
Chemical Engineering Journal 430 (2022) 132850

A
1

E
C
E
a

b

c

A

K
K
G
V
E
C

1

e
T
t
a
m
c
o
m
m
g
r
w

s
t
r

h

h
R

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

nhanced kinetic model identification for gas–solid reactions through
omputational Fluid Dynamics
va-Maria Wartha a,∗, Felix Birkelbach b, Markus Bösenhofer a,c, Michael Harasek a

TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Getreidemarkt 9/166, 1060 Vienna, Austria
TU Wien, Institute for Energy Systems and Thermodynamics, Getreidemarkt 9/BA, 1060 Vienna, Austria
K1-Met GmbH, Area 4 - Simulation and Analyses, Stahlstrasse 14, BG 88, 4020 Linz, Austria

R T I C L E I N F O

eywords:
inetic modeling
as–solid reactions
irtual experiment
nhanced data
omputational Fluid Dynamics

A B S T R A C T

Gas–solid reactions often play key roles in chemical engineering applications. To understand and design
processes featuring such heterogeneous reactions, kinetic models are crucial. One way to identify kinetic models
is via thermal analysis experiments. Even if those experiments are carried out meticulously, there will be some
deviation between nominal reaction conditions and the actual reaction conditions directly at the reaction site.
For situations, where these deviations are not negligible, we propose a new approach to compute the reaction
conditions directly at the sample, based on the experimental data. A key feature of our approach is that no
kinetic model is required for the simulation. For this reason, the enhanced data can be used for kinetic model
identification. Though, a kinetic modeling method that can process arbitrary data is required, because the
enhanced kinetic data will not obey the idealized assumptions of constant temperature or constant heating
rate.

To showcase our approach, we applied it to the reaction system CuO/Cu2O. Kinetic models with nominal
and simulated values are derived with the TensorNPK method, showing the influence of the enhanced kinetic
data on the identified reaction kinetics.
. Introduction

Interest in kinetic models is two-fold: On the one hand, kinetic mod-
ls allow us to predict the reaction rate for given reaction conditions.
his information is indispensable for reactor design and operation. On
he other hand, they provide us with a frame to interpret kinetic data
nd to gain insights into the reaction mechanism. Regardless of the
odel purpose, the starting point is always a kinetic data set that

ontains reaction rate values at various reaction conditions. The quality
f the kinetic data set directly determines the quality of the kinetic
odel. For this reason, collecting kinetic data is a critical step in the
odeling process. From the viewpoint of kinetic modeling there are –

enerally speaking – two main types of experimental error: Error in the
eaction rate values and error in the reaction conditions. In this paper,
e will focus on the latter.

The most widely used method for measuring the kinetics of gas–
olid reactions is thermal analysis (TA). A sample is exposed to con-
rolled reaction conditions (temperature and partial pressure of the
eactant gas) and the reaction progress is measured.

To obtain reliable kinetic data, the reaction conditions in TA devices
ave to be controlled very precisely. This is challenging for three

∗ Corresponding author.
E-mail address: eva-maria.wartha@tuwien.ac.at (E.-M. Wartha).

main reasons: First, there are various other processes occurring simul-
taneously with the chemical reaction under consideration, which are
interfering with the control of the reaction conditions. Typical examples
are self-heating/cooling, depletion/accumulation of reactant gas or
limited gas diffusion. Second, temperature and partial pressure can
usually not be measured directly at the sample. The distance between
the sample and the sensor leads to a deviation of the measured value
from the actual value at the sample. Third, the reaction conditions may
not be the same across the whole sample. These effects are the hardest
to quantify. Nevertheless, it has been shown in various studies that
these inhomogeneities can significantly affect the measurements [1–3].

Most of these measurement errors can be eliminated or at least min-
imized by conducting the experiments carefully. To guide researchers
in this task and establish a reference of best-practices, the ICTAC [1,4]
has published a set of recommendations on how to conduct kinetic
experiments. Nevertheless, measurement errors cannot be eliminated
completely. The effect of mass transfer limitations in TA devices on
kinetic analysis was studied by various authors [5–8]. Also deviations
of the measured temperature and the temperature of the sample due
to thermal lag or due to self-heating/self-cooling have been observed
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in many experimental studies [9–12]. When those deviations cannot
be eliminated completely by adjusting the experimental procedure,
computational methods can help to make kinetic data more precise.

The temperature distribution in a TA device has been studied by
several authors [2,13–20] using Computational Fluid Dynamics (CFD).
Even though it is commonly assumed that the temperature is uniform
in the TA device, all of these studies revealed deviations between the
assumed or set – further referred to as nominal – temperature assump-
tion, and the actual temperature at the probe. Additionally, Benedetti
et al. [21] showed that the gas consumption of the reaction itself leads
to reduced concentrations and partial pressures at the reaction site com-
pared to the nominal values. Despite these numerous detailed studies
on non-idealities in a TA device, only one work suggested an approach
for dealing with these deviations and for deriving more accurate kinetic
models: An et al. [22] used a CFD model of a reacting particle in a drop
tube furnace to adjust the kinetic rate devolatilization parameters by
an iterative procedure, in which they fitted the computational results
to the experimental values.

A feature that all the above studies have in common is that they
use a reaction model to incorporate the effect of the reaction in the
simulation and compute the temperature distribution in the TA device.

If we wanted to use the simulation results for kinetic model iden-
tification, we run into a chicken-and-egg situation: in order to do the
CFD simulation, a model for the reaction kinetics is needed — but to
get enhanced kinetic data for kinetic model identification, the results of
the CFD simulation are needed. In this paper we propose an approach
that bypasses the need for a kinetic model in the CFD simulation.

The next section discusses the methods that our study is based on.
In Section 3 our virtual experimentation approach is introduced. We
describe how the experimental data is fed into the simulation model,
and we discuss the expected impact on kinetic models. To demonstrate
our approach, we chose a kinetic study of the reaction system Cu2O/
CuO (cuprous oxide/cupric oxide). The experimental setup and the
experiments conducted in that study are described in Section 4. There,
we also describe in detail the simulation model that we employed to
recreate the experiments from the study. In Section 5, we first discuss
the simulation results and then compare the kinetic model derived from
the enhanced data from the virtual experiment with the kinetic model
derived based on nominal values for the reaction conditions. We show
that dynamic effects in the TA device can affect the kinetic modeling
result despite adhering to quality standards for kinetic experiments.

2. Methods

This paper presents an enhanced kinetic modeling approach. For
this novel approach, two established methods are employed: CFD for
the virtual experimentation and the TensorNPK method for kinetic
model identification. This section discusses the basic principles of these
methods.

2.1. Computational fluid dynamics

A finite-volume method is used to model the gas–solid reaction pro-
cess in the experimental setup. We use the open-source object-oriented
library OpenFOAM [23], version 7.

The gas phase is modeled as an Eulerian phase, which is described
by the continuity equation Eq. (1) and the momentum equations
Eq. (2), where 𝜌𝑔 is the density, 𝐔𝑔 the velocity, 𝜏𝑔 the deviatoric stress
of the gas phase. Additionally, the mass source term 𝑆𝑚 resulting from
reaction and the momentum source term 𝑆𝑢 resulting from interaction

ith the solid phase are used in the equations.
𝜕𝜌𝑔
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑔𝐔𝑔
)

= 𝑆𝑚 (1)

𝜕
(

𝜌𝑔𝐔𝑔
)

+ ∇ ⋅
(

𝜌 𝐔 𝐔
)

− ∇ ⋅
(

𝜏
)

= −∇𝑝 + 𝜌 𝐠 + 𝑆 (2)
2

𝜕𝑡 𝑔 𝑔 𝑔 𝑔 𝑔 𝑢
Besides the continuity and momentum equation, the energy equa-
tion Eq. (3) and the species equation Eq. (4) are also needed to describe
the multi-component gas flow:

𝜕
(

𝜌𝑔 (ℎ +𝐾)
)

𝜕𝑡
+∇ ⋅

(

𝜌𝑔𝐔𝑔 (ℎ +𝐾)
)

−∇ ⋅
(

𝛼eff∇ℎ
)

= ∇𝑝+𝜌𝑔𝐔𝑔 ⋅𝐠+𝑆ℎ (3)

𝜕𝜌𝑔𝑌𝑖
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑔𝐔𝑔𝑌𝑖
)

− ∇ ⋅
(𝜇eff

Sc
∇
(

𝜌𝑔𝑌𝑖
)

)

= 𝑆𝑖 (4)

where ℎ is the enthalpy, 𝐾 the kinetic energy, 𝛼eff the effective thermal
diffusivity, 𝑌𝑖 the mass fraction of species 𝑖, 𝜇eff the effective viscosity,
Sc the Schmidt number and 𝑆ℎ and 𝑆𝑖 the energy and species source
terms, respectively.

Eq. (1) to Eq. (4) describe the gas phase. The coupling with the
solid phase is realized by the source terms 𝑆. To compute the species
and heat source term 𝑆𝑖 and 𝑆ℎ the reaction kinetics are needed which
are usually obtained from a kinetic model. In our new approach, we
use the experimental data directly to avoid the need of a kinetic model
(see Section 3). The solid phase is described within the Lagrangian
framework. The particles are regarded as point centers of mass and
Newton’s law of motion is used to describe their movement:
d
d𝑡

(

𝑚𝑝𝑢𝑝
)

= 𝐹 (5)

where 𝑚𝑝 is the particle mass, 𝑢𝑝 is the particle velocity, and F is the
sum of the forces acting on the particle.

We use a two way coupling approach, which means the velocity
of the Eulerian phase directly impacts the Lagrangian particles and
vice versa [24]. For the momentum source term, the drag is calculated
according to the Gidaspow model [25].

The coupling of the energy equations is done using the Nusselt
correlation developed by Ranz and Marshall [26]:

Nu = 2 + 0.6 Pr1∕3Re1∕2 (6)

2.2. Kinetic modeling

For the kinetic modeling in this paper we employed the TensorNPK
method [27,28]. It is a data-driven method that is based on the General
Kinetic Equation (GKE)
d𝛼
d𝑡

= 𝑓 (𝛼) 𝑘(𝑇 )ℎ(𝑝, 𝑝eq) , (7)

here 𝑓 (𝛼) is the effect of the conversion 𝛼, 𝑘(𝑇 ) the effect of tempera-
ure 𝑇 and ℎ(𝑝, 𝑝eq) the effect of the driving force, usually expressed
s a function of the partial pressure 𝑝 and the equilibrium pressure
eq. The GKE is by far the most commonly applied formula to model
as–solid reactions [4]. Essentially, it is a synthesis of solid-state and
omogeneous reaction rate models. 𝑓 (𝛼) models effects in the solid,
(𝑇 ) an Arrhenius-like temperature effect and ℎ(𝑝, 𝑝eq) concentration

and equilibrium effects.
The parameter of the ℎ(𝑝, 𝑝eq) term depends on the rate limiting

tep [29]. In [28] we showed that equilibrium effects in gas–solid
eactions are best modeled based on the partial molar Gibbs enthalpy
f the reaction 𝐺𝑧(𝑇 , 𝑝). It is defined as the stoichiometric sum of the
hemical potentials of the reacting substances. For simple gas–solid
eactions, such as the oxidation of Cu2O in our use case, the partial
olar Gibbs enthalpy can also be expressed as a function of the partial
ressure and the equilibrium partial pressure. The partial molar Gibbs
nthalpy is the driving force of the chemical reaction. It is zero at the
quilibrium and increases with distance from the equilibrium. For the
inetic models in this paper, we use the reduced Gibbs enthalpy as a
easure for the equilibrium distance.

eq =
𝐺𝑧

𝜈𝑔𝑅𝑇
= ln

𝑝
𝑝eq

(8)

Here, 𝜈𝑔 is the stoichiometric coefficient of the gaseous reactant.
The TensorNPK method extracts the effect of each variable (i.e. con-

version, temperature and equilibrium distance) on the reaction rate
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Fig. 1. Flow pattern through the TA device, the mesh and a close-up of the crucible
holding the probe (from left to right).

from experimental data. The output of the TensorNPK method are
vectors that describe the effect of each variable. These output vectors
can be used to predict the reaction rate at given reaction conditions,
further analyzed to get more insight into the kinetics or be used to
fit reaction models. In this paper, we use the 𝑘(𝑇 ) vector to fit the
Arrhenius equation and determine the apparent activation energy 𝐸𝑎.
Also, we approximate the ℎ(𝛥eq) vector with a second order polynomial
to describe the effect.

3. Virtual experiment

Modern thermal analysis (TA) devices use sophisticated strategies
to control the reaction conditions as precisely as possible. The sample
is placed in a crucible with thin walls made of a material with high
thermal conductivity. The temperature sensor measures the temper-
ature directly at the crucible to get a temperature reading as close
to the sample as possible. This temperature is controlled to achieve
the required temperature profile (isothermal or constant heating rate,
usually). Though, the reaction itself will interfere with this temperature
control: While the reaction progresses, the heat of reaction has to be
compensated by the temperature control. Due to the heat of reaction
and thermal lag, the temperature below the crucible can differ from
the local temperature in the sample [11].

The reactant partial pressure is usually set by mixing the reactant
gas with an inert gas, because most TA devices operate at ambient
pressure. The gas flow is controlled with mass flow meters and (ideal)
plug flow is assumed. Though, local concentration in the crucible may
deviate from the bulk gas flow, because of mixing effects and diffusion
effects of the reactant in the inert gas. If the reaction consumes the
reactant faster than it can be replenished from the bulk gas flow, the
local concentration will drop. Similarly, for reactions that produce gas,
reactant gas can accumulate in the crucible.

The experimental procedures have to be carefully designed to re-
duce or eliminate those deviations. Though, for some reaction systems
this might not be possible.

What can be done, when the limits of meticulous experimentation
are reached, but the reaction conditions still do not meet the re-
quirements of idealized experimental conditions? For these situations,
we propose to couple the experimental analysis with a simulation to
quantify the deviations and get accurate estimates of the actual reaction
conditions in the sample.

A spatially resolved 3D model of the TGA is generated to recreate
the experiment with a CFD simulation — this simulation procedure
will be referred to as the virtual experiment. To model the motion
of gas and solid phase, and its interaction with the solid reactant,
we use established physical CFD models (Section 2.1). When it comes
3

to modeling the reaction, we are confronted with a chicken-and-egg
problem: we need a kinetic model for the simulation, but we also need
the simulation to derive the kinetic model. This obstacle is overcome by
applying the conversion rates obtained from the experiments directly
in the simulation. Then, no kinetic model is needed. The measured
conversion rates are set as fixed conversion rates in the CFD simulation.
The only assumption required is that all particles react uniformly.
This is inherently ensured within TA experiments, where uniform re-
action progress needs to be ensured by choosing a sufficiently small
sample mass [1,30], since the conversion rate is determined by one
measurement only.

Regarding kinetic model identification, a caveat of our approach
is that the simulated reaction conditions will generally deviate from
idealized reaction conditions such as ‘‘isothermal’’ or ‘‘constant heating
rate’’. Consequently, most established kinetic modeling methods cannot
be used with the presented approach, because they are based on
exactly these idealized assumptions. To take advantage of the simulated
reaction conditions from the virtual experiment for kinetic model iden-
tification, the kinetic modeling method needs the capability to process
arbitrarily distributed data points. The TensorNPK method [27,28]
meets these requirements. Another option would have been to use
direct model fitting methods [31], but they require an a-priori selection
of the model terms, which could conceal important information. For
this reason, we chose the data-driven approach with the TensorNPK to
process the data from the virtual experiments. The only requirement
for the TensorNPK, is that the reaction obeys the GKE.

4. Use case

In general, the proposed approach can be applied to any gas–solid
reaction system. To demonstrate the suggested approach and make the
effects on kinetic model identification palpable, we use a set of kinetic
measurements for the reaction system cuprous oxide/cupric oxide

2Cu2O + O2 ⇄ 4CuO

that were conducted by Setoodeh Jahromy et al. [32]. This reaction
system is of interest, because it is a promising candidate for ther-
mochemical energy storage systems [33,34]. The experiments were
recreated using OpenFOAM. In this section we will first describe the
experimental setup that was used for the measurements, and then we
will describe the simulation setup that was used to recreate these
measurements.

4.1. Experimental setup

The reaction Cu2O/CuO was studied via simultaneous TA mea-
surements on a NETZSCH STA 449 C JUPITER. The apparatus has a
combined TGA-DSC (thermogravimetric analysis — differential scan-
ning calorimetry) sample holder. For the measurements aluminum
oxide crucibles were used. Experiments were conducted at ambient
pressure. The total gas flow (N2 and O2) was set to 100mL/min always,
using red-y smart series mass-flow controllers by Voegtlin. The reaction
was initiated by switching from pure N2 to a mix of O2 and N2. The
mixing ratio was adjusted to achieve the studied oxygen partial pres-
sures. The sample temperature was measured right below the crucible
and controlled by the TA software.

To rule out inhomogeneous reaction conditions within the probe,
the sample mass was adjusted so that no effect on the reaction progress
could be observed. A sufficiently small sample mass should ensure that
there are no concentration or temperature gradients within the probe;
this means that the conversion progress is not influenced by the mass
itself. This was experimentally confirmed for the experiments in our use
case [32].

The experiments were conducted with a Cu2O sample mass of
8.26mg and for a combination of nominal temperatures (800, 830, 880
and 930 ◦C) and nominal oxygen partial pressures (0.1, 0.2, 0.5 and
1 bar).
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Fig. 2. Temperature and partial pressure at the probe. Nominal values (black dots) and
simulated trajectories (in color — color-coded with the nominal temperature). Reaction
equilibrium (dash-dotted) and equidistant lines (dotted) are marked.

Fig. 3. Comparison between the nominal partial pressure and the actual partial
pressure at the probe.

4.2. CFD setup

The TA apparatus was discretized with 30 600 hexahedral cells,
displayed in Fig. 1. The solid walls were excluded in the simulation, and
the wall temperature was fixed to the nominal-temperature, because
this is controlled in the TA device. The mass flow and composition at
the inlet were fixed according to the experimental setup. The sample
was initialized as Cu2O at the beginning of the experiment. The solid
reactant was modeled by 209 Lagrangian parcels, with 105 particles per
parcel with a particle diameter of 5 μm. The experimental particle size
4

Table 1
Thermodynamic properties of the solid reactants.

𝑊 𝐻f 𝑐𝑝 𝜌 𝜅
g mol−1 J mol−1 J kg−1 K−1 kg m−3 W m−1 K−1

Cu2O 143.091 −1 192 248 609 6000 0.78
CuO 79.545 −1 958 639 600 6480 0.78

Fig. 4. Oxygen partial pressure of the virtual experiment at 1153.15K and 0.5 bar
oxygen partial pressure (nominal conditions) after 27 s experimental time, at 25%
conversion.

distribution obtained with a Mastersizer 2000 [32] showed a bi-modal
distribution. For this reason, the median diameter of the experimental
particle size distribution was used.

The gas phase is modeled as perfect gas, the viscosity is calculated
based on the Sutherland model, with the Sutherland coefficients (𝐴𝑠 =
1.512𝑒 − 6 and 𝑇𝑠 = 120) from [35]. The heat capacity 𝑐𝑝 is calculated
from JANAF polynomials from [35], see Table 2.

For the solid species the thermal conductivity 𝜅, density 𝜌 and heat
capacity 𝑐𝑝 are assumed constant. They are given in Table 1 along with
the heat of formation 𝐻f and the molecular weight.

5. Results and discussion

In the previous sections we introduced the virtual experiment and
explained how it is coupled with the real experiment to make use of
the enhanced data. Now, we will showcase the method by applying
it to the use case of Cu2O oxidation. First, we discuss the deviations
between nominal values and the values from the virtual experiment as
well as the causes for these deviations. Then, we examine the effect on
the identified kinetic model.

Fig. 2 shows the change of the reaction conditions during the virtual
experiment in relation to the nominal values. Even though a very small
sample mass has been used in the experiments (8.26mg), the distance
to the equilibrium reduces drastically compared to nominal values due
to self-heating of the probe and a drop of the partial pressure. The
temperature at the start of the reaction corresponds to the nominal
temperature, but during the experiment the temperature increases due
to the rapid release of reaction heat that cannot be dissipated instantly.
This temperature increase also reduces the distance to equilibrium and
consequently the driving force of the reaction. The drop in the oxygen
partial pressure also contributes to the reduction of the equilibrium
distance.

Fig. 3 shows the oxygen partial pressure in more detail. Initially,
the partial pressure is zero, because the TA device is flooded with N2
before the experiment. When the gas flow is switched to the O2∕N2
mixture, the partial pressure quickly rises. Though, it does not do so
immediately. This deviation from ideal plug-flow can be attributed to
back mixing and diffusion. Once the reaction starts, there is an obvious
drop in the partial pressure that is caused by the reactant depletion
in close vicinity of the sample. Comparing the partial pressure drops
in Fig. 3, it can be seen that the drop is more pronounced the faster
the reaction proceeds, but in pure O2 atmosphere, where the reaction
is fastest, there is no drop in the partial pressure. This observation
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suggests that the drop in partial pressure is caused by limited O2
diffusion in N2 atmosphere. This is in accordance with similar findings
for gasification processes [36,37].

To visualize the reactant depletion at the sample, we chose the
experiment with the nominal values 1153.15K and 0.5 bar oxygen par-
tial pressure, where the effect of reactant depletion is especially pro-
nounced. Fig. 4 gives a close look on this effect inside the TA device.
The partial pressure near the solid reactant is drastically reduced and
the partial pressure gradient is clearly visible. Similar effects have been
observed by [2,16,17].

The deviations between the idealized assumptions of constant tem-
perature or partial pressure have been studied extensively, for example
by [2,15–18]. A central take-away point of our study is, that it is
possible to quantify these effects by setting up a CFD simulation and
performing a virtual experiment. The results from the virtual exper-
iment can be used to estimate the sample temperature and partial
pressure in situations, when it is not feasible to improve the exper-
imental design to the point where unwanted effects are eliminated
completely and no deviations between the measured or nominal con-
ditions and the actual conditions at the probe occur. Though, this
approach is not meant to replace careful experimentation.

To make the impact on the kinetic model palpable, we used both the
nominal values and the simulated values to derive kinetic models for
the oxidation of Cu2O with the TensorNPK method. Fig. 5 shows the
contributions of conversion, temperature and distance to equilibrium
according to the GKE. The simulated temperature and partial pressure
affects the estimation of the 𝑘(𝑇 ) and ℎ(𝛥eq) terms in the GKE. With
simulated values, the temperature sensitivity is considerably lower than
with nominal values. This is, because high reaction rates are attributed
to higher temperatures when self-heating is taken into consideration
(Fig. 2). A similar observation can be made for the effect of the
equilibrium distance: With simulated values it is less steep in close
proximity to the equilibrium, because high reaction rates are attributed
to smaller distances to the equilibrium.

This larger temperature sensitivity can also be seen in the activation
energies that are derived from the 𝑘(𝑇 ) values: With nominal values the
apparent activation energy is 218.9 kJ/mol; with simulated values it is
197.5 kJ/mol.

The estimation of the contributions to the GKE and the effect on the
fitted models – such as the Arrhenius equation – show a significant
impact of self-heating and reactant depletion. If these effects are not
taken into account when deriving a kinetic model, this can have a
practical meaning for chemical engineering applications. To illustrate
this, we plotted the effective temperature dependency in Fig. 6. It
shows the predicted reaction rate as a function of temperature at fixed
oxygen partial pressures and 𝛼 = 0.5. These curves have been generated
with the Arrhenius function and the second order polynomial fit to
the effect of the equilibrium distance (solid lines in Fig. 5). Note, that
the temperature input values to the kinetic models were in the range
from 1070K to 1200K. The effective temperature dependency beyond
these values is extrapolated. Even though the diagram should not be
overinterpreted for this reason, it is a good illustration of the impact of
self-heating and reactant depletion on the kinetic model nonetheless.
5

Fig. 6. Effective temperature dependency based on the two kinetic models in Fig. 5.
The models were evaluated at 𝛼 = 0.5 and three partial pressures.

Table 2
Coefficients for the heat capacity calculated based on JANAF polynomials taken from
[35].
N2 3.531 01 −0.000 123 661 −5.029 99 ⋅ 10−7 2.435 31 ⋅ 10−9

−1.40881 ⋅ 10−12 −1046.98 2.967 47

O2 3.782 46 −0.002 996 73 9.8473 ⋅ 10−6 −9.6813 ⋅ 10−9

3.243 73 ⋅ 10−12 −1063.94 3.657 68

The most striking difference between the two predictions is that the
model based on enhanced kinetic data shows a much higher reaction
rate peak. In general, the rate is dominated by the exponential Arrhe-
nius function far away from the equilibrium, and then drops sharply
towards the equilibrium. Thus, the later the drop, the higher the peak.
The position of the drop depends mainly on the steepness at which the
equilibrium dependency ℎ(𝛥eq) approaches zero. Fig. 5 shows that the
model derived from simulated values is much steeper and, thus, it fea-
tures higher peaks in the effective temperature dependency. The reason
for this difference in steepness is, that the simulation showed that the
experimental conversion rates need to be attributed to temperatures
and partial pressures much closer to the equilibrium than the nominal
values suggested.

This change of the peak has practical implications: It means that op-
timal (in the sense of highest rate) reaction conditions can be achieved
much closer to the equilibrium than the nominal model would suggest.
In fact, the peak reaction rate can be achieved at about 40K above
the prediction with nominal values. For applications in thermochemical
energy storage, for example, this is good news. If the storage material
can be operated at higher temperatures, the thermal efficiency can be
expected to be considerably higher.

The observations on the CuO/Cu2O reaction system demonstrated
the possible effects of incorporating enhanced data in kinetic model
identification, which could be done in the proposed way for any
gas–solid reaction system. Although careful experimentation is still
indispensable, the suggested approach to couple a virtual experiment
with kinetic model identification paves the way towards more precise
analysis of gas–solid reactions.
Fig. 5. Output of the TensorNPK method using the nominal reaction conditions and the simulated values as input.
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6. Conclusion

Accurate readings of the actual reaction conditions of the sample
are essential for deriving reliable kinetic models. Even if experiments
are conducted meticulously, nominal temperature and partial pressure
values are known to be deviating from the actual conditions at the
sample due to effects such as self-heating and reactant depletion.

These effects are inherent to gas–solid reactions and can never
be eliminated completely. Though, with the presented method, the
deviations can be quantified through a virtual experiment and the
kinetic data can be enhanced. In the virtual experiment the temperature
and partial pressure at the probe-site are determined with a CFD
simulation which also takes into account the effect of the chemical
reaction itself. The key novelty of our approach is that no kinetic model
is required for the simulation. Instead, the reaction is modeled by using
the experimentally determined conversion rates as direct input into the
CFD simulation. In this way, the result of the virtual experiment can be
used for kinetic model identification.

Since the enhanced data does not necessarily obey any simplified
reaction conditions, e.g. isothermal or constant heating rate, a method
to process arbitrary data for kinetic model identification is necessary.

To demonstrate our approach, we applied our approach to the
oxidation of Cu2O and used the TensorNPK method to derive two
inetic models: one using the classical approach with nominal values,
nd one using the reaction conditions directly at the sample calculated
n the virtual experiment. The difference in the derived models can be
ritical for chemical engineering applications such as reactor design.

The results show that virtual experiments are a versatile tool to
nhance experimental results when measured values are expected to
e affected by effects such as self-heating/cooling and reactant deple-
ion/accumulation. However, it is not meant to replace precise exper-
mentation. Carefully planning, preparing and conducting experiments
hould still have highest priority. Our approach allows to quantify non-
dealities in the virtual experiment and incorporate them in the kinetic
odel identification.

ist of acronyms

CFD Computational Fluid Dynamics
DSC Differential Scanning Calorimetry
GKE General Kinetic Equation
NPK Non-parametric Kinetics
TA Thermal Analysis
TGA Thermogravimetric Analysis

ist of symbols

symbol name unit
𝑐𝑝 heat capacity J kg−1 K−1

𝐠 gravitational acceleration m s−2
ℎ enthalpy J kg−1
𝐻f heat of formation J kg−1
𝐾 kinetic energy m2 s−2
𝑝 pressure Pa
𝑆ℎ energy source term J m−3 s−1
𝑆𝑚 mass source term kg m−3 s−1
𝑆𝑢 momentum source term N m−3 s−1
𝑡 time s
𝐔 velocity vector m s−1
𝑊 molecular weight g mol−1
𝑌𝑖 mass fraction of species 𝑖 kg kg−1
𝛼eff effective thermal diffusivity m2 s−1
𝜅 thermal conductivity W m−1 K−1

𝜇eff effective viscosity Pa s
𝜌 density kg m−3

𝜏 deviatoric stress tensor N m−2
6
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