
© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

SIAM J. DISCRETE MATH. © 2022 SIAM. Published by SIAM under the terms
Vol. 36, No. 4, pp. 2635--2666 of the Creative Commons 4.0 license

ALGORITHMIC APPLICATIONS OF TREE-CUT WIDTH\ast 
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Abstract. The recently introduced graph parameter tree-cut width plays a similar role with
respect to immersions as the graph parameter treewidth plays with respect to minors. In this paper,
we provide the first algorithmic applications of tree-cut width to hard combinatorial problems. Tree-
cut width is known to be lower-bounded by a function of treewidth, but it can be much larger and
hence has the potential to facilitate the efficient solution of problems that are not known to be fixed-
parameter tractable (FPT) when parameterized by treewidth. We introduce the notion of nice tree-
cut decompositions and provide FPT algorithms for the showcase problems Capacitated Vertex
Cover, Capacitated Dominating Set, and Imbalance parameterized by the tree-cut width of an
input graph. On the other hand, we show that List Coloring, Precoloring Extension, and
Boolean CSP (the last parameterized by the tree-cut width of the incidence graph) are W[1]-hard
and hence unlikely to be FPT when parameterized by tree-cut width.
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1. Introduction. In their seminal work on graph minors, Robertson and Sey-
mour have shown that all finite graphs are not only well-quasi-ordered by the minor
relation but also by the immersion relation,1 the Graph Immersion Theorem [38].
This verified a conjecture by Nash-Williams [35, 36]. As a consequence of this theo-
rem, each graph class that is closed under taking immersions can be characterized by
a finite set of forbidden immersions, in analogy to a graph class closed under taking
minors being characterized by a finite set of forbidden minors.

In a recent paper [41], Wollan introduced the graph parameter tree-cut width,
which plays a similar role with respect to immersions as the graph parameter treewidth
plays with respect to minors. Wollan obtained an analogue to the Excluded Grid
Theorem for these notions: if a graph has bounded tree-cut width, then it does not
admit an immersion of the r-wall for arbitrarily large r [41, Theorem 15]. Marx and
Wollan [34] proved that for all n-vertex graphs H with maximum degree k and all
k-edge-connected graphs G, either H is an immersion of G, or G has tree-cut width
bounded by a function of k and n.

In this paper, we provide the first algorithmic applications of tree-cut width to
hard combinatorial problems. Tree-cut width is known to be lower-bounded by a
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function of treewidth, but it can be much larger than treewidth if the maximum de-
gree is unbounded (see Subsection 2.5 for a comparison of tree-cut width to other
parameters). Hence tree-cut width has the potential to facilitate the efficient solu-
tion of problems that are not known or not believed to be fixed-parameter tractable
(FPT) when parameterized by treewidth. For other problems, it might allow the
strengthening of parameterized hardness results.

We provide results for both possible outcomes: in Section 4, we provide FPT
algorithms for the showcase problems Capacitated Vertex Cover, Capacitated
Dominating Set, and Imbalance parameterized by the tree-cut width of an input
graph G, while in Section 5 we show that List Coloring, Precoloring Exten-
sion, and Boolean CSP parameterized by tree-cut width (or, for the third problem,
by the tree-cut width of the incidence graph) are not likely to be FPT. Table 1 provides
an overview of our results. The table shows how tree-cut width provides an interme-
diate measurement that allows us to push the frontier for fixed-parameter tractability
in some cases and to strengthen W[1]-hardness results in some other cases.

Table 1
Overview of results ( tw stands for treewidth).

Parameter

Problem tw tree-cut width max-degree and tw

Capacitated Vertex Cover W[1]-hard[8] FPT(Thm 4.9) FPT

Capacitated Dominating Set W[1]-hard[8] FPT(Thm 4.23) FPT

Imbalance Open[32] FPT(Thm 4.16) FPT[32]

List Coloring W[1]-hard[11] W[1]-hard(Thm 5.1) FPT(Obs 5)

Precoloring Extension W[1]-hard[11] W[1]-hard(Thm 5.1) FPT(Obs 5)

Boolean CSP W[1]-hard[39] W[1]-hard(Thm 5.2) FPT[39]

Our FPT algorithms assume that a suitable decomposition, specifically a so-called
tree-cut decomposition, is given as part of the input. Since the class of graphs of tree-
cut width at most k is closed under taking immersions [41, Lemma 10], the Graph
Immersion Theorem together with the fact that immersions testing is FPT [23] gives
rise to a nonuniform FPT algorithm for testing whether a graph has tree-cut width at
most k. Kim et al. [28] provide a uniform FPT algorithm that constructs a tree-cut
decomposition whose width is at most twice the optimal one. Effectively, this result
allows us to remove the condition that a tree-cut decomposition is supplied as part of
the input from our uniform FPT algorithms.

We briefly outline the methodology used to obtain our algorithmic results. As
a first step, in Section 3 we develop the notion of nice tree-cut decompositions2 and
show that every tree-cut decomposition can be transformed into a nice one in polyno-
mial time. These nice tree-cut decompositions are of independent interest since they
provide a means of simplifying the complex structure of tree-cut decompositions. In
Section 4, we introduce a general three-stage framework for designing FPT algorithms
on nice tree-cut decompositions and apply it to our problems. The crucial part of this
framework is the computation of the ``joins."" We show that the children of any node
in a nice tree-cut decomposition can be partitioned into (i) a bounded number of chil-
dren with complex connections to the remainder of the graph and (ii) a potentially
large set of children with only simple connections to the remainder of the graph. We

2We call them ``nice,"" as they serve a purpose similar to that of the nice tree decompositions [29],
although the definitions are completely unrelated.
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then process these by a combination of branching techniques applied to (i) and inte-
ger linear programming applied to (ii). The specifics of these procedures differ from
problem to problem.

2. Preliminaries.

2.1. Basic notation. We use standard terminology for graph theory; see, for
instance, [7]. All graphs except for those used to compute the torso-size in Subsec-
tion 2.4 are simple; the multigraphs used in Subsection 2.4 have loops, and each loop
increases the degree of the vertex by 2.

Given a graph G, we let V (G) denote its vertex set and E(G) its edge set. The
(open) neighborhood of a vertex x \in V (G) is the set \{ y \in V (G) : xy \in E(G)\} and is
denoted by NG(x). The closed neighborhood NG[x] of x is defined as NG(x)\cup \{ x\} . For
a vertex subset X, the (open) neighborhood of X is defined as

\bigcup 
x\in X NG(x) \setminus X and

denoted by NG(X). The set NG[X] refers to the closed neighborhood of X defined as
NG(X) \cup X. We refer to the set NG(V (G) \setminus X) as \partial G(X); this is the set of vertices
in X which have a neighbor in V (G) \setminus X. The degree of a vertex v in G is denoted
by degG(v), and a vertex of degree 1 is called a pendant vertex. When the graph we
refer to is clear, we drop the lower index G from the notation. We use [i] to denote
the set \{ 0, 1, . . . , i\} .

2.2. Parameterized complexity. A parameterized problem P is a subset of
\Sigma \ast \times \BbbN for some finite alphabet \Sigma . Let L \subseteq \Sigma \ast be a classical decision problem for
a finite alphabet, and let p be a nonnegative integer-valued function defined on \Sigma \ast .
Then L parameterized by p denotes the parameterized problem \{ (x, p(x)) | x \in L \} 
where x \in \Sigma \ast . For a problem instance (x, k) \in \Sigma \ast \times \BbbN , we call x the main part and
k the parameter. A parameterized problem P is fixed-parameter tractable (FPT) if
a given instance (x, k) can be solved in time f(k) \cdot | x| \scrO (1) where f is an arbitrary
computable function of k.

Parameterized complexity classes are defined with respect to fpt-reducibility. A
parameterized problem P is fpt-reducible to Q if in time f(k)\cdot | x| \scrO (1) one can transform
an instance (x, k) of P into an instance (x\prime , k\prime ) of Q such that (x, k) \in P if and only
if (x\prime , k\prime ) \in Q, and k\prime \leq g(k), where f and g are computable functions depending
only on k. We also use the related notion of FPT Turing reductions [14, 9, 6]. For
two parameterized problems P and Q, an FPT Turing reduction from P to Q is
an FPT algorithm which decides whether (x, k) is in P , provided that there is an
oracle access to Q for all instances (x\prime , k\prime ) of Q with k\prime \leq g(k) for some computable
function g. Informally speaking, a problem P admits an FPT Turing reduction to Q
if one can solve an instance of P by an FPT algorithm which has access to an oracle
which can solve Q but which may only be used for instances of Q whose parameter
is upper-bounded by a function of the parameter of P . Owing to the definition, if P
fpt-reduces or FPT Turing--reduces to Q and Q is FPT, then P is FPT as well.

Central to parameterized complexity is the following hierarchy of complexity
classes, defined by the closure of canonical problems under fpt-reductions:

\sansF \sansP \sansT \subseteq \sansW [1] \subseteq \sansW [2] \subseteq \cdot \cdot \cdot \subseteq \sansX \sansP .

All inclusions are believed to be strict. In particular, \sansF \sansP \sansT \not = \sansW [1] under the Expo-
nential Time Hypothesis [26].

The class \sansW [1] is the analogue of \sansN \sansP in parameterized complexity. A major goal
in parameterized complexity is to distinguish between parameterized problems which
are in \sansF \sansP \sansT and those which are\sansW [1]-hard, i.e., those to which every problem in\sansW [1] is
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fpt-reducible. There are many problems shown to be complete for\sansW [1], or equivalently
\sansW [1]-complete, including the Multi-Colored Clique (MCC) problem [9].

2.3. Integer linear programming. Our algorithms use an integer linear pro-
gramming (ILP) subroutine. ILP is a well-known framework for formulating problems
and a powerful tool for the development of fpt-algorithms for optimization problems.

Definition 2.1 (p-variable integer linear programming optimization). Let A \in 
\BbbZ q\times p, b \in \BbbZ q\times 1, and c \in \BbbZ 1\times p. The task is to find a vector x \in \BbbZ p\times 1 which minimizes
the objective function c\times x and satisfies all q inequalities given by A and b, specifically
satisfying A \cdot x \geq b. The number of variables p is the parameter.

Lenstra [31] showed that p-ILP, together with its optimization variant p-OPT-
ILP (defined above), is in FPT. His running time was subsequently improved by
Kannan [27] and Frank and Tardos [16] (see also [12]).

Theorem 2.2 ([31, 27, 16, 12]). p-OPT-ILP can be solved using \scrO (p2.5p+o(p) \cdot L)
arithmetic operations in space polynomial in L, with L being the number of bits in the
input.

2.4. Tree-cut width. The notion of tree-cut decompositions was first proposed
by Wollan [41]; see also [34]. A family of subsets X1, . . . , Xk of X is a near-partition

of X if they are pairwise disjoint and
\bigcup k

i=1 Xi = X, allowing the possibility of Xi = \emptyset .
Definition 2.3. A tree-cut decomposition of G is a pair (T,\scrX ) which consists

of a tree T and a near-partition \scrX = \{ Xt \subseteq V (G) : t \in V (T )\} of V (G). A set in the
family \scrX is called a bag of the tree-cut decomposition.

For any edge e = (u, v) of T , let \Upsilon u and \Upsilon v be the two connected components
in T  - e which contain u and v, respectively. Note that (

\bigcup 
t\in \Upsilon u

Xt,
\bigcup 

t\in \Upsilon v
Xt) is a

partition of V (G), and we use \sansc \sansu \sanst (e) to denote the set of edges with one endpoint
in each partition. A tree-cut decomposition is rooted if one of its nodes is called the
root, denoted by r. For any node t \in V (T ) \setminus \{ r\} , let e(t) be the unique edge incident
to t on the path between r and t. We define the adhesion of t (\sansa \sansd \sansh T (t) or \sansa \sansd \sansh (t) in
brief) as | \sansc \sansu \sanst (e(t))| ; if t is the root, we set \sansa \sansd \sansh T (t) = 0.

The torso of a tree-cut decomposition (T,\scrX ) at a node t, written as Ht, is the
graph obtained from G as follows. If T consists of a single node t, then the torso of
(T,\scrX ) at t is G. Otherwise, let T1, . . . , T\ell be the connected components of T  - t. For
each i = 1, . . . , \ell , the vertex set Zi of V (G) is defined as the set

\bigcup 
b\in V (Ti)

Xb. The
torso Ht at t is obtained from G by consolidating each vertex set Zi into a single
vertex zi. Here the operation of consolidating a vertex set Z into z is to substitute
Z by z in G, and for each edge e between Z and v \in V (G) \setminus Z, adding an edge zv in
the new graph. We note that this may create parallel edges.

The operation of suppressing a vertex v of degree at most 2 consists of deleting v
and, when the degree is two, adding an edge between the neighbors of v. Given a
graph G and X \subseteq V (G), let the 3-center of (G,X) be the unique graph obtained from
G by exhaustively suppressing vertices in V (G) \setminus X of degree at most two. Finally,
for a node t of T , we denote by \~Ht the 3-center of (Ht, Xt), where Ht is the torso of
(T,\scrX ) at t. Let the torso-size \sanst \sanso \sansr (t) denote | \~Ht| .

Definition 2.4. We let the width of a tree-cut decomposition (T,\scrX ) of G be
maxt\in V (T )\{ \sansa \sansd \sansh (t), \sanst \sanso \sansr (t)\} . The tree-cut width of G, or tcw(G) in short, is the mini-
mum width of (T,\scrX ) over all tree-cut decompositions (T,\scrX ) of G.

See Figure 1 for an example.
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We conclude this subsection with some notation related to rooted tree-cut decom-
positions. For t \in V (T )\setminus \{ r\} , we let pT (t) (or p(t) in brief) denote the parent of t in T .
For two distinct nodes t, t\prime \in V (T ), we say that t and t\prime are siblings if p(t) = p(t\prime ).
Given a tree node t, let Tt be the subtree of T rooted at t. Let Yt =

\bigcup 
b\in V (Tt)

Xb, and

let Gt denote the induced subgraph G[Yt]. The depth of a node t in T is the distance
of t from the root r. The vertices of \partial (Yt) are called the borders at node t. A node
t \not = r in a rooted tree-cut decomposition is thin if \sansa \sansd \sansh (t) \leq 2 and bold otherwise.

a
d

b c

e

f

g

d(2, 0)

a(3, 3)

b, c(3, 3)

e

(1, 2)

f

(1, 2)

g

(1, 1)

Fig. 1. A graph G and a width-3 tree-cut decomposition of G, including the torso-size (left
value) and adhesion (right value) of each node.

2.5. Relations to other width parameters. Here we review the relations
between the tree-cut width and other width parameters, specifically treewidth (tw),
pathwidth (pw) [7], and treedepth (td) [37]. We also compare to the maximum over
treewidth and maximum degree, which we refer to as degree treewidth (degtw).

Proposition 2.5 ([41, 34]). There exists a function h such that tw(G) \leq 
h(tcw(G)) and tcw(G) \leq 4degtw(G)2 for any graph G.

Below we provide a new explicit bound on the relationship between treewidth and
tree-cut width and show that it is incomparable with pathwidth and treedepth. Since
the proof of Proposition 2.6 below relies on Theorem 3.4 and notation introduced
later, we postpone its proof to Section 4.

Proposition 2.6. For any graph G, it holds that tw(G) \leq 2tcw(G)2+3tcw(G).

Proposition 2.7. There is a graph class \scrH 1 of bounded pathwidth and treedepth
but unbounded tree-cut width, and there is a graph class \scrH 2 of bounded tree-cut width
but unbounded pathwidth and treedepth.

Proof. Let \scrH 1 be the class of full ternary trees. It is easy to see that, for each
ternary tree Tn of depth n, pw(Tn) \in \Theta (n) and td(Tn) \in \Theta (n) [40]. On the other
hand, the tree-cut width of each Tn is bounded by a constant by Proposition 2.5.

Fig. 2. The graph S3.

Let \scrH 2 be the class of graphs Sn obtained from a star with n leaves z1, . . . , zn
by replacing each edge with n subdivided edges (see Figure 2 for an example). It is
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easy to see that pw(Sn) = 2 = td(Sn)  - 1. We verify that tcw(Sn) \geq n: suppose
tcw(Sn) \leq n  - 1. Then any two leaves zi and zj , i \not = j, must be contained in the
same bag in any tree-cut decomposition of width at most n - 1, as they are connected
by n edge-disjoint paths. This means there exists a bag t containing all zi's in any
such tree-cut decomposition, which, however, implies that \sanst \sanso \sansr (t) \geq n.

tree-cut widthpathwidth

treedepth

treewidth

degree treewidth

>>

>>

Fig. 3. Relationships between selected graph parameters (A>B means that every graph class of
bounded A is also of bounded B, but there are graph classes of bounded B which are not of bounded
A).

The relationships between graph parameters are illustrated in Figure 3.

3. Nice tree-cut decompositions. In this section, we introduce the notion
of a nice tree-cut decomposition and present an algorithm to transform any tree-cut
decomposition into a nice one without increasing the width. A tree-cut decomposition
(T,\scrX ) rooted at r is nice if it satisfies the following condition for every thin node
t \in V (T ): N(Yt) \cap 

\bigcup 
b is a sibling of t Yb = \emptyset .

The intuition behind nice tree-cut decompositions is that we restrict the neigh-
borhood of thin nodes in a way which facilitates dynamic programming.

Lemma 3.1. There exists a cubic-time algorithm which transforms any rooted
tree-cut decomposition (T,\scrX ) of G into a nice tree-cut decomposition of the same
graph without increasing its width or number of nodes.

The proof of Lemma 3.1 is based on the following considerations. Let (T,\scrX ) be
a rooted tree-cut decomposition of G whose width is at most w. We say that a node
t, t \not = r, is bad if it violates the above condition, i.e., \sansa \sansd \sansh (t) \leq 2 and there is a sibling
b of t such that N(Yt) \cap Yb \not = \emptyset . For a bad node t, we say that b is a bad neighbor of
t if N(Yt) \cap Xb \not = \emptyset and b is either a sibling of t or a descendant of a sibling of t. In
order to construct a tree-cut decomposition with the claimed property, we introduce
a rerouting operation in which we pick a bad node and relocate it, that is, change the
parent of the selected bad node.

Rerouting(t): Let t be a bad node, and let b be a bad neighbor of
t of maximum depth (resolve ties arbitrarily). Then remove the tree
edge e(t) from T and add a new tree edge \{ b, t\} .
Top-down Rerouting: as long as (T,\scrX ) is not a nice tree-cut
decomposition, pick any bad node t of minimum depth. Perform
Rerouting(t).

The selection criteria of a new parent in Rerouting(t) ensure that no new bad node
is created at the depth of p(t) or at a higher depth. This, together with the priority
given to a bad node of minimum depth in Top-down Rerouting, implies that the
tree gradually becomes free from bad nodes in a top-down manner.

Lemma 3.2. The procedure Rerouting(t) does not increase the width of the tree-
cut decomposition.
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Proof. Let b be the bad neighbor of t chosen by Rerouting(t), and let (T \prime ,\scrX )
be the tree-cut decomposition obtained from the tree-cut decomposition (T,\scrX ) by
Rerouting(t). We will show that for each z \in V (T ), it holds that

(1) \sansa \sansd \sansh T (z) \geq \sansa \sansd \sansh T \prime (z), and
(2) \sanst \sanso \sansr T (z) \geq \sanst \sanso \sansr T \prime (z),

from which the lemma follows.
Let us first consider Claim (1). Let P be the set of edges on the path in T

between b and p(t). Slightly abusing the notation, we also denote the path in T \prime 

connecting b and p(t) by P . Then, for any edge p of T \prime which is not on P , it holds
that \sansc \sansu \sanst T (p) = \sansc \sansu \sanst T \prime (p), and hence Claim (1) holds for all nodes z which are not on P
and also for z = p(t). As for the remaining nodes z on P , note that z \not = t and it holds
that every edge between Xb and Xt lies in \sansc \sansu \sanst T (e(z)) \setminus \sansc \sansu \sanst T \prime (e(z)). Furthermore, by
the thinness of t and the fact thatXt has a neighbor inXb, there may exist at most one
edge e\prime such that e\prime \in \sansc \sansu \sanst T \prime (e(z)) \setminus \sansc \sansu \sanst T (e(z)), and hence either \sansa \sansd \sansh T (z) = \sansa \sansd \sansh T \prime (z)
or \sansa \sansd \sansh T (z) = \sansa \sansd \sansh T \prime (z) + 1. Finally, note that \sansa \sansd \sansh T (t) = \sansa \sansd \sansh T \prime (t). Thus, Claim (1)
holds.

Now we consider Claim (2). From Claim (1) it follows that Claim (2) may only
be violated if NT (z) \subset NT \prime (z), which is only the case for z = b. However, it is easy
to verify that \sanst \sanso \sansr T (b) \geq \sanst \sanso \sansr T \prime (b) since \{ t\} = NT \prime (b) \setminus NT (b) and t is thin.

Lemma 3.3. Top-down Rerouting terminates after performing Rerouting
at most 2| T | times, where (T,\scrX ) is the initial tree-cut decomposition.

Proof. The key observation is that once a bad node t is rerouted to be a child of its
bad neighbor b, then b will remain as an ancestor of t in the tree-cut decompositions
obtained by the subsequent Top-down Rerouting and thus b will not become a
bad neighbor of t again. Indeed, the only way that b ceases to be a parent of t is
when t is rerouted again as a bad node. Yet, the bad neighbor of t is a descendant of
b and thus after the (second) rerouting t remains as a descendant of b. Furthermore,
this implies that once a bad node t stops being a bad node, t will never turn into a
bad node in the subsequent Top-down Rerouting.

To see that Top-down Rerouting terminates in at most 2| T | steps, consider
maintaining the following auxiliary binary relation over the nodes of T during the
procedure. Let (t, b) be a bad pair if t is a bad node of T , b is a bad neighbor of t, and
there is an edge of G between Xt and Xb. Let B be the binary relation containing all
bad pairs. We update the binary relation B as we perform Top-down Rerouting
so that B always consists of the bad pairs in the current tree-cut decomposition.
When a bad neighbor b of t becomes the parent of t by rerouting, we eliminate (t, b)
from B. Therefore, the number of pairs ever eliminated from B throughout Top-
down Rerouting provides an upper bound on the number of steps. Also the number
of pairs eliminated from B equals the number of pairs which were ever inserted into
B. The latter is bounded by 2| T | because the number of pairs which ever enter B with
the first entry t is at most two (due to \sansa \sansd \sansh (t) \leq 2) and any pair which was removed
from B will never enter it again. It follows that Top-down Rerouting terminates
in at most 2| T | steps.

Proof of Lemma 3.1. By definition, the output of Top-down Rerouting is a
nice tree-cut decomposition. The lemma then follows from Lemmas 3.3 and 3.2.

Theorem 3.4 below builds upon Lemma 3.1 by additionally giving a bound on the
size of the decomposition.
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Theorem 3.4. If tcw(G) = k, then there exists a nice tree-cut decomposition
(T,\scrX ) of G of width k with at most 2| V (G)| nodes. Furthermore, (T,\scrX ) can be
computed from any width-k tree-cut decomposition of G in quadratic time.

Proof. For brevity, we say that a node t is empty if Xt = \emptyset . Consider a rooted
width-k tree-cut decomposition (T,\scrX ) of G. We can assume that each leaf t of T is
nonempty since otherwise t may be deleted from T without changing the width.

Consider an empty nonleaf node t which has a single child t1. Let (T
\prime ,\scrX ) be the

tree-cut decomposition obtained by suppressing the node t. We claim that the width of
(T \prime ,\scrX ) is at most k. Indeed, \sansa \sansd \sansh T \prime (t1) = \sansa \sansd \sansh T (t1) = \sansa \sansd \sansh T (t) and \sansa \sansd \sansh T \prime (u) = \sansa \sansd \sansh T (u)
for every other node u \in V (T \prime ). Furthermore, \sanst \sanso \sansr T (t1) = \sanst \sanso \sansr T \prime (t1) and, for the parent
p of t (if it exists), we also have \sanst \sanso \sansr T (p) = \sanst \sanso \sansr T \prime (p). It is then easily observed that the
torso-size of all other nodes remains unchanged.

After exhaustively applying the contraction specified above, we arrive at a rooted
tree-cut decomposition (T \prime \prime ,\scrX \prime \prime ) ofG where each empty node has at least two children.
Hence, the number of empty nodes in T \prime \prime is upper-bounded by the number of nonempty
nodes, which implies that | T \prime \prime | \leq 2| V (G)| . (T \prime \prime ,\scrX \prime \prime ) can then be transformed into
a nice tree-cut decomposition without having to increase the number of nodes by
Lemma 3.1.

4. FPT agorithms. In this section, we will introduce a general dynamic pro-
gramming framework for the design of FPT algorithms on nice tree-cut decomposi-
tions. The framework is based on leaf-to-root processing of the decompositions and
can be divided into three basic steps:

\bullet Data table: definition of a data table \scrD T (t) (\scrD (t) in brief) for a problem \scrP 
associated with each node t of a nice tree-cut decomposition (T,\scrX ).

\bullet Initialization and termination: computation of \scrD (t) in FPT time for any
leaf t and solution of \scrP in FPT time if \scrD (r) is known for the root r.

\bullet Inductive step: an FPT algorithm for computing \scrD (t) for any node t when
\scrD (t\prime ) is known for every child t\prime of t.

If the above holds for a problem \scrP , then \scrP admits an FPT algorithm parameterized
by tree-cut width. The inductive step usually represents the most complex part
of the algorithm. Our notion of nice tree-cut decompositions provides an important
handle on this crucial step, as we formalize below.

Let t be a node in a nice tree-cut decomposition. We use Bt to denote the set
of thin children t\prime of t such that N(Yt\prime ) \subseteq Xt, and we let At contain every child of
t not in Bt. The following lemma is a crucial component of our algorithms since it
bounds the number of children with nontrivial edge connections to other parts of the
decomposition.

Lemma 4.1. Let t be a node in a nice tree-cut decomposition of width k. Then
| At| \leq 2k + 1.

Proof. We partition the nodes in At into two sets: A\prime 
t contains all thin nodes in

At, and A\prime \prime 
t contains all the bold nodes in At. We claim that | A\prime 

t| \leq k and | A\prime \prime 
t | \leq k+1,

which will establish the statement. The inequality | A\prime 
t| \leq k is easy to see. Indeed,

recall that N(Yb) \subseteq Xt\cup (V (G)\setminus Yt) for every b \in A\prime 
t since (T,\scrX ) is nice. Furthermore,

each b \in A\prime 
t satisfies N(Yb) \cap (V (G) \setminus Yt) \not = \emptyset since otherwise b would have been

included in Bt. Therefore, each b \in A\prime 
t contributes at least one to the value \sansa \sansd \sansh (t).

From \sansa \sansd \sansh (t) \leq k, the inequality follows.
To prove | A\prime \prime 

t | \leq k + 1, suppose | A\prime \prime 
t | = \ell \geq k + 2 for the sake of contradic-

tion. Consider the torso Ht at t. For each b \in At \cup Bt, let zb be the vertex of
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Ht obtained by consolidating the vertex set Yb in G and let ztop be the vertex of
Ht obtained by consolidating the vertex set V (G) \setminus Yt. Fix a sequence of suppress-
ing vertices of degree at most two which yields a sequence of intermediate graphs

Ht = H
(0)
t , H

(1)
t , . . . ,H

(m)
t = \~Ht. In this sequence, it is assumed that we suppress a

vertex zb with b \in A\prime 
t \cup Bt, namely which represents a thin node, whenever this is

possible.
Observe that no vertex representing a bold node (i.e., a node of A\prime \prime 

t ) is adjacent
with a vertex representing a thin node (i.e., a node of A\prime 

t\cup Bt) in any graph appearing

in the suppression sequence. This observation is valid on H
(0)
t = Ht because the

tree-cut decomposition at hand is nice and thus in Ht the vertex set \{ ztop\} \cup Xt

separates the vertices obtained from A\prime 
t\cup Bt and those obtained from A\prime \prime 

t . By induction
hypothesis, if a vertex zq representing a bold node q becomes adjacent with a vertex

zq\prime representing a thin node first time in the suppression sequence, say at H
(\ell )
t , this is

due to the suppression of ztop in H
(\ell  - 1)
t . Then, however, we should have suppressed

zq\prime in H
(\ell )
t before ztop because zq\prime has degree at most two in H

(\ell )
t (suppression does

not increase the degree of any vertex) and we prioritize suppressing zq\prime over ztop.
Let us choose b\prime , b\prime \prime \in A\prime \prime 

t so that zb\prime and zb\prime \prime are the first and the second (distinct)
vertices among zb for all b \in A\prime \prime 

t whose degree strictly decreases in this sequence. Such
b\prime and b\prime \prime must exist since at least two vertices zb, where b \in A\prime \prime 

t , do not appear in
\~Ht, and any zb may only be removed by suppression. Let a\prime , a\prime \prime \in At \cup Bt \cup \{ top\} ,
and let 0 \leq i < j \leq m be such that the first decrease in the degrees of zb\prime and zb\prime \prime 

is due to the suppressions of za\prime \in V (H
(i)
t ) and of za\prime \prime \in V (H

(j)
t ). We observe that

the respective degree of za\prime and za\prime \prime are exactly one in V (H
(i)
t ) and in V (H

(j)
t ) since

otherwise the degree of zb\prime and zb\prime \prime would not decrease. Moreover, za\prime and zb\prime are

adjacent in V (H
(i)
t ), and za\prime \prime and zb\prime \prime are adjacent in V (H

(j)
t )

By the previous observation that zb\prime is nonadjacent with any vertex representing a

thin node in V (H
(i)
t ) and V (H

(j)
t ), we conclude that a\prime = top. When ztop is suppressed

in V (H
(i)
t ) and accordingly decreases the degree of zb\prime , this means that in V (H

(i)
t ) all

the vertices obtained from thin nodes A\prime 
t \cup Bt have been eliminated in the previous

steps. Therefore, all vertices in V (H
(i+1)
t )\setminus Xt are those obtained from A\prime \prime 

t . It follows
that a\prime \prime = b\prime .

Notice that the suppressing of za\prime , namely ztop, decreases the degree of zb\prime by

one. That is, the degree of zb\prime in H
(i+1)
t remains at least two. Now that suppressing

zb\prime in H
(j)
t strictly decreases the degree of zb\prime \prime , the degree of zb\prime in H(j) equals one.

This implies that there is a vertex, say za\ast , whose suppression further decreased the

degree of zb\prime between the sequence of H
(i+1)
t and H

(j)
t . However, then a\ast \in A\prime \prime 

t , which

contradicts our choice of b\prime \prime and H
(j)
t . This proves | A\prime \prime 

t | = \ell \leq k + 1.

In the remainder of this section, we employ this high-level framework on the
design of FPT algorithms parameterized by tree-cut width for the following problems:
Capacitated Vertex Cover, Imbalance, and Capacitated Dominating Set.

4.1. Capacitated vertex cover. The Capacitated Vertex Cover is a gen-
eralization of the classical Vertex Cover problem which was originally introduced
and studied in the classical setting [5, 24]. More recently, its parameterized com-
plexity has also been studied in combination with various parameters [25, 8]. Unlike
its uncapacitated variant, Capacitated Vertex Cover is known to be W[1]-hard
when parameterized by treewidth [8].
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A capacitated graph is a graph G = (V,E) together with a capacity function
c : V \rightarrow \BbbN 0. Then we call C \subseteq V a capacitated vertex cover of G if there exists a
mapping f : E \rightarrow C which maps every edge to one of its endpoints so that the total
number of edges mapped by f to any v \in C does not exceed c(v). We say that f
witnesses C.

tcw-Capacitated Vertex Cover (tcw-CVC)
Instance: A capacitated graph G on n vertices together with a
width-k tree-cut decomposition (T,\scrX ) of G, and an integer d.
Parameter : k.
Task : Decide whether there exists a capacitated vertex cover C of
G containing at most d vertices.

4.1.1. Data table, initialization, and termination. Informally, we store for
each node t two pieces of information: the ``cost"" of covering all edges inside G[Yt] and
how much more it would cost to additionally cover edges incident to Yt. We formalize
below.

For any graph G = (V,E) and U \subseteq V , we let \sansc \sansv \sansc (G,U) denote the minimum car-
dinality of a capacitated vertex cover C \subseteq U of G; if no such capacitated vertex cover
exists, we instead let \sansc \sansv \sansc (G,U) = \infty . For any node t in a nice tree-cut decomposition
of a capacitated graph G = (V,E), we then use at to denote \sansc \sansv \sansc (G[Yt], Yt).

Let Et denote the set of all edges with both endpoints in Yt, and let Kt denote
the set of edges with exactly one endpoint in Yt. Then \scrQ t = \{ H = (Yt \cup N(Yt), Et \cup 
E\prime ) | E\prime \subseteq Kt \} . Finally, we define \beta t : \scrQ t \rightarrow \BbbN 0 \cup \{ \infty \} such that for every H in \scrQ t,
\beta t(H) = \sansc \sansv \sansc (H,Yt) - at (whereas \infty acts as an absorbing element and \infty  - \infty = \infty ).

Definition 4.2. \scrD (t) = (at, \beta t).

Next, we show that the number of possible functions \beta t is bounded. To this end,
we make use of the following lemma.

Lemma 4.3. Let G = (V,E) be any capacitated graph, and let G\prime be obtained from
G by adding a pendant vertex x (with arbitrary capacity). Let U \subseteq V . Then either
\sansc \sansv \sansc (G\prime , U) = \sansc \sansv \sansc (G,U) or \sansc \sansv \sansc (G\prime , U) = \sansc \sansv \sansc (G,U) + 1 or \sansc \sansv \sansc (G\prime , U) = \infty .

Proof. We use induction on | E| . For | E| = 0, the lemma is easily seen to be true,
as \sansc \sansv \sansc (G,U) = 0 and \sansc \sansv \sansc (G\prime , U) \in \{ 0, 1,\infty \} .

For the inductive step, let \{ z\} = N(x), c = \sansc \sansv \sansc (G,U), and c\prime = \sansc \sansv \sansc (G\prime , U). If
c = \infty , then clearly also c\prime = \infty , so we may assume that c \not = \infty ; let C \subseteq U be a
capacitated vertex cover of G of cardinality c. We distinguish the following cases:

1. if z \not \in U , then c\prime = \infty ;
2. if c(z) = 0, then c\prime = \infty ;
3. otherwise, if z \not \in C, then C \prime = C \cup \{ z\} is a capacitated vertex cover of G\prime 

and thus c \leq c\prime \leq c+ 1.
The only case that remains is z \in C. It could occur that C itself witnesses c\prime = c, i.e.,
it is possible to allocate edges to C so that z has free capacity for the new edge xz.
If z does not have free capacity to accommodate xz within C but c\prime \not = \infty , then there
must exist a capacitated vertex cover C \prime which ``frees up"" at least one edge which is
mapped to z in C; specifically, there must exist an edge e = zq which is allocated to
z in C and to q in C \prime . Notice that if q \not \in C, we can add q to C and allocate qz to q,
hence allowing xz to be allocated to z; the lemma would hold. Thus, we may assume
q \in C.
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We now construct a capacitated graph H from G, the capacitated vertex cover
C, and an arbitrary witness f of C as follows. H is obtained from G - z by attaching
a new pendant vertex (with capacity 0) to every v \in V (H) such that v \in N(z)
and f(vz) = v. Since at least one neighbor of z, specifically q, will not receive a
new pendant vertex in this construction, it follows that | E(H)| < | E(G)| . Now we
apply the inductive assumption on the capacitated graph H, the capacitated graph
H \prime obtained from H by adding a pendant vertex z\prime adjacent to q, and UH = U \setminus \{ z\} .
Observe that c = \sansc \sansv \sansc (H,UH) + 1 (since one can add z to any capacitated vertex
cover of size \sansc \sansv \sansc (H,UH) and obtain a capacitated vertex cover for G). Furthermore,
C \prime \cup (N(z)\cap U)\setminus \{ z\} witnesses \sansc \sansv \sansc (H \prime , UH) \not = \infty , and so there are two final possibilities
to consider:

1. \sansc \sansv \sansc (H \prime , UH) = \sansc \sansv \sansc (H,UH), in which case c\prime = c since we can allocate the
edge zq to q in G without increasing the size of the vertex cover.

2. \sansc \sansv \sansc (H \prime , UH) = \sansc \sansv \sansc (H,UH) + 1, in which case c\prime = c + 1 = \sansc \sansv \sansc (H \prime , UH) + 1
since we can allocate the edge zq to q in G at a cost of 1 additional vertex in
the cover.

To conclude the proof, we make explicit the construction of a capacitated vertex cover
demonstrating the above claims. We start with a capacitated vertex cover K of H \prime 

witnessing \sansc \sansv \sansc (H \prime , UH) = \sansc \sansv \sansc (H,UH) (or \sansc \sansv \sansc (H \prime , UH) = \sansc \sansv \sansc (H,UH)+1) and add to it
the vertex z. As for the allocation of edges, we retain the same allocation of all edges
not incident to z as in K, allocate zq to q (this is made possible by the construction of
H \prime ), and use f to allocate all the remaining edges incident to z (this is made possible
by the pendant vertices added during the construction of H). By ``saving"" on the
edge zq, it is now possible to accommodate the new edge xz into z.

Lemma 4.4. Let k be the width of a nice tree-cut decomposition (T,\scrX ) of G, and
let t be any node of T . Then \beta t(H) \in [k] \cup \{ \infty \} for every H \in \scrQ t.

Proof. We actually prove a slightly stronger claim; for every E\prime \subseteq Kt, \beta t(H) \in 
[| E\prime | ] \cup \infty . Notice that | Kt| = \sansa \sansd \sansh (t) and hence | E\prime | \leq k. We proceed by induction;
for | E\prime | = 0, the claim holds by definition.

For the inductive step, let E\prime 
1 = E\prime 

0\cup \{ e\} and e = ab, where a is a vertex in Yt and
b is a neighbor of a in N(Yt), and let H0 and H1 be the graphs (Yt \cup N(Yt), Et \cup E\prime 

0)
and (Yt\cup N(Yt), Et\cup E\prime 

1), respectively. The inductive claim then follows directly from
Lemma 4.3 by making the pendant vertex x adjacent to a in H0; indeed, observe that
adding an edge between a and b has precisely the same effect on the capacitated vertex
set as adding a new pendant vertex to a (since we restrict the capacitated vertex set
to Yt).

Since the graphs H \in \scrQ t that appear in the domain of \beta t can be uniquely repre-
sented by the choice of E\prime \subseteq Kt, we can store \beta t as a subset of 2Kt \times ([k] \cup \{ \infty \} ).

4.1.2. Initialization and termination.

Lemma 4.5. Let t be a leaf in a nice tree-cut decomposition (T,\scrX ) of a capaci-
tated graph G, and let k be the width of (T,\scrX ). Then \scrD (t) can be computed in time
2\scrO (k\cdot log k).

Proof. at = \sansc \sansv \sansc (G[Yt], Yt) can be computed in time 2\scrO (k\cdot log k) by known results [8]
since | Yt| \leq k. Furthermore, | Kt| \leq k since \sansa \sansd \sansh (t) \leq k, and so | \scrQ t| \leq 2k. What
remains is to compute \beta t by determining \sansc \sansv \sansc (H,Yt) for each H in \scrQ t; for each H, this
can be done by using the same 2\scrO (k\cdot log k) algorithm for the capacitated vertex cover
problem while setting the capacities of vertices outside of Yt to 0. In this way, we can
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compute \beta t in time 2k \cdot 2\scrO (k\cdot log k), from which the lemma follows.

Observation 1. Let (G, d) be an instance of tcw-CVC, and let r be the root of a
nice tree-cut decomposition of G. Then (G, d) is a yes-instance if and only if ar \leq d.

4.1.3. Inductive step. Our next and final goal is to show how to compute \scrD (t)
of a node t once we have \scrD (t\prime ) for each child t\prime of t. We formalize this problem below.

CVC Join
Instance: A tcw-CVC instance consisting of a capacitated graph
G and an integer d, a nonleaf node t of a width-k nice tree-cut
decomposition (T,\scrX ) of G, and \scrD (t\prime ) for each child t\prime of t.
Parameter: k.
Task : Compute \scrD (t).

We use a two-step approach to solve CVC Join. First, we reduce the problem to a
simplified version, which we call Reduced CVC Join and which has the following
properties: At is empty, \sansa \sansd \sansh (t) = 0, and G[Xt] is edgeless. Recall that Bt is the set of
all thin children t\prime of node t with N(Yt\prime ) \subseteq Xt and At denotes the set of the children
of t not in Bt.

For the following lemma, we remark that the linear dependency on n is merely
caused by the fact that the instances of Reduced CVC Join obtained in the Turing
reduction are of size \scrO (n). It is conceivable that this linear factor could be avoided
with the use of a carefully designed data structure.

Lemma 4.6. There is an FPT Turing reduction from CVC Join to 2\scrO (k2) in-
stances of Reduced CVC Join which runs in time 2\scrO (k2) \cdot n.

Proof. Let Ex = \{ ab \in E | a, b \in Xt \} and E1 = \{ ab \in E | \exists ta \in At : a \in Yta , b \in 
(Yt \setminus Yta) \} ; in other words, E1 contains edges in Yt which contribute to the adhesion
of some node of At. Let E

\prime denote the set of edges with only one endpoint in Yt. By
Lemma 4.1 and the bound of k on the width of (T,\scrX ), it follows that | E1| \leq 2k2 + k
and | Ex| \leq k2. Let \scrF contain all mappings of edges from Ex \cup E1 \cup E\prime to one of their
endpoints; formally, \scrF = \{ f : (Ex \cup E1 \cup E\prime ) \rightarrow V | f(ab) = a or f(ab) = b \} . Notice

that | \scrF | \leq 2\scrO (k2).
For any f \in \scrF and t\prime \in At\cup \{ t\} , we define the completion Uf,t\prime as the graph G[Yt\prime ]

together with the vertices N(Yt\prime ) and each edge e such that f(e) \in Yt\prime ; informally,
f designates how we want to cover our edges, and the completion is the relevant
subproblem of covering edges in such a way within Yt\prime . Let X(f) = \{ v \in Xt | \exists e :
f(e) = v \} . For each f , we compute \sansA \sansc \sanso \sanss \sanst (f) =

\sum 
t\prime \in At

\beta t\prime (Uf,t\prime ) + at\prime ; informally,
\sansA \sansc \sanso \sanss \sanst contains the minimum cost of a capacitated vertex cover in At complying with
f (obtained from information stored in the data tables for At), while X(f) contains
vertices of Xt which must be in the capacitated vertex cover for this choice of f .

We now construct an instance If of Reduced CVC Join for each f as follows.
We remove all nodes in At, remove all edges with an endpoint outside of Yt, and
remove all edges with both endpoints in Xt. We add a single child t\prime \prime with \sansa \sansd \sansh (t\prime \prime ) = 0
and \scrD (t\prime \prime ) = \{ \sansA \sansc \sanso \sanss \sanst (f), \{ G[Yt\prime \prime ] \mapsto \rightarrow 0\} \} (to carry over information of the cost of all
forgotten nodes in At), and for each v \in X(f) we increase the capacity of v by 1
and add a pendant vertex v\prime adjacent to v with capacity 0 (ensuring that v must be
taken into the vertex cover in If ). Then for each v \in X(f) we reduce its capacity by
the number of edges mapped to v by f (if this would reduce its capacity to negative
values, we set its capacity to 0 and attach a 0-capacity pendant vertex to v; this
ensures the nonexistence of a capacitated vertex cover for If ). We adapt the tree-cut
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decomposition accordingly by adding the new pendant vertices into new bags in Bt.
Notice that If now has the desired properties of Reduced CVC Join.

Since its adhesion is zero, the solution of If contains a single tuple (aIf , \{ Uf,t \mapsto \rightarrow 
0\} ). It remains to show how one can use this tuple to obtain the records for the original
instance of CVC Join. For each graph H in \scrQ t, we apply brute-force enumeration
over \scrF to compute the set \scrF H of all elements of \scrF such that Uf,t

\sim = H (intuitively, this
corresponds to identifying all the ways for covering the missing edges). We proceed
by selecting a function f \in \scrF H such that aIf is minimized and denote this aIf by
\sansc \sanso \sanss \sanst (H). For H = G[Yt], we then set at = \sansc \sanso \sanss \sanst (H), and we construct \beta t by setting,
for each H in \scrQ t and each Uf,t , \beta t : H \mapsto \rightarrow (\sansc \sanso \sanss \sanst (H) - at).

To argue the claimed running time, observe that one can compute the values of
\sansA \sansc \sanso \sanss \sanst (f) for all f \in \scrF in time 2\scrO (k2) and that the instance If for each f \in \scrF obtained
by trivially modifying the graph and the tree-cut decomposition can be constructed
in \scrO (n) time.

We argue the correctness of our reduction by arguing the correctness of the com-
puted value at; the same argument then applies analogously also to the correctness
of the construction of \beta t. Assume that the value at computed above is greater than
\sansc \sansv \sansc (G[Yt], Yt) = a\prime . Then there exists a capacitated vertex cover C of G[Yt] of cardi-
nality a\prime and a mapping of edges fC which witnesses C. Let f \in \scrF be the (unique)
restriction of fC to the set of edges mapped by functions in \scrF , and for each t\prime \in At we
let Ct\prime be the subset of C which intersects Yt\prime . By the correctness of the data tables
for At, it holds that

\sum 
t\prime \in At

| Ct\prime | = \sansA \sansc \sanso \sanss \sanst (f). Furthermore, each v \in X(f) must occur
in C by fC , and also in any solution to the instance If due to the added pendant
vertex. We would hence necessarily conclude that aIf > C \setminus (X(f) \cup 

\bigcup 
t\prime \in At

Ct\prime ),
which, however, contradicts the correctness of the solution to If .

On the other hand, assume that at < a\prime . Then we can construct a capacitated
vertex cover C of G[Yt] of cardinality at from X(f), f, and the partial vertex covers
which witness the correctness of the solution to If .

Lemma 4.7. There exists an algorithm which solves Reduced CVC Join in time
k\scrO (k2) \cdot (| Bt| + 1).

Proof. Since Kt = \emptyset , it suffices to compute \sansc \sansv \sansc (G[Yt], Yt) and output \scrD (t) =
\{ \sansc \sansv \sansc (G[Yt], Yt), G[Yt] \mapsto \rightarrow 0\} . We branch over all the at most 2k possible sets X \prime \subseteq Xt,
representing possible intersections of the capacitated vertex cover with Xt. For each
such X \prime , we construct an ILP formulation which computes the minimum capacitated
vertex cover in G[Yt] which intersects with Xt in X \prime . We begin by having a constant
cx contain the capacity of x for every x \in X \prime and let cx = 0 for x \in Xt \setminus X \prime .

We define a relation\equiv onBt. For t1, t2 \in Bt, we say t1 \equiv t2 if (i)N(Yt1) = N(Yt2),
and (ii) there exists a bijection \phi from \scrQ t1 to \scrQ t2 which satisfies the following two
conditions for every H1 \in \scrQ t1 and H2 \in \scrQ t2 with H2 = \phi (H1):

1. degH1
(x) = degH2

(x) for every x \in N(Yt1).
2. \beta t1(H1) = \beta t2(H2).

It is easy to see that \equiv defines an equivalence relation. We denote by [\equiv ] the
set of equivalence classes of \equiv and note that | [\equiv ]| \leq \scrO (k2). Indeed, there are only
\scrO (k2) subsets ofXt containing at most two vertices. Moreover, Lemma 4.3 guarantees
\beta t(H) \in [2]\cup \{ \infty \} for H \in \scrQ t for any t \in Bt. Hence, the number of ways that H \in \scrQ t

can be mapped to \BbbN 0 under \beta t is bounded by a constant, and thus | [\equiv ]| \leq \scrO (k2).
Given an equivalence class \nu \in [\equiv ], let us fix a node t\nu \in \nu and let H\nu be the

graph (Yt\nu \cup N(Yt\nu ), Et\nu \cup Kt\nu ). For H \in \scrQ t\nu , we create a variable zH . This variable
shall denote the number of nodes t\prime in \nu such that among the edges in Kt\prime exactly
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degH(x) many edges can be covered by Yt\prime for each x \in N(Yt\prime ) while incurring the
cost \beta t\nu (H). Our ILP instance is as follows, for which an informal explanation is
added in the subsequent paragraphs:

minimize
\sum 

H\in \scrQ t\nu ,t\nu \in \nu ,\nu \in [\equiv ]

\beta t\nu (H) \cdot zH + | X \prime | 

subject to
\sum 

H\in \scrQ t\nu ,t\nu \in \nu 

zH = | \nu | \forall \nu \in [\equiv ],\sum 
H\in \scrQ t\nu 

(degH\nu (x) - degH(x)) \cdot zH \leq cx \forall x \in Xt,

where zH is a nonnegative integer variable for every H \in \scrQ t\nu , \nu \in [\equiv ].
Notice that due to the definition of \equiv any two nodes t1, t2 \in \nu covering the same

number of edges incident with x \in N(Yt\nu ) will incur the same cost. This justifies
expressing the cost \sansc \sansv \sansc (G[Yt], Yt) with an objective function as above. Since | \scrQ t\nu | \leq 4
and we create the variables zH for each H \in \scrQ t\nu for each equivalence class \nu \in [\equiv ],
the total number of integer variables created is in \scrO (k2), and so an optimal solution

can be obtained by Theorem 2.2 in time k\scrO (k2) \cdot | Bt| .
Overall, the formulation relies on grouping interchangeable children into equiv-

alence classes and uses variables to denote the number of children in each class for
which we use the same assignment of edges between Xt and Yt\prime . For instance, if there
is only a single edge to a specific x \in Xt, variable zH\alpha (with H\alpha being the graph
containing the edge incident to x) contains the number of children where the edge is
mapped to x while zH\beta 

(with H\beta being the graph without the edge incident to x) con-
tains the number of children where this edge is mapped to Yt\prime . Constraint 1 ensures
that the variables indeed capture a partition of children in i, while constraint 2 en-
sures that the capacities in Xt are not exceeded. The instance minimizes the increase
in cardinality of capacitated vertex covers over all Yt\prime by multiplying the number of
children with their respective value of \beta based on the chosen assignment of edges.

Let \scrI be the minimum value of
\sum 

H\in \scrQ t\nu ,\nu \in [\equiv ] \beta t\nu (H) \cdot zH + | X \prime | over all ILP
instances described above; if no solution exists or if a solution is larger than the
preset (large) constant representing \beta t\prime (H) = \infty , then we set \scrI = \infty . We argue that
\sansc \sansv \sansc (G[Yt], Yt) =

\sum 
t\prime \in Bt

at\prime + \scrI , from which the proof follows.
First, consider for a contradiction that \sansc \sansv \sansc (G[Yt], Yt) <

\sum 
t\prime \in Bt

at\prime + \scrI . Then
there exists a capacitated vertex cover in G[Yt] of cardinality \sansc \sansv \sansc (G[Yt]). Let X \prime be
its intersection with Xt, and let f be its witness function. Let Uf,t\prime be the graph
on the vertex set Yt\prime \cup N(Yt\prime ) with an edge set Et\prime \cup \{ e \in Kt\prime : f(e) \in Yt\prime \} . Note
that Uf,t\prime \in \scrQ t\prime . For each equivalence class \nu \in [\equiv ], we again partition \nu into sets so
that t1, t2 \in \nu belong to the same set if and only if \phi (Uf,t1) = Uf,t2 . Here \phi is the
bijection between any two nodes t1, t2 \in \nu ensuring the equivalence of t1 and t2. By
fixing a node t\nu \in \nu , each set can be uniquely ``represented"" by some H \in \scrQ t\nu due
to the bijective mapping. For each H \in \scrQ t\nu , let \~zH denote the cardinality of the set
represented by H. One can check that zH = \~zH , \forall H \in \scrQ t\nu ,\forall \nu \in [\equiv ], is a feasible
solution for the above ILP yielding an objective value \sansc \sansv \sansc (G[Yt], Yt), contradicting the
optimality of \scrI .

On the other hand, consider the case \sansc \sansv \sansc (G[Yt], Yt) >
\sum 

t\prime \in Bt
at\prime + \scrI . Then one

could construct a better capacitated vertex cover for G[Yt] by having a capacitated
vertex cover intersect Xt in the X \prime used to obtain \scrI and using a witness function f
which maps edges between Xt and Bt based on the partition of the equivalence classes
discovered by the ILP formulation in order to reach \scrI . Again, one can check that the
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resulting capacitated vertex cover would have cardinality exactly
\sum 

H\in \scrQ t\nu ,\nu \in [\equiv ] \beta (H)\cdot 
zH + | X \prime | .

By combining Lemma 4.6 with Lemma 4.7, we obtain the following.

Corollary 4.8. There exists an algorithm which solves CVC Join in time
k\scrO (k2) \cdot n.

Theorem 4.9. tcw-CVC can be solved in time k\scrO (k2) \cdot n2.

Proof. We use Theorem 3.4 to transform (T,\scrX ) into a nice tree-cut decomposition
with at most 2n nodes. We then use Lemma 4.5 to compute \scrD (t) for each leaf t of T
and proceed by computing \scrD (t) for nodes in a bottom-to-top fashion by Corollary 4.8.

The total running time per node is at most n \cdot k\scrO (k2), and there are \scrO (n) many nodes.
Once we obtain \scrD (r), we can correctly output by Observation 1.

4.2. Imbalance. The Imbalance problem was introduced by Biedl et al. [1].
It was shown to be equivalent to Graph Cleaning [21] and was studied in the pa-
rameterized setting [32, 12]. The problem is FPT when parameterized by degtw [32].
In this subsection, we prove that Imbalance remains FPT even when parameterized
by the more general tree-cut width.

Given a linear order R of vertices in a graph G, let \vartriangleleft R(v) and \vartriangleright R(v) denote
the number of neighbors of v which occur, respectively, before (``to the left of"") v
in R and after (``to the right of"") v in R. The imbalance of a vertex v, denoted by
\sansi \sansm \sansb R(v), is then defined as the absolute value of \vartriangleright R(v)  - \vartriangleleft R(v), and the imbalance
of R, denoted by \sansi \sansm \sansb R, is equal to

\sum 
v\in V (G) \sansi \sansm \sansb R(v).

tcw-Imbalance (tcw-IMB)
Instance: An n-vertex graph G = (V,E) with | V | = n, a width-k
tree-cut decomposition (T,\scrX ) of G, and an integer d.
Parameter : k.
Task : Decide whether there exists a linear order R of V such that
\sansi \sansm \sansb R \leq d.

4.2.1. Data table. Let A \subseteq B be sets, and let fA, fB be linear orders of A,B,
respectively. We say that fA is a linear suborder of fB if the elements of A occur in the
same order in fA as in fB (similarly, fB is a linear superorder of fA). The information
we remember in our data tables can be informally summarized as follows. First, we
remember the minimum imbalance which can be achieved by any linear order in Yt.
Second, for each linear order f of vertices which have neighbors outside of Yt and for a
restriction on the imbalance on these vertices, we remember how much the imbalance
grows when considering only linear superorders of f which satisfy these restrictions.
The crucial ingredient is that the restrictions mentioned above are ``weak,"" and we
only care about linear superorders of f which do not increase over the optimum ``too
much""; this allows the second, crucial part of our data tables to remain bounded in k.

For brevity, for v \in Yt we let \sansa \sansd \sansh t(v) denote | NV \setminus Yt
(v)| , i.e., the number of

neighbors of v outside Yt. Let f be a linear order of \partial (Yt), and let \tau be a mapping
such that \tau (v) \in \{  - \infty , - \sansa \sansd \sansh t(v), - \sansa \sansd \sansh t(v) + 1, . . . , \sansa \sansd \sansh t(v),\infty \} for every v \in \partial (Yt).
We then call a tuple of the form (f, \tau ) an extract (of Yt or, simply put, of t) and let \scrL t

denote the set of all extracts (for nodes with adhesion at most k) of t; when the node
t is clear from the context, we will use \scrL as shorthand for \scrL t. The extract \alpha = (f, \tau )
is realized in Yt (by R) if there exists a linear order R of Yt such that the following
hold:
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1. R is a linear superorder of f , and
2. for each v \in \partial (Yt) we have the following:

\bullet if \tau (v) \in \BbbZ , then \sansi \sansm \sansb R(v) = \tau (v);
\bullet if \tau (v) =  - \infty , then \vartriangleright R(v) - \vartriangleleft R(v) \leq  - \sansa \sansd \sansh t(v) - 1;
\bullet if \tau (v) = \infty , then \vartriangleright R(v) - \vartriangleleft R(v) \geq \sansa \sansd \sansh t(v) + 1.

The cost of a realized extract \alpha , denoted by c(\alpha ), is the minimum value of\sum 
v\in Yt

\sansi \sansm \sansb R(v) over all R which realize \alpha (notice that edges with only one endpoint
in Yt do not contribute to c(\alpha )). If \alpha is not realized in Yt, we let c(\alpha ) = \infty . We store
the following information in our data table: the cost of a minimum extract realized
in Yt, and the cost of every extract whose cost is not much larger than the minimum
cost. We formalize below; let et denote the number of edges with one endpoint in Yt.

Definition 4.10. \scrD (t) = (at, \beta t), where at = min\alpha \in \scrL c(\alpha ) and \beta t : \scrL \rightarrow \BbbN 0 \cup 
\{ \infty \} such that \beta t(\alpha ) = c(\alpha ) - at if c(\alpha ) - at \leq 4et and \beta t(\alpha ) = \infty otherwise.

Notice that we are deliberately discarding information about the cost of extracts
whose cost exceeds the optimum by over 4et. We justify this below.

Lemma 4.11. Let G = (V,E) be a graph, and let t be a node in a width-k tree-
cut decomposition (T,\scrX ) of G. Let \alpha 1, \alpha 2 be two extracts of Yt such that c(\alpha 1) >
4et + c(\alpha 2). Then, for any linear order R1 of Yt which realizes \alpha 1 and any linear
superorder R (over V ) of R1, it holds that there exists a linear order R\prime over V such
that \sansi \sansm \sansb R\prime < \sansi \sansm \sansb R.

Proof. Consider any linear order R2 (over Yt) which realizes \alpha 2 of cost c(\alpha 2);
since c(\alpha 2) \not = \infty , there must exist at least one such R2. Let R be any linear order
constructed above; clearly, there exists a unique linear order R\ast over V \setminus Yt which is
a linear suborder of R. Consider the linear order R\prime obtained by the concatenation
of R2 and R\ast . Let I\ast denote the imbalance of R\ast in G[V \setminus Yt], and recall that c(\alpha 2)
denotes the imbalance of R\prime in G[Yt]. Since the addition of et edges can only increase
or decrease the imbalance by at most 2et, we obtain that \sansi \sansm \sansb R\prime \leq I\ast + c(\alpha 2) + 2et
and \sansi \sansm \sansb R \geq I\ast + c(\alpha 1)  - 2et. Altogether we conclude \sansi \sansm \sansb R\prime \leq I\ast + c(\alpha 2) + 2et <
I\ast + c(\alpha 1) - 2et \leq \sansi \sansm \sansb R.

The following observation establishes a bound on the size of our records. More-
over, it will be useful to note that for a fixed value of the adhesion one can efficiently
enumerate all the functions that may appear in the records (this will facilitate the
processing of thin nodes).

Observation 2. The cardinality of \scrL is bounded by k\scrO (k). Moreover, for each

node t with adhesion \kappa , the number of possible functions \beta t is bounded by \kappa \kappa \scrO (\kappa )

, and
these may be enumerated in the same time.

4.2.2. Initialization and termination.

Lemma 4.12. Let t be a leaf in a nice tree-cut decomposition (T,\scrX ) of a graph G,
and let k be the width of (T,\scrX ). Then \scrD (t) can be computed in time k\scrO (k).

Proof. We can branch over all at most kk linear orders of Yt, and for each we can
compute its imbalance in G[Yt] in time \scrO (k). This already gives sufficient information
to construct \scrD (t).

Observation 3. Let (G, d) be an instance of tcw-IMB, and let r be the root of a
nice tree-cut decomposition of G. Then (G, d) is a yes-instance if and only if ar \leq d.

4.2.3. Inductive step. What remains is to show how to compute \scrD (t) for a
node t once \scrD (t\prime ) is known for each child t\prime of t. We formalize this problem below.
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IMB Join
Instance: A tcw-IMB instance (G, d), a nonleaf node t of a width-
k nice tree-cut decomposition (T,\scrX ) of G, and \scrD (t\prime ) for each child
t\prime of t.
Parameter: k.
Task : Compute \scrD (t).

Once again, we use the two-step approach of first reducing to a ``simpler"" problem and
then applying a suitable ILP encoding. We call the problem we reduce to Reduced
IMB Join.

Reduced IMB Join
Instance: A tcw-IMB instance consisting of a graph G and an in-
teger d, a root t of a nice tree-cut decomposition (T,\scrX ) of G such
that At = \emptyset and G[Xt] is edgeless, \scrD (t\prime ) for each child t\prime of t, a
linear order f of Xt, a mapping \omega : Xt \rightarrow \BbbZ , and a set \zeta of linear
constraints on the value of \vartriangleright (v) - \vartriangleleft (v) for a subset of Xt.
Parameter: k = | Xt| .
Task : Compute the minimum value of

\bigl( \sum 
v\in Yt\setminus Xt

\sansi \sansm \sansb R(v)
\bigr) 
+\bigl( \sum 

v\in Xt
| \vartriangleright R (v)  - \vartriangleleft R(v) + \omega (v)| 

\bigr) 
over all linear superorders R

of f over Yt which satisfy \zeta , or correctly determine that no such R
exists.

Lemma 4.13. There is an FPT Turing reduction from IMB Join to k\scrO (k2) in-
stances of Reduced IMB Join which runs in time k\scrO (k2) \cdot n.

Proof. Our goal is to use the data contained in each \scrD (t\prime ) to preprocess all in-
formation in the nodes At, leaving us with a set of Reduced IMB Join instances.
We branch over the at most k\scrO (k) extracts (of t) in \scrL . The remainder of the proof
shows how to compute c(\alpha ) for each extract \alpha = (f, \tau ) \in \scrL using an oracle which
solves Reduced IMB Join. Indeed, it follows from the definition of \scrD (t) that this
information is sufficient to output \scrD (t) (in \scrO (k) time).

Let Z = \{ v \in Yt | v \in Xt or \exists t\prime \in At : v \in \partial (Yt\prime ) \} ; by Lemma 4.1 and the bound
on the width of (T,\scrX ), it follows that | Z| \leq 2k2 + 2k. Let \scrJ then denote the set

containing all the at most k\scrO (k2) linear orders of Z. Next, we prune \scrJ to make sure
it is compatible with our \alpha ; specifically, we prune \scrJ by removing any linear order
which is not a linear superorder of f . We now branch over \scrJ ; let j be a fixed linear
order in \scrJ .

For each t\prime \in At, we compute the set \delta (t\prime ) of extracts (of t\prime ) which are ``compat-
ible"" with our chosen extract \alpha = (f, \tau ) (of t) and our chosen j. If Yt\prime \cap \partial (Yt) = \emptyset ,
then \delta (t\prime ) = \scrL . However, if Yt\prime \cap \partial (Yt) =: Q \not = \emptyset , then we let \delta (t\prime ) contain an extract
(f \prime , \tau \prime ) \in \scrL if and only if the following holds. For every v \in Q such that \tau (v) = \infty ,
it holds that either \tau \prime (v) = \infty or \tau \prime (v) + \vartriangleright j(v)  - \vartriangleleft j(v) \geq \sansa \sansd \sansh t(v) + 1. For every
v \in Q : \tau (v) =  - \infty , it holds that either \tau \prime (v) =  - \infty or \tau \prime (v) + \vartriangleright j(v)  - \vartriangleleft j(v) \leq 
 - \sansa \sansd \sansh t(v)  - 1. For every v \in Q such that \tau (v) = i, where i \not = \infty , it holds that
i = \tau \prime (v) +\vartriangleright j(v) - \vartriangleleft j(v).

Finally, we branch over all choices of compatible extracts for each t\prime \in At. Specif-
ically, we branch over all choices of \lambda , where \lambda (t\prime ) = \alpha \prime \in \delta (t\prime ) for every t\prime \in At.
For each \lambda , we compute the total imbalance \sansi \sansm \sansb \lambda in At, specifically the sum of the
imbalances of vertices in Yt\prime for every t\prime \in At excluding edges which have an endpoint
outside of Yt. This can be computed as follows: \sansi \sansm \sansb \lambda =

\sum 
t\prime \in At

(at\prime + \beta (\lambda (t\prime ))) +K,
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where K is the total adjustment of the imbalance caused by edges between Xt and
some Yt\prime (note that K may be negative). K can be computed by the following simple
procedure. Initialize with K := 0 and \tau \prime \prime := \tau \prime , and for each edge ab where a \in Xt

and b \in Yt\prime such that \lambda (t\prime ) = (f \prime , \tau \prime ) we proceed by the following cases:
\bullet if \tau \prime \prime (b) > 0 and j(a) < j(b), then K := K  - 1 and \tau \prime \prime (b) := \tau \prime \prime (b) - 1;
\bullet if \tau \prime \prime (b) \geq 0 and j(b) < j(a), then K := K + 1 and \tau \prime \prime (b) := \tau \prime \prime (b) + 1;
\bullet if \tau \prime \prime (b) \leq 0 and j(a) < j(b), then K := K + 1 and \tau \prime \prime (b) := \tau \prime \prime (b) - 1;
\bullet if \tau \prime \prime (b) < 0 and j(b) < j(a), then K := K  - 1 and \tau \prime \prime (b) := \tau \prime \prime (b) + 1.

The same procedure as the one above can be used to also compute the value
\vartriangleright j(v)  - \vartriangleleft j(v) for each v \in Xt, which we store as \omega (v). From \tau , we obtain a set
of constraints \zeta which will guarantee that the solution to Reduced IMB Join will
be compatible with \alpha . Specifically, for each v \in Xt \cap \partial (Yt) such that \tau (v) = \infty ,
we set \zeta (v) \geq \sansa \sansd \sansh t(v) + 1; if \tau (v) =  - \infty , then we set \zeta (v) \leq  - \sansa \sansd \sansh t(v)  - 1; and if
\tau (v) \in \BbbZ , then we set \zeta (v) = \tau (v). As for f , we obtain it as the unique linear suborder
of j restricted to Xt. This completes the construction of our Reduced IMB Join
instance I\alpha ,j,\lambda .

In total, we have branched over k\scrO (k) extracts for t, k\scrO (k2) linear orders of Z,
and k\scrO (k) choices of \lambda , resulting in a total of k\scrO (k2) instances. What remains now
is to show how the solution of each instance I\alpha ,j,\lambda can be used to solve IMB Join.
Let i\alpha ,j,\lambda denote the output of I\alpha ,j,\lambda . Then we set c(\alpha ) to the minimum value of
i\alpha ,j,\lambda + \sansi \sansm \sansb \lambda over all choices of \alpha , j, \lambda .

In conclusion, we argue correctness. For a contradiction, assume that there exist
some \alpha , j, \lambda such that i\alpha ,j,\lambda + \sansi \sansm \sansb \lambda < c(\alpha ). By our construction, there then exists
a linear order R1 of Xt \cup 

\bigcup 
t\prime \in At

v \in Yt\prime such that the imbalance of all vertices in\bigcup 
t\prime \in At

(induced by edges of G[Yt] with at least one endpoint in
\bigcup 

t\prime \in At
v \in Yt\prime ) is

equal to \sansi \sansm \sansb \lambda , and furthermore this R1 satisfies the ``requirements"" of the extract \alpha 
on the imbalance of vertices in \partial (Yt) \setminus Xt. By the construction of the instance I\alpha ,j,\lambda ,
there also exists a linear order R2 of Xt \cup 

\bigcup 
t\prime \in Bt

v \in Yt\prime where the order of vertices
in Xt is the same as in R1, and hence it is possible to merge R1 and R2 into a linear
order R over Yt by using vertices in Xt as ``anchoring points"" (R preserves the order
of the anchoring points and the order of vertices within R1 and of vertices within
R2, and the order between a nonanchoring vertex in R1 and a nonanchoring vertex
in R2 is irrelevant). One can straightforwardly verify that the linear constraints \zeta 
in I\alpha ,j,\lambda ensure that R realizes the extract \alpha . The cost of R is then equal to the
\sansi \sansm \sansb \lambda plus the imbalance of vertices in Xt and the imbalance of vertices in

\bigcup 
t\prime \in Bt

Yt\prime .
The mapping \omega transfers the information on the imbalance of vertices in Xt caused
by edges in G[Xt \cup 

\bigcup 
t\prime \in At

Yt\prime ] into I\alpha ,j,\lambda , and from there on one can verify that the
imbalance of R in vertices in Xt \cup 

\bigcup 
t\prime \in Bt

Yt\prime sums up to i\alpha ,j,\lambda . Hence, this linear
order R contradicts the value of c(\alpha ).

On the other hand, assume i\alpha ,j,\lambda + \sansi \sansm \sansb \lambda > c(\alpha ) for all j, \lambda . Let R be a linear
order which realizes \alpha ; by reversing the merging procedure outlined in the previous
paragraph, one can decompose R into R1 (over Xt

\bigcup 
t\prime \in At

v \in Yt\prime ) and R2 (over
Xt \cup 

\bigcup 
t\prime \in Bt

v \in Yt\prime ). Let j be the unique linear suborder of R1 over Z, and let \lambda be
the unique tuple of extracts capturing R1 on individual children t\prime \in At. Then, by
our assumption on the size of c(\alpha ), either the imbalance of R1 over

\bigcup 
t\prime \in At

v \in Yt\prime 

is greater than \sansi \sansm \sansb \lambda , or the imbalance of R2 over Xt \cup 
\bigcup 

t\prime \in Bt
v \in Yt\prime (additionally

counting edges between Xt and
\bigcup 

t\prime \in At
) is greater than i\alpha ,j,\lambda . However, the first can

be ruled out by the computation of \sansi \sansm \sansb \lambda from \lambda , j, \alpha , while the second is impossible
since one can plug in R2 into I\alpha ,j,\lambda to achieve a solution value of i\alpha ,j,\lambda .
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We conclude that i\alpha ,j,\lambda + \sansi \sansm \sansb \lambda = c(\alpha ), and hence by iterating over all values
of \alpha and given the correct value of i\alpha ,j,\lambda it is possible to construct \scrD (t) in time

k\scrO (k2) \cdot | V (G)| .
Lemma 4.14. There exists an algorithm which solves Reduced IMB Join in

time k\scrO (k4) \cdot (| Bt| + 1).

Proof. We again use an ILP formulation, but this time we first need to get rid of
the absolute values over \vartriangleright R(v) - \vartriangleleft R(v) + \omega (v). Since the number of vertices v in Xt

is bounded by k, we can exhaustively branch over whether each \vartriangleright R(v) - \vartriangleleft R(v)+\omega (v)
ends up being negative or nonnegative and force this choice in our ILP instance by
suitable constraints. Formally, let us branch over all the at most 2k possible functions
\phi : v \in Xt \rightarrow \{ 1, - 1\} . For each fixed \phi , we construct an ILP instance I\phi which outputs
the minimum value of

\bigl( \sum 
v\in Yt\setminus Xt

\sansi \sansm \sansb R(v)
\bigr) 
+
\bigl( \sum 

v\in Xt
\phi (v) \cdot (\vartriangleright R(v) - \vartriangleleft R(v)+\omega (v))

\bigr) 
(over all R which satisfy the required conditions); let this value be i\phi . Then the
solution of Reduced IMB Join can be correctly computed as min\phi :v\in Xt\rightarrow \{ 1, - 1\} i\phi .

Before proceeding, we mention a few important observations. First, each vertex
v \in Yt\prime \in Bt

can be placed in one of the at most k + 1 intervals in the linear order
between the placement of vertices in Xt. Second, since there are no edges between
any Yt\prime \in Bt

and Yt\prime \prime \in Bt
, the order among vertices in different children of t cannot

change the value of i\phi ; only the order between the neighbors of Xt and Xt itself
matters. Third, for each t\prime \in Bt, we know that the minimum sum of imbalances in Yt\prime 

over all linear orders is at\prime , and by Lemma 4.11 it suffices to only consider extracts \gamma 
of Yt\prime such that \beta t(\gamma ) \not = \infty .

We now describe the construction of an ILP instance which outputs i\phi , as well
as its relation to a linear order R, so as to facilitate the correctness argument. Let
\scrL \prime 
0,\scrL \prime 

1,\scrL \prime 
2 denote the set of all extracts of nodes t

\prime where | \partial (Yt\prime )| = 0, 1, 2, respectively.
Observe that while each of the sets \scrL \prime 

1, \scrL \prime 
2 may contain a number of extracts that

cannot be bounded by any function of our parameter (since each node formally has its
own, unique extract) we may identify and define equivalences that group the extracts
of nodes which can affect their neighborhood in exactly the same way. In particular,
analogously as in the proof of Lemma 4.7 we say that extract (fa, \tau a) \in \scrL \prime 

i of a node
a is equivalent to extract (fb, \tau b) \in \scrL \prime 

i of a node b, i \in \{ 1, 2\} if there exists a bijective
mapping \phi from \partial (Ya) to \partial (Yb) such that (1) N(v) \setminus Ya = N(\phi (v)) \setminus Yb for every
v \in \partial (Ya), (2) u <fa v if and only if \phi (u) <fb \phi (v) for every u, v \in \partial (Ya), and (3)
\tau a(v) = \tau b(\phi (v)) for every v \in \partial (Ya). In other words, two extracts are equivalent if
there is a canonical renaming function between vertices in the boundary of Ya and
Yb which preserves the neighborhoods outside and transforms the extract (fa, \tau a) into
(fb, \tau b). We can now set \scrL 0 = \scrL \prime 

0, while \scrL 1 \subseteq \scrL \prime 
1 and \scrL 2 \subseteq \scrL \prime 

2 are obtained by
keeping precisely one representative extract for each equivalence class that appears
in \scrL 1 and \scrL 2, respectively (in other words, all but one arbitrarily selected extract in
each equivalence class is deleted). It can be observed that the size of each such \scrL j is
upper-bounded by \scrO (k2).

Next, we let the set S0 contain all the constantly many mappings \beta 0 : \scrL 0 \rightarrow 
[0] \cup \{ \infty \} . Similarly, we let S1,1 contain all \beta 1 : \scrL 1 \rightarrow [4] \cup \{ \infty \} (extracts in S1 can
appear in nodes of adhesion 1 or 2), and we let S1,2 contain all \beta 1 : \scrL 1 \rightarrow [8] \cup \{ \infty \} .
For the last case, we let S2 contain all \beta 2 : \scrL 2 \rightarrow [8] \cup \{ \infty \} . We let

\bullet \&1,1 = S1,1 \times Xt,
\bullet \&1,2 = S1,2 \times Xt \times Xt,
\bullet \&2,1 = S2 \times Xt,
\bullet \&2,2 = S2 \times Xt \times Xt.
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The set \& = S0\cup \&1,1\cup \&1,2\cup \&2,2\cup \&2,1 will serve as the set of all possible ``types"" of
nodes t\prime \in Bt, while the set S = S0\cup S1,1\cup S1,2\cup S2 will contain all possible mappings
\beta . For each \beta \in S1,2 \cup S2, nodes t\prime have two neighbors in Xt; these will in general
not be symmetric with respect to \beta , and hence we distinguish them by denoting one
as N1(t

\prime ) and the other as N2(t
\prime ). Before proceeding, note that | \&| \in \scrO (k2).

For each \pi \in \&, we introduce variables which capture information on the distri-
bution of the (at most two) vertices in \partial (Yt\prime ) among the k + 1 intervals of f . We
formalize for the most general case of 2 vertices in \partial (Yt\prime ) and 2 neighbors in Xt,
i.e., for \&2,2; the remaining three cases are simplifications of this one and require
fewer variables. For each \pi = (\beta , x1, x2) \in \&2,2, we define Q\pi = \{ t\prime \in Bt | \exists at\prime :
\scrD (t\prime ) = (at\prime , \beta ), N1(t

\prime ) = x1, N2(t
\prime ) = x2 \} . We let q\pi = | Q\pi | ; i.e., q\pi is the number of

nodes of type \pi . For a node t\prime , let N(x1) \cap \partial (Yt\prime ) be denoted by y1, and analogously
N(x2) \cap \partial (Yt\prime ) = y2. Now we introduce (for this \pi ) (k + 1) \cdot (k + 2) new variables:

\bullet for each 0 \leq i, j \leq k, if i \not = j, we introduce a variable g
h\pi 
j

i , which captures
the number of nodes t\prime of type \pi such that y1 occurs after exactly i vertices
of Xt in R and y2 occurs after exactly j vertices of Xt in R;

\bullet if i = j, we introduce two new variables g
<h\pi 

j

i and g
>h\pi 

j

i , which capture the
number of pairs of vertices such that both y1 and y2 occur after exactly i
vertices of Xt and y1 occurs, respectively, before or after y2.

In total, we have introduced \scrO (k4) variables. Next, we insert the following con-
straints:

1. For each \pi \in \&, we make sure that the variables indeed correspond to a
partition of the set Q\pi . Specifically, we make sure that each variable is
greater than or equal to 0 and that the sum of all variables associated with
\pi is equal to q\pi .

2. We add a constraint for each linear constraint in \zeta on the value of \vartriangleright (v) - \vartriangleleft (v),
where v \in Xt. This value of \vartriangleright (v)  - \vartriangleleft (v) can be expressed by a linear
combination over our variables, since each variable is associated with a fixed
position (left or right) from each vertex in Xt and a type, which in turn
contains information on whether the variable is adjacent or not to each v \in Xt.

3. We make sure that we only consider parameter values consistent with \phi .
Specifically, if \phi (v) = 1 (nonnegative), then we need to ensure that \vartriangleright R(v) - 
\vartriangleleft R(v) + \omega (v) \geq 0, while in the other case we need to ensure that \vartriangleright R(v)  - 
\vartriangleleft R(v) + \omega (v) < 0. Each of these conditions can be expressed as a linear
constraint over our variables, similarly as when encoding \zeta .

The constructed ILP instance can be solved in time at most k\scrO (k4) \cdot (| Bt| +1) by
Theorem 2.2.

Let a denote
\sum 

t\prime \in At
at\prime . For each variable var corresponding to a placement of a

type \pi in the at most 2 intervals, one can compute from \beta \in \pi and the order between
y1, y2, x1, x2 a value \sansc \sanso \sanss \sanst (var) in [8]\cup \infty which expresses the additional imbalance in Yt\prime 

caused by this particular placement. Then our instance will minimize the expression
val(\phi ) = a +

\sum 
v\in Xt

\phi \cdot (\vartriangleright R(v)  - \vartriangleleft R(v) + \omega (v)) +
\sum 

var \sansc \sanso \sanss \sanst (var). After branching
through all possible values of \phi , we output the minimum over all computed val(\phi ).

Corollary 4.15. There exists an algorithm which solves IMB Join in time
k\scrO (k4) \cdot n.

Now the proof of the theorem below is then analogous to the proof of Theorem 4.9.

Theorem 4.16. tcw-IMB can be solved in time k\scrO (k4) \cdot n2.

Proof. We use Theorem 3.4 to transform (T,\scrX ) into a nice tree-cut decomposition

D
ow

nl
oa

de
d 

11
/3

0/
22

 to
 8

4.
11

5.
23

6.
15

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

ALGORITHMIC APPLICATIONS OF TREE-CUT WIDTH 2655

with at most 2n nodes. We then use Lemma 4.12 to compute \scrD (t) for each leaf t of T
and proceed by computing\scrD (t) for nodes in a bottom-to-top fashion by Corollary 4.15.

The total running time per node is dominated by n \cdot k\scrO (k4), and there are at most 2n
nodes. Once we obtain \scrD (r), we can correctly output by Observation 3.

4.3. Capacitated dominating set. Capacitated Dominating Set is a gen-
eralization of the classical Dominating Set problem by the addition of vertex ca-
pacities. Aside from its applications (discussed, for instance, in [30]), Capacitated
Dominating Set has been targeted by parameterized complexity research in the
past also because it is a useful tool for obtaining W-hardness results [15, 13, 3]. It is
known to be W[1]-hard when parameterized by treewidth [8].

Let G = (V,E) be a capacitated graph with a capacity function c : V (G) \rightarrow \BbbN 0.
We say that D \subseteq V (G) is a capacitated dominating set of G if there exists a mapping
f : V \setminus D \rightarrow D which maps every vertex to one of its neighbors so that the total
number of vertices mapped by f to any v \in D does not exceed c(v). Such a mapping
f is said to witness D, and f is a witness function of D. We formally define the
problem below.

tcw-Capacitated Dominating Set (tcw-CDS)
Instance: a capacitated graph G on n vertices together with a
width-k tree-cut decomposition (T,\scrX ) of G, and an integer d.
Parameter : k.
Task : Decide whether there exists a capacitated dominating set D
of G containing at most d vertices.

For a vertex v \in \partial (Yt), recall that \sansa \sansd \sansh t(v) = | N(v)\setminus Yt| and \sansa \sansd \sansh (t) =
\sum 

v\in \partial (Yt)
\sansa \sansd \sansh t(v).

We now give a high-level description of our algorithm. In a ``snapshot"" of a
capacitated dominating set at a node t of the decomposition, a vertex in \partial (Yt) may
have two possible states: active or passive. The interpretation is as follows: a vertex
v \in \partial (Yt) is

\bullet active if it will either be in the dominating set or will be dominated by a
vertex in Yt and

\bullet passive if it will be dominated by a vertex outside of Yt.
We will use a data table \scrD (t) where each entry stores information about the states

of vertices in \partial (Yt), i.e., the vertices which have neighbors outside of Yt. Moreover,
the snapshot also contains information about the residual capacity of each vertex
in \partial (Yt) that is active; in particular, each such vertex v in \partial (Yt) may have up to
\sansa \sansd \sansh t(v) \leq k neighbors outside of Yt, and hence it is important to distinguish whether
the residual capacity of v is at least \sansa \sansd \sansh t(v) (meaning that v can dominate all of its
neighbors outside of Yt) or precisely some number \ell in [\sansa \sansd \sansh t(v) - 1] (meaning that v
can only dominate up to \ell of its neighbors outside of Yt).

3 We store the information
about these residual capacities in the form of an ``offset."" For each such snapshot,
we will keep information about the minimum-size capacitated dominating set that
corresponds to that snapshot. We formalize below.

4.3.1. Data table. In this subsection, we define the table \scrD (t) at node t, but
before that we will formalize the notion of a snapshot (for t).

Definition 4.17. A snapshot is a tuple (active, offset) where active \subseteq \partial (Yt) and
offset maps each v \in active to an element of [\sansa \sansd \sansh t(v)].

3Notice that active vertices that are not in the dominating set automatically receive a residual
capacity of 0 but are otherwise not distinguished from vertices in the dominating set.

D
ow

nl
oa

de
d 

11
/3

0/
22

 to
 8

4.
11

5.
23

6.
15

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

2656 ROBERT GANIAN, EUN JUNG KIM, AND STEFAN SZEIDER

For a node t \in V (t), let the representation of a snapshot \sigma = (active, offset) be
the graph G\sigma obtained from G[Yt] by (1) deleting all vertices in \partial (Yt) \setminus active and (2)
attaching to each vertex v \in active precisely offset(v) many new pendant vertices; we
will assume that each new pendant vertex created in this way has a capacity of 0 and
refer to these new pendant vertices as auxiliary vertices. The cost of the snapshot \sigma ,
denoted by cost(\sigma ), is then the minimum size of a capacitated dominated set over all
capacitated dominating sets of G\sigma ; any capacitated dominating set of G\sigma contains no
auxiliary vertex. We call such a minimum capacitated dominating set a \sigma -CDS, and
if no such capacitated dominating set exists, then we set cost(\sigma ) = \bot . The base cost
of t, denoted by at, is then defined as the cost of the snapshot (\emptyset , \emptyset ).

The final ingredient we need before defining our data table \scrD (t) is a bound on
the gap between the cost of an arbitrary snapshot and the base cost.

Lemma 4.18. For each snapshot \sigma = (active, offset) it holds that either cost(\sigma ) =
\bot , or at \leq cost(\sigma ) \leq at + 2\sansa \sansd \sansh (t).

Proof. For the first inequality, it suffices to see that every \sigma -CDS is also an (\emptyset , \emptyset )-
CDS. We prove the second inequality by induction on | active| +

\sum 
v\in active offset(v).

The proof is a two-step induction, where the first induction step covers the addition
of a vertex and the second induction step covers an increase of the offset. For the base
case (\emptyset , \emptyset ), we observe that the claim clearly holds for | active| = 0 by the definition
of at.

For the first inductive step, assume that the second inequality holds for some
\sigma = (active, offset), and let us consider \sigma \prime = (active \cup \{ v\} , offset \cup \{ v \mapsto \rightarrow 0\} ). Then
either there exists a \sigma \prime -CDS of the same size as a \sigma -CDS (notably, when there exists a
\sigma -CDS containing v), or for an arbitrary \sigma -CDS X we have that X \cup \{ v\} is a \sigma \prime -CDS.
In other words, adding a vertex to active (with an initial offset of 0) only increases
the cost of the snapshot by at most 1.

For the second inductive step, assume that the second inequality holds for some
\sigma = (active, offset), and let us consider \sigma \prime = (active, offset\prime ), where offset\prime (v) =
offset(v) + 1 for one vertex v \in active and offset\prime (w) = offset(w) for every other
vertex w \in active. We now distinguish two cases. If | NG\sigma \prime (v)\setminus Yt| > c(v), then clearly
no \sigma \prime -CDS can exist, i.e., cost(\sigma \prime ) = \bot . Otherwise, we are left with three subcases
that are similar to the first induction step:

\bullet either a \sigma -CDS is also a \sigma \prime -CDS, or
\bullet we can take an arbitrary \sigma -CDS X not containing v and observe that X\cup \{ v\} 
is a \sigma \prime -CDS, or

\bullet we can take an arbitrary \sigma -CDS X containing v and observe that since X
is not a \sigma \prime -CDS, v must be used to dominate some vertex, say z. We then
observe that X \cup \{ z\} is a \sigma \prime -CDS.

To summarize, we have shown that for every snapshot \sigma , increasing the offset or
active will only increase the size of a \sigma -CDS by 1; since both | active| and the sum of
offsets is upper-bounded by \sansa \sansd \sansh (t), the lemma follows.

We can now define our data table.

Definition 4.19. \scrD (t) = (at, \beta t), where \beta t maps each snapshot of t to a value in
[2\sansa \sansd \sansh (t)]\cup \{ \bot \} such that for each snapshot \sigma it holds that cost(\sigma ) = at+\beta t(\sigma ) (where
\bot acts as an absorbing element).

The correctness of Definition 4.19 follows from Lemma 4.18.
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4.3.2. Initialization and termination.

Lemma 4.20. Let t be a leaf in a nice tree-cut decomposition (T,\scrX ) of a graph

G, and let k be the width of (T,\scrX ). Then \scrD (t) can be computed in time 2\scrO (k2).

Proof. We can branch over all at most 2k \cdot 2k-many snapshots of t, and for each
snapshot \sigma a \sigma -CDS can be computed by brute force in time at most 2\scrO (k2).

For the next observation, it will be useful to note that the root can always be
assumed to contain an empty bag (otherwise, one may attach a new root with this
property on top of the original one).

Observation 4. Let (G, d) be an instance of tcw-CDS, and let r be the root of a
nice tree-cut decomposition of G such that Xr = \emptyset and \scrD (r) = (ar, \beta r). Then (G, d)
is a yes-instance if and only if ar \leq d.

4.3.3. Inductive step. What remains is to show how to compute \scrD (t) for a
node t once \scrD (t\prime ) is known for each child t\prime of t. We formalize this problem below.

CDS Join
Instance: A tcw-CDS instance (G, d), a nonleaf node t of a width-
k nice tree-cut decomposition (T,\scrX ) of G, and \scrD (t\prime ) for each child
t\prime of t.
Parameter: k.
Task : Compute \scrD (t).

For a third time, we will use the two-step approach of first reducing to a ``simpler""
problem and then applying a suitable ILP encoding. We call the problem we reduce
to Reduced CDS Join.

Reduced CDS Join
Instance: A tcw-CDS instance (G, d), a nonleaf root t of a width-k
nice tree-cut decomposition (T,\scrX ) ofG such thatAt = \emptyset andG[Xt]
is edgeless, \scrD (t\prime ) for each child t\prime of t, and auxiliary sets S \subseteq Xt,
S\prime \subseteq V (G) with the property that \forall s\prime \in S\prime \exists q \in Bt : Yq = \{ s\prime \} .
Parameter: k.
Task : Determine whether G admits a capacitated dominating set
D of size at most d such that D \cap Xt = S and D \cap S\prime = \emptyset .

Lemma 4.21. There is an FPT Turing reduction from CDS Join to 2\scrO (k2) in-
stances of Reduced CDS Join which runs in time 2\scrO (k2) \cdot n \cdot d.

Proof. In order to compute \scrD (t) for a CDS Join instance, it suffices to be able
to compute the cost of each snapshot of t. Since the number of snapshots of t is
upper-bounded by 2\scrO (k), we can loop over each snapshot in this time and reduce the
problem of computing the cost of each individual snapshot to Reduced CDS Join.
So let us consider an arbitrary snapshot \sigma = (active, offset) of t.

As our first step, we remove all vertices outside of Yt (thus turning t into a
root). We then branch over each subset S \subseteq Xt with the aim of identifying the
intersection between a \sigma -CDS and Xt; to this end, we only consider subsets S which
are ``compatible"" with active, notably by requiring that S \cap \partial (Yt) \subseteq active (i.e.,
vertices in S that lie on the boundary cannot be passive). Moreover, each vertex
x in Xt \setminus (\partial (Yt) \cup S) must be dominated by a neighbor in Yt, and we also branch
to determine whether x will be dominated by a specific vertex in S or rather by a
vertex in Yt\prime for some unspecified child t\prime of t. If x is dominated by some x\prime \in S,
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then we delete x and reduce the capacity of x\prime by 1. Afterwards, we delete all edges
with both endpoints in Xt since we have at this point predetermined the precise
dominating relations within Xt. For a fixed \sigma , these branching steps require us to
consider at most 2\scrO (k2) many subcases. Observe that in the current branch every
vertex in Xt \setminus (\partial (Yt)\cup S) now must be dominated by a neighbor in Yt and that every
vertex in \partial (Yt) \setminus active must be left undominated.

Our next and crucial step is aimed at dealing with children in At. In particular,
for each p \in At, we branch over each snapshot \sigma p = (active\prime , offset\prime ) of p and check
whether \sigma p is compatible with S and \sigma :

\bullet for each v \in \partial (Yt) \cap \partial (Yp), it must hold that if v \not \in active, then v \not \in active\prime ;4

\bullet if v \in active \cap active\prime , then offset(v) \leq offset\prime (v).
As a subcase, we now deal with vertices v \in \partial (Yt)\cap \partial (Yp) such that v \in active\prime \setminus active.
The interpretation here is that v cannot be a dominating vertex (since v \not \in active\prime )
but must be dominated from a neighbor in Yt \setminus Yp. Since there are at most k such
neighbors of v, we use brute force to determine which neighbor dominates v and
reduce that neighbor's capacity by 1.

Next, for each v \in \partial (Yp) \setminus \partial (Yt), we distinguish the following two cases. If
v \not \in active\prime , then v must be dominated by a neighbor in Yt \setminus Yp; there are at most k
such neighbors, and we use brute force to determine which one dominates v, whereas
for each choice we reduce the dominating vertex's capacity by 1. If v \in active\prime and
offset\prime (v) > 0, then v may be used to dominate some of its (at most k) neighbors
in Yt \setminus Yp, and we use brute force to determine which vertices it dominates and
delete the newly dominated vertices. Moreover, for each v \in \partial (Yp) \cap \partial (Yt) such that
offset\prime (v) - offset(v) = \ell , v can be used to dominate up to \ell of its neighbors in Yt\setminus Yp; we
once again brute-force to determine which and delete these newly dominated vertices.

Finally, we need to ensure that a solution for our constructed instance of
Reduced CDS Join satisfies the requirements specified by the offset component
of \sigma . To this end, for each v \in active we construct offset(v)-many new pendant ver-
tices, attach these to v, and add these to the set S\prime (ensuring that these offset(v)-many
vertices must be dominated by v). Since these vertices must also be included in the
provided nice tree-cut decomposition of G, we simply add each such pendant to its
own separate (thin) leaf adjacent to t.

Let us now consider the set \scrY of instances of Reduced CDS Join obtained
by branching over one particular snapshot \sigma of t in the original input instance of
CDS Join. Assume that the cost of \sigma is \delta , as witnessed by a \sigma -CDS Z with witness
function f . Let us now consider the branch where S = Z\cap Xt and the pairs of vertices
in a domination relationship inside Xt reflect the witness function f . Similarly, for
each p \in At, consider the branch where we identified the snapshot \sigma p that mimics
the behavior of Z---in particular by having active\prime reflect Z \cap Yt and offset\prime reflect f .
Then, by the correctness of \scrD (p) and the optimality of Z, it follows that | Z \cap Yp| =
ap+\beta p(\sigma p). Moreover, | Z\cap Xt| = | S| . The intersection Z\cap (\cup q\in Bt

Yq) then represents
a capacitated dominating set for an instance Y \in \scrY (obtained in our reduction) of
size \delta  - | S|  - (

\sum 
p\in At

ap + \beta p(\sigma p)).
On the other hand, let us consider that for some snapshot \sigma leading to a set \scrY 

of instances of Reduced CDS Join via branching there is an instance Y \in \scrY which
admits a capacitated dominating set Z \prime satisfying the stated properties for S and S\prime 

of cardinality d\prime . After adjusting Z \prime by taking into account the selection of S and

4On the other hand, it may happen that v \in active \setminus active\prime since v might be dominated by a
vertex in Yt \setminus Yp.
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the domination relations on Xt that led to Y , and similarly by expanding Z \prime via the
\sigma p-CDS used in the branching for the individual nodes p \in At, we can reverse the
arguments used in the previous paragraph and show that there is a \sigma -CDS in the
original instance of CDS Join of size at most | Z \prime | + | S| + (

\sum 
p\in At

ap + \beta p(\sigma p)).
To conclude, we have shown that the original instance of CDS Join can be solved

by computing a minimum capacitated dominating set for each of the at most 2\scrO (k2)

obtained Reduced CDS Join instances, whereas the construction steps for each
obtained instance can be carried out in linear time. Such a minimum set can be
computed by performing at most d separate calls asking for a capacitated dominating
set with the required properties of size at most d.

Lemma 4.22. Reduced CDS Join can be solved in time 2\scrO (k\cdot log k)| Bt| .

Proof. Observe that to solve an instance of Reduced CDS Join it suffices to
identify, for each child q of t, a snapshot of a capacitated dominating set for G[Yq]
while taking into account that (1) vertices in Xt \setminus S must be dominated by a neighbor
in Yq for some child q of t, and (2) a vertex x in S can be used to dominate c(x)-many
vertices in the sets Yq. We will resolve point (1) by branching and then use an ILP
formulation for point (2).

As our first step, let us define an equivalence \equiv which identifies which children of
t ``behave the same way"" as far as the potential interaction between their dominating
sets and Xt. Formally, given two children p, q of t such that \scrD (p) = (ap, \beta p) and
\scrD (q) = (aq, \beta q), p \equiv q if and only if there exists a bijective renaming function \iota :
\partial (Yp) \rightarrow \partial (Yq) such that

\bullet for each v \in \partial (Yp), N(v) \setminus Yp = N(\iota (v)) \setminus Yq (i.e., neighborhoods in Xt are
preserved), and

\bullet for each snapshot \sigma p of p, \beta p(\sigma p) = \beta q(\sigma q), where \sigma q is obtained by applying
\iota componentwise on \sigma p (i.e., offsets of snapshots are preserved).

Since the total number of possible snapshots (up to renaming) for thin nodes is
upper-bounded by a constant, the number of functions \beta q for each child q \in Bt is
also upper-bounded by a constant. Hence, there are at most \scrO (k2)-many equivalence
classes of \equiv ; let us denote these F1, . . . , Fy, where the number of equivalence classes
y is in \scrO (k2).

We will now perform exhaustive branching to identify, for each x \in Xt \setminus S (i.e.,
a vertex in Xt which must be dominated by a child of t), an equivalence class of \equiv 
containing a node p such that a vertex in \partial (Yp) will dominate x, along with the used
snapshot of p. Since | Xt| \leq k and both the number of equivalence classes as well as
the number of snapshots are bounded as above, this amounts to a branching factor
of at most \scrO (k2k) = 2\scrO (k\cdot log k). In each branch, we simply check that the selected
snapshot of p can indeed dominate x (by checking the value of the offset in the selected
snapshot \sigma p); if not, then we discard the current branch, and otherwise we remove
p and reduce d by ap + \beta p(\sigma p), where \scrD (p) = (ap, \beta p). During the branching, we
take into account the fact that such p can be used to dominate up to two different
vertices in X \setminus S---in particular, from the second vertex in X \setminus S onward, we allow for
a previously deleted child of t to be picked once again.

The above branching ensures that all vertices in Xt are dominated at this point,
and it suffices to define the constraints for an ILP that will identify the number of
times a snapshot should be used in each equivalence class of \equiv in order to obtain a
capacitated dominating set of size at most d. Let \Omega =

\sum 
p\in Bt;\scrD (p)=(ap,\beta p)

ap. For the
variables of the ILP, we proceed as follows:

First, for each equivalence class Fi containing \#i-many children of t, let \sigma 1, . . . , \sigma z
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be the snapshots that occur on these children (modulo the bijective renaming function
as defined above). For each i \in [y] and j \in [z], the ILP will contain an integer variable
sji which captures the number of nodes in Fi for which the sought-after capacitated
dominating set D will correspond to the jth snapshot; i.e., for each node q \in Fi, the
set D \cap Yq will have the same intersection on \partial (Yq) as specified by active, and the
capacities on \partial (Yq) will correspond to those given in offset.

Second, let S = \{ x1, . . . , x\iota \} for \iota \leq k. For each each variable sji which corre-
sponds to a snapshot of an equivalence class whose borders all contain a single vertex,
say w, that is adjacent to two distinct vertices xa, xb \in S and which must be domi-
nated from Xt (i.e., w \not \in active), we create variables xj

a,i and xj
b,i which will capture

how many of the vertices in the border of the nodes in Fi will be dominated by xa and
by xb, respectively. These are the only variables that appear in the ILP, and hence
(unlike in the previous two problems) it only has constantly-many variables. Let \chi a

be a shorthand for
\sum 

xj
a,i exists and is defined as above x

j
a,i.

Before introducing the constraints, for each x\ell \in S let Q\ell be the set of all variables
sji corresponding to the snapshots of the equivalence classes which contain precisely
one vertex on the boundary that (1) lies outside of active, that (2) has precisely one
neighbor in Xt, and that is x\ell ; in other words, Q\ell contains those variables which
correspond to children in Bt that will require x\ell to dominate one vertex. Similarly,
let U\ell be the set of all variables sji corresponding to the snapshots of the equivalence
classes which contain precisely two vertices on the boundary that (1) both lie outside
of active, that (2) both have precisely one neighbor in Xt, and that is x\ell ; in other
words, U\ell contains those variables which correspond to children in Bt that will require
x\ell to dominate two vertices.

We now introduce the following constraints in the ILP:
1. Each variable is nonnegative.
2. For each equivalence class Fi, we ensure that variables s1i , . . . , s

z
i represent

a correct partitioning of the nodes in Fi, in particular by requiring \#i =\sum 
j\in [z] s

j
i .

3. For each vertex x\ell \in Xt, we ensure that x\ell has sufficient capacity to dominate
all the vertices in the borders of children in Bt given the domination require-
ments of the individual snapshots and the number of times each snapshot oc-
curs in each Fi, in particular by requiring c(x) \geq 

\bigl( \sum 
r\in Q\ell 

r
\bigr) 
+
\bigl( \sum 

u\in U\ell 
2u

\bigr) 
+

\chi \ell .
4. Finally, for each variable sji which corresponds to a snapshot of an equivalence

class whose borders all contain a single vertex, say w, that is adjacent to
two distinct vertices xa, xb \in S, we ensure that the nodes which will reject
snapshot \sigma j in equivalence class Fi are all dominated by requiring sji = xj

a,i+

xj
b,i.

Correctness follows via arguments that are analogous to those in the proof of
Lemma 4.7. Since the ILP formulation has constant size, it can be solved by Theo-
rem 2.2 in time at most | Bt| and the lemma follows.

We now have all the ingredients necessary to establish that tcw-CDS is FPT.

Theorem 4.23. tcw-CDS can be solved in time 2\scrO (k2) \cdot n2.

Proof. The proof is analogous to the proofs of Theorems 4.9 and 4.16.

4.4. Proof of Proposition 2.6. As the final result in this section, we provide
a proof for the relationship between treewidth and tree-cut width claimed in Subsec-
tion 2.5.

D
ow

nl
oa

de
d 

11
/3

0/
22

 to
 8

4.
11

5.
23

6.
15

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

ALGORITHMIC APPLICATIONS OF TREE-CUT WIDTH 2661

To provide some intuition for the proof, let us first recall that for each thin node t
of a nice tree-decomposition with parent p(t), tmay belong to Bp(t) or Ap(t) depending
on whether N(Yt) \subseteq Xp(t) holds or not. Let us say that a thin node t is B-thin (resp.,
A-thin) if t \in Bp(t) (resp., t \in Ap(t)).

In the proof, we show that a nice tree-cut decomposition (T,\scrX ) of width at most
k can be converted to a tree-decomposition of width of 2k2 + 3k. One intuitive way
to obtain a tree-decomposition from (T,\scrX ) would be to, for every edge xy of G,
add \{ x, y\} to all nodes of T lying on the unique path connecting tx and ty, namely
the nodes whose bags contain x and y. Put equivalently, for each vertex x of G,
one can find a minimal subtree T (x) of T whose bags collectively cover N [x] and
add x to all nodes of T (x). It is easy to check that the resulting collection of bags
together with T form a tree-decomposition. However, this construction can create a
bag with an arbitrarily large number of vertices. Specifically, any node t of a nice
tree-cut decomposition (T,\scrX ) may have unboundedly many B-thin children, and the
aforementioned ``intuitive"" construction would add to t all vertices in

\bigcup 
t\prime \in Bt

Yt with
neighbors in Xt.

To remedy this issue, we use a truncated version of T (x) and add x to the nodes
of this truncated version of T (x) only. In this way, we intend to avoid adding x to t
when x \in Yt\prime for some B-thin child t\prime of t even if t belongs to T (x). It turns out that
this simple tweak of the previous attempt is sufficient to obtain the desired bound on
the treewidth. We formalize the idea in the proof below.

Proof of Proposition 2.6. Let G be an arbitrary graph of tree-cut width k. By
Theorem 3.4, we may assume that G has a nice tree-cut decomposition (T,\scrX ) with
at most 2| V (G)| nodes.

From (T,\scrX ), we construct a pair (T,\scrZ ), where \scrZ consists of vertex subsets Zt \subseteq 
V (G) over all nodes t of T . For every vertex v \in V (G), let t(v) be the node of
T whose bag Xt(v) contains v and let T (v) be the minimal subtree of T satisfying
N [v] \subseteq 

\bigcup 
t\in T (v) Xt. Clearly, t(v) is contained in T (v). If there is a B-thin node on the

unique path from the root of T (v) to t(v), let \sanst \sanso \sansp \ast (v) be the lowermost B-thin node
among such B-thin nodes; if no B-thin node exists between t(v) and \sanst \sanso \sansp (v), we set
\sanst \sanso \sansp \ast (v) to be the root of T (v). Now, for every v \in V (G), let T \prime 

v be the subtree of T (v)
rooted at \sanst \sanso \sansp \ast (v). Finally, for each node t of T \prime 

v we add v to Zt. This completes the
construction of (T,\scrZ ).

We want to show that (T,\scrZ ) is a tree-decomposition of G. First, the construction
guarantees that for every v \in V (G) the set of bags containing v is the tree T \prime 

v and thus
is connected in T . Next, we shall argue that for every edge uv of G there exists a bag
in \scrZ containing both u and v. For this, it suffices to verify that T \prime 

u and T \prime 
v have at least

one node in common; let us assume for a contradiction that this is not the case. If the
root of T \prime 

v is an ancestor of T \prime 
u in T , then T \prime 

v must have included t(u) due to the edge
uv and thus the root of T \prime 

u. Therefore, if T
\prime 
u and T \prime 

v are disjoint, the roots of T \prime 
u and T \prime 

v

cannot be in an ancestor-descendant relation. Note that both T (u) and T (v) contain
\{ t(u), t(v)\} , and in particular the least common ancestor of T \prime 

u and T \prime 
v. The fact that

T \prime 
u \not = T (u) and T \prime 

v \not = T (v) entails that the roots, i.e., \sanst \sanso \sansp \ast (u) and \sanst \sanso \sansp \ast (v) of T \prime 
u and

T \prime 
v, respectively, are B-thin nodes. Recall that t(u) and t(v) are, respectively, nodes

of T \prime 
u and T \prime 

v, and hence u \in Y\sanst \sanso \sansp \ast (u) and v \in Y\sanst \sanso \sansp \ast (v). However, the niceness property
of (T,\scrX ) implies that N(Y\sanst \sanso \sansp \ast (u)) are included in the bag of the parent of \sanst \sanso \sansp \ast (u), a
contradiction. Therefore, it follows that (T,\scrZ ) is a tree-decomposition of G.

To verify the width of (T,\scrZ ), consider an arbitrary node t and let us bound the
number of vertices v such that t \in T \prime 

v, which equals | Zt| . Observe that t \in T \prime 
v holds
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only if t is a descendant of \sanst \sanso \sansp \ast (v) (possibly the same node). This condition does
not hold for any vertex in Yt\prime for t

\prime \in Bt, implying that Zt is disjoint from
\bigcup 

t\prime \in Bt
Yt.

Consider v \in Zt \setminus Xt. If v /\in Yt, observe that t(v) is a strict ancestor of t and the
reason that v is placed in Zt is because T \prime 

v contains t, and especially v has a neighbor
in Yt. As such an edge connecting v and its neighbor in Yt is counted in \sansa \sansd \sansh (t), there
are at most | \sansa \sansd \sansh (t)| such vertices v, namely satisfying v \in Zt \setminus Xt \setminus Yt. If v \in Yt, note
that v \in Yt\prime for some t\prime \in At and v \in Zt implicates that T \prime 

v contains t. This means
that v has a neighbor outside Yt\prime since otherwise the root of T \prime 

v would have been a
descendant of t\prime . Such an edge connecting v and its neighbor outside Y \prime 

t\prime is counted in
\sansa \sansd \sansh (t\prime ). With Lemma 4.1, there are at most 2k + 1 nodes in At, and hence there are
at most (2k + 1) \cdot k vertices v such that v \in (Zt \setminus Xt) \cap Yt. This yields the claimed
bound | Zt| \leq | Xt| + | \sansa \sansd \sansh (t)| +

\sum 
t\prime \in At

| \sansa \sansd \sansh (t\prime )| \leq 2k2 + 3k.

5. Lower bounds. We show that List Coloring [10] and Precoloring Ex-
tension [2] are W[1]-hard parameterized by tree-cut width, strengthening the known
W[1]-hardness results with respect to treewidth [11]. Both problems have been stud-
ied extensively in the classical [33, 22] as well as parameterized [11, 17] settings. A
coloring c is a mapping from the vertex set of a graph to a set of colors; a coloring
is proper if for every pair of adjacent vertices a, b it holds that c(a) \not = c(b). Problem
definitions follow.

tcw-List Coloring
Instance: A graph G = (V,E), a width-k tree-cut decomposition
(T,\scrX ) of G, and for each vertex v \in V a list L(v) of permitted
colors.
Parameter: k.
Task : Decide whether there exists a proper vertex coloring c such
that c(v) \in L(v) for each v \in V .

The tcw-Precoloring Extension problem may be defined analogously to tcw-List
Coloring; the only difference is that in Precoloring Extension lists are restricted
to either contain a single color or all possible colors. Before stating the new hardness
result, we mention (and prove) the following observation.

Observation 5. List Coloring and Precoloring Extension parameterized
by degtw are FPT.

Proof. Assume that there exists a solution to an instance of List Coloring, i.e.,
there exists a mapping col from each vertex to a color in L(v); w.l.o.g., we assume
that colors are represented by numbers in \BbbN 0. From col, we can construct a new
mapping col\prime such that col\prime maps each vertex v to one of the first degtw+1 elements
in L(v) without creating conflicts (this may be done greedily from col in an iterative
fashion). The mapping col\prime witnesses that there must exist a solution to the instance
which only chooses one of the first degtw + 1 colors in each list. This allows the
construction of a standard dynamic algorithm on the tree-decomposition of the input
graph.

Theorem 5.1. tcw-List Coloring and tcw-Precoloring Extension are W[1]-
hard.

Proof. We use the reduction from theW[1]-hard problemMulti-Colored Clique
(MCC) to List Coloring described in [11, Theorem 2].
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Multi-Colored Clique (MCC)
Instance: A k-partite graph G with k parts V1, . . . , Vk, each con-
sisting of n vertices.
Parameter: k.
Task : Decide whether there a k-clique in G.

We outline the reduction below. Given an instance G = (V1\cup \cdot \cdot \cdot \cup Vk, E) of MCC, we
construct an instance I of List Coloring with vertex sets X,Y , whereas for each
Vi there is a single i \in X such that L(i) = Vi. Then, for each nonedge \{ a \in Vi, b \in 
Vj\} \not \in E, where i \not = j, we construct a vertex y \in Y such that y is adjacent to i and j
and L(y) = \{ a, b\} . Then the choice of color for each i \in X corresponds to a choice of
a single vertex from Vi, and the set Y contains ``constraints"" which prevent the choice
of two nonadjacent vertices.

To prove that List Coloring is W[1]-hard, it now suffices to prove that the con-
structed instance I has tree-cut width at most k. To this end, consider the following
tree-cut decomposition (T,\scrX ) of I: T is a star with center s \in V (T ) and Xs = X,
and for each y \in Y there is a leaf z \in V (T ) such that Xz = \{ y\} . Assume that T is
rooted at s. Then \sansa \sansd \sansh (s) = 0 and \sansa \sansd \sansh (z) = 2 for each leaf z. Hence, \sanst \sanso \sansr (s) = k and
\sanst \sanso \sansr (z) = 3, from which it follows that I has tree-cut width k.

To show that Precoloring Extension is also W[1]-hard, we recall the simple
reduction from List Coloring to Precoloring Extension also described in [11].
From an instance of List Coloring, it is possible to construct an instance of Pre-
coloring Extension by ``modeling"" the lists through the addition of precolored
pendant vertices (vertices of degree one). Let I \prime be an instance of Precoloring Ex-
tension constructed in this manner from an instance I of List Coloring described
above; let Q contain all the new pendant vertices, i.e., Q = V (I \prime ) \setminus V (i).

We show that I \prime also has a tree-cut decomposition (T \prime ,\scrX \prime ) of width k. For vertex
sets X,Y \in I \prime , we use (T,\scrX ). Then, for each q \in Q adjacent to a vertex v \in X \cup Y
such that v \in Xtv , we construct a pendant tq \in V (T \prime ) adjacent to tv such that
X \prime 

tq = \{ q\} . The adhesion and torso-size of vertices in X \cup Y remains the same as in
(T,\scrX ), while for each q \in Q it holds that \sansa \sansd \sansh (tq) = 1 and \sanst \sanso \sansr (tq) = 1. The theorem
follows.

We also show that theConstraint Satisfaction Problem (CSP) is\sansW [1]-hard
when parameterized by the tree-cut width of the incidence graph, even when restricted
to the Boolean domain; this is not the case for degtw [39]. Formal definitions follow.

An instance I of the CSP is a triple (X,D, \scrC ), where X is a finite set of variables,
D is a finite set of domain values, and \scrC is a finite set of constraints. Each constraint
in \scrC is a pair (S,R), where S, the constraint scope, is a nonempty sequence of distinct
variables of X, and R, the constraint relation, is a relation over D (given as a set of
tuples) whose arity matches the length of S. A CSP instance (X,D, \scrC ) is Boolean if
D = \{ 0, 1\} . An assignment is a mapping from the set X of variables to the domain D.
An assignment \tau satisfies a constraint C = ((x1, . . . , xn), R) if (\tau (x1), . . . , \tau (xn)) \in R,
and \tau satisfies the CSP instance if it satisfies all its constraints. An instance I is
satisfiable if it is satisfied by some assignment.

The incidence graph GI of CSP instance I = (V,D, \scrC ) is the bipartite graph
whose vertex set is formed by V \cup \scrC and where a constraint C = (S,R) \in \scrC is incident
exactly to all the variables in S.
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tcw-CSP
Instance: A CSP instance I = (X,D, \scrC ) together with a width-k
tree-cut decomposition (T,\scrX ) of the incidence graph GI of I.
Parameter: k.
Task : Decide whether I is satisfiable.

tcw-Boolean-CSP denotes tcw-CSP restricted to Boolean CSP instances. We
note that Boolean-CSP parameterized by degtw is FPT [39].

Theorem 5.2. tcw-Boolean CSP is W[1]-hard.

Proof. We give a reduction from MCC. Let (G, k) be an instance of MCC with
V (G) =

\bigcup n
i=1 Vi, where Vi = \{ vi,1, . . . , vi,n\} for 1 \leq i \leq k. We first construct a

CSP instance I = (X,D, \scrC ) and will show later how to make it Boolean. We let
X = \{ xi,j | 1 \leq i, j \leq k \} and D = \{ 1, . . . , n\} . For 1 \leq i \leq k, the set \scrC con-
tains the constraint C=

i ((xi,1, . . . , xi,k), \{ (0, . . . , 0), (1, . . . , 1), . . . , (n, . . . , n)\} ), which
enforces that the values of all the variables xi,1, . . . , xi,k are the same. Furthermore,
for each 1 \leq i < j \leq k the set \scrC contains the constraint CE

i,j = ((xi,j , xj,i), \{ (a, b) \in 
[n] \times [n] | vi,avj,b \in E(G) \} which encodes the incidence relation between Vi and Vj .
It follows by construction that I is satisfiable if and only if G contains a k-clique.

Next, we obtain from I a Boolean CSP instance I \prime = (X \prime , \{ 0, 1\} , \scrC \prime ) by replacing

each variable xi,j with n Boolean variables x
(1)
i,j , . . . , x

(n)
i,j . Intuitively, assigning xi,j the

value a corresponds to assigning x
(a)
i,j the value 1 and all other x

(b)
i,j for b \not = a the value

0 (instead of this unary encoding we could have used a more succinct binary encoding,
but the unary encoding is simpler and suffices for our purposes). Consequently, each
constraint C=

i of I (of arity n) gives rise to a constraint C=\prime 

i of I (or arity n2), and

each constraint CE
i,j of I (or arity 2) gives rise to a constraint CE\prime 

i,j of I \prime (of arity 2n).
By construction, I is satisfiable if and only if I \prime is satisfiable.

In order to complete the reduction and the proof of the theorem, it remains to
construct a tree-cut decomposition of the incidence graph GI\prime of I \prime of a width that
is bounded by a function of k. We observe that I \prime has exactly k\prime = k +

\bigl( 
k
2

\bigr) 
many

constraints and each variable appears in the scopes of exactly two constraints. Hence,
one side of the bipartite graph GI\prime consists of k\prime many vertices and the other side only
of vertices of degree 2. This already implies that the tree-cut width of GI\prime is at most
k\prime , as we can take the following tree-cut decomposition (T,\scrX ) of GI\prime . T is a star with

center s \in V (T ) where Xs = \scrC , and for each variable x
(a)
i,j there is leaf t

(a)
i,j \in V (T )

with X
t
(a)
i,j

= \{ x(a)
i,j \} .

6. Concluding notes. We have provided the first algorithmic applications of
the new graph parameter tree-cut width, considering various hard combinatorial prob-
lems. In some cases, we could establish fixed-parameter tractability, and in other cases
we could establish W[1]-hardness, staking off the potentials and limits of this param-
eter (see Table 1).

The FPT algorithms make use of our new notion of nice tree-cut decompositions,
which we believe to be of independent interest. In fact, following their introduction
these decompositions have already been used to obtain algorithms for problems such
as Bounded Degree Vertex Deletion [18], Stable Roommates with Ties
and Incomplete Lists [4], and Edge Disjoint Paths [20]. Surprisingly, while
the third problem is XP when parameterized by tree-cut width, it remains W[1]-
hard under this parameterization [20]---a stark contrast to the behavior of Vertex
Disjoint Paths parameterized by treewidth.
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We remark that the quadratic dependency on n in our algorithms can almost
certainly be reduced to linear by using a carefully designed data structure or avoiding
the use of Turing reductions. In particular, in all three cases the quadratic dependency
is caused by the fact that the Turing reductions used in the proofs of Lemmas 4.6,
4.13, and 4.21 produce subinstances of size \scrO (n); other than that, these reductions
run in time that depends only on k.

While we do not yet have an exact fixed-parameter algorithm for computing tree-
cut width, the 2-approximation algorithm of Kim et al. [28] is sufficient to establish
fixed-parameter tractability of various problems of interest. Moreover, there is also a
SAT encoding which can compute the tree-cut width exactly for graphs with dozens
of vertices [19].

Acknowledgment. The authors also gratefully acknowledge the detailed feed-
back provided by the reviewers.
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