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ABSTRACT Fuel cells (FCs) are promising eco-friendly power sources. Nevertheless, there are challenges
to overcome if they are to be widely deployed in areas such as degradation avoidance and control, where the
knowledge of the unavailable concentrations is crucial. In this respect, observers can provide unavailable
quantities based on an estimation algorithm and available measurements. This paper presents an FC
concentration observer design workflow, covering the model-based design of experiments (DOE), their
execution, systematic nonlinear identification, and measurement-based validation. The model-based DOE
and the validation with a mass spectrometer, including dynamic operation, are unique for PEMFC observers.
The workflow is demonstrated with a constrained extended Kalman filter observer on a 30 kW polymer
electrolyte membrane FC (PEMFC) test stand. A control-oriented model serves as the workflow basis,
and the DOE is based on optimizing the parameter sensitivity. The test stand delivers the measurements,
the parametrization comprises a sensitivity analysis, and the experimentally validated observer yields
outstanding concentration estimation performance.

INDEX TERMS Design of experiments, design workflow, experimental validation, fuel cells, Kalman filter,
mass spectrometer, observer, parameter sensitivity analysis, parametrization, PEMFC.

I. INTRODUCTION
Polymer electrolyte membrane fuel cells (PEMFCs) are a
promising, environmentally friendly mobile power source
suitable for widespread use. The reasons for this are their
relatively high fuel efficiencies, low operating temperatures,
and comparatively simple constructions. However, themarket
share for fuel cells (FCs) remains minimal on account of
several challenges. Among these challenges is the fact that
PEMFCs are still relatively expensive because production
volumes are low. Moreover, FCs are prone to degradation
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due to improper operation, and they are not simple to control
because of their complex internal processes [1]. Observers
would go some way to overcoming these challenges. This
paper describes a novel holistic design workflow for PEMFC
concentration observers covering the design of experiments
(DOE), their execution, nonlinear model identification, and
experimental validation.
What are observers?
Observers estimate unmeasured or even unmeasurable

quantities based on measured ones and an estimation algo-
rithm. Quantities of interest are, e.g., FC concentrations,
humidities, and state of health. Thus, they represent a mean-
ingful way to lower costs by reducing the number of physical
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sensors, minimizing degradation through online diagnos-
tics, and providing the essential foundation for model-based
control.
What types of observers exist?
Observers are a model-based diagnosis method in addi-

tion to non-model-based methods such as neural networks
or statistical methods. Model-based methods can be further
subdivided into lumped (only time dependency) or distributed
parameters (time and location dependency) and linear or non-
linear. Both distinctions hold for observers and models [2].
This paper focuses on observers based on models, which
are nonlinear with lumped parameters, to exploit advantages
in combination with model-based controllers [3]. Lumped
parameter FC observers can be roughly categorized in two
ways: One way is by the underlying estimation algorithm
type [2]: Kalman filter [4], Luenberger [5], sliding mode [6],
[7], adaptive [8], and other observers [9], [10], [11]. Another
way of categorizing is by the desired estimated quantity, e.g.,
gas concentrations [12], parameters [13], state of health [14],
and faults [15].
What is the state-of-the-art for observer design workflows?
An observer design workflow often only covers the design

of an estimation algorithm and its validation and, in rare
cases, parameter identification (see Table 1). They rely
mainly on FC model parameters obtained from the literature
or emulators, and few workflows used identified parame-
ters from an experimental setup to replicate the behavior
satisfactorily. Well-established and relatively static experi-
ments, such as a polarization curve or current steps, are
usually used for identification and validation. The validation
of a concentration observer is executed mainly in a sim-
ulation environment, and experimental validations are rare
due to the lack of required hardware but are indispensable
for real-world applications. If at all, only single concen-
trations are experimentally validated with relatively static
experiments.
What is the knowledge gap?
To the best of the authors’ knowledge, target-oriented

DOE for observer design considering the underlying system
characteristics is a novelty, and a design workflow including
a measurement-based parametrization is not common prac-
tice (see Table 1). In particular, no experimental observer
validation of PEMFC concentrations during transient opera-
tions currently exists. In conclusion, no paper thus far cov-
ers a holistic observer design workflow starting from the
DOE through the systematic nonlinear parameter identifica-
tion to the experimental validation of PEMFC concentration
observers.
How does this paper close the knowledge gap?
This paper presents such a holistic design workflow for

PEMFC concentration observers. The workflow with a given
model consists of three steps: First, a model-based DOE is
performed utilizing the parameter sensitivities (Fisher infor-
mation). Second, the designed experiments are conducted on
a 30 kW PEMFC system test stand with a mass spectrometer.

TABLE 1. Comparison of observer design workflows.

A parameter sensitivity analysis assesses how well the model
parameters can be estimated with the measured data, and
the model is parameterized based on these results. The
third and final step is the observer design, followed by
validation with experimental data. The authors’ study [16]
describes a PEMFC model, which serves as the modeling
basis because it can reproduce various effects of water, essen-
tial for degradation avoidance and diagnosis. The observer
estimation algorithm used to demonstrate the design work-
flow is based on [4], a constrained extended Kalman filter
(CEKF). This model-based observer for stochastic systems
was chosen because it allows the exploitation of computa-
tional advantages related to the Jacobians with model-based
controllers [17].
What is the contribution of this paper?
The main contribution of this paper is the holistic

design workflow for FC concentration observers, cover-
ing the named three steps for the first time. Moreover,
the model-based DOE and the experimental concentration
validation with a mass spectrometer, including dynamic oper-
ations, are unique for PEMFC observers. A holistic workflow
is beneficial as a guideline for real-world implementations.
Especially in real cases with limited resources of time and
budget, a dedicated DOE increases the experiment’s param-
eter information content and excitation quality compared to
non-specifically designed ones of the same length. Thus,
shorter and fewer experiments are necessary to achieve
sufficient parametrization and validation results. System-
atic parametrization and experiments with high parameter
information content simplify identification and are advanta-
geous to obtaining an observer that replicates the real-world
system satisfactorily. Lastly, a validation with actual state
measurements is indispensable to approve the observer for
real-world applications where outstanding concentration esti-
mation results are achieved in this work.
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The remainder of this paper is structured as follows:
Section II presents the holistic observer design workflowwith
an overview of the PEMFC model and describes the exper-
imental setup used. Section III shows the obtained results,
followed by a detailed discussion.

II. METHODS AND EXPERIMENTAL SETUP
This section describes the novel holistic design workflow
for PEMFC concentration observers, which combines three
(partially) existing methods in a target-oriented way: model-
based DOE, systematic nonlinear identification, and observer
design with experimental validation. In addition, the model is
briefly described, and one of this paper’s key components is
the mass spectrometer utilized to obtain the concentrations,
which is part of the experimental setup introduced here. Note
that this workflow is not limited to the presented model and
observer.

A. MODEL-BASED DESIGN OF EXPERIMENTS
The underlying FC model for the concentration observer
design workflow is introduced here, following which the
model-based DOE is presented.

1) FUEL CELL MODEL
The modeling basis for our approach is a control-oriented
lumped parameter PEMFC stack model as presented in [16]
with the following assumptions: The respective manifolds
are lumped into one volume with no spatial expansion. The
gases are ideal and have homogeneous properties inside a
manifold. The gas composition in the exit manifold is the
same as in the center manifold, and the model has only one
uniform and externally controlled temperature. The supply
manifolds, the exit manifolds, and the gas diffusion layers
are always in a steady-state condition, and dry air consists
only of oxygen and nitrogen. An advantage of this model is
the capability to reproduce various water effects in a physi-
cally motivated way, which is indispensable for online diag-
noses and degradation avoidance. Furthermore, the model is
analytically differentiable, which allows exact determination
of the Jacobians for model-based observers and controllers.
The model consists of four interconnected submodels: the
cathode, anode, membrane, and electrochemical submodel,
as shown in Fig. 1. The internal dynamics are modeled using
thermodynamics, electrochemistry, and fluid mechanics. The
supply and exit manifolds are connected via nozzle equations
with the center manifold or the environment, and on the anode
side, there is an additional recirculation flow path powered by
a pump. The membrane connects the cathode and the anode,
and these submodels deliver the electrochemical model’s pre-
requisites. As in [16], the state-space representation for this
nonlinear model is given as

ẋ = f (x,u, θ ), y = g(x,u, θ ), (1)

and the respective vectors are structured as

x = [mca,O2 , mca,N2 , mca,vap, mca,liq, . . .

. . .man,H2 , man,N2 , man,vap, man,liq, am]T, (2a)

u = [ṁca,in, ϕca,in, αca, I , T , patm, . . .

. . . pan,sm, ϕan,in, αan, Pan,reci]T, (2b)

y = [U , pca,sm, pca,em, ṁan,in, pan,em]T, (2c)

θ = [Vca, Van, kphase, kliq, . . .

. . . kca,cm,sm, kca,em,cm, kca,atm,em, . . .

. . . kan,cm,sm, kan,em,cm, kan,atm,em, τm, . . .

. . .Rc, Kca, Kan, Dca, Dan]T. (2d)

Here, x ∈ R9 is the state vector, u ∈ R10 the input vector,
y ∈ R5 the output vector, θ ∈ R16 the vector containing
the tunable parameters, f the system function, and g the
output function [18]. The state x = x(t), input u = u(t),
and output vector y = y(t) are time-dependent, whereas the
parameter vector θ is constant. The states consist mainly of
the gas and liquid water masses on the cathode and anode
sides, denoted by m. The subscripts indicate cathode (ca),
anode (an), oxygen (O2), hydrogen (H2), nitrogen (N2), water
vapor (vap), and liquid water (liq). The last state is the mem-
brane water activity am. Observing these states is essential to
avoid fuel starvation, membrane dehydration, and flooding
effects. The inputs on the cathode side are the incoming
airflow ṁca,in, the airflow relative humidity ϕca,in, and the
backpressure valve position αca. Additional model inputs are
the stack current I , the uniform stack temperature T , and the
atmosphere pressure patm. On the anode side, the inputs are
the supply manifold pressure pan,sm, the relative humidity
of the incoming flow ϕan,in, the purge valve position αan,
and the recirculation pump power Pan,reci. The model outputs
are the stack voltage U , the cathode supply pca,sm and exit
manifold pressure pca,em, and the anode inflowingmass ṁan,in
and exit manifold pressure pan,em. The tunable parameters of
the model are the respective volumes V , various mass flow
and nozzle coefficients k , the characteristic membrane time
constant τm, the ohmic contact resistance Rc, the intrinsic
exchange current parameters K , and the combined diffusivi-
tiesD. The derivation of model equations is beyond the scope
of this paper, and the reader is referred to [16] in this regard.

2) DESIGN OF EXPERIMENTS
Experiment execution can be reduced to a minimum by a pur-
poseful DOE to increase the parameter information content.
By doing so, the experiments deliver better parametrization
results and yield a more profound validation by exploiting the
fully available actuator range compared to non-specifically
designed ones of the same length. FC concentration mea-
surements, in particular, are costly and complex, so reducing
the number and length is of economic interest. Apart from
the cost, established experiments such as a polarization curve
or current steps do not use the whole actuator range, e.g.,
temperatures and stoichiometries are kept constant, which is
a limitation for identification and validation.

The parameter information content utilized in our approach
is the so-called Fisher information matrix (FIM)M [19]. This
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FIGURE 1. Schematic overview of PEMFC stack model structure [16].

is beneficial because according to the Cramér–Rao inequality
as in [19] and [20],

Cov(θ) ⪰ M−1, (3)

the inverse of M is the lower bound of the parameter
covariance matrix Cov(θ). Thus, increasing the FIM lowers
the parameter uncertainty and improves the parametrization
result of the FC model. In order to calculate it, first, the state
parameter sensitivity ξ i = dx/dθi, is needed, where θi for
i ∈ {1, 2, . . . , nθ } denotes a tunable parameter, and nθ is the
number of parameters. As in [19] and [21], ξ i is obtained by
solving the following first-order ordinary differential equa-
tion, which is a total derivative of the FC model (1):

ξ̇ i =
d
dt

(
dx
dθi

)
=

d
dθi

(
dx
dt

)
=

d
dθi

f (x,u, θ)

=
∂f (x,u, θ)

∂x
dx
dθi

+
∂f (x,u, θ)

∂θi

=
∂f (x,u, θ)

∂x
ξ i +

∂f (x,u, θ)
∂θi

. (4)

Second, the output parameter sensitivity ψ i = dy/dθi is
evaluated using ξ i as in [21]:

ψ i =
∂g (x,u, θ)

∂x
dx
dθi

+
∂g (x,u, θ)

∂θi

=
∂g (x,u, θ)

∂x
ξ i +

∂g (x,u, θ)
∂θi

. (5)

Within the scope of the DOE, the output vector y is
extended with the respective cathode xca,p for p ∈

{O2,N2, vap} and anode gaseous species mole fractions xan,p
for p ∈ {H2,N2, vap} to exploit the additional parame-
ter information provided by the mass spectrometer mea-
surements. The output parameter sensitivity matrix 9(t) =[
ψ1(t),ψ2(t), . . . ,ψnθ (t)

]
is obtained by stacking every ψ i

for each parameter θi into one matrix. Sampling it at time
instants k ,M is finally computed as in [21] with

M =

nk∑
k=0

9T
k6

−1
e 9k . (6)

Here, 6e represents the prediction error covariance matrix,
which is the measurement noise covariance under the
assumption of a perfect model, andM ∈ Rnθ×nθ holds.
As shown by the FIM derivation, it is highly nonlinear,

and an analytical solution for an optimal M is exceptionally
complicated to find. Thus, to simplify this evaluation, the FIM
is heuristically tuned for an optimized steady-state input uopt,i
for each parameter θi independently. Note that in the case of
a single parameter, the FIM reduces to a scalar Mi, result-
ing in nθ optimized steady-state operating points for every
parameter θi. For the given parameters (2), this corresponds
to 16 operating points. These are pieced together into one
long experiment, where each operating point uopt,i is held
for some time and represents an optimized point to identify
the respective parameter θi in steady-state. The optimization
problem is formulated as follows:

uopt,i = argmin
u

1
Mi(u)

for i ∈ {1, 2, . . . , nθ }
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with respect to

ẋ = f (x,u, θ ) = 0

ul,min ≤ ul ≤ ul,max for l ∈ {1, 2, . . . , nu}. (7)

The optimization requires a first guess of the parameters
θi based on literature values and expert knowledge. Subse-
quently, a heuristic optimizer [22] chooses an input candi-
date subject to the constraints with the minimum ul,min and
maximum value ul,max of each input component ul (nu is the
total number of input components). It is important to bear in
mind that only the following inputs are actively and (almost)
independently controllable: the incoming airflow ṁca,in, stack
current I , inflowing coolant temperature (assumed to be the
stack temperature T within the scope of the optimization),
and anode supply manifold pressure pan,sm. The remaining
inputs are either not controllable (disturbances), dependent
on the actively controlled inputs, or constant. Model (1) is
simulated with this constant input u until it reaches steady-
state ẋ = 0, and finally, Mi is calculated based on a single
steady-state instant (nk = 0). Analogously to the Cramér–
Rao inequality (3), the inverse ofMi constitutes the objective
function. After the optimizer delivers a result, the proceeding
is repeated for the remaining parameters. Time constant-like
parameters are poorly estimable during (quasi) steady-state,
so an additional dynamic experiment should be conducted.
The excitation during this experiment could be a sine signal
covering the whole amplitude and frequency operating range
(chirp or sweep signal [23]).

B. MEASUREMENT-BASED AND SYSTEMATIC NONLINEAR
IDENTIFICATION
In order to conduct the systematic nonlinear identification
with measurement data, the designed experiments have to be
executed, and the desired signals, including concentrations,
need to be measured on the PEMFC experimental setup.
This section describes the experimental setup, followed by an
overview of the systematic nonlinear identification approach.

1) EXPERIMENTAL SETUP
The measurements for the parametrization and validation
within the observer design workflow are obtained using a
commercial 30 kW PEMFC stack. This stack is operated on a
dedicated test stand, equipped with the associated balance-of-
plant components and a specifically designed control system.
The schematic overview of the system test stand is high-
lighted in Fig. 2, and further information on this can be found
in [21]. The paper describes in detail the main subsystems
of air supply, hydrogen supply, thermal management, and
measurement and control, together with all technical speci-
fications of the FC stack and auxiliary subsystems.

Based on the specifically developed control system to exe-
cute the highly dynamic and demanding experiments and the
various implemented sensors to measure the required quan-
tities for the design workflow (e.g., pressure, temperature,
humidity, current, and voltage), the operation and operating
behavior of a PEMFC system can be analyzed and assessed in

detail. Within the scope of the design workflow, the following
system inputs could be adjusted independently:

• Air mass flow,
• Hydrogen supply pressure, and
• FC coolant inlet temperature.

Also, the load point of the FC stack can be controlled either by
setting the stack voltage or the stack current with the dynamic
DC/AC inverter (battery simulator). The latter is used for all
experiments in our research.

A feature of our approach is the use of an additional
measurement device to obtain information about the inner
states of the FC stack, i.e., the gas compositions at the cathode
or anode side, which are generally unmeasured in most inves-
tigations. The continuously measured FC gas concentrations
during dynamic experiments are essential for measurement-
based identification, experimental observer validation, and
diagnostic purposes. Therefore, an electron impact ioniza-
tion mass spectrometer (PEMSense, V&F Analyse- und
Messtechnik GmbH [24]) is integrated on the test stand. This
mass spectrometer can rapidly analyze gas species with a
mass range of 1-100 amu, sufficient to measure all relevant
components like H2, N2, O2, H2O, and CO2 in a PEMFC.
The measurable gas concentrations start from 100 ppm and
reach up to 100 vol% (mol% is equivalent to vol% assuming
ideal gas) depending on the species and can be measured
with an accuracy of±3%. The mass spectrometer is equipped
with two separate sample gas inlets to analyze gas probes,
one at the anode and another at the cathode side, with the
restriction that only one sample gas line can be analyzed at a
time. Fig. 2 shows that the probe extraction positions at the
anode side are directly at the outlet of the water separator and
at the cathode side after the exhaust manifold of the FC stack.
Only the sample gas line at the anode side is used for the
experiments in our research due to limited resources. For this
reason, all the following statements refer to the gas analysis of
the anode side. Continuous gas extraction allows a real-time
analysis with a response time smaller than two seconds. Also,
only a small amount of gas mass is sampled compared to the
consumed hydrogen of the FC stack. It is therefore guaranteed
that the gas extraction does not influence the operation and
the operating behavior of the FC stack. Generally, the gas is
sampled with a heated capillary to mitigate a condensation
of the gaseous species during gas analysis. Thus, it is not
possible to differentiate between the gaseous and the liquid
phase of the species of interest. Another restriction comes
with the fact that, as mentioned earlier, the gas extraction
position is at the outlet of the water separator. As a result, only
the partially dehumidified anode exhaust gas is measured.
Moreover, due to the drift of the concentrations related to
the mass spectrometer over time (up to ±5% over 24 h),
a calibration of the device using test gases of all relevant
gas species is conducted at the beginning of every day of
the measurement study. Calibration gases with the concerned
species with an accuracy of the concentration of ±2% are
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FIGURE 2. Schematic FC system test stand setup.

used. The acquisition of measurement data from the mass
spectrometer is realized with a sampling rate of 3 Hz.

Seven measurement series were carried out for parame-
terization and validation of the observer, considering repro-
ducibility. The following measurement series are avail-
able: one polarization curve experiment, three specifically
designed experiments for parameter identification, and three
dynamic experiments with a chirp signal as load demand. The
experiments are detailed in Section III, where simulated and
measured results are presented and discussed.

2) SYSTEMATIC NONLINEAR IDENTIFICATION
The sensitivity analysis of the FC model’s parameters
excludes poorly identifiable parameters and simplifies the
parametrization problem. E.g., the manifold volumes V
behave like a time constant and are thus better identifiable
during transient operation, though the experiment barely con-
tains any transients. Another striking example is modeling-
related, e.g., two parameters are linearly dependent, which
means both can not be uniquely identified. The FIM M is
utilized for this analysis and is evaluated analogously to
Section II-A2 for sample instants nk , measured inputs u∗, and
all tunable FC parameters θi simultaneously. The parameter

values vary by many orders of magnitude, e.g., the ohmic
contact resistance Rc has the magnitude 100, and the nozzle
coefficients k 10−6. This requires a normalized FIM Mnrm,
as in [25] and [26], to evaluate the parameter identifiability
meaningfully:

Mnrm = diag(θ)M diag(θ). (8)

Here, diag(θ) represents a matrix with the elements of θ in
its main diagonal. This normalization is unnecessary for the
DOE because only one parameter at a time is considered
there. As in [27], [28], a singular value decomposition is
applied toMnrm to evaluate the parameter significances:

Mnrm = USVT. (9)

In the singular value decomposition, U is the matrix com-
prising the left singular vectors, V =

[
v1, v2, . . . , vnθ

]
the

right singular vectors, and S = diag
(
σ1, σ2, . . . , σnθ

)
is the

diagonal singular value matrix. A singular value σj for j ∈

{1, 2, . . . , nθ } can be understood as the amount of parameter
information, and the associated singular vector shows the
parameter space direction of this information. E.g., a high
singular value mainly pointing in the direction of a nozzle
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coefficient k means that the parameter has high informa-
tion, is uniquely identifiable, and significantly influences the
model output. The right singular vectors vj ∈ Rnθ are utilized
to evaluate the parameter significances, and the Euclidean
norm from each is 1. From this it can be concluded that
the relative direction share of a vector component vj,i is
v2j,i [29]. The singular value σj multiplied with the proper
relative direction share yields the amount of information of
that specific singular value pointing in the parameter θi’s
direction. Therefore, the sum of the information shares of
every singular value pointing in one parameter θi’s direction,
as in [21], delivers the parameter’s total information σθi :

σθi =

nθ∑
j=1

σjv2j,i. (10)

Based on each σθi magnitude, a subset of the parameters with
the highest information content is chosen for parametrization
and is denoted as the most significant parameters θms. They
are selected by arranging the σθi in descending order, and only
the first nθms most significant parameters are considered until
the inequality, as in [21], holds:∑nθms

i=1 σθms,i∑nθ
i=1 σθi

≥ γ (11)

The threshold γ ∈ [0, 1] is adaptable for different purposes,
and nθms ≤ nθ holds. Due to their minimal information
content, the least significant and not considered parameters
are negligible for the model output or are unidentifiable using
the given model and available experiments. Interestingly,
optimizing the real-world counterpart of a most significant
parameter influences the measurable system output more
significantly than optimizing a barely significant one.

In order to obtain a parametrized model (1) to replicate the
real PEMFC satisfactorily, an objective function J is defined.
As in [21], [30], it comprises the (nk + 1) weighted squared
errors between the simulated y(tk , θ ) and measured outputs
y∗k , and a regularization term:

J (θ )=
nk∑
k=0

(
y(tk , θ)−y∗k

)T Qy
(
y(tk , θ )−y∗k

)
+. . .

. . . (θ0 − θ)T Qθ (θ0 − θ) . (12)

The tk corresponds to the time of the sample instant k , and
in the objective function, Qy represents the output weight-
ing matrix to weigh the individual outputs and consider the
different output magnitudes, e.g., the anode inflowing mass
ṁan,in has a magnitude of 10−4 and the pressures p 105,
which would lead to a bias in the parametrization. Moreover,
θ0 is a realistic initial guess of the parameters, and Qθ is
the regularization matrix to penalize the deviation of the
parameter vector θ from its initial value θ0 in consideration
of the different parameter magnitudes. The regularization
also considers different parameter uncertainty levels, e.g.,
volumes V only vary in a narrow range due to little manufac-
turing tolerances. However, the combined diffusivitiesD vary

by many orders of magnitude because very little is known.
As in [21], the following optimization problem yields the
optimized parameters θopt:

θopt = argmin
θ

J (θ )

with respect to

θi,min ≤ θi ≤ θi,max for i ∈ {1, 2, . . . , nθ }. (13)

The parameter space needs to be constrained to simplify the
optimization and obtain meaningful results. The constraints
are obtained from expert knowledge and physical considera-
tions [21], e.g., the bounds for the volumes V can be derived
from geometrical information, and all the parameters θi are
strictly positive. Within the scope of parametrization, the
model outputs are extended with the measured FC concen-
trations from the mass spectrometer to exploit its additional
available parameter information, and the least significant
parameters are kept constant. If multiple experiments are con-
sidered simultaneously in the optimization, the summation of
the squared errors is extended over all experiments, and addi-
tional error weighting depending on the specific experiment
can be considered.

C. OBSERVER DESIGN WITH EXPERIMENTAL VALIDATION
Finally, the design of the concentration observer based on
the CEKF estimation algorithm is presented, followed by a
description of the experimental validation approach used.

1) CONSTRAINED EXTENDED KALMAN FILTER
Knowing the FC concentrations is essential for degradation
avoidance, diagnosis, and control. However, they are usually
unmeasured, so observers come into play, estimating the
unmeasured or even unmeasurable quantities based on an
estimation algorithm and measured signals. The underlying
observer estimation algorithmwithin the workflow is a CEKF
based on [4]. The choice fell on the model-based observer for
stochastic systems because the necessary Jacobians can be
directly reused for model-based controllers [3], [17], saving
computational resources. The applied observer is adapted to
the given FC model (1), and solving the latter yields time-
continuous signals, e.g., x. However, digital observers and
controllers process the time-discrete counterpart, e.g., xk ,
obtained by sampling x at time instants k ∈ {0, 1, . . . , nk},
where (nk + 1) is the total number of samples and assuming
zero-order hold. Thus, according to [4], the time-discrete
equivalent of model (1) considering noise is

xk = F(xk−1,uk−1, θ ), yk = g(xk ,uk , θ ), (14a)

x∗
k = xk + wx,k−1, y∗k = yk + wy,k . (14b)

Here,F(xk−1,uk−1, θ) is the discrete system prediction func-
tion, and it predicts the state xk at instant k by solving (1)
over a sampling period using quantities from the previous
instant. The unchanged output function g is not affected by
discretization because it is a mapping function and not a dif-
ferential equation. Adding process noisewx andmeasurement
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noise wy to the state x and output y yield the starred noisy
(and measured) analogs, respectively. In line with [4], it is
assumed that the noises are white and uncorrelated, and their
covariances are known:

wx ∼ N (0,6x),wy ∼ N (0,6y),

x0 ∼ N (x0,6x0 ). (15)

Here, N denotes normal distribution with the mean value as
the first argument and the covariance as the second. Thus,
the process wx and measurement noise wy are normally dis-
tributed and have zero mean with known covariances 6x and
6y, respectively. The initial state x0, which needs to be esti-
mated, has a mean of x0 and a known covariance of 6x0 . For
the respective covariances, 6 ≻ 0 holds. In practice, x0 can
be estimated up to a certain degree of accuracy by taking the
first sample of the measured FC signals and applying funda-
mental relations, e.g., assuming humid air and calculating the
concentrations within the cathode. The estimation algorithm
is separated into a prediction and an update step. As in [4],
the state x̂−

k and covariance estimate 6̂
−

x̂,k are predicted using
past quantities:

x̂−

k = F(x̂k−1,uk−1, θ), (16a)

6̂
−

x̂,k = Ak−16̂x̂,k−1A
T
k−1 +6x. (16b)

The superscripted minus indicates prediction, and the initial
conditions are x̂0 = x0 and 6̂x̂,0 = 6x0 . The discretized
system matrix Ak−1 is a partial derivative of model (1),
elaborated on later. The output estimate is predicted with
ŷ−k = g(x̂−

k ,uk , θ). The update step consists of three equa-
tions, utilizing current quantities and exploiting the current
measured output y∗k . Following [4], the optimal Kalman gain
Lk is evaluated first, which is necessary to obtain the updated
state x̂k and covariance estimate 6̂x̂,k :

Lk =

Kk︷ ︸︸ ︷
6̂

−

x̂,kC
T
k (

Hk︷ ︸︸ ︷
Ck6̂

−

x̂,kC
T
k +6y)−1, (17a)

x̂k = x̂−

k + Lk (y∗k − ŷ−k ), (17b)

6̂x̂,k = (I − LkCk )6̂
−

x̂,k (I − LkCk )T + . . .

. . .Lk6yLTk . (17c)

The output matrix Ck is a partial model derivative, I is an
identity matrix, and Kk and Hk simplify the notation. The
updated state estimate x̂k is subject to inequality constraints
x̂k,m ≥ xlim,m for m ∈ {1, 2, . . . , nx}, where xlim contains
the state limit values, and nx is the number of states. The
constraint is necessary because the unconstrained algorithm
does not guarantee estimated states within a physically plau-
sible range. If no state constraint is violated, the algorithm is
finished at instant k . Otherwise, the gain projection method
is utilized to obtain an adjusted optimal Kalman gain L̃k to
fulfill the constraints. The clipped state estimate x̃k is used,
which is equal to x̂k , except that the elements that do not
comply with the constraints are clipped to the limit value.

As in [4], the adjusted Kalman gain is obtained with[
L̃k , 3

] [
Kk , (x̃k − x̂−

k )
]
· . . .

. . .

[
Hk (y∗k − ŷ−k )

(y∗k − ŷ−k )
T 0

]−1

, (18)

where 3 is the Lagrangian multiplier vector. The state and
covariance estimate update (17) is repeated with L̃k to obtain
the constrained counterpart. Finally, the updated output esti-
mate is evaluated from ŷk = g(x̂k ,uk , θ ), and the algorithm
is executed every instant to observe the desired quantities
continuously. The required Jacobians are analytically derived
from the nonlinear FC model (1), as in [4]:

A(tk−1) =
∂f (x,u, θ )

∂x

∣∣∣∣
x̂k−1,uk−1,θ

C(tk ) =
∂g(x,u, θ )

∂x

∣∣∣∣
x̂−

k ,uk ,θ
(19)

which are also necessary for model-based controllers. The
model derivatives are calculated using a toolbox [31], and the
time-continuous A(tk−1) needs to be discretized accordingly
to get the time-discrete counterpart Ak−1. For the discretiza-
tion procedure and further details, please refer to [4].

2) EXPERIMENTAL VALIDATION
In the final step, the observer is validated with separate vali-
dation data sets. In order to do this, only the measured inputs
u∗ and outputs y∗ are fed into the observer, while it estimates
the states x̂. The measured ones x∗ are entirely unknown to
it. This configuration enables the observer to run parallel to
a test stand or other real-world applications. For validation,
it is shown that the observer estimates the measured FC
concentrations well without knowing the actual measured
quantities and that it replicates the concentrations better than
an open-loop simulation of the model alone. As in [32], the
scatter index S ∈ [0, ∞), also known as normalized root-
mean-square error, is used to evaluate the goodness of repli-
cating the measured signal y∗ by the estimated (or simulated)
counterpart ŷ, defined as

S =

√
1

nk+1

∑nk
k=0

(
y∗k − ŷk

)2
1

nk+1

∑nk
k=0 y

∗
k

. (20)

Here, the nominator represents the root-mean-square error
between the measured and the estimated (simulated) signal,
and the denominator is the arithmetic mean of the measured
signal. An S value of 0 means perfect replicating of the mea-
surements by the model or observer, and increasing values
imply progressively worse performance.

III. RESULTS AND DISCUSSION
This section presents the results of the model-based DOE.
These are conducted on the experimental setup, and the
resulting measurements are shown. The nonlinear identifi-
cation is conducted based on the measurements, and the
resulting replication performance of the model is illustrated.
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The observer is experimentally validated based on the con-
centration measurements, and the superior performance of
the observer compared to an open-loop model simulation
is demonstrated. In addition, all the results are discussed in
detail.

A. DESIGNED EXPERIMENTS
The DOE optimization (7) is conducted considering that
only the following inputs are actively and (almost) indepen-
dently controllable: the incoming airflow ṁca,in, stack current
I , inflowing coolant temperature (assumed to be the stack
temperature T ), and anode supply manifold pressure pan,sm.
The gaseous species x are additionally considered as outputs
within the scope of optimization to exploit the additional
parameter information content provided by the mass spec-
trometer signals. The optimized steady-state points are shown
in Fig. 3a-d, and as additional information, the stoichiometry
of air λca is given in Fig. 3e.
Model (1) has 16 parameters, so there are 16 sections,

each representing an optimized steady-state operating point
to identify one specific parameter. The experiment starts
and ends from the same point, and the steady-state points
were arranged so that the change from one to the next is
minimal due to control reasons. Please note that the given
actuator ranges (red dashed lines) are well exploited, e.g., the
entire temperature range (Fig. 3d) and various air stoichiome-
tries (Fig. 3e) are used, which are often kept constant in
polarization curve experiments. The stoichiometry is slightly
above the given limit at the beginning and end due to the
mitigation of cell flooding. Otherwise, the flow velocities
on the cathode side at low current densities are too low to
remove the produced water sufficiently. The results are plau-
sible because, e.g., the water phase change coefficient kphase
(t ∈ [1100 s, 1200 s]) is well identifiable during low stack
temperatures and little incoming airflow (Fig. 3a), leading to
high relative humidities. The liquid water removal coefficient
kliq (t ∈ [700 s, 800 s]) is better identifiable during low tem-
peratures and high currents (Fig. 3c), leading tomany droplets
being dragged out by a high incoming airflow. Interestingly,
as shown in Fig. 3b, it is more advantageous regarding
parameter identifiability to have the anode supply manifold
pressure in the lower operating range. One reason could be
that a lower pressure leads to less diffusion through the mem-
brane, favoring the identification of nozzle coefficients (e.g.,
kca,cm,sm and kca,em,cm for t ∈ [1300 s, 1500 s]) because
of lower disturbance flows. An additional chirp experiment
(Fig. 3f) is executed to excite the parameter information
of time constant-like parameters. The dynamic experiment
utilizes the entire allowed current operating range and fre-
quency while the remaining actuators are kept constant or are
dependent on the current. The covered frequency starts from
0 Hz and rises to 0.06 Hz, limited by a given rate of change
of 10 A s−1. The steady-state point optimization objective
value (7) for each parameter versus generation is shown in
Fig. 3g, where the objective values are normed so that the first
generation has the value 1. It can be seen that the objectives

only improve a little over the generations, the reason being
that a used heuristic optimizer [22] population of 48 is rather
large for four constrained decision variables. Thus, the initial
solution is already good, leading to minimal changes over
the generations. This information could be used for future
optimizations, e.g., reducing the population size to reduce the
computation time.

B. EXPERIMENTAL RESULTS
The optimized steady-state points, chirp, and polarization
curve experiments are conducted (multiple times) on the
experimental setup. The polarization curve experiment serves
as a reference for further evaluations. Due to technical restric-
tions, either the cathode or the anode gaseous mole fractions
can be measured during an experiment. Because of limited
resources and theoretical higher information content accord-
ing to the FIM, only the anode mole fractions are measured in
all the experiments. One of the measurement cycles of each
experiment is chosen, and the corresponding outputs, actively
controllable inputs, air stoichiometry, and the anode gaseous
mole fractions are shown in Fig. 4.

The left column represents the optimized steady-state
points, the middle the chirp, and the right the polarization
curve experiment. Blue indicates a system output, and red is
an actively controllable input or air stoichiometry. The top
first row (Fig. 4a-c) shows the stack voltage U and current I .
In principle, all three experiments cover the entire operating
range regarding input excitation, but only the chirp sweeps
through the entire frequency range. The same conclusion
holds for the second row (Fig. 4d-f), where the cathode supply
manifold pressure pca,sm and incoming airflow ṁca,in are
shown. The third row illustrates the cathode exit manifold
pressure pca,em and air stoichiometry λca. Interestingly, the
steady-state points (Fig. 4g) and chirp experiment (Fig. 4h)
cover the whole given air stoichiometry range, where a con-
stant value (1.5) is tracked in the polarization curve one
(Fig. 4i) for currents over 90 A (to avoid cell flooding),
and higher stoichiometries are tracked during lower currents.
In the steady-state points experiment, the air stoichiometry
briefly exceeds the given bounds (peaks are outside the figure
at about t = {220 s, 920 s}) due to quick load changes.
The anode inflowing mass ṁan,in and supply manifold pres-
sure pan,sm are depicted in the fourth row. What is notable
here is that pan,sm is essentially held constant in the chirp
(Fig. 4k) and polarization curve experiment (Fig. 4l), and
for the steady-state points experiment (Fig. 4j), it is actively
varied. The fifth row (Fig. 4m-o) depicts the anode exit
manifold pressure pan,em and outflowing coolant tempera-
ture (assumed to be the uniform stack temperature T ). The
not shown inflowing coolant temperature is almost constant
for the chirp and polarization curve experiment, and the
resulting temperature changes in the outgoing flow result
mainly from the internal electrochemical reactions of the
FC, explaining the correlation with the electric load. Again,
the inflowing coolant temperature is actively varied only in
the steady-state points experiment. The last row (Fig. 4p-r)
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FIGURE 3. Plots (a-d) show the actively and (almost) independently controllable inputs for the designed steady-state points experiment: (a) incoming
airflow ṁca,in, (b) anode supply manifold pressure pan,sm, (c) stack current I , and (d) the stack temperature T . The air stoichiometry λca is given in (e) as
additional information, and each section in (a-e) corresponds to an optimized steady-state operating point to identify one specific parameter, which is
also given in grey. Plot (f) illustrates the additional chirp experiment, and the red dashed lines indicate the given actuator limits. Plot (g) shows each
parameter’s normed steady-state point optimization objective value versus generation.

displays the gaseous anode species mole fractions xan,p of
hydrogen, nitrogen, and vapor. The experiments have similar
mole fraction magnitudes quantitatively, but the trajectories
deviate qualitatively mainly because of the applied loads. The
spikes in the fourth- and fifth-row anode signals and the sharp
jumps in the species mole fractions are due to anode purgings
triggered by a Coulomb counter.

C. PARAMETRIZED MODEL
Well-established experiments, e.g., polarization curve or
current steps, provide a reasonable basis for identification
and are thus usually used for this purpose. Within the
scope of our study, we investigated whether a purposefully
designed experiment would yield any improvements regard-
ing parametrization. Hence, it is shown here that the designed
steady-state points experiment (Fig. 4 left column) yields
better parameter identifiability than the polarization curve
experiment (right column), and following this, the actual
model parametrization results are presented. The polarization

curve experiment is longer in time, which generally suggests
more parameter information, so only the same length as the
steady-state points experiment starting from the beginning is
taken to be a fair comparison.

The total parameter information σθi (10) is given in Fig. 5a.
The red crosses denote the information content of the respec-
tive parameters based on the optimized steady-state points
experiment, and the blue circles are the counterparts of the
polarization curve experiment. Higher values indicate lower
uncertainties in estimating the respective parameters with
the particular experiment. In direct comparison, both experi-
ments yield similar parameter information magnitudes. Thus,
a definitive conclusion regarding better parameter identifia-
bility of a specific experiment cannot yet be made, and note
that the Fisher information is an a priori variance estimate.
The parameters are estimated 134 times in total by solving
the optimization problem (13) with a heuristic optimizer [22],
where each run is independently and randomly initialized
to obtain the sample for the empirical variance calculation.
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FIGURE 5. Plot (a) illustrates each parameter’s total information σθi depending on the experiment. Higher values indicate better identifiability of the
specific parameter. Plot (b) presents the obtained empirical variances of the parameters using the respective experiments, normalized with the squared
parameter magnitudes, and lower variance means less parameter uncertainty. Plot (c) displays one of each experiment’s parametrization objective value
curves.

Fig. 5b shows the normalized empirical variances of the
parameters, and lower values mean less parameter uncer-
tainty. The variances correlate to the information content,
as expected according to the Cramér-Rao inequality (3).
A high information content means lower parameter variance,
e.g., the cathode nozzle coefficient kca,atm,em, or vice versa,
e.g., the anode combined diffusivity coefficient Dan. This
property of the Fisher information helps make an a priori
estimate onwhich parameters are well identifiable to simplify
the optimization beforehand. In addition, it can be seen that
the steady-state points experiment yield lower parameter vari-
ances for almost every parameter. A few exceptions include
the liquid water removal coefficient kliq, better identifiable in
the polarization curve experiment. The latter operates more
often with high loads (Fig. 4a,c), which provokes more liquid
water generation and higher gas flows (Fig. 4d,f), which is
ideal for removing liquid water. The high loads are also why
the cathode kca,em,cm and anode nozzle coefficient kan,atm,em
have less uncertainty for the polarization curve experiment.
This drawback of the steady-state points experiment can be
balanced by extending the duration of high-load sections.
Some parameters, such as the anode combined diffusivity
coefficientDan, are generally difficult to identify. The anode’s
diffusion is rarely a problem and might only be relevant
during exceptionally high loads. Those operating regions are
not allowed during the experiments to avoid FC degradation,
leading to the named parameter’s moderate identifiability.
One of the many parametrization objective value (13) curves
for each experiment is shown in Fig. 5c. The divergent mag-
nitudes of the experiment’s objective function are due to
experiment-specific weightings, considering varying signal
mean values, which does not automatically mean a worse
fit of one. Considering all the available curves, the objec-
tive value for the steady-state points experiment converges
faster in addition to the lower empirical variances, which

shows the beneficial impact of designing the experiments
appropriately.

All experiments shown in Fig. 4 with their full length are
utilized for the actual parametrization process to exploit all
the available information. The combined parameter sensitiv-
ity analysis for all three experiments demonstrates that the
anode combined diffusivity coefficient Dan and membrane
time constant τm are poorly identifiable, similarly to Fig. 5a,
so these two parameters are excluded from the optimiza-
tion and kept constant at their initial value. The resulting
parametrization objective value curve is qualitatively similar
to those in Fig. 5c. In the interests of concision, the remainder
of this paper only describes the chirp experiment. The lat-
ter covers the entire current operating range and frequency,
so the dynamics of the remaining experiments are mostly
covered. The parameterized model delivers the signals shown
in Fig. 6.

Fig. 6a-e depict model outputs, Fig. 6f internal model con-
centrations; note that a validation data set is used here, which
is not utilized during parametrization. The dashed lines are
the measured references, and the solid lines are the simulated
signals. The model outputs are very well-replicated, also
indicated with scatter index S values at the second decimal
place. The model voltage U has some deviations during the
slow dynamics at the beginning and the lower peaks, as shown
in Fig. 6a. The slowly decaying deviations at the begin-
ning might be a consequence of the not ideal initialization
of the simulation. The differences at the lower peaks are
likely due to simplified modeling assumptions in the electro-
chemical model. The diffusion is modeled assuming steady-
state, an especially rough approximation during high dynamic
loads at the lower peaks. Also, the anode exit manifold pres-
sure pan,em has a slight offset (Fig. 6e) due to simplifying
assumptions in the recirculation flow modeling [16]. The
remaining output signals (Fig. 6b,c,d), in essence, overlap
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FIGURE 6. Model outputs: stack voltage U (Plot a), cathode supply pca,sm (Plot b) and exit manifold pressure pca,em (Plot c), and anode inflowing mass
ṁan,in (Plot d) and exit manifold pressure pan,em (Plot e). Plot (f) displays the internal anode exit manifold partial pressures pan,em,p for hydrogen (H2),
nitrogen (N2), and vapor (vap), and the corresponding scatter index S is given in each plot. Dashed lines represent measured references, and solid ones
the simulated signals.

with the measured references. The mass spectrometer mea-
sures the gaseous anode species mole fractions at the outlet,
but the model delivers the species averaged for the whole
stack due to the modeling assumptions. Thus, the individual
species partial pressures pan,em,p for p ∈ {H2,N2, vap} in
the exit manifold are fitted during parametrization instead of
the averaged model mole fractions to obtain a better agree-
ment. The anode partial pressures pan,em,p = pan,emxan,p
are easily obtained by multiplying the exit manifold pressure
pan,em with the respective mole fractions xan,p. The latter
signals are all measured, and Fig. 6f illustrates the simulated
and measured partial pressures. The signals are qualitatively
and quantitatively well-replicated, but there are still some
deviations and offsets, leading to higher S values for the
partial pressures than for the model outputs. There are three
main reasons for this: First, the mass spectrometer has an
accumulated measurement tolerance of up to 5%. Second,
the device does not differentiate between liquid and gaseous
water. Third, as described, the model used simulates the aver-
aged species for the whole stack while the measured species
are diverted at the outlet to the measurement device. For

these reasons, the species replication errors are less weighted
during the parametrization procedure.

D. EXPERIMENTAL OBSERVER VALIDATION
For validation, Fig. 7 (same validation data as in Fig. 6)
shows the signals delivered by the observer: the corrected
model outputs (Fig. 7a-e) and estimated internal gaseous
anode partial pressures (Fig. 7f). The observer estimates the
internal partial pressures by utilizing only the parameterized
model (1), the measured model inputs u∗, and outputs y∗.
The measured internal partial pressures are only depicted for
reference and are entirely unknown to the observer.

Compared to the open-loop simulation in Fig. 6, the
observer uses the measured outputs’ feedback to improve the
state estimations. The scatter index S improved significantly
for hydrogen in Fig. 7f, which is also visually recogniz-
able. Compared to the open-loop simulation in Fig. 6f, not
only is the signal’s qualitative behavior caught, but also its
magnitude. The estimated nitrogen partial pressure by the
observer deviates more than in the open-loop case with a
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FIGURE 7. Model outputs: stack voltage U (Plot a), cathode supply pca,sm (Plot b) and exit manifold pressure pca,em (Plot c), and anode inflowing mass
ṁan,in (Plot d) and exit manifold pressure pan,em (Plot e). Plot (f) displays the internal anode exit manifold partial pressures pan,em,p for hydrogen (H2),
nitrogen (N2), and vapor (vap), and the corresponding scatter index S is given in each plot. Dashed lines represent measured references, and solid ones
the observer signals.

corresponding higher S value, which also applies to the vapor
partial pressure, but on a smaller scale. The main reasons for
this have already been mentioned: measurement tolerance,
water phase differentiation, and spatial model assumptions.
In particular, the measuring at the outlet is visually clearly
noticeable for nitrogen. The measured nitrogen partial pres-
sure accumulates at the outlet (the rising ramps are well
visible) and is always higher than the estimated averaged
values by the observer for the whole stack. However, it is
considered that the estimations by the observer better repre-
sent the stack as a whole, and using the estimated states, the
so-called corrected model outputs by the observer (Fig. 7a-
e) yield scatter indices which are always lower than for the
simulated signals in Fig. 6. The only exception is the anode
inflowing mass ṁan,in (Fig. 7d). This has a higher S value in
the observer case caused by a more divergent correction of
the signal spikes during the purging process. The reason is
that purging is highly nonlinear, but the observer algorithm
uses locally linearized Jacobians. Furthermore, to a large
extent, the observer corrects the mentioned stack voltage U
deviations due to improper initialization (Fig. 6a and Fig. 7a),
and the offset in the anode exit manifold pressure pan,em,p

(Fig. 6e) is also adjusted by the observer (Fig. 7e). The
observer achieves both corrections by driving the internal
states to more realistic configurations based on the feedback
of the measured outputs. The improved scatter indices for the
model outputs demonstrate that the estimated concentrations
represent the whole stack better than the open-loop simula-
tion counterparts, despite having higher S values for nitrogen
and vapor. An explanation for the simulation model’s behav-
ior is that it is parametrized to measurements at the exit man-
ifold, explaining why it mimics the behavior there instead of
the averaged ones for the whole stack. Essentially, the model
was parametrized to behave differently, which the observer
corrects. Still, the estimated states by the observer coincide
quantitatively and qualitatively well with the measurements,
validating the observer itself. In conclusion, considering the
reasons given above for deviation and the simple model, the
observer’s performance is outstanding.

For comparison, Fig. 8 shows the anode nitrogen par-
tial pressure pan,em,N2 estimated by a Kalman filter (KF),
an extended KF (EKF), a CEKF [4], and a constrained
unscented KF (CUKF) [33]. The KF is a linear estimation
algorithm, EKF is the nonlinear version, the CEKF addi-
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FIGURE 8. Comparison of anode nitrogen partial pressure pan,em,N2
estimated by a Kalman filter (KF), an extended KF (EKF), a constrained
EKF (CEKF), and a constrained unscented KF (UKF).

TABLE 2. Performance indices comparison between a Kalman filter (KF),
an extended KF (EKF), a constrained EKF (CEKF), and a constrained
unscented KF (UKF).

tionally considers constraints, and the CUKF utilizes an
unscented transformation, which does not require the model’s
Jacobians. Visually, all observers yield similar estimations,
and only the CUKF has some big spikes during purging,
which the others do not have. The reason could be that
purging is a highly nonlinear process, and due to the required
state sample points by the algorithm, minor changes in the
states have a significant impact on the estimation. Quanti-
tative performance indices for each observer are given in
Table 2. These are the scatter index S between each observer
signal and the measured counterpart and the computation
time relative to the CEKF. The scatter indices show that all
observers have a similar estimation performance, and the
latter heavily depends on the tuning. Some are better for
specific signals and others for others, and no single one is
superior. What is more apparent is that constraints are strictly
necessary to obtain physically meaningful results, e.g., the
pressure gets negative during purging for the KF and EKF
in Fig. 8. The UKF is too computationally expensive for
control applications because it needs 4.7 times longer to
calculate than the CEKF while not yielding superior perfor-
mance. A constrained KF would be a reasonable compromise
regarding performance and computation time, but themodel’s
Jacobians are already calculated in a closed-loop setup for
a model-based controller [17], which requires them for the
strong nonlinearities (e.g., water phase change and droplet

removal). The CEKF uses the precalculated Jacobians in
this constellation and does not require additional computa-
tion, significantly lowering the computational demand for the
CEKF itself and enabling it to consider the nonlinearities
better. In summary, the CEKF is a reasonable compromise
for a control setup regarding estimation performance and
computational requirements.

E. REMARKS ON WORKFLOW IMPLEMENTATION
The proposed design workflow is a holistic guideline for
real-world observer implementations for FC concentrations.
So that the workflow can play out its advantages, cer-
tain issues have to be considered. The presented method-
ologies require an appropriate system model because the
DOE, parameter sensitivity analysis, and observer design are
model-based. In addition, the model has to fulfill two con-
ditions: identifiability and observability (please refer to the
literature for the definitions). The identifiability also depends
on the experiments, but the model should have a manage-
able number of parameters and a sophisticated structure to
ensure a good starting point for parametrization. Observabil-
ity is also not solely model dependent because the available
physical sensors are decisive, but a good model structure
is a sound basis for observing desired quantities. One key
aspect of the workflow is the DOE, which implies the pos-
sibility of conducting experiments on the system. In many
observer design cases, experiment execution is impossible,
and the user must rely on existing measurements. Regarding
observability, as already mentioned, the system must have
the right equipment, e.g., sensors in advantageous positions.
Moreover, suitable devices are necessary, e.g., a concen-
tration measurement device to parametrize and validate the
observer. Special measurement devices may not be neces-
sary permanently during operation because one purpose of
observers is to replace physical sensors and devices. If some
criteria are not met, it does not automatically mean that this
workflow is not applicable. The workflow can be used as an
idea provider to create or adapt a system model, adjust the
system, or include new sensors. The presented workflow is a
guideline for implementation, but it is not inflexible and can,
in fact, be adapted to the circumstances and possibilities of
the specific use case.

IV. CONCLUSION
Observers are an effective method of obtaining unmeasured
or even unmeasurable quantities with an estimation algorithm
and measured quantities. In our study, an FC concentration
observer was designed, and the estimated hydrogen, nitrogen,
and water concentrations by the observer on the anode side
were experimentally validated. The knowledge of the con-
centrations is necessary for diagnosis, degradation avoidance,
and model-based control. A novel holistic observer design
workflow was presented, covering the following methods for
the first time: a model-based DOE was conducted to increase
the experiment’s model parameter sensitivity and input exci-
tation range for improved identification and validation. The
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experiments were executed on a 30 kW PEMFC system, and
a key component of our approach is the mass spectrome-
ter utilized to obtain concentration measurements. A model
parameter sensitivity analysis was performed based on the
availablemeasurements to identify poorly identifiable param-
eters. These were excluded in the subsequent nonlinear iden-
tification in order to simplify it. Finally, based on the CEKF
estimation algorithm, an FC concentration observer was
designed and experimentally validated. The presented work-
flow is demonstrated based on a control-oriented PEMFC
stack model, and the model-based DOE and the experimen-
tal validation with a mass spectrometer, including dynamic
operation, are unique in the literature for PEMFC observers.
In addition, the obtained results were discussed in detail, and
the validated observer delivered an outstanding concentration
estimation performance. Ultimately, the observer is ready for
real-world applications such as online diagnosis and model-
based control.

Further research topics would include investigating the
observer’s online diagnosis capabilities and behavior in a
closed-loop setting via simulation followed by experimental
studies. In order to improve the DOE, an online capable
DOE controller could be developed, which optimizes the
parameter identifiability online during experiment execution.
This controller could consider unavoidable control errors and
dynamically excite the system, favorable for time constant-
like parameters.

APPENDIX
ABBREVIATIONS
The following abbreviations are used in this manuscript:

CEKF Constrained extended Kalman filter.
CUKF Constrained unscented Kalman filter.
DOE Design of Experiments.
EKF Extended Kalman filter.
FC Fuel cell.
FIM Fisher information matrix.
KF Kalman filter.
PEMFC Polymer electrolyte membrane fuel cell.

NOMENCLATURE
The following abbreviations are used in this manuscript:

SUBSCRIPTS
0 Initial.
θ Parameter.
θms Most significant parameter.
e Prediction error.
u Input.
x State, or process noise.
x0 Initial state.
y Output, or measurement noise.
x̂ State estimate.
an Anode.

atm Atmosphere.
ca Cathode.
cm Center manifold.
c Contact.
em Exit manifold.
H2 Hydrogen.
in Inflow.
lim Limit.
liq Liquid water.
max Maximum.
min Minimum.
ms Most significant.
m Membrane.
N2 Nitrogen.
nrm Normalized.
O2 Oxygen.
opt Optimized.
phase Phase change.
reci Recirculation.
sm Supply manifold.
vap Vapor.
θi Parameter i.
i Parameter running index.
j Singular value running index.
k Sampling instant.
l Input running index.
m State running index.
nθ Number of parameters.
p Mole fraction running index.

SYMBOLS
α Valve position in 1.
3 Lagrange multiplier vector R9 (Rnx ).
ψ Output parameter sensitivity vector R5 (Rny ).
ψ Output parameter sensitivity vector R5 (Rny ).
6 Covariance matrix R5×5, or R9×9 (Rny×ny ,

or Rnx×nx ).
θ Vector containing the tunable parameters R16

(Rnθ ).
ξ State parameter sensitivity vector R9 (Rnx ).
A System matrix R9×9 (Rnx×nx ).
C Output matrix R5×9.
F System prediction function R9 (Rnx ).
f System function R9 (Rnx ).
g Output function R5(Rny ).
H Matrix for Kalman gain calculation R5×5

(Rny×ny ).
I Identity matrix R9×9 (Rnx×nx ).
K Matrix for Kalman gain calculation R9×5

(Rnx×ny ).
L Optimal Kalman gain matrix R9×5 (Rnx×ny ).
M Fisher information matrix Rnθ×nθ .
Q Weighting, or regularization matrix R5×5

(Rny×ny ), or Rnθ×nθ .
S Singular value matrix Rnθ×nθ .
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U Left singular vector matrix Rnθ×nθ .
u Input vector R10 (Rnu ).
u∗ Measured input vector R10 (Rnu ).
V Right singular vector matrix Rnθ×nθ .
v Right singular vector Rnθ .
w Noise vector R5, or R9 (Rny , or Rnx ).
x State vector R9 (Rnx ).
x∗ Noisy (and measured) state vector R9

(Rnx ).
y Output vector R5 (Rny ).
y∗ Noisy (and measured) output vector R5

(Rny ).
γ Threshold in 1.
6̂ Updated covariance estimate matrix R9×9

(Rnx×nx ).

6̂
−

Predicted covariance estimate matrix R9×9

(Rnx×nx ).
x̂ Updated state estimate vector R9 (Rnx ).
x̂− Predicted state estimate vector R9 (Rnx ).
ŷ Updated output estimate vector R5 (Rny ).
ŷ− Predicted output estimate vector R5 (Rny ).
ŷ Estimated (or simulated) signal R1×1.
λ Stoichiometry in 1.
N Normal distribution.
x Expected value of state vector R9 (Rnx ).
σ Singular value, or total information of a

parameter.
τ Time constant in s.
θ Parameter.
L̃ Adjusted optimal Kalman gain matrix

R9×5 (Rnx×ny ).
x̃ Clipped state estimate vector R9 (Rnx ).
ϕ Relative humidity in 1.
a Water activity in 1.
D Combined diffusivity parameter in mol/s.
I Current in A.
J Objective function R1×1.
K Intrinsic exchange current parameter in

A/m2.
k Nozzle, or mass flow coefficient in

kg/(s · Pa), m2, or 1/s.
M Fisher information for a single parameter

R1×1.
m Mass in kg.
n Number in 1.
P Power in W.
p Pressure in Pa.
R Ohmic resistance in �.
S Scatter index, or normalized root-mean-

square error in 1.
T Fuel cell temperature in K.
t Time in s.
U Voltage in V.
u Input.
V Volume in m3.

v Right singular vector component.
x Gaseous species mole fraction in 1.
y∗ Measured signal R1×1.
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