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ABSTRACT
Edge offloading is widely used to support the execution of near

real-time mobile applications. However, offloading on edge infras-

tructures can suffer from failures due to the absence of supporting

systems and environmental factors. We propose a fault-tolerant

offloading method modeled as a Markov Decision Process (MDP)

based on predictions performed through Support Vector Regres-

sion (SVR). SVR is used to estimate offloading service availability,

which is used by MDP for offloading decisions. Our approach is

implement-ed in a real-world test-bed and compared with the de-

fault Kubernetes scheduler augmented with hybrid fault-tolerance.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Computing methodologies→ Distributed computing
methodologies.

KEYWORDS
edge offloading; kubernetes; containers; microservices

1 INTRODUCTION
Offloading applications (or parts of them) on remote surrogate ma-

chines can reduce resource consumption of mobile devices [21].

While offloading delay-tolerant applications on far distanced cloud

servers can increase energy efficiency, (near-)real-time mobile ap-

plications (e.g., augmented virtual reality, live traffic navigation)

requires Edge offloading [14], i.e., offloading to nearby edge de-

vices to address latency constraints [30]. This approach enables

running new emerging consumer-oriented offloading applications.

For instance, web browser can be accelerated by offloading brows-

ing functions (e.g. content caching, optimizing transmission) on

remote edge nodes [24]. It alleviates backhaul network traffic and

can lead to radio network optimization based on real-time and run-

time information for improving network and QoE quality levels

[14]. Previous works [9, 12] provide insights that coupling together

edge computing platform, microservice architecture, and container

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EdgeSys’22, April 5–8, 2022, RENNES, France
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9253-2/22/04. . . $15.00

https://doi.org/10.1145/3517206.3526266

orchestration can provide a modular and loosely-coupled edge ar-

chitecture to address the resource limitations. However, the absence

of supporting systems on the edge devices (e.g., cooling) and envi-

ronmental factors can cause failures that affect offloading [3].

Studies in [10, 18, 28] target edge offloading on a failure-free edge

IoT-enabled infrastructure and stateful vehicles without considering

proactive fault-tolerant measures and real-world experimentation.

Also, research focused on offloading in a failure-prone environment

mostly considered reactive fault tolerance, such as check-pointing

[16] and local re-computing [27], which can cause high execution

delays. Moreover, reactive recovery actions in microservice appli-

cations can cause interference to other services [29]. Work [25]

shows how proactive fault tolerance can improve cloud servers’

performance w.r.t. reactive failure management.

We propose an edge offloading algorithm that employs Markov

Decision Process (MDP) which performs proactive fault tolerance

based on predictions obtained through Support Vector Regression

(SVR). The SVR algorithm predicts offloading service availability

on remote sites and forwards those predictions to the MDP-based

decision engine on a mobile device that synthesizes the offloading

decision policy for task offloading. We select the SVR algorithm

due to its prediction accuracy above 90% for failure time-series

data [15] and its relatively small training dataset [6] w.r.t. deep

neural networks. Also, MDPs allow to model edge offloading due to

numerous offloading service alternatives and stochastic availabil-

ity. Remote offloading services are implemented as micro-services

running in Docker containers and deployed on Kubernetes cluster.

Exposing them as public Kubernetes services through HTTP APIs,

enables them to receive offloaded application tasks from mobile

device where decision engine is placed. The offloading framework is

evaluated on an experimental test-bed and compared to the baseline

Kubernetes scheduler augmented with hybrid fault-tolerance.

Edge offloading is described in Section 2. Then, we describe

offloading framework design and offloading algorithm in Section 3.

Section 4 describes prototype implementation. In Section 5 we

describe evaluation results. Finally, we describe related work in

Section 6 and conclude the paper in Section 7.

2 EDGE OFFLOADING
Edge Offloading is the process of executing an application (or part of

it) to remote computational nodes, to improve performance like con-

serving battery energy supplies and reducing application runtime.

Offloading requires deciding whether and where to offload a task,

depending on task characteristics and network availability [13] and

according to different objectives. To address these issues, [7] envi-

sions three main components on mobile device: (i) system monitor,
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Figure 1: Edge Offloading Framework

which collects resource information about the remote infrastruc-

ture; (ii) application profiler, which extracts tasks and resource

requirements of mobile applications, and (iii) decision engine, which
takes offloading decisions based on other components’ data. How-

ever, the impact of network failures is not considered. Thus, we add

proactive fault tolerance to [7], as opposed to typical approaches

based on reactive fault tolerance [16, 27].

3 SYSTEM DESIGN
3.1 Edge Offloading Framework
We envision an Edge Offloading Framework with the following

components: (i) Decision engine, which computes the offloading de-

cision policy; (ii) Prediction engine, which estimates future service

availability on the remote offloading sites based on local histori-

cal failure trace logs; (iii) Failure monitor, which monitors failures

of local system operations on remote offloading sites; (iv) Failure
detector, which detects failures during execution on remote offload-

ing sites and collects the failure estimation data from prediction

engine; (v) Resource monitor, which collects resource information

about remote infrastructure; (vi) Application profiler, which profiles

resource requirements of underlying mobile applications. Compo-

nents are partitioned between mobile device and remote offloading

sites as summarized in Figure 1.

The edge offloading process is described as following. First, the

failure monitor collects historical failure traces and forwards them

to the prediction engine (step 1a), which estimates service availabil-

ity of each offloading site and sends these data to a mobile device

(step 2a). Simultaneously, the application profiler and the resource

monitor collect data about mobile application requirements and

remote infrastructure capabilities (steps 2b and 2c). These data are

used by the decision engine (steps 3a, 3b, and 3c) for offloading

decisions (Step 4a), based on which tasks are offloaded (Step 5a and

5b).

3.1.1 Application Requirements. We focus on response time (RT)

and mobile device battery lifetime (BL) as in [31]. RT is defined as

the sum of local computation time, uploading, and downloading

data transfer time. Local computation time is defined as a ratio

between CPU Millions of Instructions per Second (MIPS) and the

number of task’s instructions. Data transfer time is defined as a

ratio between data size and network bandwidth plus the network

latency.

BL is defined as the difference between total battery capacity

and runtime energy consumption. Energy consumption is defined

as the sum of local, upload, and download energy consumption.

Each energy consumption component is equal to the multiplication

of time and its power coefficient. We assume 𝑝𝑢 > 𝑝𝑑 > 𝑝𝑐 >

𝑝𝑖 , respectively power consumption for upload, download, local

computation and idle [19].

3.1.2 Offloading Sites. We assume the infrastructure setup of [31],

which allows to address diverse application requirements, i.e., data-

intensive, computational-intensive, and moderate applications. We

assume three Edge nodes types: (i) Edge database server (ED), with
large data storage capabilities and fast network transmission rates

for data-intensive applications; (ii) Edge computational server (EC)
with greater computational power to support computational-intensive

applications such as games and AI, and (iii) Edge regular server (ER)
with intermediate resources suitable for applications that do not

require a large amount of computation or data storage capabilities,

such as live traffic navigation or posting updates on Facebook. Edge

nodes are clustered together with the cloud data center (CD).

3.1.3 Failure Monitor. Failure monitor collects historical system

trace logs on remote offloading sites for availability estimation.

We employ heartbeat failure detection [1] to collect traces. This

approach sends ping messages to remote offloading sites at a fixed

time interval. Offloading site is considered to be unavailable if the

ping is not answered before timeout. Recommended configuration

settings for heartbeat protocols are time intervals of 150 ms and 10

timeouts [1]. Therefore, the offloading site is considered to be un-

available after 1.5 seconds, which captures the network variability

due to different network delays between nodes.

3.1.4 Service Availability Estimator. We select the SVR algorithm

for availability predictions, which provides prediction accuracy

above 90% [15] and requires a small training dataset [6] as opposed

to deep neural networks. The algorithm takes as input historical fail-

ure traces as input and its accuracy depends on hyper-parameters

𝐶 and 𝜖 . Due to the near real-time requirements of our scenario,

we use [5] parameter selection algorithm to reduce response time.

𝐶 is defined in Equation 1 and 𝜖 in Equation 2,

𝐶 =𝑚𝑎𝑥 ( |𝑦 + 3𝜎 |, |𝑦 − 3𝜎 |) (1)

𝜖 = 3𝜎

√︂
𝑙𝑛(𝑚)
𝑚

(2)

where 𝑦 is availability dataset, 𝑦 represents the arithmetic mean,

𝑚 is a dataset sample size and 𝜎 represents the standard deviation

of the dataset. As a kernel solution, we use the Gaussian RBF kernel

function which can estimate time-series data that exhibit non-linear

behavior such as failures.

3.2 Proposed Method
3.2.1 MDP offloading model. We employ offloading MDP in [31],

which is defined as a labeled transition system with: (i) state-space

𝑆 = {𝑀𝐷, 𝐸𝐷, 𝐸𝐶, 𝐸𝑅,𝐶𝐷} representing offloading site where a

current task is offloaded, (ii) action set 𝐴 = {𝑀𝐷, 𝐸𝐷, 𝐸𝐶, 𝐸𝑅,𝐶𝐷}

2



Edge Offloading for Microservice Architectures EdgeSys’22, April 5–8, 2022, RENNES, France

Algorithm 1 Edge Offloading Algorithm

1: procedure EDGE_OFF_ALGO(𝑆,𝐴, 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑎𝑠𝑘𝑠)
2: 𝑒𝑛𝑒𝑟𝑔𝑦_𝑣𝑒𝑐𝑡𝑜𝑟 ← 𝑎𝑟𝑟𝑎𝑦 () ⊲ Store energy consumption of each off. site

3: 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 ← 𝑎𝑟𝑟𝑎𝑦 () ⊲ Store response time for each offloading site

4: for each state 𝑣 in 𝑡𝑎𝑠𝑘𝑠 do
5: for each state 𝑞 in 𝑆 do
6: 𝑒𝑛𝑒𝑟𝑔𝑦 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑛𝑒𝑟𝑔𝑦 (𝑣,𝑞)
7: 𝑡𝑖𝑚𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑚𝑒 (𝑣, 𝑞)
8: 𝑒𝑛𝑒𝑟𝑔𝑦_𝑣𝑒𝑐𝑡𝑜𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑒𝑟𝑔𝑦)
9: 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑖𝑚𝑒)
10: end for
11: end for
12: 𝑠𝑣𝑟_𝑎𝑣𝑎𝑖𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ← 𝑆𝑉𝑅 (𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ) ⊲ Predict availability
13: 𝑃 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑃_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑠𝑣𝑟_𝑎𝑣𝑎𝑖𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 )
14: 𝑅 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑅_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑒𝑛𝑒𝑟𝑔𝑦_𝑣𝑒𝑐𝑡𝑜𝑟, 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 )
15: < 𝜋∗,𝑄 >← 𝑃𝐼𝐴(𝑆,𝐴, 𝑃, 𝑅, 𝑠0) ⊲ PIA returns offloading decision policy

16: return < 𝜋∗,𝑄 >
17: end procedure

Algorithm 2 Edge Offloading Process

1: procedure EDGE_OFF_PROC(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑎𝑠𝑘𝑠)
2: 𝑆 ← (𝑞𝑚𝑑 , 𝑞𝑒𝑑 , 𝑞𝑒𝑐 , 𝑞𝑒𝑑 , 𝑞𝑐𝑑 ) ⊲ Offloading sites

3: 𝐴← (𝑎𝑚𝑑 , 𝑎𝑒𝑑 , 𝑎𝑒𝑐 , 𝑎𝑒𝑑 , 𝑎𝑐𝑑 ) ⊲ Action decisions

4: < 𝜋∗,𝑄 >← 𝐸𝐷𝐺𝐸_𝑂𝐹𝐹_𝐴𝐿𝐺𝑂 (𝑆,𝐴, 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑎𝑠𝑘𝑠)
5: for each state 𝑠 in 𝑆 do
6: 𝑎 ← 𝜋∗ (𝑠) ⊲ for state 𝑠 get best action 𝑎
7: while True do
8: if 𝜆𝑇 (𝑠,𝑎) then ⊲ if offloading fails then consider another action 𝑎

9: 𝑄 ← 𝑄 − {(𝑠, 𝑎) }
10: if 𝑄 = ∅ then return "No feasible solution"

11: end if
12: 𝑎 ← argmax𝑎 [𝑄 (𝑠, 𝑎) ] ⊲ get next best action 𝑎

13: continue

14: else
15: 𝜔 = 𝜔 + {(𝑠, 𝑎) } ⊲ store feasible action 𝑎
16: break

17: end if
18: end while
19: end for
20: return𝜔 ⊲ return feasible offloading policy

21: end procedure

represents the offloading site where to offload next task, (iii) 𝑃

probabilistic state transition matrix representing offloading service

availability, and (iv) 𝑅 matrix of rewards associated with RT and BL.

The goal is to maximize rewards by minimizing RT and maximizing

BL. We use Policy Iteration Algorithm (PIA) [17] to iterate MDP

and find a feasible offloading policy.

3.2.2 Edge Offloading Algorithm. The Algorithm 1 describes the

edge offloading while Algorithm 2 executes offloading decisions. In

Algorithm 1, the loop on lines 4-9 iterates over application tasks

and computes 𝐵𝐿 and 𝑅𝑇 for each offloading site. In line 12, the

SVR algorithm estimates offloading service sites’ availability, based

on the probability matrix 𝑃 which is constructed on line 13. On

line 14, the reward matrix 𝑅 is computed and forwarded together

with MDP’s states, actions, and 𝑃 to PIA, which synthesizes the

offloading policy 𝜋 (line 15). Policy 𝜋 is executed during runtime

by the Algorithm 2. Within the for loop (lines 5-19) offloading is

performed. If the target offloading site fails during runtime, of-

floading is classified as failed (line 8) and the next alternative is

considered (line 12). The algorithm terminates when offloading is

successful (lines 15-16) and returns a feasible offloading policy (line

20) or when no service site is available (line 10) and returns an error

message.

Table 1: Experimental Setup

Hardware specifications
Node Type CPU RAM

[Gb]
STORAGE
[Gb]

Huawei P Z (mob.) Quad-core ARM Cortex-A53 1.7 GHz 4 64

RPi 3B+ (master) Quad-core ARMv7 at 1.4GHz 1 64

RPi 3B+ (ED) Quad-core ARMv7 at 1.4GHz 1 64

RPi 3B+ (EC) Quad-core ARMv7 at 1.4GHz 1 64

RPi 3B+ (ER) Quad-core ARMv7 at 1.4GHz 1 64

AMD64 (cloud) 48-core Intel Xeon E5-2650 v4 @ 2.2GHz 128 1000

4 PROTOTYPE IMPLEMENTATION
4.1 Cluster Networking
The Raspberry Pi (RPi) single-hop away edge nodes provide wire-

less connectivity to nearby mobile devices. Configuration requires

installation of local DHCP and DNS servers which provide control

over mobile IP address space.

Deploying the Kubernetes cluster over the public and private

IP subnets is not straightforward. To address firewall and NAT

translation issues, we deploy the private virtual networking solution

called OpenVPN, which provides point-to-point communication

and shared virtual IP address space.

4.2 Micro-service Containerization
We developed our microservices using Python 3.6 programming

language and containerized them using Docker. We use the buildx

command-line interface (CLI) plugin that utilizes machine processor

emulator QEMU to build a common Docker container image for

both CPU architectures available in the cluster, i.e., RPi ARMv7 and

AMD64.

Micro-services on the mobile device are developed using Python

Kivy mobile cross-platform frameworkWe developed it as a Python

application for Android OS mobile devices. These microservices do

not have to be containerized. However, microservices can be placed

on the dedicated offloading site instead (as part of the Kubernetes

cluster) to reduce mobile devices’ resource consumption.

4.3 Service Deployment
Since offloading requests are performed by mobile devices through

HTTP, we deploy Flask web service on each offloading site. Flask

provides necessary web services without additional third-party

components. We instantiate it as an additional microservice on

the remote offloading site, together with the failure monitor and

prediction engine, on a single Kubernetes pod. Each pod has its

unique virtual IP address dispatched by the Flannel Container Net-

working Interface (CNI) plugin. We also employ the NGINX reverse

proxy to redirect HTTP requests to appropriate offloading services.

Combining NGINX web service on the Kubernetes cluster level

with Flask micro web services on the offloading site, we can expose

offloading sites to mobile devices.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We evaluate our edge offloading framework on the test-bed de-

scribed in Table 1. Infrastructure setup is summarized in Figure 2:

Huawei P Smart Z is a mobile device; RPis are edge nodes, deployed
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Figure 2: Infrastructure Overview

(a) AMD64 Cloud Server (b) Edge Infrastructure

Figure 3: Hardware Infrastructure for the Experiments

as in Figure 3b and AMD64 in Figure 3a is used to simulate a cloud

data center. Resource heterogeneity is simulated by defining hard-

ware and network limitations, as in [31]. They are parameterized

in the clusters’ PostgreSQL database as experimental input parame-

ters. When offloading micro-service is deployed on the Kubernetes

cluster, it connects to the database and retrieves the resource infor-

mation based on which resource capacity of the underlying site is

specified.

Edge nodes and the cloud server are integrated into a single

Kubernetes cluster while a mobile device is implemented as an

external user. One of the RPi edge nodes is configured as a master

node and the other nodes are configured as worker nodes where

offloading micro-services are deployed and implemented as Docker

containers. They are deployed according to the node labeling sys-

tem. Each node in the Kubernetes cluster has a certain label that

represents a node type. For instance, if we want to mark a certain

node as an edge database server for handling data-intensive ap-

plications, the node is labeled as edge database, and inserted into

Kubernetes deployment manifest file.

The mobile applications used in the evaluation are Directed

Acyclic Graphs (DAGs) taken from [7, 31], namely (i) Facebook, (ii)
GPS navigation, (iii) Facerecognizer, (iv) Antivirus, and (v) Chess. The
mobile applications are sampled according to a probability distribu-

tion taken from [8]. The simulated workload is utilized since the

real application would require application partitioning and profil-

ing mechanisms, which are out of the scope of this paper. To offload

the simulated DAG workload on the remote Kubernetes offloading

service site, the JSON serialization is performed. It converts task

objects into byte strings which are necessary to transfer the data

via a network to the target offloading service site. On the recipient

Table 2: Dataset configurations

Dataset configurations
Service DS1 DS2 DS3 DS4 DS5
ED HA (7_1) MA (5_158) HA (5_165) HA (5_243) HA (5_48)

EC LA (19_1) MA (19_11) MA (19_4) HA (19_8) HA (20_41)

ER HA (3_0) HA (16_80) MA (4_55) MA (4_1) HA (4_3)

CD HA (22_0) HA (22_0) HA (22_0) HA (22_0) HA (22_0)

site, JSON deserialization is performed to acquire the original task

object from which it extracts all necessary resource information.

To simulate failures on remote offloading sites, we implement a

two-state Markov state machine. This kind of on/off (failure/non-

failure) model is used to simulate network intermittent channels

where simplicity is preferred over complexity [4]. The probabilistic

availability distribution is extracted from the local failure dataset

Los Alamos National Laboratory (LANL) for HPC clusters [22].

We adopted this dataset since it shares some characteristics with

edge computing, i.e., distributed architecture, a large number of

nodes, and heterogeneous resources. Possible limitation of using

the HPC dataset for the edge is that it probably cannot replicate the

edge behavior completely. HPC cluster nodes usually have superior

resources, equipped with additional support systems (e.g. fan units,

backup power generators) and interlinked with high-speed network

connections where in edge could not be the case. We pick several

nodes from the dataset to compute availability distributions for each

offloading service (Table 2). The nodes are categorized according to

their availability levels as low (LA), medium (MA), and high (HA)

based on failure rates, and mean and deviation of their availability

distribution. Their hardware characteristics are the second selection

criteria. For instance, nodes from systems 5 and 7 are selected for the

ED edge node due to a large number of nodes (larger data storage).

The nodes are named <systemID_nodenumber> where both index

numbers are obtained from the original dataset. They are split into

train and test data in a proportion of 80%-20% as the general rule of

thumb practiced in ML community. The nodes from systems 5 and

7 are most suitable to the ED edge node due to a large number of

nodes (larger data storage). The EC node is sampled from nodes of

systems 19 and 20 which have a higher ratio of processors per node

(higher computational power). ER edge node is sampled from 3, 4,

and 16 systems due to a lower processor per node ratio, a minimum

quantity of network interface cards, and a moderate number of

nodes compared relatively to the ED and the EC nodes. The cloud

is sampled only from 22 system since it has a single node with the

highest processor per node ratio and RAM capacity in the entire

dataset.

For statistical significance, we set application runs to 1000 and

average results of 100 executions. Results are compared with the

solution in [31], which emulates default Kubernetes greedy multi-

criteria decision-making (with adjusted parameter tuning) and

estimates availability levels through mean-time-between-failures

(MTBF). Moreover, it is augmented with re-computing and check-

pointing and named KubeHybrid as a Kubernetes hybrid (proactive-

reactive) decision-maker. The source is available online
1
.

1
https://github.com/jzilic1991/edge-offloading/tree/master
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Figure 4: Application response time Figure 5: Mobile battery lifetime Figure 6: Service availability

5.2 Results
Figures 4, 5 and 6 illustrates results for RT, BL and availability re-

spectively. Our solution outperforms the KubeHybrid in all three

objectives. There is a strong correlation between the three objec-

tives since higher service availability increases BL and decreases

RT. This is explained by the necessity of re-transmitting offloading

tasks in case of offloading failures, which consumes additional mo-

bile devices’ resources. Hence, higher availability ensures more BL

and shorter RT. In our evaluation, we consider also offloading dis-

tribution, i.e., the number of tasks offloaded per offloading service

site.

Figures 4, 5 and 6 depict that for DS1 configuration our solution

achieves around 600 seconds RT, 98.4% BL, and 99.6% availability

against the KubeHybrid with 760 seconds RT, 98.15% BL, 98.6%

availability. According to offloading distribution, our solution of-

floaded around 50% of tasks to EC, completely avoiding Cloud (0%

distribution) while ER receives less than 0.1% distribution. Other

tasks are offloaded either on a mobile device or an ED service.

Despite lower availability, the prediction engine predicts service

availability accurately enough to select EC service for timely task

offloading. Moreover, 50% implies that not only CI-intensive tasks

are offloaded but also moderate tasks. This is because ER has a

lower CPU than EC. The KubeHybrid algorithm, on the other hand,

relies on a cloud distribution of 2.9%, while edge services are con-

sumed proportionally to their resource availability. ED is the most

used (31.7%), ER is moderately utilized (17.8%) while EC is the least

used edge service (7.9%). KubeHybrid depends on an average MTBF,

which reduces the prediction accuracy. The SVR algorithm, on the

other hand, generally, did yield in our experiment the prediction

accuracy between 55% and 90% measured in R2, so-called the good-

of-fitness metric. It is widely used in statistics to measure accuracy

in predicting future outcomes and usually preferred since it is more

intuitive and informative then other metric alternatives.

For DS2 and DS5 configurations, our solution achieves offloading

distribution and prediction accuracy similar to DS1, which indicates

adaptability towards different availability distributions. However,

in DS4 configuration ED is the most utilized service, with 37%

offloading distribution, due to its high availability and resource

capabilities. The second most utilized service is EC since it has

more hardware capabilities than ER service. In our approach, none

of the tasks are offloaded to the Cloud. The KubeHybrid approach,

instead, prefers ED service the most (26%) but cloud service is the

second most utilized (15%). When ED service is unavailable, data

intensive tasks are offloaded to the cloud. However, the higher

Table 3: Overview of state-of-the-art literature

Publication MSA OFF PRO ORCH REAL

Suk et al. [23]

Aral et al. [2]

Zilic et al. [31]

Dupont et al. [9]

Tang et al. [26]

Wu et al. [29]

Samanta et al. [20]

This work

latency results in its worst performance of around 950 seconds RT,

97.5% BL, and 97% availability.

6 RELATEDWORK
Mostly reactive failure management techniques has been discussed

in the related edge computing literature thus far. The authors in [12]

perform container checkpointing at the edge to ensure high service

availability while [16] checkpoints the applications offloaded on the

offloading sites. Another work [27] locally re-computes offloaded

tasks on a mobile device when task offloading fails. Research con-

ducted both in simulated [7, 8, 11] and real-world edge environment

[26] do not consider proactive failure mitigation. Failure prediction

approaches such as [6, 15] proved the effectiveness of proactive

failure management, but these approaches are neither applied at

the edge nor on a real-world test-bed.

There exists few studies focusing on proactive failure manage-

ment. They propose risk based [23], learning based [2, 3], or formal

verification based [31] solutions. Nevertheless, none of these con-

sider microservices. We summarise our literature review in Table

3. The works are selected according to whether they focus on mi-

croservice architecture (MSA), edge offloading (OFF), proactive

failure prediction (PRO), container orchestration (ORCH), and real-

world implementation (REAL). We conclude that to the best of our

knowledge, none of the selected works covers all aforementioned

objectives.

7 CONCLUSION AND FUTUREWORK
We designed a proactive fault-tolerant edge offloading microservice

which allows to reduce application response time and increase mo-

bile battery lifetime. Our solution outperforms default Kubernetes

scheduler, augmented with hybrid fault tolerance. Experimentation

was conducted on a real-world edge-cloud testbed and showed

5



EdgeSys’22, April 5–8, 2022, RENNES, France Josip Zilic, Vincenzo De Maio, Atakan Aral, and Ivona Brandic

great promise for the failure prediction in edge offloading. The web

link to the experiments’ source code is provided in the paper.

In the future, we plan to apply runtime failure injection to eval-

uate edge offloading performance under stress instead of the two

state model used in this work. Utilisation of edge-related traces

for the evaluation of the approach would strengthen the evalua-

tion. Operating computation-intensive software, such as a decision

engine, on the mobile device can hinder offloading benefits. As a

consequence, we will investigate placing the decision engine at the

Edge. Infrastructure providers might deploy more powerful edge

nodes (i.e., micro data centers) to address lower reliability of RPis.
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