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Abstract—In the presence of permanent faults, QDI circuits
exhibit the beneficial property of halting their operation until a
repair procedure has been conducted. The state in which the
circuit resides, however, does not always remain clean, i.e., a
recovery process might be needed. This depends on how the circuit
reacts in these situations. In this study, we investigate the effect a
permanent fault has on the different components of the pipeline,
the logic function unit and the buffer. Our aim is to identify
the weaknesses of each component and try to enhance each one
accordingly. We perform extensive fault-injection simulations on
different circuits following the famous 4-phase communication
protocol, while varying the logic function and buffer style for
comparison. Our results show that the logic function does not
affect the resilience of a specific buffer type, and hence we
can deduce which buffer should perform better for a specific
application based on parameters we extract from our experiments.
On a parallel note, the implementation style of the logic also has
an impact on the block’s ability to hold out against faults. We
investigate two of these styles.

Index Terms—permanent faults, QDI circuits, WCHB, fault
injection

I. INTRODUCTION

Asynchronous design is known for its potential to save
dynamic power and to obtain high speed as compared to the
widely used synchronous design. Having a flexible handshake
(instead of a rigid clock) govern the communication between
individual units also provides good robustness against pro-
cess/temperature/voltage (PVT) variations – a very desirable
feature in modern process technologies. Much less known is
the fact that asynchronous circuits (specifically the so-called
delay insensitive ones) also exhibit a self-checking behavior
in the sense that any stuck-at fault in their logic units will
make them deadlock. This is not only relevant for testing, it
also facilitates recovery: while a synchronous circuit keeps on
computing after a permanent fault occurred, thus polluting its
state, an asynchronous one simply stops operating, ideally in
the last correct state.

When it comes to self-repair, asynchronous circuits can again
leverage their intrinsic elegance: re-routing a signal to bypass
a defective gate is easily (and automatically) tolerated by the
flexible timing obtained through the closed-loop handshaking,
where in synchronous designs most often timing issues will be
encountered. So in the ideal case mitigating a permanent fault in
an asynchronous circuit is as simple as bypassing the defective
gate – the circuit will continue processing from the last correct
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state, with the timing automatically adapting to the new delays.
With this vision in mind, we are investigating, how reliably
the desired scenario of a fail-stop will indeed be encountered
after a permanent defect in an asynchronous circuit and how
undesired effects can be mitigated. This paper specifically will
be dedicated to comparing different pipeline buffer styles and
logic implementation styles with respect to this property.

II. BACKGROUND ON ASYNCHRONOUS LOGIC

With the use of local handshakes between two communi-
cating parties, asynchronous circuits transfer data without the
need for a rigid time grid. This handshake provides a closed-
loop control, instead of capturing data at specific periodic clock
ticks, which specifies when the sender (or source) has provided
a new data item (also referred to as token), and when the
receiver (or sink) has processed it. This makes computation in
asynchronous circuits data-driven. The Delay-insensitive (DI)
class resides on top of the stack of asynchronous circuits, being
the most flexible in timing because they automatically adapt
to gate and wire delays. The more realistic, and very robust,
member of asynchronous circuits is quasi delay-insensitive
(QDI), imposing only the isochronic fork constraint1.

A handshake cycle depends on the communication protocol
being used. The simplest, and most commonly used, method
is the 4-phase, or return-to-zero (RTZ), protocol with the dual-
rail data encoding scheme. A completion detection (CD) unit is
needed to indicate validity and completeness of a token. This
is a simple OR gate in the case of a single bit, and requires
additional logic for higher bit-widths. An explicit ACK signal
is used to switch between the two phases of the protocol, a
spacer or NULL phase and a DATA phase. Each dual-rail bit
is represented using two wires, namely the true and false rails.
Each bit can have only one rail set to logic ‘1’ at a time. After
every DATA phase, both rails become logic ‘0’, which is the
SPACER carrying absolutely no information. It is forbidden to
have both rails set to ‘1’, this constitutes an illegal codeword.

A sequence of components where data travels between them
form an asynchronous pipeline. It is divided into stages where
buffers separate logic function units. A fundamental building
block in such a pipeline is the Muller C-element (MCE). It can
be viewed as the simplest form of a storage element, as well as
it is used in the CDs and is sometimes used in controlling the
buffers. It is an essential component in asynchronous circuits

1The delays of the individual paths after a fork must be equal, i.e., a signal
must arrive at all ends of the fork at the same time [1].
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which operates like an AND gate with hysteresis: it sets the
output to the corresponding matching inputs value, and retains
its previous logic level when inputs don’t match. A very
common buffer template adhering to the 4-phase protocol is
the weak-conditioned half-buffer (WCHB) which uses 1 MCE
for each bit as its storage element. When the buffer is in its
NULL phase awaiting new data, all the MCEs are armed for
rising transitions an the data rails. When the token is received
and acknowledged by the downstream stage, the MCEs are
disabled.

III. RELATED WORK

Our work focuses on investigating the effects of permanent
faults in asynchronous circuits which very few studies explore.
We know from literature that DI circuits are always self-
checking under the stuck-at fault (SAF) model, causing the
circuit to halt [2]. This work, as well as [3] and [4], investigate
the circumstances under which the circuits stops. With a focus
on QDI circuits, the authors in [5] perform a thorough analysis
of SAF effects, among other types of faults. The fault’s impact
is eventually translated to a deadlock. [6] proposes a formal
method to exhaustively analyze all possible behaviors of a
QDI circuit under single-event upsets (SEUs) using symbolic
simulation. Even though the study focuses on transient faults,
much can be conveyed to permanent faults. In addition to
the deadlock effect, [7] shows that a SAF can also result in
isochronic fork violation, token generation or token consuming.
In case of permanent faults, reaching some kind of fail-safe
deadlocking behavior is considered favorable to a continued,
erroneous operation of the circuit, as is identified in [8], [5],
and [9]. From a more experimental perspective with quantitative
statements on the behavior of QDI circuits under faults, the
authors in [10] use a special visualization scheme to compare
the fault tolerance of the classical WCHB against other variants
of the template. The authors also propose two enhancements
to try to mitigate the faulty behavior of the half-buffer, namely
deadlocking and interlocking WCHBs, which use cross-coupled
asymmetric MCEs. Their analysis involves only transient faults.
In [11], the authors provide varying probabilities for the fail-
stop behavior with a set of experiments, and they take a close
look at the analysis of the 11-illegal state of the dual-rail 4-
phase communication protocol. [12] leverage a fully automated
setup for performing fault injection simulations in QDI circuits.
Their results show the robustness of a set of buffer styles under
transient faults. These works give us a valuable foundation to
understanding more about the impact of faults on the behavior
of asynchronous circuits. This can help us make quantitative
predictions for a given parameter set which is representative
enough instead of exploring the huge design space, and hence
we can move forward with more complex circuits. It is worth
mentioning that a recent survey [13] about the challenges of
QDI circuits’ tolerance to soft errors. The author discusses
mitigation and hardening schemes for QDI circuits, providing
a comprehensive overview of the existing techniques and a
comparative analysis of their value and limitations.
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Fig. 1: Target Circuit

IV. EXPERIMENTAL SETUP

Our aim is to provide a basis for comparison between differ-
ent QDI pipelines styles in order to evaluate their robustness.
As mentioned in literature, the results from recent works focus
on transient faults where the parameter space is not exactly
the same. We explore the QDI design paradigm space by
implementing different styles and run experiments where parts
of these circuits are subjected to faults, while taking into
consideration the same operating conditions. We investigate
the types of erroneous behavior and we provide a comparison
on the resilience of the circuits to permanent faults, breaking
down the circuit to its two main components, namely the logic
function unit and the buffer.

A. Target Circuit

When trying to understand how a circuit reacts under faulty
operation, testing large-scale, complex circuits which require
excessive computational performance to allow adequate fault
coverage, comes with a huge time and resource overhead.
Meanwhile, there doesn’t seem to be consensus over a repre-
sentative function or application for all kinds of asynchronous
circuits. Our circuit in figure 1, therefore, consists of an elastic
pipeline which resembles the delay-insensitive behavior of an
asynchronous pipeline very well, while varying the following
set of parameters:

• Buffer Style: Focusing on the 4-phase communication
protocol, we examine the widely used classic WCHB with
one completion detection, a WCHB with two CDs [14], in
addition to a couple of variants introduced in [10] using
asymmetrical C gates, as shown in figure 2.

• Logic Function: We select the functions of an adder and
a multiplier, since these structures have been considered
representative in many other works as well [5], [9], [12],
while also being part of larger practical applications.

• Logic Implementation Style: We implement our functions
using delay-insensitive minterm synthesis (DIMS) [15]
and NCLX [16], both following the QDI design style.

• Data Width: 1- and 2-bit datapaths for a variable number
of inputs.

B. Tool

In order to be able to conduct our experiments, the work
is divided into two main stages, (i) we need to synthesize
our circuit into the QDI design paradigm and (ii) we need to
perform the fault-injection simulations while managing the fault
space. The tool set introduced in [12] and [17] conveniently
covers both tasks as shown in figure 3.
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Fig. 2: WCHB-based buffers

The target circuits are described using production rule sets
(PRSs) [18] which is a low abstraction description method for
asynchronous circuits, equivalent to a transistor netlist. The
Python-based custom tool takes in a simple language specifica-
tion of the circuit and constructs the PRS-based representation
with 10% randomly-varied inertial delays to model process,
voltage and temperature (PVT) variations in the circuit. Our
test targets are created by modifying parameters that can be
quickly manipulated, to switch between the data-width and the
implementation style of the combinational logic part of the
circuit, and the buffer styles of the storage elements. The tool
also generates a VHDL model of the circuit, employing the
same delays, and includes a testbench generator. The circuit
and the testbench, both described in VHDL, serve as input to
the next stage.

For the simulation part of the process, simulation tasks are
added to a central SQL database. Each task entails simulating
exactly one fault, in one location, at a specific time in the
circuit. These fault-injection experiments are executed using the
ModelSim HDL simulator. Each processing core used for the
simulations regularly looks for the added tasks in the database
waiting to be processed.
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Fig. 3: Overview of the toolset. Source [17]

C. Extending The Tool

While the fault-injection tool covers many simulation param-
eters, it is targeting transient faults. Our focus is on permanent
faults and, hence we use the stuck-at fault (SAF) model, which
has established itself as the de-facto standard in permanent fault
modeling. A SAF permanently fixes a signal at either logic
high (stuck-at-1 or SA1) or logic low (stuck-at-0 or SA0). We,
therefore, do not need to consider all the parameters, such as
the injection duration. We also need to devise a method to judge
whether the circuit resides in a benign state, i.e., the fault has
caused only a halt of the circuit and in case of repair, normal
operation will resume with all tokens reaching the output side
correctly.

Our fault injection parameter space includes:
• Fault Polarity: SAFs of both polarities, i.e., SA0 and SA1.
• Fault Location: All inputs and outputs of the gates of a

chosen victim stage.

• Speed of Source and Sink: The reaction times Tsource and
Tsink are varied to cover both a fast and slow environment.

• Time of Injection: All potential time intervals where a fault
might have an effect are covered.

We adapt the tool to inject in all inputs and outputs of our
chosen victim components of the circuits, as this maps to the
transistor at input or output getting defective and not the wire.

As for the manipulation of the delays of source and sink, it
results in two modes of operation, namely token-limited and
bubble-limited. In the former mode, the ACK signal arrives
faster than there is a new token. In the latter, an available token
is ready to be pushed into the pipeline which is still waiting the
old data to be captured. We use absolute values for covering
this parameter because we have learnt from our experiments
that not only the relative speed Tsource vs Tsink has an impact,
but also the absolute speed. This further enables us to choose
the granularity of presenting the results.

We also do not inject randomly, but exhaustively, in all points
considered relevant to our scope. The injection time between
experiments is incremented with a step smaller than the smallest
gate delay. This yields a very dense coverage for this continuous
parameter while still having manageable space.

In every simulation, we let the circuit run for a number
of handshake cycles on the output side such that it gets into
operation mode. Then we inject our fault and wait for the
system to exhaust all of its scheduled transitions until it reaches
deadlock. We then remove the fault and allow the system to run
for completion. This is an objective way of deciding on the
correctness of the state after the fault-induced deadlock. Using
an identical, fault-free pipeline for the evaluation of correct
behavior, we compare the results of each experiment to this
golden reference and we record the effects accordingly.

V. RESULTS & ANALYSIS

In literature, we find different terminology for fault effect
classification on different abstraction levels. We start by ex-
plaining what an incorrect behavior of our circuits entails and
how we further distinguish these classes.

When a circuit is hit by a fault, and this fault is not masked,
normal operation varies from that of the golden run. Any
occurring delay is tolerated by definition of a QDI circuit,
and there is no need to consider timing information. We did,
however, collect them as a means of validation of our results
since a permanent fault will always cause a timing deviation
from the golden run. We classify the types of failure as follows:

• Coding Error: While one of the rails of a signal is correctly
set to ‘1’, a fault can change the other rail of the same



TABLE I: Incorrect Behavior over Injection Count(%) after Unfreezing the Pipeline

Circuit

Buffer WCHB Interlocking Deadlocking Dual-CD
Token
Limited

Bubble
Limited

Token
Limited

Bubble
Limited

Token
Limited

Bubble
Limited

Token
Limited

Bubble
Limited

Empty Pipeline 1bit 15 25 13.5 11.5 12 21 6 21
Empty Pipeline 2bit 12 24 10.5 12.5 10 20 6 19

Adder DIMS 1bit 16.5 24.5 16 13.5 15.5 22.5 11 20.5
Adder DIMS 2bit 15 22 12.4 9.5 14.5 21.9 15.5 19.8
Adder NCLX 2bit 11.5 17.9 10.4 11.4 11 17.1 14 17

Multiplier DIMS 2bit 11.5 17.5 9.8 10.8 10.8 16.5 13.5 17.2
Multiplier NCLX 2bit 11 18 9.5 12.5 10.5 16.9 13 17

signal to ‘1’ as well, violating the 4-phase protocol, and
thus producing an illegal codeword.

• Value Error: A fault can cause a token to change its value
by switching the wrong rail of a signal, leading to an
undetected different value.

• Clean Deadlock: A fault might cause neither an illegal nor
a wrong-value token, yet the pipeline remains in deadlock
even after the fault is removed, that’s why we refer to this
deadlock as clean.

According to our data collection, a coding error and a value
error can appear in the same simulation, where a specific fault
was injected, in different points in time along the operation of
the pipeline. In our setup, we consider that the appearance of
an illegal codeword as having the highest severity; so a value
error will be categorized as such only when no coding error has
been recorded for a given simulation while a legal data value,
different from the one propagating through the golden run, was
delivered to the output side.

Note that another dimension of the effect classes is the
number of tokens going in and out of the pipeline. We measure
the count of token generation and token consumption. Coding
and value errors fall under the category of token modification,
which results have shown to be the most dominating among
these three effects.

A. Fault Effect Distribution

We have conducted millions of simulations on different logic
functions and buffer variations. Figure 4 shows the results of an
empty pipeline, an adder and a multiplier, both implemented
in DIMS and NCLX styles, and all of a bit width of 2. For
each circuit, we can see the performance of each of our four
buffers, with the Interlocking WCHB steadily showing the
lowest percentage of incorrect behavior for all circuits. This
is further broken down in figure 5 where the causes of this
incorrect behavior are presented. The most dominating failure
type is the coding error reaching over 80% in most of the
circuits. Thanks to the mechanism of the Interlocking buffer
of allowing only the first rail of a signal to transition to ‘1’,
regardless of whether it is the right one, figures 5a and 5b show
how the Interlocking buffer eliminates all the illegal codewords,
converting part of them to value errors.

It is not possible to show all parameters in each plot, so
figures need to be compressed in order to visualize the effects.
Table I shows the effect of varying the reactions times of source
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and sink. The numbers present the corner case percentages of
the erroneous behavior of the circuits, when allowed to run with
a maximum difference between speeds of source and sink.

In another experiment, we compare between the empty
pipeline and the adder with DIMS implementation style, each
constructed with 1- and 2-bit datapaths. We investigate the
details of these small-scale circuits to build a strong foundation
for understanding larger circuits. Figure 6 shows the percentage
of incorrect behavior with its sub-effects distribution. The
percentages shown are calculated for all injections per buffer,
sweeping over source and sink delay combinations. Once more,
the interlocking WCHB has the best performance, while the
WCHB reaches 18% of malicious behavior. Having lighter
shades of green, the 2-bit adder seems to show better perfor-
mance. This might not necessarily be the case: a larger circuit
yields a larger area with more signals as victims to the fault
injection, and while the absolute number of hits might have
gotten higher, the set of signals with a higher sensitivity to
faults might not have increased. We will take a closer look at
which signals were more prone to error in the different circuits
later on.

In addition, the circuit generated from the synthesis phase
can differ slightly even when using the same logic style imple-
mentation. In dual-rail logic there is not always one unique way
to implement a given function. This is something we are able
to control in our own synthesis tool, but might not be able to
do with a different synthesizer. Choosing between the designs
is a question of optimization, which is out of the scope of this
paper, however, this has helped us better understand the reaction
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of certain circuits. It is worth noting that our experiments on
data width comparison do not extend to larger than a 2-bit
datapath mainly because of the state explosion problem of the
fault injection space. Taking the example of the 2-bit adder
yielding around 200 million injections resulting in a overhead
in both time and memory for such a small circuit.

B. Pipeline Components Comparison

The QDI design space includes several parameters which can
be investigated separately and tested together in a plug-and-play
manner. Our hypothesis is that each one of these parameters
does not substantially affect the other. To that end, and with a
focus on the buffer style and the logic implementation style,
we extracted the results concerning each one, respectively.

Among the challenges encountered when dealing with fault
injection simulations is which logic function is representative
enough to use and can the results from this circuit be genreal-
ized to other combinations. With a focus on buffer robustness
we experiment across combinations of different parameter set-
tings, namely the logic circuit’s function, implementation style
and input data width. We take into account the system failures
caused by the faults hitting the buffers only. For example, we
investigate the WCHB resilience in an empty pipeline with an
exhaustive set of data inputs, while comparing it to the results
of an adder and a multiplier both implemented in DIMS and
NCLX. Figure 7 presents the results of buffer-only-injected
pipelines for all our circuit variations and our assumption is
confirmed but with a margin of error.

Our final experiment aims at better understanding the weak
points of a circuit by investigating which signals are the most
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responsible for the malicious behavior. Figure 8 shows the
example of multiplier circuit with both logic implementation
styles. The top 5 signals of both buffer (B) and logic(L) are
each presented in a subplot. The percentage for each signal
also shows which error type is dominant. For DIMS and NCLX
styles, the most sensitive buffer signals are the enable, the ack
and the inputs and outputs of the buffer. This demonstrates
that the completion detection signals are less prone to cause a



system failure when injected by permanent faults. This also
explains why varying the data width results in an apparent
higher performance since we are using ratios. As for the logic
function in DIMS, the whole block would require protection.
This is intuitive since DIMS style uses a large number of C
elements which would store the error when hit by a fault. The
NCLX logic blocks show a better performance than DIMS,
but still no specific signal stands out as the culprit. The
percentages shown in the top-right corners of the subplots
reflect the proportion of incorrect state caused by the buffer and
the logic, respectively, from the total incorrect of the circuit.
These numbers show that we cannot judge the performance of
the buffer only by changing the logic implementation style; our
expectations are again validated.
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Fig. 8: Signals causing the most errors

VI. CONCLUSION & FUTURE WORK

Even though asynchronous circuits have a lot of potential
to be used as an infrastructure in fault-tolerant applications,
more research is needed in order to understand the behavior
of the circuit under permanent faults. Our work examines the
components of a QDI pipeline in depth. Among the buffer styles
we used in our experiments, we have identified the interlocking
WCHB as very robust, but the value errors it suffers from
still need to be addressed. Having observed the completion

detection to be relatively robust forms another argument to put
focus on the data path. For the logic implementation style we
have, as expected found some benefits of NCLX over DIMS,
but our experience also was that implementation details may
matter more here than just the choice of the style. In general,
decomposing optimization of buffers and logic seems to be
viable, as our results confirm.

Our next steps will be dedicated to devising mitigation
techniques for those signals that turned out sensitive, and to
establish efficient diagnosis for guiding a self-repair action.
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