
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Ableitung eines technischen
Prozesses zur Modernisierung

der Softwarearchitektur von
Kernbanksystemen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Alexander Gruber, BSc
Matrikelnummer 0625633

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.nat. Dr.techn. Rudolf Freund

Wien, 19.12.2019

 (Unterschrift Verfasser) (Unterschrift Betreuer)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Deduction of a Technical Mod-
ernization Process for the

Software Architecture of Core
Banking Systems

MASTER THESIS

submitted in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Alexander Gruber, BSc
Registration Number 0625633

to the
Faculty of Informatics at the TU Wien

Supervision
Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.nat. Dr.techn. Rudolf Freund

Vienna, 19.12.2019

 (Signature of Author) (Signature of Advisor)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der Arbeit

Alexander Gruber, BSc
Maxingstraße 22-24/1/18, 1130 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten

Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als

Entlehnung kenntlich gemacht habe.

Wien, 19.12.2019 ---
 Alexander Gruber, BSc

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

“… Greed has poisoned men’s souls, has barricaded the world with hate, has goose-stepped us

into misery and bloodshed. We have developed speed, but we have shut ourselves in. Machinery

that gives abundance has left us in want. Our knowledge has made us cynical. Our cleverness,

hard and unkind. We think too much and feel too little. More than machinery we need humanity.

More than cleverness we need kindness and gentleness. Without these qualities, life will be violent

and all will be lost. ...”

Extract from The Great Dictator’s Speech – Charlie Chaplin 1940

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgement

First of all, I would like to thank DI Wolfgang Gruber, an experienced software architect, who

provided me with valuable architectural input. I would also like to thank DI Herbert Geisler, an

expert of Core Banking Systems who looks back on more than forty years of experience in the

area of electronic banking support. Furthermore, I would also like to thank Ing. Josip Sagaj, an

outstanding and inspiring software architect with a focus on Mainframe modernization. Without

his visionary way of thinking and guidance, this thesis would have never been possible. Further-

more, I would also like to thank Dr. Bernhard Schäbinger, who possesses a vast amount of expert

knowledge on Core Banking Systems as well as general banking concepts and who supported me

with invaluable sources of literature. I also thank my former colleagues in the banqpro/ project,

especially Mag. Klemens Wolf and DI Viktor Hideghety. They supported me through my journey

to gain knowledge and expertise in Core Banking Systems and allowed me to gather the

knowledge and insights necessary to create this thesis. I would like to especially thank Viktor,

who is one of the greatest mentors I have ever met. And also special thanks to Nilofar Horr, BSc,

a native speaker in English and studied computer scientist, who carefully read and thought through

my thesis and lectured it for me.

Of my private acquaintances and relatives, I would like to thank my parents Ernst and Inge

Gruber, who made me the person I am and who always encouraged me to think critically and to

learn as much as possible. Finally, I would also like to thank my friends and the people who I met

throughout my studies for their support.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

In den vergangenen Jahren wurde der Bankensektor mehr und mehr mit der Herausforderung

konfrontiert, dass Kernbanksysteme (KBS), die ihren technologischen Ursprung in den 1970er

und 1980er Jahren haben, mit heutigen Bankentrends wie Cloud Banking, Omni Channel Banking

oder der Digitalen Bank immer weniger mithalten können. Durch jahrzehntelange

Weiterentwicklungen wurden aus diesen Kernbanksystemen sehr oft gewachsene, komplexe

Softwaremonolithen, die sich u.a. aufgrund ihres breitgefächerten Technologiestacks nur unter

schwierigsten Bedingungen und mit großem Ressourcenaufwand modernisieren lassen. Um für

dieses Problem eine Lösung zu bieten, beschäftigt sich diese Diplomarbeit zum einen aus einer

wissenschaftlichen Perspektive mit dem Thema KBS und versucht diese formal zu definieren.

Zum anderen wird ein generischer, technischer Modernisierungsprozess entwickelt, der Banken

und KBS-Herstellern dabei helfen soll ihre Systeme architektonisch in ein zeitgemäßeres

Framework zu transformieren. Der Prozess ist zyklisch aufgebaut und besteht aus acht

Prozessschritten, die jeweils einen individuellen Modernisierungskreislauf für jede funktionale

Komponente eines KBS bilden. Als Zielarchitektur wird die BIAN (Banking Industries

Architecture Network) Service-Landschaft verwendet, wobei der entwickelte Prozess die

Flexibilität behält auch andere Zielarchitekturen zu verfolgen. Dieser Modernisierungsprozess

wird im Laufe dieser Diplomarbeit durch die Anwendung auf ein exemplarisches, veraltetes

Kernbanksystem sowie durch qualitative Interviews mit Experten im Feld von KBS evaluiert.

Schlagwörter: Kernbanksystem-Modernisierung, Architektur Modernisierung,

Modernisierungsprozess, Software Architekturen, Software Evolution

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

In recent years the banking sector often faces the problem that outdated Core Banking Systems

(CBS), which have their technological roots in the 1970s and 1980s, hamper their technological

and strategic development, especially in connection with ongoing trends such as cloud banking,

omnichannel banking, and the “Digital Bank”. Due to constantly added extensions and modifica-
tions CBS often became grown monolithic systems, with a large degree of complexity and an

extensive technology stack, which render their modernization a difficult and resource-intensive

task. To help overcome these problems, this thesis defines Core Banking Systems formally and

explores them from a scientific perspective. Furthermore, it develops a generic, architectural mod-

ernization process, which shall help banks and CBS vendors to transform their systems into an

updated state of the art framework, which satisfies their current and future strategic requirements.

The process is built in a cyclic way and contains eight sub steps, which form an individual mod-

ernization lifecycle for each functional module of a CBS. As a target architecture, the BIAN

(banking industries architecture network) is utilized, whereas the developed process retains the

flexibility to pursue other target architectures as well. This modernization process is particularly

designed for the needs of Core Banking Systems and evaluated through the application of the

process to an exemplary outdated CBS as well as through the qualitative review of experts in the

field of CBS.

Keywords: Core Banking System Modernization, Architectural Modernization, Modernization

Process, Software Architectures, Software Evolution

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 I

Contents

Contents .. I

List of Illustrations ... IV

List of Tables .. V

1 Introduction ... 6

1.1 Problem Statement ... 6

1.2 Motivation ... 7

1.3 Aim ... 8

1.4 Thesis Structure .. 9

2 State of the Art and Related Work .. 11

3 Foundations .. 17

3.1 Core Banking Systems ... 17

3.1.1 Definition ... 17

3.1.2 Historical Development ... 18

3.1.3 Modernization Challenges ... 19

3.1.4 Functionality .. 20

3.2 Software Architectures .. 31

3.2.1 Defining Software Architectures .. 31

3.2.2 Quality Attributes of Software Architectures .. 33

3.2.3 Elements of a Software Architecture ... 34

4 Modernization of Core Banking System Architectures .. 50

4.1 Modernization Approaches for Software Architectures 50

4.1.1 Architecture Options Workshop (AOWS) ... 50

4.1.2 Model Driven Software (Architecture) Modernization 51

4.1.3 Architecture-centric software evolution (ACSE) 53

4.2 BIAN – A Standard for Modern CBS Software Architectures 55

4.3 Architectures of existing CBS .. 61

4.3.1 Avaloq ... 61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 II

4.3.2 Finnova ... 63

4.3.3 Temenos ... 67

4.3.4 Oracle Flexcube .. 72

4.3.5 Finacle .. 76

4.4 Analysis of existing CBS ... 79

4.4.1 Weakpoints vs. Strongpoints ... 79

4.4.2 Comparison and Resume.. 81

4.5 Exemplary Architecture of a CBS .. 83

4.5.1 Functional Overview .. 84

4.5.2 Functional Architecture ... 85

4.5.3 Logical Architecture... 91

4.5.4 Implementation Architecture .. 93

5 Proposed Technical Modernization Process for a CBS 95

5.1 The Process Steps .. 97

5.1.1 Assess existing business service domains .. 97

5.1.2 Assess existing CBS functionality ... 98

5.1.3 Create a target architecture according to the BIAN. 100

5.1.4 Define the available modernization instruments 103

5.1.5 Map existing functionality to the modernization instrument 106

5.1.6 Create a modernization strategy ... 109

5.1.7. Deliver a PoC and test it ... 109

5.1.8. Extend the PoC and retest it ... 110

5.1.9. Keep up the modernization work. .. 111

5.2. Process Properties .. 112

5.3. Advantages and Disadvantages .. 115

6. Evaluation of the Modernization Process .. 118

6.1. Applying the Modernization Process on the exemplary Architecture 118

6.1.1. Assessment of existing Business Service Domains 118

6.1.2. Assessment of existing CBS functionality .. 119

6.1.3. Creation of a Target Architecture .. 122

6.1.4. Selection of modernization instruments ... 125

6.1.5. Mapping of existing functionality to modernization instruments 126

6.1.6. Creation of a modernization strategy ... 127

6.1.7. Creation of a PoC, Testing and PoC Extension 127

6.2. Expert Interviews .. 128

7. Summary, Results and Outlook .. 134

7.1. Summary .. 134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 III

7.2. Scientific Results and added Value ... 136

7.3. Outlook ... 138

References .. i

A. Literature ... i

B. Weblinks .. viii

Appendix .. xiii

A. Expert Interview .. xiii

B. Interview Transcripts ... xiv

B.1. Interview 1 .. xiv

B.2. Interview 2 ... xxii

C. Exemplary Application Baseline Blueprint ... xxix

D. Mapping Legacy CBS Modules to the BIAN Service Landscape xxx

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 IV

List of Illustrations

Illustration 1: The 4+1 Model of Views .. 35

Illustration 2: The Proxy Pattern ... 46

Illustration 3: The Master-Slave Pattern ... 47

Illustration 4: Schematic Overview of the MDA approach .. 53

Illustration 5: The ACSE process ... 54

Illustration 6: The Overall Service landscape of the BIAN [88] ... 56

Illustration 7: Credit Assessment Scenario according to BIAN ... 57

Illustration 8: The Overall Architecture of Avaloq [80] .. 63

Illustration 9: Finnova's Overall Architecture [81] .. 67

Illustration 10: The prospected Overall Architecture of Temenos [82] 70

Illustration 11: The Deployment View of Temenos [82] .. 71

Illustration 12: Functional Overview of the T24 Core Module [82] 72

Illustration 13: The Layered Architecture of Flexcube [89] .. 73

Illustration 14: The Functional Topology of Flexcube [89] ... 75

Illustration 15: The layered Architecture of Finacle [90] ... 77

Illustration 16: The Functional Architecture of Finacle [90] .. 78

Illustration 17: The Functional Architecture of the outlined CBS 85

Illustration 18: Overview of the proposed Modernization Process 97

Illustration 19: Application of the BIAN standard [91] ... 100

Illustration 20: Exemplary Organization of a Bank .. 119

Illustration 21: Resulting Target Architecture after the Application of the BIAN 124

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
file:///C:/Alex/Sicherung%20HP%20Notebook/Uni/DA%20Alex/DA_Alex_Gruber_corrected_20191008.docx%23_Toc22061157

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 V

List of Tables

Table 1: High Level Benchmark Result of existing vs. required Functionality 121

Table 2: Mapping of the application baseline blueprint against the BIAN Service

Landscape ... 123

Table 3: Exemplary Application Baseline Blueprint .. xxx

Table 4: Detailed Mapping of the Legacy CBS modules against the BIAN Service

Landscape .. xxxiv

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 6

1 Introduction

1.1 Problem Statement

Today, there are different Core-Banking-Systems (CBS) on the market, which are fitted to the

requirements of their customers. These customers are usually banks of various sizes, which either

cover the entire field of banking in the broadest sense or which are focused on certain sub-

branches of banking. The first commercial banking systems emerged with the digitization of the

banking business in the 1970s and 1980s. At these times they were drafted and implemented with

the technological and architectural means which were available then. Programming languages

like COBOL, FORTRAN or IBM’s RPG belong to these technologies. Furthermore, the interac-

tion of these technologies were realized according to their technological characteristics.

With the introduction of newer technologies like the first version of C and C++, the implemented

components and their functionality were kept as they were. New functionality was often added in

newer languages with new functional aspects. This approach was continued for the following

decades, with the effect that the technology stacks of certain core banking vendors became more

and more extensive. In fact, this resulted in CBS vendors today, who offer Core-Banking-Solu-

tions which still contain components based on technologies of the 1970s [84, 93]. As these ven-

dors are usually profit-oriented and are also subject to commercial competition, they mainly spend

their financial- and workforce resources in the implementation of functional added value, in ac-

cordance with the requirements of their customers. On the one hand, this is done in order to satisfy

customer demands and on the other hand their intention is to remain competitively advanced in

comparison to their direct business rivals. Correspondingly they spend little effort in the mainte-

nance and continual modernization of their existing source code and the underlying architecture.

Instead, components that have become technologically and conceptually outdated are wrapped in

newer technologies and remain untouched for years according to the slogan “never touch a run-
ning system”. However, the long term problem emerging from this situation is a decreasing main-

tainability of the old components, which is especially emphasized by the natural reduction of

experts in these fields through retirement and staff fluctuations. Besides that, although CBS exist

since decades they are scientifically a rather unexplored field, as they are very diverse in their

functionality and mainly industry-related.

To overcome these problems, it is necessary to investigate CBS scientifically and to outline a

formal definition of the term “Core-Banking-System”. This consists of a description what a CBS
is, what its purpose is and which functionality it should generally contain. Furthermore, it is also

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 7

necessary to develop a process concept for the architectural modernization of CBS. The process

concept will offer CBS vendors a roadmap, which enables them to modernize their CBS with a

low amount of financial and human resources. In order to handle these requirements, this thesis

will be focused on the two following scientific questions:

1. What is a Core-Banking-System, what is its functionality and what is its aim?

2. How could an admissible technical process concept for the modernization of a core bank-

ing system look like?

Based on these two scientific issues, this thesis is set in the scientific field of software engineering

with a special focus on software architectures, and software modernization within the context of

core-banking-systems in their entire functionality.

1.2 Motivation

The motivation behind this work lays in the business environment to which CBS are exposed. A

CBS is a product that is mainly used in banks [53, 54], specialized credit institutions and in parts

in insurance companies. These companies are subject to the regulatory measures of their respec-

tive financial market authorities. Both they and their governments issue regularly issue new laws

which are to be obeyed by the credit institutions, as they would otherwise run into the danger of

legal actions against them and possibly losing their banking license in the end. As CBS belong to

the core IT-based tools for credit institutions to handle their daily processes, it is of crucial im-

portance for CBS vendors to provide products, which fulfill the legal banking requirements of the

respective countries. Especially after the financial crisis from 2007, which was to a big extent

triggered by the banking sector, legal authorities strongly increased their surveillance of the fi-

nancial market, which in turn meant that the number of new regulatory requirements increased

respectively [35]. Consequently, CBS vendors are obliged to change their products more often in

addition to the usual functional requirements which are demanded by their customers. That im-

plies in turn that CBS and their architectures need to be more flexible to changes [55]. In order to

gain more flexibility, CBS components need to increase their maintainability, scalability and tech-

nological independence. Hence it is of strategical importance for architecturally and technologi-

cally outdated CBS to modernize their software in order to remain competitive on the market in

the longer term. A common problem during the modernization of a software component is the

extensive amount of time-, personal- and financial resources that need to be invested initially.

This is also a reason why CBS vendors avoided modernization attempts of existing functionality

but rather invested into the creation of added abilities for the customer. However, the moderniza-

tion of software components as well as the architecture reduces maintainability costs in the longer

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 8

term and decreases the costs which are necessary to adapt existing functionality to new require-

ments. Another advantage of a consistent modernization process is the definition of a common

product target software architecture, which defines a consistent technological thread throughout

the product. In addition, a consolidated modern architecture reduces the complexity of the CBS

software framework as a whole and is a better technological starting point for new functionalities,

which in turn yields a higher competitiveness to vendors.

1.3 Aim

The main goal of this work is the deduction of a technical modernization process, which shall

serve as a high-level guideline to CBS vendors, how existing old functionalities and software

architectures may be renewed to a modern architectural CBS standard. To achieve this goal, a

foundation shall be described which contains a description of CBS as well as software architec-

tures in general. Also, a theoretical overview of existing software architecture modernization pro-

cesses as well as the banking industries architecture network (BIAN) as a state-of-the-art standard

shall be given. The BIAN [88] is a worldwide industrial framework that seeks to reduce interop-

erability issues between banks through promoting a common service landscape.

On this theoretical basis, existing CBS shall be examined and evaluated in terms of their archi-

tecture, in order to outline the current status on the market, in the context of CBS architectures.

Afterwards, the examined architectures shall be discussed and compared to each other in order to

find out their architectural strengths and weaknesses. Finally, an exemplary software architecture

shall be described, which shall serve as an example for a proposed technical modernization pro-

cess. This process shall then be evaluated and critically reviewed as the main result of this thesis.

Another major aim that is intended to be achieved in the course of this work is the scientific

exploration of CBS in general. Up to now, a core banking system is usually seen as a “software
product”, which is highly industry- and practice related. Hence, they are functionally a rather

diverse product, as there exists no CBS which contains the same set of functions as another. From

a scientific perspective, a CBS may also be seen as an information system in the context of a bank,

which usually covers its core processes and transforms its key data. But nevertheless, with the

ongoing digitization of the banking business, CBS further extend their (already crucial) im-

portance within the banking system. This is, in turn, a profound justification to create a common

description for the term “Core Banking System”, which shall set it apart from other systems under
the hypernym “Information System”. To achieve this, a formal definition of CBS shall be at-

tempted, which will subsequently be complemented with a characterization of its main submod-

ules and their respective functionality. Furthermore, functions that are typically included in its

subcomponents shall specifically be outlined.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 9

1.4 Thesis Structure

The overall structure of this thesis is divided into seven main chapters, which cover the topics

around modernizing CBS on an architectural level from different technical aspects. Chapters two,

three and four, are the theoretical part of this thesis and address Core Banking Systems, software

architectures, and modernization from different aspects. They are also the foundation for chapter

five, which is the practical section and contains a self-developed modernization process that could

be used as a blueprint for the modernization of CBS. The aforementioned process is then evalu-

ated in chapter six followed by chapter seven where a summary of the derived results of this thesis

and a brief outlook is presented.

Within the theoretical section, chapter two gives a short overview of the current advancements in terms

of modernizing software architectures, information systems and in particular CBS. Chapter three de-

livers a theoretical basis for the subsequent content and focuses especially on the terms “Core Banking
Systems” as well as “Software Architectures” from a general point of view. First, an endeavor to

scientifically capture the term Core Banking System and then a formal definition for this term is at-

tempted. This is especially important as Core Banking Systems are still hardly addressed from a sci-

entific point of view, despite their growing importance in the banking industries. After their definition,

chapter three outlines and describes the core functional components forming a CBS as a whole. These

functional components are not always contained in every Core banking product, but they are the func-

tionality which is frequently found within a CBS. Next, the term “software architectures” is described
(not defined as there already exist several scientific definitions for that term) and the criteria that are

considered to make good software architectures are discussed. Afterwards, the elements of a software

architecture are explained using the example of the 4 + 1 model of views, containing a conceptual,

module, process and physical view, which are then completed by scenarios. Within chapter three

different architectural styles and principles, as well as patterns, are characterized in order to com-

plete the theoretical basis from a general perspective. The knowledge base of chapter three is the

foundation of chapter four which distinguishes the connection between the previous terms and

addresses modernization in the context of Core Banking System architectures specifically. To

begin with, this chapter first summarizes selected architectural modernization approaches. Next,

the difference between architectural modernization and software modernization is highlighted as

it is a crucial aspect of the modernization process. More specifically, the focus of this chapter is

the Architecture Options Workshop [35], model driven software- and architecture modernization

[45, 46] and architecture-centric software evolution [35, 47]. Next, the chapter addresses “Bank-
ing Industries Architecture Network” (BIAN) [95], which is a standard for the architecture of

CBS and may be used as a target architecture for the suggested modernization process. Its features

and general characteristics are outlined. Following this, chapter four evaluates the architectures

of five existing CBS based on public sources. The selected CBS are very different in their char-

acteristics and are in parts “grown systems” and in parts architecturally designed from scratch.
The main findings of the evaluation will then be summarized within the lessons learned section

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 10

of the chapter and the CBS architectures will be compared to each other. The final subsection of

chapter four contains an exemplary but fictional architecture of a CBS, which is used as an ex-

ample for the evaluation of the subsequent modernization process.

Chapter five is the core part of this thesis and uses the previously gathered knowledge to create

an innovative and self-developed modernization process which shall outline a potential mecha-

nism for the modernization of Core Banking Systems, independent of their size, as well as func-

tional- or technical constraints. The process is tailored to the specifics of CBS and consists out of

several sub-steps, which are in parts recurrent. Chapter six evaluates the modernization process,

which in itself is a two-step process. First, the process will be applied to the exemplary CBS

architecture which was described in chapter four. Within that application, a demonstration of how

the process fits a CBS is given and its strengths and potential weak points will be discussed.

Second, the process will be presented to a number of software architect experts who have expert

knowledge in the field of CBS and rely on decades of practical experience. They will be asked

for their opinion under the use of a qualitative survey. The results will then be summarized at the

end of chapter six.

Lastly, chapter seven summarizes the results of the previous chapters and provides an outlook

into the future.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 11

2 State of the Art and Related Work

The architectural modernization of Core Banking Systems, is a field which is not generally new,

but it has not yet been examined intensely from a scientific point of view. Hence, the scientific

works, which directly address the modernization of software architectures, in the context and with

the specifics of Core Banking Systems that exist, are very limited.

However, there is related scientific work which covers similar fields such as the modernization

of software architectures [50] in general, the modernization of software, software evolution in

general and also the modernization of Information Systems [51, 52] as a hypernym of the term

Core Banking System. Nevertheless, despite the lack of scientific coverage, considerable effort

from different CBS vendors can be seen as the modernization of their products becomes an in-

creasingly pressing need over time. In that context, this problem is addressed in a different way

by vendors as opposed to the scientific community in that they use a much more practically ori-

ented approach.

In the area of software engineering different approaches exist for the development of general

software architectures. In the recent twenty years, software architectures have been developed for

distributed software architectures as well as cloud environments (Aksit [1], Gomaa [2] and

Schmidt et al [3]). These approaches are also subject to changing environmental requirements

which lead to the development of different architectural patterns, such as micro services as the

successor or extension to service oriented architectures. They are also influenced by the growing

demand for flexibility as well as interconnectivity between different systems. Furthermore, the

ongoing digitization within the industries results in extending the scale of software systems and

corporate IT-landscapes, which in turn implies a growing complexity. From the perspective of

software development, architectures are also affected by development trends such as Open Source

development, model driven development, new disruptive technologies and technological-sche-

matic changes (e.g. the introduction of NoSQL).

Besides changing software architectural paradigms, information systems (Bernus et al [4], or

Scheer [5], Moto-Oka [6]) are also a field which has gained more and more importance since

these systems generally enhance the global trend to computerized data processing in different

industries. They are the hypernym of core banking systems, and can be roughly defined as “… a
group of components that interact to produce information” (Kroenke, 2013, Page 9) [7]. They

outline systems, which are used to transform information in order to complete the business pro-

cesses of an organization such as a company, a department or a public community. Information

systems exist in different contexts, a few examples are; hospital information systems, marketing

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 12

information systems and generic management information systems. Among others in the course

of the ongoing digitization of companies, these systems begin to become an integral part of com-

pany’s IT infrastructures and from a technical perspective, they often consist out of various hard-

and software components which are only loosely coupled with each other. In general, there is

scientific work available which focuses on information systems and dates back to as far as the

1980’s like the article of Pawlak [8], who attempted to lay out the theoretical foundations of

information systems in general. Books addressing information systems were also already issued

at that time discussing formal principles of an IS (e.g. Wood-Harper et al [9]). Nevertheless since

then, information systems have emerged in different variations and in different industry specific

contexts. In relation to that, core banking systems play a pioneering role as they had already ap-

peared in the late 1960s and early 1970s due to the need to automate basic banking routines. These

routines were then extended over time and began to slowly develop into the modern core banking

systems which are used today.

In terms of software modernization, which is beginning to become a widely existent need in con-

nection with IS, there exist a number of scientific works, which are based on theoretical and prac-

tical foundations. Research and further development of these systems has become more common

since the early 2000s, yet they are still in an early stage of development as industries often per-

ceive them critical. Some of these approaches will be discussed in more detail in section 4.1.

A well cited example in that regard is the paper of Izquierdo and Molina [10]. They follow a

model driven engineering approach for software modernization, which entails basically extracting

meta models out of existing (legacy) code and pursuing an attempt to implement the abstracted

functionality in a different programming language along with a different architecture. In addition

to them also Hoorn et al [11] also presents a similar approach as a case study in a German software

project, which was modernized in 2011.

Another source of information is the ModelCVS project, which had been conducted at the Vienna

University of Technology in cooperation with the Johannes Kepler University in Linz [78]. This

project also follows a model driven development approach and aims to ease software engineering

through supporting a shift from code centric software engineering to model driven development.

It delivered a proof of concept which was further elaborated through the founding of a company

on the basis of that project. This company successfully modernizes old code components to newer

ones through the use of a meta-model. Another modernization approach for software architectures

is the aim42 framework [79], which is essentially a collection of practices and patterns enabling

software evolution, migration and improvements. Besides to the previously mentioned sources

there also exist micro service approaches in order to modernize legacy software. An example is

the work of Knoche and Hasselbring [40] who present a modernization process, that decomposes

existing applications into a micro service oriented structure. They outline their process through

the help of a real life application from the 1970s, which is to be transformed exemplarily. Also

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 13

Mili et al [41] research in the direction of service oriented reengineering of legacy applications,

but they stay on a higher level and discuss the general issues and research directions in connection

to refactoring to a service oriented architecture.

In contrast to software modernization, architecture modernization is a rather theoretical field but

nevertheless an important field of study since a software architecture always defines the target

blueprint of the underlying software that must align to the defined architecture. In regard to this

topic, a well-known method is the Object Management Group’s (OMG) Architecture Driven

Modernization approach (Newcomb [12]). It is relatively practically oriented and designed for

software architects, which are in practice confronted with the task to modernize an existing soft-

ware architecture. It is related to the OMG’s MDA approach (see section 4.1.2) and concentrates
on the modernization of legacy architectures, based on formal models. This is achieved by trying

to gather architectural knowledge from existing systems and formalizing it into so called platform

independent models (PIMs). They may then be transformed into a target model, representing the

target architecture which is automatically tested against the initial one with the use of test models.

By doing so this approach keeps its focus on the architecture of a system and therefore remains

platform and technology independent from the underlying code implementation [13]. Also to be

mentioned is the work of Jamshidi et al [42, 43], who research in the area of micro services and

perform pattern based and especially multi cloud architecture migration, which is a highly decen-

tralized architectural challenge. They rely on a catalogue of fine grained and service based cloud

architecture migration patterns in order to transform existing legacy applications and to make

them ready for cloud environments. A similar direction is followed by Pahl et al [44], who also

performs software system migration to cloud native architectures. In his work, he observes four

different case studies, which migrated their applications to software as a service solution in a

cloud and also presents a modernization process to enable that migration.

Besides to software- and architecture modernization, also scientific research is conducted in the

area of software evolution. Software evolution not only covers one modernization cycle but is

rather a descriptive term for the combined maintenance-, functional and modernization efforts,

which are done in the lifetime of a software. In that regard Plakidas et al [38, 39] performed a

multi case study concerning software migration and architectural evolution. He derives an archi-

tectural knowledge model, which shall support various real life platform evolution scenarios. A

rather interdisciplinary approach is outlined by Miller. In his article [92], he evaluates current

literature in terms of software evolution and verifies their impact on software engineering as well

as the connected technological evolution. In terms of software modernization as well as evolution,

decision support for major architectural and technological adjudications is often essential. In that

context, Brand [57] analyses how runtime data supports software evolution decisions. His study

was created in order to verify previously made evolutional assumptions in the vicinity of SAP

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 14

and he presents a knowledge based development cycle in order to drive evolutionary software

adaptation.

When it comes to the modernization of core banking systems as a hyponym of IS, the number of

scientific literature becomes considerably more scarce, especially as science is lagging behind the

industries’ advancements in that regard. From a practical perspective numerous vendors of Core
Banking Systems already put effort in their products in order to keep them technologically up to

date in order to remain competitive on the market. Parts of these efforts include utilizing different

modernization techniques, ranging from automated development approaches to the manual re-

implementation of code. These techniques are especially relevant for them as they often work

with their products for decades and usually a CBS vendor can hardly afford to create a new ar-

chitecturally refactored CBS from scratch every few years. Due to these reasons they partially use

architecture modernization techniques, like model driven development. In this regard vendors like

Avaloq [80], Finnova [81] or Temenos [82] are to be named especially since they mainly use

layer oriented software architectures with a rather extensive stack of technologies. Others also

modernize old components through buying parts from more modern vendors and integrating them

into their products in order to replace the old component with minimum effort. Another method

that is widely used is to constantly replace the systems in order to gain a more modern system as

well as to increase system flexibility and interoperability.

Another practically oriented institution in the field of CBS modernization is the already mentioned

BIAN. It is a consortium consisting out of CBS vendors and banks, that gather guidelines which

support the creation of state of the art CBS architectures. Their proposed architecture paradigm

are service oriented architectures. In addition to this they also cover processes as well as best

practices in banking software. However, in terms of functional coverage they are only limited to

the central components of a CBS, namely retail, private and core banking (see section 4.2).

Besides to practical modernization approaches, case studies exist which outline and discuss major

software modernization projects in different branches, such as the book from Ulrich and New-

comb [14]. They try to summarize architecture driven modernization with modernization tech-

niques, scenarios as well as roadmaps, and show proof of the techniques’ effectiveness with ten
case studies of major architecturally driven software modernization projects. They summarize the

respective outcomes from each project and highlight the drawbacks as well as the important as-

pects and events in the course of each modernization. On top of that, they discuss the lessons

learned after each case study and in the end, they present some very central and context independ-

ent principles, which are a profound basis for future modernization and transformation projects.

All in all, they gather an invaluable pool of experience in terms of architectural modernization

projects in one book.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 15

From a scientific perspective there exist a number of works which cover the modernization of

parts of Core Banking Systems. For instance, Zimmermann et al [25] concentrates on the use of

web service oriented software architectures as a part of a banking information system. Baskerville

et al [16] describe the strategic value of service oriented architectures in the context of banking

and in terms of flexibility as well as rapid changeability, although it should be noted that he does

not follow a technical approach but more an economic one.

One of the few scientific works which directly address the modernization of Core Banking Sys-

tems from a technical aspect is the article from Kilimnik and Pavlovski [17], who discuss the

transformation of Core Banking from a strategic point of view. To be more specific, they present

their own experiences in that field and discuss different rollout strategies in order to successfully

transform a Core Banking framework. They argue that using a Big Bang strategy, where an entire

Core Banking Solution is replaced by another in one big release was implemented by some bank-

ing institutes in the 1980’s and 1990’s but is in general a high risk operation which is not recom-

mended for use on today’s CBS, as the scope, functionality and complexity of CBS has slightly
increased since that time. As an alternative, they examine a phased deployment strategy where

several pilot releases are taken into production mode, before committing a full go-live. Subse-

quently, they discuss a rollout strategy, based on the financial product, customer segment, region

or the branch. These approaches usually face the challenge that they do not reflect the functional

organization of the underlying Core Banking System and force either the customer group or the

employees as a user group to use both, the old and the transformed system simultaneously

throughout the duration of the migration. A solution to this problem would be to re-engineer the

accessing clients of these user groups in order to abstract them from the functional split on the

application side. Another approach is to roll out a transformed CBS in parts according to system-

or functional domains, while the underlying database reflects the ongoing changes respectively.

In the end, the choice of the implementing technologies and their supportability as well as the

addressing of business risks are critical factors in terms of CBS modernization.

Another article, which directly addresses CBS in connection with modernization is Liu et. al.’s
“SOA approach for the Progressive Core Banking Renovation” [18]. They state, that a progressive

renovation of a core banking system is less intrusive and risky then a total replacement. Hence,

they discuss a methodology to transform an existing CBS step by step into a service oriented

architecture (SOA) based system founded on the concepts of business entities.

The methodology they use has a focus on a well-defined scope of applications which are to be

modernized as a CBS is usually a large set of applications and components. Furthermore, they

also focus on accelerated development in order to be able to react faster on changes and on com-

ponent based design with the purpose to support an accurate functional granularity, integrability

and reusability. In the first stage their method “component business modeling” (CBM) is carried

out, where they map the business along business competencies and accountability levels. Through

doing so, a bank is able to link its application landscape with business components, which in turn

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 16

depict a direct mapping between its business and its applications. Next, the interactions between

the defined components are captured which usually become the target entity bundles that are the

basis for new applications. In the next step each target component is analyzed and the business

activities which are conducted within its scope are captured in the form of defined business pro-

cesses, which need to be aligned to the bank’s requirements. After the business processes are

created within the business components, each process is again analyzed in order to derive the

involved entities. Following this they are then transformed into a solution model, which should

contain a set of interacting entities. Finally, these entities are transformed into a service architec-

ture consisting of data services and state transition services. In that regard a data service contains

the querying and updating logic for a specific entity and a state transformation service encom-

passes the code to transform an entity according to its lifecycle.

In the course of modernization, the newly defined services need to be integrated with the legacy

functionality as the business components are only replaced progressively. But in turn they can

then be integrated to the life system during runtime. A problem that exists with this technique is

the configurability of the services, but Liu et. al. resolve it by externalizing business rules (bank

specific functional rules) into services again. The main advantage of this approach is, that banking

specifics are separated from the core logic which in turn increases the adaptability and configu-

rability of the resulting target architecture.

Like the previous works, Hussain et. al. [19] also examine Core banking systems from an archi-

tectural point of view, however rather than in the context of modernization they tackle this issue

in a fundamental way. They propose a meta architecture for service oriented e-banking applica-

tions. Support and proof of the effectiveness of their proposal comes from the classification of e-

banking use cases into inter-branch, inter-bank and middleware applications, with their own ar-

chitecture but with the meta architecture as a common blueprint over the entire framework. The

meta architecture in that context is a set of rules, guidelines and principles which governs the

underlying architectures and hence increases the integrity and structure of the overall system.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 17

3 Foundations

3.1 Core Banking Systems

This section outlines the definition of Core Banking Systems and briefly describes their historical

evolution since the 1960s. Sub sequentially it describes the main modules of a CBS. In this con-

text, CBS are in general very diverse in terms of their functionality, however the components

described here are their functional intersection, which occur in almost all CBS.

3.1.1 Definition

Theoretically the term “Core Banking System” outlines a very specific area within the IT land-
scape of banks. According to Gartner a CBS is “… the back-end data processing application for

processing all transactions that have occurred during the day and posting updated data on account

balances to the mainframe. Core banking systems typically include deposit account and CD ac-

count processing, loan and credit processing, interfaces to the general ledger and reporting tools”

(Gartner 2019) [83]. In other words a CBS is the application which technically covers the main

use cases of a bank, namely the maintenance of current accounts, fixed deposit accounts, instant

access savings accounts, savings accounts, loans and the management of customer’s core data.
In practice the term is often used for a much broader area, as a CBS is usually combined with

further application components, which depend on the type and business focus of the consumer

bank. These components belong to banking functionalities like electronic funds transfer (in all

retail banks), stock trading (in private and investment banks) and other functionalities which are

related to the general information systems services like reporting, customer management, docu-

ment management et cetera.

In general, a CBS as a framework is an information system which is situated within the subject-

specific context of core banking. Information systems in turn are software systems, which allow

users to transform business information within defined business processes. In the case of CBS the

business information is on the one hand account data and on the other hand customer’s core data,
which are regularly transformed through the use of core banking business processes. In this re-

gard, the central purpose of a CBS is to provide the bank clerk the right information at the right

time, according to business needs. Additional aims of these systems include [66]:

1. To enhance banks efficiency through supporting the bank’s personnel in their daily core
business processes.

2. To automatically update customer accounts in regular time intervals.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 18

3. To help banks to keep compliant with legal requirements, provided by the national laws

and financial market authorities.

3.1.2 Historical Development

The first rudimentary CBS emerged with the introduction of computer technology into the bank-

ing industry in the 1960s and 1970s. Whereas the first aim was to share and increase the speed of

information exchange between the branches of a credit institute. In the early years of CBS, each

bank branch used to have a local server which contained customer data, as well as account data.

The servers were offline and therefore disconnected from each other and information was ex-

changed at the end of each business day in the form of batches, which were processed by each

server in order to synchronize its own data with the information of other bank branches. At these

times the first CBS vendor companies were also founded, which often emerged from in-house CB

solutions of bigger banks or were created as a joint venture business by several banks in order to

satisfy their need for an electronically driven banking system. In 1981 the term “bank automation”
[84] arose from the idea to automate banks’ back office processes with the intention to centralize
data operations as well as to increase their speed and cost efficiency. CBS solutions at that times

often consisted out of a mainframe server which hosted the CBS application, the bank’s CB data
and a number of terminals which were dispersed over the bank’s various branches. A prominent
example are the main frame computers of IBM (e.g. Sys-tem/32 in the 1970s and AS 400 in the

late 1980s) which were programmed with IBM’s multi-paradigmatic RPG language. Their pur-

pose was on the one hand to cope with the increasing amount of processed data and on the other

hand to support new banking transaction mechanisms (like SWIFT) which were also introduced

in the course of the ongoing digitization of the banking sector.

In the following years, CBS kept constantly growing in their functionality, according to the re-

quirements of the finance- and banking sector. The commercial advent of networks and the inter-

net which had become available to industries and home users impacted the technological aspects

of CBS significantly, which in turn fueled the trend to conduct more banking transactions over

electronic channels, now with a much higher speed than before. As a consequence, in the late

1990s banks began to offer Online Banking channels as a feature of CBS to customers as a means

of easily conducting their banking business from their homes. This trend amplified substantially

after the turn of the millennium, leading CBS to be required to technologically support account

operations as well as funds transactions in nearly real time and to secure the communication

method accordingly. Also from the architectural aspect CBS were largely confronted with a in-

clination towards dispersed systems. This implied new server client architectures, with various

clients, depending on the user group (bank clerk, or bank customer) and their needs. Moreover,

progressively more flexible and hybrid systems are currently beginning to influence CBS with

emerging trends like Cloud Banking, Mobile Banking and integrated systems [93].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 19

3.1.3 Modernization Challenges

Today numerous CBS vendors exist that offer various products containing different functionalities.

The main challenge among them is that their products differ from each other to a great degree, which

implies a wide range of heterogeneity and complexity in the field of CBS. However, the CBS is usually

the core application within a bank’s IT infrastructure, and is surrounded by many other applications.

A large stake of the CBS are so called “grown” systems, which means that they were initially devel-

oped years or possibly decades ago and have afterwards been steadily extended with additional mod-

ules and functionality. Hence, CBS often grew in their original architecture which resulted in them

being rather inflexible and hard to extend or replace due to their increasing complexity which had

emerged over the years. Another problem is, that CBS are subject to ever faster changing functional

and legal requirements which need to be obeyed. These requirements origin on the one hand from

bank supervision authorities and on the other hand from the banking business itself, which is con-

fronted with the constant need to change bank’s strategies in order to keep in pace with ongoing

changes in the economy as well as the society. Consequently, banks require more flexibility from their

CBS in order to fulfil requirements but are impeded by CBS whose core components are outdated and

are increasingly incapable to react to changing requirements. This increasing incapability is emerging

due to technological constraints and the age-related reduction of software engineering staff who know,

how to support these technologies. In addition, due to their monolithic character, the core components

of CBS often contain strongly interwoven functional components, which are hard to separate from

each other and therefore form large inflexible blocks.

Furthermore, seen from a CBS vendor perspective, each bank has different requirements to a CBS,

which implies that a CBS vendor must have the technical flexibility to react to the diverging require-

ments of its customer bank. For instance, many CBS are developed for the regional bank market which

is located in the national and international vicinity of CBS vendors. Consequently, they are customized

towards the requirements of that market and there exist only few global solutions which are flexible

enough to be deployed in any bank throughout the world. For instance, many CBS vendors focus on

smaller banks and are neither capable of supporting multiple languages nor are they multi-tenant ca-

pable not to mention that they often support only one currency for account keeping. They begin to

become especially unfitting for current trends which now include clouds, software- and service out-

sourcing, micro services or omni-channel ability.

In general CBS are subject to several factors which depend on the consumer bank and its envi-

ronment, a few specific aspects for these factors include [67]:

- The quantity of customers in terms of the number of branches, the amount of its accounts

and transactions and the overall volume of assets and liabilities that must be supported.

The size of a bank is determined in the form of Tiers [85] which range from Tier 1 (ap-

proximately the 25 largest banks worldwide with millions of transactions per day) to Tier

4 (smaller regional banking institutes with usually less than ten subsidiaries).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 20

- The application field, which depends on the organizational structure of the bank, the num-

ber of branches and whether the bank is operating on national or international level.

- The business scope of the bank, which entails retail, private, corporate, investment or

transaction banking or asset management.

- The operational model, which may be either owner-operated or outsourced to data cen-

ters, co-sourced in connection with other banks or consumed from an application service

provider.

- The deployment environment which influences the functionality of a CBS, like the lan-

guage, monetary currency and legal constraints.

3.1.4 Functionality

All in all, due to the heterogeneity of CBS the functionality of a CBS can be summarized to the

following five portions, which are at least partially available in the majority of CBS [67]. Aside

the aforementioned aspects, the supporting functionality is also of vast importance. This includes

attributes such as a workflow engine, which allows banks to individually adapt CBS according to

their needs. This enables them to reuse existing functionality in order to create their own specific

processes, which can then be used to transform their business data as necessary.

3.1.4.1 Management of Customer core data

This module comprises all functionality related to the core data of bank’s customers and their
relation to the bank. Customers can be roughly classified into two groups; private and business.

Furthermore, they can also be divided into mandates or co-mandates of a bank account. In addi-

tion, a person can also be a direct and an indirect customer of a bank (e.g. if a person signs a

guarantee for a debtor who owns a loan to a bank). In order to be able to manage customers, banks

usually keep records of customers’ stem data, relevant address- and contact data, as well as pos-

sible communication channels. Another important attribute of a customer’s information is credit

rating data which is necessary to assess the customer’s financial situation which is a major part
of a CBS customer core data component. To be more exact, the customer record contains data

which can be separated into four aspects [68]:

1. Customer stem-, address and communication data:

The central part of customer data is its stem data, like first- and last name. Former names,

gender and birth date are also of relevance for a bank. Furthermore, banks often require

additional customer data which are primarily used to estimate the customer’s personal
background and subsequently his solvency. This data may consist of whether the cus-

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 21

tomer is married, possesses academic titles or whether he has children. Also any migra-

tion background and his country of origin are often points of interest for a bank. In order

to be able to identify a customer at the bank counter, banks keep a copy of a public doc-

uments for example a passport or a driving license. It should be brought to attention that

these documents are also digitally stored as a part of the customer’s core data.
For communication and legal purposes banks also keep record of the customer’s primary
postal address as well as any secondary addresses (in case the primary contact address

differs from his registered address). Other uses for this information include being used to

send bank statements as well as legal notifications. Additionally, the customer core data

also contains metadata regarding the designation details (like “Mr.” or “Mrs.”) and also
the manner which the customer would prefer to be contacted. Further communication data

that banks store consist of (but are not limited to) E-Mail addresses, phone numbers and

even Internet addresses. Customer core data does not only comprise personal information

about the customer but also bank internal information which is related to the customer.

For instance, banks store which bank lawyer is assigned to a customer in case of legal

actions and whether a customer is a persona non grata or not.

2. Data regarding the financial situation of the customer:

Data belonging to this section becomes especially important in relation to loans and situ-

ations, where a bank acts as a creditor for a customer. Hence, information like the monthly

or annual income as well as the employer of a customer are of importance for a bank.

Furthermore, information about account data, any loans, savings and properties which are

related to the customer are also stored. Tax and legal information is also stored here as

they may affect the liability of a customer. E.g. in case a company customer took a loan

from a bank, key financial indicators of the customer are kept, like the ratio of equity in

relation to debt capital or the customer’s balance. Nonfinancial data is also stored in this
branch, which is used to create a scoring estimation over the solvency of a customer. This

scoring value is usually the result of a complex risk assessment, where data such as age,

health, the kind of job, the gender, marital status, the duration of employment as well as

the housing status are input factors. Also internal data which is collected from external

credit agencies is usually recorded here.

3. Legal data related to the customer:

Legal data in this context usually refers to the legal details of a customer or company and

tax related data for customers. The legal form of a customer company is usually of interest

for banks, as well as the main seat and the branch itself. Furthermore, information involv-

ing countries in which a customer pays taxes and whether they are subject to double tax-

ation is of importance to a bank.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 22

4. Product data:

This module contains all connections of customers to a bank’s products and services. This

means banks keep a record of the bank accounts over which a customer is the main dis-

poser or a co-disposer in connection with other customers. Also information regarding

individual account conditions are stored here (e.g. debit and credit interests), which bank

products and services a customer uses and also authorizations as well as warranties for

other customers.

On the basis of customer’s core data, banks create further administrative breakdowns which help
bank staff to maintain customers. Typical functionality in this context comprises a depiction of

the overall engagement between a customer and the bank. Also classifications of account manag-

ers which are assigned to a customer, as well as to sales branches belong to this section. Other

tasks performed in this subdivision include reports which are generated on the basis of customer

data, which cover various aspects of interest like customer ratings or customer related specifics

like blocking notes and escrow settlements.

The management and maintenance of customer data is one of the corner stones of CBS. This

signifies that a CBS should not only demonstrate the ability to show customers’ stem data as well
as respective metadata but also routines, which are necessary to create and update customer data.

However, CBS usually do not delete data, but rather deactivate unused data records in order to be

accessible for evidence purposes in the future. Hence, CBS usually don’t contain functionalities
to hard delete data. Another aspect which engages the customer’s stem data is the ability to pa-

rameterize and customize the data and its metadata, as consumer banks may wish to change the

underlying data model over time.

3.1.4.2 Electronic funds transfer (EFT)

The electronic funds transfer of a CBS covers all functionality, and as such covers the transaction

of financial funds from or to an account, either within a bank institute or from one bank to another

bank. In this context a CBS has to be capable to support all kinds of standard transactions from a

bank account to another account, as well as debit payments, standing orders and their respective

reverse transactions in case of an error or a cancellation. Also the processing of transactions in

terms of dispositions, the consideration of account related limits and turnovers fall into the field

of EFT. From this information we can gather that the electronic funds transfer service is not only

responsible for the immediate electronic transaction of money from a sender to a receiver but also

for the maintenance that follows a transfer. Like transactions from bank to bank (external trans-

actions) EFT also covers bank internal transactions from journal accounts (inventory accounts) to

sub ledger accounts (giro- and savings accounts). Within a CBS, transactions are usually done

within so called Primanotas. A Primanota can be considered as stack of internal transactions

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 23

which are executed sequentially. A Primanota has both a creation as well as a conclusion record,

which contains the lump sum of all debit and credit values of the transactions within the

Primanota. The maintenance (initiation, adjustment and the closure) of a Primanota is a service

which belongs to the functionality of EFT. In the context of interbank transactions on national

and international level, EFT has to support a wide range of different kinds of businesses. Standard

transaction interfaces such as via Swift or EAF/RTGS+, cheques, letters of credits, euronote fa-

cilities, foreign credits, guarantees, forfaiting and foreign currency accounts are instruments of

respective transaction methods used by businesses which are covered by EFT.

The main characteristic of EFT is, that money is transferred on an electronic basis, without direct

intervention of a bank operative. Seen from a bank specific aspect EFT covers several sub

branches which will be briefly described in below [69]:

1. Cardholder initiated transactions: Dealings of this kind are carried out through the use of

a payment card like a credit-, debit or an ATM card. These cards are electronically linked

to a cardholder’s bank account. Debit cards can either be topped up with a sum of money
that is directly stored on the card itself and deducted with each payment, or in case of an

ATM card, it is linked to the cardholder’s bank account and the money is directly with-
drawn from the bank account as soon as the cardholder uses the card to make purchases

or to withdraw cash through an ATM. A credit card on the other hand is based on a re-

volving credit, which is issued to the card-holder by a card issuer. This credit usually has

a limit and the customer can “borrow” money from the issuer in advance through the use

of the credit card. After a certain period (e.g. monthly or quarterly) the issuer bills the

borrowed amount of money to the cardholder and withdraws it from their bank account.

2. Direct deposit payments: A direct deposit payment is the immediate payment of money

from a payer’s account to the account of a recipient. Nowadays they are usually done
electronically via means of EFT (either through online, mobile or telephone banking) but

theoretically they could still be done through physically transferring cash from one bank

account to another one. Direct deposit payments are commonly performed when one party

wishes to pay money to another party, for example companies paying wages to their em-

ployees, or customers paying bills in exchange for a certain service. In the context of EFT

a direct deposit payment consists of the amount of transferred currency in the target ac-

count as well as the account number of the source account accompanied by a valuta date.

The valuta date marks the point of time when the money was effectively transferred to

the target account and is therefore effective to the target account’s interest calculations.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 24

Aside from that the name of the source account owner and a meaningful field of infor-

mation (payment reference) is typically specified in a transfer in order to enable the re-

cipient account owner to recognise from whom the payment is from [70].

3. Direct debit payments: Transactions where the receiver sends a request to the bank to

directly deduct money from a payer’s account are generally referred to as direct debit

payments. In order for the payment to be deployed successfully, the payer must authorize

the recipient to deduct money in advance by notifying their bank. As an example, in Eu-

rope the majority of payments are conducted using the SEPA procedure (Single Europe

Payments Area). In this method the payer issues a SEPA mandate to the receiver, which

authorizes the recipient in both his as well as the payer’s bank to deduct money on a
recurring basis from the payer’s account as long as the mandate is not recalled. Further-

more, the payer’s bank may cancel direct debit payments if required, for instance if the
deduction breaches the payer’s account limits. In general, direct debit payments are
mainly used to automatically pay recurring bills which are issued by corporations to pri-

vate customers (e.g. monthly bills of an internet service provider or a provider company

to its customers). However, the boundary of direct debit payment only covers the author-

ization and the mechanism of payments from a payer to the recipient. The circumstances

in which the payments take place (frequency, amount, regularity and deduction date) are

usually subject to an agreement between the payer and the receiver and not influenced by

the executing banks [71].

4. International wire transfers: International wire transfers encompass international money

transactions, including currency exchange from a domestic currency to a foreign currency

through an international banking network. They are usually the cheapest and one of the

fastest ways to transfer money between accounts, regardless of currency or the location

of the receiving bank. In order to conduct a wire transfer, a customer requests their bank

to send a specified amount of money to a target account of another bank. The recipient

account is identified through a worldwide unique IBAN (International Bank Account

Number) code and the receiving bank through its corresponding BIC (Business Identifier

Code). Next, the bank uses a secure banking network (such as SWIFT, CHIPS or Fed-

Wire) through which it submits a message to the receiver bank. The message contains the

payment details as well as its settlement instructions, like the valuta, and is effectively a

request to transfer the specified sum to the recipient. As soon as the message is received

by the receiving bank, it transfers the amount from its own monetary base. In the back-

ground, it accounts the amount to the issuing bank via reciprocal Nostro and Vostro ac-

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 25

counts. The balance via reciprocal accounts may also include recipients that are interme-

diate banks since in some cases the receiving bank does not have a direct corresponding

relation to the sender’s bank. Usually the sending bank as well as the receiving bank and
intermediate institutions deduct fees from the transferred amount of money, therefore the

receiver will always receive less money than the sender transmitted.

SWIFT (Society for Worldwide Interbank Financial Telecommunication) is the main in-

ternational banking network. Its focus lies on providing a standardized, secure and relia-

ble environment for banks in order to communicate with each other. However, as men-

tioned before, SWIFT itself does not transfer real funds but rather sends payment requests

in connection with settlement instructions. These inquiries are to be settled between two

corresponding banks and are technologically transmitted via an IP network infrastructure.

The SWIFT technology is considered unaccountable for the messages which are trans-

ferred as well as the participating banking corporations. On the other hand it is responsi-

ble for providing both the secured network as a usable infrastructure and a defined set of

syntax standards for financial messages, based on XML. Additionally, SWIFT also makes

the corresponding software available as well as further services which enable financial

institutions to transfer payment messages across its network. Architecturally, SWIFT is

based on a centralized store-and forward mechanism which allows this technology to

guarantee the reliable transmission of a payment message through a high grade of redun-

dancy in terms of hardware, software and the participating personnel. Physically, SWIFT

works through three data centres which are located in the US, the Netherlands and Swit-

zerland and currently (effective 2019), it transmits around 32 million messages per day

through its infrastructure [94].

5. Electronic bill payment: EBP is a feature that has been available to banking customers

since the 1990s via telephone but has received more recognition with the emergence of

online banking. EBP is essentially an agreement between the customer and their bank to

pay bills that are issued to the customer on a predefined day each month automatically.

The bank is capable of reimbursing the bills either via electronic payments or cheques,

however the responsibility of ensuring that the balance of the paying account is sufficient

falls to the customer. EBPs may also be accounted against credit accounts, where the

customer is required to pay a certain interest rate for the account balance. In some cases,

banks may surcharge transaction fees to bills, which are handled via EBP [72].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 26

3.1.4.3 Account current

Account current is a major part of CBS, containing all functionality related to the maintenance of

accounts. Theoretically, account current is a standard form of financial service processing be-

tween a creditor and a debtor which are in a constant business relation with each other. In the

context of banking, each giro account is a special form of account current business on the basis

of a giro account treaty, issued and signed by both parties during the creation of a giro account.

During a bank’s business day a giro account may be subject to credit postings and debit postings.
These postings and their sums of currency are calculated to create a daily sum. The daily sum

may be either positive or negative and is the basis for the calculation of interest rates for the

account. The interest rates as well as further fees are then calculated in the course of recurring

account closings. Generally, banks have daily, monthly, quarterly, semi and annual account clos-

ings, where depending on the account type the final balances of their accounts are calculated. The

structure of a bank account is usually organised into a journal, which contains all bank internal

inventory accounts as well as a sub ledger containing all customer owned giro- and savings ac-

counts. The calculation service of accounts’ interest rates and balances in regular time intervals
is one of the core functionalities of CBS. How interest rates are in fact calculated differs often

from bank to bank and is also influenced by the account type and legal regulations accordingly

[73].

In addition to the financial closing of internal- and customer accounts, the services of account

current also include the maintenance of various account types and more specifically the parame-

ters which are connected to a certain account (type). Accounts are typically sorted into the fol-

lowing categories; private, salary, various compensation accounts and foreign currency accounts,

depending on whether the CBS supports account-processing in different currencies. All in all

these accounts may be classified as either giro accounts or savings accounts, and depending on

the product as well as the individual owner (and his solvency and significance for the bank) of

each account different conditions take effect. The different kinds of conditions affect debit interest

rates as well as credit interest rates, which are in connection with overdraft charge rates and in the

case that an account exceeds its overdraft facility. These interest rates may occur in different

forms such as graduate interest rates, variable or supplementary interest. Additionally, the account

current has to contain maintenance functionality for account fees which arise due to the preserva-

tion of the account as well as additional services, which are billed to the account holder. Verifi-

cation of limits is another of the typical functional aspect of the account current module. This

feature comprises the regular validation of account operations (bookings) in accordance to any

limits which shall not be exceeded. As a standard example, if a customer decides to issue a trans-

action which exceeds the overdraft capacity of his account, the transaction should not be executed

but instead dropped.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 27

Except from these conditions there exist many more parameters which are related to an account

as a “consumer product”. They are persevered in a non-productive model account, which serves

as a preconfigured template for a newly created customer account. Hence, each account template

represents a certain account product, which is in turn a part of a defined account family. Examples

for such parameters include the scope of transactions that may be issued through the account. For

instance, savings accounts may only allow transactions to a predefined reference giro account,

while being able to receive credit postings from any other account. In turn, the reference giro

account may be permitted to issue transactions to any other account. Account current does not

only maintain these preferences for accounts throughout the process of their creation (which is

based on model accounts), but also during their “productive” lifetime. Parameters may be modi-
fied in the course of their existence, either through adjustments of the account by the bank clerk

according to changing circumstances, or through automatic processes of the CBS. These changes

also need to be covered through account current and recorded internally for evidential reasons as

well as legal requirements. Regular account statements are used to make alterations to the account

transparent to the customer [73].

A rather specialized field of account current is the reform of the assignment of roles from account

to customer or vice versa, and switching between customer and account, which may occur in the

case that a customer company no longer exists (e.g. due to a merge with another company, or if

the ownership is transferred to another party). In addition to product parameterization, account

current also involves the maintenance of internal parameterization systems such as number sys-

tems, which are used as a reference for the creation of accounts, identification of transactions, or

internal general ledger positions. Through the usage of number systems, data entities within the

CBS can be uniquely identified and categorized into certain products (e.g. the IBAN of an account

may already contain the information according to its numbering on whether the identified account

is a giro or savings account).

Account current also contains information on which type of card is available to a certain account

or customer. Furthermore, it contains the type of account, along with information about its func-

tions. Usually the majority of parameters of accounts and cards are predefined by the bank or a

third party which offers its card products via the bank. Card management from a technical per-

spective is a major component within a bank’s infrastructure and entails the maintenance of cards
as well as their related products, the termination of their validity on the closure of a customer

accounts, and the management of card terminals, such as ATMs, payment terminals or self-service

machines.

Another trait of account current is all functionality needed for direct cash operations at the bank’s
counter. Using this service, a customer may deduct or deposit cash from or into his account with-

out a payment card but with an appropriate legitimation document (e.g. a passport) via a bank

clerk. The capability to support transactions at the cash desk is also a part of account current,

however, in the last decade, direct cash transactions in the bank were slowly replaced by more

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 28

convenient channels like online banking. Accordingly, the number of electronic transactions in-

creased, which resulted in a trend to assign selected parameterization functions to the customer

via Online Banking. E.g. customers are given the freedom to change minor parameters related to

their accounts such as the way account statements are issued, certain maintenance functions and

the limits of their credit cards [73].

3.1.4.4 Trade and investment

Trade and investment covers all functionality of a Core Banking System related to money trans-

actions, savings businesses as well as certificates, securities and treasures.

In terms of money transactions, a CBS has to be able to uphold all necessary conditions that are

obligatory for a money transaction in order to be executed. These conditions take account of

exchange rates, fees, and interest rates. Important changes in this details of a transaction are

mainly in the dates on which a certain amount of money became effective on an account, prolon-

gations, intermediate disbursements and capital changes in general. All of these details imply an

effect on the amount of money that was available at a certain point of time on a certain account,

and therefore has an effect on the calculation of its respective interest rates. For instance, if the

balance of account A is increased due to a credit entry then this amount has to be considered in

the calculation of credit interest rates at the next account closure, even if the same amount is

deducted after one day. In case the balance of an account is reduced beyond zero then this has to

be considered with a corresponding debit interest rate and moreover with an overdraft charge rate

in the case that the account exceeds its limit. Through the use of their CBS, banks usually carry

out the calculations of the sum of daily credit and debit postings (during the daily account closure)

for every account. Their balance results in a daily sum, which basically shows how much money

was available on a specific day on a certain account. This balance is used for customer visible

account closures, like a (monthly) quarterly or annual closure. Furthermore, if the valuta of an

amount is changed manually then the timespan on which it is available, is also changed. This in

turn implies that the interest rates for a certain amount have to be corrected, even if the account

was closed for the time period in which the valuta was effective.

In connection to savings business, a CBS needs to cover all aspects which relate to it including

the maintenance of savings conditions, rates of interest, account closures and premature termina-

tions. This functionality is already covered to a large extent with ordinary account keeping, as is

described in the previous section. The only difference is that a customer pays a certain amount of

money into a savings account and is not able to access the money for a certain period of time. In

return they will gain interest rates for the deposited sum according to the agreed conditions. The

maintenance of the previously mentioned conditions may be sustained through the use of model

accounts, in a similar way to giro accounts. Account closure and the calculation of interest rates

are usually done within a daily, monthly, quarterly or annual account settlement run. The only

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 29

exception is the premature termination of a savings accounts since this results in the CBS needing

to be ready to calculate respective interest penalties.

Regarding savings certificates a CBS must be capable to support the maintenance of issued cer-

tificates from the bank and it must be able to calculate current interest rates, much alike a loan.

Furthermore, certificates may also be annulled or compounded at some point in the future, as they

might also need to be repaid to the customer, which means that a CBS also requires the functional

ability to support this task. However, since bank certificates are a product which is not used very

often, it is not seen as one of the central components of a CBS.

Much more important and often referred to as the main part of trading and investment banking is

all functionality in connection with securities and treasury. Security trading contains all security

products ranging from stocks, via funds and bonds to options, as well as futures and other deriv-

atives. In this aspect, a CBS usually contains functions for the front office, such as portfolio ana-

lytics, where different kinds of stocks need to be shown. These visual services are associated with

a depository of different views and dashboards and must also support risk management on them.

Other front office functionalities are modelling as well as the risk simulation of securities before

and after they are traded. The CBS also has to cover both legal as well as banks’ internal limits in
order to prevent illegal trading methods. In terms of risk management, stress tests, liquidity risk,

market risk and credit risk are all components which are of vital importance. Aside from that, the

Value at Risk and regulatory reporting to financial market authorities need to be functionally

depicted in a CBS’ trading module.
Another field in terms of trading is cross asset processing, which outlines that all kinds of assets

should be handled over all stages of a trading transaction, from the placement of an order to its

payment and its confirmation. This workflow should be supported by a CBS automatically in

order to enable rule based automated trading. Investments also need to be documented from an

accounting as well as reporting point of view. This documentation involves keeping the position

of each transaction, treasury management, the preservation of the sub ledger as one of the central

parts of a CBS and data quality management. Also fund administration, as well as the calculation

of the Net Asset Value are capabilities which are expected to be supported by a CBS.

Treasury itself is largely integrated with trading but in contrast to trading with stocks, it consists

of trade with currencies as such. In this context the management of foreign currencies in combi-

nation with their exchange rates to each other are an important functionality of CBS. Further tasks

in this field include gathering the required data from a reliable source and updating changes within

the CBS on a real time basis [74].

3.1.4.5 Loans

In addition to account current and customer data management, loan management belongs to the

central components within CBS in general, as the issuing of loans is a vital part within the banking

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 30

business. First of all, a CBS has to cover all required types of loans (at least the one which a

customer bank intends to issue to its end customers), whereas private and business loans in all

different variants are the most widely spread kinds of loans. Apart from that, also consortium

loans, factoring and swaps play a role. And additionally to them the leasing business (e.g. of cars

or expensive goods) is an increasingly developing sector within bank’s loan branch. A CBS also
has to support the lifecycle of a loan, which roughly covers the following steps:

1. Loan application: Consulting the customer which loan is suitable, based on their require-

ments and obtaining basic information from the client.

2. Loan processing:

a. Obtaining rating data about the customer including his financial situation, risk

factors, financial credibility, and potential collaterals.

b. Reaching an agreement with the customer on the terms and conditions of a loan

(runtime, interest rates, periods of payments, kind of loan, etc.).

c. Setting up the loan as well as the loan contract.

3. Signing of the loan contract.

4. Loan contract closure:

a. Opening a loan account and disbursing the funds.

b. Closing the contract legally through an attorney (if necessary).

5. Serving and maintaining the loan:

a. Monitoring the loan in terms of timely repayments, recurrent loan risk rating.

b. Collecting recurrent interest (if they are not repaid at the loans maturity) as well

as collecting potential service fees.

c. Terminating the loan as soon as it is repaid.

Aside from the standard functionality within a loan’s lifecycle, a CBS also needs to encompass special

cases such as changes in the loan conditions during its term or the treatment of a loan in case the

customer fails to repay it. A bank usually offers different loan variants in different conditions to its

customers. Respectively the CBS needs to be able to support these conditions, which includes different

methods of calculating interest, provisions, fees and it must be able to handle refinancing rates (in

order to be able to issue loans, banks often refinance themselves on the interbank market). As soon as

a customer requests a loan, a repayment schedule containing the expected interest rates over its

runtime, based the offered conditions, is required. Hence a CBS needs to be able to calculate fees and

interest fees to a loan, depending on given parameters like the runtime, the kind of credit (fixed or

variable) and a given interest rate. In order to rate a customer’s credibility, banks often analyse their
payment conduct based on bank statements. Furthermore, they usually also reach out to credit agencies

with the purpose of gathering external information about a customer’s credibility. Additionally, they
also take further factors into account such as a potential debtor’s age, his income, his marital status as
well as his overall financial situation (e.g. his monthly income in comparison to his monthly expend-

itures). For business customers the same process is carried out only based on financial core data. From

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 31

that, information banks create a central customer rating which is in turn reflected in the conditions

(risk surcharges) under which they offer a loan to a customer. They also recurrently rate ongoing

loans based on the repaying mannerisms of a customer [73].

In addition to ratings, banks also need to maintain loans. In the case that a customer does not pay

his rates in time, the bank needs to send dunning letters to him and react accordingly internally.

Banks also supervise whether internal overdraft limits are exceeded and put selected loans on a

so called watch list, in case their rating falls below a predefined threshold. Sometimes a customer

may ask for a respite and if loan evasions occur, the bank needs to be ready to sue the customer

and to initiate an absorption procedure enforced by the jurisdiction. In this situation, a loan is

usually handed over to an internal workout department with the aim to minimize or prevent losses

from a defaulted loan. Another vital part of loan management is the maintenance of collaterals

which may have all forms of value ranging from art pieces, machines and real properties to finan-

cial stocks. A bank needs to be able to enforce the execution of securities in case a loan fails.

Finally, loans need to be covered from an accounting perspective. This means their settlements

must be accounted and assessed, initial and termination bookings must be conducted and also

certain special cases such as deferred interest, early redemptions and possible resulting prepay-

ment penalties need to be covered from an accounting aspect. These accounts in turn need to be

reflected in the end balances (monthly, quarterly, and annual) as they usually play a large role

within the day to day business of a bank.

Accordingly, a CBS should contain the required functionality in order to allow banks to execute

the above described tasks [73].

3.2 Software Architectures

From a general perspective software architectures are a generic field in the area of software engi-

neering. Hence, in common literature they are defined and described in multiple ways. The fol-

lowing section outlines the main definitions and will also describe common elements and styles

of software architectures.

3.2.1 Defining Software Architectures

Before entering the field of software architectures it is necessary to define the concept “Software
Architecture”, as the term refers to a vague field and is therefore often perceived differently in
different contexts. A variety of definitions for the term software architecture exists, however the

definition from the IEEE board in its Standard 1471-2000 seems to be the most reliable. It defines

an architecture in a software intensive system as “the fundamental organization of a system em-
bodied in its components, their relationships to each other and to the environment and the princi-

ples guiding its design and evolution” (Maier et al, 2000, Page 6) [20]. According to this standard,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 32

an architecture is a fundamental organization of a software system which describes its conceptual

outline. From a professional viewpoint a software architecture can also be seen as a sub discipline

within the field of software engineering, which covers the process of creating an important high

level description of the underlying software project. The “description” of a software project is

subject to external constraints (costs, time, complexity and technological restraints) which should

be taken into account in a solution. Furthermore, an overview of the collaboration of the various

components of a software project should be included. This will serve as a blueprint that is neces-

sary in order to be able to understand the main objective of the project and to implement it ac-

cording to a single consistent concept.

According to Dustdar et al [21], a software architecture can be on the one hand seen as an ab-

straction and on the other hand as a building plan of a software project. In terms of the abstraction,

one of the main goals of a software architecture is the abstraction of technological aspects, which

results in a reduction of complexity. The abstraction is conducted through the aggregation of de-

tails and the summarization of functionally similar elements to functional- or topological compo-

nents. An abstraction of a conceptualized software should already take functional as well as non-

functional requirements into account and should consider influences which have an impact on the

development and the utilization of the software. Another goal of a software architecture is to make

the software concept understandable and verifiable to all stakeholders that are involved in the

development and the usage of a software. An advantage of the abstraction is its reusability in

other software projects. This means that as a software architecture depicts an abstract model of a

planned software product, it may be reused again in the same way or with adaptions in other

software projects, which are in turn influenced by the standards, decisions and solutions which

are contained in the software architecture.

Seen as a building plan, a software architecture describes the topological fractionation and the

communication between the sub modules in a software project. Furthermore, it contains high level

standards and characteristics that are to be obeyed during the implementation. The blueprint can

be drawn in different levels of detail, which produces an overall structure of a consistent archi-

tectural concept of the project. The advantages of this approach are the different levels of detail

and abstraction, as well as the fact that the architectures of external software components along

with their interfaces can also be included into the software architecture blueprint. Another ad-

vantage is that a software architecture serves as a documentation of early design decisions, which

emphasizes the influence of external constraints on the solution. Software architectures in general

have to be disassociated from system architectures, as a software architecture in its classical per-

ception is restricted to the architecture of a software itself but does not directly take the underlying

hardware infrastructure or network into account. These details are conceptualized in a system

architecture.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 33

Software architectures can be separated into different categories depending on their scope. Archi-

tectures which are limited to a single software project are referred to as “standard” software ar-
chitectures. In contrast to that, architectures which extend over a line of functionally similar soft-

ware projects (product family) are named “product line” architectures. Moreover, software archi-
tectures which serve as a reference architecture for software products in a certain context (for

instance a Core Banking System) are domain specific software architectures. A software archi-

tecture can be further abstracted to a domain independent abstraction level such as architectonical

styles or patterns like the model–view–controller (MVC) model. They depict standard styles of

implementations and are adaptable to all software projects. However details may vary depending

on the project, its requirements and usage environment. Aside from the terms clarified above,

architectures in the context of software may also exhibit different aspects which are tightly related

to a software project. Information, processes, businesses, databases or other systems are instances

which may also be considered in an architecture. Naturally, distinctive types of architectures exist

for these separate systems as well, for example information architectures. Process architectures,

database architectures or system architectures show the organization and collaboration of a system

in terms of the given layer.

3.2.2 Quality Attributes of Software Architectures

After the definition of software architectures, it is necessary to outline the quality attributes of a

software architecture. In general, software architectures cannot be directly valued as “good” or

“bad”, but they can be measured by the extent to which they fulfil their purpose. There also exist

methodologies for the assessment of architectures and how well they fit the requirements of a

certain software system as well as stakeholder conditions which are included in the development

and the utilization of the resulting application. Examples include architectural trade off analysis

methods [22], various (aspectual, scenario based) software architecture analysis methods [23, 24,

25] or certain review and evaluation methods [26, 27, 28]. In terms of overall software- and com-

puter system quality there exist standards like the ISO/IEC 25010 norm [96], that defines a quality

model which may be applied to computer systems. However, its scope concentrates on computer-

and software systems from a holistic perspective and does not focus on software architectures.

In general, it is difficult to outline generic criteria which are applicable for all architectures as

they are always dependent on specific requirements regarding the software quality, costs versus

benefits, the functional requirements as well as environmental constraints of a project. However,

Bass et al [56] defined several quality criteria in their book which are bound closely to software

architectures. These factors encompass attributes such as performance, reliability, availability,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 34

security, modifiability, portability, functionality, variability, ability to be segregated and concep-

tual integrity. Of course this list of quality criteria has been revised as important factors like scala-

bility and flexibility or technological independence have been adjoined, since these characteristics

have become an vital aspect of architecture design. Nevertheless, the following guidelines have

been defined for a “fitting” software architecture:

- The architecture of a software should be the product of a single architect or a small group

of architects.

- The architecture should be subject to clearly formulated technological and qualitative re-

quirements.

- The software architecture should be documented in a notation which is comprehendible

by all stakeholders who should also be actively included throughout the design process.

- It should be meticulously analysed and verified against qualitative attributes.

- It should outline the base frame for the later implementation with consideration of the

communication paths between compartments.

- The architecture should disclose resource constraints and demonstrate their solution.

- The architecture of a software system should be divided into functional modules, where

each module contains a distinct amount of functionality and communicates with other

modules through defined interfaces.

- The modules should be decoupled as loosely as possible in order to facilitate separated

development and in order to keep the effects as local as possible, in case a module needs

to be modified in the future.

- An architecture should never be dependent on a certain technology or a specific version

of a product.

- The interaction patterns of an architecture should be minimal and simple. It should be

ensured that the same mechanisms are always executed in the same way to ensure that

there is no redundancy.

3.2.3 Elements of a Software Architecture

Software Architectures always depict a certain view on a software system [56, 57, 58], whereas a

certain aspect is highlighted. Therefore, a number of views exist in the context of software archi-

tectures. In this context the 4+1 model of views is a comprehensive example.

3.2.3.1 The 4+1 Model of Views

After the basic definitions and quality requirements of software architectures were outlined in the

preceding chapters, it is necessary to describe the main views of a software system, where each

view can be seen as the abstraction of a software in connection to a certain aspect. In this regard,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 35

a view neglects architectonical information that is unimportant for the aspect, but highlights at-

tributes according to certain criteria. Based on the IEEE 1471 Standard a view is defined as “a
representation of a whole system from the perspective of a set of concerns” (Maier et al, 2000,

Page 3) [29], however there exists a common approach which is based on five “views”. The so

called 4+1 view model, which was first described by Kruchten in 1995 [30]. It consists of a logical

or conceptual view, a module or development view, a process view and a physical view which

are then combined in scenarios. Illustration 1 shows an overview over the model and the next

sections describe the views briefly.

Except from Kruchten’s 4+1 model, also other software architecture view models exist, like the
three-schema approach as well as extensions of Kruchten’s model, however the 4+1 model has

gained a distinct popularity in software projects [77].

Illustration 1: The 4+1 Model of Views

3.2.3.1.1 Conceptual View

The conceptual view depicts the logistics of the system behaviour, which shall be implemented

through the underlying software component. It is comprised of a view over the functional require-

ments and is usually the first architectural design response to the requirements of a customer or

client [31, 41], as well as an analysis of the domain in which a software operates. It displays the

central entities of the given domain as well as their interactions and connections with each other.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 36

Usually the conceptual view is drawn with the use of a graphical notation which is capable of

describing conceptual or logical designs through entities and relations or connections, like UML

diagrams. However, the conceptual view of a software architecture is not a static design process

which is done once, but rather an iterative process where further insights into the problem domain

are to be continually contemplated. As an example, Reekie [32] defines the design process of a

conceptual view in the following steps:

1. Create an initial conceptual architecture from for a software system (or on the base of

requirements).

2. Design the concept with a focus on the required functionality.

3. Develop it with emphasis on quality attributes.

4. Iterate over step two and three until the model is complete.

3.2.3.1.2 Module View

The focus of the module view lies in expressing the organization of a software system in the form

of modules as well as their relations. It first outlines major design decisions like the topological

array of the system in layers which are in turn subdivided into functional modules. The modules

entail all functionalities which are required in the system itself, like libraries, developed code

components, technologies, runtime environments and interfaces which vary in different methods.

Through the modularization and the arrangement of functionalities into layers, the module view

exhibits on the one hand a segregation of components and defines on the other hand components

as well as their functional extent. Furthermore, it has a major impact on the implementation

whereas the implementation may also have a subsequent impact on the modularization because

of changes in the course of the development and vice versa. The module view is usually created

at an early stage in a software project and is often used for early estimations regarding reusability,

security, portability and project planning. Possible model interfaces as well as dependencies be-

tween modules in the form of block diagrams (e.g. UML block diagrams) are typically constructed

in this view as well [30].

3.2.3.1.3 Process View

The process view can be drawn in several layers of abstraction and generally show the logical

path used by a system to obtain the capabilities which it is intended for. In other words, in the

process view, the functionality of logical components are executed in succession to each other in

order to create an appropriate result based on the action of a user of the software system. This

implies that each process contains at least one, or several subtasks and several sub processes,

which may be combined into one overall process, depending on the level of abstraction. The

combination of all the processes outline the overall functionality of the software system. The

process view shows the sequence of all tasks and process steps together with their interactions,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 37

which are usually called “messages”. It is also possible to model non-functional requirements in

the process view, such as performance or availability. One common scheme used in order to draw

a process view is the widely renown UML notation. However, in the recent years the BPMN

(business process management notation) also established itself as a common technique to describe

processes, besides to UML. Compared to other software products, this view is important for in-

formation systems like CBS, as they basically process data over a given set of processes on de-

mand of a user. Therefore, for information systems it is especially important to take all required

processes into account and gather them in the process view [30].

3.2.3.1.4 Physical View

Essentially, the physical view describes how a software system is dispersed over the underlying

hardware resources. The software is also taken into account as it influences the underlying infra-

structure due to its need for physical resources. This relationship is two sided as the underlying

infrastructure affects the deployed software and its abilities as well. In the physical view non-

functional requirements like performance, scalability and availability are addressed along with an

illustration showing which functional modules are deployed on which physical components. For

instance, in the context of an information system, there are usually one or more databases de-

ployed on a database server, which in turn run on a dedicated (virtual) server. In some cases,

specifically smaller information systems with smaller amounts of data, the database server is also

combined with an application server. The application server is also deployed on its own server

with the database and the application server usually communicating over a network where enquir-

ies are sent to a database and the responses are returned to the sender. The application server also

communicates with clients (Webserver) over a network or the internet via TCP and Web Services.

This means, that the entire functionality of the described information system is dispersed over

three different servers which may be regularly backed up, replicated and can also run in several

instances. Between them there may also exist firewalls and further infrastructure which affects

the functionality of the system and therefore must be considered in the physical view [30].

3.2.3.1.5 Scenarios

In the context of Kruchten’s 4+1 model, scenarios are instances of use cases. They are the collec-

tion of all possible use cases a system should be capable of handling in a standard environment

and in the case of any error. They define what process must be carried out if a user performs

certain actions in order to execute the requested task. This view works as a connector between the

four previously described views as the use cases define the basis of all architectural elements,

entities and their relationships. The use cases can also be seen as a functional arrangement of

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 38

processes to achieve the requirements which had been prerequisite for the system. Therefore, they

are a basis for a validation of the given software architecture [30].

3.2.3.1.6 Connections and Remarks

As Illustration 1 shows, the four components are connected to each other. The conceptual view

influences the process view as the conceptual entities are mapped to respective processes, where

they either process other entities or are processed themselves. The conceptual view also influences

the model view, as the architectural entities need to be cast into modules depending on their size

and functional volume. Finally, the module view and the process view affect the physical view

because the deployment of functional modules and processes make up the majority of the content

in the physical view.

In general, Kruchten’s 4+1 model [30] is a basic view oriented approach to document a software

architecture and shows a software architecture from different points of view. However, it may be

an advantage to extend it with further views, as not all architectonic aspects of a software project

are addressed within the basic model. A few instances include security aspects, the user interface,

testing but also necessary upgrades, which in turn is tightly linked to the adaptability of the design

principle.

3.2.3.2 Architectural Styles and Principles

In general, there are different metrics which define the quality of a software architecture. Accord-

ing to Bass et al [56], they can be roughly classified into metrics which are visible during the

runtime and those which are invisible. Visible metrics consist of the performance, which is not

only determined through the choice of underlying technologies and the hardware infrastructure,

but also through their style of communication between each other as well as the segmentation of

software modules. Other traits include security as well as the availability (in terms of fault toler-

ance, and communication security) of a product are attributes which can be used as a basis to

evaluate the quality of a software architecture. Furthermore, the usability, which is in turn influ-

enced by the above mentioned metrics, is also an aspect which is strongly affected by the under-

lying architecture and is therefore an indicator of its quality. The invisible attributes, like the

modifiability of a product is determined by the degree of modularisation of a product’s sub-com-

ponents as well as their encapsulation. In addition to this, the portability and the reusability of

software components also allow for deductions to be made about the quality of the architecture.

Aside from that, the integrability and the extent to which a software is able to interact with exter-

nal components as well as the overall testability of a product provide implications of its architec-

tural quality. However, with the ongoing trends in the field of software engineering, especially in

the field of cloud computing and distributed systems, more architectural quality aspects come into

effect, such as the overall flexibility and the scalability of a software architecture. Sustainability

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 39

and dependency on various technologies plays an increasingly important role for software archi-

tectures in general.

Except from attributes which are of crucial importance for a software architecture, architectural

styles defining the fundamental structure of software components as well as their interactions can

also affect the quality of an architecture [64, 65]. An architectural style generally consists of dif-

ferent design elements, depending on the type of architecture. For instance, a data-centered archi-

tectural style contains databases and data stores within its repertoire of design elements, while an

architectural style showing data flows contains elements depicting data transmissions from one

component to another one. These design components are partially motivated by design con-

straints, which describe how they may be combined with each other. Furthermore, these compo-

nents also contain a semantic interpretation, which complies to the given constraints. To check

architectural styles for consistency it is necessary to assess them with different analytical methods

in order to verify their validity. An architectural style demonstrates a basic structure for an archi-

tecture which connects its content with an appropriate depiction of an associated method of con-

struction. In the recent years, architectural styles have been significantly changed through the

ongoing development of software and its environment in general.

However, Shaw and Garlan [33] defined a set of common architectural styles which are still

widely used and will be briefly described in the following section.

3.2.3.2.1 Data centered Architecture

Data centered architectures mainly focus on the access of a number of clients to a central data

repository. The data repository may be either realized as a passive variety, or as an active style.

An example of a passive repository is a database which is queried by the clients, while an active

repository sends notifications to its clients. The main advantage of an active data repository is

that it is independent from its clients and functions as an autonomous system. Users referred to as

subscribers, can be dynamically added, changed or removed. The active repository itself may also

be modified as long as the communication interface and method of communication with its clients

remains unchanged. Furthermore, this type of database enables clients to work in parallel without

facing concurrency problems, as an active repository triggers outgoing events based on its inner

state instead of being triggered externally by its clients. Additionally, these databases are easily

scalable due to the flexibility granted to the clients. However, depending on the number of clients,

structural changes in the communication may become costly, as they also have to be implemented

for existing clients [21, 86].

In contrast to active repositories, passive data repositories are inquired by their clients which

means, that the repository is triggered through external events and delivers a respective result.

The main advantages of this style is, that the central deposition of data can be easily back upped,

and the clients are to a certain degree capable of scalability as well as reusability, since they do

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 40

not directly interact with each other. Another advantage of these databases is the reduction of data

traffic through communication channels to the amount which is necessary at a given time, instead

of broadcasted data traffic which is sent through active repositories. The drawback of passive

repositories is that dependencies between the repository and its clients are much higher which

results in structural changes within the repository often affecting the clients as well. Also the

number of inquiries from the clients to the repository as a central data store may cause perfor-

mance problems as well as concurrency difficulties.

3.2.3.2.2 Dataflow Architectures

Dataflow Architectures [21, 75] are based on systems, which take a certain amount of data as

input, transform it within one or several steps and create an output, based on the input and the

internal transformation logic. The main aspect in terms of data flow architectures is the reusability

as well as the modifiability of the transformation process, as it is on the one hand repeatedly

applicable to several inputs and on the other hand the logic may be altered depending on its pur-

pose. Dataflow architectures can be split into two sub-branches, Batch-Sequential (BS) data flows

and Pipe-and-Filter (PF) data flows. BS data flows consist of several subcomponents, which work

independently from each other. They regularly check whether an input set is available and process

it according to their functionality. Afterwards they store the result to a location which is continu-

ously monitored by the next subcomponent. In this manner, input data is transformed in several

steps and delivered to an output location. The difference between BS and PF data flows is, that

the components of BS data flows wait until its predecessor is finished with its task and created its

result in its entirety, before beginning to process the given result. In contrast PF already begin to

process input data as soon as parts of it are available, regardless whether the predecessor is fin-

ished or not. An example for BS data flows are Windows Batch Jobs, which execute a series of

commands or transformation, based on a given Batch Script. However in Unix systems it is pos-

sible to pipe various commands together simultaneously, hence they are executed according to

the P-F scheme.

[87]

PF architectures are considered to be easier to implement and maintain in comparison to BS ar-

chitectures. The reason for this is due to their defined connections and missing complex compo-

nent interactions. They are also dependent on the same manner of data representation (usually in

the form of ascii digits) and their performance is often not optimal. Also they are prone to Dead-

locks, in case a predecessor is not able to finish its work properly or in a certain interval of time.

In contrast BS architectures consist of components that are more independent from each other and

also allow a degree of interaction with each other. However their subcomponents are required to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 41

wait until their predecessor finishes their tasks and outputs the result. This creates more modular-

ity but also slows down the entire process in comparison to PF architectures.

3.2.3.2.3 Virtual Machine Architectures

The Virtual Machine architectural style is, unlike Cloud Computing, an architectural realization

principle which roots further back to the beginning of high-level programming languages. In gen-

eral, this style aims to abstract software functionality from the underlying platform on which it is

running. That means, that a software package shall be made independent from the platform on

which it runs. To do so, it is encapsulated into a virtual machine, which covers all platform spe-

cific aspects of the infrastructure and offers a common interface to the software running on it.

One of the most well-known examples for Virtual Machine architectures, are programs written in

Java. Depending on the Operating System (OS) on which a Java program is executed, it is em-

bedded into a Java Virtual Machine (JVM). It acts as an adapter between the program and the

underlying platform. The Java Runtime Environment (JRE) contains a number of JVMs, where

each one is compatible with the specific settings of common operating systems like Windows,

Unix or Solaris. The main advantage of this approach is that the Java program itself is platform

independent and may be run on different operating systems without the need to be recompiled (as

is the case for programs which are e.g. written in C/C++). The drawback of VM architectures is

that the Virtual Machine usually consumes a certain amount of the system’s resources, which

decreases the performance of the application compared to applications which are specifically

compiled for a certain OS. However, as the amount of resources available continues to incessantly

increase over decades, the performance difference becomes more and more negligible [21, 76].

3.2.3.2.4 Call and Return Architectures

Call and Return Architectures are a basic architectural style for software in general, as they are

widely used, particularly with the introduction of imperative and object oriented programming

languages. They can be divided into four sub branches which will be described briefly in the

following paragraphs [21]:

1. Main Program and subroutine architectures: They are used in all programming languages

which are capable to outsource services into subroutines. Here a program consists out of

a main routine which initially “owns” all logic as well as the data which is to be processed.
In the course of its runtime it may call subroutines containing a defined part of the pro-

grams overall functionality once or repeatedly. Depending on the subroutine, arguments

from the calling mother routine can be accepted and results may be returned either to the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 42

calling procedure or to the system on which they run. This kind of architectural style also

supports hierarchies of routines as each subroutine may in turn call further subroutines.

2. Remote Procedure Call Architectures (RPC): Are in principle the same as subroutine ar-

chitectures, with the main difference that remote procedures are stored on different com-

puters which are connected through a network. This architecture allows for the resources

which are necessary to execute a program to be dispersed over several nodes. Another

advantage is the possibility to support asynchronous procedure calls, which in turn offer

the ability to execute code in parallel. Furthermore, the decoupling of code components

over several computers enhances the physical independence of program modules with all

its further implications, ranging from the realization of modules in different programming

languages to technological decoupling.

3. Object oriented Architectures: Are currently the most widely used program paradigm in

high-level computer languages. This style of architecture is mainly known for its encap-

sulation of data as well as logic into objects, that are only accessible through defined

interfaces. Various concepts have been developed for object oriented architectures. Both

Polymorphy (via reusability) and inheritance architectures are well known examples of

this style. However, its main objective is to hide information and behaviour from the

external environment and to offer its services as a black box to outside components which

may call services and functions implemented in the internal structure.

 Layered architectures: Are schemes where each layer builds on the layers beneath it and

is used by the layers on top of them. Defined interfaces allow the communication between

the layers which are all respectively based (and therefore dependent) on underlying lay-

ers. In the context of Remote Procedure Architectures, the behaviour as well as the data

of the underlying layer is encapsulated and hidden from the overlying layer which calls

the layer below it through public interfaces, in order to use the procedures available and

receive results based on inputs. Layered architectures are often used in larger software

projects and IT infrastructures as they provide the aptitude to physically separate, overlay

and reuse layers. A common example for a layered architecture is the MVC pattern which

will be described in chapter 3.2.3.3.5. A major advantage is the flexibility and modularity

which is offered through this architecture. It makes software more maintainable as the

usage of common interfaces as well as the horizontal architectural separation facilitates

the exchange and modification of functional components and also enhances its portabil-

ity. Unfortunately, every architecture still retains weaknesses and the main disadvantage

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 43

of this principle is that overlying layers should only communicate with immediately un-

derlying layers, implicating losses in terms of performance. Aside from that, there are

systems in which layered architectures are not always applicable as they may be modelled

in a manner that is incompatible with layered architectures.

3.2.3.2.5 Independent Component Architectures

Independent component architectures [21] consist out of a number of processes and components,

which interact with each other but are nevertheless independent. There are different substyles of

this kind of architecture. As an example, an event based architecture contains a publisher compo-

nent, which regularly sends messages to subscribed clients. If a client is interested in the messages

from a particular publisher component, they register themself for a subscription by sending a

subscription message to the event system. In this message they specify which information they

are interested in. Subscribers may also act as a publisher for other messages by sending messages

to an event system. The event system itself is a central component which receives messages from

a publisher and notifies other registered clients about the new message. An advantage of this

approach is that message providers and clients are decoupled from each other. Additionally, they

are also enabled to run independently from each other and are not affected by one another, due to

the asynchronous style of communication. From a systemic perspective, the system as a whole is

easily extendable and maintainable as existing clients may simply be exchanged and new sub-

scribers can be added to the system by simply registering themselves at the event system.

Another style of independent component architectures are components interacting with each other

without a mediator. They are usually processes which run independently from each other and

communicate directly through sending either synchronous or asynchronous messages. A common

example for this paradigm are client server systems, where a server is inquired through one or

several clients and responds accordingly after processing the request. Communicating processes

and the publish subscribe paradigm are based on the concept that both communicating nodes

acknowledge one another, but are still independent and separated, assuming that the communica-

tion style is asynchronous. A special case of communicating processes are peer-to-peer networks,

where every node within the communication network is equal. That means that each node has a

client- as well as a server function towards other nodes. Each node offers a set of services to the

public which may be used by other nodes as well, through sending a request to the respective

node. There are various protocols on different levels supporting this style of architecture, like the

synchronous protocol TCP, as well as UDP, which is asynchronous. On a software level numerous

protocols like RMI, CORBA and Remote Procedure Calls are commonly used.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 44

3.2.3.2.6 Heterogeneous architectural Styles

In general software architectures are often combined within a single software product or module.

As each paradigm exhibits both advantages and disadvantages, software architects usually try to

combine them in a way to fit the requirements of a project as good as possible. For instance, client

server systems are common in modern software engineering as well as layered architectures.

Many technologies exist today which have already been implemented using a combination of

architectures, which in turn indicates that every framework in which they are used is also sub-

jected to those architectures. Due to the obvious advantages, a so called heterogeneous architec-

tural style is used in the majority of software products. According to Bass et al [33], the architec-

tural heterogeneity may be classified into three branches, namely domain dependent heterogene-

ity, hierarchy dependent heterogeneity and simultaneous heterogeneity. In terms of domain de-

pendent heterogeneity, the architecture differs depending on subsystems or submodules of a soft-

ware. This implies that a software persists as a combination of various submodules covering cer-

tain domains of its functionality and may be implemented in different architectures and technol-

ogies. As an example, a dispersed system may be deployed on two different servers which use

different operating systems. Likewise, the respective submodules may be implemented in differ-

ent programming languages, which already differ architecturally due to their technological nature

(e.g. Python is architecturally different than Java, as Python supports not only the imperative and

object oriented programming paradigm but also functional programming). Nevertheless, they are

better able to realize the required functionality of the software product’s submodules. However,

as a consequence the product in its entirety is architecturally heterogeneous over its subdomains.

Hierarchy dependent architectures emerge through the use of different architectures that are em-

bedded into an overall architecture. An example would be a software framework consisting of

several modules, which communicate via an asynchronous messaging system with each other

(communicating process style). Each submodule may have a different sub-architecture, but is

embedded into the overall architecture and therefore hierarchically subordinated. An example of

simultaneous heterogeneity would be architectural styles which may be implemented in different

ways. A layered architecture where a software is divided into software layers with abstract func-

tionality from an underlying layer towards a superior layer can also be described as a kind of

virtual machine architecture resulting from this abstraction.

3.2.3.3 Patterns

After common architectural principles were outlined in the previous chapter, this chapter will

focus on the basic design patterns which play an influential role in the majority of software prod-

ucts of the recent decades [59, 60, 61]. In general patterns are reusable solutions to problems in

terms of software engineering, which occur in different applications. In that context, they are

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 45

technology independent best practices for recurring problems regardless of the utilized frame-

work, programming language or application purpose. Software patterns are divided into design

patterns and architectural patterns, whereas design patterns act on a smaller scale then architec-

tural patterns. While design patterns are intended to solve code-level problems (e.g. Object Fac-

tories, Singletons, Iterators etc.), architectural patterns are focused on high-level architectural

strategies impacting the entire software system. Accordingly, architectural patterns have a high

impact on Core Banking Systems as they define to a large extent the architectural structure of a

CBS and its submodules [122, 123]. While most CBS are structured in a layered architecture (like

MVC as described in section 3.2.3.3.5) they also use patterns like the Master-Slave pattern or the

Broker pattern. Therefore, the most important architectural patterns are outlined in the following.

3.2.3.3.1 Proxy

Proxies [21] impose a more or less public domain functionality to a server. They conceal a server

and offer the same interface of the server to a domain of clients. In that way, they can be seen as

a placeholder for the server in a client-server style communication pattern. The main advantage

of the proxy scheme lies on the one hand in the decoupling of the clients and a server, and on the

other hand on the “hiding effect”. Through hiding the server behind a proxy, the server may be
deployed in a different physical location then the clients, while the proxy offers its functionality

to clients. Furthermore, the clients cannot directly access the server and therefore their access

limits can be controlled by the proxy. For instance, the proxy can conduct preliminary and subse-

quent processing on each request of a client and is able to impose certain control mechanisms, in

order to verify client’s requests, or to limit their quantity.

However, a proxy should fulfil a number of constraints and it should take into account that it must

not directly influence the communication between clients and the hidden server. First, it should

be runtime efficient in order to avoid latencies in the communication. Second, its access should

be transparent to the client side and it should offer the same interface as the server does, in order

to prevent the call routine on the client side from the requirement to be altered. Also in most cases,

the connection between the proxy and the server is a 1:1 relation, while the connection between

the proxy and the client side may be a 1:n relation. There are in general various kinds of proxies

fulfilling different responsibilities but act roughly according to the same principle. To them be-

long Remote Proxies, Protection Proxies, Cache Proxies, Synchronizations Proxies, Counting

Proxies, Virtual Proxies or Firewall Proxies. Illustration 2 outlines the universal structure of a

proxy pattern.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 46

Illustration 2: The Proxy Pattern

3.2.3.3.2 Broker

A Broker [21] pattern works in the context of a dispersed system, where decoupled and often

technologically heterogeneous components interact with each other. Its main advantage lies in the

structuration and coordination of the components’ (clients) communication where it forwards en-
quiries and responses as well as exceptions in the case of an error. In doing so it poses a single

point of access, which identifies all services that are offered within its scope and offers them as

an interface to other components. In this regard, it should be able to handle components that re-

quire access to other components. Furthermore, it should also be able to deal with components,

which are edited, added or removed from a system during its runtime and it should be able to

obscure system or technological details of the components from each other. These requirements

are met with the introduction of an interface of a service for the public, which may then be ac-

cessed by various components, whereas technological heterogeneity like different implementa-

tion languages, different component architectures, or a different physical location must not affect

the execution of tasks. To be more specific, a broker is publicly known in a system or at least

within its scope. If a new component (server) is added to the system, it first registers itself as well

as its services with the broker in order to be recognized and accessible within the broker’s domain.
If a client then requires a service, it sends its request to the broker, which forwards it to the regis-

tered server and returns the respective response. Through this concept it is possible to change

system components during runtime as the components do not have to interact directly with each

other. Additionally, in case a service is not available the broker can handle the exception and

notify the calling client respectively without the system failing. Therefore, a broker enhances a

system’s flexibility and agility. Broker systems also emphasize system portability by concealing

operating system specific details of a client from other clients, since it offers only indirect inter-

faces like application programming interfaces (APIs) to each client. Due to this, the client does

not know which platform or which kind of network another client is operating in. In the case that

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 47

a broker system is migrated from one platform to another, it is only necessary to adapt the broker

and its interfaces to the new platform. Aside from that, brokers are able to interact with each other

through the use of bridges (assuming they use the same protocol) which emphasizes the reusabil-

ity of already used components.

3.2.3.3.3 Master-Slave

A Master-Slave [21] system is a topology where one master controls one or several slaves. The

slaves are identical and various assigned tasks are first sent to the master, who then dispatches

them among the slaves. In this architecture, the master poses an interface to external components,

in which the offered services are accessible. As soon as a service is called, the master splits the

requested task into several subparts, which are then assigned to the slaves. They calculate an

intermediate result, which is then assembled by the master to an overall result. In general, this

approach enhances fault tolerance and parallel processing as well as an increased calculation ac-

curacy. In addition to receiving tasks and dispatching their subtasks to the slaves, the master also

maintains the slaves according to the “divide and conquer” principle. Illustration 3 shows a com-

ponent diagram of a master slave architecture.

Illustration 3: The Master-Slave Pattern

Slaves may also be capable of conducting certain processes and are able to be realized as threads.

Under certain circumstances, it is possible that slaves are dependent on each other, which means

that a slave has to wait for a particular condition to arise, or for an argument from another slave.

In this case it is necessary to interrupt ongoing calculations within the master slave architecture,

in order to perform synchronization measures. However, it should be noted that this may lead to

performance losses. In general, it is advantageous to define a slave as an abstract class in order to

enable changeability and extendibility when implementing classes. Also, by segregating the exe-

cuting code (slave) and the delegation code (master) it is easier to manage slaves and to create-,

or provision slaves on demand. The main advantage of this principle is the aptitude to compute

tasks in parallel, which increases performance as well as system efficiency significantly.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 48

3.2.3.3.4 Client-Dispatcher-Server

A client dispatcher server pattern [21] is a naming service which is introduced as an intermediate

layer between a client and a server, where it veils the details of a communication mechanism

between a client and a server. The problem which is addressed through these mechanisms are

distributed server networks, where a client calls a server usually by its name and the offered ser-

vice. In any case, a server component should offer a service independent from its physical location

or the location where it is deployed. Furthermore, the functionality of a product should be decou-

pled from the required functionality to access the product’s services. By inserting a Dispatcher
between a client and a server, the client is enabled to access the server via a given name, which is

then resolved through the dispatcher, instead of accessing it directly through its absolute physical

address. In addition, the dispatcher is also responsible for the maintenance as well as the creation

of a connection between the client and the server. There are several kinds of Client Dispatcher

Services, such as dispersed Dispatcher Services in which each Dispatcher does not know all ad-

dresses to servers but has knowledge of all other dispatchers within a network. In case a client

wants to establish a connection to a server which is not known by an initial dispatcher, the con-

nection is established though a dispatcher which knows the details of the desired server. This

connection is then returned from the target dispatcher to the initial dispatcher and forwarded to

the requesting client. Another type of dispatcher service returns the physical address of a re-

quested server and leaves the maintenance of the connection to the client. Dispatcher services

with heterogeneous communication styles store the protocols under which a server is able to com-

municate. In some cases dispatcher servers offer service titles instead of server names. That

means, that a client does not address a specific server in order to get their request completed but

a service, which implies the advantage that several physical servers may be attached to a service

in order to provide redundancy in case of a server failure.

The general advantage of server dispatchers is the indirect access of clients to servers as well as

the independence from physical addresses. This enables servers to be exchanged if necessary and

their physical location is made imperceptible to the client. Also through the provisioning of ser-

vices to clients it is possible to create redundancy, which in turn raises the availability of a certain

functionality to the clients. Nevertheless, a drawback is that a dispatcher poses a single point of

failure as a central component in this architectural pattern.

3.2.3.3.5 MVC

The MVC (Model-View-Controller) pattern [21] is a common design pattern in the context of

software architectures. Often software products consist out of three parts, namely a user interface

(view) defining the method of contact between the program and the user, a business logic (con-

troller) that entails the behaviour of a software and a data domain (model) which outlines the data

domain in which a program operates in. In general, MVC means that a program is divided into

these three aspects which are then connected with each other through defined interfaces. Today

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 49

many industrial software products are architecturally designed using MVC or in a style similar to

MVC. The view is usually defined through a client framework, the controller is often realized in

the form of an application server and the data model is usually depicted within a database. The

main advantage of MVC is the enhanced maintainability of a software as the defined interfaces

make it rather easy to replace software components, or even one of these three sections entirely.

That means that either a client, an application server or a database with its model classes may be

replaced. It is also possible to run several instances of a segment in parallel, which in practice, is

mainly the client (E.g. if an application contains several clients for several kinds of users). In the

context of CBS MVC architectures are often used where customers are offered a browser based

client with the functionality for internet banking, while bank clerks are provided with an installed

client which has more functionality in order to cover their business use cases.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 50

4 Modernization of Core Banking Sys-
tem Architectures

This chapter outlines the modernization of software architectures from a number of views. First

selected scientific approaches will be presented. Afterwards the BIAN as a more practical, but

nevertheless generic approach will be discussed. Next, the architectures of selected existing CBS

architectures will be summarized and evaluated and finally an exemplary CBS architecture will

be outlined, which is the basis for chapter 5.

4.1 Modernization Approaches for Software Archi-

tectures

The modernization of software as well as software architectures is a particularly specific aspect

in the field of software engineering. It is driven by the necessity to update technologies and ar-

chitectures used in software frameworks in order to enhance their functionality and reduce risks

connected to the use of old technologies and architectures. As software architectures define the

structure of software frameworks, the modernization of software (code) is closely associated with

the modernization of software architectures and therefore cannot be separated from each other.

Fortunately, various approaches in order to evolve and modernize architectures have been devel-

oped in recent decades. They range from modernization roadmaps, via architecture-driven mod-

ernisation frameworks and architectural migration models, to knowledge based evolution frame-

works. In the following sections, three exemplary approaches will be addressed, which shall give

an overview of the architectural modernization approaches.

4.1.1 Architecture Options Workshop (AOWS)

The AOWS is based on the work of Ernst et al [34] which was published at the 13th Working

IEEE/IFIP Conference on Software Architecture in 2016. It focuses on the planning phase of an

architecture modernization, in which stakeholders often display great difficulty in the creation of

an architectural target roadmap on the base of an existing system. According to Ernst et al, this

trend was observed in practice during three modernization projects of three different architectur-

ally outdated software frameworks between 2013 and 2016. The modernization was conducted

by three different major organizations in the governmental and private sectors.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 51

The entire approach is designed in an iterative way where each repetition consists of four parts.

First, various architectures are selected, based on the risks and the business goals under which the

modernization must takes place. Out of the designated architectures a single target architecture

shall be selected through trade-off analysis and prioritization according to predefined criteria. In

the selection process the decisions need to be documented along with the rationale why this ar-

chitecture was selected, using a comparison between the implicated costs and advantages. Next,

the selected choices shall be prioritized and chronologically ordered in preparation to execute

them in the course of the roadmap. In its methodology the AOWS consists out of seven steps,

which are assembled into three phases. The first phase is the so called “Preparation phase” where
initially the business goals, which are to be fulfilled through the architectural modernization, shall

be agreed upon. Scenarios are then composed for each goal in order to make it possible to achieve

the predefined business goals. Within the second phase (Breadth - phase), each scenario must be

examined on its own and certain architectures are to be defined, which would enable the modern-

ization team to realize the scenario. As every architecture is a possible suitable candidate, the

costs and benefits for each option need to be recorded in the scenario in which it is used as the

foundation of an architecture. In the third phase (Synthesis - phase), the best architectural options

shall then be prioritized and combined in a manner that will fulfil each business goal. This com-

bination is then put together to a common roadmap which realises all given business goals. During

the prioritization of options through a cost-benefit methodology, the participating stakeholders

are asked to rate each cost and benefit on a High-Medium-Low scale. The thresholds between the

three classes were set based on individual criteria. The prioritization of options may prove to be

complicated, as each option may contain various dependencies as well as implications. Decision

trees were used in order to cope with this challenge.

The creation of the roadmap depends on the number of business goals which are to be fulfilled

and the timeframe over which the roadmap extends. However, the authors of the AOWS approach

recommend that the roadmap’s timeframe should remain below a two-year time limit and its pro-

gress should be regularly reviewed. If a modernization process of a software is estimated to take

more time than two years it is considered practical to split the modernization into several inter-

mediate-term phases, whereas each one is covered by its own roadmap. Furthermore, in practice

modernization processes of software products are often subject to exogenous influences such as

funding, organizational- as well as business constraints. These circumstances need to be consid-

ered in the development of the roadmap, and its sub-steps (Milestones) must be planned accord-

ingly. Each Milestone is marked with a due date until which a sub-step must be completed.

4.1.2 Model Driven Software (Architecture) Modernization

Model Driven software modernization [45, 46] is a common approach in terms of the evolution

of legacy systems to a more up-to-date framework. Due to its popularity, several approaches have

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 52

been developed, ranging from reverse model engineering (in order to extract a language inde-

pendent model from an existing system) to the semi-automated implementation of new code under

a new architecture, using the previously gained model. One approach is the Model Driven Archi-

tecture, which was adopted by the Object Management Group in 2001. This methodology became

one of the central concepts in the context of model driven development, as it defines the core

principles of software- and architecture modernization using model driven means. Other software

modernization approaches (e.g. Fuentes-Fernández et al [37, 48, 49] with his proposed XIRUP –

eXtreme end-User dRIven Process) use MDA to cover the architectural aspect of their moderni-

zation projects.

The main goals of the MDA approach is to guarantee the portability, interoperability and reusa-

bility of a software product through the separation of its behaviour from its design as well as its

architecture. That means that the description of functionality in terms of architecture and design

is made independent from the technology and the platform on which it is implemented. A main

concept of MDA is that the model operates as a formal description of the function and the structure

of the underlying code. To achieve this goal, the MDA approach usually utilizes UML (unified

modelling language) as a common description notation.

The MDA process itself contains several steps in order to transform a source system from a source

target into a target system on a respective target platform. The first step is to abstract the source

system into a UML based platform independent model (PIM). The PIM omits the technical details

of a system that are related to its platform and thereby separates the source system from the plat-

form on which it is deployed. The PIM then serves as a source model, which is transformed into

a target model through the application of defined transformation rules.

The next step involves the creation of the target model which, according to the MDA standard, is

platform specific (PSM) and hence already customized in order to fit the specifics of a target

platform. That means, that the PSM has to combine the functional specifics of the PIM, adapted

through transformation rules, with all details about its use of the planned target platform. As a

third step the transformation rules, depending on the nature of the PIM as well as the PSM, need

to be defined as they essentially provide mapping rules from entities and relations of the PIM

towards a respective counterpart in the PSM. The transformation itself is aimed to be as automated

as possible in order to reduce manual interference which may be prone to errors. However simply

applying mappings from a PIM-root object to a PSM-target object is not enough to accomplish a

complete transformation. Therefore, so called marks provide information about the way in which

a certain entity should be transformed. Marks are platform specific and hence are a part of the

PSM. One of the requirements of marks lies in the PIM-model elements which are applicable to

a mark needing to be defined and the mappings in turn being defined in a dedicated mapping

language. To satisfy this need, OMG adopted the so called MOF QVT language (Meta Object

Facilities Query/View/Transformation). Illustration 4 depicts a high-level overview of the MDA

transformation approach.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 53

Illustration 4: Schematic Overview of the MDA approach

The fourth step is to generate code and “living” artefacts out of the target model. In practice
frameworks might also be included, which support the automated abstraction of a source model

out of existing code.

In general MDA is also capable of functioning as a modernization approach since the transfor-

mation rules also allow the transformation of a source model into a target model, which is struc-

tured in a more accurate and consolidated architecture. Therefore, in practice, it is possible to

generate a PIM from different source code languages, as long as the languages utilize a common

set of logical rules and structures (like logical branches, loops or operators). These rules are used

to transform data and thus define the behaviour of a program. This behaviour may be abstracted

(along with the architecture) into a PIM and separated from the underlying technology as well as

the platform. As soon as a PSM is created, utilizing a suitable architecture and appropriate tech-

nologies, the transformation rules can be created. In relation to the code generator, it is possible

to build a converter which automatically implements modernized code under a modernized archi-

tecture from an existing PIM. During that process, the transformation rules are the component

among the MDA which entail the most testing, in order to prevent logical errors arising. A method

of testing consists of running the code generated by the converter and to compare its behaviour to

the behaviour of the original code. Usually an emulator has to be refined in several implementa-

tion runs, until it is able to reliably convert from one framework to another one. The main benefit

of the MDA approach is the formal abstraction of the source code into a meta model, as it divides

technologies and frameworks from behaviour and structure. On the one hand the PIM poses a

detailed documentation of the source system and the on the other hand, it provides the capability

of re-implementing it in any other language and in any other architecture, depending on the trans-

formation rules.

4.1.3 Architecture-centric software evolution (ACSE)

The Architecture-centric software evolution approach (ACSE), is based on the work of Ahmad et

al [36, 47], who adheres to a broader approach, focusing on a constant evolution of software

architectures as a requirement to keep software continually adapted and usable. To realise this

scheme, they propose a so called “PatEvol” Framework, consisting of a set of activities with the

Source

Model

Transformation

Rules

Target

Model + =

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 54

purpose to execute two main modernization steps. The first is the acquisition of Architecture

Evolution Knowledge and the second one manages the application of the gained knowledge. The

overall ACSE process is depicted in the following Illustration 5.

Illustration 5: The ACSE process

The source, which is necessary for developing an initial architecture into its next evolutionary

stage, is an existing knowledge base which is realized in the form of a (software) repository where

all architectural changes are consistently recorded. From there architectural change logs shall be

used in order to conduct knowledge acquisition through evolution mining. Put simply, the change

logs of the software repository will be examined for formal architectural changes. Common chal-

lenges in this context involve the size of change logs, as they may become large and could result

in an analysis becoming extensively time consuming as well as the possibility of a manual inspec-

tion, which is likely to be error prone. In order to overcome these problems, a graph based change

notation, derived semi-automatically from the logs, is recommended. Through the application of

graph-mining techniques on the derived graph, recurring as well as nonrecurring architectural

change patterns can be discovered. Subsequently, the changes must be taxonomically classified

with the aim to serve as a foundation for further discovery and template based specification of

evolution patterns. The classification is carried out through searching graph patterns which indi-

cate commutative and dependent architectural changes. This approach is rather intuitive and re-

quires details about the composition of the underlying history of previous structural changes.

Once the knowledge acquisition activities are completed, the derived evolution patterns are added

to an evolution pattern catalogue which is represented in Illustration 5 above as the evolution

knowledge collection. Through collecting the gathered patterns in a catalogue using a generic

specification format, architects are enabled to reuse these patterns in the future in order to resolve

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 55

recurring architectural challenges faced in the overall evolution process. Furthermore, these pat-

terns are based on the given piece of software, which signifies that they are already within the

problem space as well as the context of the underlying software.

The second main step is the application of the gained architectural knowledge to the underlying

software. In order to do so, an architectural evolution step (modernization) is formally specified

according to given requirements. The specification contains three main sections: first, an appro-

priate description of the source architecture. Second, all constraints which impact the evolutionary

step and third; the concrete steps in which a software component is either added, changed or

removed with the aim to realize the software evolution. Within the specification, decision ra-

tionale behind the change as well as the scope of the modernization step must be outlined thor-

oughly. After the specifications are established, architectural evolution patterns need to be se-

lected from the previously created pattern catalogue. They provide a mapping from the initial

problem to a possible solution which is already within the specific domain of the software product.

Ahmad et al propose to use a Question-Option-Criteria approach in order to find the suitable

patterns for an evolutionary step, since the selection of architectural change patterns is a rather

complex problem. Using this approach, first the pattern catalogue is queried with a certain prob-

lem or question. Ideally it delivers certain patterns as possible solutions to the specified problems

and the most appropriate one is then selected, depending on how well it suits to the given criteria.

Once all architectural change patterns have been selected, they are implemented on the software

product. The resulting changes are recorded in the architecture change log with the purpose to

serve as an information source for future evolutions.

In general, the ACSE approach does not focus on just one architectural modernization and hence

is not seen as an atomic action. Instead, it focuses more on the overall evolution of a software

product, which in turn is more beneficial for the lifecycle of long living software products that

are enhanced over decades.

4.2 BIAN – A Standard for Modern CBS Software

Architectures

The Banking Industry Architecture Network (BIAN) [95] is an independent organization which

promotes the standardization of service oriented architectures in the banking sector. Having

emerged out of the Industry Value Network (IVS), this institute aims to connect Banks and service

providers as well as banking software vendors. The motivation of the organization is founded on

the fact that requirements of banks towards their IT infrastructure, particularly the CBS, are con-

stantly varying. Banks are subject to rapidly increasing external influences, which in turn impli-

cates that they require a more flexible IT infrastructure in order to better provide the offered ser-

vices at lower costs. The common challenges which banks face in terms of their IT infrastructures

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 56

lie in the fact that each bank has a unique IT landscape, which is usually slow and expensive to

adapt and depicts a lack of interoperability. In order to provide a solution to that, BIAN seeks to

standardize banking IT infrastructures on a service oriented basis. In general, BIAN adopts a

service oriented architecture (SOA) and thus is formally named BIAN SOA Framework (currently

in version 7). The rationale behind this approach is the topological separation of functionality into

separate services. Through that topology an improved information flow and greater architectural

flexibility is provided. The embedded functionality is also exposed and hence accessible to all

other services as well as external components. Aside from that, through the reusability of services,

the system is set up more efficiently which reduces software development and maintenance costs.

Another advantage of the service oriented approach is that the services use messaging in order to

communicate with each other, which indicates better security as well as monitoring facilities and

enhances the architectural and functional flexibility significantly. Another benefit is the reduced

complexity of the software as the functional composition of the services is not nested but instead

situated on one general hierarchical level where no service encapsulates or controls another.

Therefore, the entire system is less complex as the services are kept in a moderate functional size

and are correspondingly easy to maintain and extend in the long term.

The core artefact of the BIAN is the service landscape, which defines an activity diagram for

banking use cases and can be viewed as a standardized collection of banking services. Illustration

6 shows an overview over the BIAN service landscape and its service clusters.

Illustration 6: The Overall Service landscape of the BIAN [88]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 57

Each service in the service landscape is modelled in UML and does not focus on any technology

or infrastructure in which a banking functionality should be realized, but rather depicts the pro-

cedure which should be adhered for the creation of a the same. An overview of important entities,

and how they are organized among each other is also presented by this approach. The following

example shows an exemplary scenario for credit assessment. It involves all stakeholders, who

participate in the process and the respective sequential high level actions, which are necessary to

complete a credit assessment [88].

Illustration 7: Credit Assessment Scenario according to BIAN

In addition to the service landscape, BIAN entails a how-to guide, a meta-model, a set of business

scenario definitions as well as a service domain definition, which are all complemented through

a common BIAN business vocabulary. In that context BIAN defines three major components

[88]:

- A service domain is a functional service or module. Each service domain has a unique

business goal, and capabilities with each domain containing a set of activities which detail

the formal realization of its semantic meaning (business goal). That means each service

domain contains the ‘What’, the ‘Why’ and the ‘How’ of a business capability.

- A business domain is the next abstraction on top of the service domains and consists of a

set of service domains. These domains summarize a number of business capabilities into

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 58

a broader business area and represent already standardized departments of a bank such as

loan and deposit management, customer management or trade banking.

- Business domains are aggregated to business areas, which is the highest level of classifi-

cation and can be seen as a business group of a bank such as services, risk and compliance,

sales or business support.

Through the use of these three entities, BIAN tries to standardize the approach used by CBS

vendors as well as banks for their IT-infrastructure. The main advantages which emerge from this

procedure is that each vendor who complies with the standard modularizes Core Banking func-

tionality according to the same pattern. In turn, that implies that software solutions (with partly

disjoint functionality) are much easier to integrate, and obtain a higher application to application

compatibility. Through the service oriented modularity, a greater flexibility is achieved as each

service can be added, removed, updated or reused with less effort. The overall interoperability of

a CBS is also enhanced, as third party functionality may be included into the framework as “just
another service”.
In terms of design principles, BIAN’s central policy is the breakup of banking functionality into

a collection of isolated and discrete services (service domains). Each service domain contains on

the one hand an asset, and on the other hand a certain usage. Assets are essentially data that are

modelled by using hierarchically ordered entities. The sum of the entities models the entire data

domain of the bank, and likewise the information which is processed by a bank. Through the

usage of the collection of the BIAN’s services, a given entity or set of information are processed

as necessary. Each service domain is elemental which means, that each service of BIAN’s collec-
tion covers a certain business role and several services may be combined to fulfil a bigger purpose.

In that regard, each service domain acts as a service centre, which means that each service is

triggered on the basis of a request. The request asks the service to perform a task according to its

given functionality and deliver a response to the client. Such a request could also require that the

invoked service has to send further requests to other services in order to fulfil its task. The inter-

action between service domains is well defined and regulated using control records that connect

the behaviour of a service with its output and logs its process. Within business scenarios the sum

of service domains is described, which are used to cover the functionality of a business process,

as well as their interactions with each other. They depict the service domains involved on a high

level and represent the flow of information between them. According to the standard, the interac-

tions are also described in semantic terms, in order to provide a consistent and unambiguous in-

terpretation [88].

Another major principle of the BIAN standard is that it should be interpretable in different situa-

tions. This principle should be independent from technical environments and hence must be pos-

sible to implement with the use of various technologies, depending on the requirements of a bank.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 59

There are two main methods of usage intended for the BIAN standard; first it can be used as a

high level specification for a solution, with the capability to fulfil the main use cases of a bank.

Second, it can be used as a blueprint for an existing system, in order to develop it towards the

standard. To do so, BIAN is designed to be capable of being mapped to existing systems and

services, which may either realize, or replace projected BIAN services. Its service landscape may

also be translated or connected to other architecturally important models, such as process models

or data models. In terms of interconnectivity BIAN’s service domains contain a clear definition

of their interfaces and their functional segments. This enhances their interoperability and flexibil-

ity massively as they may be used either in big legacy applications or within frameworks, where

they are obligated to cooperate with other applications, or as a kind of black box within a multi-

application cloud environment. In this regard BIAN may also be used to create a benchmark of

an enterprise blueprint which stays constant over time. For instance, over the course of the years,

it is possible that the function of a service domain may change. However, its business purpose

and hence its semantic will remain the same. Through its stability, the BIAN service landscape is

capable of being expended as a benchmark in order to verify the performance and compliance of

existing systems to map-, and evaluate their existing coverage, and to create more fitting require-

ments through mapping needed functionality to the service domains of BIAN.

The BIAN service landscape covers a range of functionality as Business Areas, whereas each

Business Area contains a set of Business Domains. Each Business Domain in turn consists of a

set of Business Scenarios which are comprised of Services. The high level Business Areas cov-

ered by BIAN are defined as follows [88]:

- Reference Data: Contains the domains which are related to stem data and data exchange.

Examples of these types of data include product data (Product Management), customer

data (Party) as well as market data and modules which cover data exchange to external

agencies like other banks and further third party related banks.

- Sales and Service: This Business area comprises all data which refers to customer con-

tacts. It is organized in channels (e.g. ATM management, invoices or contact centres),

cross channels (interactive customer help, authentication, or points of service), sales, mar-

keting as well as customer management (e.g. credit rating, relationship management).

- Operations and Execution: this area entails the core components and operations of a bank.

Product specific operations such as loans and deposits, bank cards, market operations,

wholesale trading, investment management or trade banking are some of the operations

included in this aspect. Furthermore, cross product operations like account management,

payments, collateral administration or operational services are also a part of this Business

area.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 60

- Risk and Compliance: This area covers all business scenarios which have to do with risk

in the wider context of banking like Bank Portfolio and Treasury Management, Business

Analysis, Risk Modelling as well as legal regulations and compliance.

- Business Support: Consists out of all corporate related services which are not directly

related to the added value of a bank. Instances of this include; the facility management,

corporate relations, business command, finance, HR, the IT Management or the document

archive.

As previously mentioned, the BIAN may be applied to banking IT infrastructures in three differ-

ent ways, although it can be said that BIAN is not a modernization framework but rather a target

architecture which should be fulfilled in the longer term. Nevertheless, it may be used as a high

level implementation design for the creation of an enterprise blueprint and as a foundation for

long term planning and analysis on existing IT infrastructures and CBS. However, as this proce-

dure deals with the modernization of existing CBS, the main focus is on the third approach as the

description of all three processes would exceed the scope of this thesis.

In the context of a target architecture one of the main advantages which make the BIAN standard

attractive as a benchmark for CBS is the temporal stability it offers. Over time this results in the

business purpose of each service remaining the same whereas only the technical method of im-

plementation or the justification may need to be modified. Furthermore, it is independent of any

organizational- or technical constraints as its services are modelled in a way which does not take

implementing technology or underlying infrastructure into account. Therefore, the standard can

be introduced into any technological environment that fits a consumer bank’s requirements and
offers the required functionality. In addition, service oriented functional granularity as well as the

ability to map its standardized services to existing functional modules, and take the models of

missing or outdated services as a high level design for future modules render the BIAN suitable

for benchmarking purposes. The principal factor in order to comply with the BIAN is to adopt its

organizational structure in terms of its proposed services, and to follow the activity schemes which

are represented in each service. However, should a bank decide to develop its infrastructure to-

wards the BIAN standard, several years will be required in order for the process to be imple-

mented incrementally. The first step in order to determine the gap between the architecture of an

existing CBS and the BIAN is to map existing functionality to the services of BIAN. It is also

necessary to assess the existing functionality against the functionality of each mapped service

from BIAN. This can be done both via the feature attributes of the target architecture as well as

through the use of custom criteria which better fit the system properties or the business consider-

ations of the using bank. This highlights another benefit of BIAN as the attributes of its service

domains are not restricted to a certain set and may be extended with custom attributes, which in

turn simplify the assessment of banks within the context of “their” performance indicators. For
instance, the BIAN’s How-to Guide proposes a quadrant ranking system in which service domains

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 61

are rated on their implicated knowledge distribution, in combination with the grade of their sourc-

ing.

After the existing functionality has been benchmarked against the BIAN as a target architecture,

it is necessary to define the steps which are to be taken to progress from the current architecture

to a BIAN compliant structure. This is usually accomplished by selecting and executing one of

the modernization approaches as discussed in chapter 4.1.

In order to track the progress, BIAN recommends to use the defined BIAN target architecture as

a blueprint for measuring the technical as well as the business progress. The rationale behind this

is, that BIAN’s modules are isolated and work packages, or so called “units”, are established

which can be tracked from a project manager. Further business and financial related performance

indicators may be attached to each service domain along with system related or non-system re-

lated costs. This allows project managers to trace costs during the modernization process down

from a business perspective to a service perspective level.

Regarding the determination of functional gaps, the BIAN service domains offer a high level

specification of missing services deemed necessary to gain needed functionality. They can then

be elaborated according to specifications and the technologies that are utilized by a bank, or a

CBS vendor.

4.3 Architectures of existing CBS

Usually CBS are grown systems which often contain technologically rather heterogeneous, old-

fashioned and partially outdated technologies. Accordingly, detailed information about the core

systems are kept confidential by the CBS vendors. However, public sources also give high level

hints on how the architectures of certain vendors are structured. Some of them are described in

the following subsections.

4.3.1 Avaloq

The Avaloq Banking Software Solution [80] descends from the Swiss BZ Bank and has its roots

in the banking software “AdvAntAge” from it was developed in 1996. Since then Avaloq has

developed into an independent company with more than 2200 employees and more than one hun-

dred fifty customers in the financial sector who are dispersed over more than 25 countries. Aside

from the smaller subsidiaries in ten countries, Avaloq also runs three development centres in Zur-

ich and Edinburgh as well as a development support centre in Manila. In terms of functionality,

the Avaloq banking system is segmented into 80 modules, which are grouped into five core com-

ponents:

- Universal Banking

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 62

- Retail Banking

- Wealth Management

- Transaction Banking

- Central Banks

The architecture of this scheme is generally divided into three layers, that are superimposed upon

each other, like the MVC model. According to the public web presence of the Avaloq Group [80],

its Product is focused on efficiency, scalability and consistency. The top layer is the so called

Avaloq Client Tier. It is partitioned into several clients, which are intended on the one hand for

the employees of a bank, and on the other hand for the customers. The employee client (“Smartcli-
ent”) is stated to be based on .net, which means that it is likely implemented in C#/.net in combi-
nation with various further .net based technologies. Additionally, the Avaloq Group offers a

HTML 5 based Webclient, as well as an iOS App that can be installed on Apple products through

the Apple’s Appstore. The communication between the Client Tier and the Middle Tier is realized
via Webservices, whilst the Middle Tier itself consists of an Integration Server (Windows Server)

and a Linux based Avaloq Front End System. The middle Tier functionality is implemented in

C#/.net and Java/EE. Below the Middle Tier, the Avaloq System encompasses the Backend Tier,

which is the core of the system. It is deployed on a Unix Server and contains the data base, realized

through an Oracle Database and accessed via PL/SQL. The three Tier architecture was selected

by Avaloq in order to reduce the complexity of the architecture and concentrate the functionality

in these three layers, which means that the services can be appropriately separated from each

other. Above all, software flexibility in its vertical and horizontal scalability is the main purpose

for the development of this architecture. Additionally, by standardizing the communication inter-

faces between these layers, it is comparably easy to add new use cases or functional modules to

the Avaloq Banking System. According to Avaloq’s Webpage, banking functions are realized in

standardized business transactions and objects, which implies a structure in their entities and in-

sinuates that the Avaloq Source code is (at least partly) object oriented. In order to implement

new functionality, Avaloq uses a model driven approach, which means that through the help of

source code independent modelling languages, a meta model of the new functionality is created.

This model can be generated either from existing code or be written manually. Based on this

model, it is significantly easy to rapidly create source code, which reflects the requested behav-

iour. The advantage of the model driven approach lies in the increased speed of development of

code in a higher clarity and quality as well as less redundancy occurring in the code, according to

the principle of “don’t repeat yourself”. The disadvantage in this method is the high initial effort,

which is necessary in order to create a meta model of a (complex) software project. However, the

initial code, which is the basis for the creation of the meta model, does not have to be object

oriented. That means, through the concept of model driven development it is possible to (semi)

automatically create new code parts, which obey modern code standards, out of (architectonically)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 63

old code components. This approach implies that the Avaloq Group solution is actually in a trans-

formation process, where new clean and consistent business objects shall be created from old

code on a step by step basis. An integration layer is used in parallel to the three tier architecture

of the Avaloq Banking System. This layer contains integration services as well as adapters which

build on technical standards and are intended to aid in the communication with third party busi-

ness and infrastructure services, provided by customer banks. In order to extend Avaloq’s model
driven development approach, and to enable customers to parameterize the system according to

their own requirements, Avaloq created the Eclipse based tool “ice Workbench”. Through usage
of this tool a customer bank is given the opportunity to define own business processes using the

BPMN notation and DSL (domain specific languages). These BPMN created processes produce

a meta model which is automatically implemented into the respective source code. Afterwards

the source code can be versioned, compressed and, in form of customer internal releases, be inte-

grated into the existing system.

Illustration 8: The Overall Architecture of Avaloq [80]

4.3.2 Finnova

The Finnova AG Bankware [81] was developed by the Swiss company Finnova AG. Its roots date

back to 1974 and the “FIS” banking software. The current Finnova Banking System, developed

between 1999 and 2003, was intended as a modular built system for universal as well as private

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 64

banks. The target market for the Finnova software is mainly situated in Switzerland and its neigh-

bouring countries. Up until the present moment, the Finnova AG boasts about 400 employees and

supports about 100 customer banks.

The fundamental architecture of the Finnova Bankware is similar to the architecture of Avaloq

since it’s architecture is also divided into three layers (Access Layer, Application Layer, Interface

Layer) and that its focus lies on adjustability, and scalability. However, one difference between

the architecture of Finnova and Avaloq is that an inquiry is not necessarily forwarded from the

Frontend to the Backend and vice versa. Finnova’s functionality is instead grouped into subdivi-
sions which each consist of topologically similar functions. This implicates that each layer depicts

a collection encapsulated of modules which enables customers to only integrate parts of the Fin-

nova software into their existing IT infrastructure. Physically, the Server components (Applica-

tion Layer and Interface Layer) seem to be deployed on an application Server from IBM (Server

of the z/Series, whereas this Server series is a Mainframe Legacy System from the 1960s and

1970s).

The servers are equipped with an IBM-adapted Linux operating system, called AIX, which is

essentially a front-tier and mid-tier server. Aside from that, the web presence of Finnova reveals

that for data storage a database server, deployed with either an Oracle Solaris operating system

or with Linux, is used for data storage. An Oracle 12 Instance is installed on this database server

in order to manage the data repository. Furthermore, Finnova partially reverts to a Unix operating

system, which was originally adapted by Hewlett Packard. In addition, the criteria of adjustability

is realized through interfaces, which enables customers to adapt the CBS according to their own

specific requirements. The factor of scalability is in all probability implemented through the acti-

vation of a sufficient number of server instances that are hosted on several physical servers and

each separately communicate with the database.

The bottom layer (Interface Layer) is, according to Finnova’s web presence [81], responsible for

the communication between the software framework and external components. It is likely imple-

mented in Java and uses a technology, created by the Finnova AG, called OPAL (Open Architec-

ture Layer) in order to interact with other software components via a specifically designed SOA

concept made of Web Services. The technologies which were used in the Interface Layer are

XML interfaces as well as HTTP/HTTPS and PL/SQL interfaces. The XML interfaces are pre-

sumably responsible for the transmission of all XML based sub products of the MS Office Frame-

work, especially generated documents. The ODBC connection, the Oracle Gateway (for the in-

clusion of foreign databases) and individual reports are likely supported by PL/SQL interfaces

with further customized functions made available through APIs. These interfaces can be used by

customers to create private in-house developments with the ability to interact with each other.

This presents a feasible method for customers to adapt the systems to a certain degree and also a

way for Finnova to transfer development work to the customer.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 65

The Application Layer is also likely to be implemented in Java. It contains the functional modules

of the CBS which are realized as processes or more specifically in process groups, and are em-

bedded into a real time Kernel. The Realtime Kernel acts as the centerpiece of the system and

encompasses the Front Office, via the Middle Office, to the Back Office and thus embraces the

main processes of the Finnova Framework and is responsible for their control. It queries the mod-

ules periodically and is likely to control the communication between the submodules as well as

the communication with external services. The architecture of the Finnova Application Layer is

divided into processes and data (compare to Illustration 9), with the processes responsible for

selecting, transforming and persisting data. For instance, the process customer stem data contains

all customer data as well as the use cases which are necessary to handle customer data. All these

processes which are depicted in Illustration 9 disembogue into the component central data storage

which is likely a synonym for the database. The results of the processes Corporate Action, Settle-

ment, Tax Statement and Securities are likely to be connected to a relational Data Warehouse,

which is in turn connected with the database. The main advantage of the Data Warehouse is that

through its entirety of data it is possible to derive key performance indicators, which are then used

for a so called “Management Information System” (MIS). The MIS gives the management level
of a customer bank the opportunity to extract financial indicators from the database, which are

subsequently used as the basis for navigation measures. Also the results of the processes Stock,

Loans, Payment Transactions and Treasury are aggregated to documents through an Output Man-

agement System, which in the technological aspect means that there must be a document genera-

tion frame-work within the Application Layer, in addition to a real-time-Kernel. Further software

components exist in the Application Layer that cover various use cases like document viewing,

scanning applications in order to process payment transactions et cetera.

The topmost architectural layer of the Finnova Framework is the Access Layer, through which

customers as well as bank employees interact with the Banking System (Application Layer). The

Access Layer accepts transactions from the following client groups:

- Workplace of the bank employee

- Bank counter

- Internet (e-Banking)

- Cashpoints

That means that the access layer runs at least three software clients:

- A browser based web client for E-Banking, which is capable of conducting account, saldo

and booking transactions as well as the import and export of customer data. It can also

communicate with the bank’s server via Secure Mail and also supports transaction signa-
ture means such as smartcards, kobil-Sticks and mTans. The data communication with

the server operates in real time and data is persisted in near real time in the database.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 66

- A client for bank employees supporting cash and cashless use cases as well as an offline

operating mode, which in turn leads to the conclusion that the client has the ability to

store data temporarily and synchronize it with the servers at a later time.

- A client which is installed on cashpoint machines. It is likely to support services for the

bank and external banks, like receipts, deposits and account transactions.

In addition to the clients, the Finnova framework also supports telephone banking, which enables

customers to enquire account balances, transactions and the bank’s business hours. Furthermore,

the access layer contains a CRM (Customer Relationship Management) system, a PMS (Portfolio

Management System), a loan consulting component and an OMS (order management system).

The communication between the access layer and other components is carried out by interfaces

that are realized by the Finnova OPAL technology, which is basically a web service following the

SOA concept.

On the basis of its Interface Layer, Finnova also offers a variety of interfaces to external software

components (Webservices, XML, APIs, etc.). In the technological aspect, the access layer is with

likely implemented in Java and JavaScript (AngularJS) as well as HTML, which is realized with

the aid of JSF and CSS. For the web client Finnova also uses JSON, Ajax and further Web Com-

ponents. Illustration 9 depicts the high level architectonical structure of the Finnova Framework.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 67

4.3.3 Temenos

The Swiss company Temenos [82] was founded in the Year 1993 and established itself as a global

vendor for Banking software. According to its own statements its frameworks are used by more

than 3000 banks in about 150 countries, whereas 500 million bank customers use the software

directly or indirectly in order to process bank actions and transactions. According to the architec-

ture branch of its website it is architectonically focused on flexibility, performance and produc-

tivity as key principles. In a technical context, this means that the Temenos software has to be

Illustration 9: Finnova's Overall Architecture [81]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 68

scalable in its functional spectrum but also in its physical performance in order to fulfil the men-

tioned characteristics. In terms of functionality, Temenos offers a wide spectrum and covers the

following banking branches:

- Retail Banking

- Universal Banking

- Private Wealth Management

- Transaction Banking and Payments

- Microfinance

- Corporate Banking

- Credit Unions

- Insurance

- Islamic Banking

- Treasury & Capital Markets

According to its web presence, Temenos is split up vertically into Front Office, Middle Office

and back office and also entails a Business Intelligence component. In order to maintain the Front

End, Temenos uses a central Framework called Edge Connect UXP which realizes the function-

ality of the client. Connect UXP is a HTML based platform that is used to create browser based

application. These applications (Internet Client and the Mobile Client of Temenos) represent the

customer and bank communicating with the presentation layer of the Temenos software and are

secured according to the OWASP standard. The communication with the layers beyond the

presentations is realized through the Ajax concept (JavaScript and XML). With this framework,

Temenos created three separated clients:

- Temenos Connect Onboarding

- Temenos Connect Mobile

- Temenos Connect Internet.

Using these three clients, customers can access their bank account over the internet from PCs,

tablets and mobile phones. The clients communicate with the T24 Core Banking Framework,

which is likely implemented in Java. The T24 Framework is structured in a functionally modular-

, as well as a service oriented way and plays the role of the core component of the entire Temenos

Banking System. It is implemented on an independent platform and is deployed, according to

Temenos, as a Message Bean on standard JEE application servers. It contains web service and

Odata interfaces to external software components and also offers a user interface presumably used

by bank employees at the counter and in the back office. Furthermore, this architecture offers

design tools for model-driven development and change deployment, which means that it also

supports model driven development tools. The T24 component contains all modules from the

Front Office to the Back Office and is complemented with (likely subsequently added) further

modules like the T24 CRM module, a payment suite and a data source module. The basic task of

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 69

the data source module is to support the import and export, the analysis and the procession of

data. A Business Intelligence component runs in parallel to the three areas Front Office, Middle

Office and Back Office, which allows the calculation of customized key performance indicators

out of the data base.

Temenos is technologically considered to be a heterogeneous system. The core is likely to large

extent implemented in Java, which means that it contains components which are written in plain

Java and some which are written using J2EE. SVN and maven is used for code versioning and

dependency management. And as an application server either Jboss, WebSphere, GlassFish, the

Apache Tomcat Server and in some circumstances WebLogic instances are used. The data storage

is realized with MS SQL Servers and Oracle Servers, which are accessed through PL/SQL scripts

and object relational mapping frameworks like Hibernate. In addition to the previously mentioned

databases, the Temenos CBS also relies on Neo 4J databases, although it should be mentioned

that they are not relational, but graph based.

In general, Temenos works to a large extent with Java and technologies which rely heavily on

Java. However Temenos also partially works with .net/C#. For the clients, Temenos uses JavaS-

cript HTML5, CSS3, Jquery and Ajax and regarding the Server infrastructure, Windows Server

Operating Systems as well as Linux and Unix based operating systems are used for deployment.

After summarizing the previously outlined components and technologies, Temenos is likely to

have an architecture which is depicted in Illustration 10.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 70

Illustration 10: The prospected Overall Architecture of Temenos [82]

On the basis of this architecture it is apparent that the modules of Temenos were likely developed

around the T24 Core Banking Framework. The T24 core module can be deployed on different

servers with different operating systems (Linux, AIX, HP-UX, Solaris, NT, Windows) due to its

platform independence. The User Interface connection is realized through a web server which

interacts with the T24 application server via TCP/IP socket interfaces. For the various functions

in the presentation layer, the Temenos Core Banking System utilizes several different technolo-

gies.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 71

Illustration 11: The Deployment View of Temenos [82]

The T24 application server is divided into five components (Retail Banking, Private Banking,

Treasury Banking, Corporate Banking and General Banking), that are in turn subdivided into

further functional modules.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 72

Illustration 12: Functional Overview of the T24 Core Module [82]

4.3.4 Oracle Flexcube

Oracle Flexcube [89] was initially developed in the mid-1990s by a company called CITIL in its

development center in Bangalore. The company (later renamed to i-flex Solutions and afterwards

- in 2008 - to Oracle Financial Services Software) was originally founded as part of the CITI-

BANK group and was taken over by Oracle in August 2005. Oracle Financial Services Software

(OFSS) offers a range of products, which cover the needs of the financial branch as well as other

divisions. One of these products is the Flexcube Universal Banking Suite which is currently used

by more than 600 customers in more than 140 countries and designed for rather large banks that

operate on an international and multilanguage level. Functionally it is divided into the following

modules, each of which may be individually acquired by a customer:

- Core Banking

- Universal Banking

- Investor Servicing

- Private Banking

- Lending and Leasing

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 73

- Islamic Banking

- Direct Banking- Internet, Mobile, SMS and WAP

- Messaging Hub

- Remit

- Enterprise Limits and Collateral Management

In terms of its architecture, it has a four-layer architecture, whereas its functionality is modular-

ized in a service oriented topology.

Illustration 13: The Layered Architecture of Flexcube [89]

The database tier consists mainly of a relational database, with particular emphasis being put on

Oracle 11g by Flexcube. The database itself is topologically divided into three types of tables;

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 74

maintenance tables, internal tables and temporary work tables. The maintenance tables are ac-

cessed from the front-end, and may be indirectly manipulated by the user through the application

(e.g. through entering information into a form and submitting it to the server). Internal tables are

only manipulated through automated data processing by front-end or back-end program units.

And the temporary tables are used by program routines to intermittently store the data needed to

achieve their purpose. The data is deleted after the routine has finished its given task. Aside from

the database, this tier also contains business logic in the form of PL/SQL scripts which are exe-

cuted via services of the database and therefore yield a quick runtime as there is no intermediate

component between them and the database. Between the database layer and the application layer

is a middleware integration module which handles module specific services. It is responsible for

the communication with the application layer, and the communication is conducted via JDBC and

XML. According to its development overview guide the Application and Integration Tier is

mainly based on Java related technologies and houses the business logic itself in the form of 95

functional modules. Additionally, it is also responsible for the interaction of Flexcube function-

ality with its own clients-, as well as external components. Furthermore, it provides message han-

dling as well as session and transaction management. The transaction management is realized

through EJB and MDB (Enterprise- and message driven Java Beans) and communicates with the

handlers and the session management through XML and Java APIs. These in turn communicate

with respective clients, e.g. the HTTP Handler interacts with the with HTTP clients via XML and

HTTP while the Web services handler uses XML / SOAP in order to send and receive messages

from required Web Service based clients.

On top of the Application and Integration Tier is the Process Tier which provides the ability to

create processes, that work in parallel to the Application itself. They can be implemented as Ora-

cle BPEL processes (Business Process Execution Language) and are maintained through a re-

spective BPEL process manager. Later on in the process they may be included in the user interface

framework as tasks. The process manager is connected to the transaction management and may

interact with web service based clients and the client browser through their respective handlers,

depending on the demands of the processes which are executed on it.

The fourth tier is the user interface layer containing a browser based native Flexcube client. XML

is used in order to communicate with the application (client handler) and is configurable as well

as multilingual. Dedicated channel servers exist in addition to the client which are used for aux-

iliary (external) user interface channels like mobile clients, or online banking which are Web

Service based.

The functional architecture of Flexcube is highly based on its Integration Layer which provides

internal as well as external services via a client to the user. Internally, Flexcube is divided into

two business modules, and three service groups, which in turn consist of various subservices each

covering an aspect of its overall functionality. The following graph shows an overview over Flex-

cube’s functional topology.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 75

Illustration 14: The Functional Topology of Flexcube [89]

In terms of technologies and programming languages, Flexcube uses state-of-the-art technologies

which generally utilize Java as the source programming language. The backend tier of this archi-

tecture utilizes SQL, PL/SQL and Java in its Core Version, whereas the application layer uses

J2EE related technologies such as EJB, MDB, Servlets, JNDI, JDBC, JSB and JMS, as well as

BPEL as the language for the specification of customized processes. On the Frontend, XHTML,

Java Script, DOM and CSS are used.

Regarding deployment, Flexcube can also be deployed on large infrastructures as it is intended to

run in datacentres, with server clusters on the database side as well as the application server side.

It supports two deployment modes, namely a centralized approach and a decentralized one. In the

centralized approach, the application and the database are hosted in one virtual cloud based data

centre and every branch of a customer bank interacts with the CBS through accessing that data-

centre. In the decentralized approach, a centralized database in a host datacentre still exists, but

additionally each branch is given the freedom to use the local branch databases as well. This is

especially necessary in case certain branches are obliged to physically host certain data within a

country’s borders due to national laws of their respective country of operation. As already shown,

Flexcube physically separates its data from the application by using dedicated database servers

which are organised in so called ‘load balanced eXecutive high-availability clusters’ in order to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 76

prevent single points of failures. The same principle applies to the application servers, which are

also organized into load balanced clusters and are both dynamically as well as logically parti-

tioned. The physical disks behind the clusters are protected against disk failure through RAID

1+0 and the entire system is also mirrored in a disaster recovery (DR) site where the data of the

production site is constantly replicated.

4.3.5 Finacle

Finacle [90] was first released in 1999 by the Indian company Infosys and is now used by banks

in more than hundred countries. Like Flexcube, its target group are major banks, working on

international levels and according to its web presence it is used by 16,5% of the world’s banks.
In 2015 it was taken over by EdgeVerve (also an Indian subcompany of InfoSys). Overall it can

be said that the main portion of its customers are located in south-east Asia and Africa. Function-

ally, it is a suite of different products, whereas the following are the main ones:

- Core Banking

- Universal Banking

- CRM

- Treasury as well as Wealth Management

- Direct- and Mobile Banking

- Islamic Banking

- Payments

- E-Banking

- Besides to that there exist several minor products like a Youth Banking Solutions, Small

Finance Bank Solutions or Alerts and Analytics Solutions.

In addition to its Core functionality, Finacle also utilizes a number of different frameworks and

support services with the aim to increase the maintainability as well as the adaptability of the CBS

as a whole. A batch framework for the asynchronous event, or time triggered execution of batch

jobs is an example of this. Aside from that, they also include an identity access management

system in order to give their customers the opportunity to control authentication as well as au-

thorization of the internal (bank clerks) and external (bank customers) user groups. As the avail-

ability of a CBS is usually a critical attribute to a bank, internal application monitoring procedures

are also implemented with the purpose to ensure the CBS’ health while it is operating. Finacle
also contains tools to address the adaptability requirements of the customers which enable banks

to add custom functionalities to their respective installations. These functionalities include script-

ing frameworks, interfaces to BPM tools, reporting engines, internal document management func-

tionality and tools for code customization. On the end user side, Finacle’s infrastructural services

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 77

are comprised of functions such as Single Sign On, Signature Verification and Customer Infor-

mation Files.

From a technological perspective, Finacle relies heavily on Java- and Java related technologies,

whereas its Core functions are implemented in C/C++. Its technical architecture is roughly out-

lined in Illustration 15.

Illustration 15: The layered Architecture of Finacle [90]

According to its technology architecture, Finacle is overall deployed on a Unix Operating System

and covers four horizontal layers, ranging from data management (Oracle Database) to a J2EE

based frontend. As outlined above, the Core Transactional Business Services are encompassed by

Common Business Services which are not directly Core Banking functions but deliver common

infrastructural and business services. On top of Finacle’s Core and Common Services lies an in-
tegration layer which is responsible for the intercommunication between the logic and clients as

well as third party components via XML and J2EE related interfaces like web services, JMS (Java

Messaging System) or EJB (Enterprise Java Beans). The service delivery layer is situated above

the interface layer and essentially plays the role of the client layer. It is also implemented in J2EE

technologies and contains several clients, including a mobile banking as well as an e-banking

client, which are deployed via web sphere servers and are intended for the customer user group.

The bank clerk interface consists of a rich client which is modularized depending on the purchased

functionality. In addition to the clients, further communication channels have been considered for

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 78

the customers, such as SMS or E-Mail. Aside from that, Finacle also offers communication chan-

nels in order to communicate with external components such as hardware, like ATMs or self-

service terminals.

In terms of functional organization, Finacle is a host based system and consists out of numerous

components, each of which is a major business module within the entire service landscape. These

business modules are in turn separated into various layers and divided into functional groups and

subgroups. Each subgroup (as a service) communicates over the so called Finacle Solution Bus

(a CBS wide communication framework) with other subgroups. For the purpose of data transac-

tions, the Solution Bus internally utilizes different technological channels such as JMS, Java

based message queues as well as SOAP Web Services and TCP/IP Socket communications. The

Solution Bus is not only responsible for the service-to-service communication, but also for the

communication from the backend to the front-end. Architecturally, it encapsulates the interface

and client layer from the Host which contains the core business logic and the connection to the

database. Illustration 16 shows a rough architecture of Finacle.

Illustration 16: The Functional Architecture of Finacle [90]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 79

4.4 Analysis of existing CBS

In this section, first the weakpoints as well as the strongpoints of each previously outlined CBS

architectures will be discussed and subsequentially, they will be compared according to a set of

criteria.

4.4.1 Weakpoints vs. Strongpoints

4.4.1.1 Avaloq

A strongpoint of Avaloq is its use of a Model Driven Development Approach in order to modern-

ize its code step by step. That means old source code is used as a basis for generating new business

objects. Model Driven Development has high initial costs but it proves profitable in the long run.

Furthermore, Avaloq also developed its own IDE (integrated development environment), which

enables customers to adapt their local Avaloq deployment according to their own requirements

and needs. The IDE is based on Eclipse and is enriched through self-developed plugins. With the

help of the IDE, customers can define their own business processes in BPMN notation, which are

then automatically transformed into Source code. The advantage of this idea is, that customers

are included into in the development process and the functional flexibility of Avaloq is decisively

increased. For instance, business objects, which were initially developed by the vendor may be

used by the customer bank in a completely different context. Another benefit is that customers do

not need to have sophisticated programming skills since the functionality is defined on a higher

and abstracted level in BPMN.

In contrast to that, one of Avaloq’s weak points is its use of PL/SQL in order to interact with its

database. PL/SQL is a comparably old Oracle technology that was introduced in 1991 and conse-

quently is mainly usable for Oracle databases. Other DBMS (database management system) ven-

dors keep their systems compatible to PL/SQL however, they are always one step behind the

innovations of Oracle. Furthermore, PL/SQL is not object oriented but procedural, which in turn

means that Avaloq is not object oriented in its entirety. Additionally, PL/SQL obstructs a techno-

logical change to a different DBMS and hence increases the technological dependency of Avaloq

towards Oracle. Another drawback is, that Avaloq implemented its core logic partially in C# and

in parts in Java. This duality in terms of programming languages is not ideal, as it hampers the

communication within the middle tier and creates overhead in general. Nevertheless, it is an in-

dicator for the transformation process, which is currently ongoing within the Avaloq framework.

Except from that, the CBS is not platform independent which is a technological implication of the

source code written in C#.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 80

4.4.1.2 Finnova

An architectural advantage of Finnova’s Core Banking System is that is uses a Kernel in order to
centrally control and steer functional workflows. The basic concept behind that approach offers

an enormous amount of opportunities and is open to future changes. Also similar to Avaloq, Fin-

nova uses a development kit, which enables customers to adapt their specific Finnova deployment

fitting to their own requirements. According to public sources, the Finnova development kit does

not seem as being on the same level of sophistication as the one Avaloq offers, since the BPMN

component seems to be missing and therefore customers must possess programming skills. But

nevertheless it offers facilities for individual adaptions including their resulting advantages.

However, much like Avaloq, Finnova uses PL/SQL in order to communicate with its database.

This implies the same problems in terms of object orientation and platform dependence.

4.4.1.3 Temenos

Temenos tries to remain as technologically flexible as possible by utilizing different database

technologies, which are not only restricted to Oracle. Using this principle, it remains independent

from Oracle and may work with different database technologies. Besides to that, Temenos also

uses a framework called Connect UXP, enabling the vendor to create new HTML 5 based clients

rapidly. These clients can communicate with the Temenos application server, but are also com-

patible with different applications.

On the other side a drawback of Temenos is its T24 core. Instead of redesigning the T24 core

itself, Temenos began to create further applications around the T24 Banking Framework. That

means that the T24 core module, in all probability, is based on old technologies which will need

to be modernized in the longer term. Except from that, in public sources as well as in user manuals,

there was information available about the architectural conception around the T24 core module.

However, despite extensive recherché, there were no specific information supplied about the ar-

chitecture within the T24 core module. This indicates, that the vendor might try to hide the core

architecture from public. In combination with the fact that the T24 core module is technologically

heterogeneous, this implies that the T24 core module is based on old, outgrown source code.

4.4.1.4 Oracle Flexcube

Flexcube is, compared to other CBS, a rather new Core Banking System, which relies on state of

the art technologies. Its Core language is Java and its functionalities are all based on technologies

which are related to Java. Hence, its technology stack is rather homogeneous, as the base tech-

nology is mainly Java. The application is platform independent as it is encapsulated into a Java

Virtual Machine. Another architectural advantage is that it utilizes a kernel based process tier,

which allows the creation of centrally governed business processes. These business processes are

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 81

also a gateway for customer side customization. Furthermore, Flexcube also uses a decentralized

data storing approach, which enables customers to store parts of data in a central datacenter as

well as in local branches. This implies great flexibility in terms of data storage, but may also

imply performance issues due to necessary data transfers.

However, since Flexcube is an Oracle Product, it is heavily bound to oracle technologies, espe-

cially through the use of Oracle databases and PL/SQL. This reduces its technological flexibility

slightly. And also in Flexcube the business logic is implemented in PL/SQL scripts. The proximity

to the database on the one hand increases performance, but on the other hand the framework is

bound to PL/SQL as a technology and respectively difficult to migrate. Furthermore, Flexcube is

not object oriented due to the use of PL/SQL.

4.4.1.5 Finacle

Finacle was developed from scratch and hence adopts modern software engineering standards.

Additionally, it learned from other CBS systems and keeps a focus on maintainability and adapt-

ability in terms of its architecture, which is definitely an advantage. It also offers its customers

the facility to extend its framework by custom code, which increases its adaptability and involves

the customer in the development process. It does so by providing scripting frameworks a BPM

tool and customer side reporting engines. In addition, compared to other CBS, its technology

stack is rather state of the art as the main programming languages are Java as well as C and C++.

And another strongpoint is Finacle’s use of a service bus, which standardizes internal communi-
cation and makes the entire framework more integrable towards new components.

But on the other side, Finacle uses two different main programming languages, which reduces its

maintainability and also removes its platform independence.

4.4.2 Comparison and Resume

In the context of modernization, it does not make sense to compare or rank the previously dis-

cussed Core Banking examples directly against each other as CBS are generally too heterogene-

ous and their different objectives and customer groups are too varied. But it is a valid approach

to select a number of criteria which are related to architectural modernization in the context of

Core Banking Systems and to choose the strongpoints from each of the previous examples in

order to evaluate them [62, 63]. The selected criteria are the following:

- Technological Flexibility – is the flexibility with which a technology within the CBS’
technology stack may be exchanged by another.

- Technological Heterogeneity – is the number of technologies, which are required to pro-

vide a certain functionality.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 82

- Modularization - The extent to which the entire framework is divided into functional

modules, which in turn affects the interchangeability of certain functions.

- Scalability - The ability of the framework to adapt to changing numbers of users (e.g.

through a constantly growing number of users) on a platform level as well as a functional

level.

- Modifiability - The ability to change existing functional components.

- Adaptability – The ability to customize existing functional components to the specifica-

tions of a customer bank.

In general, newer CBS have less technological and architectural debts, in the form of outdated

core components, which need to be reconditioned. Furthermore, their advantage is that they have

the chance to learn from already existing CBS and to address their challenges from an architec-

tural perspective in a early stage. While Temenons or Finnova consist partially of outdated com-

ponents, written in technologies from the 1970s and 1980s, younger CBS such as Flexcube or

Finacle had the chance and the resources to create a comparably new Core Banking framework

from scratch, where architectural sustainability had been greatly emphasized. This is further re-

flected in the fact that the choice of programming languages is more state of the art and the sur-

rounding technologies are usually related to these programming languages. Also the data model

is more integrated and designed in a way that enables comparably easy modifications in the future.

In terms of technological flexibility, Temenos tried to remain independent from any specific da-

tabase vendor through creating different ways to attach a database to its solution, although Oracle

seems to be the main database technology provider in that matter. Regarding technological heter-

ogeneity, the more technologies a CBS uses, the more complex it is to modernize it. Hence, it is

recommendable to use one main programming language and to attempt to utilize technologies

which are related or based on that language as opposed to technologies based on other languages.

Although technologically tightly bound to Oracle, Flexcube has a decisive advantage as it is

mainly implemented in Java and related state of the art technologies. By doing so it also harnesses

all advantages which come with Java including platform independence, a large number of support

and related technologies which is also induced by the extensive market share of Java as a tech-

nology. And due to the global distribution of Java, respective tool support for the migration frame-

works has been developed. In connection with modularization, all of the examined CBS use a

layer based topology, which allows the relatively easy replacement of certain layers, with the

front client usually being the most frequently exchanged component. Within the application layer,

CBS often either use a component based modularization approach (e.g. Flexcube) or a process

based approach (compare to Finnova). Since processes are usually more interconnected with other

processes and components, they are considered to be harder to replace. Therefore, modularization

on a service based approach might be a better option for layered grouping. Flexcube utilizes this

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 83

approach by dividing its functionality into business modules, which are in turn divided into ser-

vice groups and subservices. These services are then invoked by one another in order to form a

business process.

In terms of scalability, all vendors definitely faced the challenge that one application server and

one database server might not be enough to cope with the load of constant employee and customer

transactions. Hence, all vendors support a clustering mechanism which disperses the user load

over several application server and database server instances. However, in this regard Flexcube

has a more sophisticated approach compared to others as it is already designed to work from a

cloud. Therefore, it is capable of operating in a private or hybrid cloud which is massively scalable

and currently one of the main technological concepts in industrial computing. Also the fact, that

it supports dispersed databases is an advantage for scalability. The modifiability of a CBS depends

on both its technology stack and modularization, as well as its internal communication. The more

standardized an internal communication framework is, the easier it is to replace certain function-

ality assuming that it is properly delimited from other functions. In that regard Finacle has an

architectural advantage through the use of its service bus. It works as a standard interface from

one service to another and abstracts the code as well as the technology in which the logic behind

an interface is implemented. Hence, if the logic behind the connected interfaces is properly sepa-

rated (e.g. in the form of self-contained modules or services), then it is comparably simple to

replace it through another component, which may perform the same task in a different way and

which may be even written in a different language. Finally, in terms of adaptability, all of the

previously described CBS offer frameworks which enable the customer to customize their local

CBS deployment. However, Avaloq presents a particularly straightforward solution by equipping

the customer with a plugin enriched Eclipse distribution. This customized workbench does not

require sophisticated programming skills from the customer but enables them to adapt or add

functionality according to the model based coding standards of Avaloq.

4.5 Exemplary Architecture of a CBS

The architecture which is described in this chapter is a self-developed exemplary illustration of a

CBS architecture which could exist in reality and shall serve as an example for a modernization

in the following chapters.

In this scenario, the CBS is a grown system, which was developed over the course of several

decades for rather small regionally operating banks. In the beginning, it was only focused on

Retail banks and extended its functionality step by step towards Private and Investment banking

as it gained several customers in that field over time. In order to quickly create functional value

for its customers and due to a lack of personnel, its vendor decided on several occasions to buy

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 84

submodules from other specialized vendors and to integrate them into its framework. Architec-

turally it is roughly split up into four layers where the bottom layer is a data tier, consisting out

of three different databases, an application tier an interface tier and a client tier. The application

tier contains a module for core banking as well as components for related functionality, a CRM

module and a trading module. The client layer is composed out of a rich client which has to be

installed on a target platform and an online banking application.

4.5.1 Functional Overview

In terms of its functionality, the CBS is split up into the following topological branches:

- Core banking: Covering electronic funds transfer, account current, private- and corporate

loans and card management.

- CRM: Covering customer management, customer core data, customer scoring, customer

account management, and document management.

- Private/investment banking: Consisting out of asset management, order management/pro-

cessing, portfolio management, customer risk management, market data/modelling, and

ALM (asset liability management).

- Support component: Containing modules for internal accounting and balancing, control-

ling, internal risk management, regulatory reporting and internal revision.

The CBS has two clients. The first one is intended for the bank’s clerks and is to be installed

locally on each user workplace. The second client is a web based client, serving for online banking

purposes of the bank’s customers and shall give them the opportunity to maintain their accounts
online, including the issue of online transactions. In its functionality the online banking client

realizes the following features:

- Access to Giro- and savings accounts as well as their transaction histories.

- Maintenance of bank- and credit cards.

- Issuing of one time transactions as well as the creation and maintenance of standing or-

ders.

- Processing requests of account statements.

- Access to personal loans including their transaction histories.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 85

4.5.2 Functional Architecture

Illustration 17 shows a rough overview of the CBS and its conceptual architecture.

Illustration 17: The Functional Architecture of the outlined CBS

4.5.2.1 Data Tier

In terms of the infrastructure the CBS runs on two different Linux servers with one serving as a

database server for the data tier and the other one as an application server for the application tier.

The CBS is architecturally split up into several modules which were appended over time during

the CBS’ development. The CRM module and the private and investment banking modules were

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 86

acquired through a commercial acquisition of their vendors and integrated into the existing CBS

solution.

As a result of the additions to the architecture, the data tier consists out of three separated data-

bases, which do not directly interact with each other and only cooperate with their counterparts

via the application tier. The core banking (CB) support database houses the data which is pro-

cessed by the Support and Core Banking modules within the application layer. It has its own data

scheme and contains account data, transaction records and histories, primanotas, data from ac-

count balances and controlling data which is processed within the support functionality. The da-

tabase is designed using automatically incremented IDs within each table but does not use foreign

keys in order to prevent data inconsistencies. Technologically, it is a MySQL database [97], which

already succeeds a previous database technology. The second database is a postgres database [98]

which houses the CRM data of the Core Banking System. That means, its main data entities are

customers and persons with their core data as well as their connections to each other and their

interactions with the respective bank. In contrast to the first DB, foreign keys and field constraints

are used freely in this database. The third database covers the private and investment banking

functionality, with the information being stored consisting mainly of security paper transaction

data, orders, market data and risk related data. It is realized in form of an Oracle DB [99] and

makes extensive use of stored procedures, functions and triggers.

4.5.2.2 Application Tier

The following illustration depicts the overall structure of the CBS on the application server.

/app

 | - /card (card management)

 | - /cb (core banking)

 | - /crm (customer relation management)

 | - /eft (electronic funds transfer)

 | - /pb (private banking)

 | - /support

 | - …

Each of the modules contains its own software project with the encompassing compilation frame-

works, programs, support libraries, global constants and specific preferences.

The main module (and also the oldest) among them is the Core Banking module, which was

initially designed to run on an IBM AS400 [100] and was therefore written in Report Code Gen-

erator (RPG) II and III code [101] and migrated to RPG IV code over time. It consists out of a

number of RPG programs which may interact with each other and call each other during their

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 87

runtime. They are compiled via a Unix based Lattice-RPG compiler [102] to artefacts which are

then delivered using hotfixes to customers. Internally the Core Banking module is split up into

sub modules where each submodule is a simple folder, containing its relevant RPG programs. If

a user calls a certain functionality from the rich client, it takes input values from the user interface

and inserts them as input parameters into a data structure which is afterwards sent to the server in

the form of a TCP/IP request [103]. In addition to the appropriate parameters, the data structure

also contains a transaction code which enables the server to identify and call the needed RPG

program. As soon as the appropriate program creates relevant output for the user it is packed again

into a data structure and sent to the rich client as a response to the TCP request. During its runtime

the RPG program may also interact with the Core Banking database through SQL statements

[104] that are directly embedded in its source code. The values are then slotted through RPG

variables and transformed into valid SQL statements through an RPG SQL pre-processor. The

communication with the database happens through a Java based JDBC driver [105], which con-

veys the statement to the MySQL DB and returns its result to the program. Aside from the Core

Banking module, the Support component is also written in RPG, as it was developed over time in

parallel to the CB part. It is technologically equally designed as the CB functionality and therefore

shares its common resources (libraries, constants, global variables, etc.) with the CB module,

nevertheless its code is situated in its own working folder.

The CRM module was acquired by taking over its vendor and integrating it into the existing CBS

framework. It is based on Java and uses its own CRM database and is also a grown system but

slightly younger than the CB component, which implies that it is based on newer / more recent

Java related technologies. In contrast to the procedural programming style of RPG, this compo-

nent is object oriented and uses objects which are reflected as entities in the database. Further-

more, it is internally split according to the MVC pattern (see section 3.2.3.3.5) with interfaces

between the persistence functions and business logic and also interfaces between the business

logic and the client. The Support component uses its own build management tool (Apache ANT

[106]), in order to generate binaries out of the source code, and utilizes logging tools as well as

an object-relational (OR) mapper framework [107].

The private banking component is written in plain C and interacts with its own Oracle database

via PL/SQL [108]. Similar to the Core Banking component, it consists out of a number of indi-

vidual programs which may be invoked separately through internal identification codes. The

CRM and the private banking components are both deployed on a Unix machine but hosted on

different application servers in order to be kept available to the clients. Furthermore, the program-

ming paradigm of the private banking component is not object oriented but instead procedural

and the resulting executable functions are compiled via makefiles [109]. The communication be-

tween the three layers happens on the one side through an internal communication toolkit, which

serves on the one hand as an adapter between the main components and on the other hand as a

messaging system comparable to an Enterprise Service Bus [110]. The internal communication

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 88

toolkit was developed out of the need to integrate the three components with each other and is

extended on demand. CRM, private banking and core banking share the trait that they all are

hosted on the same Unix system [111], which means that the development environment as well

as any test- and production environments are usually located on one dedicated server.

4.5.2.3 Interface Tier

The main task of the interface tier is to manage the data transfer from the application layer to the

clients and third party applications via defined interfaces. Likewise, it consists out of different

interfaces which are categorized in three groups. The first group is a file import- and export mech-

anism which communicates with other stakeholders through text files that are stored and fetched

from defined network locations within the bank’s IT infrastructure. The text files may either be
plain text files containing data records, or semi-structured on the basis of XML [112]. The text

files are exported and imported through time or event triggered jobs (batch jobs) and serve mainly

to realize secured payment data transfer as well as data transfer to other banks. The file export

mechanism encapsulates the automated creation of files at defined locations including content

which is formatted according to given constraints. These constraints include line lengths, maxi-

mum amounts of lines, character encoding and file metadata. On the import side, data needs to be

parsed from a given file and interpreted, which involves error handling as well.

The second group is based on Java implemented APIs and interfaces which allow third parties

and clients direct and standardized access to the application tier’s functionality. The APIs were
implemented over time, depending on requirements of the CBS user banks and their need to inte-

grate the CBS into their respective IT infrastructure. The APIs main task is to abstract the appli-

cation server from the outside so that no direct conversion from the CRM component to the inter-

face layer is necessary, as the implementing language is the same. The interaction between the

private banking tower (written in C [113]) as well as the Core Banking tower (RPG code) and the

APIs is realized through the use of JNI (Java Native Interfaces [114]). They enable Java imple-

mented interfaces which cover functions implemented in both languages.

The third group is based on SOAP Web Services with the main purpose of communicating with

the client layer of the CBS. Specifically, the Web Services are based on a SOAP envelope [115]

which encapsulates XML content in its body and is transferred to and from the clients via HTTP

[116].

4.5.2.4 Client Tier

As depicted in Illustration 17, the client layer consists out of two different clients where one is

intended for the bank’s internal staff, and the other one is a web based online banking client with

the purpose of enabling end customer access to their accounts.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 89

4.5.2.4.1 Online Banking Client

The online banking client interacts with the application server through web services and is based

on JavaScript [117] and AngularJS [118]. Users access it from a browser via an SSL [119] en-

crypted HTTPS session and need to login in by providing their customer number and a password.

They are then redirected to an overview page from where they can execute use cases, belonging

to the respective banking products, which were previously obtained from the bank. To them be-

long the inspection of personal accounts, loans, credit cards. But also the issuing of standing or-

ders, as well as any kind of payment transactions are encompassed by these use cases.

In the course of these use cases the online banking client issues read or write requests to the

application. For instance, if a user intends to issue a money transaction, the online banking client

first needs to fetch the required data from the application server and the database at the backend.

The data then needs to be presented to the user in an appropriate form so that they are able to fill

in the respective data and submit the order. The order must be transferred to the application server,

where it will be checked against any constraints (e.g. account limits, or the account balance), and

processed accordingly. Next, the resulting data needs to be persisted in the database and the user

needs to be informed with a response about the success, or failure of their transaction. From a

physical perspective, the online banking client is deployed on an Apache Tomcat server [120],

which is in turn installed on the application server.

4.5.2.4.2 Internal Client

The internal client is intended for the bank’s staff and is an installed Java based rich client appli-
cation. It communicates with the Interface Tier through the invocation of APIs and the File Im-

port- and export mechanism, as bank clerks need to be able to store files within the CBS (e.g.

scanned loan or account opening contracts). The basic communication mechanism is in principle

the same as the online banking client, with the difference that the APIs are invoked through Java

RMI [121] and that input validation is already conducted within the client instead of the applica-

tion. From a functional perspective, a bank clerk needs to authenticate before being able to access

the data of his customer stock and transform it through different use cases. The bank clerk’s priv-
ileges are restricted to a certain set of customers which are assigned to him. Accordingly he may

only execute actions on them and their accounts to the extent which he is entitled according to his

role within the bank. Additionally, a number of transactions (e.g. the approval of large amount

money transactions with regard to anti money laundering regulations) need to be verified through

another person according to the 4-eye principle. Some of the main use cases are the creation of

new accounts for new customers as well as their maintenance in regard to account conditions,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 90

account limits or account closure. Furthermore, transactions in connection to loans as well as cash

desk operations are also common in the day-to-day business of a bank clerk.

4.5.2.5 Internal Communication

As already mentioned, the internal communication of the application server is realized through a

dual purpose self-developed communication toolkit. First, it acts as an adapter in order to integrate

different functions of the CBS with each other and to give them the ability to interact. Second, it

works as a messaging system through exchanging triggered messages from one component to

another one. The communication toolkit is a rudimentary proprietary development in order to

integrate the Core Banking tower with the CRM private banking tower and the CRM module.

Within each tower, the functional modules and programs mainly interact through direct invoca-

tions of a target application, which then works in its own instance depending on how often it was

invoked. Hence, there is no common process management which handles running threads, or con-

ducts consistent error handling in case an application fails during a transaction or gets stuck.

The communication toolkit itself works on the basis of remote procedure calls, where each service

is registered in a broker service with a defined interface that is translated into a self-designed

protocol. The protocol consists out of a header containing meta and address data as well as a data

packet. The header is in principle a text array with a number of standardized fields, including the

source and the target service as defined in the broker service, the size of the following data packet,

a sequence number, the total number of packets for the entire message and a checksum in order

to verify the integrity of the packet. The data packet is also a plain buffer of a standardized size

and each message consists of at least one data packet. The adapters are used in converting a mes-

sage from a native function to the protocol format and vice versa and were written over time in

the programming languages of the three towers, depending on where they were needed. They are

also responsible for splitting a message into packages for sending and assembling received pack-

ets to a single data message.

The messaging framework itself is written in C and has no central communication controlling

instance. Instead, a message transmission is managed and verified by the receiving service with

the help of a message queue. Within the queue, packets are assembled into a message and are

ranked for further processing. The queue also prevents race conditions in the case that packages

from several senders are received at the same time. Each package is also verified with the help of

the delivered checksum and if a package is missing or damaged, the receiver notifies the sender,

in order to initiate a resending of the affected package.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 91

4.5.3 Logical Architecture

The logical architecture focuses on functional aspects of a CBS and contains a logical structure

without constraining the CBS to a specific technology.

4.5.3.1 Functional View

From a logical perspective the CBS is process oriented with the central processes being bound to

one of the three towers. That means, if a user wants to run a certain use case, input data must be

transmitted via one of the clients to the CBS and triggers the execution of a program. That pro-

gram begins to transform the input data (in parts with the help of data from the database) and, if

required, invokes other programs as well. These programs then fulfil their function, transform the

data which is required in the course of the process and persist it in their respective database. Once

the process reaches its end the invoking program is informed about the result of their actions and

the main program then returns the resulting data (or result of the process) to the client, which is

depicted to the user. So logically and functionally the CBS is divided into a number of programs

that are grouped together in functional modules. These programs are then used as building blocks

in order to realize business processes (use cases), which in the end fulfil the needs of the user.

However, the CBS is divided into three self-developed or bought functional realms which are

only integrated as needed, with inter-tower communication occuring only where needed.

4.5.3.2 User View and Logical Security

The users of the CBS are divided into two main groups; service users and natural users. On the

one hand service users are always anonymous and are either used for automated jobs, which are

either time or event triggered, or for the interaction with third party systems. On the other hand,

personalized users are split into four user groups; internal bank staff, end customers, administra-

tors and the bank’s internal revision. These four user groups are disjunctive, which means that an

administrator, bank clerk or revisor can never be a bank customer with the same account. In the

situation where they are also a customer as well, they are provided with a separate account. All

user and service accounts are subject to a common authorization repository, where the privileges

of each account are stored. The authorization system is both role and group based, which means

that a user may belong to a certain group containing a number of roles with the authorization to

execute a defined set of actions. Administrators and revisors have no direct access to the clients

via their logins and are hence not allowed to conduct business logic transactions which clerks or

customers may perform. However, they may access the CBS infrastructure directly through re-

spective frameworks (e.g. database clients, or direct server access). In contrast to them, the access

of bank clerks to the internal client of the CBS is single-sign-on (SSO) integrated with their work-

place accounts that allow the execution of a privilege restricted set of use cases, depending on

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 92

their position within the bank’s organization. Bank customers are only allowed to access the
online banking client by using their customer number and a password as user credentials. Within

their account they are also only entitled to the set of actions which need to be executed with

compliance to the principle of least privilege. If a clerk or a customer issues a transaction (such

as transferring money between accounts or opening a new account), their account must have the

appropriate privilege both at the front end and the backend of the CBS. This is because the user

needs to be logged as a responsible instance for the invocation of any service of the application

server. Each transaction, conducted within the CBS either by a clerk, customer or administrator

via one of the clients or through direct access, is generally logged in order to prevent unauthorized

data manipulation. The log files are then transferred to a secured location which is only accessible

by the revisors and are subject to regular reviews.

4.5.3.3 Information View

The data of the CBS is on the one hand stored in three different databases with the use of three

different data schemes, and on the other hand in configuration files in the application server and

the database server. It is classified depending on its nature.

- Business data: Business data is the core data, which is required to execute the use cases

as needed from the customer bank. It comprises customer data, as well as account data,

product data and all kinds of transaction data.

- Metadata: The metadata is a description of the business data and contains information

which is not necessarily important for the users and their business processes, but is crucial

for the operation of the CBS. A few examples of the metadata are the number of data

records in a certain table, the number of accesses on a certain table or the size of a data-

base. Metadata may not only be stored within the databases but can also be contained

within infrastructure components.

- Logging Data: Usually transactions need to be recorded due to legal and internal revision

requirements. In CBS, this is done through the use of so called Watchlists, which record

every manipulation on any database field containing business data, regardless whether

this was done through the business logic of the CBS (and hence either through a service-

or a natural user) or an administrator who directly worked within the database. The log-

ging data is then exported in order to be accessible for the internal revision department.

- Configuration Data: The configuration data is required for the operation of the CBS and

is in parts stored within the databases, and in parts in infrastructural components. It con-

tains information about how (with which parameters) the CBS is to be operated.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 93

4.5.3.4 Data Flow

The data flow of the CBS is transaction based and centered around the user interfaces of the

clients. If a user inserts data into a user interface and then triggers the processing (e.g. transferring

money from one account to another via the online banking client), he initiates a use case contain-

ing one, or several data transactions. Within each transaction, the data is first validated in terms

of its data format, length and logical format (e.g. the IBAN has to have a defined format). In case

data in a required input field is missing or the data is inappropriate, the user will immediately

receive an error message. If the data is complete and sound, it will be sent to the application

server. Inside the application server it is once again validated from a functional perspective. E.g.

it is verified whether the user is authorized to commit the transaction and whether they are com-

pliant to any functional constraints, such as account limits or other business restrictions. If these

verifications are positive, the data is processed according to the business logic of the triggered

use case. In the course of the functional data checks and the functional processing, further data

will be required which was not provided by the user. This data is fetched from the respective

databases and then processed together with the input data. The result is then persisted in one, or

several process steps (depending on the nature of the business case), and the outcome is then

delivered to the client. The result may either be a simple message informing the user whether his

operation was successful or not, or it may be a message which is also combined with further data

such as a reduced account balance after he transferred cash from his account to another.

4.5.4 Implementation Architecture

In contrast to the logical architecture, the implementation structure concentrates on physical as-

pects of the CBS, such as the deployment and technologies.

4.5.4.1 Deployment

The deployment of the CBS occurs in several environments, depending on the requirements of

the using bank. Usually there is at least one test or user acceptance test environment within each

customer bank as well as a production environment, where the life data is situated. The test envi-

ronment is regularly reset to a contemporary snapshot of the production system, including live

data of the customers and their transactions. Each environment contains at least two Linux servers

where the first one is the database server and the second one acts as application server. The scale

of these servers depends on the load which they need to handle, however they also support clus-

tering and load balancing. That means that the databases are deployed in several instances on

several servers which are then grouped in a cluster. The cluster management performs the control

of the database servers and regulates the replication of data between them. However, as in the

case of the CBS, three different databases are used; the Core Banking, the CRM and the Private

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 94

Banking and each need to run in a separate cluster. In addition to the databases, the documents as

well as the document import- and export location of the CBS are hosted on the same server.

The application server hosts the Core Banking application itself. The CRM tower is compiled and

executed within a Java Virtual Machine, the private banking tower is compiled through a GNU

compiler distribution and the Core Banking tower is compiled through an Infinite36 compiler.

The components of the interface layer (Web Services and APIs) are deployed on a Tomcat web-

server which is in turn hosted on the application server. The Tomcat webserver also contains the

online banking client and enables a replication of the application server into several instances in

connection with load balancing.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 95

5 Proposed Technical Modernization
Process for a CBS

Up to now, extensive knowledge regarding Core Banking Systems and their software architec-

tures was gathered, and presented, and is the basis for the following proposed modernization pro-

cess. This process begins with the scenario, where a technologically heterogeneous, and in parts

outdated, CBS needs to be modernized.

In doing so, this process attempts to answer the second research question as defined in section 1.1

and defines a potential way of modernizing an existing Core Banking system, regardless of its

existing architecture, functionality or technology stack. It is organized in sequential steps, which

lead from the beginning into a recurring modernization cycle that should be considered as im-

portant element within the lifecycle of a CBS. The rationale behind the process character is to

begin an ongoing modernization lifecycle, which makes sure that each functional component is

architecturally renewed from time to time, in order to make sure that the overall CBS keeps up

with the global technological evolution in terms of software technologies and architectures.

Overall, the following process as described in the following, utilizes the methodology proposed

by the BIAN and extends it through an architectural modernization approach, which is not cov-

ered by the BIAN. Nevertheless, it retains the flexibility to exchange the BIAN through a different

banking service landscape standard, in case this fits better to the requirements of a bank’s busi-
ness- and CBS architecture. The BIAN service landscape as described in section 4.2 serves as a

benchmark providing a target architecture and is therefore contained in a sub step of this process,

but this benchmark may also be provided through a different (customized) standard.

Except from that, this process is conceptualized under the premise that a CBS should functionally

cover the uses cases, which are required by a bank and its organization. Due to the fact that each

CBS and each using bank have their distinct specifics, this process remains independent of tech-

nologies and architectures, which implies that this process needs to be tailored to each CBS and

also to the use cases and business architecture of every bank. Furthermore, it does not cover the

details contained in a modernization module due to these specifics but is a generic framework to

begin and maintain an ongoing modernization of information systems in the context of CBS. The

requirement for ongoing modernization is given by the technological evolution as well as chang-

ing business requirements which surround CBS and constantly have an impact on it. Hence the

proposed process is designed as cyclic approach since modernization should never stop and in

order to reflect surrounding long term changes.

Therefore, from a methodological perspective each cycle encompasses the following steps:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 96

- Assessment of the bank’s current organization and service structure including planned

strategic changes. This step is necessary, since the current- and future service structure of

the bank must be incorporated into the modernization process.

- Assessment of the current CBS functionality in order to determine to what extent it

matches the using bank’s future needs and where additional functionality is needed.

- Based on the intended service structure and the current application baseline, a target ar-

chitecture is created with the aim to define the intended functional amount and architec-

ture of the modernized CBS.

- Next, the available modernization instruments need to be defined which are admissible

to the CBS (depending on technological and resource influence factors). The selection of

modernization instruments is necessary since it is a basic decision over the approach, how

a CBS is to be architecturally modernized and depends on the technological specifics of

the CBS and the resources of the bank or vendor.

- Sub sequentially they need to be assigned to the functional modules in order to determine,

through what architectural instrument each functional module of the CBS shall be mod-

ernized.

- Then, the selected methodology needs to be compiled into a modernization strategy, out-

lining in what time schedule and sequence the CBS the modernization shall happen.

- In order to verify the admissibility of the modernization strategy and to ensure that the

modernizations instruments work as planned a PoC phase must be conducted.

- If the PoC was successfully committed, further modules are to be modernized until the

target architecture has been successfully realized. The target architecture is then the basis

for the following modernization cycle.

Illustration 18 shows the high level approach of the following process.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 97

Illustration 18: Overview of the proposed Modernization Process

5.1 The Process Steps

As depicted in Illustration 18, the modernization process consists out of eight steps. They will be

described in the following.

5.1.1 Assess existing business service domains

In general, a Core Banking System should reflect the business structure (service domains) of the

using bank as it provides the bank with the information as well as the corresponding transfor-

mation functionality (business logic) to cover its main business processes. Assessing the existing

business services of a bank in order to modernize the underlying CBS, is only applicable if the

CBS’ functionality is also maintained by a bank. In the situation that the CBS is fully developed
and supported by a dedicated vendor, then the CBS as a framework is usually deployed within

several bank institutes with different connected business use cases and requirements. Therefore,

the vendor either needs to assess the existing business structure and requirements of its customers

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 98

in order to derive a common business service landscape, or create a business service landscape

for which it assumedly serves its customers best. In case the using bank develops and maintains

its own CBS, the first process step contains the following sub steps:

1. Outline the organization of the Bank:

Banks usually have already a well-defined internal structure that divides them into a num-

ber of subdivisions, branches and departments. These organizational units have a distinct

field of tasks and are responsible for the execution of their specific field of work. If not

already existent, the organizational units (OUs) and their business tasks need to be docu-

mented.

2. Create a process model of the Bank:

In order to fulfil their specific tasks each organizational unit has a number of business

processes, which are executed repeatedly. These processes are usually supported by var-

ious IT applications which form the majority of the bank’s IT landscape. The core pro-

cesses are mainly covered by sub functions of the CBS. The mapping between each OU’s
processes and use cases in connection with the CBS’ functions need to be documented as
well in order to elaborate which function of the CBS is used by which OU for which use

case. The result is an enterprise blueprint which depicts the functional usage of the current

CBS by the different OUs. Usually banks have already some kind of high level task de-

scription for their OUs. If this is the case, then the task description need to be elaborated

to a detailed process models.

3. Future strategy:

Each Bank usually possesses a long term strategy which is to be reflected both within its

organization as well as in the supporting IT landscape. To realize that strategy, Banks

recurringly perform internal organizational transformations. Respectively, the CBS mod-

ernization has to take these intended changes into account as they imply the future usage

of the CBS. Therefore, the current enterprise blueprint needs to be modified accordingly.

The overall result is a requirement document that contains a description of the business

processes and the required functionality of the CBS according to the bank’s long term
future.

5.1.2 Assess existing CBS functionality

The next step comprises the assessment of the current CBS against the required functionality that

as in the previous step. To do so, it is necessary to examine the current CBS architecture and to

create a consistent functional topology of the entire framework as it currently is. CBS have already

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 99

internal architecture description documents, however the focus of this step should lie in the divi-

sion of the CBS into functional modules which may be examined on their own in the ensuing

steps. In terms of practicality, the following steps are recommended:

1. Assess the current functions of the CBS:

Each CBS has a certain amount of functionality which is required by the using bank. This

functionality can be split up into functions that are on the one hand invoked by the user

directly or on the other hand perform specific tasks for other functions. Accordingly, this

step consists of the segmentation of the overall functionality into defined functions and

yields a definition of the current functional coverage.

2. Raise the functional topology:

Although CBS may be technologically severely outdated, they usually retain some sort

of modularization in the form of separated programs, program bundles, components, ser-

vices or even frameworks, which contribute to the CBS’ functional stack. Determining
which component is responsible for which functions results in a consistent mapping be-

tween code and the connected function and may uncover double implementations or un-

used components.

3. Raise interfaces:

The previously raised functional components usually interact with each other through

some kind of interfaces, such as the invocations of APIs, functions, web services or the

combined transformation of data. Capturing the communication patterns between each

component helps to reveal how tightly functions are coupled with each other, and is sup-

portive information for the definition of a consistent set of functions for the desired CBS

architecture.

4. Define a functional map for the legacy functionality (application baseline blueprint):

Based on the previous steps, a functional blueprint of the existing CBS may be defined

which contains a homogenized set of functions, the topology of these functions as well

as their interactions. This blueprint documents the actual state of the CBS and is the base-

line from which the transformation and modernization begins.

5. Assess functional coverage of the current architecture against business functions:

In order to align the current CBS with the required (current and future) business pro-

cesses, it needs to be benchmarked against them. That means, based on the application

baseline, verification is required to define to what extent the CBS covers the current and

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 100

intended business processes, and hence the strategy of the using bank. In case there are

functions missing, they may be considered for implementation during the modernization

process. On the other hand, if there are functions which are no longer required, then they

may be considered for decommissioning. The main result of this step should be a list of

functional gaps and overhead of the CBS in comparison to the bank’s functional require-
ments.

6. Version the application baseline:

As the proposed modernization process is recurring, it is recommended to version the

baseline, since it describes the functionality of the bank at a defined point of time includ-

ing future modernization plans.

5.1.3 Create a target architecture according to the BIAN.

The aim of this process step is to create a target blueprint which is compliant to the BIAN standard

[88]. It serves as should-be scenario, that applies to the CBS after its modernization. To do so,

BIAN already provides a Guideline containing an outline how a BIAN compliant target architec-

ture may be constructed. The overall approach as defined by the BIAN is illustrated in figure 19

and described in the sections 5.1.3.1 to 5.1.3.3.

Illustration 19: Application of the BIAN standard [91]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 101

5.1.3.1 Using the BIAN model as a high level implementation

design

1. Translate BIAN’s high level semantic designs to implementation level requirements:

The BIAN has a number of high level design principles which need to be applied to a

target architecture. The SOA paradigm is one of these principles, which is used with the

aim to create the target architecture in a service oriented manner. Use of service domain

clusters is also recommended in order to encapsulate related services into functional

blocks. These service domain clusters shall be interpreted in the context of the actual

technical environment which banks function in. These three environments are either a

CBS which is a monolithic Host application, a CBS which is operated with the help of an

Enterprise Service Bus (ESB) or a loosely coupled- or even cloud based CBS. Another

semantic design principle is to map the business architecture to the technical architecture.

In other words, a mapping the existing business architecture to service domains in order

to directly link a service domain cluster with the consumer organization and its business

processes needs to be done. BIAN only provides a high level implementation roadmap in

order to apply its standard to an existing CBS architecture. Hence it recommends to ex-

tend its framework through detailed specifications, which reflect the bank’s requirements

as well as the actual architectural situation of the respective CBS. The final semantic

design principle is the use of BIANs point solutions.

2. Specify Point Solution Requirements:

Specifying Point Solution Requirements (= targeted requirements) according to the BIAN

standard consists out of the following stages:

a.) Develop Business Cases for the impact, which is derived out of the modernization or

transformation of the CBS in terms of financial gain, performance, stability, etc.

b.) Create Business Scenarios for the main business event which is going to be handled

by the respective point solution requirement. The resulting list of business scenarios

should cover all requirements for the CBS from the bank.

c.) Connect the business scenarios to the required services of a service domain in order

to specify a static representation of the service interaction. This can be done via

wireframe models.

3. Develop Technical Specs:

Depending on the environment in which a bank system performs (may be either a Host

based, an ESB based or a cloud based core banking system) and according to the BIAN,

technical specs need to be created which describe the intended functionality of a service

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 102

after its transformation on a functional- and technical level and under compliance of the

previously defined implementation principles.

In the context of the proposed modernization process, the above three steps result in an already

detailed technical specification of the functionality of the intended Core Banking System after its

transformation.

5.1.3.2. Building a representative enterprise blueprint out of

BIAN service blocks

1. Select the BIAN service domains (service blocks) that are needed:

BIAN already contains a predefined set of service domains which depict the best practice

allocation of functionality according to its standard. In that regard, the first step is to map

the application baseline and the list of gaps and overheads, which were derived in the

previous process step, to the BIAN’s service domains, in order to specify which of them

are necessary. This selection is a critical sub step within the modernization process as it

may offer service domains which are not needed by the bank.

2. Adapt the generic BIAN designs as may be necessary (specialize, copy, combine, service

domains):

Next, the selected service domains need to be adapted, which means that they either need

to be reduced to the functionality which is actually needed or extended in case the BIAN

lacks aspects of functionality, determined in the application baseline. In some cases, ser-

vice domains may be extended by required functional specialities of the bank’s CBS or
combined, to better serve the needs of the bank. The result of this step is a raw version of

the target architecture that is compliant with the BIAN.

3. Distribute and duplicate business capabilities in an organizational blueprint:

Finally, the service domains which were selected and adapted in the raw version need to

be assembled and matched against the projected organization of the bank. BIAN proposes

that this should be done by matching the service domains in the form of value chains to

each business line (organization or business unit) in order to check whether all required

functionality is considered and whether each service domain is needed by at least one

business unit. In that regard, the BIAN service domains represent the functionalities (ser-

vices) required to cover all use cases of the bank. During the process of matching, BIAN

recommends to take both discrete lines of business operations (e.g. geographical lines,

country organizations) where certain operations are done centrally in one business service

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 103

unit, as well as legal entity structures into account. Having completed the matching pro-

cess, the result should be a raw mapping of functionality, in terms of service domains, to

the intended business domains. As a consequence, the previously created specifications

need to be adapted in order to fit to the mapping.

5.1.3.3. Using the enterprise blueprint as a basis for further

analysis

BIAN suggests using the derived enterprise blueprint as an analysis framework where the blue-

print shall help to identify critical-, or complex service domains and to measure performance. It

proposes the following three steps:

1. Add detail to the BIAN model, map to other standards as well as models and add service

domain attributes.

2. Use the blueprint to define and track business and systems performance.

3. Use the framework to overlay current-, and candidate resources to identify shortfalls and

opportunities.

In terms of architecture, it is more vital to detail the derived service domains, in order to create a

consistent target architecture based on the previously created specifications. Combined with the

projected enterprise blueprint, they form the target architecture describing the functionality of the

CBS after its transformation.

5.1.3.4. Version the Target Architecture

As soon as the target architecture has been created in the form of the projected enterprise blueprint

in combination with the specifications of the included (customized) service domains, they need

to be versioned, since they describe the future architecture of the CBS. Furthermore, after having

reached the target architecture in through the modernization cycle, it will serve as the application

baseline for the subsequent modernization cycle.

5.1.4 Define the available modernization instruments

Once the target architecture has been defined, it is necessary to outline the available techniques

which are admissible for the modernization of a CBS. The number and nature of these techniques

depends on the specifics of the target CBS, as some of them might be incompatible with a CBS

due to technical, political or organizational reasons. The following list describes the main instru-

ments which allow for the overall process to be open to custom modernization techniques. Natu-

rally, this process also supports alternative versions of instruments described below. In general,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 104

there are two types of modernization instruments. First, the ones which pursue a big-bang ap-

proach with one major transformation step and second, the ones that perform an incremental mod-

ernization process with different modernization strategies (component based modernization, sim-

ultaneous modernization, roadmaps) [17].

5.1.4.1 Reverse Engineering and Model Driven Development

MDD is described in section 4.1.2 and may either be used in a process based, or in a big-bang

based approach. It is suitable in situations where old, complex functions, for which no documen-

tation exists, need to be modernized. Through its automated code analysis, it follows every logical

path within a piece of code and abstracts it to a logical and technologically independent meta-

Model. The meta-model then serves as logical and complete documentation of the existing code

and may then be transformed in order to be re-implemented under the use of a different software

architecture [45, 46]. This approach is on the one hand flexible as only components of the legacy

functionality may be modernized and on the other hand, if needed, the entire system may be re-

implemented before being sent into operation (big-bang approach). Furthermore, it is also com-

patible to parallel and roadmap based modernization strategies. The overall scheme for MDD

modernization looks as follows [78]:

1. First a portion of functionality that is subject to modernization is selected. Its source code

is then analysed and abstracted into a technology and platform independent meta-model.

2. Next, the meta-model is transformed into a target model, which satisfies the requirements

of the desired architecture.

3. The target model is then implemented in a certain programming language (may be a dif-

ferent language as well as the language of the legacy component).

4. As soon as the implementation is done, it is necessary to verify the behaviour of the newly

implemented software component against the legacy component. This can be done

through extensive testing.

5.1.4.2 Architectural Replacement:

Architectural Replacement may also be conducted using different strategies, however as a mod-

ernization instrument, there are a number of different facilities offered with the purpose of replac-

ing existing legacy functionality or architecture [92, 34]:

1. Reimplementation: The first option is to manually re-implement the legacy code under

the use of an architecture which fits the required benchmarks. The implicated effort ap-

parently strongly correlates to the size and complexity of the legacy functionality and is

only possible when enough documentation exists.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 105

2. Buying and Customizing: If a different product that is in line with the architectural re-

quirements is available on the market, then it is a valid option to buy it, customize it and

to integrate it into the existing CBS. This requires implementation work as well, however,

the amount depends on the functional Delta between the existing functionality and the

required functionality of the new component. Nevertheless, this approach might be

cheaper than completely re-implementing the legacy component. A drawback of this ap-

proach is, that the obtained component may extend the technology stack of the CBS and

its source code may not be available to the integrating party. Hence, it may become a

black-box within the CBS service landscape which cannot be directly controlled by the

CBS developers.

In terms of architectural replacement, the overall admission pattern looks as follows [39]:

1. In the first step, a component is picked which shall be modernized.

2. Next, evaluation is needed on whether reimplementation or the customization and inte-

gration of a related existing product is preferable.

3. Once this is done, the new component needs to be integrated into the existing system and

its behaviour needs to be tested against the behaviour of the legacy component in order

to verify their functional equivalence.

4. After the equivalence is ensured, the legacy component can be decommissioned and be

removed from the CBS.

5.1.4.3 Architecture Refactoring & Transformation:

Refactoring is usually done within an iterative process where the components of a CBS are refac-

tored one after another or in parallel, depending on the modernization strategy. Architectural re-

factoring happens on both architectural- and code level, whereas architectural refactoring is a top

down approach and code refactoring is a bottom up approach. In this context Architectural refac-

toring always involves code refactoring as the source code implements the overlying architecture

[34]. The main aim of architectural refactoring is to remove old architectural traces and to execute

architectural changes (as is the case with architectural modernization). Refactoring can generally

be carried out as a part of an architectural roadmap approach or any other iterative strategy. The

workflow pattern is as follows:

1. First, choose a component which is to be modernized iteratively, however it should be

taken into account that the selected component may also have a number of subcompo-

nents.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 106

2. Next, its architecture needs to be understood (covered in section 5.1.2), and a target ar-

chitecture needs to be created (refer to the previous section). These two architectures cre-

ate a Delta, which needs to be overcome in one or more incremental refactoring cycles.

These refactoring cycles should be planned within a refactoring plan or strategy, and they

must be monitored in order to ensure a refactoring in the desired direction.

3. Each refactoring step results in a temporary sub architecture, which should be versioned

and tracked appropriately. Except from that, it should also be versioned.

4. Depending on the test strategy and its size, the refactored component should either be

tested after each refactoring step against the architectural requirements or after the com-

pletion of the overall refactoring process.

5.1.4.4 Decommissioning of old Functionality

The easiest way to modernize architectures in the context of CBS, is to decommission function-

alities which are still a part of the CBS but are no longer in use, due to changing user requirements

as well as environmental circumstances. The advantage of decommissioning in connection to

CBS modernization is that the overall architecture is cleaned of unused components. Furthermore,

its size and complexity are reduced and the maintainability of the architecture and the remaining

source code is increased. Hence, simply reducing a CBS by its unused components is a valid

modernization instrument. Components that are not subject to the bank’s business cases are de-
termined during the assessment of existing CBS functionality against the bank’s organization (see

section 5.1.2).

5.1.5 Map existing functionality to the modernization instrument

The next step of the modernization process is to decide through which modernization instrument

each portion of the application baseline should be modernized. The result of this step should be a

mapping of defined functional segments to a modernization instrument or alternatively, if re-

quired, a combination of modernization instruments. The decision of which instrument shall be

used depends on a number of technical-, and in parts also business, criteria which need to be

defined as well. The criteria may then be used to rank several appropriate alternatives against each

other and to create a justification why a certain modernization instrument has been used in order

to transform a functional portion. A practical method would be to gather an expert round of ar-

chitects or key technicians, who know the functionality outlined by the application baseline (the

“old” code) and the specific pitfalls and potential workarounds. They can then be consulted in

order to assign a requirement and technology related score to each of the criteria and to give each

modernization instrument a ranking of how applicable it is to a functional portion which is to be

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 107

modernized. The following criteria count to the common aspects that play a role in terms of mod-

ernization [34]:

- Complexity and structure:

The main criteria is the complexity of the old functionality that ultimately decides about

the workforce and the time required to modernize a portion. If the structure of the code is

already decoupled and works according to the same architectural principle, then a (semi)

automated transformation via a model driven development tool might be applicable.

However, if the code is grown over years and has a large number of internal dependen-

cies, then architectural replacement through re-implementation or purchasing a new cus-

tomized product to replace the old one is more suitable.

- Available Knowledge and Documentation:

In larger Information Systems, such as Core Banking Systems, there are often functional

portions which are decades old with the original engineer who created them no longer

available as well as no documentation being left behind. If no other engineers understand

the internal architecture and mechanisms of the old code, then an automated transfor-

mation is bears risks. That means, if there is a lot of knowledge available about the old

code, then an automated and manual transformation combined with the decommissioning

unused parts are legitimate ways to modernize old code. However, if the knowledge is

inaccessible and there is no documentation about the old code (it is run using the “never
touch a running system” principle), then architectural replacement is to be considered.

- Functional size:

The next key criteria is the size of the old portion, measured in lines of code. The larger

the outdated portion is, the more manpower and time is required to manually refactor it

and to develop it to a successor software architecture. Therefore (semi) automated trans-

formation procedures are a way to lower costs and effort after a comparably large initial

effort for modelling (model driven software transformation requires the creation of a meta

model). If the portion is too large, it is a valid alternative to evaluate the market for newer

existing products which might be customized in order to fulfil the functions of the out-

dated portion. On the other hand, if the portion is smaller, a manual refactoring, or even

manual rewriting is a more resource saving approach.

- Analysability:

Analysability as a criteria is related to complexity with the difference that there might be

code portions which are not directly available for inspection (e.g. since only the executa-

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 108

bles are available and not the source code). In that case, reverse engineering and subse-

quent model based reimplementation is a way to cope with applications which are hard

to analyse. Via reverse engineering, logical paths may be processed through a meta

model, which is then the basis for reimplementation in any desired technology. On the

other hand, if there is enough documentation and knowledge about the code available,

any other modernization instrument may be used depending on the other criteria chosen

for assessment.

- Estimated Cost:

As criteria the estimated cost of modernization is a decision item specific to the outdated

portion and depends highly on the other given criteria. Furthermore, the estimated cost is

normally a rough estimation, as the real costs often change massively in the course of a

transformation.

In general, manual refactoring, reimplementation or replacement are often the cheapest

way to modernize a piece of code, depending on who does the manual implementation

work. Automated- or semi-automated tools on the other hand usually require major costs

in their initial phase, during the creation of a meta model of the existing code and an

emulator that is capable of automatically transforming old code into a new desired tech-

nology. However, in the longer term, transformation supported by automated means

brings decisive savings in terms of cost, manpower and time. The third option of buying

and customizing a similar but newer product is usually an expensive way to modernize

old functionality that also depends on the exact functionality which is to be replaced.

- Time effort:

In terms of time effort manual reimplementation of the outdated code is a more time

intensive modernization instrument, depending on the size of the portion which is to be

modernized. Hence, automated modernization tools may bring a decisive advantage in

the longer term, especially when the functionality is of a large scale.

- Supported Technologies and Transformability:

Some outdated portions of code are sometimes not transformable due to technical con-

straints. For instance, when an old technology, which has never been updated or super-

seded by a newer variant, is used. In this circumstance, architectural refactoring or trans-

formation as well as automated means are not applicable and architectural replacement

methods need to be considered.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 109

5.1.6 Create a modernization strategy

After the application baseline, a target architecture and a mapping are created that clarify, how

the modernization shall transpire. To do so a modernization strategy is needed as it elaborates the

time schedule and in what order the overall modernization along with its sub-modernizations shall

take place. It is recommended to take the application baseline as well as the modernization map-

ping and examine their dependencies. The sequence of dependencies as well as additional factors

(such as priority or complexity) then define a sequence depicting which module needs to be mod-

ernized in its own modernization stream as well as when. That sequence may then be used in

order to create a time plan which looks similar to a GANTT chart which is utilised as a master

strategy in the modernization blueprint which orchestrates the entire modernization effort. Next,

each modernization stream contained in the blueprint modernization principles is defined, includ-

ing the preconditions and post conditions necessary for the modernization procedure to begin and

be considered complete respectively. These post conditions may be of various kinds, such as

technical-, qualitative-, functional- and non-functional constraints. Common valid post conditions

would be the following:

- The module needs to comply with the target architecture.

- The required functional use cases of the legacy module need to be implemented and pos-

sess the same behaviour (+ potential change requirements) as its legacy module.

- The behaviour of the modernized module needs to be successfully tested against its target

architecture as well as the same test cases as the legacy module.

Aside from its pre- and post-conditions each module also needs to have a mapping to the legacy

module, that was the basis on which it was transformed or which it shall replace. The resulting

modernization blueprint is then a central document which enables tracking as well as a consistent

orchestration of the entire modernization cycle.

Once the strategy has been established, the modernization needs to be versioned as it is the central

roadmap in order to achieve the target architecture from the baseline of applications onwards.

5.1.7. Deliver a PoC and test it

In general it is possible to run several modernization cycles in parallel on one CBS (see section

5.2 in terms of the process granularity), however it is recommended to perform a Proof of Concept

(PoC) that ascertains, that the overall modernization concept is valid and works in practice. The

PoC is not necessarily required in order to conduct the overall modernization, but is nevertheless

an opportunity to learn from the modernization strategy and to refine it accordingly before the

entire modernization is applied on the CBS. To commence the PoC, it is recommended to select

an exemplary outdated module from the application baseline. It should be separable from the

other modules and (in the best case) either work on its own after its modernization or be capable

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 110

of interacting with the legacy system in order to fulfil its business purpose. Additionally, the se-

lected module should be functionally representative and should not be a trivial module to mod-

ernize in order to maximize the learning curve for the entire modernization cycle. And it should

not use a means of architectural refactoring as modernization instrument in order to be revertible,

in case that needs to be done. Instead it should either use an automated or architectural replace-

ment approach as both ways create a separate result which sub sequentially will substitute its

outdated predecessor.

Next, the selected PoC module needs to be modernized to the target architecture as given in the

modernization strategy. If any complications turn up during its modernization which have their

root cause in the strategy, then it should be adapted accordingly. Also technical-, organizational-

or business constraints which were previously unconsidered but come to display unforeseen ef-

fects during the PoC modernization should be taken account of, and included in the modernization

strategy.

After the modernization had been done, it must be tested in order to verify that it has the same

behaviour as its predecessor. Regression tests are an effective way as they directly compare the

behaviour of the modernized software with the behaviour of the old one. In case of functional

deltas occurring, the modernization either needs to be completed or even changed. For instance,

model based modernization is prone to errors in the beginning as the underlying meta model may

be inconsistent or contain logical errors. Therefore, an emulator that technically emulates old code

into new code according to a meta model usually requires several refinement cycles before being

able to transform code with an accuracy of nearly 100% [78].

Aside from regression tests, the PoC module should also be verified internally through further

unit tests or component tests and its architecture needs to be examined, in order to make sure that

it actually complies to the target specification as specified in the architecture (see section 5.1.3).

Finally, the PoC module needs to be integrated into the CBS in order to effectively replace its

outdated predecessor. From a testing perspective, this can be verified through integration tests

and end to end system tests including the PoC module. Finally, the PoC module needs to be inte-

grated into the release plan of the CBS to effectively come into service. Usually each CBS is

developed within at least two or three environments (a development environment, a testing or

UAT environment and a production environment with usage of live data) whereas functional de-

ployments are made into the production environment within coordinated releases or updates.

5.1.8. Extend the PoC and retest it

As soon as the PoC had been completed, the learnings of it need to be included into the modern-

ization strategy. The PoC is also a decision basis which shows, whether the modernization of the

entire CBS scope is achievable or whether major adaptions need to be done.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 111

If the entire modernization strategy is deemed to be a feasible real life approach then the PoC may

be extended step by step according to the strategy document, its time plan as well as the mapping

between functional portions and modernization instruments. Throughout and after their modern-

ization the modules need to be tested in the same manner as the PoC module through regression

tests, internal white box unit tests and integration tests, both with the legacy system and through

integration tests with the preceding new modules which were modernized prior to them. And in

the same manner as the PoC, they also need to be checked against their respective specification

from the target architecture in order to verify whether they are compliant to it. In terms of mod-

ernization, the integration of modules which were updated through architectural refactoring is

different from modules that are replaced by superseding modules, as they are not a replacement

but rather an updated version of their outdated preceding module. Like the PoC, modules finally

need to be integrated into the CBS’ release plan in order to come into effect.
Depending on the time, scale and functional scope of the modernization, the extension of the PoC

will usually stretch over several releases of a CBS, as it is an ongoing process. However, the

advantage of this approach is, that on the one hand several modernization cycles may be executed

on one CBS with disjunctive scopes and on the other hand within each cycle each modernization

module may be modernized in parallel or in a defined series, relative to the other modules de-

pending on whether it has technological-, or functional reliance on any other module.

As soon as all intended functional portions, which were planned for modernization, reach the

modernized state and are successfully tested against the specifications of the target application,

the entire modernization process is considered to be complete.

5.1.9. Keep up the modernization work.

In general, it is recommendable to constantly conduct modernization work on a Core Banking

System in order to keep it technologically and architecturally up to date. However, the time period

in which a particular function or code portion should be updated strongly depends on the technol-

ogy on which it is implemented as well as the modernity of its architecture. Hence, years or dec-

ades may pass until the next time a piece of functional behaviour is modernized. Nevertheless,

the proposed modernization framework supports recurring modernization cycles through version-

ing the baseline of applications and the target architecture, which sooner or later becomes the

baseline of applications in a future modernization cycle. In theory, a modernization cycle could

potentially start over and over again and therefore reflects the principle of continuous improve-

ment and modernization. Yet in practice, due to business constraints (modernization work re-

quires financial resources, manpower and time which would, from a business perspective, rather

be invested in developing more functional value), modernization is viewed mainly as a necessary

malady. But all in all and especially in the branch of Core Banking Systems, old technologies

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 112

consistently impose more technical constraints on newly generated functions which are subject to

more sophisticated technological requirements. Therefore, the pressure of getting away from old

legacy code becomes more pressing as more time passes. In order to avoid future restrictions due

to old architectures and technologies, a continuous modernization process that constantly occu-

pies a certain percentage of resources is more sustainable in the long life of a (already complex)

Core Banking System than so called “big bang operations” that in turn bear more risk. It can be
said with certainty that no modernization at all, will deem a Core Banking System unusable in the

long term, since an outdated CBS requires more maintenance and gets more and more incapable

to support the ongoing technological evolution, since the technological distance increases over

time.

5.2. Process Properties

After the process steps were outlined in the previous section, the main properties it possesses will

be discussed at this point.

Top Down Approach:

Generally, the proposed modernization process is a top down approach, as it first examines a

bank’s organization and strategy and then derives a target architecture on that basis. Furthermore,

it first takes the overall organizational picture of a bank and then drills down to individual func-

tions and components in the Core Banking system. In that context it is also aligned to the BIAN,

which follows a similar approach.

Flexibility:

One of the main features of this process is its flexibility as well as adaptability in terms of its sub-

procedures. The core definition of the process consists out of the sequence of its eight sub-steps

and their application, with the steps themselves also open to adaption. That means, that it can be

arbitrarily amended depending on the needs of an implementing bank or CBS vendor. In fact, if

necessary, BIAN does not need to be used as the definition of a target architecture as there is no

obligation for a bank to comply with BIAN. Instead, a different target architecture and a different

method to derive a target architecture may be utilised. In terms of the chosen modernization in-

struments, the process is open to customization since if one of them is not suitable for a CBS’
circumstances, it may be omitted or it may be swapped with a different modernization technique.

Also, the delivery of a PoC is not an obligation before commencing a full-fledged CBS transfor-

mation. The proof of concept of the proposed process is essentially a low level verification method

showing whether a planned modernization approach is admissible in reality or not. In that regard,

the scope and the method of the PoC as well as the functionality which is probed in that PoC is

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 113

subject to custom choice. Furthermore, the extension of the PoC needs to be refined and scheduled

based on a common project management process model such as the waterfall model, v-model or

an agile project management method.

In the context of time, the process is flexible as each function or component is individually trans-

formed in parallel to other functions, based on its own specifications and the most fitting mod-

ernization approach. That means, that the overall process framework orchestrates the moderniza-

tion but leaves enough freedom for any special constraints which are liable to a certain function.

Extendibility and Adaptability:

As the proposed process is already an extension of the BIAN on a technical level, this process

may be extended through further steps if this is more suitable for the needs of a CBS and its

developers. Furthermore, the process steps as described in section 5.1, may be extended them-

selves as well, if this is required.

Granularity and Adaptability of functional Scope:

Another attribute of the proposed modernization process is its granularity. Its scope is adaptable

and the size of the portions which are to be modernized may be altered depending on the specific

environment where the modernization takes place. In theory, the granularity can be drawn down

to the level of single routines which are modernized one by one, using their own modernization

instrument. However, the proposed framework can also cover an entire Core Banking System

which is modernized in one procedure. Hence, it is comparably easy to select different portions

of different sizes which are considered as functional components to be transformed with the only

constraint being, that they need to fit into the topology of the target architecture. This granularity

also leaves the freedom to only modernize certain portions of the CBS at a time according to their

own time plan and pace as well as their own modernization instruments.

In addition, it is also possible to allocate different sub functions of the original CBS to different

modernization cycles as outlined at the beginning of this chapter. This implies the freedom to

transform portions in independent modernization streams into different target architectures under

the preconditions that there are no technical dependencies between the modernization streams and

that it is compatible with the strategy of the using bank.

Recurrency:

The process may be recurrent, but it does not have to be. That means, a CBS or its sub functions

may be transformed to a target architecture where any further modernization activity could be

halted as soon as the entire target architecture is covered. Nevertheless, as modernization in theory

should be a repeating process, the proposed process supports continuous modernization. In this

case, the target architecture turns into a description and documentation of the application baseline

and is hence the basis for another transformation cycle. If the transformation scope changes to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 114

different functionalities (or a subset of the functionality modernized in the first cycle), this should

be supported as well as the new target set of functions should already have been modularized in

the first transformation cycle (if BIAN was used as target architecture). Therefore, the second

modernization round should be easier to conduct, especially on a technical level.

Ongoing modernization Process:

The proposed modernization process is integrateable as a separate stream into other development

cycles. That means, while for instance 80% of the developers supporting a CBS work on the usual

support or on creating more value, the modernization process can also run as a side stream, which

is either equipped with its own project management or integrated into the overall development

activities and their governing project management. In that regard, it may be perceived as an ever-

lasting activity as modernization in terms of long living and growing Information Systems should

never stop.

Traceability:

Due to the versioning of a target architecture, the underlying software may be traced in its lifetime.

Specifically, if a certain portion of business logic was transformed for instance from one language

to another one in a different architecture, the origin of the functionality may be traced back, due

to the versioning of the application baseline as well as the connected target architectures.

Agility and Process Focus:

The proposed modernization procedure is process driven, since each modernization of a separated

portion of functionality is, in principle, a sub process of the overall modernization effort. Both

agility as well as agile project management are supported throughout this cycle due to the sepa-

ration of the modernization streams and its cyclic attribute. The use of scrum methodologies or

other agile methods could be specifically imposed on each modernization stream.

May adopt different Architectural Modernization strategies:

In terms of modernization strategies, the process is open to alternatives or new modernization

strategies, as long as the outdated module is covered by the baseline of applications and consid-

ered in the target architecture. In its current version, service oriented architectures, such as the

BIAN, are used as an intended target architecture. However, it could be replaced by any other

target architecture if that is more desirable for a using CBS.

Gathers several modernization efforts:

Except from its integrability and adaptability, another advantage is, that due to its flexibility and

open character, the proposed approach is capable of governing multiple modernization streams of

separate software functions that do not necessarily interact with each other but run in parallel or

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 115

sequentially. Through the central governance, one modernization strategy’s common measures or
guidelines could be imposed on each modernization stream. Examples of these measures include;

common performance indices showing empirically how “good” a modernization effort works and

qualitative guidelines which could become effective during testing. Therefore, the process could

be used as a basis for controlling purposes, but also as a basis for other technical- or business

frameworks in order to better integrate it into its using organization.

Follows a divide and conquer approach:

The process framework already uses a divide and conquer approach in terms of modernization.

Correspondingly, the legacy CBS is divided into modules which are then modernized in separated

modernization streams. The implication of that is, that each stream may be treated on its own

under the use of a different modernization instrument, depending on the technical nature of each

module. Nevertheless, the divide and conquer approach opens the opportunity to examine each

module on its own, and also allows the process to focus on a certain modernization stream (if

necessary) in case problems turn up with it. Furthermore, this approach is already a topological

preparation towards a modularized, and hence easier to maintain, target architecture.

5.3. Advantages and Disadvantages

Now that the process itself has been described and evaluated in terms of its properties, its ad-

vantages will be discussed in the following section. They are also put in context with other mod-

ernization approaches which are available in expert literature.

Consistent Roadmap:

One major advantage of the proposed process is, that due to its flexibility, it also takes the business

environment into account. Its adaptability enables this procedure to be used in different Core

Banking setups and depicts how an existing CBS may be developed to a more up to date archi-

tecture. Additionally, it is not only integrated with architectural target benchmarks, but also re-

flects future strategies of a using bank (or vendor), due to the approach that a target architecture

should encompass and functionally support the future organization and strategy of a using organ-

ization. Other software and architecture modernization approaches are often concentrated on the

technology of their approach only. However on the other hand, the proposed modernization is

more high level and not thoroughly detailed technically. Instead, it takes the current and future

environment into account and views architectural modernization not just as a single effort but

rather as ongoing process which is a critical factor to the technological long term survival of a

CBS.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 116

Highly integrate able in existing software Engineering Setups:

Another advantage of the proposed modernization process is its integrate ability in existing CBS

setups, as it not only supports one technical modernization approach but several, which are all

also adaptable according to a CBS’ specific needs. In addition to its functional adaptability, it

may be extended or minimised as required, which deems it also adaptable in terms of its scope.

Technology and Architecture Independent:

The proposed process in its current state is technology independent and hence technologically

applicable for every Core Banking System, regardless of its used technologies. Furthermore, it is

also independent of any existing architecture but nevertheless capable of modernizing them with

consideration of their complexity and adaptability.

Consistent Process Framework, which needs to be extended by some Project Management:

The modernization process currently lacks a consistent project setup as well as any kind of project

management. In reality, a modernization effort is usually embedded into a separate project which

manages the actions that need to be done and the environment in which a project is executed.

Furthermore, a modernization requires resources, resource planning, financial funds and backup

from the governing business. In its current form, this process does not guarantee, that as it is a

plainly technical approach. Hence, it needs to be supplemented with a business framework con-

taining a project management to ensure the proper execution of this technical modernization ap-

proach.

Incorporates a PoC:

A further strength of this process is that it incorporates and supports a PoC. This is necessary in

order to test the theoretical planning (modernization blueprint, and target architecture) in practice

and to return first learnings from practice into the modernization strategy in order to refine it

before the majority of modernization tasks are committed.

Leaves a Number of Decisions Open:

The process framework is basically a proposal, which in its current state, is not detailed but still

very flexible due to its design. Therefore, it leaves a large number of decisions open which highly

depend on the organization and the requirements of the CBS vendor and using organization. As a

consequence, it leaves a lot of space for wrong decisions, which may in turn occur due to inexpe-

rience in terms of software modernization, technical- and financial misjudgements, as well as

missing considerations. Hence, it is highly recommended to gather experience from existing mod-

ernization projects and to put this modernization process next to other approaches in order to

evaluate it, before applying it to the system.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 117

Drawback of Flexibility:

The fact that the proposed modernization process is flexible, open, extendable and adaptable is in

general a good characteristic. However, it also contains unintentional hazards, for instance, the

flexibility opens doors to misuses, wrong assumptions as well as usage purposes for which the

process was not intended. In turn that (technical) misuse could result in major economic and

functional damage to a system which was modernized or transformed in a malicious way. Hence,

it is important to verify this process among other process frameworks, and to verify its results as

early as possible.

Missing Modularization:

From an architectural point of view, CBS are complex and large scale systems and their internal

functionalities are often deeply interwoven among each other, incorporating a large number of

functional and technical dependencies. Old CBS are often monolithic frameworks with few or

virtually no modularization in them. Therefore, in each modernization project the modularization

of such a monolith as a precondition for modernization is already a major project on its own. This

modernization process does not address this issue as it assumes that a system has already been

modularized. A solution to this problem would be to include a separate modularization step right

after the assessment of the existing functionality (see section 5.1.2), which only deals with meth-

odologies to split architectural monoliths into functional parts. However, covering that would

extends the scope of this thesis. Nevertheless, dealing with functional separation is a precondition

upon which the proposed modernization process relies heavily.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 118

6. Evaluation of the Modernization
Process

After depicting the modernization process and having discussed its strongpoints and weak points

in theory, this chapter deals with the practical evaluation of the proposed process. To do so, the

exemplary outdated architecture as described in section 4.5will be applied to the process. As soon

as the process reaches the stage of module wise modernization, the application will be continued

on a selected submodule of the legacy CBS (in this case Day-End Processing) as describing the

modernization of all legacy functionality would exceed the scope of this thesis. Next, the process

as well as its application will be shown to experts in the field of core banking in order to find out

whether this process has practical shortfalls. The scientific aspect of the evaluation was com-

menced via guided qualitative expert interviews. The interview guideline is attached in Appendix

A and the interview transcripts are added in Appendix B.

6.1. Applying the Modernization Process on the ex-
emplary Architecture

The application of the exemplary architecture, is structured according to the process steps as de-

fined in section 5.1. Therefore, each of the following subsections covers one process step.

6.1.1. Assessment of existing Business Service Domains

The first step of the modernization process is to raise the organizational structure of a Bank which

uses a particular CBS and gather the Core Banking business processes, that are executed within

each organization unit. Additionally, the long term strategy and structure of the Bank needs to be

taken into account with the purpose of aligning the future CBS with the future strategy of the

Bank. How the current-, and prospected future organization is constructed depends on the using

bank. However, in order to fulfil this step, a hypothetical future organization, which serves the

purpose of the practical evaluation, will be assumed. It shall look as follows:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 119

Illustration 20: Exemplary Organization of a Bank

According to its organization, the Bank has a focus on retail banking as well as corporate banking.

The retail banking division contains the branch management, as well as the direct customer sup-

port, consisting out of private customer advice at the cash desk, and online support via the bank’s
internet channels. Corporate banking focuses on business customers which are divided into large

customers and small customer companies. Aside from the retail and corporate banking business,

it contains a treasury portion covering stock trading and money management. Furthermore, it

incorporates a back office (operations) which is responsible for account current and maintenance

tasks as well as a risk department. In practice, a bank usually has additional departments that do

not directly use a CBS, such as a Human Resources department, a Finance and Payroll and an IT

organization. Also, an internal revision and a compliance department are included as part of a

bank organization.

6.1.2. Assessment of existing CBS functionality

After having the bank’s organization raised, the CBS’ functional topology needs to be elaborated.
In the case of the exemplary architecture, as described in chapter 4.5. This was already done to a

certain degree since it is already structured into a four layer architecture, which is further split up

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 120

into functional modules. Under the assumption that the functional modules, as depicted in Illus-

tration 20Illustration 17 are decoupled on code level, and interact with each other via interfaces,

they may be adopted as a feasible overall structure. In this context, each module within the appli-

cation tier contains a set of functions which are required to cover the necessary business processes

of the bank. The sum of all functions defines the functional entirety of the CBS where each func-

tion may be either manifested within a program, a class, a single method or a set of methods (in

case the code is object oriented). For instance, the account current module consists (among others)

out of the following functions:

- End-of-Day, End-of-Month and Year-End Processing

- Calculation of daily Balances

- Calculation of Interest Rates (in various forms)

- Account keeping (depending on the kind of account – Giro-, Saving or Inventory)

- And many further functions.

After the functional topology had been summarized in the form of a distinct set of functions, their

interfaces and dependencies need to be raised. In the current case, the loan module will be tightly

connected to the customer scoring module as the customer scoring has a strong influence on the

loan conditions of each customer. Accordingly, the loan module will either access the customer

scoring module via API calls, web services or direct function invocations, or may simply access

data in the CRM database which had been previously processed by the customer scoring module.

Those interfaces need to be documented for each function of the CBS.

The sum of the derived functions as well as their dependencies and interfaces then need to be

gathered within a functional map which is the application baseline blueprint (for illustration pur-

poses, the exemplary application baseline blueprint for the Day-End Processing function of the

given architecture is added in Appendix C). This blueprint will subsequently be benchmarked

against the intended organization of the bank in order to identify functionality which is missing

as well as functions which are no longer of use and may be considered for decommission. In the

case of the given CBS architecture the benchmark delivers the following (high level) result on a

module level:

Module State Required by

Core Banking

Electronic Funds Transfer existent

Branch Operations, Customer Services, MM&FX, Clear-

ing, Loan Administration, Trade Finance

Account Current existent

Branch Operations, Large Account, Small Accounts,

Clearing, Treasury Back Office

Private- / Corporate Loans existent

Large Accounts, Small Accounts, Credit Risk, AML / Capi-

tal Management, Loan Administration, Clearing

Card Management existent

Branch Operations, Customer Services, Loan Admin-

istration

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 121

CRM

Customer Management existent

Branch Operations, Customer Services, Large Accounts,

Small Accounts

Customer Core Data existent

Branch Operations, Customer Services, Large Accounts,

Small Accounts

Customer Scoring /

Account Management existent

Branch Operations, Customer Services, Large Accounts,

Small Accounts, Credit Risk, Market Risk, Operational

Risk

Document Management existent All Suborganisations

 Customer Services

not

existent Customer Services, Branch Operations

Private Banking

Order-/Portfolio

Management existent Commercial Papers, Treasury Back Office, Trade Finance

Asset Management existent Commercial Papers, Treasury Back Office, Trade Finance

Market Data Modeling existent Market Risk

Customer Risk

Management existent

Branch Operations, Customer Services, Large Accounts,

Small Accounts, Credit Risk, Market Risk, Operational

Risk

Asset Liability

Management existent

Clearing, Loan Administration, AML / Capital Manage-

ment

Risk Management

not

existent Credit Risk, Market Risk, Operational Risk

Trade and Investment

not

existent Trade Finance, MM&FX, Commercial Papers

Table 1: High Level Benchmark Result of existing vs. required Functionality

In this case, most modules required by the banks organization are existent within the CBS. Further

analysis is necessary for each module in order to determine which sub-functions in each module

are in fact needed and which are not needed. In addition, at least three modules which should

cover the core business processes of the risk departments, as well as the departments centred on

trade and investment are missing. A customer services component enabling the bank to integrate

more customer interactions with the underlying CBS is also required. But all in all, the given table

is a benchmark containing a mapping between the bank’s organizational units and the CBS mod-
ules depicting where functionality is required and where given functionality (likely in an outdated

technology and architecture) is available.

Finally, the derived application baseline blueprint, as well as the benchmark against the raised

bank organization need to be versioned. This is done as they document the existing functionality

and topology of a CBS and the functional gaps which are to be satisfied, in order to fulfil the

requirements of the using bank.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 122

6.1.3. Creation of a Target Architecture

In the previous section, the existing functionality as well as the gaps in the intended target have

been identified. Based on these results, a target architecture that is compliant to the BIAN standard

needs to be defined. To keep the scope of this thesis in a reasonable extent, this is only done

conceptually via the outlined End-of-Day processing as given in Appendix C. To do so, the first

step is to apply the BIANs service oriented high level design to the End-of-Day processing. There-

fore, the End-of-Day processing needs to be classified into the BIAN’s service landscape (cur-
rently in version 7.0) [53]. In the service landscape, the End-of-Day processing fits into the Ser-

vice Domain “Financial Statements” under the “Finance” service domain cluster of “Business
Support”. According to BIAN, this Service Domain is “responsible for the consolidation and re-
porting of the audited financial statements of the enterprise (and its subsidiaries) including the

balance sheet, statement of cash flows, statement of retained earnings and the income statement”
[50]. In that Service Domain, the End-of-Day Processing are summarized together with the other

(End-of-Month or Year-End) settlement processes as well as all functionality belonging to finan-

cial settlements and statements of the bank. The point solution requirements then need to be cap-

tured in the form of Business Cases, Business scenarios, and a mapping of business scenarios to

the required business services as given within the End-of-Day-processing. In terms of the mod-

ernization of an existing End-of-Day routine, the main requirement is, that the transformed pro-

cess has exactly the same functionality as the legacy process, however with some behavioural

differences which need to be specified by the bank. This needs to be captured accordingly in the

point solution requirements. The business case for the End-of-Day-process is the daily settlement

of the sub ledger (in the form of the customer’s giro and savings accounts), including the pro-
cessing of all standing orders and transactions, as well as the subsequent settlement of the general

ledger. A potential tactic to split up the Day-End-process into a service oriented topology is to

recreate its functions as given in Appendix C in a service oriented architecture. On that basis,

further technical specifications need to be created, to describe each intended service within the

Day-End processing on its own as well as its interactions to other services. In any case, the tech-

nical specifications highly depend on the individual characteristics of the legacy implementation

of the Day-End processing and possible additional requirements of the bank. In general, they

should contain the following items:

- A use case description

- A specification of all interfaces and dependencies per subroutine

- Functional and Non-Functional Requirements

- A conceptual architecture

- A logical Architecture including the logical Data Flows and required data items

- An implementation Architecture including a technology stack and architectural directives

in terms of logging, error handling, interface communication and security.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 123

Next, the entire application baseline blueprint needs to be mapped to the service domain structure

as specified by the BIAN. In the case of the given CBS, the existing modules can be mapped to

the following service domains (the detailed mapping is contained in Appendix D).

Legacy CBS Module BIAN Service Domain Cluster

Core Banking - Electronic Funds Transfer Payments

Core Banking - Account Current

Product Management

Account Management

Regulations & Compliance

Core Banking - Private- / Corporate Loans

Loans & Deposits

Collateral Administration

Core Banking - Card Management

Cards

Payments

CRM - Customer Management / Customer Core Data

Servicing

Customer Management

Operational Services

CRM - Customer Scoring / Account Management / Cus-

tomer Risk Management

Account Management

Customer Management

CRM - Document Management Document Management & Archive

CRM - Customer Services

Customer Services

Corporate Financing & Advisory Services

Private Banking: Order & Portfolio Management / Risk

Management

Market Operations

Bank Portfolio & Treasury

Private Banking: Asset / Asset Liability Management Bank Portfolio & Treasury

Private Banking: Market Data Modeling / Market Risk

Management

Market Data

Models

Private Banking: Trade & Investment

Trade Banking

Investment Management

Wholesale Trading

Table 2: Mapping of the application baseline blueprint against the BIAN Service Landscape

Compared to the service landscape of the BIAN, the CBS modules were split over several service

domain clusters. For instance, the account current module is split over the product management,

account management and the regulations & compliance service cluster due to the fact that its sub

functions belong to these clusters. As a consequence, the resulting functional architecture of the

transformed CBS business logic contains the following service domain clusters, according to the

BIAN:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 124

Application Tier

Operations & Executions

Cards
Consumer
Services

Investment
Management

Wholesale
Trading

Loans &
Deposits

Cross Product Operations

Collateral
Administratio

n

Operational
Services

Account
Management

Payments

Risk & Compliance

Bank Portfolio
& Treasury

Models

Sales & Service

Servicing
Customer

Management

Reference Data

Market Data

Business Support

Document
Management
& Archive

Market
Operations

Trade Banking

Corp.
Financing &

Advisory
Services

Regulations &
Compliance

Product
Management

Illustration 21: Resulting Target Architecture after the Application of the BIAN

In connection with the technical specifications, the selected service domain clusters illustrate the

target architecture. Obviously not all functions of the service domain clusters, specified in the

BIAN standard, will be needed and the result must not absolutely comply 100% percent with the

standard as every bank has its own specifics. Moreover, not every function of each listed cluster

will be required, only the ones which are actually used by the organizational units are necessary.

To ensure that no unneeded functions are implemented and no needed functionality is missing,

the contained functions must be cross checked against the banks business service domains, that

were raised in section 6.1.1. BIAN proposes, that this should be achieved through the use of value

chains. However a simple check for each service domain on whether it is needed by at least one

organizational unit is also a valid verification approach. In addition, all use cases of each business

service domain also need to be covered by the target architecture of the CBS.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 125

The result of the cross check should be a raw mapping of BIAN service domains to each business

service domain (organizational unit) that is required, in order to fulfil its business processes. As

a final step, the given (BIAN compliant) target architecture must be versioned as it describes the

strategic architectural objective of the CBS and could be superseded by a subsequent version in

the future.

6.1.4. Selection of modernization instruments

Once the target application has been fixed and versioned, it is necessary to select the moderniza-

tion instrument for each component of the application baseline. As already mentioned, the fol-

lowing instruments are available:

- Reverse Engineering and Model Driven Development

- Architectural Replacement, either through re-implementing functionality or buying and

customizing functionality via the acquisition of an off the shelf product.

- Architectural Refactoring through adapting existing code.

- And decommissioning functionality which will no longer be required after the moderni-

zation.

Regarding the selection of an appropriate modernization instrument, the technology, the architec-

ture and the amount of lines of code of the existing source code plays a crucial role. Furthermore,

the modernization should never be done without involving the software developers who are re-

sponsible for maintaining the existing code as they usually possess detailed knowledge about the

code. If the existing source code is already written in the same language as specified in the target

architecture and the required effort is reasonable, it may be an admissible approach to manually

refactor the code until it fulfils the specification of the target. In the case that the legacy source

code has a large amount of lines of code but is architecturally well structured, it would be possible

to perform a semi-automated model driven transformation from the legacy language to the target

language under the supervision of a developer who is familiar with the functionality. The code is

in mainly transformed automatically, however this is done in parallel with regular testing and

close verification in order to detect potential errors as soon as possible.

If the existing source code is considered to be too complex, grown too much or if there is simply

no longer a developer available who is capable to maintain it, it is reasonable to think about its

entire replacement through re-implementation or technological replacement. In terms of the ex-

emplary Day-End processing routine, outlined in Appendix C, it consists out of a number of RPG

IV Batchjobs which are run one after another on a daily basis. They usually entail a few of thou-

sand lines of code and are closely interlinked to each other. Hence, it is feasible to either adapt or

re-implement them consecutively or to transform them into the target language through a MDD

based emulator (if possible). In terms of the entire exemplary CBS, as described in section 4.5,

the overall approach would be to transform as many components as possible through model driven

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 126

development, especially the ones written in Java and C. If this is not possible for particular mod-

ules (e.g. the RPG IV modules), then they could either be re-implemented manually, or replaced

through a more up-to-date frameworks that cover most Core Banking use cases.

6.1.5. Mapping of existing functionality to modernization instru-

ments

After having selected the usable modernization methods, they need to be mapped to each module.

The mapping is influenced by the:

- Complexity and structure of each module

- Knowledge about each module and available documentation

- Functional Size

- Analysability

- Estimated Cost

- Time effort

- And the estimated cost and transformability of the module

In that context, since the Day-End processing consists out of a number of batch jobs that are all

sequentially executed one after another. All of them interact with their predecessor and successor

job and while executing their logic, they also invoke further components (e.g. the calculation of

interest rates) through defined interfaces. Each Batch job is therefore separable from other batch

jobs through defined interfaces, which reduces the complexity of Day-End processing and allows

the modernization of each Batch Job one by one. Under the assumption that the developers sup-

porting the Day-End processing know its logic and functional mechanics, modernization based

on Model Driven methods (e.g. an emulator who converts RPG code into the selected target lan-

guage) is admissible in this case. As an alternative, re-implementing of the entire Day-End pro-

cessing is admissible as well, but likely costlier as Day-End processing is a rather large component

and tightly connected to Month-End and Year-End settlement functionality. Therefore, manual

adaption or re-implementation are less appropriate than a model driven transformation. Hence, in

this specific case, semi-automated model driven transformation (applying the emulator on the

legacy code under the supervision of the supporting developers) is a feasible instrument to mod-

ernize the Day-End processing. The transformation can be done batch job by batch job with each

resulting batch job being required to expose the same logical behaviour as its legacy counterpart

and the interfaces for the communication to other batch jobs or components need to remain the

same. As described in section 5.1.5, the decision about how to modernize this module should be

taken by an expert team, consisting of developers and architects who are familiar with the legacy

system.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 127

6.1.6. Creation of a modernization strategy

After the modernization instrument has been selected for a specific module, its modernization

needs to be coordinated with the other components undergoing a transformation. The advantage

of Day-End processing is that the legacy system may remain in place until the modernized version

has been sufficiently tested. Furthermore, its modularized sequential batch job property simplifies

its transformation. Nevertheless, because of its number of dependencies and complex functional-

ity, it should be scheduled into the final quarter of the overall modernization strategy. The ad-

vantage of this is, that the interfaces of other components which also went under transformation

should already be modernized when Day-End processing begins to use them. Additionally, it is

in general recommended to begin with the modernization of uncomplicated, but exemplary mod-

ules and proceed to the more complex ones afterwards. Hence, the precondition for Day-End

processing is, that its required interfaces to other components are already modernized and tested

properly. This precondition can be granulated to each individual batch-job contained in the Day-

End processing. As post conditions (which may be granulated to each batch-job as well), the

following would apply for the modernized Day-End processing:

- Each batch-job needs to comply with the target architecture.

- It needs to contain the (successfully tested) behaviour as stated in the point specifications

and technical specifications of the target architecture.

- It should not be slower than the batch-job which it was modernized from.

Finally, each batch-job needs to be mapped to the originating batch-job in order to ensure tracea-

bility.

6.1.7. Creation of a PoC, Testing and PoC Extension

In the case where Day-End processing serves as a PoC component, this procedure can also be

carried out step-by-step for each contained batch job where the first Batch-Job (“Execute Standing
Orders”) is the PoC itself and all sub sequent batch jobs are related to the PoC extension. This is

feasible as Day-End processing has a large number of dependencies to other components but is

internally separable. Furthermore, the execution of standing orders (payment) is not the easiest

module, and through the model driven modernization approach, which was selected in the previ-

ous section, a parallel version of the legacy Day-End processing is created, which leaves it intact

in case the PoC does not work.

By attempting to modernize it, technical and organizational learnings may be yielded which can

be incorporated into the existing modernization strategy. For each transformed Batch-Job of the

Day-End processing the following steps need to be done:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 128

- It needs to be tested against the technical and point spec requirements of the target archi-

tecture.

- It needs to be verified whether it fulfils the architectural principles as given in the require-

ments.

- It needs to be regression tested against its legacy counterpart, in order to ensure that its

business logic is the same (with the exception of required functional changes in the course

of its transformation)

- Its internal behaviour needs to be verified through unit tests.

- It needs to be integration tested in order to ensure that it interacts with existing legacy

components and other already transformed components as expected.

As soon as each transformed Batch-Job is successfully tested in a development and testing envi-

ronment, it may be put to live operation and as soon as all Batch-Jobs of the Day-End processing

have been successfully transformed the PoC extension phase is considered complete.

6.2. Expert Interviews

The expert interviews were conducted based on an interview guideline which is appended in Ap-

pendix A, and the interview transcripts are contained in Appendix B. The main challenge in terms

of conducting these interviews was to find experts which have enough practical experience with

the modernization of Core Banking Systems and are also capable of viewing the proposed tech-

nical modernization process on an architectural level. In other words, the requirements to a re-

viewing expert were the following:

- He or she has to be a software architect.

- He or she needs to work in the banking branch and there with a focus on Core Banking

Systems.

- He or she needs to have practical experience with the modernisation of Core Banking

Systems.

The interviews for each person lasted around one and 1,5 hours and were structured in three parts.

The first part was the introduction into chapter 4.5, 5 and 6.1 of this thesis, and making sure that

they understood the process. During this stage, some intuitive feedback was given and occurring

questions were discussed on an ad-hoc basis with the help of conceptual delineations drawn on a

sheet of paper. Afterwards, the questionnaire of the interview was worked through and discussed.

The questions of the questionnaire were kept on a high level and hence the feedback of the experts

is individual. In general, both experts had a positive opinion over the proposed process concept

and they benchmarked it to their experience. They considered it as a consistent meta process

model which has potential for further development.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 129

During the explanation and discussion of the process concept, they also stated constructive re-

marks which are summarized below:

- In general, the relation of a bank and its IT landscape is not a unidirectional relation from

bank to IT or vice versa, but a bidirectional one with interdependencies. The proposed

process, as it is, assumes that the banking business solemnly governs the IT landscape. In

reality, IT also constrains business and enables business due to technological influences

and trends. Furthermore, the IT also has an influence on business processes due to tech-

nology and this should be considered in the process.

- The modernization process does not only modernize or transform the technological ar-

chitecture of a CBS, but also the business processes and hence the business architecture

of the supported organization (bank). Therefore, a distinction should be made in the pro-

cess concept between business architecture and software architecture, especially as the

BIAN as a standard is rather related to business processes.

- A proof of concept should not be done once for each modernization cycle but once for

each modernization instrument in order to check whether the modernization instrument

is really feasible under the political-, financial- and technological circumstances of a core

banking system. Aside from that, a PoC should not only focus on one specific module,

but on a specific business process which is technologically depicted within the CBS and

will be modernized accordingly as well. The reason for this is that a module usually has

technological and business dependencies on other modules within the same using busi-

ness process. A further advantage of focusing on the modernization of business processes

instead of single modules, is that interdependencies to other components, that need to be

included into the modernization strategy, become visible. A PoC focused on business

processes delivers not only technical learnings but also organizational learnings which

need to be examined as well and could result in a general modernization schedule which

is based on less assumptions.

- As soon as the technical and organizational learnings of the PoC were included into the

modernization strategy, it should be refined accordingly and the final modernization of

the CBS should then be procedurally summarized in a Rollout process step. That means,

the proposed process concept should be extended through a rollout step after executing

the PoC which will result in a modernized business processes.

- Another input was to evaluate how the proposed modernization process fits together with

other development practices such as DevOps or Continuous Integration.

- A modernization cycle which is successfully completed can never be restarted again in

the same scope, timeframe or architectural change as this is unrealistic. Instead, after

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 130

having completed a modernization cycle a new modernization cycle with new input pa-

rameters needs to be defined. The input parameters (such as timeframe, scope or the tech-

nical change) must reflect the changing requirements of the using organization. In gen-

eral, the functional scope which is to be modernized as well as the timeframe need to be

defined at the start of a modernization cycle.

- Modernization of a Core Banking system also implies the modernization of the business

processes which utilize the CBS. Therefore, the organizational- and the technological

modernization need to be aligned.

- It should be possible to revert to previous steps in a modernization cycle in order to serve

changing requirements which come from the business during a modernization run.

- The process concept should consider that it is not always possible (due to financial and

human resource constraints) to continuously modernize a CBS.

- After each process step within the process concept, security mechanisms should be de-

fined and implemented in order to perform a reality check. This should reduce the risk of

wrong decisions and subsequent misplanning.

- The entire modernization process concept should be complemented with a practical ap-

proach to divide existing monolithic CBS into components or modules. The main chal-

lenge is to divide the CBS at the right interfaces. In that regard, the criteria of where to

segregate a system into modules needs to be defined. An approach would be to measure

the extent of coupling through the number of invocations of an interface. The more trans-

actions run from function A to function B via interface C, the more coupled they are. If

there are comparably few transactions (or invocations) through a defined interface, then

this interface could be a candidate for decoupling and would serve as a border to a func-

tional module. Due the complexity of modularizing a CBS, this alone might require sev-

eral attempts.

- In addition to examining the future organization of a bank (based on the assumption that

a CBS shall reflect the organization of a bank and its related use cases) and also the stra-

tegic requirements of a bank should be considered in a target architecture. Examples in-

clude; non-functional requirements (e.g. in terms of transaction speed or the trend to out-

source functionality) as well as functional requirements such as the ability to cover mul-

tiple distribution channels (online banking, staff channel, self-service terminals, ATMs)

with the same backend functionality or the ability to offer 24 hour services to the cus-

tomer. Furthermore, experiences of other CBS modernizations should also be taken into

account.

- The target architecture needs to be coordinated and approved by the banking business,

both as a requester and as an owner. However, it might be a challenge to get usable re-

quirements and to justify the target architecture to the business. Another decision that has

to be agreed upon is what functionality shall be covered centrally in the back office and

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 131

what functionality shall be decentralized in the branches. Also, the style of functional

coupling (coupling vs. decoupling) is a strategic decision that needs to be aligned with

the business.

- During the evaluation of the bank’s organization it is not enough to simply raise its or-
ganizational structure and its use cases but it also needs to be elaborated to what extent

the bank’s organization is adaptable to the BIAN and whether a BIAN conform target
architecture is the right way for the bank. A drawback of the BIAN is, that each bank has

its own specifics which may not be covered by the BIAN and although the BIAN is gen-

erally a standard, it is not a non plus ultra in the banking business. Therefore, the process

concept as proposed should not solemnly rely on the BIAN but should leave the decision

of the standard to the using bank to define its target architecture based on its own specifics

and requirements. BIAN as a standard may serve as a topological guideline to sort busi-

ness processes but it is not state of the art due to its limited applicability.

- The elaboration of use cases of the bank shall not necessarily be guided through the

bank’s departments but rather orientated on its business processes as they reflect the needs
of the bank to a wider extent than its organization.

- An entirely service oriented CBS is in reality not practicable due to performance issues

and too much decoupling. Accordingly, a compromise of a CBS which consists out of

medium sized functional modules is a better approach than a monolithic CBS or a fully

service oriented CBS. These components are then individually testable and may be re-

placed with comparably low impact to other modules.

- In terms of CBS modernization, a long term method of thinking is required which must

also be reflected in the proposed CBS. In that regard, technologies that are chosen as

target technologies should have a longer life cycle than five years (e.g. Java).

- A top down approach, as propagated in the proposed modernization process, is not always

a good solution as wrong overall estimations with severe consequences could be taken.

If applicable, a bottom up approach might be more practical.

- If a functional component is chosen for a PoC, it is less risky to choose a small component

than a large, complex one. In addition, it makes sense to keep the scope of a moderniza-

tion simple to reduce dependencies in one modernization cycle and to change the imple-

menting language in a subsequent one instead of doing both steps in one wash.

- The proposed modernization concept as it is, does not encounter changes in the require-

ments of a bank. Banks are subject to (rapidly) changing regulatory requirements and are

obliged to comply with them. Therefore, changing requirements need to be coverable in

a long term modernization run.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 132

After the process concept was explained and discussed with both experts, both filled out the

guideline questions with the questions varying in parts based on the situation. Their answers are

summarized below.

1. Overall Questions about the process:

a. Did you understand the process?

The modernization process was easily understandable for both experts.

b. What is your overall opinion on the process?

For the first expert, the process concept was a great meta approach to govern mod-

ernization projects, however he also pointed out that each described process step

needs to be specified in more detail. But nevertheless he perceived the process as

consistent, repeatable and reasonable from a technical-, but also from a business per-

spective. For the second expert, the process concept was similar to a normal software

development process. He stated that it is rather obvious that each software moderni-

zation needs to contain an analysis of the existing software and a definition of a

target. He perceived the proposed process as an approach to solve problems but he

was not sure whether the process, in its current state, is helpful on software engineer-

ing level.

2. Feasibility:

a. Do you think that this process is feasible to existing CBS?

For both experts the process is generally feasible. The first expert added that the

layer below the given meta layer needs to be detailed much more and the second

expert remarked that a proper modularization of the existing legacy CBS is a neces-

sary precondition for the application of the given process concept. He also explained

that aside from the technological and architectural modernization of a CBS, strategic

goals (such as the ability to serve multiple distribution channels with the same func-

tionality) also need to be addressed within the concept as well.

b. If not, why?

This question did not need to be answered as both experts considered the process to

be feasible.

3. Advantages / Shortfalls:

a. What risks do you see with the proposed modernization process? / What would you

do different?

For the first expert, it was important to have control mechanisms in the concept after

each process step in order to avoid incorrect planning or wrong decisions with large

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 133

impacts on the system. The second expert stated that the concept is rather high level,

which is in principle not problematic, but nevertheless each bank has its own specif-

ics which might not be considered by a process concept as described. In addition, a

target architecture needs to be aligned and approved by the business. Both experts

had the same opinion that the concept needs to go into more detail in order to be

usable in reality. Another point which was raised by the first expert, was that enough

financial and human resources need to be available to conduct such a modernization

cycle and the transformation needs to be supported by the governing banking busi-

ness and must be aligned with the organization.

b. What strengths/shortfalls do you see in this modernization process?

The first expert referred to the flexible usage and the open choice of granularity and

scope as the main advantages. Furthermore, the ability to run this process in several

parallel modernization cycles was also perceived as an advantage. On the other hand,

the complexity of governing such a process (implied through its openness and flex-

ibility) was recognized as a potential drawback. Aside from that, the process also

suggests that an entire CBS might be modernized in one cycle which bears its risks

as well.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 134

7. Summary, Results and Outlook

7.1. Summary

In the course of this thesis, the topic of Core Banking Systems was outlined extensively in con-

nection with architectural software modernization. First, the scientific advancements were exam-

ined and it became clear that modernization in connection with core banking systems is still a

rather unexplored field from a scientific perspective, as it is a sub-discipline of software modern-

ization in general. Instead, more practical oriented approaches had emerged especially from the

banking industries as outdated but complex core banking systems hamper current strategical and

technological banking trends more and more. Then the theoretical foundations of core banking

systems were discussed including an attempt to formally define the term “Core Banking System”
from a scientific point of view. Next, the historical development was shortly described and the

main functions of a standard state of the art core banking system were outlined. These functions

consist of:

- Management of Customer Core Data

- Electronic Funds Transfer

- Account Current

- Trade and Investment

- And Loans.

Subsequently, this thesis focused on software architectures in general and tried to define them, as

well as depict the central elements of a software architecture. It outlined the 4+1 architectural

view model of Kruchten [30] and explained the basic architectural styles, principles, and patterns.

The previous descriptions of CBS and architectures were then the theoretical basis for chapter

four, where CBS modernization was examined from a scientific- as well as an industrial oriented

approach. First, general modernization approaches of software architecture were explained and it

was discovered that both their methodological approaches and their foci are different from each

other (e.g. architectural roadmaps vs. model-driven software modernization). Then, the BIAN

[88], which provides a business process aligned industry standard for modern CBS architectures

based on SOA, was examined. It contains a service landscape that enables banks and CBS vendors

to develop their CBS towards a common standard which in turn aids interoperability and flexibil-

ity of CBS and shall reduce complexity. Next, the architectures of existing core banking systems

were critically evaluated based on public sources. The CBS examined were Avaloq [80], Finnova

[81], Temenos [82], Oracle Flexcube [89] and Infosys Finacle [90]. They were compared to each

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 135

other and their individual weak points and strongpoints were outlined. The comparison and eval-

uation brought a practical industry-related aspect into this thesis and the learnings of the evalua-

tion were then the basis for the subsequent modernization process. Then, an exemplary outdated

CBS architecture was defined in high-level terms which were, on the one hand, realistic, and on

the other hand technologically and architecturally heterogeneous. This case study served as ex-

ample for the evaluation of the proposed modernization process in chapter five. The moderniza-

tion process itself, as the scientific main result of this thesis, was then created based on the previ-

ously gathered knowledge. It consists of nine steps that may be executed recurringly, depending

on the specific needs of a using CBS modernization project. The process is based on the assump-

tion that a CBS shall always reflect a bank’s organization and business processes. The steps of
the modernization process are the following:

1. Assessment of existing Business Service Domains containing the following substeps:

a. Elaboration of the organization of a bank.

b. Elicitation of the business process model of the user bank.

c. Incorporation of the future strategy of the using bank.

2. Assessment of the current CBS functionality, including the functional topology, its inter-

faces, the creation of an application baseline, and the assessment of the existing function-

ality against the bank’s future business processes.
3. Creation of a Target Architecture which is aligned to BIAN including the creation of

functional and non-functional requirements and the development of technical specifica-

tions in order to develop from the legacy functionality into a new functionality in the

desired architecture and technology.

4. Definition of the available modernization instruments, which are either model-driven

modernization, or reverse engineering, architectural replacement, refactoring and trans-

formation or simply the decommissioning of unneeded functionality.

5. Mapping of the given modernization instruments to legacy modules, based on complex-

ity, available knowledge, functional size, analysability, estimated modernization costs,

time effort, and technology.

6. Creation of a time-based modernization strategy.

7. Creation of a Proof of Concept in order to demonstrate that the created modernization

strategy is realistic and (regression) testing against the related legacy functionality and

the given specifications.

8. Extending the PoC until the required target architecture is fully implemented.

9. Restarting the entire modernization cycle for the next modernization in the case that this

is required or necessary.

The scientific evaluation of the proposed process was then carried out with the use of two ap-

proaches. First, it is applied against the exemplary outdated software architecture as depicted in

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 136

chapter 4.5, and each process step is described in its application. Then, the process was critically

evaluated via qualitative expert interviews with two experts who have practical experience with

architectural software modernization in the context of core banking systems. With their help and

experience, the proposed process was benchmarked against the reality and also in parts compared

to other modernization processes that are individually adapted in each bank and vendor (if a mod-

ernization approach exists). The result and the learnings of the expert interviews are then gathered

in chapter 6.2.

7.2. Scientific Results and added Value

One of the two main scientific results of this thesis is the theoretical description of Core Banking

Systems in section 3.1. In this section, the functionality of CBS was outlined and in that regard,

it answers the first research question of this thesis as given in section the first research question,

as given in section 1.1.

The second main scientific result is the development of a process concept for the modernization

of Core Banking Systems as described in chapter 5. It is the answer to the second research ques-

tion, and outlines a recurring process, which takes the business architecture as well as the strategy

of the using bank into account. In its design, it shall present a high-level guideline to the reader,

how a CBS modernization can be conducted. The process itself is innovative and customized to

the context of CBS and banks (at least according to current research no comparable CBS mod-

ernization process exists in publicly available literature). The process itself is an open framework,

which has the following properties:

- It is a technology and architecture-independent top-down approach.

- It is flexible and consistent.

- It is open to customization, extendable and adaptable in its structure to the specific cir-

cumstances of a bank.

- It is adaptable in terms of the modernization scope and granularity

- It is recurrent and the actions within the process concept are traceable.

- It has a focus on processes, supports agility and offers an opportunity to engage in ongo-

ing modernization.

- Furthermore, it may adopt different architectural modernization strategies.

In its current state, the process has been evaluated on a theoretical basis and has not yet been

applied in practice. To be admissible in on a real CBS, it requires further specification on a more

detailed level, incorporating the CBS’ specifics. Furthermore, surrounding aspects like business

support, resources, and financial aspects need to be clarified since they are vital for its successful

execution. For instance, it needs to be complemented with consistent project management, and

due to its flexibility it is prone to wrong decisions and it leaves a number of decisions open. Aside

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 137

from the missing project management, the modernization process, in its current version, assumes

that an existing CBS is already split up into proper modules. Hence, it does not cover the technical

modularization of legacy CBS (which often have a monolithic architecture) into processible com-

ponents, since this is already on its own a complex task.

The application of the developed process on the exemplary outdated CBS architecture (see section

4.5) showed that it is possible to modernize CBS with the given process. The process is capable

of adapting to various specifics of a CBS and creates a basis in terms of scheduling for further

work. Also during the interviews, both experts pointed out, that the process as given is a good

start and usable in reality (after a sophisticated specification in more detail). More specifically,

the process is a good meta layer in order to control and orchestrate a number of smaller modern-

ization projects.

However, they also pointed out a number of fields for improvement that can be considered are a

basis for further research and development:

- It should address the interactions between business architecture (business processes) and

technology as the process currently assumes that IT is only driven by business and not

vice versa. In this regard, it should either draw a demarcation line between software ar-

chitecture and business architecture, or it should cover the transformation of a bank’s
business process as well. Furthermore, the process should also shift its focus from a

bank’s organizational structure to its business processes.
- The process needs to be extended with more security mechanisms in order to prevent

wrong decisions. The process contains a PoC phase, but it is not enough to conduct one

PoC for an entire modernization cycle, instead, a PoC should be done for each chosen

modernization instrument. The subsequent findings then need to be addressed in a sepa-

rate planning phase where the modernization strategy is enhanced by the (technical and

organizational) learnings from the PoCs. Also, the scope of a PoC should not be an ar-

chitectural module but rather a business process in order to gain more control over inter-

dependencies to other processes.

- The process should be further developed by including a rollout process step and its target

architecture needs to be coordinated with the banking business in order to address strate-

gic decisions. Furthermore, the entire process of technical and organizational moderniza-

tion needs to be done in accordance with the using business that will utilize the provided

business processes.

- It needs to be able to encounter both changing and also larger strategic requirements from

the bank. These requirements need to be elaborated, usable and understandable. Moreo-

ver, while the BIAN itself is an important standard to banks, they are not required to

comply with the BIAN and usually have specifics that are not covered by the BIAN at

all. Therefore, an improvement to the process would be to make it independent from the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 138

BIAN in order to make it usable to banks that want to implement a target architecture

under their specific topology.

7.3. Outlook

In a global context, the proposed modernization process is one approach in a number of method-

ologies. In general, banks who still utilize a mainframe-based CBS, or simply an outdated CBS

are constantly challenged through their technological constraints that act as obstacles in the tech-

nological and strategic development of a bank. Especially as banking trends tend towards agility

and flexibility, inflexible and outdated CBS are a problem. Hence, banks and CBS vendors face

continuous strategic and business pressure to get their utilized CBS projects into an up to date

shape. This problem is also exacerbated by the ongoing change in the generation of technologists,

where older staff, who possess know-how about the outdated system retire or pass away. One way

to tackle this issue, is to replace the outdated CBS by a new one, which is on the one hand, cost-

intensive and on the other hand usually a large scale project with a recognizable amount of risk

(e.g. if unsolvable technical problems occur). The other approach is to gradually modernize the

existing CBS which may take more time than simply replacing it but is a much more transparent,

controllable and less risky course of action.

In any case, modernization of CBS is still a young industrial field which is hardly (and only in

diverging aspects) covered by science. But it is anticipated that this field will gain more and more

importance in the banking and insurance branch in the upcoming years. And in that context, this

thesis delivers a workable schematic approach for the modernization of the CBS architecture of

an arbitrary bank.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 i

References

A. Literature

[1] Aksit, M. (Ed.). (2012). Software architectures and component technology (Vol. 648).

Springer Science & Business Media.

[2] Gomaa, H. (2011). Software modeling and design: UML, use cases, patterns, and soft-

ware architectures. Cambridge University Press.

[3] Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F. (2013). Pattern-Oriented Soft-

ware Architecture, Patterns for Concurrent and Networked Objects (Vol. 2). John Wiley

& Sons.

[4] Bernus, P., Mertins, K., & Schmidt, G. J. (Eds.). (2013). Handbook on architectures of

information systems. Springer Science & Business Media.

[5] Scheer, A. W. (2013). Architektur integrierter Informationssysteme: Grundlagen der

Unternehmensmodellierung. Springer-Verlag.

[6] Moto-Oka, T. (Ed.). (2012). Fifth Generation Computer Systems. Amsterdam. North-

Holland.

[7] Kroenke, D. (2013). MIS essentials. Prentice Hall Press, Upper Saddle River.

[8] Pawlak, Z. (1981). Information systems theoretical foundations. Information sys-

tems, 6(3), 205-218.

[9] Wood-Harper, A. T., Antill, L., & Avison, D. E. (1985). Information systems definition:

the Multiview approach.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 ii

[10] Izquierdo, J. L. C., & Molina, J. G. (2009). A domain specific language for extracting

models in software modernization. In Model Driven Architecture-Foundations and Ap-

plications (pp. 82-97). Springer Berlin Heidelberg.

[11] Van Hoorn, A., Frey, S., Goerigk, W., Hasselbring, W., Knoche, H., Köster, S., ... &

Wittmüss, N. (2011). DynaMod project: Dynamic analysis for model-driven software

modernization.

[12] Newcomb, P. (2005, November). Architecture-driven modernization (ADM). In Reverse

Engineering, 12th Working Conference on (pp. 237-237). IEEE.

[13] Sadovykh, A., Vigier, L., Hoffmann, A., Grossmann, J., Ritter, T., Gomez, E., & Es-

tekhin, O. (2009, June). Architecture driven modernization in practice–study results.

In Engineering of Complex Computer Systems, 2009 14th IEEE International Confer-

ence on (pp. 50-57). IEEE.

[14] Ulrich, W. M., & Newcomb, P. (2010). Information systems transformation: architecture-

driven modernization case studies. Morgan Kaufmann.

[15] Zimmermann, O., Milinski, S., Craes, M., & Oellermann, F. (2004, October). Second

generation web services-oriented architecture in production in the finance industry. In

Companion to the 19th annual ACM SIGPLAN conference on Object-oriented program-

ming systems, languages, and applications (pp. 283-289). ACM.

[16] Baskerville, R., Cavallari, M., Hjort-Madsen, K., Pries-Heje, J., Sorrentino, M., & Virili,

F. (2005). Extensible architectures: the strategic value of service oriented architecture in

banking. ECIS 2005 Proceedings, 61.

[17] Kilimnik, J., & Pavlovski, C. (2014, July). Core Banking Modernization. In the 9th Inter-

national Conference on Information Technology and Applications (ICITA).

[18] Liu, R., Wu, F., Patnaik, Y., & Kumaran, S. (2009, September). Business entities: An

SOA approach to progressive core banking renovation. In Services Computing, 2009.

SCC'09. IEEE International Conference on (pp. 466-473). IEEE.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 iii

[19] Hussain, S. J., Kumar, M., & Hussain, S. J. (2006, November). Meta architecture to sup-

port layered banking systems. In Emerging Technologies, 2006. ICET'06. International

Conference on (pp. 754-760). IEEE.

[20] Maier, M. W., Emery, D., & Hilliard, R. (2004). ANSI/IEEE 1471 and systems engineer-

ing. Systems Engineering, 7(3), 257-270.

[21] Dustdar, S., Gall, H., & Hauswirth, M. (2013). Software-architekturen für verteilte

Systeme: Prinzipien, Bausteine und Standardarchitekturen für moderne Software.

Springer-Verlag.

[22] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998,

August). The architecture tradeoff analysis method. In Engineering of Complex Com-

puter Systems, 1998. ICECCS'98. Proceedings. Fourth IEEE International Conference on

(pp. 68-78). IEEE.

[23] Tekinerdogan, B. (2004, June). ASAAM: Aspectual software architecture analysis

method. In Software Architecture, 2004. WICSA 2004. Proceedings. Fourth Working

IEEE/IFIP Conference on (pp. 5-14). IEEE.

[24] Kazman, R., Bass, L., Webb, M., & Abowd, G. (1994, May). SAAM: A method for ana-

lyzing the properties of software architectures. In Proceedings of the 16th international

conference on Software engineering (pp. 81-90). IEEE Computer Society Press.

[25] Kazman, R., Bass, L., Klein, M., Lattanze, T., & Northrop, L. (2005). A basis for analyz-

ing software architecture analysis methods. Software Quality Journal, 13(4), 329-355.

[26] Babar, M. A., & Gorton, I. (2009). Software architecture review: The state of practice.

Computer, (7), 26-32.

[27] Abowd, G., Bass, L., Clements, P., Kazman, R., & Northrop, L. (1997). Recommended

Best Industrial Practice for Software Architecture Evaluation (No. CMU/SEI-96-TR-

025). Carnegie-Mellon University Pittsburgh PA Software Engineering Inst.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 iv

[28] Clements, P. C. (2000). Active reviews for intermediate designs (No. CMU/SEI-2000-

TN-009). CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE

ENGINEERING INST.

[29] Clements, P., Kazman, R., & Klein, M. (2003). Evaluating software architectures. 清华

大学出版社.

[30] Kruchten, P. B. (1995). The 4+1 view model of architecture. Software, IEEE, 12(6), 42-

50.

[31] Demir, K. A. (2015). Multi-View Software Architecture Design: Case Study of a Mis-

sion-Critical Defense System. Computer and Information Science, 8(4), p12.

[32] Reekie, F., & McCarthy, T. (1995). Reekie's architectural drawing. Architectural Press.

[33] Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an emerging dis-

cipline (Vol. 1, p. 12). Englewood Cliffs: Prentice Hall.

[34] Ernst, N. A., Popeck, M., Bachmann, F., & Donohoe, P. (2016, April). Creating Software

Modernization Roadmaps: The Architecture Options Workshop. In Software Architec-

ture (WICSA), 2016 13th Working IEEE/IFIP Conference on (pp. 71-80). IEEE.

[35] Danisewicz, P., McGowan, D., Onali, E., & Schaeck, K. (2018). The real effects of bank-

ing supervision: Evidence from enforcement actions. Journal of Financial Intermedia-

tion, 35, 86-101.

[36] Aakash Ahmad, Pooyan Jamshidi, and Claus Pahl. 2013. A framework for acquisition

and application of software architecture evolution knowledge: 14. SIGSOFT Softw. Eng.

Notes 38, 5 (August 2013), 1-7. DOI=10.1145/2507288.2507301

http://doi.acm.org/10.1145/2507288.2507301

[37] Fuentes-Fernández, R., Pavón, J., & Garijo, F. (2012). A model-driven process for the

modernization of component-based systems. Science of Computer Programming, 77(3),

247-269.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 v

[38] Plakidas, K., Schall, D., & Zdun, U. (2018, September). Software Migration and Archi-

tecture Evolution with Industrial Platforms: A Multi-Case Study. In European Confer-

ence on Software Architecture (pp. 336-343). Springer, Cham.

[39] Plakidas, K., Schall, D., & Zdun, U. (2018). Model-based support for decision-making in

architecture evolution of complex software systems.

[40] Knoche, H., & Hasselbring, W. (2018). Using Microservices for Legacy Software Mod-

ernization. IEEE Software, 35(3), 44-49.

[41] Mili, H., El Boussaidi, G., Shatnawi, A., Guéhéneuc, Y. G., Moha, N., Privat, J., & Valt-

chev, P. (2017). Service-oriented re-engineering of legacy JEE applications: Issues and

research directions.

[42] Jamshidi, P., Pahl, C., & Mendonça, N. C. (2017). Pattern‐based multi‐cloud architecture

migration. Software: Practice and Experience, 47(9), 1159-1184.

[43] Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J., & Tilkov, S. (2018). Microservices:

The Journey So Far and Challenges Ahead. IEEE Software, 35(3), 24-35.

[44] Fowley, F., Elango, D. M., Magar, H., & Pahl, C. (2017, January). Software system mi-

gration to cloud-native architectures for SME-sized software vendors. In International

Conference on Current Trends in Theory and Practice of Informatics (pp. 498-509).

Springer, Cham.

[45] Favre, L. M., Martinez, L., & Pereira, C. T. (2018). Model-Driven Software Moderniza-

tion. In Encyclopedia of Information Science and Technology, Fourth Edition (pp. 7447-

7458). IGI Global.

[46] Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-driven software engineering in

practice. Synthesis Lectures on Software Engineering, 3(1), 1-207.

[47] Jamshidi, P., Ghafari, M., Ahmad, A., & Pahl, C. (2013). A framework for classifying

and comparing architecture-centric software evolution research.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 vi

[48] Fuentes-Fernández, R., Pavón, J., & Garijo, F. (2012). A model-driven process for the

modernization of component-based systems. Science of Computer Programming, 77(3),

247-269.

[49] Menychtas, A., Santzaridou, C., Kousiouris, G., Varvarigou, T., Orue-Echevarria, L.,

Alonso, J., ... & Pellens, B. (2013, September). ARTIST Methodology and Framework:

A novel approach for the migration of legacy software on the Cloud. In 2nd Workshop

on Management of resources and services In Cloud And Sky computing (MICAS 2013).

[50] Johanson, A., & Hasselbring, W. (2018). Software Engineering for Computational Sci-

ence: Past, Present, Future. Computing in Science & Engineering.

[51] Stair, R., & Reynolds, G. (2017). Fundamentals of information systems. Cengage Learn-

ing.

[52] Chorafas, D. N. (2016). Enterprise architecture and new generation information systems.

CRC Press.

[53] Hariharan, N. P., & Reeshma, K. J. (2015). Challenges of core banking systems. Medi-

terranean Journal of Social Sciences, 6(5), 24.

[54] Fernando, S. D. (2015). Core Banking Systems and Business Intelligence for Effective

Strategic Decision Making.

[55] Gasser, U., Gassmann, O., Hens, T., Leifer, L., Puschmann, T., & Zhao, L. (2017). Digital

Banking 2025.

[56] Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice. Addison-

Wesley Professional.

[57] Rozanski, N., & Woods, E. (2012). Software systems architecture: working with stake-

holders using viewpoints and perspectives. Addison-Wesley.

[58] Galster, M., Weyns, D., Avgeriou, P., & Becker, M. (2013). Variability in software ar-

chitecture: views and beyond. Software Engineering Notes: an Informal Newsletter of

The Specia, 38(1), 46-49.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 vii

[59] Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F. (2013). Pattern-Oriented Soft-

ware Architecture, Patterns for Concurrent and Networked Objects (Vol. 2). John Wiley

& Sons.

[60] Gomaa, H., Hashimoto, K., Kim, M., Malek, S., & Menascé, D. A. (2010, March). Soft-

ware adaptation patterns for service-oriented architectures. In Proceedings of the 2010

ACM Symposium on Applied Computing (pp. 462-469). ACM.

[61] Smith, J. M. (2012). Elemental design patterns. Addison-Wesley Professional.

[62] Koziolek, H. (2011, June). Sustainability evaluation of software architectures: a system-

atic review. In Proceedings of the joint ACM SIGSOFT conference--QoSA and ACM

SIGSOFT symposium--ISARCS on Quality of software architectures--QoSA and archi-

tecting critical systems--ISARCS (pp. 3-12). ACM.

[63] Breivold, H. P., Crnkovic, I., & Larsson, M. (2012). A systematic review of software

architecture evolution research. Information and Software Technology, 54(1), 16-40.

[64] Kim, J. S., & Garlan, D. (2010). Analyzing architectural styles. Journal of Systems and

Software, 83(7), 1216-1235.

[65] Sharma, A., Kumar, M., & Agarwal, S. (2015). A complete survey on software architec-

tural styles and patterns. Procedia Computer Science, 70, 16-28.

[66] Ghafari, H., & Ansari, S. (2018). Effect of five key factors on the implementation of core

banking system. International Journal of Scientific Research and Management, 6(07).

[67] Schü, J., Saßmann, K., Gottschalk, M. Core Banking Criteria. (2015). Powerpoint Presen-

tation.

[68] Kotarba, M. (2016). New factors inducing changes in the retail banking customer rela-

tionship management (CRM) and their exploration by the FinTech industry. Foundations

of management, 8(1), 69-78.

[69] Sherif, M. H. (2016). Protocols for secure electronic commerce. CRC press.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 viii

[70] Shelton, D., & Sharma, S. (2016). Electronic Delivery of Wages, Salaries, Reimburse-

ments, and Refunds. Policy, 6, 9.

[71] Rusu, C., & Stix, H. (2017). Cash and card payments–recent results of the Austrian pay-

ment diary survey. Monetary Policy and the Economy Q, 1, 19-31.

[72] Schuh, S. D., & Stavins, J. (2011). How consumers pay: adoption and use of payments.

[73] Freixas, X., & Rochet, J. C. (2008). Microeconomics of banking. MIT press.

[74] Mattoo, A., Stern, R. M., & Zanini, G. (Eds.). (2007). A handbook of international trade

in services. The World Bank.

[75] Hwang, K., & Jotwani, N. (2016). Advanced Computer Architecture, 3e. McGraw-Hill

Education.

[76] Smith, J. E., & Nair, R. (2004). An overview of virtual machine architectures. Virtual

Machines: Architectures, Implementations and Applications. Morgan-Kaufmann.

[77] Hamdaqa, M., & Tahvildari, L. (2014, November). The (5+ 1) architectural view model

for cloud applications. In Proceedings of 24th Annual International Conference on Com-

puter Science and Software Engineering (pp. 46-60). IBM Corp..

B. Weblinks

[78] Webpage of the ModelCVS project: Retrieved from http://www.modelcvs.org/index.html

(October 5th, 2018).

[79] Webpage of the aim42 modernization approach: Retrieved from http://aim42.org/ (Octo-

ber 5th, 2018).

[80] Web presence of Avaloq: Retrieved from https://www.avaloq.com/de/ (October 5th,

2019).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 ix

[81] Web presence of Finnova: Retrieved from http://www.finnova.com/de/home-de.html

(October 5th, 2019).

[82] Web presence of Temenos: Retrieved from http://www.temenos.com/en/ (October 5th,

2019).

[83] Gartner’s definition of Core Banking Systems: Retrieved from http://www.gart-

ner.com/it-glossary/core-banking-systems/ (October 5th, 2019).

[84] CBS history in India: Retrieved from http://thebankingsystem.blogspot.co.at

/2009/08/history-of-core-banking-ystem-in-india.html (October 5th, 2019).

[85] Bank Tiers: Retrieved from http://www.gartner.com/it-glossary/bank-tier/ (October 5th,

2019).

[86] Data centered Architecture: Retrieved from http://www.tutorialspoint.com/software_ar-

chitecture_design/data_centered_architecture.htm (October 5th, 2019).

[87] Pipes: Retrieved from http://www.westwind.com/reference/os-x/commandline/

pipes.html (October 5th, 2019).

[88] The BIAN service landscape: Retrieved from https://bian.org/servicelandscape/ (October

5th, 2019).

[89] Web Presence of Oracle Flexcube: Retrieved from http://www.oracle.com/us/prod-

ucts/applications/financial-services/flexcube/index.html (October 5th, 2019).

[90] Web Presence of Fincale: Retrieved from https://www.edgeverve.com/finacle/ (October

5th, 2019).

[91] The BIAN How to Guide in Version 7.0: https://bian.org/deliverables/bian-how-to-guide/

(October 5th, 2019).

[92] Miller, Cody, Technological Evolution in Software Engineering (2018). Engineering and

Technology Management Student Projects. 2239.

https://pdxscholar.library.pdx.edu/etm_studentprojects/2239 (October 5th, 2019).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 x

[93] Heidmann, M. (2010). Overhauling banks’ IT systems. McKinsey Quarterly, McKinsey

& Company. https://www.mckinsey.com/business-functions/mckinsey-digital/our-in-

sights/overhauling-banks-it-systems (October 5th, 2019).

[94] Web Presence of SWIFT: Retrieved from https://www2.swift.com/knowledgecen-

tre/productcategory#Standards (October 5th, 2019).

[95] Web Presence of the BIAN: Retrieved from http://www.bian.org/ (October 5th, 2018).

[96] The ISO/IEC 25010 norm in version 2011: Retrieved from: https://www.iso.org/stand-

ard/35733.html (October 6th, 2019)

[97] Web Presence of MySQL: Retrieved from https://www.mysql.com (October 6th, 2019)

[98] Web Presence of PostgreSQL: Retrieved from https://www.postgresql.org/ (October 6th,

2019)

[99] Web Presence of Oracle’s database branch: Retrieved from https://www.oracle.com/da-

tabase/ (October 6th, 2019)

[100] Web Presence of IBM: Retrieved from www.ibm.com (October 6th, 2019)

[101] RPG Tutorial of IBM (RPG Café): Retrieved from https://www.ibm.com/devel-

operworks/commu-

nity/wikis/home?lang=en#!/wiki/We13116a562db_467e_bcd4_882013aec57a/page/Cod

ing%20in%20RPG%20IV%20-%20a%20beginner's%20tutorial (October 6th, 2019)

[102] Lattice RPG Documentation: Retrieved from http://www.edm2.com/index.php/Lat-

tice_RPG_II (October 6th, 2019)

[103] TPC/IP Tutorial as defined in IEEE RFC 1180: Retrieved from

https://tools.ietf.org/html/rfc1180 (October 6th, 2019)

[104] The SQL specification as defined in ISO/IEC 9075-1 in version 2011: Retrieved from

https://webstore.ansi.org/Standards/ISO/ISOIEC90752011 (October 6th, 2019)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xi

[105] The Java language and Virtual Machine Specifications: Retrieved from https://docs.ora-

cle.com/javase/specs/ (October 6th, 2019)

[106] Web Presence of Apache Ant: Retrieved from https://ant.apache.org/ (October 6th, 2019)

[107] Comparison of current OR Mapper Frameworks: Retrieved from http://www.ormeter.net

(October 6th, 2019)

[108] PL/SQL specification of Oracle: Retrieved from https://www.oracletutorial.com/plsql-tu-

torial/plsql-package-specification/ (October 6th, 2019)

[109] GNU Tutorial on the creation of Unix makefiles: Retrieved from

https://www.gnu.org/software/make/manual/make.html (October 6th, 2019)

[110] Description of the Oracle Enterprise Service Bus: Retrieved from https://www.ora-

cle.com/technical-resources/articles/middleware/soa-ind-soa-esb.html (October 6th,

2019)

[111] The Open Group Unix Specification: Retrieved from https://publications.open-

group.org/t101?_ga=2.90703706.1342406596.1570364352-1751779014.1570364352

(October 6th, 2019)

[112] Extensible Markup Language (XML) specification in Version 5: Retrieved from

https://www.w3.org/TR/xml/ (October 6th, 2019)

[113] The ISO/IEC 9899:2018 norm defining the C programming language in its current ver-

sion: Retrieved from https://webstore.iec.ch/publication/63478 (October 6th, 2019)

[114] The Java Native Interface specification: Retrieved from https://docs.oracle.com/ja-

vase/7/docs/technotes/guides/jni/spec/jniTOC.html (October 6th, 2019)

[115] The Simple Object Access Protocol Standard in Version 1.2, presented by W3C: Re-

trieved from https://www.w3.org/TR/soap/ (October 6th, 2019)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xii

[116] The Hypertext Transfer Protocol as defined in RFC 7540: Retrieved from

https://tools.ietf.org/html/rfc7540 (October 6th, 2019)

[117] The Official Web Presence of JavaScript: Retrieved from https://www.javascript.com/

(October 6th, 2019)

[118] Web Presence of AngularJS: Retrieved from https://angularjs.org/ (October 6th, 2019)

[119] The Secure Sockets Layer RFC in Version 3.0: Retrieved from

https://tools.ietf.org/html/rfc6101 (October 6th, 2019)

[120] Web Presence of the Apache Tomcat Server: Retrieved from http://tomcat.apache.org/

(October 6th, 2019)

[121] Web Presence of Java RMI, by Oracle: Retrieved from https://docs.oracle.com/javase/tu-

torial/rmi/ (October 6th, 2019)

[122] Blog Entry of Mátyás Lancelot Bors describing architectural patterns: Retrieved from

https://medium.com/@mlbors/architectural-styles-and-architectural-patterns-

c240f7df88a0 (October 6th, 2019)

[123] Common architectural patterns: Retrieved from https://towardsdatascience.com/10-com-

mon-software-architectural-patterns-in-a-nutshell-a0b47a1e9013 (October 6th, 2019)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xiii

Appendix

A. Expert Interview

The following content outlines the structure of the expert interviews:

Introduction

Thank you very much for giving me the opportunity to do this interview with you. I am currently

writing on my master thesis with the topic “Deduction of a Technical Modernization Process for
the Software Architecture of Core Banking Systems”. In the course of this thesis I developed a
high level modernization process and I would like to do a number of expert interviews in order to

evaluate the given process through experts with substantial practical experience in the field of

Core Banking Systems. The motivation of this thesis are numerous core banking projects which

are confronted with outdated yet hard to modernize technologies within their functional cores.

The given process shall offer a guideline which allows CBS vendors to modernize their systems

in a coordinated way and is technology and vendor independent as well as adaptable to any preex-

isting architecture. Furthermore, in its current version it orientates to the BIAN (Banking Indus-

tries Architecture Network) as a standard target architecture for Core Banking Systems.

The Interview will take approximately 120 Minutes where every participant will be given the

same set of questions. In the course of the interview, an audio recorder will record the answers,

which will be subsequently transcribed into written form. The audio recordings will not be pub-

lished in any way.

The interview is structured as follows:

1. Reading of chapter 4.5, 5 and 6.1 of the master thesis in order to understand the proposed

modernization process as well as the application of the exemplary architecture on the

process.

2. Discussion of occurring questions, based on the reading.

3. Working through the interview questions:

a. Overall questions about the process.

b. The process versus the Core Banking System of the expert.

c. Feasibility

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xiv

Interview Questions:

1. Overall Questions about the process:

a. Did you understand the process?

b. What is your overall opinion on the process?

2. Feasibility:

a. Do you think that this process is feasible to existing CBS?

b. If not, why?

3. Advantages / Shortfalls:

a. What risks do you see with the proposed modernization process?

b. What would you do different?

c. What strengths do you see in this modernization process?

Thank you very much for your time!

B. Interview Transcripts

The following interview transcriptions were done in two separate interview sessions with DI Her-

bert Geisler and Ing. Josip Sagaj. Their statements are marked as “E” (Expert) and the questions
and statements of the interviewer, Alexander Gruber, are marked as “I” (Interviewer). Both Inter-
views were conducted in German as the interviewer as well as the experts are all Austrians.

B.1. Interview 1

Interview between Alexander Gruber and Ing. Josip Sagaj on March 13th, 2018.

Kontext: Erklärung des exemplarischen Kernbanksystems an Josip Sagaj:

I: Also die übergreifenden Dinge, die nicht direkt das Kernbanksystem verwenden, hab ich mal

rausgelassen.

E: Das meine ich nicht, es gibt allgemeine Funktionen die von allen Komponenten verwendet

werden.

I: Achso, naja die sind schon drin.

E: Das heißt es gibt keine 1:1 Verdrahtung zwischen Funktion und Bereich, sondern eine

Mehrfachverdrahtung zwischen verwendender Abteilung und Funktionsmodul.

I: Genau. Voraussetzung ist nur dass jedes Modul von mindestens einer Organisatorischen Einheit

einer Bank verwendet werden muss.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xv

E: Logisch, sonst macht es keinen Sinn. D.h. beispielsweise Treasury verwendet nicht nur

treasuryspezifische Module sondern auch allgemeine.

I: Genau, und das Ganze system ist serviceorientiert und konform zum BIAN. … (Weiter mit der
Erklärung des vorgeschlagenen Modernisiserungsprozesses) Zuerst schaue ich mir an, welche

Firmentopologie bzw. Organisation ich habe, und vor allem welche Firmenorganisation möchte

ich in Zukunft haben? D.h. es wird bereits die organisatorische Zukunftsvision der Bank in das

zu modernisierende Kernbanksystem einbezogen, inkl. der geplanten Business Schwerpunkte.

E: D.h. IST und Zukunft werden miteinbezogen, d.h. die Bank muss ihre Zukunftsszenarien

bereits wissen.

I: Genau. Und mit diesem Prozess soll das Kernbanksystem nicht nur technologisch modernisiert

werden sondern auch in seiner Funktionalität an die Strategie der Bank angepasst werden.

E: D.h. es gibt auch eine Transformation der Prozesse und der Organisation und nicht nur des

Kernbanksystems.

I: Genau. Und ich schaue dann auch wo die Gaps zwischen bestehender Funktionalität und

benötigter Funktionalität in der Zukunft sind. Und dabei schau ich zuerst, welche Funktionalität

ich gerade im bestehenden Kernbanksystem habe. Wobei hier ist die größte Herausforderung das

bestehende Kernbanksystem aufzumodulieren, d.h. Grenzen zwischen den Funktionen zu ziehen.

Sowie ich das habe, erzeuge ich eine Target Architecture, die dem BIAN entspricht, und das

mache ich in drei Schritten. Zuerst muss ich mir aus der BIAN service landscape heraussuchen

welche Service Cluster Domains ich brauch. Aus diesen such ich mir dann die entsprechenden

Service Domains raus. Danach mach ich ein Mapping der bestehenden Funktionalität auf diese

Service Domains und sowie ich das dann hab, erzeuge ich dazu Spezifikationen, d.h. wie komme

ich technisch von meiner bestehenden Funktionalität auf das gewünschte serviceorientierte Ziel?

E: Wo befindet sich dann der neue Businessprozess der daraus resultieren müsste? D.h. wo fließt

dieser dann ein?

I: In der Target Architecture.

E: D.h. der neue Business Prozess fließt in die Target Architecture mit ein?

 I: Genau.

E: Und das meiste an der Tranformation spielt sich dann eigentlich im Application Tier ab oder?

I: Genau, also eigentlich so ziemlich alles, wobei in meinem exemplarischen Fall ist das

Kernbanksystem wirklich ein zusammengeflicktes System mit großen Modulen, wie man es in

der Realität immer wieder sieht. Und diese Module muss ich dann auf den BIAN mappen, also

auf die Service Domain Clusters vom BIAN. Das ist natürlich nicht immer 1:1, sondern de facto

ein Mesh. Sowie ich das Mapping dann gemacht hab, muss ich mir pro Modul überlegen wie ich

es modernisieren kann.

(Kurze Interviewpause)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xvi

E: Ok, aber was hast du dann? Du hast dann den IST Stand gemappt auf den BIAN und die Gaps

die du für dein zukünftiges modernisisertes Kernbanksystem brauchst oder? D.h. beides müsste

dann das Outcome der Target Architecture sein.

I: Genau. D.h. Summa Summarum schaue ich mir zuerst meine existierende Funktionalität an und

erzeuge daraus eine Baseline of Applications (IST Stand). Und dann schau ich, wie sehr mein IST

Stand der Target Architecture entspricht, und vor allem wo die Gaps sind. Danach gehe ich weiter

und versionier das, weil das Ganze ein wiederkehrender Prozess ist. Weil theoretisch sollte

Modernisierung nie aufhören sondern langfristig wiederkehrend sein. Nachdem ich die Baseline

of Applications und die Target Architecture habe. muss ich mir in Spezifikationen anschauen wie

ich vom IST Stand auf den SOLL Stand komm. Der BIAN definiert nämlich nur die Service

Domains, spezifiziert sie allerdings nicht funktional aus. Dafür muss man aber nicht komplett

dem BIAN entsprechen, da die meisten Banken auch noch ihre eigenen Anforderungen haben.

Die Target Architecture muss ich weiters auch versionieren, da diese irgendwann im Idealfall die

Basline of Applications im nächsten Modernisierungslauf wird. Sobald die Versionierung

gemacht ist, muss ich mir jedes Modul einzeln, nach dem Divide and Conquer Ansatz ansehen,

wobei hier zugegeben die Modularisierung nicht im Scope dieser Diplomarbeit ist, da das wieder

eine DA für sich wäre. Für jedes Modul wird dann ein Modernisierungsinstrument wie Model

Driven Development, Architectural Replacement o.Ä. gewählt.

E: Was noch fehlt ist das effektive Abschalten, weil es manchmal im IST Stand Dinge gibt, die

man abschalten könnte.

I: Das hab ich auch, decommissioning. Also Summa Sumamrum soll die Summe aller Funktionen

die Summe aller Anwendungsfälle der Bank abdecken.

E: Genau das ist der ideale Fall. Der ideale Fall ist immer, dass die Bank weis was sie tut, oft gibt

es aber zwischen Bank und IT eine Wechselwirkung. Nicht immer kann die Bank das tun was sie

will, weil es technisch nicht möglich ist und umgekehrt. D.h. es gibt immer eine Wechselwirkung

zwischen Strategie und Implementierung. Das wär etwas das du hier noch einbauen solltest, da

du hier von dem Fall ausgehst dass das Business die IT vor sich hertreibt, allerdings ist das nicht

immer der Fall, da die Bank auch aus strategischen Entscheidungen heraus IT Komponenten

ersetzt (z.B. Erste Bank netbanking wurde durch George ersetzt, weil netbanking nicht in der

Lage war die strategischen Ziele der Bank zu erfüllen). Die IT treibt auch Business Prozesse vor

sich her, bzw. verhindert auch Dinge.

I: Ich hab auch gehört dass der BIAN nicht immer so toll ist, da er verlangt dass die Bank ihre

Organisation ändert, was die Bank in der Regel nicht machen wird und die Bank fragt dann wer

das zahlen soll? Auf der anderen Seite kann die Bank mehr Dinge von der IT verlangen und nicht

umgekehrt.

(Zurück zum Thema) Sowie ich meine Modernisierungsintrumente habe, und diese auch allen

Komponenten zugeordnet hab, mach ich mir einen Zeitplan der besagt, wann und in welcher

Reihenfolge welches Modul anhand seines gewählten Modernisierungsinstruments modernisiert

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xvii

wird. Dieser Zeitplan ist auch abhängig von Technologien, Priorität, und den äußeren

Rahmenumständen auf denen das Modernisierungsprojekt aufgebaut ist. Sowie ich den Zeitplan

dann habe, nehme ich mir ein Modul und mache einen Proof of Concept. Das wird dann in ein

transfomriertes Service umgesetzt.

E: Was ist der Benefit vom PoC?

I: Ich kann meine Findings vom PoC in die Modernisierungsstrategie wieder einbauen und kann

die so verbessern.

E: Brauchst du nicht einen PoC pro Modernisierungsinstrument?

I: Ja, stimmt also pro ausgewähltem Instrument.

E: Vor allem dadurch, dass das Ganze eine Wechselwirkung zum Business Prozess hat, solltest

du nicht nur ein Modul sondern einen ganzen Business Prozess als PoC modernisieren. Dadurch

erkennst du nämlich auch Wechselwirkungen nach außen hin und kannst diese ebenfalls in die

Modernisierungsstrategie einbauen für die Gesamtbank. Der PoC ist nämlich nicht nur technisch

sondern hat auch Einfluss auf die Organisation und das sollte auch betrachtet werden. Weil so

gesehen hättest du dann nämlich nach dem PoC nicht nur die technischen Learnings aus dem PoC,

sondern auch die organisatorischen und daraus könntest du dann einen Gesamtplan bauen, der

weniger auf Annahmen basiert.

I: Ok, danach sag ich testen. D.h. die transformierte Funktionalität muss der

Ursprungsfunktionalität entsprechen, nur halt in einer anderen Architektur.

E: Oder mehr, oder anders. Weil technisch heißt nicht nur technisch, sondern auch funktional.

I: Bzw. die Funktionalität muss den Specs entsprechen. Sowie ich das dann gemacht hab, bau ich

meinen Proof of Concept aus.

E: D.h. du würdest eine zweite Runde eines PoC machen?

I: Nein, ich würd den PoC gemäß der Modernisierungsstrategie solange ausweiten, bis alles

modernisiert ist.

E: Ok, aber da fehlt noch was, du musst die Learnings in die Modernisierungsstrategie einbauen,

du kannst nicht einfach davon ausgehen, dass der PoC ohne Probleme vonstatten geht und dass

man kein Replanning machen muss. Ich würde an deiner Stelle ein eigenes Kapitel „Replanning“
einbauen wo auch die Wechselwirkungen beschrieben sind und danach einen „Rollout“ einbauen,

mit dem einzelne Komponenten dann modernisiert ausgegeben werden.

I: Ok, danach extende ich meinen PoC (Rollout) und das wärs dann im Großen und Ganzen bereits

E: Stimmt und danach kannst du dann entscheiden, ob du danach nochmal eine Modernisierung

machst.

I: Genau, die Grundidee ist dass eine Modernisierung nie aufhören soll.

E: Frage: Wie passt dein Konzept mit Paradigmen wie DevOps oder Contiuous Integration

zusammen? Weil das was du machst ist für mich ein klassisches Wasserfallmodell.

I: Ist aber nicht ganz ein Wasserfallmodell, weil was wir hier haben ist mehr oder weniger ein

Modernisierungsrad. Und dieses Modernisierungsrad muss nicht das gesamte Kernbanksystem

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xviii

betreffen, sondern kann einen eigenen Scope haben. Damit kann ich auch mehrere

Modernisierungsräder parallel zueinander durchführen.

E: D.h. der Scope des Modernisierungsrades muss vorher immer definiert warden und sollte dem

angepasst werden welche Zeithorizonte man sich setzt. Weil es gibt Modernisierungsvorhaben

die sehr kurzfristig sind und welche die sehr langfristig sind. D.h. ein Rad wie bei George

(Modernisierung von netbanking durch replacement) dürfte größer gewesen sein als

beispielsweise eine Drei-Klick Kredit Komponente. D.h. der Inhalt der Modernisierung muss

immer angepasst werden und dann ist das Folgerad (Folgemodernisierung) falsch. D.h. es gibt

dann immer ein neues Rad mit einem anderen Scope und keinen Neustart des anderen Rads.

I: Du siehst das ein bisschen aus einer anderen Sicht als ich, und ich find das gut. Vor allem jedes

Rad hat seinen eigenen Zeitplan und seine eigene Strategie. Vor allem die Räder können

untereinander auch Dependencies haben.

E: Ja aber genau das ist der Mehrwert von so einem Konzept wie deinem, weil es dir erlaubt Dinge

flexibel einzusetzen.

I: Genau, das ist auch der Sinn dahinter. Das Konzept wie beschrieben ist nur der Idealfall, kann

aber nach belieben verändert werden, da es auch von den Rahmenbedingungen der jeweiligen

Bank in Bezug auf Ressourcen, Geld und politischen Rahmenbedingungen abhängt. Im Großen

und Ganzen ist das Konzept ein Top-Down Approach. Allerdings ist es sehr flexibel weil ich mir

die Granularität aussuchen kann, ich kann mehrere Modernisierungsräder parallel auf einem

Kernbanksystem ausführen, kann sie auch gruppieren und ich muss nicht unbedingt den BIAN

befolgen. Z.B. FSSI wäre eine Alternative. Und auch im Bezug auf Projektmanagement kann ich

ein anderes Vorgehensmodell verwenden. D.h. das Konzept an sich gibt nur den groben

Prozessmechanismus vor und ist adaptierbar, deshalb ist es auch kein einzelner Prozess.

E: Vergiss den organisatorischen Scope nicht, weil das Business und die Technik müssen immer

im Gleichschritt laufen, da vom Business das Geld kommt. Und vor allem wenn dann noch was

ungeplantes in den Scope dazu kommt, müsstest du fähig sein im Rad einen Schritt zurück zu

gehen, bzw das Rad entsprechend anzupassen (Stichwort Change Management).

I: Ein weiterer Vorteil ist Recurrency, da das Przesskonzept wiederkehrend ist.

E: Mir gefällt das nicht, stattdessen würde ich das nicht als altes Rad bezeichnen das wieder läuft

sondern als neues Rad mit einem neuen Scope. Ich würde stattdessen die Wiederkehr weg

nehmen.

I: Ok, aber die zeitliche Komponente ist sehr sehr langfristig im Bereich von 15 Jahren pro

Durchlauf.

E: Ja ok, aber in deiner Diplomarbeit darf es nicht den Anschein haben dass du sofort nach einer

Modernisierung wieder anfängst das Gleiche nochmal zu modernisieren.

I: Ich sag ja eigentlich man soll nie aufhören.

E: Ja aber das ergibt nicht immer Sinn und ist nicht im Sinne des Business. D.h. im Bezug auf das

schnelle Drehen wie es hier angedeutet ist, würde ich vorsichtig sein.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xix

I: Ja ich hab hier einen langen Scope so im Bereich 30-40 Jahren. … Ok, das Konzept ist

vergleichsweise idealistisch da ich beispielsweise vorschlag 90% der Entwickler für Mehrwert

im Tagesbusiness abzustellen und 10% nur auf Maintenance und Modernisierung.

E: Ist allerdings nicht realistisch, realistisch ist dass du von den 90% ein paar Prozent abzwackst

und die für eine Technologieänderung einsetzt. Auf der anderen Seite ist das was du machst ein

Prozesskonzept und damit eine Ebene über einem Prozess d.h. auf eine Metaebene. Und damit ist

es ein valider Vorschlag. Da würd ich aber dann die Wertschöpfungs/Modernisierungsrate

erhöhen auf 80% Wertschöpfung und 20% Maintenance und Modernisierung. Warum? Weil

gewisse technologische Herausforderungen nur deshalb so schwierig sind, weil man sie nicht

rechtzeitig umgestellt hat. D.h. man sollte einen bewussten Teil der Ressourcen einsetzen, um

eine kontinuierliche technologische Verbesserung zu machen, unabhängig von der Businessseite.

In der Realität ist das natürlich eher ein Problem. Das Konzept sollte aber genau das

berücksichtigen weil es doch einen Mehrwert liefert.

I: Ok, das Konzept ist prozessgetrieben, wobei jeder einzelne Modernisierungsprozess über die

Modernisierungsstrategie orchestriert wird, wobei sich auch unterschiedliche

Modernisierungsstrategien festlegen lassen und die Performance über KPIs messen lässt. Darüber

hinaus ist das Modernisierungsprozesskonzept in jedes Setup integrierbar.

E: Stimmt, es passt so gesehen überall, weil es agil ist. Die Frage ist nur wie schnell jedes

Modernisierungsrad gedreht wird.

…

I: Ich hab auch bei den Nachteilen geschrieben, dass ein Projektmanagement im Prozesskonzept

fehlt.

E: Ein Projektmanagement zu sowas wäre schon spannend, stimmt das wäre die nächste Arbeit.

Vor allem wie koordiniert man sowas? Vor allem kann unter Umständen an den gleichen Services

oder Funktionalitäten gearbeitet werden und dann muss man sich echt überlegen wie man mit

sowas umgeht.

…

I: Und das Konzept beinhaltet auch einen PoC.

E: Ja, wobei das mit dem PoC würd ich noch ein bisschen ausbauen, sodass man auch die

Learnings aus dem PoC verwendet. Ich würde das so machen, dass man zuerst den PoC und

Learnings einholt und erst dann die Endplanung macht, weil man so gesehen zuerst mal

ausprobiert was man sich überlegt hat und erst dann den großen Modernisierungsrollout startet.

I: Wobei man muss das nicht machen.

E: Naja wenn das Modernisierungsrad vom Scope her klein genug ist dann muss man das nicht

machen aber wenns größer wird, dann wäre das schon geschickt.

…

I: (Beim durchgehen der Nachteile) Und der Prozess lässt viel Freiraum für falsche

Entscheidungen.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xx

E: Naja der PoC ist ein Sicherheitsmechanismus um falsche Entscheidungen zu vermeiden, bzw.

deren Risiko zu verkleinern. Auch könnten nach jedem Prozessschritt Kontrollmechanismen in

den Prozess eingebaut werden.

…

(Gesamtfeedback)

E: Good job! Gefällt mir. Bis auf die Punkte die mir so aufgefallen sind, gefällts mir. Das

entspricht einem sehr schönen Metakonzept um genau das was zu tun ist, zu beschreiben. Daraus

könnte man auch etwas entwickeln, wenn es jemand bezahlen würd. Vor allem du hast einen

wichtigen Schritt gemacht, du hast eine Metaebene eingeführt die nicht im Doing verhaftet ist

sondern eine Ebene darüber die Steuerung der Modernisierung übernimmt.

…

E: Die Frage ist für mich, wo ist hier die Grenze zwischen den Business Prozessen und den

technischen Prozessen, das ist für mich noch nicht ganz schlüssig hier. Weil der BIAN ist ja

eigentlich sehr nahe am Business Prozess. Er schlägt zwar Modularisierung vor für eine

technische Architektur aber wo fängt dann konkret die technische Architektur an. Hier müsstest

du eventuell nochmal etwas nachschärfen.

…

(Beim Durchgehen der eigentlichen Interviewfragen)

…

1. Overall Questions about the process:

a. Did you understand the process?

Ja.

b. What is your overall opinion on the process?

Für mich ist das ein wunderbarer Meta Ansatz um Modernisierungsprojekte zu

steuern. Für jeden der Schritte die im Prozess angegeben sind, muss natürlich

eine weitere Detaillierung stattfinden. Aber für mich ist der Prozess konsistent,

wiederholbar und er macht aus der Sicht von Business und Technik Sinn. Und

das auf Basis meiner Erfahrungswerte, sowohl aus der Businessebene als auch

auf Implementierungsebene.

2. Feasibility:

a. Do you think that this process is feasible to existing CBS?

Absolut. Natürlich müsste man noch eine Ebene weiter gehen und die Prozesse

darunter genauer definieren aber das Gesamtkonzept das hier vorgestellt wird

macht absolut Sinn.

b. If not, why?

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxi

3. Advantages / Shortfalls:

a. Where do you see room for improvements?

Für mich wäre wichtig Kontrollmechanismen im Konzept zu haben, weil alle

diese Ansätze im Konzept, klingen sehr gut, müssen aber immer auf einen

Realitätscheck stoßen, da sonst der gesamte Prozess sehr leicht in die Irre läuft.

b. Which preconditions should be met to make this process concept admissible?

Die richtige Metabene muss vorhanden sein. Also vor allem Geld und

Ressourcen, aber das ist ja nicht das Thema hier. Eine Organisation die diesen

Prozess verwenden möchte, muss die Bereitschaft zu Veränderung haben. Weil

es darf keine Showstopper oder No-Gos geben, weil es immer so ist dass sich die

Organisation und die IT Hand in Hand verändern müssen und es dort auch

Wechselwirkungen gibt. Es kann nicht sein, dass das Business nur über die IT

bestimmt und die IT nur der Befehlsempfänger ist, aber umgekehrt auch nicht,

d.h. die IT darf nichts verhindern. Stattdessen muss es einen partnerschaftlichen

Ansatz zwischen IT und Organisation geben um die Transformation der

Geschäftsprozesse durchführen zu können.

c. Which strongpoints/shortfalls do you see with that process concept?

Eine Stärke ist definitiv die Flexibilität im Prozess und die flexible Nutzung des

Prozesses, weil die Granularität und der Scope frei wählbar sind. D.h. man kann

den Prozess für eine kleine Modernisierung aber auch für ein fünf Jahres Projekt

anwenden. Der Vorteil ist auch, dass man diese verschiedenen Scopes auch

parallel laufen lassen kann. Der Nachteil daran ist, dass durch die Offenheit und

Flexibilität wiederum die Steuerung erschwert wird. Die funktionale Steuerung

und die Governance auf allen Ebenen wird sicher eine Herausforderung für sich.

Der Lösungsanatz für sowas ist natürlich nicht zu viel auf einmal zu machen.

D.h. wenn jemand mit so einem Modernisierungsprozess los legt, dann muss er

sich überschaubare Ziele setzen. Und überschaubar bedeutet nicht dass ich in fünf

Jahren ein neues Kernbanksystem habe, sowas passiert einfach nicht, sondern

dass ich in drei Monaten etwas habe das ich verwenden kann. Ein weiteres Risiko

ist auch dass man den Detaillierungsgrad falsch wählt. D.h. dass man eine falsche

Granularität oder zu viele Module für die Modernisierung wählt und damit nie

zu einem Ende kommt.

d. What would you do different?

Guter Punkt. Ich hab natürlich grundsätzlich kein Problem mit einer Metaebene

in Prozessen aber wenn man so etwas jemandem verkaufen soll, wird es

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxii

schwierig werden wenn man die Prozesse unterhalb nicht komplett

durchdefiniert. D.h. bevor das Prozesskonzept praktikabel und umsetzbar ist,

muss auf jeden Fall die Ebene unterhalb genau spezifiziert werden. Das gesamte

Konzept ist vielleicht etwas zu theoretisch für den praktischen Ansatz.

B.2. Interview 2

Interview between Alexander Gruber and DI Herbert Geisler on April 3rd, 2018.

I: Also als erstes schau ich mir das aktuelle Kernbanksystem an. D.h. ich schau mir an wo das

Kernbanksystem modularisiert ist bzw. wo ich Modulgrenzen einziehen kann. Daraus soll im

Weiteren eine funktionale Map generiert werden. Dadurch bekomm ich eine funktionale

Topologie meines aktuellen Kernbanksystems das ich zu einer Baseline of Applications

verarbeiten kann.

E: Ok. Wobei man kann sich das auch in Non-Functional Requirements ansehen (eher auf

Business Ebene) und bei der Kapselung kann beispielsweise geschaut werden ob Shared

Components (die von mehreren anderen Komponenten verwendet werden) abgrenzbar sind, also

beispielsweise ob sie Multi Channel fähig sind. Z.B. Kunde oder gibt es nur ein Security Modul?

Sind die Geschäftsprozesse Vertriebskanal unabhängig? Und vor allem sind hier auch schon

Erfahrungen von anderen Kernbank Modernisierungen eingeflossen.

I: Verstehe. Als nächstes schau ich mir im Prozess die Bankorganisation an sich an. Jede Bank

hat ihre Abteilungen die wiederum ihre eigenen Kernprozesse haben. Und jeder Kernprozess

sollte im Kernbanksystem funktional abgebildet sein. Beispielsweise die Kreditabteilung braucht

ihre Funktionalität um Kredite abzuwickeln und zu verwalten.

E: Ja, wobei hier diese Diskussion schon seit zwanzig Jahren geführt wird, d.h was passiert wo?

Was passiert im Backoffice, was passiert im Frontoffice? Weil früher war es so, dass die Filiale

an sich funktional relativ unabhängig war und vieles vom klassischen Backoffice mit gemacht

hat. Und jetzt ist die Tendenz, dass alles ins Backoffice geworfen wird und alles zentral gemacht

wird.

I: Ok, d.h. zuerst schau ich mir das aktuelle Kernbanksystem an und danach die Organisation der

Bank.

E: Ja, wobei es hier mehr um die Schnittstellen geht.

I: Gut, sowie ich das dann hab schau ich mir die Zukunftsstrategie der Bank an, d.h. ich schau mir

an welche Zukunftsstrategie der Bank ist, die ja dann auch funktional im Kernbanksystem

abgebildet werden muss.

E: Ja, wobei im Moment Digital der Fokus ist. Alle Banken wollen zur 24h Bank werden und

man versucht die bestehenden Prozesse so umzubauen, dass vom Kunden möglichst viel Online

ohne Bankfiliale gemacht werden kann.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxiii

I: Ok, sowie ich die Baseline of Applications hab, sowie die aktuelle und die zukünftige

Organisation der Bank kann ich weitergehen.

E: Ok, wobei man hier (bei der Baseline of Applications) nicht so sehr nach Abteilung gehen

sollte sondern eher danach geht, Prozesse billiger zu machen. Es gibt seit zwanzig Jahren einen

Trend viele Backoffice Funktionalitäten in nicht-Bank Betriebe auszulagern. Aber auch in der

Bank direkt werden Kunde, Konto oder der Zahlungsverkehr in Töchter ausgelagert, die nicht

dem Bankenkollektivvertrag unterliegen und dadurch billiger sind. D.h. man versucht nur das in

der Bank zu behalten, was in der Bank bleiben muss.

I: Verstehe. Aus der Baseline of Applications und der Zielstruktur der Bank kann ich mir eine

Liste aus funktionalen Gaps machen, die entweder zur Funktionalität des aktuellen

Kernbanksystems hinzugefügt oder entfernt werden müssen. Und damit kann man dann eine

Target Architecture erzeugen die dem BIAN konform ist. Wobei du hast hier mal gesagt dass es

eine Alternative zum BIAN gibt?

E: Ja IBM hat mal vor fünfzehn Jahren etwas eigenes entwickelt und BIAN hab ich als

Gesamtbankmodell noch nirgendwo eingesetzt gesehen.

I: BIAN unterteilt eine Bank de facto in Service domains, wobei die darunterliegende Ebene noch

nicht wirklich ausspezifiziert ist.

E: Bei manchen Domains hab ich gesehen dass diese bereits relativ detailliert sind und bei anderen

steht bis jetzt nur die Überschrift. Und das Zweite ist dass er sich bis jetzt nur auf einer

allgemeinen Ebene befindet. Vor allem die Anforderungen an eine Bank werden immer mehr und

insofern ist es noch nicht das überall passende Bankenmodell. Europa ist beispielsweise anders

als die USA, dort gibt es kein Universalkonto, sondern eher Kreditkarten und da passt der BIAN

nicht vom Geschäftsmodell her. Auch in Bezug auf Islamic Banking oder andere Spezifika wie

Darlehen die in Österreich und Deutschland sehr stark vertreten sind aber in den BIAN noch

keinen Eingang gefunden haben. Z.B. das Österreichische Sparen ist ein großes System auf das

der BIAN nicht passt.

I: Also der BIAN ist nicht überall anwendbar.

E: Ja, so leicht ist der BIAN nicht anwendbar und auch unsere Bank passt so gesehen nicht in den

BIAN rein, dafür ist es für unsere Bank kein Thema sich an den BIAN anzupassen. Ein Beispiel

sind zum Beispiel Sicherheiten die nicht auf einen Kredit verknüpft werden sondern auf das

Gesamtobligo des Kunden, um zu verhindern dass bestimmte Dinge mehrfach verpfändet werden.

I: Ok, wie gesagt der nächste Schritt ist, dass man eine Target Architektur erstellt.

E: Allerdings muss die Bank der Target Architektur zustimmen und es sollte vorher erhoben

werden, wie BIAN konform die Prozesse der Bank sind und wo sind hier die Gaps. Vor allem das

ist eine geschäftspolitische Entscheidung und die Bank muss hier auch dahinter stehen.

I: Was wäre die Alternative?

E: Naja die Alternative wäre, dass die Bank bei ihren Prozessen bleibt und einfach nur versucht

zukunftsorientiert zu sein, eben wie im vorher genannten Beispiel der 24-Stunden Bank.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxiv

I: Ok, und die Target Architektur soll serviceorientiert sein und in Service Clusters eingeteilt sein

und die Grundidee ist, dass man sich aus der BIAN landscape die Service Domain Clusters

raussucht die man braucht, diese so anpasst wie man sie braucht, und danach technische

Spezifikationen schreibt um von der jeweiligen aktuellen Komponente auf die BIAN konforme

Zielkomponente zu kommen.

E: Beispielsweise die IBM hat hier einen anderen Weg vorgeschlagen, die unterteilen alles in

Komponenten (SCS) und jetzt wird gerade diskutiert wie man zu diesen Komponenten kommt,

siehe beispielsweise die Credit Suisse Studie die ich dir geschickt hab. Die Herausforderung hier

ist, Grenzen zu finden anhand derer man ein Kernbanksystem in Komponenten unterteilen kann.

D.h. wie muss ich die Komponenten schneiden, sodass sie nach außen hin möglichst unabhängig

sind. Beispielsweise eine reine serviceorientierte Struktur ist nicht möglich weil es

Geschäftsprozesse gibt, die dermaßen ineinander verwoben sind, dass man es schwer hat durch

alle Services durchzuhaken. Aber man kann es stattdessen so machen dass man diese inneren

Verwebungen lässt wie sie sind und nach außen hin Schnittstellen definiert die nicht so

hochfrequent aufgerufen werden und damit leichter managebar sind.

I: D.h. man macht Baublöcke und versucht nicht alles zu zerteilen.

E: Ja wobei das alleine ist schon schwierig und braucht mitunter mehrere Anläufe. D.h. die

Herausforderung ist beispielsweise 600 Applikationen auf 80 Komponenten zusammenzupacken.

Wobei wie muss ich hier die Komponenten legen, sodass ich möglichst wenig Abhängigkeiten

nach außen hab? Die Idee hinter diesen Komponenten ist dann, dass man sozusagen Testbeete für

die Komponenten schafft um diese dann unabhängig voneinander in die Live Umgebung

einsetzen zu können. Und hier ist SOA schon ein bisschen schief gegangen. Es wäre zwar schön

wenns funktionieren würde, aber in der Praxis ist das so nicht umsetzbar.

I: Ok, gehen wir wieder zurück? Sowie ich die Target Architektur hab versioniere ich sie und hab

meine BIAN konformen Blöcke. Danach muss ich mir überlegen wie ich jedes einzelne Modul

konkret modernisiern kann. Jedoch nicht nur auf topologischer Ebene sondern auch auf

technischer und Implementierungsebene. Summa Summarum hab ich dann ein Mapping von alter

Funktionalität in einer alten Architektur auf neue Funktionalität in einer neuen Architektur.

E: Dann müssten die neuen Komponenten aber BIAN Komponenten sein.

I: Genau.

…

I: Wenn du die Möglichkeit hättest, wie würdest du einen Kernbanksystem Host modernisieren?

Unter der Annahme dass du unbegrenzt Ressourcen hast.

E: Naja, die größte Herausforderung wäre dass man skilled Leute bekommt die das können. Und

die Plattform muss stabil sein. Weil andere Plattformen sind nicht unbedingt so stabil wie am

Host (z.B. Linux), und hier gibt es gerade bei den neueren Plattformen eine größere Fluktuation

beim Personal. Das zweite das man sehen muss ist, dass es bei allen nicht-Host Plattformen alle

fünf Jahre eine Trendwende gibt in Bezug auf die Technologie. Jetzt ist gerade im Clientbereich

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxv

AngularJS aktuell, in fünf Jahren wird das wiederum anders sein. Und allein der Erfahrung nach

war in den letzten zehn Jahren, alle drei Jahre eine andere Technologie der Hit. D.h. wenn man

einen Host modernisiert braucht man eine Programmiersprache von der man ausgehen kann dass

sie die nächsten zwanzig Jahre hält, da ein Kernbanksystem doch zig Millionen Lines of Code

beinhaltet.

I: Java wäre ein Kandidat und auch die Performance wäre mittlerweile gut genug.

E: Ja, wäre wohl ein Kandidat, allerdings muss man die Programme ganz anders schreiben, die

müssen hoch parallelisierbar sein. Und man braucht eine financial library dazu, denn Java

unterstützt nativ keine Finanzfunktionen. Dahingegen ist Cobol ja bis zu einem gewissen Grad

für Finanzsysteme entwickelt worden und das bietet Java nicht.

I: In Cobol müsste es auch eine Library dafür geben oder?

E: Nein nein, Cobol wurde damals als kommerzielle Programmiersprache für wirtschaftliche

Applikationen konzipiert. Beispielsweise wie Zahlen aufbewahrt werden oder Punktrechnungen

gemacht werden, das ist alles für den Finanzsektor bzw. Rechnungslegung gemacht worden und

hier muss man bei Java schon eher aufpassen. Beispielsweise wann wird eine Nachkommastelle

abgeschnitten und wie wird genau gerundet? Das wird auch so von staatlichen Organen

kontrolliert.

…

I: Ein Beispiel für ein Java basiertes Kernbanksystem wäre Infosys Finacle?

E: Ja, aber das wurde auch bereits Anfang der 2000er Jahre gemacht. Und generell, ob Mainframe

oder nicht, es hängt immer davon ab wie etwas verarbeitet wird und auch ein Mainframe ist Java

fähig. Allerdings ist auch hier das Risiko, dass man sich bei einer Modernisierung Richtung Java

grundlegend vertut und ein neues Kernbanksystem nicht so zum Laufen bringt wie ein altes. Ich

glaube generell dass ein Top-Down Approach kein guter Ansatz ist sondern wenn, dann eher

umgekehrt da man sich im Großen und Ganzen leicht verschätzt.

I: Dazu komm ich noch, denn mein Modernisierungsprozess wie ich ihn hier darstell denkt über

eine Zeitspanne von 10 Jahren bzw. mehr.

E: Ok, das ist was anderes, allerdings musst du hier auch sehen, dass die meisten Beraterfirmen

sagen, dass ein Kernbanksystem durchschnittlich fünfzehn Jahre hält und danach muss man ein

neues schreiben. Früher ist das ein bisschen abgefedert worden da das Business näher an der IT

war und zuerst gefragt hat aber mittlerweile bekommt man eher die Vorgabe dass man ein neues

Kernbanksystem schreiben soll.

I: Ok, zurück zum Thema. Sowie ich meine Target Architektur habe, muss ich jeder Komponente

das zu modernisieren ist, ein Modernisierungsinstrument zuordnen. Dazu gehören beispielsweise

Model Driven Development, der Code automatisch bzw. halbautomatisch in anderen Code unter

einer anderen Architektur neuimplementiert. Dann gibt es noch Replacement, d.h. ich

reimplementier dieselbe Funktion parallel zur alten neu, und setz sie dann anstatt der alten ein.

E: Dazu musst du aber voneinander unabhängige Module haben.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxvi

I: Genau. Eine Alternative wäre, dass man statt Reimplementierung etwas neues kauft, das anpasst

und dann statt der alten Funktionalität in die IT Landschaft einsetzt, Zahlungsverkehr wäre dafür

ein Beispiel. Das Nächste was es noch gäbe, wäre architektonisches Refactoring, d.h. ich bau

beispielsweise Cobol Code wieder in Cobol Code um und das in mehreren Zyklen, falls benötigt.

Oder wenn sich herausstellen sollte, dass eine Komponente gar nicht mehr gebraucht wird, weil

sie nicht mehr in die Strategie passt dann kann man sich überlegen diese Komponente generell zu

dekommissionieren. Sowie dann eine Entscheidung getroffen ist, welches Modul wie

modernisiert wird, habe ich ein Mapping von Modul zu Modernisierungsinstrument.

E: Wobei du hier die Abhängigkeiten bedenken musst, sowie du Modul A modernisierst ziehst

du Modul B mit. Vor allem ist es auch ein valider Ansatz dass eine Bank mehrere

Kernbanksysteme hat, die sich gegenseitig Daten zuschicken und jeweils ihre eigene

Datenhaltung haben. Und dann tut man sich allerdings mit so einem homogenen Ansatz eher

schwer, vor allem weil alt und neu gleich sein muss.

I: Aber die Kernbanksysteme werden nicht alle das gleiche machen, d.h. deren Funktionen sind

disjunkt oder.

E: Ja aber im Ziel bei dir muss das berücksichtigt werden, weil du willst alle drei

Kernbanksysteme zu einem zusammenfügen. Und du darfst die Abhängigkeiten untereinander

nicht vergessen.

…

I: Sowie ein Mapping zwischen Instrument und Modul besteht, mache ich mir eine

Modernisierungsstrategie in der die Zeitdimension hinzugefügt wird und im Grunde genommen

entschieden wird, welche Komponente wann und in welcher Form modernisiert wird. Danach

ziehe ich einen Proof of Concept. D.h. ich nehme eine exemplarische Funktion und versuche sie

in der gewählten Modernisierungsart zu modernisieren. D.h. ich schaue mal ob die Idee so

überhaupt durchführbar ist. Die Learnings aus dem PoC kommen danach wiederum in die

Modernisierungsstrategie um einen Realitätscheck in die Strategie einfließen zu lassen. Sowie das

dann erledigt ist, baue ich den PoC sukzessive aus.

E: Ja, das ist vergleichbar mit einem Big Picture, in dem man sich anschaut womit man zu

modernisieren anfängt. Ein Beispiel wäre die Modernisierung der Bar- und Unbarkomponente

wobei Bar um einiges einfacher ist als die Unbarkomponente, da es sich hier im Prinzip nur um

die Kassa handelt. Insofern ist das Risiko mit komplizierten Komponenten zu beginnen höher.

… Ich finde es aber dabei problematisch wenn man bei einer Modernisierung die

Programmiersprache wechselt, da die Vernetzung dann doch eine andere ist. D.h. wenn das

Altsystem stark vernetzt ist steigt auch das Risiko bei der Modernisierung.

I: D.h. es macht Sinn ein System zuerst zu transformieren um Abhängigkeiten untereinander zu

reduzieren und erst danach die Programmiersprache in einem eigenen Modernisierungszyklus zu

wechseln.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxvii

E: Generell ist davon abzuraten Kernbanksysteme mit einem Big Bang zu modernisieren. Bei

manchen kleinen Banken mag das funktionieren, bei großen Banken ist das kein guter Ansatz.

I: Wurden bei euch auch PoCs gemacht? Bzw. habt ihr die neue Funktionalität gegen die alte

regressionsgetestet?

E: Naja wir haben beispielsweise Buchungen parallel fahren lassen und dann geprüft ob die neue

Buchungslogik dasselbe macht wie die alte. Und etwaige Differenzen sind dann näher betrachtet

worden, sofern sie ungewollt waren.

…

I: Ok, Summa Summarum wird der PoC weiter ausgebaut, bis am Ende die implementierte Target

Architecture heraus kommt. Dadurch wird idealerweise das Ziel zum IST-Stand. Und wenn das

passt, dann kann man in weiterer Folge den nächsten Modernisierungszyklus angehen in einem

beliebigen Zeitrahmen. Insgesamt ist der gesamte Ansatz ein Top Down approach.

E: Wobei du hier bedenken musst, dass die Bank immer wieder neue Anforderungen herein

bekommt. D.h. die Target Architecture ändert sich ständig.

I: Ja, aber das rechne ich bereits in die Zielstruktur der Bank ein. Darüber hinaus kann man auch

mehrere Modernisierungsräder parallel zueinander laufen lassen.

E: Ja, wenn die Räder untereinander entkoppelt sind und keine Abhängigkeiten untereinander

haben. Das Problem ist halt, dass sie normalerweise nicht entkoppelt sind.

…

I: Im großen und Ganzen ist das vorgestellte Prozesskonzept eine konsistente Roadmap.

E: Ja, es ist mehr oder weniger ein Softwareentwicklungsmodell. Zumindest geht es in diese

Richtung.

I: Und im Prozess argumentiere ich auch, dass Entwicklungsteams einen gewissen Prozentsatz

ihrer Ressourcen für Modernisierung und Maintenance einsetzen sollen, da Modernisierung ein

never ending Prozess ist.

E: Ja, das stimmt das wird bei uns seit 30 Jahren diskutiert. Bei uns gibt es Teams die einen Teil

ihrer Zeit nicht in Kundenanfragen sondern in Maintenance stecken. Das wird auch von oben

gefordert.

I: Aber keine 20% ihrer Zeit?

E: Kann mitunter schon vorkommen, hängt aber auch von den einzelnen Teams ab.

I: Ok und bei den Nachteilen hab ich geschrieben dass das Prozesskonzept doch auch ein wenig

Highlevel ist.

E: Naja was das Prozesskonzept nicht löst ist die Monolithenauflösung, also wie man ein

monolithisches Kernbanksystem in mehrere Komponenten schneidet.

I: Ok aber das ist auch nicht im Scope dieser Diplomarbeit, das würde deren Rahmen definitiv

sprengen. Ok nun zum eigentlichen Fragebogen der Arbeit:

Interview Questions:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxviii

1. Overall Questions about the process:

a. Did you understand the process?

Ja.

b. What is your overall opinion on the process?

Ja es ist fast ein normaler Softwareentwicklungsprozess. Also dass ich zuerst das

IST analysiere und danach das SOLL definiere ist eigentlich klar. Das

Prozesskonzept ist ein Ansatz um Probleme zu lösen aber ob er wirklich am

Software Engineering Boden hilft ist eine andere Frage. Es ist zumindest wichtig

dass eine Rahmenstruktur gegeben ist.

2. Feasibility:

a. Do you think that this process is feasible to existing CBS?

Naja die meisten Banken stehen vor der Herausforderung dass sie zuerst ihr

monolithisches Kernbanksystem in Komponenten schneiden müssen und da hilft

das Prozesskonzept nichts. Aber wenn die Komponenten geschnitten sind, dann

könnte er hilfreich sein. … Generell ist der Prozess ein

Weiterentwicklungsprozess, und so gesehen ist er allgemein sicherlich

anwendbar. Allerdings gibt es bei der Modernisierung von Kernbanksystemen

Themen die generell angesprochen werden sollten, beispielsweise die Multi-

Channel Fähigkeit von Komponenten. Z.B. gibt es Ideen dass sowohl der

Mitarbeiter als auch der Kunde über die gleiche Software (in unterschiedlichen

Channels) mit dem Kernbanksystem arbeiten.

b. Do you think that this process is a starter for a long term modernization?

Ja, wenn die Voraussetzungen dafür gegeben sind.

c. If not, why?

3. Advantages / Shortfalls:

a. What risks do you see with the proposed modernization process?

b. What would you do different?

Schau, das Problem ist wenn man so einen abstrakten Prozess hat der auf alles

passt, dann passt das eh. Man kann nicht auf alle spezifischen Dinge einer Bank

eingehen. Wenn man eine spezifische Bank hat, dann müsste man den Prozess

zuerst anpassen. Weil jede Bank hat ihre eigenen Spezifika und so gesehen ist

keine Bank wie die andere. Hier gibt es sicher viel zu berücksichtigen. Ein

wichtiger Punkt ist halt wie ich nun wirklich das Target bzw. die Target

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxix

Architektur definiere und das in Abstimmung mit dem Business. Vor allem ist es

bereits eine Kunst konsistente Requirements von der Bank als Kunden zu

bekommen. D.h. Requirements die sich nicht ändern bzw. Requirements die für

die IT brauchbar sind. Aber auf der Ebene wie du den Prozess beschrieben hast,

passt er schon, allerdings geht er bei gewissen Themen nicht so in die Tiefe wie

nötig.

c. What strengths do you see in this modernization process?

C. Exemplary Application Baseline Blueprint

The following blueprint is an exemplary baseline blueprint for the Day-End Processing of the

CBS under modernization. It contains all subroutines as well as their type, implementation lan-

guage, dependencies and interfaces to other modules.

Nr Routine

Kind of

Routine Technology Dependencies Interfaces

1 Execute Standing Orders Batchjob RPG IV

Database - Accounts,

Standing Order Tables

Core Banking DB,

Function Calls

2 Cashless Settlement Batchjob RPG IV

Previous Routine - Ac-

count Current, Electronic

Funds Transfer

Core Banking DB,

Function Calls

3

Create Standing Order

Protocol Batchjob RPG IV

Previous Routine, Stand-

ing Order Tables

Core Banking DB,

Function Calls

4

Settle maturing capital

savings accounts Batchjob RPG IV

Account Current, Account

Tables (Inventory)

Core Banking DB,

Function Calls

5

Process Compound En-

tries (Primanotas includ-

ing Valutas) Batchjob RPG IV

Electronic Funds Transfer,

Transaction Tables

Core Banking DB,

Function Calls

6 Process Overdraft List Batchjob RPG IV

Previous Routine, Account

Current, Account Tables

(Giro)

Core Banking DB,

Function Calls

7

Summarize Open Book-

ings for the Subledger Batchjob RPG IV

Account Current, Account

Tables (Giro, Savings)

Core Banking DB,

Function Calls

8

Prepare Subledger

Processing Batchjob RPG IV

Previous Routine, Account

Current, Account Tables

(Giro, Savings)

Core Banking DB,

Function Calls

9

Process Subledger Posi-

tions (Giro-, and Savings

Accounts) Batchjob RPG IV

Previous Routine, Account

Current, Account Tables

(Giro, Savings)

Core Banking DB,

Function Calls

10

Process General Ledger

Positions (Inventory Ac-

counts) Batchjob RPG IV

Previous Routine, Account

Current, Account Tables

(Inventory)

Core Banking DB,

Function Calls

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxx

11

Perform direct ledger

updates Batchjob RPG IV

Previous Routine, Account

Current, Account Tables

(Inventory)

Core Banking DB,

Function Calls

12 Create Datacarrier Files Batchjob RPG IV

Electronic Funds Transfer,

Account Current, Transac-

tion Tables

Core Banking DB,

Function Calls,

File Export

13

Check for Remaining

Open Entries Batchjob RPG IV

Account Current,

Transaction Tables

Core Banking DB,

Function Calls

14

Check for Balance

Differences Batchjob RPG IV

Account Current, Account

Tables (Inventory)

Core Banking DB,

Function Calls

15 Test Suspense Accounts Batchjob RPG IV

Account Current, Account

Tables (Inventory)

Core Banking DB,

Function Calls

16

Prepare Interest

Penalties Batchjob RPG IV

Account Current, Account

Tables (Giro, Inventory),

Transaction Tables

Core Banking DB,

Function Calls

17

Create Protocol Interest

Penalties Batchjob RPG IV

Previous Routine, Account

Current, Transaction Ta-

bles

Core Banking DB,

Function Calls

18 Create Error Report Batchjob RPG IV Previous Routine

Core Banking DB,

Function Calls

19

Create Report

Overdrafted Accounts Batchjob RPG IV

Account Current, Account

Tables (Giro)

Core Banking DB,

Function Calls

20

Create Report Valuta

Balance Batchjob RPG IV

Account Current, Account

Tables (Giro)

Core Banking DB,

Function Calls

21

Prepare Account State-

ments for Day-End Pro-

cessing Batchjob RPG IV

Account Current, Account

Tables (Giro, Savings)

Core Banking DB,

Function Calls

22

Create Debit and Credit

Sums for BMD Batchjob RPG IV

Account Current, Account

Tables (Giro, Savings, In-

ventory)

Core Banking DB,

Function Calls,

Web Services

23

Create Credit Risk

Reports Batchjob RPG IV

Account Current, Private-

/ Corporate Loans, Ac-

count Tables (Giro)

Core Banking DB,

Function Calls

24

Check internal temporary

exemption of interests Batchjob RPG IV

Account Current, Private-

/ Corporate Loans, Ac-

count Tables (Giro)

Core Banking DB,

Function Calls

25

Create Status/Error

Report Batchjob RPG IV

Previous Routine, Account

Current

Core Banking DB,

Function Calls

26 Create Overall Report Batchjob RPG IV

Previous Routine, Account

Current

Core Banking DB,

Function Calls

Table 3: Exemplary Application Baseline Blueprint

D. Mapping Legacy CBS Modules to the BIAN Ser-

vice Landscape

The following Table contains the mapping of the legacy Core Banking Modules as outlined in

chapter 4.5 against the service domain clusters as specified by the BIAN service landscape. The

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxxi

category below the bold module titles outline the name of the BIAN service cluster and the service

domain in the right column name the service domain, containing the connected services.

Core Banking - Electronic Funds Transfer

Payments Payments Execution

Payments Financial Gateway

Payments Correspondent Bank

Payments Cheque Processing

Core Banking - Account Current

Product Management Product Directory

Product Management Discount Pricing

Product Management Special Pricing Conditions

Account Management Position Keeping

Account Management Accounts Reveivable

Account Management Account Reconciliation

Account Management Position Management

Account Management Fraud Detection

Account Management Transaction Engine

Regulations & Compliance Fraud/AML Resolution

Regulations & Compliance Financial Accounting

Core Banking - Private- / Corporate Loans

Loans& Deposits Loan

Loans& Deposits Leasing

Loans& Deposits Current Account

Loans& Deposits Deposit Account

Loans& Deposits Consumer Loan

Loans& Deposits Corporate Loan

Loans& Deposits Corporate Deposits

Loans& Deposits Corporate Lease

Loans& Deposits Merchandising Loan

Loans& Deposits Mortgage

Loans& Deposits Fiduciary Agreement

Loans& Deposits Savings Account

Collateral Administration Collateral Allocation Management

Collateral Administration Collateral Asset Management

Collateral Administration Collections

Core Banking - Card Management

Cards Credit/Change Card

Cards Card Authorization

Cards Card Capture

Cards Card Billing & Payments

Cards Merchant Relations

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxxii

Cards Merchant Aquiring

Cards Card Network Participant

Payments Card Clearing

Payments Card Financial Settlement

CRM - Customer Management / Customer Core

Data

Servicing Card Case

Servicing Customer Order

Servicing Payment Order

Customer Management Customer Relationship Management

Customer Management Customer Agreement

Customer Management Customer Access Entitlement

Customer Management Customer Behavioral Insights

Customer Management Account Recovery

Customer Management Customer Event History

Customer Management
Customer Reference Data

Management

Customer Management Customer Precedents

Customer Management Customer Proposition

Operational Services Customer Billing

CRM - Customer Scoring / Account Management /

Customer Risk Management

Account Management Position Keeping

Account Management Cusomter Position

Customer Management Customer Credit Rating

Account Management Counterparty Risk

CRM - Document Management

Document Management & Archive Document Services

Document Management & Archive Archive Service

Document Management & Archive Correspondence

CRM - Customer Services

Customer Services Corporate Trust Services

Customer Services Remittance

Customer Services Currency Exchange

Customer Services Bank Drafts & Traveller Checks

Customer Services Brokered Product

Customer Services Consumer Investments

Customer Services Consumer Tax Handling

Customer Services Consumer Advisory Services

Customer Services Service Product

Corporate Financing & Advisory Services Corporate Finance

Corporate Financing & Advisory Services M&A Advisory

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxxiii

Corporate Financing & Advisory Services Corporate Tax Advisory

Corporate Financing & Advisory Services Public Offering

Corporate Financing & Advisory Services Private Placement

Private Banking: Order & Portfolio Management /

Risk Management

Market Operations Mutual Fund Administration

Market Operations Hedge Fund Administration

Market Operations Unit Trust Administration

Market Operations Trade Confirmation Administration

Market Operations Order Allocation

Market Operations Settlement Obligation Management

Market Operations

Securities Delivery & Receipt

Management

Market Operations Securities Fails Processing

Market Operations Trade/Price Reporting

Market Operations Custody Administration

Market Operations Corporate Events

Market Operations Financial Instrument Valuation

Bank Portfolio & Treasury Corporate Treasury Analysis

Bank Portfolio & Treasury Corporate Treasury

Bank Portfolio & Treasury Bank Portfolio Analysis

Bank Portfolio & Treasury Bank Portfolio Administration

Bank Portfolio & Treasury Stock Lending/Repos

Private Banking: Asset / Asset Liability Manage-

ment

Bank Portfolio & Treasury Asset Securitization

Bank Portfolio & Treasury Asset & Liability Management

Private Banking: Market Data Modeling / Market

Risk Management

Market Data Invormation Provider Operation

Market Data Marked Information Management

Market Data Financial Market Analysis

Market Data Financial Market Research

Market Data Quant Model

Market Data Marked Data Switch Administration

Market Data Market Data Switch Operations

Market Data

Financial Instrument Reference Data

Management

Market Data Counterparty Administration

Market Data Public Reference Data Management

Market Data Location Data Management

Models Market Risk Models

Models Financial Inst. Valuation Models

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

 xxxiv

Models Gap Analysis

Models Credit Risk Models

Models Liquidity Risk Models

Models Economic Capital

Models Business Risk Models

Models Customer Behavior Models

Models Fraud Models

Models Credit/Margin Management

Models Production Risk Models

Models Operational Risk Models

Models Contribution Models

Private Banking: Trade & Investment

Trade Banking Letter of Credit

Trade Banking Bank Guarantee

Trade Banking Trade Finance

Trade Banking Credit Management

Trade Banking Credit Facility

Trade Banking Project Finance

Trade Banking Limis & Exposure Management

Trade Banking Syndicated Loan

Trade Banking Cash Management & Account Services

Trade Banking Direct Debit Mandate

Trade Banking Direct Debit Mandate

Trade Banking Cheque Lock Box

Trade Banking Factoring

Investment Management Inv. Portfolio Planning

Investment Management Inv. Portfolio Analysis

Investment Management Inv. Portfolio Management

Investment Management eTrading Workbench

Wholesale Trading Trading Book Oversight

Wholesale Trading Trading Models

Wholesale Trading Dealer Workbench

Wholesale Trading Quote Management

Wholesale Trading Suitability Checking

Wholesale Trading Credit Risk Operations

Wholesale Trading Market Making

Wholesale Trading ECM/DCM

Wholesale Trading Program Trading

Wholesale Trading Traded Position Management

Wholesale Trading Marked Order

Wholesale Trading Marked Order Execution

Table 4: Detailed Mapping of the Legacy CBS modules against the BIAN Service Landscape

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

