver’s

run.
© Markus Kirchweger, Manfred Scheucher, and Stefan Szeider;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 4; pp. 4:1–4:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mk@ac.tuwien.ac.at
https://orcid.org/0000-0002-1838-8344
mailto:lastname@math.tu-berlin.de
https://orcid.org/0000-0002-1657-9796
mailto:sz@ac.tuwien.ac.at
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.SAT.2022.4
https://doi.org/10.5281/zenodo.6616343
https://doi.org/10.5281/zenodo.6616373
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 A SAT Attack on Rota’s Basis Conjecture

Some of the main methods that use dynamic symmetry handling are CDCLSym [31],
SMS [26] (short for SAT modulo Symmetry), and adding symmetric versions of learned
clauses to the problem (e.g., [10, 38]). All these methods have in common that they tightly
integrate the dynamic symmetry breaking into a CDCL SAT solver.

SMS considers symmetries of the encoded object (a combinatorial structure) and does
not precompute its symmetries. Instead, an external minimality check algorithm searches
for symmetries during the CDCL solver’s run. The minimality check is invoked whenever
the solver decides on an element of the encoded object (e.g., whether an edge is present in a
graph or not).

For SMS, we must create different minimality check algorithms for different combinatorial
objects. However, this apparent drawback is also one of its strengths: SMS benefits from
an efficient minimality check tailored to the combinatorial objects under consideration.
Additionally, SMS supports handling a vast amount of symmetries while approaches, which
need to compute all symmetries explicitly, cannot.

In this article, we extend the SMS approach from graphs to matroids, proposing a
minimality check tailored to matroids. This allows us to search for matroids with specified
properties. We exemplify the use of the extended SMS to confirm the well-known Rota’s
Basis Conjecture (RBC) from matroid theory. While Gian-Carlo Rota originally stated the
conjecture in terms of vector spaces [23, Conjecture 4], it is today known in its more general
form for matroids [35]. In addition, we use SMS to enumerate all matroids up to a given
rank and number of elements.

1.1 Rota’s Basis Conjecture
Rota’s Basis Conjecture (RBC) asserts that, for every matroid of rank r with r disjoint bases
B1, . . . , Br, there exist r disjoint rainbow bases B′

1, . . . , B′
r, i.e., |Bi ∩B′

j | = 1 holds for all
i, j ∈ [r]. We give a formal definition of matroids and further terminology in Section 2.1;
Figure 1 shows an example for rank 3. Even though RBC attracted the attention of many
researchers, it has only been proven for up to rank 3. While the proofs for ranks 1 and 2
are trivial, Chan [6] used an elaborate case distinction for her proof, which does not directly
generalize to higher ranks.

5

6

4

3
1

27

9
8

{1,2,3} basis
{4,5,6} basis
{7,8,9} basis
{1,4,7} basis
{2,5,8} basis
{3,6,9} basis
{1,2,4} not
{1,2,5} basis
{1,2,6} basis
. . .

1

2

3

4
6

57

8
9

{1,2,3} basis
{4,5,6} basis
{7,8,9} basis
{1,4,7} basis
{2,5,8} not
{3,6,9} basis
{1,2,4} basis
{1,2,5} basis
{1,2,6} not
. . .

Figure 1 Two illustrations of RBC in rank 3. The elements of B1 = {1, 2, 3}, B2 = {4, 5, 6},
and B3 = {7, 8, 9} are highlighted in red, green, and blue, respectively. In this visualisation, three
elements form a basis if and only if the corresponding points don’t lie on a common line. In the
left instance, {1, 4, 7}, {2, 5, 9}, {3, 6, 8} are three disjoint rainbow bases. In the right instance,
{1, 4, 7}, {2, 5, 8}, {3, 6, 9} are three disjoint rainbow bases.

However, for higher ranks, RBC appears to be very difficult to confirm. Therefore,
weaker versions of the conjecture and restrictions to certain subclasses of matroids have
been investigated. The so-called paving matroids form an interesting subclass, for which

M. Kirchweger, M. Scheucher, and S. Szeider 4:3

Geelen and Humphries [19] confirmed the conjecture by an inductive argument. Very recently,
Friedman and McGuinness [15] extended the result by Geelen and Humphries to matroids
with large girth. They showed that for any rank r matroid with girth ≥ r − o(

√
r) and r

disjoint bases given, one can find r − o(
√

r) disjoint rainbow bases. We will review some
further related work in Section 1.3.

1.2 Our Contribution
We extend the SMS framework from graphs to general combinatorial structures and produce
DRAT proofs, which then allows us to verify the correctness of the obtained unsatisfiability
results by an independent tool such as DRAT-trim [42]. Using the extended SMS framework,
we then attack RBC on matroids of small ranks. Our main result is a formal proof of the
conjecture for matroids of up to rank 4 and for rank 5 matroids with girth ≥ 4. Even though
we could not yet settle rank 5 entirely, we have further partial results for girth 2 and 3, and
we are optimistic that we can settle the entire rank 5 case in the future. All our source code
is available at [25] and the data for rank 4 (about 72 MB) is available at [24].

Moreover, we utilize our framework to enumerate all matroids modulo isomorphism for
a given number of elements and rank and confirm the number of matroids given in the
literature [1, 14, 30]; see Section 5.2.

In Section 3, we discuss a general dynamic symmetry-breaking strategy for object symme-
tries that we integrated into our SMS framework. Since the SAT encoding to verify RBC for
matroids (presented in Section 4.2) has many symmetries, the dynamic symmetry breaking
plays a central role in our approach.

To produce a DRAT proof, we perform the following steps: First, we run the solver
Clingo [17, 18] extended with SMS and store additionally generated clauses for the symmetry
breaking during solving. When Clingo concludes unsatisfiability, it exports a CNF instance
containing the selection of constraints used to conclude unsatisfiability, including symmetry-
breaking clauses obtained during the solving. The next step is generating a DRAT proof. We
utilize the modern SAT solver CaDiCaL [4] to verify the unsatisfiability of the small instance
produced by SMS and generate a DRAT proof. This DRAT proof can then be verified, for
example, with DRAT-trim [42].

We provide a Python script to verify the correctness of the CNF instance generated
by SMS, i.e., that all clauses are, in fact, clauses of the original instance. This provides
additional certainty and allows independent third parties to verify the correctness of our
computations by only checking this verification tool. In particular, the correctness of the
results can be verified without inspecting our complex C-code.

1.3 Related Work
In 2012, Cheung [7] announced a computer proof of RBC for rank 3 matroids in an unpublished
manuscript and that the program verifies the conjecture for rank 4. However, he did not
provide specific details, and the source code appears to be unavailable today1.

In recent years, significant steps towards an asymptotic proof of RBC have been made.
For the setting where the number of bases is relaxed, Bucić et al. [5] showed that, for any r

disjoint bases given, there are at least r
2 (1− o(1)) disjoint rainbow bases. This improved an

earlier result by Geelen and Webb [20], who showed the existence of
√

r(1− o(1)) disjoint

1 Personal communication with Joshua E. Ducey, the supervisor of Michael Cheung.

SAT 2022

4:4 A SAT Attack on Rota’s Basis Conjecture

rainbow bases. For the setting, where bases are relaxed to independent sets, Pokrovskiy [37]
proved that, for any r disjoint bases B1, . . . , Br given, there exist s = r(1 − o(1)) disjoint
rainbow independent sets I1, . . . , Is of cardinality r(1− o(1)), i.e., |Bi ∩ Ij | ≤ 1 holds for all
i ∈ [r] and j ∈ [s].

There is also an interesting relation between orthogonal Latin squares and rainbow
bases. Onn showed that the Latin Square Conjecture by Alon and Tarsi [2] implies RBC
for matroids originating from vector spaces of certain characteristics [34, Corollary 1]. The
Alon–Tarsi Conjecture has been proven for all (p + 1)× (p + 1) Latin squares where p is a
prime number [13]. In particular, RBC holds for matroids of rank p + 1 representable over R.

2 Preliminaries

For any positive integer n, we write [n] = {1, 2, . . . , n}, we denote the power set of a finite
set S by 2S and the set of all k-subsets of S by

(
S
k

)
.

2.1 Matroids
Matroids are a well-studied and classical combinatorial structure that generalizes various
concepts and notions from linear algebra, graph theory, geometry, combinatorial optimization,
and other fields of mathematics in a natural way.

A matroid M is a pair (E, I) where E is a finite set and I ⊆ 2E fulfills the following
three properties: (i) ∅ ∈ I, (ii) I is closed under subsets, and (iii) for A, B ∈ I and |A| < |B|
there exists x ∈ B \A such that A ∪ {x} ∈ I. Here, E = E(M) is the ground set of M , and
I = I(M) is the set of independent sets of M . Property (iii) is called the independent set
exchange property. The element in a one-element dependent set is called a loop, and the two
elements in a two-element dependent set are called parallel elements.

An inclusion-wise maximal element of I(M) is called basis, and we denote the set
of all bases by B(M). It is well known that all bases of a matroid M have the same
cardinality r = r(M), the rank of M . There are several well-studied cryptomorphic axiom
systems for matroids; in particular, the set of bases fully characterizes a matroid.

▶ Fact 1 (Basis exchange property (BEP)). Let M be a matroid. For any two distinct bases
B1, B2 of M and e1 ∈ B1\B2 there exists an element e2 ∈ B2\B1 such that (B1\{e1})∪{e2}
is a basis of M .

Two matroids M1, M2 are isomorphic if there is a bijection π : E(M1)→ E(M2) such that
π(I(M1)) = I(M2), where π(I(M1)) := {π(I) | I ∈ I(M1) }. The girth g = g(M) of
a matroid M is the largest integer g such that every set S ⊆ E(M) with |S| < g is an
independent set of M . Equivalently, the girth is the size of a smallest dependent set, i.e., the
minimum cardinality among the sets in 2E(M) \ I(M). A matroid of rank r is called paving
if it has girth ≥ r − 1 (i.e., any r − 1 elements are contained in a basis) and simple if it has
girth ≥ 3 (i.e., it does not contain loops or parallel elements). For further information on
matroids, we refer the interested reader to Oxley’s standard textbook [36].

2.2 Formulas and Satisfiability
A literal is a propositional variable or its negation. A clause is a disjunction of literals. A
formula in conjunctive normal form (CNF) is a conjunction of clauses. The set of variables of
a formula F is denoted by var(F). A partial assignment is a function α : X → {0, 1} defined
on a subset X ⊆ var(F). A partial assignment which assigns all propositional variables (i.e.,

M. Kirchweger, M. Scheucher, and S. Szeider 4:5

X = var(F)) is called assignment. For a variable x /∈ X we say that α is undefined and write
α(x) = ⋆. Assignments extend to literals in the obvious way. A model of a CNF formula F

is an assignment α defined on the variables of F such that each clause of F contains a literal
that is set to true by α. F is satisfiable if it has a model; otherwise, it is unsatisfiable.

3 Dynamic Symmetry Breaking

In this section, we present a dynamic symmetry-breaking technique for object symmetries.
As we will see in Section 4.2, our encoding for the considered problem has many object
symmetries; hence symmetry breaking plays a central role in our investigations.

Before we define object symmetries and present our symmetry breaking for RBC, we
recall variable symmetries in general. A variable symmetry of a propositional formula F is a
permutation π : var(F)→ var(F) such that α is a model of F iff α ◦ π is a model of F . The
results of this section are not limited to any specific formula F .

A well-known method for breaking variable symmetries is the LexLeader method [41]:
Let v1 ≺ . . . ≺ vn be a total order of the variables of a formula F . Let α : var(F)→ {0, 1}
be an assignment of F and π a variable symmetry. The LexLeader method adds clauses to
the formula (so-called symmetry breaking constraints), such that, if α(v1), α(v2), . . . , α(vn) is
lexicographically larger than α(π(v1)), α(π(v2)), . . . , α(π(vn)), then the additional clauses
guarantee that α is not a model of F . In other words, we only keep lexicographically minimal
models. Two disadvantages of this approach are that typically new variables have to be
introduced for the symmetry breaking constraints, and the initial size of the formula can
increase significantly, especially if the number of variable symmetries is large.

CDCLSym [31] is a general dynamic symmetry-breaking framework based on the
LexLeader method, which adds symmetry-breaking clauses during the solving process de-
pending on the current partial assignment. This overcomes the issue of the large initial
encoding size. Unfortunately, it is not suitable for a large number of variable symmetries
because it internally handles every symmetry separately.

Kirchweger and Szeider [26] introduced SMS for searching for graphs with a specified
property. SMS is based on the lexicographic order but considers only a subset of the variables.
The main advantage of SMS is that it does not handle every symmetry separately and exploits
the structure of the underlying combinatorial object. Whenever a variable is assigned, SMS
searches for relevant symmetries by a branch-and-bound algorithm, i.e., for symmetries that
give rise to clauses that are false (or unit clauses) under the partial assignment. It adds these
clauses as learned clauses to the solver.

Here we want to generalize the ideas from Kirchweger and Szeider [26]. Therefore, we
introduce so-called object symmetries to generalize the notion of variable symmetries. Let F

be a propositional formula and let V ⊆ var(F) be a fixed subset of the variables, called object
variables. A natural choice for object variables are the variables that encode the combinatorial
object under investigation. The other variables, which we call auxiliary variables, only play a
lesser role, for example, for testing certain properties of the combinatorial object.

An object symmetry of a propositional formula F with the set V of object variables is
a permutation π : V → V with the property that, for every model α of F , there exists
a model α′ such that α′(x) = α(π(x)) for every x ∈ V . We denote the set of all object
symmetries by Sym(F, V). Note that in the case V = var(F), the object symmetries are
precisely F ’s variable symmetries.

In Section 3.1, we generalize the SMS framework to arbitrary propositional formulas
and object symmetries, formalize the meaning of relevant symmetries, describe the type of
added clauses, and prove that the additional clauses do not discard lexicographically minimal
solutions, i.e., the correctness of the symmetry breaking.

SAT 2022

4:6 A SAT Attack on Rota’s Basis Conjecture

3.1 General Symmetry Breaking Predicates
To state the central properties of our symmetry breaking technique for object symmetries
with appropriate terminology, we need to introduce some further notation.

Let Fn be the set of all pairs (F, V) where F is a propositional formula and V =
{v1, . . . , vn} ⊆ var(F) is the set of object variables. For (F, V) ∈ Fn and two assignments
α1, α2 of var(F), we say that α1 is lexicographically smaller than α2 with respect to V (and
write α1 ≺V α2) if there exists an i ∈ [n] such that (i) α1(vi) = 0 and α2(vi) = 1, and
(ii) α1(vj) = α2(vj) for all j ∈ [i − 1]. Pause to note that ≺V is a partial order on the
assignments of var(F). In the case V = var(F) it is a total order and coincides with the
lexicographic order. An assignment α of a formula F is ⪯V -minimal if α ⪯V α ◦ π for all
π ∈ Sym(F, V).

Let α : X ⊆ var(F)→ {0, 1} be a partial assignment. An extension of α is an assignment
α′ : var(F)→ {0, 1} with α(x) = α′(x) for all x ∈ X. We denote the set of all extensions of α

by X (α) and call α ⪯V -minimal if X (α) contains a ⪯V -minimal assignment. A permutation
π ∈ Sym(F, V) is a witness of the non-⪯V -minimality of α if α′ ◦ π ≺ α′ for all α′ ∈ X (α).

For checking whether a partial assignment is ⪯V -minimal, the notion of criticality and
indicator indices will be of crucial importance. For a partial assignment α : X → {0, 1}, an
integer i ∈ [n] is (α, π)-critical if (α(vi), α(π(vi))) ∈ {(1, 0), (⋆, 0), (1, ⋆)}. Moreover, i ∈ [n]
is an (α, π)-indicator index if i is (α, π)-critical and for every j ∈ [i− 1] at least one of the
three cases holds: (i) π(vi) = vi, (ii) α(vi) = 1, or (iii) α(π(vi)) = 0. An (α, π)-indicator
index i is strict if α(vi) = 1 and α(π(vi)) = 0. A partial assignment α is constraining if there
is an (α, π)-indicator index for some π ∈ Sym(F, V).

We are now ready to state the central proposition on object symmetries, which will
allow us to reduce the search space for the SAT solver significantly. We will state how the
symmetry-breaking clauses are derived during the solver’s run.

▶ Proposition 1. Let (F, V) ∈ Fn and let α be an assignment of var(F). If there is a strict
(α, π)-indicator index for some π ∈ Sym(F, V) then α is not ⪯V -minimal. Furthermore, if α

is not ⪯V -minimal then there is a strict (α, π)-indicator index for some π ∈ Sym(F, V).

Proof. Let α be a partial assignment and let i be a strict (α, π)-indicator index. To prove
the first part of the statement, suppose, towards a contradiction, that α is ⪯V -minimal.
By definition, there is an assignment α′ ∈ X (α) which is ⪯V -minimal. First, we show by
induction on j ∈ [i− 1] that α′(vj) = α′(π(vj)). We distinguish the following three cases.
1. If π(vj) = vj then α′(vj) = α′(π(vj)) obviously holds.
2. If α(vj) = 1 then α′(vj) = 1. By induction hypothesis, α′(vk) = α′(π(vk)) holds for all

k ∈ [j − 1]. Hence also α′(π(vj)) = 1 must hold, otherwise α′ is not ⪯V -minimal, so
α′(vj) = α′(π(vj)).

3. If α(π(vj)) = 0 then α′(π(vj)) = 0. Again, by induction hypothesis, α′(vk) = α′(π(vk))
holds for all k ∈ [j−1]. Hence also α′(vj) = 1 must hold, otherwise α′ is not ⪯V -minimal,
so again α′(vj) = α′(π(vj)).

Altogether, we know that α′(vj) = α′(π(vj)) for all j ∈ [i − 1] and therefore α′ cannot
be ⪯V -minimal. Consequently, α cannot be ⪯V -minimal. This contradicts our initial
assumption, and the first part of the statement follows.

For the second part, let α be a non-⪯V -minimal assignment. Then, by definition
of ⪯V -minimality, there exists a permutation π ∈ Sym(F, V) such that α ◦ π ≺V α. By
definition, there exists an index i such that α(vi) = 1 and α(π(vi)) = 0, and α(vj) = α(π(vj))
for all j ∈ [i − 1], hence either α(π(vi)) = 0 or α(vi) = 1, so i is a strict (α, π)-indicator
index. ◀

M. Kirchweger, M. Scheucher, and S. Szeider 4:7

▶ Observation 2. Let α be a partial assignment, α′ ∈ X (α) a ⪯V -minimal assignment, and
i an (α, π)-indicator index for some π ∈ Sym(F, V). Then α′(vi) = α′(π(vi)).

From Observation 2 we conclude that, if i is an (α, π)-indicator index and α(vi) = 1, then
α′(π(vi)) = 1 for every ⪯V -minimal assignment α′ ∈ X (α). Moreover, if α(π(vi)) = 0 then
we have α′(vi) = 0.

Next, we present how to extract a suitable clause from a partial assignment α and an
(α, π)-indicator index i to avoid non-⪯V -minimal partial assignments. These clauses are
added whenever the procedure finds an (α, π)-indicator index.

Let S1 = { j ∈ [i − 1] | α(vj) = 1 , π(vj) ̸= vj } and let S2 = { j ∈ [i − 1] | α(π(vj)) =
0 , π(vj) ̸= vj }. Then

¬vi ∨ π(vi) ∨
∨

j∈S1

¬vj

∨
j∈S2

π(vj)

is the resulting clause, which we add as learned clause. By Proposition 1, every ⪯V -minimal
partial assignment must satisfy this clause. Note that the clause is either false or a unit
clause under the partial assignment α.

3.2 Integration into a CDCL-Solver
Having a procedure MinCheck to find indicator indices for any conflicting partial assignment
(we stipulate the procedure tailored to our encoding in Section 4.5), we can integrate the
dynamic symmetry breaking into a CDCL SAT solver as follows. Whenever the solver assigns
an object variable, we use MinCheck to check whether the current partial assignment is
conflicting. If the procedure returns an indicator index, we extract a clause from the partial
assignment and the given index and add the new clause to the solver as a learned clause. In
other words, the added clauses are part of the solver’s clause-deletion policy and, therefore,
can be discarded later. This allows us to add billions of clauses.

Instead of searching for indicator indices each time a variable is assigned, it is possible
to do this only every f -th time for some f ≥ 1. This allows us to balance the time spent
searching indicator indices and the solving part.

4 Framework

In the following, we present a formula F matroid
n,r for all integers n, r ≥ 1 whose models represent

exactly the matroids with elements [n] and rank r. The propositional variables of the formula
represent the bases of the matroid, i.e., each variable indicates whether a particular r-subset
T is a basis of the matroid or not. The clauses of the formulas ensure that the basis exchange
property is fulfilled.

Building on F matroid
n,r , we design a formula F Rota

r that is satisfiable if and only if there is
a counterexample to RBC for rank r. Additional clauses ensure that the modeled matroid
does not contain r disjoint rainbow bases. Therefore, if a formula F Rota

r was satisfiable, we
could read a counterexample to the conjecture directly from the model, and vice versa. It
will be crucial that, due to our symmetry breaking, only a small fraction of the clauses of
the naive SAT encoding of F Rota

r will be used to forbid rainbow bases.
In Sections 4.1 and 4.2, we will describe the encodings of F matroid

n,r and F Rota
r , respectively.

Later, we will refine our encoding of F Rota
r by utilizing SMS (Section 4.4) and some lazy-

encoding techniques to decrease the encoding size (Section 4.7). In Section 4.5, we present a
minimality check for both formulas F matroid

n,r and F Rota
r separately. Finally, we describe the

verification of results generated by our framework in Section 4.8.

SAT 2022

4:8 A SAT Attack on Rota’s Basis Conjecture

4.1 Encoding of Matroids
Let Mn

r be the set of all matroids M with E(M) = [n] and rank r. A set S ⊆
([n]

r

)
characterizes a matroid M ∈Mn

r if S is nonempty and the basis exchange property holds,
i.e., for any two distinct bases B1, B2 ∈ S, there exist elements e1 ∈ B1 \B2 and e2 ∈ B2 \B1
such that (B1 \ {e1}) ∪ {e2} ∈ S.

For each T ∈
([n]

r

)
, we introduce a propositional variable pT that is true if and only if

T ∈ S. Then, the encoding for S being nonempty is
∨

T ∈([n]
r) pT , and the encoding for the

basis exchange property is

∧
B1,B2∈([n]

r):B1 ̸=B2

∧
e1∈B1\B2

¬pB1 ∨ ¬pB2 ∨
∨

e2∈B2\B1

p(B1\{e1})∪{e2}

 .

4.2 Basic Encoding of RBC
Suppose that there exists a matroid M of rank r which is a counterexample to RBC, i.e., there
are disjoint bases R1, . . . , Rr ∈ B(M) such that there are no r disjoint rainbow bases. We can
assume without loss of generality that M has precisely r2 elements, as otherwise we restrict
M to R =

⋃r
i=1 Ri and obtain another matroid M ′ = (E(M) ∩ R, { I ∩ R | I ∈ I(M) })

of rank r which is a counterexample to RBC. Moreover, since a matroid’s elements can
be relabeled arbitrarily, we may assume that M = ([r2], I) with R1, . . . , Rr ∈ B(M) and
Ri = {(i−1) ·r +1, (i−1) ·r +2, . . . , (i−1) ·r +r}. For example, if r = 3, then R1 = {1, 2, 3},
R2 = {4, 5, 6}, and R3 = {7, 8, 9}. We denote by MRota

r the set of matroids in Mr2

r that
have R1, . . . , Rr as bases but do not contain r disjoint rainbow bases. Thus MRota

r = ∅ iff
the RBC holds for all matroids of rank r.

A set S ⊆
([r2]

r

)
characterizes a matroid M ∈MRota

r if S characterizes a matroid in Mr2

r

and the following two additional properties are satisfied:

(P1) R1, . . . , Rr ∈ S.
(P2) Let C denote the set of all {C1, . . . , Cr} ⊆

([r2]
r

)
such that Ci ∩ Cj = ∅ for i ̸= j and

|Ci ∩ Rj | = 1 for all i, j ∈ [r]. Then for all {C1, . . . , Cr} ∈ C there exists i ∈ [r] such
that Ci /∈ S.

Note that Property (P2) ensures that the number of disjoint rainbow bases is less than r.
We encode these statements as clauses:

(P1’)
∧

i∈[r] pRi
.

(P2’)
∧

{C1,...,Cr}∈C ¬pC1 ∨ . . . ∨ ¬pCr .

Altogether, F Rota
r consists of the clauses from F matroid

r2,r plus the clauses (P1’) and (P2’).
Unfortunately, the size of the set C increases quickly for increasing r, and so does the

number of clauses to encode property (P2). To avoid considering all possible {C1, . . . , Cr} ∈ C,
we apply the symmetry breaking presented in Section 3 in such a way that the clauses from
property (P2) can be omitted entirely.

4.3 SMS to Enumerate Matroids modulo Isomorphism
For each matroid M with E(M) = [n] and rank r, we have a model αM of F matroid

n,r where
αM (pT) = 1 iff T ∈ B(M) and each model α of F matroid

n,r represents a unique matroid.
The set of object variables is V = var(F matroid

n,r), and the set of object symmetries is

Sym(F matroid
n,r , V) = { δπ : V → V, pT 7→ pπ(T) | permutation π : [n]→ [n] }. (1)

M. Kirchweger, M. Scheucher, and S. Szeider 4:9

By using SMS, only ⪯V -minimal models are allowed. As a result, all models of F matroid
n,r

given by SMS represent exactly the matroids in Mn
r modulo isomorphism. Note that this is

not necessarily the case if we would use any auxiliary variables, i.e., there might be different
⪯V -minimal models representing the same matroid.

4.4 Dynamic Symmetry Breaking and Rota’s Basis Conjecture
Suppose that there exists some M ∈ MRota

r , i.e., M is a counterexample to RBC for
rank r. A row permutation is permutation π : [r2] → [r2] such that for all i ∈ [r] there
is some j ∈ [r] such that π(Ri) = Rj . In other words, the permutation π maps all
elements from a basis Ri to a basis of Rj where i, j ∈ [r]. If π is a row permutation then
π(M) := (E(M), {π(I) | I ∈ I(M) }) is also a counterexample to RBC for rank r, i.e.,
π(M) ∈ MRota

r . Note that there are (r!)r+1 row permutations in total. Also, note that,
in general, we obtain distinct matroids π(M) ̸= π′(M) for distinct row permutations π, π′,
except if M has intrinsic symmetries.

We denote the set of all row permutations by Sr and consider the set of object variables
V = var(F Rota

r). Then, the set of object symmetries for the formula F Rota
r is given by

Sym(F Rota
r , V) = { δπ : V → V , pT 7→ pπ(T) | π ∈ Sr }. (2)

For applying the symmetry breaking technique from Section 3, we need to define a total
order of the object variables V . Let Di = { (j− 1) · r + i | j ∈ [r] } for i ∈ [r]. For example, if
r = 3, then D1 = {1, 4, 7}, D2 = {2, 5, 8}, and D3 = {3, 6, 9}. To provide some intuition, it
is worth noting that we can think of the elements [r2] as an r× r grid, where the Ri’s are the
rows, and the Di’s are the columns. The sets D1, . . . , Dr are pairwise disjoint and, for every
i ∈ [r] and for every j ∈ [r], the set Di shares precisely one element with the set Rj . Hence,
every element from [r2] occurs as the unique intersection of Di ∩Rj for some i, j ∈ [r].

We define a total order ≺ on the object variables V via

pR1 ≺ . . . ≺ pRr
≺ pD1 ≺ . . . ≺ pDr

≺ o1 ≺ . . . ≺ om,

where o1, . . . , om is a fixed labeling of the remaining variables from V .
For M ∈Mr2

r we have αM (pT) = 1 if and only if T ∈ B(M). This gives us a total order
on Mr2

r . For matroids M1, M2 ∈Mr2

r we write M1 ⪯M2 if αM1 ⪯V αM2 .
As we will see, it is beneficial using the negated variables of V for the symmetry breaking

in Section 3. So, lexicographically maximal partial assignments are not discarded. This will
allow us to formulate Proposition 4 below, the main proposition for reducing the encoding size.

For a matroid M ∈Mr2

r we say that M is ⪯V -maximal if αM is ⪯V -maximal.

▶ Observation 3. Let M ∈MRota
r be a ⪯V -maximal matroid, then Dr /∈ B(M).

Proof. For the sake of contradiction, assume M ∈ MRota
r and Dr ∈ B(M). Since M is

⪯V -minimal and Dr ∈ B(M), also Di ∈ B(M) for i ∈ [r−1] must hold. Hence, Property (P2)
is violated, so M is not in MRota

r , contradicting our assumptions. ◀

It follows by Observation 3 that F Rota
r has the same ⪯V -maximal models as F Rota

r ∧¬pDr
.

Let GRota
r be a formula containing exactly the clauses of F Rota

r ∧ ¬pDr expect the one for
encoding property (P2), i.e., for restricting the number of disjoint rainbow bases.

▶ Proposition 4. Let M be a matroid with rank r with E(M) = [r2]. Then, αM is a
⪯V -maximal model of GRota

r if and only if M ∈MRota
r .

SAT 2022

4:10 A SAT Attack on Rota’s Basis Conjecture

Proof. “⇒”: For the sake of contradiction, assume that αM is a ⪯V -maximal model of GRota
r

and M /∈MRota
r , i.e., there are r disjoint rainbow bases C1, . . . , Cr of M . For every x ∈ [r2]

we let π(x) = i · (r − 1) + j where i, j ∈ [r] are the unique indices such that x is the unique
intersection point of Ri ∩ Cj . Then π(Ci) = Di and π(Ri) = Ri for all i ∈ [r]. Hence,
αM (pDr

) = 1 in contradiction to the assumption that αM is a model of GRota
r .

“⇐”: This direction follows immediately from Observation 3 and the fact that the set of
clauses of GRota

r is a subset of F Rota
r ∧ ¬pDr

. ◀

Analogously, the following observation holds:

▶ Observation 5. Let GRota
r,k = GRota

r ∧
∧

i∈[k] pDi

∧
i∈[r]\[k] ¬pDi

and M ∈ Mr2

r . Then,
αM is a ⪯V -maximal model of GRota

r,k if and only if k is the size of a largest set of disjoint
rainbow bases.

By Proposition 4, SMS does not return a model of GRota
r if and only if MRota

r = ∅, since
the symmetry breaking excludes matroids that are not ⪯V -maximal by Proposition 1.

4.5 Minimality Check
Finally, we have to find witness permutations for a formula F and a partial assignment α.
More precisely, for every partial assignment α, we want to decide whether α is constraining,
i.e., there is some object symmetry δ ∈ Sym(F, V) and an (α, δ)-indicator index i.

Testing whether a (δ, α)-indicator index for a single symmetry δ ∈ Sym(F, V) exists is
straightforward. We start with i = 1. If (α(¬vi), α(δ(¬vi))) ∈ {(⋆, 0), (1, ⋆), (1, 0)} then i is
an δ-indicator index. If α(vi) = α(δ(vi)) ̸= ⋆ or vi = δ(vi) then we increment i. If neither
of the previous cases holds, then there is no (α, δ)-indicator index for our fixed δ. Since
the number of object symmetries for our applications is huge, testing each object symmetry
separately is not practicable. Instead, we use a branch-and-bound approach which gradually
constructs a witness.

First, we present a minimality check for the formula F matroid
n,r . Recall that the set of

object variables is V = var(F matroid
n,r), and the set of object symmetries are given in (1).

We use the colexicographic order on
([n]

r

)
for the symmetry breaking. Instead of directly

constructing an object symmetry δπ, we focus on the permutations π : [n]→ [n].
Similarly to partial assignments, a partial permutation π : X → [n], for X ⊆ [n], is an

injective function. We write π(x) = ⋆ if π(x) is undefined.
The idea is assigning only a few values to a partial permutation π. If the information

about the partial permutation π suffices to conclude that δπ is a witness, we can assign
the remaining values arbitrarily; if we conclude that the partial permutation cannot have a
corresponding indicator index, we backtrack; if we need more information about the partial
permutation, we assign π for some further variables and branch over every possible assignment
of the additional variables. Algorithm 1 realizes this idea, starting with i = 1 and π(x) = ⋆

for all x ∈ [n].

▶ Theorem 6. Let α be a partial assignment. If α is constraining, then Algorithm 1 returns
a permutation π and an (α, π)-indicator index; otherwise, the algorithm returns nil.

Proof. First, we prove that if the procedure returns a permutation δπ and an index i, then
i is an (α, δπ)-indicator index. Assume the procedure returns a permutation δπ and an
index i. Line 5 guarantees that i is (α, δπ)-critical. By Line 7, for all i′ ∈ [i − 1] either
α(pTi′) = α(pπ(Ti′)) ̸= ⋆ or Ti′ = π(Ti′) holds, hence, at least one of the following three
conditions holds: α(pTi′) = 1, α(pπ(Ti′)) = 0, or Ti′ = π(Ti′). Therefore, i is indeed an
(α, δπ)-indicator index.

M. Kirchweger, M. Scheucher, and S. Szeider 4:11

Second, we prove that if α is not constraining, the procedure does not return nil. For
the sake of contradiction, assume the procedure returns nil and α is constraining. Since we
branch over all possible assignments and only backtrack if the partial permutation has no
corresponding indicator index, we can conclude that there is no permutation δπ with an
(α, δπ)-indicator index, hence α is not constraining in contradiction to our assumptions. ◀

Algorithm 1 Minimality check for enumerating matroids.
Input: A partial assignment α, a partial permutation π, and an index i

Output: A witness δπ and a δπ-indicator index or nil
1: while i ≤ number of r-subsets do
2: for all possible assignments of π(x) for x ∈ Ti with π(x) = ⋆ do
3: if MinCheck(α, π, i) ̸= nil then
4: return MinCheck(α, π, i)
5: if (α(pTi), α(pπ(Ti))) ∈ {(1, ⋆), (1, 0), (⋆, 0)} then
6: return δπ, i

7: if α(pTi) = α(pπ(Ti)) ̸= ⋆ or Ti = π(Ti) then
8: i← i + 1
9: continue

10: return nil
11: return nil

Next, we focus on the minimality check for RBC. Recall the set of object symmetries
from (2). Similarly to the minimality check for enumerating matroids, we construct the
permutations π ∈ Sr. Considering the elements of [r2] as an r × r grid, where the Ri’s
are the rows and the Di’s columns, it is easy to see that every permutation π ∈ Sr can be
described as a permutation of the elements within the rows and a permutation of the rows
itself. More precisely, every permutation π ∈ Sr can be described as a permutation π′ ∈ Sr

with π′(Ri) = Ri for i ∈ [r] and a permutation β : [r]→ [r] of the rows.
We formalize this as follows. Let π ∈ Sr and β : [r] → [r] a permutation, then

πβ : x 7→ π(x)− (β(i)− i) · r for x ∈ Ri. We use the following two observations to get our
final algorithm.

▶ Observation 7. Let π ∈ Sr. Then πβ(Di) = π(Di) for all i ∈ [r] and for all permutations
β : [r]→ [r].

▶ Observation 8. For each permutation π ∈ Sr, there is some π′ ∈ Sr with π′(Ri) = Ri for
all i ∈ [r] and a permutation β : [r]→ [r] such that π = π′

β.

The minimality check for F Rota
r is given by Algorithm 2. W.l.o.g., we assume that α(pRi) =

1 for all i ∈ [r]. At the beginning, all values of the partial permutation π are undefined and
d = 1. Then, we determine which values are mapped to Di, with the additional restriction,
if x ∈ Ri then π(x) ∈ Ri for all i ∈ [r]. If (α(¬pDi

), α(¬pπ(Di))) ∈ {(1, ⋆), (1, 0), (⋆, 0)} we
have found an indicator index. If α(pDi

) = α(pπ(Di)) ̸= ⋆ or Di = π(Di), we can continue.
Otherwise, we backtrack. If we reach Line 2, the partial permutation is fully defined and
π(Ri) = Ri for i ∈ [r].

Again, instead of testing the solution for each β separately, we use a branch-and-bound
approach and assign values to the permutation β if needed to get the truth value of π(v) for
some variable.

SAT 2022

4:12 A SAT Attack on Rota’s Basis Conjecture

Algorithm 2 Minimality check for RBC.
Input: A partial assignment α, a partial permutation π, and a recursion depth d

Output: A witness δπ and a δπ-indicator index or nil
1: if d > r then
2: for β permutation of [r] do ▷ partial permutation π is fully defined
3: if CheckSingleSymmetry(α, δπβ

) ̸= nil then
4: return CheckSingleSymmetry(α, δπβ

)
5: return nil
6: for all possible assignments of π(x) for x ∈ Dd such that π(x) ∈ Ri if x ∈ Ri do
7: if (α(¬pDd

), α(¬pπ(Dd))) ∈ {(1, ⋆), (1, 0), (⋆, 0)} then
8: return δπ, d + r

9: if α(pDd
) = α(pπ(Dd)) ̸= ⋆ or Dd = π(Dd) then

10: if MinCheck(α, π, d + 1) ̸= nil then
11: return MinCheck(α, π, d + 1)
12: return nil

▶ Theorem 9. Let α be a partial assignment of var(F Rota
r) with α(pRi

) = 1 for all i ∈ [r].
If α is constraining, then Algorithm 2 returns a permutation π and a (α, π)-indicator index;
otherwise the algorithm returns nil.

Proof. We proceed similarly to the proof of Theorem 6. First, we prove that if the procedure
returns a permutation δπ and an index i, that i is an (α, δπ)-indicator index. Then, we prove
that if α is not constraining, the procedure does not return nil.

Assume the procedure returns an index i and a permutation δπ. We distinguish the
following two cases.

1. i > 2r: In this case, the index was found by CheckSingleSymmetry, and therefore
i is indeed an indicator index.

2. i ≤ 2r: This case is analog to the proof of Theorem 6.
For the sake of contradiction, assume that the procedure returns nil, and there is an
(α, δπ)-indicator index j. By Observation 8, there are π′ with π′(Ri) = Ri and β such
that π′

β = π. We distinguish the following two cases.
1. j ≤ 2r: We branch over all possible assignments such that π′′(Ri) = Ri for all i ∈ [r]

and only backtrack if the partial permutation has no corresponding indicator index.
By Observation 7, the index j is an (α, δπ′

β
)-indicator index if and only if it is an

(α, δπ′)-indicator index for j ≤ 2r. Since the procedure returns nil, the index j is not
an (α, δπ′)-indicator index, contradicting to it being an (α, δπ′

β
)-indicator index.

2. j > 2r: By Observation 7, it follows that π′
β(Dd) = π′(Dd) for d ∈ [r]. Therefore,

Line 2 is reached with the permutation π′, and so CheckSingleSymmetry(α, δπ′
β
)

returns nil, contradicting that j is an (α, δπ′
β
)-indicator index.

This completes the proof of Theorem 9. ◀

In practice, instead of terminating the algorithm immediately after finding an indicator
index, we add the corresponding clause to the solver, backtrack in MinCheck if the index is
not critical, and search for further indicator indices.

M. Kirchweger, M. Scheucher, and S. Szeider 4:13

4.6 An Example for the Dynamic Symmetry Breaking for RBC
Let us consider the left-hand side example of RBC depicted in Figure 1. If we exchange
the red and the green colors and relabel the points as 1 7→ 5, 2 7→ 6, 3 7→ 4, 4 7→ 3, 5 7→
2, 6 7→ 1, 7 7→ 7, 8 7→ 9, 9 7→ 8, we obtain precisely the right-hand side example from Figure 1.
Table 1 summarises the truth values for the first variables ordered according to our order on
the object variables given in Section 4.4.

Table 1 Comparison between original and permuted matroid.

T {1,2,3} {4,5,6} {7,8,9} {1,4,7} {2,5,8} {3,6,9} . . .

α(pT) 1 1 1 1 0 1 . . .

π(T) {5,6,4} {3,2,1} {7,9,8} {5,3,7} {6,2,9} {4,1,8} . . .

α(pπ(T)) 1 1 1 1 1 1 . . .

Since the first 4 variables coincide and the fifth variable differs, we see that the left-hand
side example of Figure 1 is lexicographically smaller (w.r.t. to our order of the object
variables) than the right-hand side example and therefore cannot be a lexicographically
maximal matroid.

If we – at any time of the computations – obtain a (partial) matroid which has such a
behavior, our dynamic symmetry breaking adds a clause that prevents that such a situation
can occur again.

4.7 Lazy Encoding for Basis Exchange Property
The encoding size for the basis exchange property, described in Section 4.2, grows rapidly for
increasing r. For example, for r = 4 the number of potential bases is 1640, while the number
for r = 5 is 53130, which results in roughly 9.8 · 106 clauses for r = 4 and 1.1 · 1010 for r = 5
for encoding the basis exchange property.

Instead of adding all the clauses at once, we only add a few clauses depending on the
solver’s current partial assignment α and remove clauses. More precisely, whenever a variable
pT1 is set to true during the solving process, we add the following clauses:

For all variables pT2 ∈ var(F Rota
r) \ {pT1} with α(pT2) = 1 and e1 ∈ T1 \ T2, we add

¬pT1 ∨ ¬pT2

∨
e2∈T2\T1

p(T1\{e1})∪{e2}.

For all variables pT2 ∈ var(F Rota
r) \ {pT1} with α(pT2) = 1 and e2 ∈ T2 \ T1, we add

¬pT2 ∨ ¬pT1

∨
e1∈T1\T2

p(T2\{e2})∪{e1}.

We don’t add a clause if it is already satisfied.
If the solver removes the assignment of pT1 , we remove all these clauses. Although the

literals ¬pT1 and ¬pT2 are false under the current partial assignment, we do not omit the
literals so that the clauses can be added to the solver without any concerns.

4.8 DRAT Proofs for RBC
To confirm our results, we produce DRAT proofs (short for Deletion Resolution Asymmetric
Tautology), which are sequences of addition and deletion steps of RAT clauses [22].

SAT 2022

4:14 A SAT Attack on Rota’s Basis Conjecture

In principle, SMS and the generation of a DRAT proof can be accomplished at once,
within a single run of a SAT solver. To allow the use of two different solvers, one for SMS
and one for DRAT proof generation, we proceed as follows. First, we generate clauses for
showing unsatisfiability. More precisely, we store our initial encoding plus all used symmetry
breaking clauses and clauses for encoding the basis exchange property. Then, we feed these
clauses to a SAT solver supporting DRAT proofs.

The verification of the result consists of two parts. First, we verify our DRAT proof with
DRAT-trim. Second, we verify that all dynamically added clauses for symmetry breaking and
the basis exchange property are correct. Therefore, we store some additional data to each
generated clause indicating the reason for the clause being added and store some information
to ease the validation of the correctness of the clause.

The clauses for encoding the basis exchange property have the following form: ¬pT1 ∨
¬pT2

∨
e2∈T2\T1

p(T1\{e1})∪{e2} where e1 ∈ T1 \T2. So, the two sets T1, T2 are implicitly given
by the negated variables. Additionally, we store the element e1 used for the specific clause.
Given the sets T1 and T2 and an element e1, we can check if all positive literals correspond to
sets (T1 \ {e1}) ∪ {e2} where e2 ∈ T2 \ T1 and the clause indeed contains all positive literals.

For the symmetry-breaking clauses, the additional information is the permutation π of
[r2]. We order the literals of the clause in special way to ease the validation. Recall the form
of symmetry breaking clauses from the end of Section 3.1:

¬vi ∨ π(vi) ∨
∨

j∈S1

¬vj

∨
j∈S2

π(vj).

First, we add the literals of the form ¬vj or π(vj) ordered by j. At the end, we add the two
literals ¬vi and π(vi), i.e., the last two literals correspond to the indicator index. This allows
us to verify the clause in the following way, starting with j = 1 and p = 1, where p means
that the first p− 1 literals in the clause are already checked: (i) if π(vj) = vj we increase j

by 1, (ii) if only two literals left then i = j,i.e., they must be ¬vj and π(vj), (iii) otherwise
the literal on position p in the clause must be either ¬vj or π(vj) and we increase j and p

by 1.
If cases (ii) and (iii) are not violated, we know that the clause has indeed the correct form.

So, this procedure allows us two verify the symmetry breaking clauses given a permutation.

5 Experiments

In this section, we describe our experimental setup, some implementation details and report
our results. As the SAT solver to handle the SMS procedure, we use Clingo [17, 18], an
ASP solver containing a CDCL SAT solver. Clingo comes with a C-interface that supports
rapid prototyping for developing custom propagators. We use this interface to integrate our
implementation of MinCheck into the solver. Since Clingo does not support DRAT proofs,
we use CaDiCaL [4] to produce a proof from the initial encoding and the clauses generated
by SMS and the basis exchange property.

We use Clingo 5.5.0 and CaDiCaL version sc2020. All tests are executed with a single
thread with at most 100 GB RAM.

5.1 Results for RBC
We report all running times in CPU time and give the sum of individual running times if
the solving was conducted in several parts. With SMS, we can verify RBC for rank 4 in
about 5 minutes. SMS produces 4154226 clauses in total. Then CaDiCaL takes 7 minutes to

M. Kirchweger, M. Scheucher, and S. Szeider 4:15

produce a DRAT proof given the clauses. The time for verifying the clauses is 26 seconds, and
DRAT-trim takes 4 minutes to check the DRAT proof. Furthermore, DRAT-trim provides
an unsatisfiable core with only 137949 clauses. An unsatisfiable core is a subset of the clauses
which is still unsatisfiable.

Since we cannot yet confirm RBC for all matroids for rank 5, we use an encoding to
ensure that the girth is at least a certain value. This allows us to restrict the search space.

We encode that the girth must be at least g in the following way:∧
I∈([r2]

g−1)

∨
T ∈([r2]

r) , I⊆T

pT .

Note that each potential matroid M ∈MRota
r has girth ≥ 2 because each element e ∈ E(M)

is in Ri for some i ∈ [r]. Furthermore, Observation 5 allows us to search for matroids in
MRota

r with exactly k disjoint rainbow bases by solving GRota
r,k with SMS. If SMS concludes

unsatisfiability for all k ∈ [r − 1], then we know that there are always r disjoint rainbow
bases; hence RBC holds for the given rank.

Table 2 summarises our results for rank 5. For (g, k) ∈ {(2, 3), (2, 4), (3, 4)}, the solver does
not terminate after several days. For all other configurations, SMS concludes unsatisfiability.
We provide the time spent in Clingo and CaDiCaL, respectively, the number of generated
clauses and the number of clauses of an unsatisfiable core given by the DRAT-trim. For
(g, k) ∈ {(3, 3), (4, 4)}, SMS concludes unsatisfiability, but we have not generated or verified
the proof yet.

Table 2 Results for rank 5. The girth is given by g and the exact number of disjoint rainbow
bases by k. Each table entry consists of two lines. The first line has the format X/Y where X is
the solving time for SMS and Y is the time used for producing the DRAT-proof. The second line
has the format A/B where A gives the number of clauses of an unsatisfiable core and B gives the
number of generated clauses.

k = 1 k = 2 k = 3 k = 4

g ≥ 2 13 h / 7 s
6.2 · 103/ 5.4 · 106

5h / 5min
8.2 · 104/ 1.1 · 108 t.o. t.o.

g ≥ 3 9h / 6s
2.8 · 104/ 4.2 · 106

6h / 5min
7.9 · 104/ 9.9 · 107

248h
– t.o.

g ≥ 4 15min / 15s
7.1 · 102/ 2.0 · 107

20min / 8s
1.7 · 104/ 6.4 · 106

2h / 8min
2.9 · 105/ 3.7 · 107

208h
–

g ≥ 5 14min / 1s
4.7 · 101/ 2.1 · 106

1min / 1s
1.1 · 102/ 2.4 · 106

48s / 1s
8.4 · 102/ 2.2 · 106

1h / 1min
3.5 · 104/ 2.7 · 107

Interestingly, the times in the first column are higher than in the second. The reason
might be that most of the r-subsets are not bases; therefore, there might be lots of indicator
indices produced during the solving process. In fact, for (g, k) ∈ {(2, 1), (3, 1)}, we use a
slightly different configuration because otherwise, DRAT-trim is not able to verify the results
within a few hours due to the high number of clauses. Instead of adding several clauses in a
single call of MinCheck, we terminate the check immediately after finding the first indicator
index. This slightly increases the running time of SMS but allows us to verify the results.
This also explains the lower number of clauses for (g, k) ∈ {(2, 1), (3, 1)}.

5.2 Enumerating Matroids
For enumerating all matroids with a given rank r and n elements modulo isomorphism, we
use the formula F matroid

n,r from Section 4.1. Clingo supports enumerating all models for a
given formula. Our results coincide with the numbers given by Acketa [1], Dukes [14], and

SAT 2022

4:16 A SAT Attack on Rota’s Basis Conjecture

Mayhew and Royle [30]. It is worth noting that, while rank 2 matroids are well-studied and
an explicit formula for their number is available (cf. A58681 in the OEIS [33]), for higher
ranks, no explicit formula is known. Table 3 summarises the currently known numbers, all of
which we can confirm with our framework within only a few hours of CPU time.

Table 3 The number of matroids with rank r and n elements.

r\n 1 2 3 4 5 6 7 8 9 10 11 12 . . . OEIS
1 1 2 3 4 5 6 7 8 9 10 11 12 n

2 1 3 7 13 23 37 58 87 128 183 259 A058682
3 1 4 13 38 108 325 1275 10037 298491 ? A058693
4 1 5 23 108 940 190214 ? ? ? A336704
5 1 6 37 325 190214 ? ? ?
6 1 7 58 1275 ? ? ?
7 1 8 87 10037 ? ?
8 1 9 128 298491 ?
9 1 10 183 ?

10 1 11 259
11 1 12
12 1

6 Conclusion

We extended the SMS approach from graphs to matroids and presented the first work
attacking matroid problems with SAT. We utilized SMS to verify Rota’s Basis Conjecture
for matroids of bounded rank, confirming it for rank 4 completely and for matroids of rank 5
and girth at least 4. Besides the SAT attack on Rota’s Basis Conjecture, we enumerated all
matroids up to 9 elements modulo isomorphism. Our framework can also be easily adapted
to search for and enumerate matroids with particular properties. We also extended the SMS
framework to produce DRAT proofs.

In the future, we plan to integrate other solvers such as CaDiCaL into SMS to be used in
the first phase. This might be one of the key steps towards settling the remaining cases of
Rota’s Basis Conjecture for rank 5, that is, girth 2 and girth 3.

In contrast to other approaches, SMS can deal with a massive amount of symmetries,
even if there are exponentially many. Consequently, we look forward to using SMS for solving
various other combinatorial problems with lots of symmetries and, in particular, to provide a
powerful and robust framework for many other structures besides graphs and matroids.

References
1 Dragan Acketa. The catalogue of all nonisomorphic matroids on at most 8 elements. Special

Issue, University of Novi Sad Institute of Mathematics Faculty of Science, 1, 1983.
2 Noga Alon and Michael Tarsi. Colorings and orientations of graphs. Combinatorica, 12(2):125–

134, 1992. doi:10.1007/BF01204715.
3 Martin Balko and Pavel Valtr. A SAT attack on the Erdős-Szekeres conjecture. European

Journal of Combinatorics, 66:13–23, 2017. doi:10.1016/j.ejc.2017.06.010.
4 Armin Biere. CaDiCaL at the SAT Race 2019. In Proc. of SAT Race 2019 – Solver and Bench-

mark Descriptions, volume B-2019-1 of Department of Computer Science Series, pages 8–9.
University of Helsinki, 2019. URL: http://researchportal.helsinki.fi/en/publications/
proceedings-of-sat-race-2019-solver-and-benchmark-descriptions.

5 Matija Bucić, Matthew Kwan, Alexey Pokrovskiy, and Benny Sudakov. Halfway to Rota’s
basis conjecture. Int. Math. Res. Not., 2020. doi:10.1093/imrn/rnaa004.

http://oeis.org/A058681
http://oeis.org/A058682
http://oeis.org/A058693
http://oeis.org/A336704
https://doi.org/10.1007/BF01204715
https://doi.org/10.1016/j.ejc.2017.06.010
http://researchportal.helsinki.fi/en/publications/proceedings-of-sat-race-2019-solver-and-benchmark-descriptions
http://researchportal.helsinki.fi/en/publications/proceedings-of-sat-race-2019-solver-and-benchmark-descriptions
https://doi.org/10.1093/imrn/rnaa004

M. Kirchweger, M. Scheucher, and S. Szeider 4:17

6 Wendy Chan. An exchange property of matroid. Discrete Math., 146(1):299–302, 1995.
doi:10.1016/0012-365X(94)00071-3.

7 Micheal S. Cheung. Computational proof of Rota’s basis conjecture for matroids of rank
4. Unpublished manuscript, available at Joshua E. Ducey’s website http://educ.jmu.edu/
~duceyje/undergrad/2012/mike.pdf, 2012.

8 Michael Codish, Alice Miller, Patrick Prosser, and Peter J. Stuckey. Constraints for sym-
metry breaking in graph representation. Constraints, 24(1):1–24, 2019. doi:10.1007/
s10601-018-9294-5.

9 Karl Däubel, Sven Jäger, Torsten Mütze, and Manfred Scheucher. On orthogonal symmetric
chain decompositions. Electron. J. Combin., 26(3):Article Number P3.64, 32, 2019. doi:
10.37236/8531.

10 Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning:
Effective dynamic symmetry handling for SAT. In Theory and Applications of Satisfiability
Testing - SAT 2017 - 20th International Conference, volume 10491 of Lecture Notes in Computer
Science, pages 83–100. Springer Verlag, 2017. doi:10.1007/978-3-319-66263-3_6.

11 Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static
symmetry breaking for SAT. In Theory and Applications of Satisfiability Testing - SAT 2016
- 19th International Conference, volume 9710 of Lecture Notes in Computer Science, pages
104–122. Springer Verlag, 2016. doi:10.1007/978-3-319-40970-2_8.

12 Michael R. Dransfield, Lengning Liu, Victor W. Marek, and Miroslaw Truszczyński. Satisfiabil-
ity and computing van der Waerden numbers. Electron. J. Combin., 11(1):Article Number R41,
15, 2004. doi:10.37236/1794.

13 Arthur A. Drisko. On the number of even and odd Latin squares of order p + 1. Adv. Math.,
128(1):20–35, 1997. doi:10.1006/aima.1997.1623.

14 Mark Dukes. On the number of matroids on a finite set. Séminaire Lotharingien de Com-
binatoire, 51:Article B51g, 12, 2004. URL: https://www.mat.univie.ac.at/~slc/wpapers/
s51dukes.html.

15 Benjamin Friedman and Sean McGuinness. Girth conditions and Rota’s basis conjecture, 2020.
arXiv:1908.01216.

16 Hiroshi Fujita. A new lower bound for the Ramsey number R(4, 8). arXiv:1212.1328, 2012.
17 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub, and

Philipp Wanko. Theory solving made easy with Clingo 5. In Technical Communications of the
32nd International Conference on Logic Programming (ICLP 2016), volume 52 of OASICS,
pages 2:1–2:15. Dagstuhl, 2016. doi:10.4230/OASIcs.ICLP.2016.2.

18 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo = ASP
+ control: Preliminary report, 2014. arXiv:1405.3694.

19 Jim Geelen and Peter J. Humphries. Rota’s basis conjecture for paving matroids. SIAM J.
Discrete Math., 20(4):1042–1045, 2006. doi:10.1137/060655596.

20 Jim Geelen and Kerri Webb. On Rota’s basis conjecture. SIAM J. Discrete Math., 21(3):802–
804, 2007. doi:10.1137/060666494.

21 P. R. Herwig, Marijn J. H. Heule, P. M. van Lambalgen, and H. van Maaren. A new method
to construct lower bounds for van der Waerden numbers. Electron. J. Combin., 14(1):Article
Number R6, 18, 2007. doi:10.37236/925.

22 Marijn J. H. Heule. The DRAT format and DRAT-trim checker, 2016. arXiv:1610.06229.
23 Rosa Huang and Gian-Carlo Rota. On the relations of various conjectures on Latin

squares and straightening coefficients. Discrete Math., 128(1-3):225–236, 1994. doi:
10.1016/0012-365X(94)90114-7.

24 Markus Kirchweger, Manfred Scheucher, and Stefan Szeider. A SAT Attack on Rota’s Basis
Conjecture: Supplemental data for rank 4. doi:10.5281/zenodo.6616373.

25 Markus Kirchweger, Manfred Scheucher, and Stefan Szeider. A SAT Attack on Rota’s Basis
Conjecture: Supplemental source code. doi:10.5281/zenodo.6616343.

SAT 2022

https://doi.org/10.1016/0012-365X(94)00071-3
http://educ.jmu.edu/~duceyje/undergrad/2012/mike.pdf
http://educ.jmu.edu/~duceyje/undergrad/2012/mike.pdf
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.37236/8531
https://doi.org/10.37236/8531
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.37236/1794
https://doi.org/10.1006/aima.1997.1623
https://www.mat.univie.ac.at/~slc/wpapers/s51dukes.html
https://www.mat.univie.ac.at/~slc/wpapers/s51dukes.html
http://arxiv.org/abs/1908.01216
http://arXiv.org/abs/1212.1328
https://doi.org/10.4230/OASIcs.ICLP.2016.2
http://arxiv.org/abs/1405.3694
https://doi.org/10.1137/060655596
https://doi.org/10.1137/060666494
https://doi.org/10.37236/925
http://arxiv.org/abs/1610.06229
https://doi.org/10.1016/0012-365X(94)90114-7
https://doi.org/10.1016/0012-365X(94)90114-7
https://doi.org/10.5281/zenodo.6616373
https://doi.org/10.5281/zenodo.6616343

4:18 A SAT Attack on Rota’s Basis Conjecture

26 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation. In
27th International Conference on Principles and Practice of Constraint Programming (CP
2021), LIPIcs, pages 39:1–39:17. Dagstuhl, 2021. doi:10.4230/LIPIcs.CP.2021.34.

27 Boris Konev and Alexei Lisitsa. A SAT attack on the Erdős discrepancy conjecture. In
Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference,
volume 8561 of Lecture Notes in Computer Science, pages 219–226. Springer Verlag, 2014.
doi:10.1007/978-3-319-09284-3_17.

28 Michal Kouril and Jerome L. Paul. The van der Waerden number W (2, 6) is 1132. Experiment.
Math., 17(1):53–61, 2008. URL: http://projecteuclid.org/euclid.em/1227031896.

29 Filip Marić. Fast formal proof of the Erdős–Szekeres conjecture for convex polygons with
at most 6 points. Journal of Automated Reasoning, 62:301–329, 2019. doi:10.1007/
s10817-017-9423-7.

30 Dillon Mayhew and Gordon F. Royle. Matroids with nine elements. J. Combin. Theory Ser.
B, 98(2):415–431, 2008. doi:10.1016/j.jctb.2007.07.005.

31 Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. CDCLSym:
Introducing effective symmetry breaking in SAT solving. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 99–114. Springer Verlag, 2018. doi:
10.1007/978-3-319-89960-2_6.

32 Torsten Mütze and Manfred Scheucher. On L-shaped point set embeddings of trees: first
non-embeddable examples. J. Graph Algorithms Appl., 24(3):343–369, 2020. doi:10.7155/
jgaa.00537.

33 OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. Published electronically
at http://oeis.org.

34 Shmuel Onn. A colorful determinantal identity, a conjecture of Rota, and Latin squares. Amer.
Math. Monthly, 104(2):156–159, 1997. doi:10.2307/2974985.

35 Open Problem Garden. Rota’s basis conjecture, 2009. URL: http://www.openproblemgarden.
org/op/rotas_basis_conjecture.

36 James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford
University Press, second edition, 2011. doi:10.1093/acprof:oso/9780198566946.001.0001.

37 Alexey Pokrovskiy. Rota’s basis conjecture holds asymptotically, 2020. arXiv:2008.06045.
38 Bas Schaafsma, Marijn Heule, and Hans van Maaren. Dynamic symmetry breaking by

simulating Zykov contraction. In Theory and Applications of Satisfiability Testing - SAT 2009,
volume 5584 of Lecture Notes in Computer Science, pages 223–236. Springer Verlag, 2009.
doi:10.1007/978-3-642-02777-2_22.

39 Manfred Scheucher. Two disjoint 5-holes in point sets. Comput. Geom., 91:101670, 2020.
doi:10.1016/j.comgeo.2020.101670.

40 Manfred Scheucher, Hendrik Schrezenmaier, and Raphael Steiner. A note on universal point sets
for planar graphs. J. Graph Algorithms Appl., 24(3):247–267, 2020. doi:10.7155/jgaa.00529.

41 Toby Walsh. General symmetry breaking constraints. In Principles and Practice of Constraint
Programming - CP 2006, 12th International Conference, CP 2006, volume 4204 of Lecture
Notes in Computer Science, pages 650–664. Springer Verlag, 2006. doi:10.1007/11889205_46.

42 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Theory and Applications of Satisfiability Testing –
SAT 2014, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer Verlag,
2014. doi:10.1007/978-3-319-09284-3_31.

43 O. Zaikin, S. Kochemazov, and A. A. Semenov. SAT-based search for systems of diagonal
Latin squares in volunteer computing project SAT@home. In 39th International Convention
on Information and Communication Technology, Electronics and Microelectronics (MIPRO
2016), pages 277–281, 2016. doi:10.1109/MIPRO.2016.7522152.

44 I. Zinovik, D. Kroening, and Y. Chebiryak. Computing binary combinatorial Gray codes
via exhaustive search with SAT solvers. Institute of Electrical and Electronics Engineers.
Transactions on Information Theory, 54(4):1819–1823, 2008. doi:10.1109/TIT.2008.917695.

https://doi.org/10.4230/LIPIcs.CP.2021.34
https://doi.org/10.1007/978-3-319-09284-3_17
http://projecteuclid.org/euclid.em/1227031896
https://doi.org/10.1007/s10817-017-9423-7
https://doi.org/10.1007/s10817-017-9423-7
https://doi.org/10.1016/j.jctb.2007.07.005
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.7155/jgaa.00537
https://doi.org/10.7155/jgaa.00537
http://oeis.org
https://doi.org/10.2307/2974985
http://www.openproblemgarden.org/op/rotas_basis_conjecture
http://www.openproblemgarden.org/op/rotas_basis_conjecture
https://doi.org/10.1093/acprof:oso/9780198566946.001.0001
http://arxiv.org/abs/2008.06045
https://doi.org/10.1007/978-3-642-02777-2_22
https://doi.org/10.1016/j.comgeo.2020.101670
https://doi.org/10.7155/jgaa.00529
https://doi.org/10.1007/11889205_46
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1109/MIPRO.2016.7522152
https://doi.org/10.1109/TIT.2008.917695

	1 Introduction
	1.1 Rota's Basis Conjecture
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Matroids
	2.2 Formulas and Satisfiability

	3 Dynamic Symmetry Breaking
	3.1 General Symmetry Breaking Predicates
	3.2 Integration into a CDCL-Solver

	4 Framework
	4.1 Encoding of Matroids
	4.2 Basic Encoding of RBC
	4.3 SMS to Enumerate Matroids modulo Isomorphism
	4.4 Dynamic Symmetry Breaking and Rota's Basis Conjecture
	4.5 Minimality Check
	4.6 An Example for the Dynamic Symmetry Breaking for RBC
	4.7 Lazy Encoding for Basis Exchange Property
	4.8 DRAT Proofs for RBC

	5 Experiments
	5.1 Results for RBC
	5.2 Enumerating Matroids

	6 Conclusion

