
SET Hardened Derivatives of QDI Buffer Template
Zaheer Tabassam, Andreas Steininger

Institute for Computer Engineering, TU Wien, Vienna, Austria
zaheer.tabassam@tuwien.ac.at, steininger@ecs.tuwien.ac.at

Abstract—As critical charges become smaller due to technology
advancement, Single Event Transients (SET’s) become more
threatening to circuits. Quasi Delay-Insensitive (QDI) circuits are
tolerant against timing issues, but they tend to be more sensitive
towards transients – and hence SET’s – in the value domain.
This can be somewhat mitigated, without sacrificing their delay
insensitivity, by shortening their sensitive data acceptance win-
dows.

In this paper we investigate these sensitive areas in search
of possible ways to specifically harden buffer stages, as these
are elementary for building asynchronous pipelines and play a
major role in the manifestation of an SET as a Single Event Upset
(SEU). Inspired from existing work in the literature, we propose a
buffer template called “Dual CD IN/OUT Interlock WCHB” that
is basically a hybrid approach to smartly shorten the sensitive
window. It reduces the cases where existing approaches fail
by up to 5% magnitude. Further investigation suggests some
improvement in the design, namely the “Dual CD IN/OUT
Interlock WCHB Simplified” which leads to up to 44% area
savings without effecting the core resilience.

The enhancements are verified in simulation with realistic
circuits like Multiplier, ALU, and FIFO under a timing model
from the NanGate 15nm library.

I. INTRODUCTION

As delays continue to become increasingly unpredictable
and variable in modern VLSI technologies, the worst-case
delay assumption underlying the synchronous design paradigm
is getting cumbersome and inefficient. Consequently, asyn-
chronous design techniques, whose closed-loop timing design
can flexibly adapt to delay variations, are considered an
attractive alternative. As a further benefit, this flexible tim-
ing makes asynchronous circuits, most notably the so-called
QDI ones, also robust against fault effects that impact the
circuit’s temporal behavior. Due to their event-based operation
principle, however, QDI circuits are deemed quite sensitive to
transient faults in the value domain, like glitches. The latter are
often encountered as SET’s that result from ionizing particles
hitting a transistor junction. Unfortunately, the rate of SET’s is
also increasing, as feature sizes shrink in modern technologies.
Hence, making QDI circuits more resilient against SET’s
becomes a very relevant issue.

The wealth of fault-tolerance techniques available for syn-
chronous circuits can, unfortunately, rarely be directly applied
to QDI circuits, due to their different operation principle. The
few hardening techniques that have been proposed specifically
for QDI circuits still have some shortcomings. In this paper we

This research was partially supported by the project ENROL (grant
I 3485-N31) of the Austrian Science Fund (FWF).

will closely investigate these and, based on the insights thus
gained, propose three improved approaches. Our focus herein
will lie on pipeline buffer stages, as these are elementary
generic building blocks for asynchronous designs and play
a key role in converting transient pulses into (lasting) state
changes. We will compare the robustness of different buffer
designs by means of extensive fault-injection experiments in
simulation and thus give evidence for the benefits of our
approaches. We will furthermore show that our techniques
are very efficient by incurring only very moderate area and
performance penalties.

II. RELATED WORK

The focus of this work is on the mitigation of transient
faults in asynchronous circuits, specific to the value domain,
so here we survey models, effects and hardening techniques
for dealing with them. In synchronous systems transient faults
are efficiently mitigated through masking capabilities that are
partly inherent, and, where required, additionally established
with fault-tolerance techniques. The latter, however, tend to
have large overhead and architecture constraints when ported
to asynchronous systems.

Over the years, researchers have regarded redundancy as
key requirement for error resolution and taken inspiration from
synchronous hardening methods for protecting asynchronous
circuits, like [1], [2]. This strategy is backed by promising
results for duplication-based approaches [3], [4]. By leveraging
this topology [5], [6] and [7] proved the resilience of real-
word asynchronous circuits like processors and controllers. In
addition, [8], [9] and [10] highlight the main contributors that
must be considered for Single Event Transient (SET)-tolerant
asynchronous circuits. Investigations and results of [11], [12],
and [13] suggest special ways to apply this redundancy to
asynchronous circuits.

Inspired from [4], [13], and [14], the authors of [15] pro-
posed two enhanced QDI buffer styles with high resilience for
their specific domains while maintaining low area overhead.
As a continuation to this, with a real-word circuit “multiplier”,
[16] presents a more elaborated view of QDI templates with
respect to transient faults. They not only compare templates,
but also illustrate how their behavior varies with circuit dy-
namics. Based on [15], [17] presents more robust QDI buffer
templates that shorten the windows where SET’s are harmful.

In conclusion, mere replication of a circuit can enhance SET
tolerance, but for a high area cost. Consequently, it seems

Andreas Steininger
Textfeld
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



promising to rather analyze the key contributors to faults in
order to selectively target smaller modifications.

III. ASYNCHRONOUS LOGIC

Where in synchronous circuits a clock provides global tem-
poral coordination within the circuit, in asynchronous circuits
each module maintains local synchrony with its neighbors via
handshakes. The handshake cycle of circuits realized with a
Delay-Insensitive (DI) protocol is more flexible in terms of
timing assumptions, because the validity of data is defined by
the data itself using multi-rail encoding schemes. An explicit
acknowledgement signal from the receiver completes the
handshake cycle [18].

From the choice of available options we focus on QDI
circuits throughout this article1, and we stick with a 4-
phase return-to-zero handshake protocol with Dual-Rail (DR)
encoding. In the DR scheme a single bit x is represented by
two rails (x.t, x.f) where t and f are true and false rails,
respectively [18]. A logical“1′′ is represented by setting these
rails to (1, 0) and “0′′ by (0, 1). These are code words and
called (data) tokens. The code (0, 0) is used as a spacer, as
demanded in the 4-phase protocol to separate data tokens.
Note that for the considered scheme (1, 1) is an illegal pattern.
In this protocol without global clock a module interacts with an
other by simply placing a data token on its data rails, and after
receiving a logical high acknowledgement signal from the
receiver it changes the data token for a spacer. The handshake
is completed with its 4th phase when the receiver responds by
resetting the acknowledgment [18].

A. The Muller C − element

The main functionality of a Muller C-element (MCE) is
simple: only if all inputs have the same logic level (switch-
ing condition), that level is passed to the output (after a
propagation delay) and retains saved until a matching pattern
with the opposite logic level arrives at the inputs. There are
asymmetric C-elements that obey extra conditions on special
inputs. Figure 1 CT-part illustrates these behaviors.
(a) MCE with negative input (C-element-): For up-transitions

the input NegIN has no impact on the switching con-
dition, see up-transitions on IN3 and IN4, triggering
a transition on Out2. To change Out2 to logical “0”,
however, all inputs, including NegIN, must be set to “0”.
This is not yet the case with transitions (1) and (2), but
happens after (3), which triggers (4) at Out2.

(b) MCE with positive input (C-element+): For the up-
transition (8) at Out3 the normal inputs IN5 and IN6
must be high ((5) and (6)). However, (7) at PosIN is
also required. In contrast, (11) at Out3 only requires (9)
and (10) because for the down-transition the C-element+
ignores PosIN.

Note that whenever a switching condition is fulfilled, the
state (output) of the MCE is determined by the inputs alone;
this is called the combinational mode of operation. In contrast,

1The key difference to DI is the isochronic fork assumption constraint [19]

IN1

IN2

Out1

Note: ID = Inertial_Delay

ID ID

IN3

IN4

Out2

ID ID
NegIN

IN5

IN6

Out3

ID ID
PosIN

ID

ID ID

ID

ID

ID

ID

ID
ID

F2

F1

F3

F4 F5

CT

Clean transitions

FT

Faulty transitions

1

2

3

4

5

6

7

8

9

10

11

C
-e

le
m

en
t

C
-e

le
m

en
t-

C
-e

le
m

en
t+

Fig. 1. MCE behavior under normal and faulty conditions

IN1
Out1CIN2 C

NegIN -
IN3

Out2
IN4

With negative input

Asymmetric C-elements

C
PosIN +
IN5

Out3
IN6

With positive input

C-element

Fig. 2. MCE and its derivatives

otherwise the internal storage cell alone determines the output;
this is called the storage mode. Figure 2 shows a symbolic
representation of a MCE and its variants.

B. QDI Buffer Templates

As QDI circuits operate with handshakes rather than a
global clock, they require special storage elements that also
obey the handshake protocol with the respective encoding
scheme. In this paper we will restrict ourselves to the popular
4-phase QDI buffer template named Weak-Conditioned Half
Buffer (WCHB). We will start with the basic template and
then continue with some of its variants that are designed to
mitigate the effects of SET’s as shown in Fig. 3. To save space
we integrate two buffer styles in one package, the base buffer
and its Dual Completion Detection (DCD) variant. The orange
part highlights the DCD part. In this section, we only consider
a 1-bit WCHB (α without orange part, enable is directly
connected with the inverted acknowledgment line): according
to the DR scheme, only one input rail may go high at a time,
and if the enable (en) signal is also high, the respective MCE
fires, which, in turn, activates the acknowledgment Ack out.
When the MCE receives the Ack In from its successor (in
this scenario the sink) it gets armed for capturing the spacer.
If due to a fault both input rails (In.T, In.F) go high while
(en) is high, the illegal (1,1) pattern propagates to the output.

C. Pipeline Load Factor

QDI circuits flexibly adapt their operation to the speed in
which tokens are provided by the source and consumed by the
sink. To illustrate that, we are referring to the WCHB from
Fig. 3 and its waveform in Fig. 4. In BOX-A, e.g., a token is



In.F

-

In.T

-

Out.T

Out.F

en

Ack_Out

c

c

c

Ack_In

c

Ack_In

In.F

-

In.T

-

Out.T

Out.F

Ack_Out

c

c

c

c

+

+

C

Cen

en

In.T Out.T

Out.FIn.F

Ack_In

Ack_out

C

C

+

C

+

en

en

In.T Out.T

Out.FIn.F

Ack_out

Ack_In

C

Dual CD WCHB = α

Dual CD Interlocking WCHB = β

Dual CD InOut Interlocking WCHB = δ 

δ Simplified = Δ

So
ur

ce

Si
nk

So
ur

ce

Si
nk

So
ur

ce

Si
nk

So
ur

ce

Si
nk

Fig. 3. Considered Buffer Styles

Bubble_Limited 
 

Sink Delay

W1W1 Sensitive 
 Window 

Sensitive 
 Window 

In.T

In.F

Ack_out

en

Ack_In

Out.T

Out.F

Bu
ffe

r I
np

ut
s

Fr
om

 S
in

k

A B C
Token_Limited 

 
Source Delay

Token_Limited 
 

Source Delay

P1

P2

Q2

Q1

Bu
ffe

r O
ut

pu
ts

U2

U1

R2

R1

S2

S1

Sensitive 
 Window 

P1

T1

Waiting for Data Token

Waiting for Empty Token

W1W2 W2 W2

Valid token Empty token ETVT VT ET

V1

V2

Fig. 4. Waveform of Fig. 3 (WCHB) with Bubble and Token Limited modes

provided to Sink at T1, to which the latter responds after some
delay at Q1, highlighted as “Sink Delay”, while a new empty
token is already waiting at buffer input (P2) to be latched. This
behavior is called Bubble limited because Sink is slow as
compared to Source, so most of the time the pipeline is wait-
ing for acknowledgment (termed “bubble”, as a counterpart
to ”token”) to complete the handshake cycle. In contrast to
that, in BOX-C Source is slow where buffer is waiting for a
new data token or spacer (empty token) highlighted as “Source
Delay”. Sink responds to the data token at “U1”. The latter
ripples to en and arms the buffer for spacer at “U2” where
“V1” is the corresponding request. Source responds at “V2”
after some delay. This case where the pipeline is stalled by
the Sourcedelay is called Token limited mode of operation.
The Pipeline Load Factor (PLF) has also been used by [16]
to express the degree to which tokens or bubbles limit the
pipeline speed. For the remaining discussion a PLF less than
1 indicates a Token limited mode of operation, and a PLF
greater than 1 a Bubble limited mode. With the QDI design
style, the PLF, while affecting the throughput, has no impact
on data integrity. In context with transient faults, however, the
PLF makes a difference. Therefore we will consider it in the
following.

D. Error Types in QDI Circuits
Deviations from the correct behavior (as recorded in a

golden run) are classified into two main categories, namely
data errors and timing issues. For timing issues, i.e., data
arriving earlier or later than expected, data integrity remains
safe, because of the circuit’s delay insensitivity. Data errors
are further classified into four categories [16].
(a) Value error: data is received correctly, but the value is

not as expected.
(b) Coding error: both rails of the DR bit go high; this is

illegal in our considered DR encoding.
(c) Glitch: during any handshake phase a signal makes more

than one transition, or causality of signals is otherwise
violated by a wrong sequence, like acknowledgment
activated before data completion.

(d) Deadlock: the circuit stops in a state where no further
transition is possible.

In an earlier analysis we could establish that glitches do
not propagate as such in an asynchronous circuit; they only
become observable when directly affecting the control signal
of the first or the last stage in a pipeline [20]. Even in those
cases they always triggered other types of data errors. So in
our analysis we exclude glitches and reduce the considered
types of data errors to the remaining 3 effects.

IV. THREATS TO THE QDI PIPELINES

In this section we identify, in theory, the main contributors
and reasons where QDI circuits lose their resilience to SET’s.

A. Sensitive Areas of the C − element

As QDI circuits are mainly composed of MCEs, these
have a major contribution in error generation and propagation,
but also masking. The right part of Fig. 1 (labelled ”FT”)
illustrates possible effects on the three MCE types under
fault scenarios. These are numbered F1 to F5. Discussing all
fault combinations is not feasible here – the purpose of the
following discussion is to show some principal effects.

1) F1: A fault pulse hits the MCE output Out1 while
in storage mode (non-matching inputs). In the physical
implementation this fault would attempt to flip the MCE’s
storage loop from the output side, but the one shown here
is too short to overcome the element’s inertia.

2) F2: The MCE input rail In2 is hit by a fault. While it
persists, the inputs match. Since this time the fault pulse
is sufficiently long, Out1 is indeed flipped and remains
at the erroneous level even after the fault vanished.

3) F3: A negative fault pulse forces Out2 to “0”. Note that
right before the fault occurred, the C-element- moved
to storage mode, by a transition on IN3. However, in
contrast to F1, this fault is long enough to flip the state.

4) F4: A positive fault pulse affects Out3 of C-element+.
Even though its length is sufficient, it has no effect
because the MCE is in combinational mode.

5) F5: A positive fault pulse hits Out3 while in storage
mode. Its length is sufficient to flip the state – even though
PosIN is at LO.



0%

2%

4%

7%
deadlocks

0%

4%

8%

15%
coding
errors

ALU_iso_15nm 8_bit EMPTYPL_iso_15nm 8_bit MULT_iso_15nm 8_bit

.1 .25 .5 1 2 4 10
0%

3%

6%

11%
value
errors

.1 .25 .5 1 2 4 10
Pipeline load factor

.1 .25 .5 1 2 4 10

WCHB
Interlocking
WCHB
InOut
InterWCHB

Fig. 5. Error rates of α, β and their base templates

B. Sensitivity of Different Buffer Templates

In IV-A we have elaborated that the MCE is sensitive to
SET’s while in storage mode, i.e., when its inputs levels do
not (all) match. We have further seen in III-C that in pipeline
operation a WCHB captures data when both, data and en
are present (matching). In token-limited mode en is already
present, but data needs to arrive. During that waiting period the
MCE is in hold mode and its data input as well as its output
sensitive to SET’s. A similar sensitivity window emerges in
bubble-limited mode: While data is already there but en still
missing, the MCE’s en input and data output are sensitive.
Figure 4 indicates sensitive windows by a red shading and
insensitive ones (combinational mode) in green. Note that in
the DR encoding only one of the two data rails is supposed
to switch. So while one of the MCEs already switched, the
other one still remains sensitive until its en is removed. These
phases are indicated in Fig. 4 as ”W1”.

After thorough analysis of sensitive windows of the WCHB,
[15] proposed the ”Interlocking WCHB” (indicated as β)
shown in Fig. 3 without the orange part. Here the MCE
whose output transitioned to “1” first, blocks the other MCE
from making the same transition, which effectively prevents
a (1,1) output and closes the data accepting window. Due to
the inertial delays of the MCEs, however, this interlocking
loses its effectiveness when a fault hits the input signal before
the correct transition, gets latched and then blocks the correct
transition arriving on the other rail. So this method is only
effective for a few scenarios when the fault hits after the
correct transition happened, with the conditions that (a) the
buffer is already in a locked state and (b) the fault must not
hit from the output side.

To address this issue [17] proposed the InOut Interlocking
WCHB (IOIWCHB) shown in Fig. 3 (δ, without orange
part). This approach provides a first stage of interlocking
(actually input filtering) that just compares the inputs without
considering the output and hence does not suffer from the
delay problem as the Interlocking WCHB does. This stage
is followed by a second one that actually resembles an
Interlocking WCHB, albeit with inverted inputs (this is done

to optimize area). This latter stage protects against faults at
the output that might make the state flip to (1,1). In addition,
the NAND gates with their delayed and non-delayed version
of the same signal provide some degree of glitch filtering.

V. EXPERIMENT SETUP

Different circuits have their inherent properties and behave
differently under different conditions. To explore some of these
variants we chose fundamental but useful real-world circuits
for our investigations. Our list comprises Pipelined Multiplier,
Arithmetic Logic Unit (ALU), and Empty Pipeline or FIFO.
The data bit width remains same for all, namely 8-bit.

Our simulation setup consists of a QDI source and sink
generating and acknowledging DR data with programmable
delays to mimic real-world DI scenarios. With these pro-
grammable source/sink delays we control the PLF. Monitors
are placed at the interfaces of the target circuit that check each
activity and compare it to a golden run. Please note that only
value deviations are considered as error, while timing issues
are only considered an observation because circuits are QDI.

For three target circuits with seven different buffer styles,
each with 7 different PLF choices, we got a total of 147
circuit variants, for which we ran 5795148 simulations. As our
concern is SETs, which occur rarely, we only inject one fault
per simulation and observe the behavior. We are excluding
input and output signals from the injection list because these
are directly observable to the monitors with no chance for
mitigation or masking, so these will simply result in higher
fault rates. Injection time and location are randomly chosen,
while the injection pulse length is fixed to a value higher
than the longest inertial delay among all gate delays in our
considered buffer templates, and hence electrical masking
cannot occur (we are only interested in logical and temporal
masking effects here). To run the simulation we use a network
of 10 physical machines (3.5 GHz 7 th generation Intel i5
processor, 16 GBRAM) each running 4 workers in parallel
(one worker per core). The actual simulator used is QuestaSim
(version 10.6c). After all simulations are complete the final
results can be extracted from the database using SQL queries.



0%

1%

2%

5%
deadlocks

.1 .25 .5 1 2 4 10
0%

1%

2%

5%
value
errors

ALU_iso_15nm 8_bit

.1 .25 .5 1 2 4 10
Pipeline load factor

EMPTYPL_iso_15nm 8_bit

.1 .25 .5 1 2 4 10

MULT_iso_15nm 8_bit

Fig. 6. Overall comparison between proposed approaches

For the gate delays we utilized timings from the
NanGate 15nm library file with typical conditions [21]. As
an MCE is not part of this library, we considered the MCE
model from [22] in which they propose a combination of
simple NAND gates. Gate delays are computed from a timing
matrix of the respective gate using an interpolation method
with fixed index 1 (input net transition), as in our simulations
we are not varying this parameter, while we vary index 2
(total output net capacitance) depending on the fanout of the
respective gate.

VI. ENHANCING THE FAULT TOLERANCE

A. Possible Solutions

As evidenced by case F4 in Fig. 1 and our analysis in IV-B
the MCE is immune to SET’s at its output while data and
en match (green shaded areas in Fig. 1, termed ”W2”). In
conclusion, faults appearing at the buffer output are easily
addressed by maintaining the MCE inputs until both source
and sink responded to the last respective token. In this window
the circuit is also resilient towards SET’s at the input. [13]
already proposed the idea called “normally closed pipeline
latch” where the buffer only passes the ack (or en signal)
to the MCE after validating the respective new token. In the
following we will refer to that technique as “Dual CD WCHB”
or short α, see Fig. 3.

1) Token limited mode: From a theoretical perspective the
α approach seems very robust for part-C (”Sensitive Window”)
of Fig. 4. However, experiments as presented in Fig. 5 unveil
that the basic WCHB as well as α (with our reference) has no
resilience towards coding errors because even α only protects
the MCE that is going to make transition during the respective
handshake cycle. For example, in Fig. 4 “B” during “W1”,
when In.T and en are high, the true rail MCE is holding a
logical “1” but the false rail MCE with In.F is still armed for
firing due to high en signal. If a fault hits In.F the respective
MCE generates a logical “1” which results in an illegal (In.T
= 1, In.F = 1) code word. [15] answer this coding error
issue of the WCHB by simply locking the opposite rail MCE
after firing one of them. However, this approach known as
Interlocking WCHB simply considers the first rail to transition
as the correct one and therefore comes with a price of more
value errors at some places, as shown for “Empty Pipeline

Circuit ” in Fig. 5. As a first remedy we proposed approach β,
with an additional DCD as shown in Fig. 3. β outperforms all
others especially with the multiplier circuit. Statistics in Fig. 5
shows that the addition of the DCD protects the circuit by
shortening the sensitive windows of Fig. 4 part-C. β resolves
up to 6% value errors as compared to its base buffer as Fig. 5
”Empty pipeline” suggests under token limited mode.

2) Bubble limited mode: When Source generates a new
token (P2) before en makes its transition at “Q2”, the α
approach is not appropriate as now the data transition arms the
MCE and moves it to storage mode, without the extra check
by the additional CD becoming effective. One way to shorten
this window is to add some extra delay to the data input. If
this delay is added cleverly, it pays off in other regards as
well. [17] proposed input interlocking to validate the token
before passing it on to the buffer, which also provides glitch
filtering property. This In/Out Interlocking WCHB is presented
in Fig. 3 top right, without the orange colored AND gate
and MCE. Our simulation results prove its resilience during
bubble limited mode as shown in Fig. 5. At the same time
they show that this buffer is more susceptible to faults during
token limited mode because due to the gate delays the input
interlocking mechanism increases the sensitive window.

B. Suggestions to achieve higher resilience

The results in Fig. 5 indicate that the proposed β approach
is the best choice for token limited mode, where In/Out
Interlocking WCHB from [17] excels in bubble limited mode.
Here we propose δ as first improvement of [17] with the
addition of a DCD after the input interlocking gates as shown
in Fig. 3. This helps shortening the sensitive window again to
approximately the same magnitude as β does. In this way δ, a
hybrid approach proposal, performs well for all PLFs as shown
in Fig. 6. The results confirm that we could safely shorten
the sensitive windows presented in Fig. 4. As δ utilizes an
MCE for input interlocking, these are also affected by all fault
scenarios discussed in section IV-A. The biggest concern here
are faulty transitions at the output, which, if they get latched,
generate deadlocks. This is reflected by higher deadlock rates
in Fig. 6. Consequently this approach is well suited when
correctness is the main concern, rather than liveness. Enhanced
versions limit the coding errors to 0%.

C. Further Enhancement for Area efficient Solution

After thorough analysis we finally came up with the ∆
approach, a simplified version of δ as presented in Fig. 3.
This simplified input interlocking mechanism inspired from
[20] yields a reduction in area by approximately 44% and
better throughput compared to δ, see Fig. 7. In the results
from Fig. 6, ∆ proves its error resilience compared to δ. The
use of an SR latch for input interlocking instead of MCE as
shown in Fig. 3 buys a reduced number of deadlocks through
an increased rate of value errors. With the MUTEX-like input
interlocking, the earlier transition wins (no matter whether it
is the correct one) and then blocks the other one. If the SET
is the winner, the result is a value error.



0%
10%
30%
40%

91%

Ar
ea

ov
er

he
ad

MULT_iso_15nm EMPTYPL_iso_15nm ALU_iso_15nm

0%

6%

12%

Th
ro

ug
hp

ut
ov

er
he

ad

MULT_iso_15nm EMPTYPL_iso_15nm ALU_iso_15nm

Fig. 7. Overall Area and Throughput Overhead Comparison with β as baseline

VII. CONCLUSION

In this work we first identify the main reasons behind the
sensitivity of QDI buffer templates and then with real word
circuits we run extensive fault injection simulations to validate
and highlight the shortcomings of available approaches. We
conclude that the Dual Completion Detection approach in
theory seems appropriate to shorten the sensitive window
during token limited mode but our experimental results
shows that it converts value errors to coding errors with little
improvement in bubble limited mode. The higher coding
error issue is resolved by proposing a hybrid approach: it
utilizes the DCD to open the buffer and then locking it with the
output interlocking technique after first transition is latched.
With this technique we achieve higher resilience towards
SET’s in token limited mode, but it lacks in bubble limited
mode.

From literature, the Input/Output Interlocking tech-
nique shows promising results during bubble limited mode
as this technique leverages the benefits of temporal redun-
dancy with an input interlocking mechanism. However, as this
temporal redundancy widens the sensitive window, it yields
worst resilience during token limited mode.

To address all delay scenarios we propose DCD variant
of Input/Output Interlocking called δ. Through careful
placement of the input completion detection the sensitive
window can be considerably shortened. This technique shows
higher resilience compared to others but with a higher price
in terms of area and deadlocks.

Further investigations finally lead to a more efficient solu-
tion called ∆. Without effecting the sensitive windows we
saved up to 44% area by replacing MCEs used for input
interlocking with an SR latch technique from literature. With
no glitches and coding errors, δ and ∆ restrict deadlocks and
value errors to under 1%.

For future direction we are evaluating ideas to somehow
manage delaying an incoming token to reach to buffer only
when the enable signal is there during bubble limited mode.
That would establish full resilience against SET’s.

REFERENCES

[1] T. Verdel and Y. Makris, “Duplication-based concurrent error detection
in asynchronous circuits: shortcomings and remedies,” in Proceedings of
the 17th IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems (DFT), 2002, pp. 345–353.

[2] F. A. Kuentzer and M. Krstic, “Soft Error Detection and Correction Ar-
chitecture for Asynchronous Bundled Data Designs,” IEEE Transactions
on Circuits and Systems I: Regular Papers, pp. 1–12, 2020.

[3] Y. Monnet, M. Renaudin, and R. Leveugle, “Hardening techniques
against transient faults for asynchronous circuits,” in 11th IEEE Inter-
national On-Line Testing Symposium, July 2005, pp. 129–134.

[4] W. Jang and A. J. Martin, “SEU-tolerant QDI circuits [quasi delay-
insensitive asynchronous circuits],” in 11th IEEE International Sympo-
sium on Asynchronous Circuits and Systems, March 2005, pp. 156–165.

[5] M. Marshall and G. Russell, “A Low Power Information Redundant
Concurrent Error Detecting Asynchronous Processor,” in 10th Euromicro
Conference on Digital System Design Architectures, Methods and Tools
(DSD 2007), Aug 2007, pp. 649–656.

[6] S. Keller, A. J. Martin, and C. Moore, “DD1: A QDI, Radiation-
Hard-by-Design, Near-Threshold 18uW/MIPS Microcontroller in 40nm
Bulk CMOS,” in 21st IEEE International Symposium on Asynchronous
Circuits and Systems, May 2015, pp. 37–44.

[7] F. A. Kuentzer, M. Herrera, O. Schrape, P. A. Beerel, and M. Krstic,
“Radiation Hardened Click Controllers for Soft Error Resilient Asyn-
chronous Architectures,” in 26th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), May 2020, pp. 78–85.

[8] Y. Monnet, M. Renaudin, and R. Leveugle, “Asynchronous circuits
sensitivity to fault injection,” in 10th IEEE International On-Line Testing
Symposium, July 2004, pp. 121–126.

[9] C. LaFrieda and R. Manohar, “Fault detection and isolation techniques
for quasi delay-insensitive circuits,” in International Conference on
Dependable Systems and Networks, 2004, June 2004, pp. 41–50.

[10] R. P. Bastos, Y. Monnet, G. Sicard, F. Kastensmidt, M. Renaudin,
and R. Reis, “Comparing transient-fault effects on synchronous and
on asynchronous circuits,” in 15th IEEE International On-Line Testing
Symposium, June 2009, pp. 29–34.

[11] S. Peng and R. Manohar, “Efficient failure detection in pipelined
asynchronous circuits,” in 20th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT’05), 2005, pp. 484–493.

[12] K. T. Gardiner, A. Yakovlev, and A. Bystrov, “A C-element Latch
Scheme with Increased Transient Fault Tolerance for Asynchronous Cir-
cuits,” in 13th IEEE International On-Line Testing Symposium (IOLTS
2007), July 2007, pp. 223–230.

[13] W. J. Bainbridge and S. J. Salisbury, “Glitch Sensitivity and Defense
of Quasi Delay-Insensitive Network-on-Chip Links,” in 15th IEEE
Symposium on Asynchronous Circuits and Systems, May 2009, pp. 35–
44.

[14] P. McGee, M. Agyekum, M. Mohamed, and S. Nowick, “A Level-
Encoded Transition Signaling Protocol for High-Throughput Asyn-
chronous Global Communication,” in 14th IEEE International Sympo-
sium on Asynchronous Circuits and Systems, 2008, pp. 116–127.

[15] F. Huemer, R. Najvirt, and A. Steininger, “Identification and confinement
of fault sensitivity windows in qdi logic,” in 2020 Austrochip Workshop
on Microelectronics (Austrochip), Oct 2020, pp. 29–36.

[16] P. Behal, F. Huemer, R. Najvirt, A. Steininger, and Z. Tabassam,
“Towards explaining the fault sensitivity of different qdi pipeline styles,”
in 2021 27th IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), 2021, pp. 25–33.

[17] Z. Tabassam, P. Behal, R. Najvirt, and A. Steininger, “Input/output-
interlocking for fault mitigation in qdi pipelines,” in 2021 Austrochip
Workshop on Microelectronics (Austrochip), 2021, pp. 17–20.

[18] J. Sparsø, Introduction to Asynchronous Circuit Design. DTU Compute,
Technical University of Denmark, 2020.

[19] A. J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” in Proceedings of the Sixth MIT Conference on
Advanced Research in VLSI, ser. AUSCRYPT ’90. Cambridge,
MA, USA: MIT Press, 1990, pp. 263–278. [Online]. Available:
http://dl.acm.org/citation.cfm?id=101415.101434

[20] Z. Tabassam and A. Steininger, “Towards resilient qdi pipeline imple-
mentations,” in 2022 25th Euromicro Conference on Digital System
Design (DSD), 2022.

[21] si2.org. (2014) Silvaco open-cell 15nm library v0.1 2014 06 from si2.
[Online]. Available: https://si2.org/open-cell-library/

[22] K. S. Stevens, D. Gebhardt, J. You, Y. Xu, V. Vij, S. Das, and K. Desai,
“The future of formal methods and gals design,” Electronic Notes in
Theoretical Computer Science, vol. 245, pp. 115–134, 2009.




