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Abstract. The Directed Grid Theorem, stating that there is a function f such that a directed
graph of directed treewidth at least f(k) contains a directed grid of size at least k as a butterfly minor,
after being a conjecture for nearly 20 years, was proved in 2015 by Kawarabayashi and Kreutzer.
However, the function f obtained in the proof is very fast growing. In this work, we show that if one
relaxes directed grid to bramble of constant congestion, one can obtain a polynomial bound. More
precisely, we show that for every k ≥ 1 there exists t = O(k48 log13 k) such that every directed graph
of directed treewidth at least t contains a bramble of congestion at most 8 and size at least k.
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1. Introduction. The Grid Minor Theorem, proved by Robertson and Seymour
[19], is arguably one of the most important structural characterizations of treewidth.
Informally speaking, it asserts that a grid minor is a canonical obstacle to small
treewidth: a graph of large treewidth necessarily contains a big grid as a minor. The
relation of “large” and “big” in this statement, being nonelementary in the original
proof, after a series of improvements has been proved to be a polynomial of relatively
small degree.

Theorem 1.1 (Chuzhoy, Tan [4]). For every k ≥ 1 there exists t = O(k9polylogk)
such that every graph of treewidth at least t contains a k × k grid as a minor.

In the mid-1990s, Johnson et al. [9] proposed an analogue of treewidth for directed
graphs, called directed treewidth, and conjectured an analogous statement (with the
appropriate notion of a directed grid). After nearly 20 years, the Directed Grid
Theorem was proved in 2015 by Kawarabayashi and Kreutzer [12]. However, their
proof yields a very high dependency between the required directed treewidth bound
and the promised size of the directed grid.
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CONSTANT CONGESTION BRAMBLES IN DIRECTED GRAPHS 923

While searching for better and better bounds for the (undirected) Grid Minor
Theorem, researchers investigated relaxed notions of a grid (e.g., Kawarabayashi,
Kobayashi, and Kreutzer [10]). In some sense, the “most relaxed” notion of a grid is
a bramble: a family B of connected subgraphs of a given graph such that every two
B1, B2 ∈ B intersect in at least one vertex or there exists an edge with one endpoint
in B1 and one endpoint in B2. Brambles can be large; the notion of complexity of a
bramble is its order—the minimum size of a vertex set that intersects every element
of a bramble. We also refer to the size of a bramble as the number of its elements and
the congestion of a bramble as a maximum number of elements that contain a single
vertex; note that the size of the bramble is bounded by the product of its order and
congestion.

To link brambles and grids, first note that a k× k grid contains a simple bramble
of order k and size k2: the elements of a bramble are the subgraphs that consist of
the ith row and the jth column of the grid for 1 ≤ i, j ≤ k. If one wants a bramble
of congestion 2, a bramble of size k whose elements are subgraphs consisting of the
ith row and ith column of the grid for every 1 ≤ i ≤ k is of order ⌈k/2⌉. In the other
direction, brambles of small congestion can replace grids if one wants to use a grid as
an object that allows arbitrary interconnections of small congestion between different
pairs of vertices on its boundary. Such a usage appears, e.g., in arguments for the
Disjoint Paths problem (cf. [1, 2, 3, 5]).

Surprisingly, as proved by Seymour and Thomas [20], brambles form a dual object
tightly linked to treewidth: the maximum order of a bramble in a graph is exactly
the treewidth of the graph plus one. However, as shown by Grohe and Marx [6] and
sharpened by Hatzel et al. [8], brambles of high order may need to have exponential
size: while a graph of treewidth k necessarily contains a bramble of order Ω̃(

√
k)

of congestion 2 (and thus of size linear in their order), there are classes of graphs
(e.g., constant-degree expanders) where for every 0 < δ < 1/2 any bramble of order
Ω̃(k0.5+δ) requires size exponential in roughly k2δ. Here, the notation Ω̃ and Õ omits
polylogarithmic factors.

A slightly more organized bramble of congestion 2, namely two families of vertex-
disjoint paths with an intersection graph containing a large clique minor (with size
bound of quartic dependence on the treewidth), has been shown to exist in undirected
graphs by Reed and Wood [18].

In directed graphs, the notion of a bramble naturally generalizes to the notion
of a directed bramble, a family of strongly connected subgraphs such that every two
subgraphs intersect in a vertex, or the graph contains an arc with a tail in the first
subgraph and a head in the second and an arc with a tail in the second subgraph and
a head in the first. The order of a directed bramble is defined in the same way as in
undirected graphs. For brevity we usually shorten “directed bramble” to “bramble”
below. While we no longer have a tight relation between the directed treewidth and
the maximum order of a directed bramble, these two graph parameters are within a
constant factor of each other, as shown by Reed [17]. However, the lower bound of
Grohe and Marx [6] also applies to directed graphs: There are digraph families where
a graph of directed treewidth k contains only brambles of order k0.5+δ of exponential
size for any 0 < δ < 0.5.

Hence, it is natural to ask what order of a bramble of constant congestion we can
expect in a directed graph of directed treewidth t. The lower bound of Grohe and
Marx shows that we cannot hope for a better answer than Õ(

√
t). Since a directed grid

contains a bramble of congestion 2 and order linear in the size of the grid, the Directed
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924 MASAŘÍK, PILIPCZUK, RZĄŻEWSKI, AND SORGE

Grid Theorem implies that for every k ≥ 1 there exists t = t(k) such that directed
treewidth at least t guarantees the existence of a bramble of order k and congestion
2. However, the function t = t(k) stemming from the proof of Kawarabayashi and
Kreutzer [12] is very fast-growing. Similarly, a half-integral variant of the Directed
Grid Theorem [10] could be used to obtain a bramble of order k and congestion 4,
but also there the function t = t(k) is very fast-growing.

In this work, we show that this dependency can be made polynomial if we are
satisfied with slightly larger congestion.

Theorem 1.2. For every k ≥ 1 there exists t = O(k48 log13 k) such that every
directed graph of directed treewidth at least t contains a bramble of congestion at most
8 and size at least k.

So far, similar bounds were known only for planar graphs, where Hatzel,
Kawarabayashi, and Kreutzer showed a polynomial bound (with degree 6 of the poly-
nomial) for the Directed Grid Theorem [7]. Decreasing the congestion in Theorem 1.2,
ideally to 2, even at the cost of higher polynomial dependency of t on k, remains an
interesting open problem. Optimizing the parameters in the other direction would
also be interesting; for all we know, obtaining the dependency t = Õ(k2) for constant
congestion may be possible.

On the technical level, the proof of Theorem 1.2 borrows a number of tools from
previous works. From Reed and Wood [18], we borrow the idea of using Kostochka–
Thomason degeneracy bounds for graphs excluding a minor [13, 21] to ensure the
existence of a large clique minor in an intersection graph of a family of strongly
connected subgraphs, if it turns out to be dense (which immediately gives a desired
bramble). We also use their Lovász Local Lemma–based argument to find a large
independent set in a multipartite graph of low degeneracy. Similarly as in the proof
of the Directed Grid Theorem [12] and in its planar variant [7], we start from the
notion of a path system and its existence (with appropriate parameters) in graphs
of high directed treewidth. Finally, from our recent proof of the half- and quarter-
integral directed Erdős–Pósa property [14, 15], we reuse the Partitioning Lemma,
allowing us to find a large number of closed walks with small congestion. On top of
the above, compared to [7] and [14, 15], the proof of Theorem 1.2 offers a much more
elaborate analysis of the studied path system, allowing us to find the desired bramble.

Organization. We collect the formal statements of results from previous work in
section 2. In section 3 we gather tools that show how to obtain a low congestion
bramble in various special situations, and we show how to obtain some intermedi-
ate structures. In section 4 we then show how to combine all the tools to prove
Theorem 1.2.

2. Preliminaries and notation. For integers n ∈ N we use [n] to denote
{1, 2, . . . , n}.

Basics. Throughout we use D to denote directed graphs and G, H for undirected
graphs. Let D be a directed graph. A walk in D is a sequence W of vertices such
that for each pair of consecutive vertices u, v in W there is an arc (u, v) in D. A
walk is closed if it starts and finishes with the same vertex. Let W be a walk. We
denote by V (W ) the set of vertices which occur in the sequence W . A subwalk of W
is a segment of W , that is, a subsequence of consecutive elements. The number of
occurrences of a vertex v in W , denoted by oc(v, W ), is the number of times it occurs
in the sequence W ; if W is closed and v is its starting vertex, then it is the number
of times v occurs in the sequence W minus one. The length of a walk W is the sum
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CONSTANT CONGESTION BRAMBLES IN DIRECTED GRAPHS 925

of the numbers of occurrences of the vertices in V (W ).
Definition 2.1 (congestion, overlap). Let W be a family of walks in D and S

be a family of subsets of V (D). We define

overlap(W) := max
v∈V (D)

∑
W ∈W

oc(v, W ),

congestion(S) := max
v∈V (D)

|{S ∈ S | v ∈ S}|.

For a set of walks W, its congestion is the congestion of the family {V (W ) |W ∈ W}.
Linkages, path systems, minors. Let D be an undirected graph. For A, B ⊆

V (D), such that |A| = |B|, a linkage from A to B in D is a set of |A| pairwise
vertex-disjoint paths in D, each with a starting vertex in A and an ending vertex in
B. A set X ⊆ V (D) is well linked if for every A, B ⊆ X, s.t. |A| = |B| there are |A|
vertex-disjoint A-B-paths in D − (X \ (A ∪B)).

Definition 2.2 (path system). Let a, b ∈ N. An (a, b)-path system (Pi, Ai, Bi)a
i=1

consists of
• vertex-disjoint paths P1, P2, . . . , Pa, and
• for every i ∈ [a], two sets Ai, Bi ⊆ V (Pi), each of size b, such that every

vertex of Bi appears on Pi later than all vertices of Ai,
such that

⋃a
i=1 Ai ∪Bi is well linked in D.

In this work, we do not need the exact (and involved) definition of directed
treewidth; instead, we immediately jump to path systems via the following lemma.

Lemma 2.3 (Kawarabayashi, Kreutzer [12, 11] (implicit); see also [14, Lemma 7]).
There exists a constant cKK such that for every two integers a, b ≥ 1 every directed
graph D of directed treewidth at least cKK · a2b2 contains an (a, b)-path system.

The average degree of an undirected graph with n vertices and m edges is 2m/n.
An undirected graph G is d-degenerate if every subgraph of G contains a vertex of
degree at most d. The degeneracy of an undirected graph G is the minimum integer
d ∈ N such that G is d-degenerate. Observe that for every undirected graph G we have
∆a(G) ≤ 2d(G), where ∆a(G) is G’s average degree and d(G) is G’s degeneracy. The
degeneracy is linked to clique minors. Let G be an undirected graph. An undirected
graph H is called a minor of G if it results from a subgraph G′ of G by partitioning
the vertices of G′ into sets V1, V2, . . . , Vℓ that each induce a connected subgraph of G′

and then contracting each set Vi, i ∈ [ℓ], into a single vertex. The sets V1, V2, . . . , Vℓ

are also called the branch sets of H.
Theorem 2.4 (Kostochka [13, Theorem 1], Thomason [21, Theorem] (restated)).

There exists a constant cKT, such that for every a ≥ 2, every undirected graph G with
degeneracy at least cKT · a ·

√
log a contains Ka as a minor.

Lemma 2.5 (Reed and Wood [18, Lemma 4.3]). Let r be an integer with r ≥ 2,
d be a positive real, and H be an r-colored undirected graph with the color classes
V1, . . . , Vr. Assume that for every i ∈ [r] it holds that |Vi| ≥ 4e(r − 1)d and for every
i ̸= j the graph H[Vi ∪ Vj ] is d-degenerate. Then there exists an independent set
{x1, . . . , xr} such that xi ∈ Vi for every i ∈ [r].

For a family S of sets, its intersection graph, denoted by Int(S), is an undirected
graph with vertex set S, and two distinct sets S1, S2 ∈ S are adjacent in Int(S) if
S1 ∩ S2 ̸= ∅. If W is a set of walks, then the intersection graph Int(W) is defined as
Int({V (W ) |W ∈ W}).
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3. Tools. We now gather the new tools that we need in the main proof. The
general setting is that, if the directed treewidth of our graph is large enough, then
there is a path system (see Definition 2.2) containing a large number of sets Ai, Bi

and large linkages between them. We then distinguish several cases for sets of pairs of
linkages and the densities of the intersection graphs of the paths in these linkages. We
end up with three fundamental scenarios, each of which allows us to define a desired
bramble. How the brambles are obtained in these scenarios is shown in subsection 3.1.

In subsection 3.2 we derive a set of tools that allow us to partition paths in the
sets of linkages mentioned above in such a way as to keep both the congestion low
and the intersection graphs of the parts sufficiently dense.

3.1. Extracting a bramble. The first tool allows us to extract a desired bram-
ble if our directed graph contains a set of walks whose intersection graph is sufficiently
dense.

Lemma 3.1 (dense winning scenario). Let cKT be the constant from Theorem 2.4.
If a directed graph D contains a family W of closed walks of congestion α, whose
intersection graph is not cKT · d ·

√
log d-degenerate, then D contains a bramble of

congestion α and size d.
Proof. Since Int(W) is not cKT ·d ·

√
log d-degenerate, by Theorem 2.4, it contains

a Kd minor K. Since each branch set of K induces a connected subgraph of Int(W),
and each vertex of Int(W) is a closed walk in D, we obtain that each branch set of
K corresponds to a strongly connected subgraph of D. Furthermore, since between
any two branch sets of K there is an edge in Int(W), we conclude that the subsets of
V (D) corresponding to branch sets of K form a bramble in D. The congestion bound
follows from the fact that the congestion of W is α.

Using the second tool, we obtain a desired bramble if our directed graph contains
a path system that is large enough and there is a subset of paths with low congestion.

Lemma 3.2 (sparse winning scenario). There is an absolute constant c with the
following property. Let D be a directed graph, let a > 1, b ≥ 1, and let (Pi, Ai, Bi)a

i=1
be an (a, b)-path system in D. Let I be a subset of [a] × [a] \ {(i, i) | i ∈ [a]}, such
that |I| ≥ 0.6 · a(a − 1). Assume that for every (i, j) ∈ I we have a path Pi,j from
Bi to Aj such that {Pi,j | (i, j) ∈ I} is of congestion at most α. Then D contains a
bramble of congestion at most 2 + 2α and size at least c ·

(
a1/2

log1/4 a

)
.

Proof. Consider an undirected graph H with vertex set [a] and {i, j} ∈ E(H) if
both (i, j) ∈ I and (j, i) ∈ I. Since |I| ≥ 0.6 · a(a − 1), we have |E(H)| ≥ 0.1 ·

(
a
2
)
.

By Theorem 2.4, H contains a clique minor of size p ≥ c′ · a/
√

log a, where c′ is an
absolute constant. Without loss of generality, assume that p =

(
q
2
)

for some integer
q such that q ≥ c · a1/2/ log1/4 a for some constant c. Let (Bx,y){x,y}∈([q]

2 ) be the
family of branch sets of a clique minor of size p in H. Observe that for every x ∈ [q],
the subgraph of H induced by

⋃
y∈[q]\{x} Bx,y is connected; let Tx be an arbitrary

spanning tree of that subgraph. Note that, for every two distinct x, y ∈ [q], the trees
Tx and Ty intersect in Bx,y. On the other hand, every vertex and every edge of H are
contained in at most two trees Tx.

Now we transfer the set of trees above to a bramble in D. For every i ∈ [a], let ei

be the last edge of Pi, whose tail is in Ai. Note that ei is well defined, as the set Bi

follows Ai on Pi; see Figure 1 (left). For every edge e = ij ∈ E(H), let We be a closed
walk in D obtained as follows. We start with Pi,j , and then we follow Pj until we
arrive at the starting vertex of Pj,i. Then we follow Pj,i, and then Pi until we close the
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Pi

Pj

Ai

Aj

Bj

Bi

ej

Pi

Pj

Ai

Aj

Bj

Bi

Pi,j

Pj,i

Pi,j

Pj,i

ei

ej

ei

Fig. 1. The walk We constructed in the proof of Lemma 3.2.

walk; see Figure 1 (right). Note that We contains both ei and ej . For every x ∈ [q],
define a subgraph Dx of D as the union of all walks We for all e ∈ E(Tx). Since for
every e = {i, j} ∈ E(H), the walk We contains ei and ej , and Tx is connected, the
graph Dx is strongly connected and contains all edges ei for i ∈ V (Tx). Thus, since
every two trees Tx and Ty intersect in Bx,y, the family (Dx)x∈[q] is a bramble of size
q ≥ c ·

(
a1/2

log1/4 a

)
in D.

Now we argue that the congestion of the constructed bramble is at most 2α + 2.
Each vertex is in at most α paths Pi,j and in at most one path Pi. Thus each vertex
appears in at most α + 1 walks We. Each walk We might appear in at most two sets
of the bramble, so the overall congestion is at most 2α + 2.

Now we make Lemma 3.2 more easily accessible by making it applicable directly
to a path system whose linkages have intersection graphs that are sufficiently sparse.

Lemma 3.3 (sparse winning scenario, wrapped). Let c be the constant from
Lemma 3.2. Let D be a directed graph, let a > 1, b ≥ 1, and let (Pi, Ai, Bi)a

i=1 be
an (a, b)-path system in D. Let I be a subset of [a] × [a] \ {(i, i) | i ∈ [a]}, such that
|I| ≥ 0.6 ·a(a−1). For (i, j) ∈ I, let Li,j be a linkage of size b from Bi to Aj. Assume
that there is an integer d such that for every distinct (i, j), (i′, j′) ∈ I the intersection
graph of Li,j and Li′,j′ is d-degenerate. If b > 4 · e · a2 · d, then D contains a bramble
of congestion at most 4 and size at least c ·

(
a1/2

log1/4 a

)
.

Proof. Construct an auxiliary undirected graph H, whose vertices are the paths
in

⋃
(i,j)∈I Li,j . Two paths are adjacent in H if they contain a common vertex. Note

that each set Li,j is independent in H, so H is |I|-partite. Furthermore, as for each
(i, j), (i′, j′) ∈ I, the graph H[Li,j ∪ Li′,j′ ] is precisely the intersection graph of Li,j

and Li′,j′ , it is d-degenerate. Finally, since I ⊆ [a]× [a], we have

b ≥ 4 · e · a2 · d ≥ 4 · e · (|I| − 1) · d.

Thus, applying Lemma 2.5 to H yields a single path Pi,j ∈ Li,j for each (i, j) ∈ I,
such that the paths in {Pi,j}(i,j)∈I are pairwise disjoint.

Now we observe that the set I and the family {Pi,j}(i,j)∈I of paths satisfy the
assumptions of Lemma 3.2 with α = 1. Thus, the application of Lemma 3.2 yields
the desired bramble.

3.2. Closed walks and threaded linkages. In this section, we introduce a
key object: the threaded linkage, which will be a main building block in our main
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928 MASAŘÍK, PILIPCZUK, RZĄŻEWSKI, AND SORGE

proof. Informally, later on we want to order and connect paths within a given linkage.
In order to achieve this, we construct one long walk that contains all the paths from
the linkage, interconnected by walks which we denote as threads. The long walk then
naturally orders the paths in the linkage.

Our goal in this section is then, given a threaded linkage, to find a collection
of closed walks, each containing a path from a linkage or, in case of two threaded
linkages, a collection of closed walks, each containing a path from both linkages. The
latter outcome is provided by another basic tool: the Bowtie Lemma, which might
be useful on its own. This concept was essentially proved and used in [15, 14] in a
slightly different setting. We describe the differences below.

Definition 3.4 (threaded linkage). Let D be a directed graph. A threaded
linkage in D is a pair (W,L) where L = {L1, L2, . . . , Lℓ} is a linkage in D and W
is a walk such that there exist ℓ − 1 paths Q1, Q2, . . . , Qℓ−1 in D such that W is the
concatenation of L1, Q1, L2, Q2, . . . , Qℓ−1, Lℓ in that order. The paths Qi are called
threads. A threaded linkage (W,L) with W = (L1, Q1, . . . , Qℓ−1, Lℓ) is untangled if
for every i, the thread Qi may only intersect the rest of W in Li or Li+1.

The size of an (untangled) threaded linkage (W,L) is the size of the linkage L,
and its overlap is the overlap of the walk W .

Next, we show how to construct threaded linkages from a path system.

Lemma 3.5 (construction of threaded linkages). Let (Pi, Ai, Bi)a
i=1 be an (a, b)-

path system for a, b ∈ N. Then, for all i, j ∈ [a], there exist a linkage Li,j from Bi to
Aj and a threaded linkage (Wi,j ,Li,j) of size b and overlap at most 3.

Proof. We construct a threaded linkage for each i, j ∈ [a] separately. For every
i, j ∈ [a], we fix a linkage Li,j from Bi to Aj and a linkage ←−L i,j from Aj to Bi; these
linkages exist by the well-linkedness of

⋃a
i=1 Ai ∪Bi.

For every P ∈ Li,j , let ρi,j(P ) be the path of ←−L i,j that starts at the ending point
of P , and let πi,j(P ) be the path of Li,j that starts at the ending point of ρi,j(P ). Note
that πi,j is a permutation of Li,j . Let Ci,j be the family of cycles of the permutation
πi,j . Observe that every such cycle corresponds to a closed walk composed of the
paths in Li,j and ←−L i,j .

From every cycle C ∈ Ci,j we arbitrarily select one path from Li,j ; we call it
the representative of C. Let C1, C2, . . . , Cr be the elements of Ci,j in order of the
appearance of the starting points of their representatives along Pi. Define the walk
Wi,j as follows: follow Pi, and for every ℓ ∈ [r], when we encounter the starting point
of the representative of Cℓ, follow the respective closed walk corresponding to Cℓ,
returning back to the starting point of the representative of Cℓ, and then continue
going along Pi. Finally, trim Wi,j so that it starts and ends with a path of Li,j , as
required by the definition of a threaded linkage.

Recall that the size of (Wi,j ,Li,j) is the size of the linkage Li,j , i.e., b. Now let us
argue about the overlap. The walk Wi,j consists of the following subwalks: (1) paths
of Li,j (each path is used exactly once), (2) paths of ←−L i,j (each path is used at most
once), and (3) some pairwise vertex-disjoint subpaths of Pi. Note that the subwalks
within each of these three groups are vertex-disjoint. Thus the overlap of (Wi,j ,Li,j)
is at most 3.

Now, we refine a given threaded linkage to get at least one good outcome: either
a collection of closed walks, each containing a path from the linkage, or an untangled
threaded linkage.
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Lemma 3.6 (construction of closed walks or untangled threaded linkages). Let
(W,L) be a threaded linkage of size b and of overlap α. Let x, d ∈ N such that
b ≥ xd + (d− 1). Then one of the following exists:

1. A family Z of d closed walks, such that for every walk W ∈ Z there exists a
distinct path P (W ) ∈ L that is a subwalk of W , and Z has overlap α.

2. An untangled threaded linkage (W ′,L′) where W ′ is a subwalk of W and
L′ ⊆ L is of size at least x. In particular, (W ′,L′) is of overlap α.

Proof. Let z be the length of W (i.e., the number of occurrences of vertices). For
1 ≤ p ≤ q ≤ z, by W [p] we will denote the pth vertex of W , and by W [p, q] we will
denote the subwalk W [p], W [p + 1], . . . , W [q].

A useful walk of W is a subwalk W [p, q] of W , such that W [p] = W [q] and W [p, q]
contains at least one path of L as a subwalk. The pair of indices (p, q) is called a
useful intersection.

We greedily construct a sequence I1, I2, . . . , Iℓ of useful walks as follows: I1 =
W [p1, q1] is a useful walk of W such that q1 is the smallest possible, and subsequently
Iξ+1 = W [pξ+1, qξ+1] is a useful walk of W such that pξ+1 > qξ and qξ+1 is the smallest
possible. The greedy construction stops when there are no useful walks starting after
qℓ.

First, consider the case that ℓ ≥ d. Then every useful walk Iξ is a closed walk
and, as W is of overlap α, the family {Iξ | ξ ∈ [ℓ]} is of overlap α. Furthermore, by
the definition of a useful walk, every Iξ contains a distinct path from L, so we obtain
the first desired outcome.

So now consider the case that ℓ < d. We select ℓ + 1 subwalks I ′
1, I ′

2, . . . , I ′
ℓ+1 in

W as follows. The subwalk I ′
1 is defined as W [1, q1 − 1]. Then, for 2 ≤ ξ ≤ ℓ, we

define I ′
ξ as W [qξ−1 + 1, qξ − 1]. Finally, we define I ′

ℓ+1 := W [qℓ + 1, z].
By the construction of the walks Iξ, no I ′

ξ contains a useful walk. Furthermore,
the union of all walks I ′

ξ covers W , except for q1, q2, . . . , qℓ. Hence, for at least |L|− ℓ
paths P ∈ L it holds that there is ξ ∈ [ℓ− 1] such that P is fully contained in I ′

ξ. So
there is some ξ ∈ [ℓ + 1], such that I ′

ξ contains at least

|L| − ℓ

ℓ + 1 ≥ b− (d− 1)
d

≥ x

paths of L, where the last inequality holds because b ≥ xd + (d− 1) by precondition.
Let L′ ⊆ L be the set of paths contained in I ′

ξ, and let W ′ be the walk I ′
ξ, trimmed

so that it starts and ends with a path of L′. We note that (W ′,L′) is an untangled
threaded linkage as I ′

ξ contains no useful intersection. Thus, in this case, we obtain
the second desired outcome.

Lemma 3.7 (Bowtie Lemma). For d ≥ 1, let (W1,L1) and (W2,L2) be two threaded
linkages of overlap α and β, respectively, such that the intersection graph I(L1,L2)
of L1 and L2 is not (29 · 5 · d)-degenerate. Then there is a family Z of d closed walks
such that every walk in Z contains at least one distinct path of L1 and one distinct
path of L2 as a subwalk, and the congestion of Z is at most α + β.

Furthermore, if (W1,L1) ((W2,L2), respectively) is untangled, then Z is of con-
gestion at most β+1 (α+1, respectively), and if both (W1,L1), (W2,L2) are untangled,
then Z is of congestion at most 2.

The main difference with the version proved implicitly in [15, 14] is that, there,
only the containment of a subpath of a path in L1 and of a subpath of a path in L2
was guaranteed as opposed to the whole path as provided in the statement above.
For the proof, we make use of the following Partitioning Lemma.

D
ow

nl
oa

de
d 

11
/3

0/
22

 to
 1

28
.1

31
.2

37
.1

58
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

930 MASAŘÍK, PILIPCZUK, RZĄŻEWSKI, AND SORGE

P1

R1 P2

R2 Pq+1

Rz−1

Pz

Pq

RqRq−1

P ′z′

P ′q′

R′q′

R′z′−1

P ′q′+1

P ′1
R′1 P ′2

R′2
R′q′−1

v

w

Zi

Fig. 2. The walk Zi constructed in the proof of Lemma 3.7.

Lemma 3.8 (Partitioning Lemma [14, Lemma 11]). Let k, r ≥ 1 be two inte-
gers, and let G be a bipartite graph with bipartition classes X = {x1, x2, . . . , xa} and
Y = {y1, y2, . . . , yb} and minimum degree at least 29 · r · k. Then there are k sets
U1, U2, . . . , Uk, and k sets W1, W2, . . . , Wk, such that

1. for each i ∈ [k] the set Ui is a segment of X and the set Wi is a segment of
Y , i.e., there are integers αi,U , ωi,U , αi,W , ωi,W with αi,U < ωi,U and αi,W <
ωi,W such that Ui = {xαi,U

, xαi,U +1, . . . , xωi,U
} and Wi = {yαi,W

, yαi,W +1,
. . . , yωi,W

},
2. for each distinct i, j ∈ [k] we have Ui ∩ Uj = ∅ and Wi ∩Wj = ∅, and
3. for every i ∈ [k], the average degree of the graph G[Ui ∪Wi] is at least r.

Now we are ready to prove the Bowtie Lemma.

Proof of Lemma 3.7. First, we invoke Lemma 3.8 for k = d, r = 5, and the
intersection graph I(L1,L2), where the order of paths in each linkage is naturally
determined by the ordering of their appearance in the walks W1, W2. We obtain a
sequence of subsets L1

1,L2
1, . . . ,Ld

1 of L1 and a sequence of subsets L1
2,L2

2, . . . ,Ld
2 of

L2, satisfying the conditions given in the lemma. In particular, L1
1,L2

1, . . . ,Ld
1 are

pairwise disjoint, and L1
2,L2

2, . . . ,Ld
2 are pairwise disjoint.

Fix some i ∈ [d]. Observe that I(Li
1 ∪ Li

2) is of average degree at least 5. Thus,
there are L̃i

1 ⊆ Li
1 and L̃i

2 ⊆ Li
2, such that the graph I(L̃i

1∪L̃i
2) is of minimum degree

at least 3. Indeed, after a vertex of degree at most 2 is removed, the average degree
is still at least 5.

Let P1, P2, . . . , Pz be the paths of L̃i
1, ordered by their appearance on W1. Let

R1, R2, . . . , Rz−1 be the walks, such that Ri is the subwalk of W1 between Pi and Pi+1.
Note that Ri might be either a single thread of (W1,L1) or a subwalk consisting of
alternating threads and paths of Li that were not included in L̃i.

Similarly we define P ′
1, P ′

2, . . . , P ′
z′ as the paths of L̃i

2 and R′
1, R′

2, . . . , R′
z′−1 as

the corresponding subwalks of W2. Finally, let us name the concatenations of the
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subwalks defined above:

W i
1 :=P1, R1, P2, R2, . . . , Rz−1, Pz, and

W i
2 :=P ′

1, R′
1, P ′

2, R′
2, . . . , R′

z′−1, P ′
z′ .

Since Pz is of degree at least 3 in I(L̃i
1, L̃i

2), there exists a common vertex v of Pz

and some P ′
q′ for q′ < z′ − 1. Symmetrically, there is a common vertex w of P ′

z′ and
Pq for some q < z − 1. Consequently, we may construct a closed walk as follows; see
also Figure 2:

Zi := v, the rest of P ′
q′ , R′

q′ , P ′
q′+1, . . . , w, the rest of Pq, Rq, Pq+1, . . . , v.

Note that Zi fully contains at least one path from each linkage, i.e., Pq+1 ∈ L1 and
P ′

q′+1 ∈ L2. Furthermore, since Li
1 is disjoint from Lj

1, j ̸= i, path Pq+1 is distinct to
Zi and analogously for P ′

q′+1.
To see that the family Z = {Zi | i ∈ [d]} satisfies the statement of the lemma,

it remains to discuss the congestion. By condition 2 of Lemma 3.8 each vertex can
appear at most α times on W1; thus it contributes as a part of at most α walks W i

1.
Similarly, each vertex contributes as a part of at most β walks W i

2. Summing up,
each vertex may appear in at most α + β elements of Z.

Now, suppose that one of the input threaded linkages, say, (W1,L1), is untangled.
Let us enumerate L1 = {L1, L2, . . . , Lℓ} and let Q1, Q2, . . . , Qℓ−1 be the threads of
(W1,L1) as in Definition 3.4. Recall that the paths from L1 are vertex-disjoint. Now
consider a thread Qj . Note that at most one walk W i

1 might contain Qj as a subwalk.
Furthermore, if Qj is a subwalk of W i

1, then so are Lj and Lj+1. Thus, since (W1,L1)
is untangled, each vertex from W1 might contribute to the congestion of at most one
walk in Z ∈ Z.

4. Main proof. Using the tools from section 3, we now prove Theorem 1.2. As
mentioned before, the starting point is a path system (see Definition 2.2) containing
a large number of sets Ai, Bi, i ∈ [a], and large linkages Li,j between pairs of such
sets. The basic goal is to exploit the interplay between the dense and sparse winning
scenarios from subsection 3.1. The dense winning scenario (Lemma 3.1) is applicable
if there is a pair of linkages whose intersection graph has large degeneracy. The crux
is how to apply the sparse winning scenarios (Lemmas 3.2 and 3.3) because they
need a fraction of pairs of linkages that is slightly larger than half of the available
pairs of linkages. Our goal is thus to distinguish three subsets of the set of pairs of
linkages such that (i) one of the subsets will be larger than half the available pairs of
linkages and (ii) each of the subsets can be used to define a bramble of large size. We
obtain these three distinguished subsets by using two partially overlaying matchings
in auxiliary graphs whose vertex sets are the available pairs of linkages and whose
edges represent large degeneracy of the corresponding intersection graphs.

Some complications arise from the aim of keeping the congestion low. To achieve
low congestion, instead of applying the sparse winning scenarios directly to the link-
ages from the path set system, we use first the tools from subsection 3.2 to obtain
subsets of pairs of linkages of lower congestion.

Setup. Let k ∈ N with k > 1, and let D be a directed graph of directed treewidth t.
We show that if t ≥ ct ·k48 log13 k, then D contains a bramble of congestion at most 8
and size k. Herein, ct is a constant that we specify below.

We start by fixing the following parameters. Let c be the constant in Lemma 3.3.
Without loss of generality we can assume that c ≤ 1

31/4 (note that if Lemma 3.3 holds
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for a constant c, then it also holds for all smaller constants). Thus c−4 ≥ 3; this will
be used in the case analysis later in the proof. We put ca = c−4 ≥ 3. Let cd3 := cKT
be the constant from Theorem 2.4. We define

a =
⌈
ca · k2(1 + log k)1/2

⌉
,

d3 =
⌈
cd3 · k

√
log k

⌉
,

d2 =
⌈
2115e · a2d3

⌉
= O(k5 log3/2 k),

d1 =
⌈
2115e · a2d2

⌉
= O(k9 log5/2 k), and

b =
⌈
4e · a2d2

1
⌉

= O(k22 log6 k).

Let cKK be the constant in Lemma 2.3. Choose the constant ct such that t ≥ cKKa2b2.
To see that this is possible, observe that

cKKa2b2 ≤ 25e2 · cKK · a6d4
1

≤ 25054e6 · cKK · a14d4
2

≤ 29558e10 · cKK · a22d4
3

≤ 29658e10 · cKK · c4
d3
· a22k4 log2 k

≤ 29758e10 · cKK · c4
d3
· c22

a · k48 log2 k(1 + log k)11

≤ 29758e10 · cKK · c4
d3
· c22

a · k48 log2 k(2 log k)11

≤ 210858e10 · cKK · c4
d3
· c22

a · k48 log13 k.

Thus, putting ct = 210858e10 ·cKK ·c4
d3

c22
a , we have t ≥ cKKa2b2. Hence, by Lemma 2.3,

there is an (a, b)-path system (Pi, Ai, Bi)a
i=1 in D.

Large subsets of pairs of linkages and sets of closed walks of low congestion. Let
V = {(i, j) | i, j ∈ [a] ∧ i ̸= j}. Our aim is now to find the three subsets of V such
that one of them will be larger than |V |/2 mentioned above and to take subsets of
some linkages in order to achieve low congestion. We achieve the second aim by using
sets of closed walks derived from some of the linkages. See Table 1 for the various
linkages and sets of walks that we define below and their properties.

We apply Lemma 3.5 to (Pi, Ai, Bi)a
i=1, obtaining for every (i, j) ∈ V a threaded

linkage (Wi,j ,Li,j) of size b and overlap at most 3. Then, we apply Lemma 3.6
to (Wi,j ,Li,j) with x = 4ea2d1 + 1 and d = d1/(29 · 5). Note that xd + (d − 1) ≤
4e·a2d2

1/(29 ·5)+d1/(28 ·5) ≤ 4e·a2d2
1 ≤ b. Hence, the preconditions of Lemma 3.6 are

satisfied. Let Z ⊆ V be the set of pairs (i, j) for which the application of Lemma 3.6
results in the first outcome.

For each (i, j) ∈ V \Z, let (W ′
i,j ,L′

i,j) be the untangled threaded linkage resulting
from the application of Lemma 3.6. Note that |L′

i,j | ≥ x = 4e · a2d1 + 1.
For each (i, j) ∈ Z, that is, for each (i, j) where applying Lemma 3.6 results in

the first outcome, let Zi,j be the family of closed walks resulting from the application
of Lemma 3.6. Observe that Zi,j is of size at least d1/(29 ·5) and of overlap at most 3.
By the definition of Zi,j , for each walk W ∈ Zi,j there is a distinct path P (W ) ∈ Li,j

such that P (W ) is a subwalk of W . Define the linkage L′
i,j := {P (W ) | W ∈ Zi,j}.

For convenience, we denote also W ′
i,j := Wi,j . Observe that (W ′

i,j ,L′
i,j) is a threaded

linkage (but not necessarily untangled).
For both ℓ = 1, 2, let Eℓ ⊆

(
V
2
)

be the set of those pairs {(i, j), (i′, j′)} ∈
(

V
2
)

for
which both the intersection graphs of L′

i,j and of L′
i′,j′ are not dℓ-degenerate. Define
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Table 1
Important linkages and families of closed walks. Here, “o” stands for overlap, and “c” stands

for congestion.

Index Family o/c Size Comments

(i, j) ∈ V (Wi,j , Li,j) o ≤ 3 b threaded linkage

(i, j) ∈ Z Zi,j o ≤ 3 d1/(29 · 5) closed walks
each W ∈ Zi,j contains Pi,j(W ) ∈ Li,j

(i, j) ∈ V \ Z (W ′
i,j , L′

i,j) o ≤ 3 4ea2d1 + 1 untangled threaded linkage

e ∈ M1 Ze c ≤ 2 d1/(29 · 5) closed walks, for (i, j) ∈ e
each W ∈ Ze contains Pi,j(W ) ∈ Li,j

e ∈ M2 Ze c ≤ 4 d2/(29 · 5) closed walks, for (i, j) ∈ e
each W ∈ Ze contains Pi,j(W ) ∈ Li,j

F ⊆ Z ∪ M1 ∪ M2,
1 ≤ |F | ≤ 2 ZF c ≤ 8 d2/(29 · 5) intersection graph d3-degenerate

(i, j) ∈ Z LZ
i,j c ≤ 1 d1/(29 · 5)

linkage
LZ

i,j = {Pi,j(W ) | W ∈ Zi,j}

(i, j) ∈ V (M1) LZ
i,j c ≤ 1 d1/(29 · 5)

linkage, for e ∈ M1 with (i, j) ∈ e
LZ

i,j = {Pi,j(W ) | W ∈ Ze}

(i, j) ∈ V (M2)
\(Z ∪ V (M1)) LZ

i,j c ≤ 1 d2/(29 · 5)
linkage, for e ∈ M2 with (i, j) ∈ e
LZ

i,j = {Pi,j(W ) | W ∈ Ze}

Z V (M1) V \ (V (M1) ∪ Z)

V \ V (M2)

V (M2)

Fig. 3. The relation of V , Z, and the matchings M1 (red) and M2 (blue). (Color available
online.)

an undirected graph Hℓ = (V, Eℓ). Since d1 ≥ d2, we have E1 ⊆ E2, and thus H1 is
a subgraph of H2.

Let M1 be a maximum matching in H1 −Z. Let M2 be a maximum matching in
the undirected graph (V, E(H2) \

(
V (M1)∪Z

2
)
), that is, in the graph that results from

H2 by removing all edges with both endpoints in V (M1) ∪ Z; see Figure 3.
We are now ready to define the promised three vertex subsets of V such that one

of them is guaranteed to be sufficiently large for our purposes.

Claim 4.1. At least one of the following cases occurs:
Case 1. |V \ (V (M1) ∪ Z)| ≥ 0.6|V |.
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Z V (M1) V \ (V (M1) ∪ Z)

V \ V (M2)

V (M2)

Fig. 4. Proof of Claim 4.1: The number of stars in each region corresponds to the number of
times the set is counted in the proof of Claim 4.1.

Case 2. |V (M1) ∪ V (M2) ∪ Z| ≥ 0.6|V |.
Case 3. |V \ V (M2)| ≥ 0.6|V |.

Proof. It suffices to show that

2|V \ (V (M1) ∪ Z)|+ 2|V (M1) ∪ V (M2) ∪ Z|+ |V \ V (M2)| ≥ 3|V |.(4.1)

Consider how often vertices in the following vertex subsets are counted in the left-hand
side of (4.1); consult also Figure 4:

• Each vertex in V \ (V (M1) ∪ V (M2) ∪ Z) is counted thrice.
• Each vertex in V (M2) \ (V (M1) ∪ Z) is counted four times.
• Each vertex in V (M2) ∩ (V (M1) ∪ Z) is counted twice.
• Each vertex in V (M1) \ V (M2) is counted thrice.
• Each vertex in Z \ V (M2) is counted thrice.

Now note that no vertex of V occurs in two or more of the above sets. Hence, the
left-hand side of (4.1) is at least

3|V \ (V (M1) ∪ V (M2) ∪ Z)|+ 4|V (M2) \ (V (M1) ∪ Z)|
+ 2|V (M2) ∩ (V (M1) ∪ Z)|+ 3|V (M1) \ V (M2)|+ 3|Z \ V (M2)|.

Observe that |(V (M1) ∪ Z) ∩ V (M2)| ≤ |V (M2) \ (V (M1) ∪ Z)| because every edge
of M2 has at most one endpoint in V (M1)∪Z. Thus, the left-hand side of (4.1) is at
least

3|V \ (V (M1) ∪ V (M2) ∪ Z)|+ 3|V (M2) \ (V (M1) ∪ Z)|
+ 3|V (M2) ∩ (V (M1) ∪ Z)|+ 3|V (M1) \ V (M2)|+ 3|Z \ V (M2)|,

which is equal to 3|V | (recall here that V (M1) ∩ Z = ∅), as claimed.
We now continue with definitions of sets of closed walks and sublinkages that we

need to derive a bramble in each of the cases above. Refer again to Table 1 for a
summary of all important linkages and families of closed walks defined here.

For both ℓ = 1, 2 and for each e = {(i, j), (i′, j′)} ∈ Mℓ, apply Lemma 3.7 to
(W ′

i,j ,L′
i,j) and (W ′

i′,j′ ,L′
i′,j′) to find a family Ze of dℓ/(29 · 5) closed walks, such that
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every walk in Ze contains at least one distinct path from L′
i,j and at least one distinct

path from L′
i′,j′ . Since the matchings M1 and M2 are disjoint, we obtain |M1|+ |M2|

families of closed walks Ze for e ∈M1 ∪M2.
Let us now analyze the congestion of the families Ze. Recall that for all (i, j) /∈

Z, the threaded linkage (W ′
i,j ,L′

i,j) is untangled. Thus for each e ∈ M1, both its
endpoints correspond to untangled linkages, so by Lemma 3.7, the congestion of Ze is
at most 2. Now consider the family Ze for an edge e ∈M2. At least one endpoint (i, j)
of e is in V \ Z, and hence (W ′

i,j ,L′
i,j) is untangled. Furthermore, for the other

endpoint (i′, j′) of e we have that L′
i′,j′ is of congestion at most 3. So by Lemma 3.7,

the congestion of Ze is at most 4.
Now suppose that for some F ⊆M1∪M2∪Z of size 1 or 2, the intersection graph

of ZF :=
⋃

g∈F Zg is not d3-degenerate. Recall that for each (i, j) ∈ Z, the congestion
of Zi,j is at most 3 (since it resulted from the first outcome of Lemma 3.6 and because
the congestion is at most the overlap), and for each e ∈ M1 ∪M2 the congestion of
Ze is at most 4. Thus the congestion of ZF is at most 8. Applying Lemma 3.1 to ZF

thus yields a bramble of size k and congestion at most 8, finishing the proof in this
case. Thus, henceforth the following claim holds.

Claim 4.2. For each F ⊆ M1 ∪M2 ∪ Z of size 1 or 2 the intersection graph of
ZF is d3-degenerate.

For every e ∈ M1 and endpoint (i, j) ∈ e proceed as follows. Recall that every
W ∈ Ze contains a distinct path in L′

i,j by Lemma 3.7. For every W ∈ Ze let
Pi,j(W ) ∈ L′

i,j be this path. Let LZ
i,j = {Pi,j(W ) | W ∈ Ze}. Note that |LZ

i,j | ≥
|Ze| ≥ d1/(29 · 5).

Similarly, for every e ∈ M2 and endpoint (i, j) ∈ e \ (V (M1) ∪ Z), proceed
as follows. For every W ∈ Ze, pick a distinct path Pi,j(W ) ∈ L′

i,j on W (again
guaranteed to exist by Lemma 3.7). Let LZ

i,j = {Pi,j(W ) | W ∈ Ze}. Note that
|LZ

i,j | ≥ |Ze| ≥ d2/(29 · 5).
Furthermore, for every (i, j) ∈ Z set LZ

i,j = L′
i,j . Note that |LZ

i,j | ≥ |Zi,j | ≥
d1/(29 · 5). Recall that the application of Lemma 3.6 for (Wi,j ,Li,j) in the beginning
resulted in the first outcome. Thus, for every W ∈ Zi,j there is a distinct path
P (W ) ∈ Li,j ⊆ L′

i,j = LZ
i,j such that P (W ) is a subwalk of W . For every W ∈ Zi,j

denote Pi,j(W ) = P (W ) ∈ L′
i,j .

Case distinction. We are now ready to deal with the possible outcomes of Claim 4.1
one by one. Refer to Table 1 to recall the properties of the linkages and families of
closed walks used below.

Case 1: |V \ (V (M1)∪Z)| ≥ 0.6|V | (large independent set in H1). We would like
to apply Lemma 3.3 to the path system (Pi, Ai, Bi)a

i=1 with I := V \ (V (M1) ∪ Z).
To apply Lemma 3.3 we check that (i) |I| ≥ 0.6 · a · (a − 1), which is true since
|I| ≥ 0.6|V | = 0.6 · a · (a− 1), that (ii) for every (i, j) ∈ I there is a linkage of size at
least 4e ·a2d1 +1 between points in Ai and Bj , that (iii) for every two (i, j), (i′, j′) ∈ I
the intersection graph of the two linkages is d1-degenerate, and that (iv) the size of
the linkages is strictly larger than 4e · a2d1, which clearly holds by definition.

For the linkages in point (ii) we choose the linkages L′
i,j . Observe that, since each

(i, j) ∈ I is not in Z, we have |L′
i,j | > 4e · a2d1, as required by point (ii). Since M1 is

a maximum matching in H1−Z, it follows that I is an independent set in H1. By the
definition of H1 and M1, for every two distinct pairs (i, j), (i′, j′) ∈ I, the intersection
graph of L′

i,j and L′
i′,j′ is thus d1-degenerate. Thus, point (iii) holds as well, meaning

that Lemma 3.3 is applicable.
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Recall that c is the constant in Lemma 3.3, and we have ca = c−4 ≥ 3. The
application of Lemma 3.3 yields a bramble of congestion at most 4 and size at least

c · a1/2

log1/4 a
≥ c · (ca · k2(1 + log k)1/2)1/2

log1/4(cak2(1 + log k)1/2)
= k · cc

1/2
a (1 + log k)1/4

log1/4(cak2(1 + log k)1/2)

≥ k · cc
1/2
a (1 + log k)1/4

log1/4(cak3)
= k · cc

1/2
a (1 + log k)1/4

(log ca + 3 log k)1/4

≥ k · cc
1/4
a · (ca + ca log k)1/4

(log ca + 3 log k)1/4 = k · (ca + ca log k)1/4

(log ca + 3 log k)1/4 .(4.2)

As ca ≥ 3, the right-hand side of inequality (4.2) is at least k, finishing the proof in
this case.

Case 2: |V (M1)∪V (M2)∪Z| ≥ 0.6|V | (large matchings). We show that we may
apply Lemma 3.2 to a set of paths obtained from the families Zg for g ∈ Z∪M1∪M2.
Let J be the undirected, (|Z| + |M1| + |M2|)-partite graph whose vertex set is the
disjoint union of the color classes {Zg | g ∈ Z ∪M1 ∪M2} such that, for every pair
of distinct g, g′ ∈ Z ∪M1 ∪M2, the graph J [Zg ∪Zg′ ] is the intersection graph of Zg

and Zg′ (and J contains no further edges). Hence we obtain a graph properly colored
with |Z|+ |M1|+ |M2| ≤ |V | = a(a− 1) colors. We claim that by Lemma 2.5 we may
thus select a walk Wh ∈ Zh for every h ∈ M1 ∪M2 ∪ Z such that the walks Wh are
pairwise vertex-disjoint. To that end, it suffices to show the required relation on the
number of colors of J , the size of the color classes, and the degeneracy of all subgraphs
induced by two color classes. By Claim 4.2 each subgraph of J that is induced by
two different colors is d3-degenerate. Moreover, for every g ∈ Z ∪M1 ∪M2 we have
|Zg| ≥ d2/(29 · 5) by definition of Zg and since d1 > d2. By definition of d2, we have
d2/(29 · 5) ≥ 4e · a2d3 ≥ 4e(a(a− 1)− 1)d3, as required by Lemma 2.5. Thus, indeed,
we may choose the walks Wh as specified.

Let I be a subset of Z ∪ V (M1) ∪ V (M2) of size exactly ⌈0.6a(a − 1)⌉. The
set of paths to which we apply Lemma 3.2 is derived from the walks Wh as follows.
If h = {(i, j), (i′, j′)} ∈ M1 ∪ M2, then, by definition of Zh, walk Wh contains a
path Pi,j(Wh) ∈ Li,j and a path Pi′,j′(Wh) ∈ Li′,j′ . If h = (i, j) ∈ Z, then, by
definition of Zh, walk Wh contains a path Pi,j(Wh) ∈ LZ

i,j . Construct a family
Q = {Pi,j | (i, j) ∈ I} by, for each (i, j) ∈ I, choosing an arbitrary walk Wh such that
(i, j) = h or (i, j) ∈ h and putting Pi,j = Pi,j(Wh). Note that for each (i, j) ∈ I we
have Pi,j ∈ Li,j . Since two paths Pi,j , Pi′,j′ may only share vertices if they stem from
the same walk Wh, we have that Q has congestion at most 2. By applying Lemma 3.2
to Q, we obtain a bramble of congestion at most 2 + 2 · 2 = 6 and of size at least
c · a1/2

log1/4 a
. By the same calculation as in inequality (4.2), this bramble has size at

least k, finishing the proof in this case.
Case 3: |V \ V (M2)| ≥ 0.6|V | (large matching anti-adjacent to an independent

set). We now would like to apply Lemma 3.3 with I := V \V (M2) to obtain a bramble
of size k and low congestion. To apply Lemma 3.3 we check that (i) |I| ≥ 0.6·a·(a−1),
which is true since |I| = |V \ V (M2)| ≥ 0.6|V | = 0.6 · a · (a − 1), that (ii) for every
(i, j) ∈ I there is a linkage of size d1/(29 ·5) between points in Ai and Bj , that (iii) for
every two (i, j), (i′, j′) ∈ I the intersection graph of the two linkages is d2-degenerate,
and that (iv) d1/(29 · 5) > 4 · e · a2 · d2, which clearly holds by definition.

As linkages for point (ii), for each (i, j) ∈ I ∩ (Z ∪ V (M1)) we take the linkage
LZ

i,j . Note that |LZ
i,j | ≥ d1/(29 · 5). For each (i, j) ∈ I \ (Z ∪ V (M1)) we take the

linkage L′
i,j . For convenience we denote LZ

i,j := L′
i,j . Note that |LZ

i,j | ≥ d1/(29 · 5) as
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well.
For point (iii), observe that, for each (i, j), (i′, j′) ∈ Z ∪ V (M1), the intersection

graph of the linkages LZ
i,j ,LZ

i′,j′ is d3-degenerate (and thus d2-degenerate) because the
paths in these linkages are contained as subwalks in Z{(i,j),(i′,j′)} and by Claim 4.2.
For each (i, j) ∈ I and (i′, j′) ∈ I \ (Z ∪ V (M1)) the intersection graph between LZ

i,j

and LZ
i′,j′ is d2-degenerate because otherwise M2 would not be maximum. Hence also

point (iii) holds, and it follows that Lemma 3.3 is applicable.
From Lemma 3.3 we obtain a bramble of congestion at most 4 and size at least

c · a1/2

log1/4 a
, which is at least k by inequality (4.2).
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