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Abstract—Fusing probabilistic information is a fundamental
task in signal and data processing with relevance to many
fields of technology and science. In this work, we investigate
the fusion of multiple probability density functions (pdfs) of
a continuous random variable or vector. Although the case of
continuous random variables and the problem of pdf fusion
frequently arise in multisensor signal processing, statistical in-
ference, and machine learning, a universally accepted method
for pdf fusion does not exist. The diversity of approaches,
perspectives, and solutions related to pdf fusion motivates a
unified presentation of the theory and methodology of the field.
We discuss three different approaches to fusing pdfs. In the
axiomatic approach, the fusion rule is defined indirectly by
a set of properties (axioms). In the optimization approach, it
is the result of minimizing an objective function that involves
an information-theoretic divergence or a distance measure. In
the supra-Bayesian approach, the fusion center interprets the
pdfs to be fused as random observations. Our work is partly
a survey, reviewing in a structured and coherent fashion many
of the concepts and methods that have been developed in the
literature. In addition, we present new results for each of the three
approaches. Our original contributions include new fusion rules,
axioms, and axiomatic and optimization-based characterizations;
a new formulation of supra-Bayesian fusion in terms of finite-
dimensional parametrizations; and a study of supra-Bayesian
fusion of posterior pdfs for linear Gaussian models.

Index Terms—Information fusion, probabilistic opinion pool-
ing, pooling function, multisensor signal processing, sensor net-
work, model averaging, supra-Bayesian fusion, Kullback-Leibler
divergence, Chernoff fusion, α-divergence, Hölder mean, linear
Gaussian model, covariance intersection.

I. INTRODUCTION

The fusion of multiple probabilistic descriptions of a ran-
dom quantity is a fundamental task with applications in many
fields including multisensor signal processing [1]–[8], ma-
chine learning [9]–[12], robotics [4], smart environments [13],
medicine [14], transportation [15], precision agriculture [16],
pharmacology [17], weather forecasting [18], [19], economics
[20], [21], and financial engineering [22]. While this task has
been studied for several decades, an in-depth treatment with
a focus on continuous random variables and, accordingly, on
the fusion of probability density functions (pdfs) appears to be
lacking. The present paper attempts to fill this gap. Our focus
on continuous random variables is motivated by the fact that
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continuously distributed quantities are the primary object of
interest in many applications.

The fusion of pdfs can be considered in different contexts,
and several different techniques for this task have been pro-
posed in the literature. Our treatment is partly a survey of exist-
ing concepts and techniques, with an emphasis on a structured
and coherent presentation. In addition, we present numerous
original contributions related to axiomatic, optimization-based,
and Bayesian approaches to pdf fusion.

A. Motivation

The field of pdf fusion is multifaceted and somewhat fuzzy:
there are many possible approaches to the problem of finding
a pdf fusion rule, and there is no universally accepted measure
of performance [23], [24]. An appropriate fusion rule and
performance measure depend on the scenario and application.
This situation can be aggravated by the fact that different
fusion rules can lead to very different results.

Although in specific applications certain pdf fusion rules
have been established and found to be useful, the rationales
of these rules and their possible alternatives are not always ob-
vious. Thus, it is both theoretically interesting and practically
relevant to study the problem of pdf fusion and the existing
viewpoints and solutions in a general way that abstracts from
specific applications, and to put these viewpoints and solutions
into a higher-level perspective. Our hope is that this analysis
will support an informed choice of a pdf fusion rule for
specific scenarios and applications. Accordingly, rather than
considering a single framework or method for pdf fusion,
this paper reviews the different approaches that have been
developed over several decades in different disciplines and
by different communities. In addition, these approaches are
categorized into three fundamental approaches to principled
pdf fusion, which we term the axiomatic, optimization, and
supra-Bayesian approaches.

Fusing pdfs is a special variant of the general task of “data
fusion” or “information fusion,” and one may ask why it can be
advantageous to perform data/information fusion at the level of
pdfs. Possible answers include the following [20], [24], [25]:

• A pdf constitutes a complete probabilistic description
of a continuous random variable or random vector. In
addition to its mean or its mode (which can be used
as point estimates of the random variable or vector),
this description includes further important information

© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



2

such as effective support, multimodality, tail decay, and
a detailed characterization of the “dispersion” around the
mean. Moreover, it enables the calculation of quantitative
measures of the accuracy of point estimates.

• A pdf provides a standardized and “genesis-agnostic”
representation of the state of information of an agent
or sensor, i.e., it abstracts from the intricacies of the
processing employed by the agent or sensor to obtain
it from the raw data. This “no questions asked” charac-
teristic enables or facilitates an information fusion even
between heterogeneous agents, which employ different
sensing modalities and/or different types of data prepro-
cessing. Furthermore, the lack of a transparent relation
to the raw data is a desirable feature in privacy-sensitive
applications.

• Because a pdf provides a standardized, genesis-agnostic
representation, pdf fusion is well suited to a decentralized
(peer-to-peer) network topology. In decentralized, pos-
sibly ad-hoc networks, a distributed in-network type of
processing is used where each agent communicates with
a limited set of neighboring agents and, typically, little
or no information about the characteristics of far-away
agents is available locally. The pdf format here facilitates
the dissemination of information through the network.

• Computationally efficient pdf fusion algorithms based
on parameteric pdf representations are available. For
example, the fusion of Gaussian pdfs reduces to fusing
the corresponding means and variances or covariance
matrices. More generally, there are efficient algorithms
for fusing Gaussian mixture pdfs. In distributed imple-
mentations, parametric pdf representations enable pdf
fusion with low or moderate communication cost. Thus,
pdf fusion is attractive because detailed probabilistic
information can be fused with moderate complexity in
terms of computation and communication.

B. Probabilistic Opinion Pooling

Consider K “agents,” “experts,” or “models,” each provid-
ing an “opinion” about an unknown random object that may
be a scalar or vector. In the probabilistic setting studied in
this work, the opinions provided by the agents are not point
estimates of the random object but probability distributions.
More specifically, we focus on the case of a continuous
random variable or vector θ, where the opinion of agent k
is expressed by a pdf qk(θ).

The problem studied in this paper is to combine, or fuse,
the pdfs of the K agents, qk(θ) for k = 1, 2, . . . ,K, into
an aggregate pdf q(θ). This problem is traditionally referred
to as probabilistic opinion pooling, although that term is also
used for the fusion of discrete (categorical) distributions. We
assume that the combination of the agent pdfs qk(θ) is done
by a central agent or unit, termed a “fusion center,” which
has access to all the agent pdfs. The function employed
by the fusion center to map the qk(θ) into the aggregate
(fused) pdf q(θ) is termed a fusion rule or a pooling func-
tion. Many different pooling functions have been proposed

in the literature, based on various models and considerations.
Important examples include the linear pooling function (a
weighted arithmetic mean, also known as arithmetic mean
density) [26], [27] and the log-linear pooling function (a
weighted geometric mean, also referred to as Chernoff fusion
or geometric mean density) [27]–[31]. For Gaussian pdfs, the
covariance intersection technique [29], [32] is an instance of
a log-linear pooling function. These and several other pooling
functions will be discussed in later sections.

An alternative to the centralized setting for probabilistic
opinion pooling described above would be a decentralized
network of agents without a dedicated fusion center [8], [30],
[33], [34]. Here, the agents communicate their pdfs only
locally, i.e., to neighboring agents, and each agent can be
considered to act as a local fusion center. In this “in-network”
or “network-centric” type of probabilistic opinion pooling,
the agents use a distributed communication-and-fusion pro-
tocol, such as flooding, consensus, gossip, or diffusion, to
disseminate their local pdfs through the network and emulate
a given overall pooling function. This relies on a suitable
pdf representation such as a Gaussian, Gaussian mixture, or
particle representation. The fusion methods we discuss in this
work are also relevant to decentralized probabilistic opinion
pooling. We note, however, that there are numerous methods
for in-network signal and information processing in which
the local processing results that are being combined are not
pdfs. For example, some methods combine local likelihood
functions [1], [35], [36] or messages within a message passing
algorithm such as belief propagation [7], [37], or certain
iterated quantities within a networkwide adaptation-diffusion
procedure [38], to name a few.

C. Relevance and Applications

Probabilistic opinion pooling is a fundamental and elemen-
tary functionality with widespread applications. Historically,
the first motivation was to combine expert opinions into an
aggregate opinion [26]. Nowadays it is more likely that the
different probability distributions do not represent the opinions
of multiple experts but originate from the use of multiple
sensors, models, or data sets. In particular, probabilistic opin-
ion pooling is often formulated in a Bayesian setting as the
fusion of local posterior pdfs that are produced by multiple
agents using local implementations of Bayesian inference [39].
The ideal aggregate pdf here is the global posterior pdf,
which takes into account all the data available to the agents.
However, the calculation of the global posterior pdf generally
requires additional knowledge besides the local posterior pdfs,
such as the local likelihood functions, the prior pdfs used
by the agents, and possible statistical dependencies between
the agents. By contrast, probabilistic opinion pooling requires
only the local posterior pdfs. In many settings, it is easily and
widely applicable because it does not make any assumptions
about the local inference methods, the types of the sensors,
or the nature of the local data, which can all be different at
different agents.

From the viewpoint of the processed data, there is a wide
range of scenarios for probabilistic opinion pooling. Two
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extreme cases are particularly important: all the agents process
different data, or they process exactly the same data. Fur-
thermore, the processing may be carried out with completely
unrelated models but with the same objective (e.g., predicting
future observations or classifying observations).

Current applications of probabilistic opinion pooling in-
clude, but are not limited to, the following selection:

• In multisensor signal processing applications of prob-
abilistic opinion pooling, multiple sensors derive local
pdfs based on local observations and either submit these
pdfs (or finite-dimensional representations thereof) to a
fusion center or fuse them in a distributed, peer-to-peer
manner [1], [3], [27], [30]–[33], [39]–[42]. In partic-
ular, probabilistic opinion pooling plays an important
role in multisensor target tracking [2], [3], [5], [6], [8],
[30], [43]–[46]. For tracking an unknown number of
targets, probabilistic opinion pooling has recently also
been applied to the “multiobject” pdfs or to the prob-
ability hypothesis densities (i.e., the “densities” of the
first moment measures) of finite point processes, also
known as random finite sets [2], [5], [6], [8], [43]–[50].
Although in this work we do not consider finite point
processes, much of our discussion is also relevant in that
domain. The application of probabilistic opinion pooling
to multisensor target tracking will be discussed in more
detail in Section II-A.

• In probabilistic machine learning, several scenarios sug-
gest the combination of probability distributions. For
example, the concept of ensemble learning [9] is based on
applying multiple learning algorithms whose outputs are
combined to obtain an aggregate result that is more accu-
rate than that of any of the individual learning algorithms
in the ensemble. Furthermore, in federated learning [12],
[51], [52], multiple edge devices learn statistical models
individually from their local data sets without explicitly
exchanging these data sets, and a fusion center aggregates
the learned models without having access to the original
data. This is attractive for privacy-sensitive applications,
since no private data have to be shared. More details on
probabilistic machine learning are provided in Section
II-B.

• The main goal in the combination of forecasts [53], [54]
is the estimation of a parameter by combining several
different models. To this end, certain methods perform
a fusion of pdfs and usually refer to it as “combining
density forecasts” [20], [55], [56]. This application will
be addressed in more detail in Section II-C.

• In Bayesian model averaging, several different models
are used to derive different posterior pdfs based on the
same data [57], [58]. An aggregate pdf is derived as
a weighted average of the individual pdfs, where the
weights are given by the posterior probabilities of the
models. Bayesian model averaging has been widely used
in phylogenetics [59], [60], economics [21], [61], ecology
[62], and many other fields [63], [64].

• Traditional implementations of Monte Carlo-based infer-

ence schemes do not easily scale to large data sets (“big
data”). A common expedient then is to partition the data
set into subsets and obtain a partial posterior pdf approx-
imation for each subset. The partial approximations are
subsequently fused into an approximation of the overall
posterior pdf, which, thereby, takes into account the
full data set [65]–[67]. More details on this application
are given in Section II-B. Another approach [68], [69]
directly fuses sample representations of distributions by
interpreting these samples as a weighted sum of Dirac
measures.

To focus the scope of the present work, we assume for the
most part that the fusion center does not have any additional
data about the random vector θ beyond the pdfs provided by
the agents. (Here, an exception is given by the supra-Bayesian
setting studied in Sections VIII and IX, where we assume that
the fusion center knows a statistical model related to θ.) In
particular, the fusion center cannot access any training data
that were used by the agents, e.g., to derive a global posterior
pdf, and it does not have any validation data that it could use
to validate the agents’ pdfs. Thus, although the fundamental
problems are similar, we will not consider several ensemble
learning methods such as stacking [70], [71] or many other
machine learning settings related to probabilistic fusion [72]–
[74]. Furthermore, given our focus on pdfs rather than discrete
probability distributions, we will not touch upon methods
tailored to the combination of classifiers, another large and
growing field [75]. Finally, we are interested in obtaining a pdf
and not merely a point estimate of θ. This is motivated by the
fact that the pdf of θ contains all the probabilistic information
about θ and can thus be used to obtain point estimates or
other types of statistics. Hence, certain works on multimodel
inference [76] and the combination of forecasts [53], [54], [77]
share some ideas with the present work but ultimately have a
different focus.

D. Approaches to Probabilistic Opinion Pooling

Although the probabilistic opinion pooling problem may
appear simple and elementary, no single pooling function is
universally accepted or uniformly best. Generally speaking, we
would like the pooling function to involve the agent pdfs qk(θ)
in a way that follows some rationale. This rationale and the re-
sulting choice of a pooling function may depend on the overall
problem setting, application-specific aspects, side constraints,
additional information available to the fusion center, and other
considerations. The probabilistic opinion pooling problem has
been studied for many decades, and substantial research efforts
have been dedicated to the definition or derivation of pooling
functions. One of the earliest works is [26], where the linear
pooling function was introduced. Several survey articles on
probabilistic opinion pooling with detailed literature reviews
have been published [23], [78]–[80], however often with a
focus on discrete random variables.

In this work, we consider three principled approaches to
defining a pooling function for pdfs. In what we call the
axiomatic approach, the pooling function is defined indirectly
by a set of properties (axioms) that it is required to satisfy. For
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example, it may be reasonable to require that the aggregate
pdf q(θ) does not depend on the indexing order of the
agent pdfs qk(θ), or that for equal qk(θ)—i.e., unanimity
among all the agents—the aggregate pdf q(θ) conforms to that
unanimous opinion. Most of the early literature in the field was
dedicated to the axiomatic approach [23], [80]. An axiomatic
approach is also adopted in the literature based on imprecise
probabilities [81]. There, the idea is to define pooling operators
that map from the agents’ probability mass functions (pmfs)
to a set of pmfs rather than a single pmf. To the best of our
knowledge, the concept of imprecise probabilities has so far
been considered only for discrete probability spaces [81], [82].

In the optimization approach, the pooling function is the
result of an optimization, i.e., the minimization or maximiza-
tion of an objective function. Usually, the idea is that the
aggregate pdf q(θ) should be as close as possible to all the
agent pdfs qk(θ) simultaneously. This can be formulated as
a minimization involving an information-theoretic divergence
[83]–[85] or a distance measure [84], [86]. The resulting
optimum q(θ) can typically be interpreted as an “average”
of the qk(θ).

Finally, the supra-Bayesian approach considers the fusion
center as a Bayesian observer that interprets the agent pdfs
qk(θ) as random observations. This Bayesian observer builds
on additional information about the dependence of these pdfs
on θ (represented by the conditional probability distribution
p(q1, . . . , qK |θ) of the random functions q1, . . . , qK given
θ) to calculate a posterior pdf, which then constitutes the
fusion result [87], [88]. Most of the early literature [89]–
[91] describes p(q1, . . . , qK |θ) implicitly by assuming that
the joint distribution of the errors µk − θ (where µk is
the expectation of θ induced by the pdf qk) is multivariate
Gaussian. This reduces the fusion problem to the calculation
of the posterior pdf for a simple Bayesian linear Gaussian
model where the µk are treated as observations at the fusion
center and the covariance structure is known. The practically
most important scenario in the supra-Bayesian approach is
where each agent has access to certain random observations
that are statistically dependent on the random vector θ, and
both the agents and the fusion center have knowledge of a
prior distribution of θ and of the local likelihood functions of
the agents. The agent pdf qk(θ) is here given by the agent’s
local posterior pdf. The fusion center is also aware of any
statistical dependencies between the observations of different
agents, which are described by a global likelihood function.

E. Contributions and Paper Organization

The diversity of approaches, perspectives, and solutions
related to probabilistic opinion pooling motivates a survey that
presents the theory and methodology of the field in a coherent
manner. The present paper attempts to answer this call. In
addition, it provides a number of original contributions and
results, including the following:

• A rigorous and coherent treatment of probabilistic opin-
ion pooling for a continuous random vector θ and, ac-
cordingly, for the fusion of pdfs. In particular, for the first
time, the axiomatic approach is rigorously and thoroughly

discussed for pdfs (Section IV). So far, the focus in the
literature has mostly been on discrete probability distri-
butions, and it has been claimed that analogous results
hold for pdfs. Although this is indeed often the case, the
non-atomic structure of the pdf setting sometimes allows
for stronger or different results.

• The definition of a new pooling function, referred to
as “generalized multiplicative pooling function” (Sec-
tion III-B8).

• Two new axioms for pooling functions, referred to as
“factorization preservation” and “generalized Bayesian-
ity” (Axioms 9 and 12 in Section IV-A).

• Several new theorems presenting axiomatic characteriza-
tions of pooling functions for pdfs and related results
(Theorems 1, 2, and 6–11 in Section IV-B and Ap-
pendices A–F). These theorems are partly adaptations
of existing results formulated for discrete probability
distributions and partly entirely new results.

• Proofs of the following results: the pooling function
minimizing the weighted sum of α-divergences is given
by the weighted Hölder mean; the pooling function
minimizing the weighted sum of Pearson χ2-divergences
is given by the weighted harmonic mean; the pooling
function minimizing the weighted sum of L2 distances
is given by the weighted arithmetic mean (Theorems 14
and 16 in Sections V-C and V-E and Appendices G and
I). Furthermore, we derive the solution to the problem
of minimizing a general class of weighted symmetric
distance functions (Theorem 17 in Section V-E and
Appendix J).

• A new framework of supra-Bayesian fusion of poste-
rior pdfs in terms of finite-dimensional “local statistics”
(Sections VIII-B through VIII-D). This includes an ex-
plicit pooling function for the case of agents collecting
conditionally independent observations (Theorem 18 in
Section VIII-A), a formal definition of and result for
finite-dimensional supra-Bayesian fusion (Definition 1
and Theorem 19 in Section VIII-B), and a general pro-
cedure for establishing a fusion rule for the case of
agents collecting conditionally dependent observations
(Section VIII-D).

• A detailed study of supra-Bayesian fusion of posterior
pdfs for linear Gaussian models (Section IX), including
the derivation of explicit pooling functions and fusion
rules (Sections IX-C and IX-D, Appendices K and L).

The paper’s structure is as follows. In Section II, we illus-
trate the applicability and relevance of probabilistic opinion
pooling by discussing three specific example applications. In
Section III, we formulate the probabilistic opinion pooling
problem for pdfs and present a collection of specific pooling
functions. Section IV discusses the axiomatic approach to
opinion pooling and provides several new characterization
theorems. In Section V, we consider the optimization approach
to opinion pooling. We describe various optimization criteria
and show that they partly lead to the same pooling functions
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as the axiomatic approach and partly to different pooling
functions such as the family of Hölder means. The fusion
of Gaussian distributions using the pooling functions from
Sections III and V is considered in Section VI. Section VII
addresses the choice of the weights involved in the two most
prominent and popular pooling functions, namely, the linear
and log-linear pooling functions, as well as the choice of
the parameter involved in the Hölder pooling function. In
Section VIII, we present a new view of the supra-Bayesian
pooling approach using finite-dimensional parametrizations.
The results of Section VIII are specialized to linear Gaussian
models in Section IX. The model of Section IX includes as
a special case the supra-Bayesian setting presented in [89]–
[91]. We broaden this setting significantly and present detailed
fusion rules. In Section X, we provide suggestions for future
research, and in Section XI, a summary of our main insights
and results. Detailed proofs of our main results are provided
in several appendices.

F. Notation

We will use the following basic notation. Vectors are
denoted by boldface lower-case letters (e.g., t and θ), matrices
by boldface upper-case letters (e.g., H and Σ), and sets and
events by calligraphic letters (e.g., A). The transpose is written
as (·)⊺. We write Id for the identity matrix of dimension d,
0d1×d2 for the d1 × d2 zero matrix, 1d for the all-one vector
of dimension d, and ⊗ for the Kronecker product. The symbol
P denotes the set of all pdfs, and SK denotes the probability
simplex on [0, 1]K , i.e., the set of all (w1, . . . , wK) ∈ [0, 1]K

with
∑K

k=1 wk = 1. For a set or event A, we denote the
complement as Ac, the indicator function as 1A, and the
Lebesgue measure as |A|. Further notation is listed in Table I.

II. ILLUSTRATIVE APPLICATIONS

To illustrate the broad applicability of probabilistic opinion
pooling or, more concretely, of the fusion of pdfs, we consider
three illustrative applications in more detail.

A. Target Tracking

Target tracking aims to estimate the time-varying state
(e.g., position and velocity) of a “target” from a sequence
of observations [92], [93]. Applications include aeronautical
and maritime situational awareness, surveillance, autonomous
driving, biomedical analytics, remote sensing, and robotics.
The performance of target tracking can be enhanced by using
multiple sensors. This can be done in an optimal manner
if the multisensor observation model is completely known,
including possible statistical dependencies between the ob-
servations. However, in many cases, a simplified approach
to multisensor target tracking based on probabilistic opinion
pooling is adopted. Each sensor node operates a Bayesian filter
that, at each time step, calculates a local posterior pdf of the
current state based solely on the observation of that sensor.
Fig. 1 illustrates the local posterior pdfs of two sensor nodes at
two different time steps. The local posterior pdfs of the various
sensor nodes are then fused using, typically, log-linear pooling

Probabilistic opinion pooling

qk(θ) — pdf of agent k
q(θ) — aggregate (fused) pdf
Qk(A) — probability of event A according to qk(θ)
Q(A) — probability of event A according to q(θ)
µqk — mean associated with qk(θ)
µq — mean associated with q(θ)
Σqk — covariance matrix associated with qk(θ)
Σq — covariance matrix associated with q(θ)

Supra-Bayesian framework

yk — local observation vector of agent k
y — global observation vector (stacking all yk)
tk — local statistic of agent k
t — stacked vector of all local statistics tk
p(θ) — prior pdf
ℓk(θ) — local observation likelihood function of

agent k
ℓ(θ) — global observation likelihood function
λk(θ) — local tk-likelihood function of agent k
λ(θ) — global t-likelihood function
πk(θ) — local posterior pdf of agent k

General notation

g[·] — pooling function
g[q1, . . . , qK ](θ) — fused pdf resulting from application of pooling

function g to pdfs q1(θ), . . . , qK(θ)

Eψ [·] — expectation operator with respect to pdf ψ(θ)
E[·] — expectation operator with respect to the joint

pdf of all involved random variables
N (θ;µ,Σ) — pdf of a Gaussian random vector θ with mean

µ and covariance matrix Σ

Table I: Notation

SENSOR NODE 1

at time t1

at time t2 

SENSOR NODE 2

at time t1 

at time t2 

Figure 1: Schematic illustration of the state trajectory of a
target and the local posterior pdfs of two sensor nodes at two
different time steps.

or its second-order version known as covariance intersection
[3], [27], [29]–[33], [40], [41], [94] (see Sections III-B3 and
VI-B). This approach is practically convenient because (i) the
multisensor fusion is decoupled from the filtering, and (ii) it
works for any choice of Bayesian filter methods used at the
sensor nodes and for any sensing modalities, even when they
are different at different sensor nodes. These characteristics
make the probabilistic opinion pooling approach well suited
to heterogeneous and/or decentralized sensor networks.

A nontrivial extension of target tracking is multitarget
tracking, which involves an unknown time-varying number of
targets and a more complicated observation model [95]–[102].
More specifically, targets can appear and disappear randomly,
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and there are missed detections (i.e., some sensors do not
produce observations for some of the targets), clutter or false-
alarm observations (which are not related to any target), and
an observation-origin uncertainty (i.e., the sensor nodes do not
know whether a given observation originated from a target, and
from which target, or is clutter). Probabilistic opinion pooling
can be used both for “vector-based” multitarget tracking
methods, which describe the joint state of the targets by a
random vector, and for “set-based” methods, which describe
it by a random finite set or equivalently a finite point process
[97], [100], [103]. In the vector-based case, the target states
are fused individually using, typically, log-linear pooling or
covariance intersection. This presupposes an association of the
target states across the sensors [104], [105].

In set-based methods, on the other hand, probabilistic opin-
ion pooling is applied either to the posterior multiobject pdfs
or to the posterior probability hypothesis densities (PHDs)
of the sensor nodes, which provide two alternative joint
descriptions of all the target states [97], [100]. Here, both
log-linear pooling—also termed geometric average fusion, ex-
ponential mixture density, generalized covariance intersection,
or Kullback-Leibler averaging [2], [5], [8], [43], [50], [85],
[106]–[108]—and linear pooling (see Section III-B1)—also
termed arithmetic average fusion and minimum information
loss fusion [5], [43]–[46], [48], [85], [108]–[111]—have been
used. Log-linear pooling is more sensitive to missed detections
whereas linear pooling is more sensitive to clutter. Regarding
this sensitivity tradeoff, we note that pooling functions that
are intermediate between the linear and log-linear ones are
provided by the family of Hölder pooling functions to be
presented in Section III-B5.

Finally, both log-linear and linear pooling have recently
been generalized to multitarget tracking methods based on
labeled random finite sets, which track the identities of the
targets in addition to their states [6], [47], [49], [112]–[114].
Some of these methods require a label association step that
is similar in spirit to the target association step required by
vector-based methods [47], [49], [113], [114].

B. Probabilistic Machine Learning

Probabilistic machine learning [115], [116] has recently
seen applications in many different areas including quantum
molecular dynamics [117], disease detection [118], medical
diagnosis [119], scene understanding [120], and geotechnical
engineering [121]. In machine learning, uncertainty quantifica-
tion for predictive models is required for problems that involve
risk assessment. Unfortunately, classical machine learning
models do not account for parameter uncertainty, which makes
them more susceptible to failure when dealing with unseen
and/or unrelated data [122]. This is a prominent issue for
deep learning models [123]. One way to account for predic-
tive uncertainty in machine learning is to adopt a Bayesian
framework: using training data, a prior pdf over the model
parameters is updated to obtain a posterior pdf. This posterior
pdf is then used to calculate a predictive pdf for unobserved
data (test data). This pdf is often represented in parametric
form—e.g., a Gaussian pdf is parameterized by its mean

Posterior 
(Agent 1)

Test Data

Posterior 
(Agent 2)

Figure 2: Bayesian machine learning in the context of binary
classification with two agents. Each agent obtains a posterior
pdf from training data and uses it to derive its predictive pdf
of the probability that test data belong to the positive class.
These predictive pdfs are subsequently combined to obtain an
aggregate predictive pdf.

and covariance matrix—or by a set of samples. Examples
of Bayesian machine learning models include Bayesian linear
regression, Bayesian neural networks [124], [125], Gaussian
processes [126], and deep Gaussian processes [127].

In certain scenarios of probabilistic machine learning, prob-
abilistic opinion pooling can be used to resolve practical
challenges. For example, the choice of a model (or an ar-
chitecture, or a set of parameters) is frequently not obvious,
and thus there is a model uncertainty that has to be taken into
account to ensure robustness and generalization. A class of
methods dealing with this issue is known as ensemble learning.
The learning is carried out by a collection of algorithms
based on different models, and the final result of classifi-
cation, regression, or clustering is obtained by combining
the individual results [128]–[133]. The combination of the
results of individual probabilistic learning algorithms can be
implemented via probabilistic opinion pooling, i.e., by fusing
the predictive pdfs produced by the individual algorithms. An
example in the context of binary classification is shown in
Fig. 2. Probabilistic opinion pooling in ensemble learning
has been successfully applied, e.g., in the context of deep
ensembles [9], neural network ensembles [10], and ensemble
Gaussian processes [11]. Note that in ensemble learning,
unlike in multisensor signal processing and, in particular,
target tracking as discussed in the previous subsection, all the
algorithms may operate on the same set of data.

Another practical challenge in machine learning is posed by
privacy-sensitive scenarios. Here, local (private) data observed
at individual nodes may not be disseminated across the nodes
or to a fusion center, and thus can be used only to train
local models at the respective nodes. This framework, often
referred to as federated learning, requires the combination
of local models at a fusion center [12], [51], [52], [134].
Although in many instances of federated learning, updates
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are also communicated from the fusion center to the nodes,
several works consider problem settings along the lines of
probabilistic opinion pooling. For example, agnostic federated
learning [135] combines sample representations of probability
distributions trained on private data into an aggregate distri-
bution.

Finally, the application of machine learning methods to “big
data” scenarios calls for divide-and-conquer strategies that
partition the data to much smaller sets, perform learning on
each set, and combine the respective predictive or posterior
distributions [65]–[67], [136]. Here, a focus has so far been
on Markov chain Monte Carlo (MCMC) samplers for Bayesian
inference [65]–[67]. For example, in [65], the idea is to
generate a “subposterior” for each small dataset and combine
the subposteriors using the multiplicative pooling function
(see Section III-B7). Each subposterior is initially represented
by a set of samples produced by an MCMC sampler but
is then converted into a continuous pdf given by a kernel
density estimate. The different pdfs are finally fused to form
an approximation to the overall posterior pdf. This approach
can be motivated by the fact, to be shown in Section VIII-A,
that under a suitable conditional independence assumption a
multiplicative pooling function operating on the subposteriors
gives the overall posterior pdf.

The use of probabilistic machine learning has so far been
restricted by the fact that many popular methods of machine
learning do not provide probabilistic results. However, we
expect that the outcomes of recent and ongoing research will
remove this limitation and thereby increase the successful
application of probabilistic opinion pooling in this field.

C. Forecasting

The goal of forecasting is to predict future values of some
variable of interest based on present and past observed data
[137]. An issue that may limit the performance of forecasting
is a lack of confidence in the underlying model. This issue can
be addressed by the combination of forecasts, which fuses the
forecasting results obtained with several different models [53],
[54], [56]. While classical work has considered point forecasts,
probabilistic forecasting uses a description of the variable
of interest in terms of probability distributions. Here, for a
long time, the focus was on discrete probability distributions
[18], and accordingly continuous random variables were ap-
proximated by discrete random variables through quantization.
For example, in meteorology, the amount of precipitation was
binned into a finite number of categories [138].

By contrast, the idea of density forecasting is to predict
continuous random variables directly in terms of their pdfs
[139]. This is visualized by Fig. 3, which shows a fan chart
representation of density forecasts made by two experts. Den-
sity forecasting was suggested already more than 50 years ago
[140], [141]. However, the combination of density forecasts
[142]—which is a special setting of the fusion of pdfs—was
considered only much later. Suggestions to combine density
forecasts started with [20], [55], which discussed the opti-
mization of the weights in the linear pooling function based
on training data. At about the same time, the use of Bayesian
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Figure 3: Density forecasts of a variable (e.g., inflation)
beyond 2021 made by two experts, visualized as fan charts.
The values of past years are already observed and thus fixed
while predictions farther into the future become increasingly
uncertain.

model averaging [57] in forecasting was proposed [143], again
resulting in a linear pooling function. Also subsequent work
focused on linear pooling [24]. Nonlinear pooling functions
were mostly obtained by a preprocessing of the individual
pdfs (e.g., in the spread-adjusted linear pool [144]) or by
a postprocessing of the aggregate pdf (e.g., in the Beta-
transformed linear pool [142]). Recently, the combination of
density forecasts has also been studied in a nonparametric
Bayesian setting based on the Beta-transformed linear pool
[145].

While the combination of density forecasts has the same
goal as pdf fusion—namely, to fuse pdfs from different
sources—there are two distinctive features. First, realizations
of the random variable to be predicted are observed on a
regular basis, which enables an evaluation of density forecasts
and their combinations based on new data. A significant part
of the literature focuses on this aspect. Although beyond
the scope of our work, such an evaluation can obviously
be performed also within the general setting of pdf fusion
if the required data are available. Second, forecasts usually
concern one-dimensional random variables. This implies that
the combination of forecasts can be formulated in terms of
the one-dimensional cumulative distribution function (cdf),
and more specific properties such as calibration [142] can
be studied. Also the combination of forecasts—in particular,
the choice of weights—is often based on new data and the
evaluation of the fused one-dimensional cdf [146].

Probabilistic forecasting has been used in the broad domains
of meteorology [18] and economics [20], [61], [139], [147]
and, more specifically and more recently, in many disciplines
including wind forecasting [148], [149], electric load fore-
casting [150], electricity price forecasting [151], and solar
power forecasting [152]. The combination of density forecasts
has, e.g., been considered in [20], [149], [152], and we
conjecture that successful deployments of this variant of pdf
fusion will emerge in many further applications of probabilistic
forecasting.



8

III. PROBABILISTIC OPINION POOLING

A. Basic Framework
In probabilistic opinion pooling, we are interested in fusing

the pdfs of K agents or “experts” into a single pdf. Let
θ ∈ Θ ⊆ Rdθ be a continuous random variable or vector
defined on some probability space.1 Furthermore, let the pdf
qk(θ) ∈ P represent the opinion of the kth agent. The
sequence of all opinions (q1, q2, . . . , qK) ∈ PK is called the
opinion profile. We consider events to be (measurable) subsets
of Θ. The probability of an event A ⊆ Θ according to the
opinion of the kth agent is given by

Qk(A) =

∫
A
qk(θ)dθ.

Given an opinion profile (q1, q2, . . . , qK), a pooling function
g : PK → P is used to fuse the agents’ pdfs qk(θ) into a
single pdf

q(θ) = g[q1, . . . , qK ](θ).

The probability of an event A ⊆ Θ according to the fused pdf
q(θ) is then given by

Q(A) =

∫
A
q(θ)dθ.

The fused pdf q(θ) summarizes the opinions of the K agents
and will be referred to as the aggregate pdf. The fusion of
the agent opinions via the pooling function is done (at least
virtually) at a fusion center.

B. Pooling Functions
Over the years, many different pooling functions g have

been proposed. We summarize some of them in the following.
These pooling functions will be reconsidered in later sections.

1) Linear Pooling: The most popular pooling function is
the linear pooling function, which was introduced in [26]. Lin-
ear pooling aggregates the agent opinions through a weighted
arithmetic average, i.e.,

g[q1, . . . , qK ](θ) =

K∑
k=1

wkqk(θ), (1)

where (w1, . . . , wK) ∈ SK .
One can establish a connection between linear opinion

pooling and model averaging [57]. Let us consider the joint
distribution q(θ,M) of the unknown random vector θ and
a discrete “model” random variable M ∈ {M1, . . . ,MK}.
Furthermore, let q(θ|Mk) denote the pdf of θ conditioned on
model Mk and P (Mk) denote the probability of Mk. Then
the marginal pdf of θ is given by

q(θ) =

K∑
k=1

P (Mk)q(θ|Mk). (2)

This is equivalent to the linear pooling operation (1), wherein
the agent pdf qk(θ) is interpreted as the pdf of θ under model
Mk, the weight wk equals the probability of Mk, and the
aggregate pdf q(θ) is the marginal pdf of θ.

1Our results extend to arbitrary probability measures that are absolutely
continuous with respect to a σ-finite non-atomic measure. However, to keep
the presentation more easily accessible, we present all results in the familiar
setting of pdfs on Rdθ .

2) Generalized Linear Pooling: The generalized linear
pooling function defined in [153] includes an arbitrary pdf
q0 in the weighted arithmetic average (1), i.e.,

g[q1, . . . , qK ](θ) =

K∑
k=0

wkqk(θ), (3)

where (w0, . . . , wK) ∈ SK+1. We note that in the general,
measure-theoretic formulation of generalized linear opinion
pooling in [153], some weights wi are allowed to be negative.
However, in the setting of fusing pdfs, this would result in a
fusion rule g that does not give a valid (nonnegative) pdf for
all possible opinion profiles (q1, . . . , qK). Thus, we restrict to
nonnegative weights. One possible interpretation of the pdf q0
is as the opinion of the fusion center. Alternatively, q0 can be
interpreted as a regularization.

3) Log-linear Pooling: Another popular pooling function is
the log-linear pooling function [28]. This function aggregates
the agent opinions using a weighted geometric average, i.e.,

g[q1, . . . , qK ](θ) = c

K∏
k=1

(qk(θ))
wk , (4)

where c is a normalization factor given by

c =
1∫

Θ

∏K
k=1 (qk(θ))

wk dθ
, (5)

and (w1, . . . , wK) ∈ SK . To avoid the possibility of the
integral in (5) being zero and, thus, c being undefined, this
pooling function is usually only defined for pdfs that are
positive on the domain Θ. We will refer to opinion profiles
(q1, . . . , qK) that satisfy

qk(θ) > 0 for all θ ∈ Θ (6)

as positive opinion profiles.
The pooling function is called “log-linear” because it is a

linear function of the agent pdfs in the log-domain, i.e., the
logarithm of the right-hand side of (4) is

log

(
c

K∏
k=1

(qk(θ))
wk

)
= log(c) +

K∑
k=1

wk log(qk(θ)),

which is a weighted arithmetic average (up to the additive con-
stant log(c)). We will therefore refer to the powers w1, . . . , wK

as “weights.”
4) Generalized Log-linear Pooling: Similar to the general-

ized linear pooling function, a generalization of the log-linear
pooling function can be obtained by including an arbitrary
function ξ0 as an additional factor. However, in contrast to the
generalized linear pooling function, ξ0 is not necessarily a pdf.
More specifically, the generalized log-linear pooling function
[154] is defined as

g[q1, . . . , qK ](θ) = c ξ0(θ)

K∏
k=1

(qk(θ))
wk , (7)

where
c =

1∫
Θ
ξ0(θ)

∏K
k=1 (qk(θ))

wk dθ
,
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ξ0 is a bounded, positive function, and (w1, . . . , wK) ∈ SK .
Here, we again restrict to positive opinion profiles. The func-
tion ξ0 can be used, e.g., to include the opinion of the fusion
center or to regularize the fused density.

5) Hölder Pooling: The following pooling function was
apparently first suggested in [78] as a generalization of the
linear and log-linear pooling functions:

g[q1, . . . , qK ](θ) = c

(
K∑

k=1

wk(qk(θ))
α

)1/α

, (8)

where

c =
1∫

Θ

(∑K
k=1 wk(qk(θ))α

)1/α
dθ

and α ∈ R \ {0}. While for α ≥ 1 it can be shown that
c is defined for arbitrary opinion profiles, in the other cases
we have to restrict to opinion profiles such that c is defined.
Because the pooling function in (8) is the weighted Hölder
mean (also called the generalized average) [155] of the agent
pdfs qk(θ), we will refer to (8) as the Hölder pooling function.
The linear and log-linear pooling functions are special cases
of the Hölder pooling function for α = 1 and α → 0,
respectively.

6) Inverse-linear Pooling: The inverse-linear pooling func-
tion (weighted harmonic average) is defined as

g[q1, . . . , qK ](θ) = c

(
K∑

k=1

wk

qk(θ)

)−1

, (9)

where

c =
1∫

Θ

(∑K
k=1

wk

qk(θ)

)−1
dθ
.

This is the special case of the Hölder pooling function for
α = −1.

7) Multiplicative Pooling: The multiplicative pooling func-
tion, proposed in [80] for pmfs, is defined as

g[q1, . . . , qK ](θ) = c (q0(θ))
1−K

K∏
k=1

qk(θ), (10)

where

c =
1∫

Θ
(q0(θ))

1−K∏K
k=1 qk(θ)dθ

,

and q0 is a positive pdf called the calibrating pdf. Here,
we restrict to positive opinion profiles and further assume
that qk(θ)/q0(θ) is bounded for all k = 1, . . . ,K. These
assumptions guarantee that the normalization constant c is
well-defined and nonzero. In Section VIII-A, we will show
that within the supra-Bayesian framework, the multiplicative
pooling function is the correct fusion rule for combining poste-
rior pdfs in the case of conditionally independent observations.
In that case, the calibrating pdf q0 is the prior pdf used by the
agents to form their posterior pdfs.

8) Generalized Multiplicative Pooling: We propose another
pooling function that is a generalization of both the generalized
log-linear pooling function and the multiplicative pooling
function. In addition to a calibrating pdf q0, we also allow for
arbitrary weights in the generalized log-linear pooling function
(7). More specifically, we define the generalized multiplicative
pooling function as

g[q1, . . . , qK ](θ) = c (q0(θ))
1−

∑K
k=1 wk

K∏
k=1

(qk(θ))
wk , (11)

where

c =
1∫

Θ
(q0(θ))

1−
∑K

k=1 wk
∏K

k=1 (qk(θ))
wk dθ

,

q0 is a positive calibrating pdf, and the weights w1, . . . , wK ∈
R are arbitrary real numbers. We again restrict to positive
opinion profiles and assume that (qk(θ)/q0(θ))wk is bounded
for all k = 1, . . . ,K. In Section IX-C, we will show that
within the supra-Bayesian framework with a linear Gaussian
model, the generalized multiplicative pooling function is the
correct fusion rule for combining posterior pdfs.

9) Dictatorship Pooling: The dictatorship pooling function
maps the opinion profile to a single agent opinion, i.e.,

g[q1, . . . , qK ](θ) = qk(θ), (12)

for some fixed k ∈ {1, . . . ,K}. Although this function is a
valid pooling function, one would not normally expect it to be
a good choice.

10) Dogmatic Pooling: The dogmatic pooling function en-
forces a fixed pdf q0 independently of the opinion profile, i.e.,

g[q1, . . . , qK ](θ) = q0(θ) . (13)

Again, this pooling function will not be suitable in most
applications.

IV. THE AXIOMATIC APPROACH

Fundamentally, we would like the pooling function
g[q1, . . . , qK ] to depend directly on all the agent pdfs qk in
a way that follows some rationale. One principled approach
to probabilistic opinion pooling is the axiomatic approach,
which seeks to determine all pooling functions that satisfy
a set of desirable properties (axioms). In this section, we
first formulate some axioms and then rigorously analyze the
relationships between these axioms and the pooling functions
presented in Section III-B.

A. Axioms

To begin, one basic restriction we may impose on the
pooling function is that it be a symmetric function, i.e.,
a function whose arguments can be interchanged without
altering the output of the function. This means that there is
no “natural order” of the agents, and all agents are treated
equally. This is formally stated in the following axiom:
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Axiom 1. (Symmetry) For all permutations β : K → K of
the set K = {1, . . . ,K} and all opinion profiles (q1, . . . , qK),
the pooling function g satisfies

g[q1, . . . , qK ](θ) = g[qβ(1), . . . , qβ(K)](θ).

A symmetric pooling function seems to be desirable and
natural since it treats the pdfs of the agents equally at the
fusion center. However, if certain agents are known a priori to
be more “reliable” or “informative” than other agents, then it
may be reasonable to emphasize them in the pooling function.
For example, in the linear or log-linear pooling function, we
may assign larger weights wk. If this is done in a fixed manner,
the pooling function is no longer symmetric. On the other
hand, if the weights are chosen adaptively such that each
weight is an explicit function of the opinion profile and this
adaptation rule involves each agent in the same way, then all
agents are treated equally and the resulting pooling function is
still symmetric. This will be further discussed in Section VII.

Another basic property for a pooling function is the preser-
vation of agreement among agents. For instance, if each of
the agents believes that a certain event A ⊂ Θ is a null event,
i.e., the probability of A is 0 according to all the agents, then
A should also be a null event according to the aggregate pdf.
This property is called the zero preservation property (ZPP)
[156]:

Axiom 2. (Zero Preservation) For any event A ⊂ Θ, if
Qk(A) = 0 for all k, then Q(A) = 0.

The next property, termed unanimity preservation [80],
asserts that if the opinions of the agents are identical, then
the aggregate pdf should conform to that unanimous opinion.

Axiom 3. (Unanimity Preservation) If for all events A ⊆ Θ,
the probabilities Qk(A) = pA coincide for all k, then Q(A) =
pA. Equivalently, if 2 qk(θ) = q0(θ) for all k and some pdf
q0(θ), then q(θ) = q0(θ).

Another property that may be desirable in a pooling function
is the strong setwise function property (SSFP) [156]. The SSFP
states that the probability of an event A ⊆ Θ according to
the aggregate pdf q(θ) can be expressed as a function of
the probabilities of that event according to each agent, i.e.,
Q1(A), . . . , QK(A).

Axiom 4. (Strong Setwise Function Property) There exists
a function h : [0, 1]K → [0, 1] such that for all opinion profiles
(q1, . . . , qK) and for all events A ⊆ Θ,

Q(A) = h(Q1(A), . . . , QK(A)). (14)

We note that this axiom is in general not equivalent to the
property that there exists a function h̃ : [0,∞)K → [0,∞)
such that for all opinion profiles (q1, . . . , qK) and each point
θ ∈ Θ

q(θ) = h̃(q1(θ), . . . , qK(θ)). (15)

In particular, for the case that Θ has finite Lebesgue measure
|Θ|, the dogmatic pooling function q(θ) = 1/|Θ| for θ ∈ Θ

2We consider two pdfs to be equal if they are equal almost everywhere
with respect to the Lebesgue measure.

trivially satisfies (15) but not (14) (as a simple consequence
of Theorem 1 below).

A more relaxed criterion than the SSFP is the weak setwise
function property (WSFP) [156]. The WSFP states that the
probability of an event according to the aggregate pdf is a
function of the probabilities of that event according to each
agent and the event itself.

Axiom 5. (Weak Setwise Function Property) For all events
A ⊆ Θ, there exists a generally A-dependent function
hA : [0, 1]K → [0, 1] such that for all opinion profiles
(q1, . . . , qK)

Q(A) = hA(Q1(A), . . . , QK(A)). (16)

The WSFP is also equivalent to the so-called marginal-
ization property, which states that marginalization and fusion
are commutative operations. Formulating the marginalization
property requires a measure-theoretic language that is beyond
the scope of this paper. We thus omit a discussion of the
marginalization property and refer the interested reader to
[156] and [153].

Another relaxation of the SSFP is the likelihood principle
[28]. Here, the value of the aggregate pdf q(θ) at some point
θ may only depend on the values of all qk(θ) at the same θ
up to a normalization constant that can depend on the opinion
profile.

Axiom 6. (Likelihood Principle) There exists a function
h : [0,∞)K → [0,∞) such that for all opinion profiles
(q1, . . . , qK) and each point θ ∈ Θ

q(θ) =
h(q1(θ), . . . , qK(θ))∫

Θ
h(q1(θ

′), . . . , qK(θ′))dθ′ .

The name “likelihood principle” is motivated by viewing
the pdfs as normalized likelihood functions: in this viewpoint,
the idea is that the fused likelihood at θ should only depend
on the local likelihoods at θ up to normalization [28]. Note
that (15) is a significantly stronger assumption because the
function h̃ in (15) has to normalize to one.

We can also formulate a weak version of the likelihood
principle, where the function h may depend on θ [28].

Axiom 7. (Weak Likelihood Principle) For all θ ∈ Θ,
there exists a generally θ-dependent function hθ : [0,∞)K →
[0,∞) such that for all opinion profiles (q1, . . . , qK)

q(θ) =
hθ(q1(θ), . . . , qK(θ))∫

Θ
hθ(q1(θ

′), . . . , qK(θ′))dθ′ .

Another important axiom is independence preservation3

[157]. This axiom asserts that if all the agents agree that two
events A,B ⊆ Θ are independent, then these events should be
independent also according to the aggregate pdf.

Axiom 8. (Independence Preservation) For any events
A,B ⊆ Θ, if

Qk(A ∩ B) = Qk(A)Qk(B)

3Independence preservation should not be confused with the WSFP, which
is sometimes referred to as the independence or eventwise independence
property (e.g., [80]).
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for all k ∈ {1, . . . ,K}, then Q(A ∩ B) = Q(A)Q(B).

A relaxation of independence preservation which, to the best
of our knowledge, has not been considered before is to assume
the preservation of a given factorization structure.

Axiom 9. (Factorization Preservation) For any functions
f1 : Θ → Rd1 and f2 : Θ → Rd2 , if there exist functions qk,1
and qk,2 such that

qk(θ) = qk,1(f1(θ))qk,2(f2(θ))

for all k ∈ {1, . . . ,K}, then there exist functions qa,1 and qa,2
such that

q(θ) = qa,1(f1(θ))qa,2(f2(θ)) .

This axiom expresses, in particular, preservation of the inde-
pendence of components of θ. Assume that θ = (θ1,θ2) and
all agent pdfs factor according to qk(θ) = qk,1(θ1)qk,2(θ2).
We can choose f1(θ) = θ1 and f2(θ) = θ2, and factorization
preservation then implies that also the aggregate pdf preserves
the independence of θ1 and θ2, i.e., q(θ) = qa,1(θ1)qa,2(θ2).

The final axioms we consider are motivated by Bayesian
updating of probabilities. More specifically, we interpret each
agent pdf qk(θ) as the agent’s belief about an unknown
quantity θ after observing some data. When observing new
(additional) data, qk(θ) is updated by multiplying it by a
likelihood function ℓ : Θ → [0,∞), which relates the agent’s
new data to θ. The updated belief of the kth agent, q(ℓ)k (θ),
is thus given as

q
(ℓ)
k (θ) =

ℓ(θ)qk(θ)∫
Θ
ℓ(θ′)qk(θ

′)dθ′ . (17)

To avoid degenerate cases, one usually assumes in the follow-
ing axioms that all pdfs are positive on the domain Θ. Thus,
we restrict the statements of the axioms to positive opinion
profiles. The first axiom related to the Bayesian framework is
known as external Bayesianity [28], [158].

Axiom 10. (External Bayesianity) For all functions ℓ : Θ →
[0,∞) and all positive opinion profiles (q1, . . . , qK) satisfying
0 <

∫
Θ
ℓ(θ)qk(θ)dθ <∞ for all k ∈ {1, . . . ,K}, we have

q(ℓ)(θ) = g[q
(ℓ)
1 , . . . , q

(ℓ)
K ](θ),

where q(ℓ)k is defined in (17) and

q(ℓ)(θ) =
ℓ(θ)q(θ)∫

Θ
ℓ(θ′)q(θ′)dθ′ , (18)

with q(θ) = g[q1, . . . , qK ](θ).

This axiom is motivated by the following Bayesian scenario:
Assume that q1, . . . , qK are prior pdfs of K agents. Some
data are observed, and the resulting likelihood function ℓ is
provided to all agents. Then, a pooling function g satisfying
external Bayesianity gives the same fusion result if it first
aggregates the priors qk into a fused prior q and then q is
updated according to (18), or if it aggregates the posterior pdfs
q
(ℓ)
k resulting from all agents updating their priors according

to (17). Thus, external Bayesianity states that pdf updating
and fusion are commutative operations. Such a property is
desirable in applications where the agents share identical data

(i.e., a global likelihood function) but have distinct prior
distributions [159].

A second axiom related to the Bayesian framework is known
as individualized Bayesianity [80]. This axiom is motivated
by the idea of combining posterior probabilities, where each
agent’s posterior probability is based on private data (i.e.,
a local likelihood function) in contrast to all agents sharing
identical data.

Axiom 11. (Individualized Bayesianity) For all k ∈
{1, . . . ,K}, all bounded, positive4 functions ℓ : Θ → [0,∞),
and all positive opinion profiles (q1, . . . , qK), we have

q(ℓ)(θ) = g[q1, . . . , qk−1, q
(ℓ)
k , qk+1, . . . , qK ](θ), (19)

where q(ℓ)k and q(ℓ) are defined by (17) and (18), respectively.

This axiom is motivated by a scenario that is partly different
from the scenario motivating external Bayesianity. We again
assume that q1, . . . , qK are prior pdfs of the agents. For some
arbitrary but fixed k, the kth agent observes (private) data
in terms of a likelihood function ℓ. Then, a pooling function
g satisfying individualized Bayesianity gives the same fusion
result if it first aggregates the priors qk into a fused prior q
and then q is updated according to (18), or if it aggregates
the priors of all but the kth agent and the posterior pdf q(ℓ)k

resulting from the kth agent updating its prior according to
(17). Thus, individualized Bayesianity states that pdf updating
at a single agent and fusion are commutative operations.

Finally, we state a novel axiom that generalizes individual-
ized Bayesianity. We thus call it generalized Bayesianity.

Axiom 12. (Generalized Bayesianity) For all bounded, pos-
itive functions ℓk : Θ → [0,∞), k ∈ {1, . . . ,K}, there exists
a fused likelihood function h[ℓ1, . . . , ℓK ] such that for all
positive opinion profiles (q1, . . . , qK), we have

q(h[ℓ1,...,ℓK ])(θ) = g[q
(ℓ1)
1 , . . . , q

(ℓK)
K ](θ), (20)

where q
(ℓk)
k and q(h[ℓ1,...,ℓK ]) are defined by (17) and (18),

respectively.

This axiom states that fusing q(ℓ1)1 , . . . , q
(ℓK)
K , i.e., the result

of updating q1, . . . , qK , is equivalent to updating q, i.e., the
result of fusing q1, . . . , qK , by a “fused likelihood function”
h[ℓ1, . . . , ℓK ]. Note that the fused likelihood function is not
allowed to depend on the opinion profile (q1, . . . , qK).

The axioms related to the Bayesian framework presented
above are not directly related to the supra-Bayesian approach
presented in Sections VIII and IX below. More specifically,
in the supra-Bayesian framework, we have explicit likelihood
functions and thus the pooling function does not necessarily
satisfy properties that relate to arbitrary likelihood functions
as in the axioms above.

B. Relations between Axioms and Pooling Functions

Having presented various pooling functions in Section III-B
and various axioms in Section IV-A, we next analyze which

4The assumption of boundedness and positivity is needed to obtain the char-
acterization theorems involving individualized Bayesianity in Section IV-B.
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pooling functions satisfy which axioms and, conversely, which
axioms imply which pooling functions. Our results are sum-
marized in Table II. In what follows, we will abbreviate the
various axioms as A1, A2, etc.

Theorem 1. The linear pooling function in (1) satisfies the
ZPP (A2), unanimity preservation (A3), the SSFP (A4), the
WSFP (A5), the likelihood principle (A6), and the weak
likelihood principle (A7). In addition, it satisfies the sym-
metry axiom (A1) if and only if all weights are equal, i.e.,
w1 = w2 = · · · = wK = 1/K. Furthermore, for a pooling
function g the following statements are equivalent:

(i) g is a linear pooling function;
(ii) g satisfies the SSFP (A4);

(iii) g satisfies the WSFP (A5) and the ZPP (A2);
(iv) g satisfies the WSFP (A5) and unanimity preservation

(A3).

The equivalence of (i), (ii), and (iii) was first proven in
[156] for pmfs and in [153] for arbitrary probability measures.
However, to the best of our knowledge, a proof for pdfs has
not been provided so far.5 In [80], the equivalence of (iv) and
(iii) was presented for pmfs. In Appendix A, we give a proof
of Theorem 1 for pdfs.

Theorem 2. The generalized linear pooling function in (3)
satisfies the WSFP (A5) and the weak likelihood principle
(A7). Conversely, any pooling function that satisfies the WSFP
(A5) is a generalized linear pooling function. In addition,
the generalized linear pooling function satisfies the symmetry
axiom (A1) if and only if all weights except w0 are equal, i.e.,
w1 = w2 = · · · = wK .

The measure-theoretic equivalence of generalized linear
pooling functions with possibly negative weights and pooling
functions satisfying the WSFP (A5) was proven in [153].
However, in the case of the fusion of pdfs considered here,
the generalized linear pooling functions cannot have negative
weights. We thus present a proof with the necessary adapta-
tions in Appendix B.

We next turn to pooling functions that include multiplication
of pdfs or of powers of pdfs. In this context, we restrict to
positive opinion profiles, i.e., we assume that (6) is satisfied.
Note that in this setting the ZPP (A2) is not applicable since
Qk(A) = 0 is not possible except for sets A of Lebesgue
measure zero; therefore, we will disregard the ZPP in the
following considerations.

Theorem 3. The log-linear pooling function in (4) satisfies
unanimity preservation (A3), the likelihood principle (A6),
the weak likelihood principle (A7), factorization preservation
(A9), external Bayesianity (A10), and generalized Bayesianity

5Note that the proof for arbitrary probability measures in [153] does not
imply the result for pdfs. Indeed, in our pdf framework, only probability
measures that are absolutely continuous with respect to a fixed reference
measure (usually the Lebesgue measure) are considered. This implicates the
following difference from the framework of [153]: whereas we only assume
that an axiom holds for all pdfs, [153] assumes that it also holds for other
probability measures such as, e.g., a Dirac measure. Therefore, if [153] states
that, e.g., the assumption (ii) implies (i), then this refers to a stronger version
of (ii).

(A12). In addition, it satisfies the symmetry axiom (A1) if and
only if all weights are equal, i.e., w1 = w2 = · · · = wK =
1/K. Furthermore, for a pooling function g the following
statements are equivalent:

(i) g is a log-linear pooling function;
(ii) g satisfies the likelihood principle (A6) and external

Bayesianity (A10);
(iii) g satisfies unanimity preservation (A3), the weak likeli-

hood principle (A7), and external Bayesianity (A10).

The equivalence of (i) and (ii) was proven in [28] and the
equivalence of (i) and (iii) in [154]. The remaining claimed
axioms follow straightforwardly from the definition of the log-
linear pooling function in (4).

Theorem 4. The generalized log-linear pooling function in
(7) satisfies the weak likelihood principle (A7), factorization
preservation (A9), external Bayesianity (A10), and generalized
Bayesianity (A12). In addition, it satisfies the symmetry axiom
(A1) if and only if all weights except w0 are equal, i.e., w1 =
w2 = · · · = wK . Furthermore, for a pooling function g the
following statements are equivalent:

(i) g is a generalized log-linear pooling function;
(ii) g satisfies the weak likelihood principle (A7) and exter-

nal Bayesianity (A10).

This characterization theorem was proven in [154]. We
note that the assumption of fusing pdfs (rather than general
measures) is essential. In particular, for pmfs axioms A7 and
A10 would imply only a “modified” generalized log-linear
pooling function that may contain negative weights [154].
In [154], one can also find a characterization of all pooling
functions that satisfy external Bayesianity (A10). However,
these pooling functions do not have a simple structure.

Theorem 5. The Hölder pooling function in (8) satisfies
unanimity preservation (A3), the likelihood principle (A6), and
the weak likelihood principle (A7). In addition, it satisfies the
symmetry axiom (A1) if and only if all weights are equal, i.e.,
w1 = w2 = · · · = wK .

The proof of this theorem is straightforward and thus
omitted. Because the inverse-linear pooling function (9) is a
special case of the Hölder pooling function, it follows that it
also satisfies A3, A6, and A7.

Theorem 6. The multiplicative pooling function in (10) sat-
isfies the symmetry axiom (A1), the weak likelihood principle
(A7), factorization preservation (A9), individualized Bayesian-
ity (A11), and generalized Bayesianity (A12). Furthermore, for
a pooling function g the following statements are equivalent:

(i) g is a multiplicative pooling function with calibrating
pdf q0;

(ii) g satisfies individualized Bayesianity (A11) and there
exists a pdf q0(θ) such that g[q0, . . . , q0](θ) = q0(θ).

The claimed axioms follow straightforwardly from the
definition of the pooling function. A result similar to the
equivalence of (i) and (ii) was proven for pmfs in [80]. We
provide a proof for pdfs in Appendix C.
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Axiom

Pooling Function 1 2 3 4 5 6 7 8 9 10 11 12

Linear ∗ ✓ ✓ ✓ ✓ ✓ ✓
Generalized Linear ∗ ✓ ✓
Log-linear ∗ n.a. ✓ ✓ ✓ ✓ ✓ ✓
Generalized Log-linear ∗ n.a. ✓ ✓ ✓ ✓
Hölder ∗ n.a. ✓ ✓ ✓
Inverse-linear ∗ n.a. ✓ ✓ ✓
Multiplicative ✓ n.a. ✓ ✓ ✓ ✓
Generalized Multiplicative ∗ n.a. ✓ ✓ ✓
Dictatorship ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dogmatic ✓ ✓ ✓ ✓

Table II: Axioms satisfied by the pooling functions presented in Section III-B. (∗: satisfied if and only if all weights are equal.)

Theorem 7. The generalized multiplicative pooling function
in (11) satisfies the weak likelihood principle (A7), factoriza-
tion preservation (A9), and generalized Bayesianity (A12). In
addition, it satisfies the symmetry axiom (A1) if and only if all
weights are equal, i.e., w1 = w2 = · · · = wK .

Again, the claimed axioms follow straightforwardly from
the definition of the pooling function.

Theorem 8. The dictatorship pooling function in (12) satisfies
the ZPP (A2), unanimity preservation (A3), the SSFP (A4), the
WSFP (A5), the likelihood principle (A6), the weak likelihood
principle (A7), independence preservation (A8), factorization
preservation (A9), external Bayesianity (A10), and generalized
Bayesianity (A12). Furthermore, for a pooling function g the
following statements are equivalent:

(i) g is a dictatorship pooling function;
(ii) g satisfies the SSFP (A4) and independence preservation

(A8);
(iii) g satisfies the WSFP (A5) and independence preserva-

tion (A8);
(iv) g satisfies the SSFP (A4) and external Bayesianity

(A10);
(v) g satisfies the WSFP (A5) and external Bayesianity

(A10);
(vi) g satisfies the SSFP (A4) and generalized Bayesianity

(A12).

Our statements regarding the satisfied axioms follow easily
from the definition of the dictatorship pooling function. The
equivalence of (i) and (ii) was proven in [153, Theorem 3.1].
In Appendix D, we strengthen this result and show that the
WSFP—instead of the (stronger) SSFP—in combination with
independence preservation suffices to axiomatically define the
dictatorship pooling function, i.e., that (iii) implies (ii). The
equivalence of (i) and (iv) was proven in [160]. In fact, [160]
even states the equivalence of (i) and (v) by proving that the
version of external Bayesianity considered in [160] implies
the ZPP. However, our formulation of external Bayesianity
assumes positive opinion profiles and thus the ZPP cannot be
proven. To close this gap, we further show in Appendix D that
(v) implies (iv). Finally, we also show in Appendix D that (vi)
implies (i).

We note that the dictatorship pooling function is a special
case of both the linear and log-linear pooling functions, when
one of the weights is 1 and all the others are 0. The fact that the

dictatorship pooling function satisfies ten axioms shows that a
pooling function that satisfies many axioms is not necessarily
a useful pooling function.

Turning to the dogmatic pooling function, we first present
a preliminary result that is proven in Appendix E.

Lemma 9. Assume that a pooling function g satisfies the
WSFP (A5) and generalized Bayesianity (A12). Then g is
either a dogmatic pooling function or a dictatorship pooling
function.

The following characterization of the dogmatic pooling
function now follows easily.

Theorem 10. The dogmatic pooling function in (13) satisfies
the symmetry axiom (A1), the WSFP (A5), the weak likelihood
principle (A7), and generalized Bayesianity (A12). Conversely,
any pooling function that satisfies the symmetry axiom (A1),
the WSFP (A5), and generalized Bayesianity (A12) is a dog-
matic pooling function.

It is obvious that the dogmatic pooling function satisfies the
stated axioms. The converse follows because by Lemma 9 the
pooling function must be either a dogmatic pooling function or
a dictatorship pooling function, but of these only the dogmatic
pooling function is symmetric.

Based on the theorems above, we can establish an impli-
cation structure for the different axioms from Section IV-A,
which indicates which axioms imply which other axioms. To
formalize this structure, we will designate the set of all pooling
functions that satisfy Axiom i as Fi. The next theorem states
the currently known implications. Venn diagrams representing
the implication structure are presented in Fig. 4.

Theorem 11. For the axioms introduced in Section IV-A, the
following implications hold:

(i) The SSFP (A4) implies the ZPP (A2), unanimity preser-
vation (A3), the WSFP (A5), the likelihood principle
(A6), and the weak likelihood principle (A7), i.e., F4 ⊆
F2∩F3∩F5∩F6∩F7. Furthermore, F4 = F2∩F5 =
F3 ∩ F5.

(ii) The WSFP (A5) implies the weak likelihood principle
(A7), i.e., F5 ⊆ F7.

(iii) The likelihood principle (A6) implies the weak likelihood
principle (A7), i.e., F6 ⊆ F7.

(iv) Independence preservation (A8) implies the ZPP (A2),
i.e., F8 ⊆ F2.
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F7
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F12

F10

F4

F11

Dict Dogm

(a)

F7

F6
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F8F2

F4F3
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Figure 4: Venn diagrams representing the implication structure for the axioms from Section IV-A: (a) A4–A7 and A10–A12 as
well as intersections resulting in dictatorship (Dict) or dogmatic (Dogm) pooling functions; (b) A2–A8 as well as intersections
resulting in dictatorship (Dict) pooling functions. Note that the diagrams illustrate the currently known implications, and some
regions that appear non-empty in the diagrams may actually be empty sets. For better visibility, the sets F4, F8, and F10 are
highlighted by different line-patterns.

(v) Individualized Bayesianity (A11) implies generalized
Bayesianity (A12), i.e., F11 ⊆ F12.

Most of these implications follow from our earlier theorems.
For completeness, we provide a proof of, or references for, all
implications in Appendix F.

V. THE OPTIMIZATION APPROACH

In the previous section, we identified pooling functions that
satisfy certain axioms. An alternative approach to establishing
pooling functions for probabilistic opinion pooling is the
optimization approach. Here, a pooling function is obtained
by minimizing the weighted average of some discrepancy
measure between the pdfs of the K agents, q1(θ), . . . , qK(θ),
and the aggregate pdf q(θ). The underlying idea is to make
the aggregate pdf as similar as possible to all the agent pdfs
simultaneously. As we will see, the obtained q(θ) turns out to
be some sort of average of the agent pdfs q1(θ), . . . , qK(θ).

One class of discrepancy measures that can be considered
are f -divergences. For a convex function f : R+ → R with
f(1) = 0, the f -divergence between two pdfs qk(θ) and φ(θ)
with common domain Θ is defined as [161]–[164]

Df (qk∥φ) =
∫
Θ

φ(θ)f

(
qk(θ)

φ(θ)

)
dθ. (21)

The fusion of the agent pdfs q1(θ), . . . , qK(θ) can then be
based on defining the aggregate pdf q(θ) as the pdf that

minimizes a weighted average of f -divergences:6

q = argmin
φ∈P

K∑
k=1

wkDf (qk∥φ), (22)

where the weights satisfy (w1, . . . , wK) ∈ SK . In what
follows, we consider some specific f -divergences and derive
the associated pooling functions defined by (22). These results
are summarized in Table III.

A. Kullback-Leibler Divergence

For f(x) = x log x, the f -divergence is the Kullback-
Leibler divergence (KLD) [167]

DKL(qk∥φ) =
∫
Θ

qk(θ) log

(
qk(θ)

φ(θ)

)
dθ. (23)

Under this choice of divergence, the pooling function that
solves the optimization problem in (22) is the linear pooling
function in (1):

Theorem 12. Let f(x) = x log x (i.e., Df (qk∥φ) =
DKL(qk∥φ)) and (w1, . . . , wK) ∈ SK . Then, the solution to
the optimization problem in (22) is

q(θ) =

K∑
k=1

wkqk(θ).

6This minimization establishes a conceptual link to a central problem in
the field of robust hypothesis testing, namely, the identification of a vector
of “least favorable” pdfs within a given set of hypothesized pdfs. For two
pdfs, this problem can be shown to be equivalent to the joint minimization of
all f -divergences (21) for all twice differentiable convex functions f [165],
[166]. The solution to this minimization can be interpreted as the pdfs that
are maximally similar within the set of hypothesized pdfs, which means that
a statistical test between the respective pdfs is “as hard as possible.” It is
interesting that an interpretation as a maximally similar pdf holds for both
the optimization approach to pdf fusion and robust hypothesis testing.
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Pooling Function f(x) Df (qk∥φ) χ(x) ∥χ(qk)− χ(φ)∥22

Linear: q(θ) =
∑K
k=1 wkqk(θ) x log x

∫
Θ qk(θ) log

(
qk(θ)
φ(θ)

)
dθ x

∫
Θ (qk(θ)− φ(θ))2 dθ

Log-linear: q(θ) ∝
∏K
k=1 (qk(θ))

wk − log x
∫
Θ φ(θ) log

(
φ(θ)
qk(θ)

)
dθ log x

∫
Θ (log qk(θ)− logφ(θ))2 dθ

Inverse-linear: q(θ) ∝
(∑K

k=1
wk
qk(θ)

)−1
1−x
2x

∫
Θ

(qk(θ)−φ(θ))2
qk(θ)

dθ 1
x

∫
Θ

(
1

qk(θ)
− 1
φ(θ)

)2
dθ

Hölder: q(θ) ∝
(∑K

k=1 wk(qk(θ))
α
)1/α

xα−1
α(α−1)

1
α(α−1)

∫
Θ φ(θ)

(qk(θ))
α−(φ(θ))α

(φ(θ))α
dθ xα

∫
Θ ((qk(θ))

α − (φ(θ))α)2 dθ

Table III: Optimization-based definition of pooling functions: some pooling functions along with the underlying f -divergence
Df (qk∥φ) and squared distance function d2(qk, φ) = ∥χ(qk) − χ(φ)∥22 used in the optimization problems in (22) and (32),
respectively.

A proof of this theorem can be found in [83]. The proof
is based on the fact that minimizing the weighted average of
KLDs is equivalent to minimizing the cross-entropy

H(qmix, φ) = −
∫
Θ

qmix(θ) log (φ(θ)) dθ

between the mixture pdf qmix(θ) =
∑K

k=1 wkqk(θ) and the
pdf φ ∈ P . That is,

argmin
φ∈P

K∑
k=1

wkDKL(qk∥φ) = argmin
φ∈P

H(qmix, φ).

The cross-entropy H(qmix, φ) is minimized if and only if
qmix(θ) and φ(θ) are equal. This follows from the fact
that H(qmix, φ) is equal to the sum of the KLD between
qmix(θ) and φ(θ) and the differential entropy of qmix(θ) [129,
Chapter 2], i.e.,

H(qmix, φ) = DKL(qmix∥φ)−
∫
Θ

qmix(θ) log(qmix(θ))dθ.

Hence, H(qmix, φ) is minimized if and only if DKL(qmix∥φ)
is minimized, which implies that φ(θ) = qmix(θ).

B. Reverse Kullback-Leibler Divergence

Next, consider f(x) = − log x. In this case, the f -
divergence corresponds to the KLD whose arguments are
reversed with respect to (23) [168], i.e.,

DKL(φ∥qk) =
∫
Θ

φ(θ) log

(
φ(θ)

qk(θ)

)
dθ.

We refer to DKL(φ∥qk) as the reverse KLD. For the reverse
KLD, the solution to the optimization problem in (22) is the
log-linear pooling function in (4):

Theorem 13. Let f(x) = − log x (i.e., Df (qk∥φ) =
DKL(φ∥qk)) and (w1, . . . , wK) ∈ SK . Then, the solution to
the optimization problem in (22) is

q(θ) = c

K∏
k=1

(qk(θ))
wk ,

where c = 1
/∫

Θ

∏K
k=1 (qk(θ))

wk dθ.

A proof of this theorem can be found in [83] and [169].
The idea behind the proof is to derive a lower bound on the
weighted average of reverse KLDs using Jensen’s inequality
and then to show that the lower bound is achieved if and only
if (4) is satisfied.

C. α-Divergences

We have shown that both the linear and log-linear pooling
functions can be derived using the optimization approach
involving the KLD or reverse KLD, respectively. These two
results can be extended to an entire family of divergences
and a corresponding family of pooling functions that are both
parameterized by a real parameter α. Indeed, let us consider
the f -divergence Df (qk∥φ) induced by

f(x) = fα(x) ≜
xα − 1

α(α− 1)
,

where x > 0 and α ∈ R \ {0, 1}. This yields the family of
α-divergences defined as [170]–[172]

Dα(qk∥φ) ≜ Dfα(qk∥φ) (24)

=
1

α(α− 1)

∫
Θ

φ(θ)
(qk(θ))

α − (φ(θ))α

(φ(θ))α
dθ .

(25)

We remark that the α-divergence equals the so-called Hellinger
divergence up to a scaling factor and is also a one-to-one
transformation of the Rényi divergence [164]. Using the op-
timization approach for the α-divergences, we obtain the α-
parameterized family of Hölder pooling functions in (8). As
noted earlier, this family comprises the linear, log-linear, and
inverse-linear pooling functions as special cases.

Theorem 14. Let f(x) = fα(x) =
xα−1

α(α−1) (i.e., Df (qk∥φ) =
Dα(qk∥φ)) with α ∈ R \ {0, 1} and (w1, . . . , wK) ∈ SK .
Then, the solution to the optimization problem in (22) is

q(θ) = c

(
K∑

k=1

wk(qk(θ))
α

)1/α

, (26)

where c = 1
/∫

Θ

(∑K
k=1 wk(qk(θ))

α
)1/α

dθ.

Although this result was mentioned in [84, Fig. 1], to the
best of our knowledge, a proof does not exist in the literature.
We provide a proof in Appendix G.

In the limiting case α→ 0, the Hölder pooling function (26)
becomes the log-linear pooling function (weighted geometric
average) in (4), while for α = 1 it equals the linear pooling
function (weighted arithmetic average) in (1). These results are
consistent with the fact that limα→0 Dα(qk∥φ) = DKL(φ∥qk)
and limα→1 Dα(qk∥φ) = DKL(qk∥φ) [171]. For α = −1,
the Hölder pooling function (26) becomes the inverse-linear
pooling function (9). Furthermore, the α-divergence in the case
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α = 2 is (up to a scaling factor 2) equal to the Pearson χ2-
divergence [164], [173]

χ2(qk, φ) ≜
∫
Θ

(qk(θ)− φ(θ))2

φ(θ)
dθ

=

∫
Θ

φ(θ)
(qk(θ))

2 − (φ(θ))2

(φ(θ))2
dθ .

The corresponding Hölder pooling function (26) is thus

q(θ) = c

(
K∑

k=1

wk(qk(θ))
2

)1/2

,

where c = 1
/∫

Θ

(∑K
k=1 wk(qk(θ))

2
)1/2

dθ.

D. Reverse α-Divergences

As for the KLD, one can exchange the order of qk and φ in
the α-divergence in (25). Again, this is equivalent to changing
to a different f -divergence. More precisely, it is stated in [162,
eq. (1.13)] (see also [164, Prop. 2]) that

Df (φ∥qk) = Df∗(qk∥φ), (27)

where f∗(x) = xf(1/x). Based on this result, we show in
Appendix H that

Dα(φ∥qk) = Dα∗(qk∥φ),

where α∗ = 1 − α. Thus, Theorem 14 implies the following
result.

Corollary 15. The solution to the optimization problem

q = argmin
φ∈P

K∑
k=1

wkDα(φ∥qk) (28)

is

q(θ) = c

(
K∑

k=1

wk(qk(θ))
α∗

)1/α∗

, (29)

where c = 1
/∫

Θ

(∑K
k=1 wk(qk(θ))

α∗)1/α∗

dθ and α∗ = 1−
α.

In particular, the reverse α-divergence for α = 2 corre-
sponds to the Pearson χ2-divergence in the reverse direction,
i.e., χ2(φ, qk) =

∫
Θ

(qk(θ)−φ(θ))2

qk(θ)
dθ. In this case, α∗ =

1 − 2 = −1 and the corresponding Hölder pooling function
(29) is the inverse-linear pooling function (9).

E. Symmetric Discrepancy Measures

As previously mentioned, the optimization approach defines
pooling functions by minimizing a weighted average of dis-
crepancy measures between the agent pdfs and the aggregate
pdf. So far, our focus has been on minimizing a weighted
average of f -divergences, where our choices of f yielded
asymmetric discrepancy measures. Through this approach, we
derived pooling functions that are the weighted arithmetic,
geometric, harmonic, and Hölder averages of the agent pdfs.
Interestingly, these fusion rules can also be derived using
an alternative formulation, where the goal is to minimize a

weighted average of symmetric discrepancy measures (distance
functions). Let d(qk, φ) be a symmetric function expressing a
distance between the kth agent pdf qk(θ) and the pdf φ(θ),
where symmetric means that d(qk, φ) = d(φ, qk). Then, we
can define the aggregate pdf to be the solution to the following
optimization problem:

q(θ) = argmin
φ∈P

K∑
k=1

wkd
2(qk, φ), (30)

where (w1, . . . , wK) ∈ SK . The resulting q(θ) has been
referred to as Fréchet mean [44].

An important distance function is the L2 distance function
defined as

∥qk − φ∥2 =

√∫
Θ

(qk(θ)− φ(θ))2 dθ. (31)

The linear pooling function can be obtained alternatively by
minimizing a weighted average of squared L2 distances:

Theorem 16. Let d(qk, φ) = ∥qk −φ∥2 and (w1, . . . , wK) ∈
SK . Then, the solution to the optimization problem in (30) is

q(θ) =

K∑
k=1

wkqk(θ).

This result was mentioned without proof in [84, Fig. 1]. We
provide a proof in Appendix I.

Unfortunately, for arbitrary distance functions d(qk, φ), an
analytical solution to the optimization problem in (30) does not
exist. This is due to the difficulty in satisfying the constraint
φ ∈ P , which ensures that the obtained aggregate pdf q(θ)
is a valid pdf. To overcome this difficulty, following [44], we
can instead solve the unconstrained version of the optimization
problem in (30), i.e.,

q̃(θ) = argmin
φ

K∑
k=1

wkd
2(qk, φ), (32)

and then normalize the result, i.e.,

q(θ) =
q̃(θ)∫

Θ
q̃(θ′)dθ′ .

However, we emphasize that the obtained aggregate pdf q(θ)
is generally different from the solution of the constrained
optimization problem in (30).

Using this unconstrained approach, the minimization of
the L2 distance function (31) results again in the linear
pooling function [44]. Here, the solution satisfies the constraint
q ∈ P without explicitly enforcing it. Furthermore, the log-
linear [44], inverse-linear, and Hölder pooling functions can
be derived in an analogous manner using suitable distance
functions. We can arrive at all of these results and many more
in a unified manner by considering the general class of distance
functions d(qk, φ) defined as

∥χ(qk)− χ(φ)∥2 =

√∫
Θ

(χ(qk(θ))− χ(φ(θ)))2 dθ, (33)

where χ : (0,∞) → (a, b) with a ∈ R ∪ {−∞} and b ∈
R ∪ {∞} is an invertible function. Solving the optimization
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problem (32) for the distance functions (33) leads to the rich
class of pooling functions stated by the following result.

Theorem 17. Let d(qk, φ) = ∥χ(qk) − χ(φ)∥2 and
(w1, . . . , wK) ∈ SK . Then, the solution to the optimization
problem in (32) is

q̃(θ) = χ−1

(
K∑

k=1

wkχ(qk(θ))

)
. (34)

A proof is provided in Appendix J, and the functions χ
leading to the linear, log-linear, inverse-linear, and Hölder
pooling functions are listed in Table III. Note that the solution
q̃(θ) in (34) is always nonnegative because the domain of χ
is (0,∞).

VI. GAUSSIAN DENSITIES

In Sections III and V, we discussed a variety of pooling
functions that can be used to fuse the pdfs of several agents
into a single aggregate pdf. We now consider the practically
important special case where the opinions of the agents are
represented by Gaussian pdfs. That is, we assume that

qk(θ) = N (θ;µqk
,Σqk), k = 1, . . . ,K, (35)

where N (θ;µqk
,Σqk) denotes a multivariate Gaussian

pdf with mean µqk
= Eqk [θ] and covariance matrix

Σqk = Eqk [(θ − µqk
)(θ − µqk

)⊺]. An important aspect
of the Gaussian case is the fact that each agent pdf qk(θ)
is completely characterized by its first- and second-order
moments µqk

and Σqk .

A. Linear Pooling

The fusion of Gaussian pdfs using the linear pooling func-
tion in (1) results in an aggregate pdf that is a mixture of
Gaussians, i.e.,

q(θ) =

K∑
k=1

wkN (θ;µqk
,Σqk). (36)

A convenient property in this context is that the expected
value of a function h(θ) with respect to the pdf q(θ)
in (1) is the weighted average of the expected values of
h(θ) with respect to the agent pdfs q1(θ), . . . , qK(θ), i.e.,
Eq[h(θ)] =

∑K
k=1 wkEqk [h(θ)]. This implies that the mean of

the aggregate pdf in (36), µq = Eq[θ], is simply the weighted
average of the agent means, i.e.,

µq =

K∑
k=1

wkµqk
. (37)

Similarly, the covariance matrix of the aggregate pdf in (36),
Σq = Eq[(θ − µq)(θ − µq)

⊺], is obtained as [174]

Σq =

K∑
k=1

wk

(
Σqk + (µqk

− µq)(µqk
− µq)

⊺
)
. (38)

Thus, the mean and covariance matrix of the aggregate
pdf q(θ) can be calculated easily from the agent means and
covariance matrices. This is useful from a practical perspective

because it provides a way for obtaining an estimate of the
parameters (e.g., mean) as well as a measure of uncertainty
for that estimate (e.g., covariance matrix). It is important to
note, however, that since q(θ) is a mixture of Gaussians and,
therefore, is non-Gaussian, it is not fully characterized by its
mean and covariance matrix. Indeed, a mixture of Gaussians
can have properties that a Gaussian cannot have, including
heavy tails, multiple modes, and nonzero skewness [175].

In the case that the agent pdfs are Gaussian, the connection
of linear opinion pooling to model averaging established in
Section III-B1 extends to an estimation technique in the
Kalman filtering literature called multiple model adaptive
estimation (MMAE) [176]. MMAE uses a bank of Kalman
filters to estimate an unknown state (time-varying parameter),
where each Kalman filter assumes a distinct model describing
the state’s time evolution and its relation to the observed data.
In this context, µqk

is the local state estimate provided by the
kth Kalman filter at a given time, while Σqk is the covariance
of that estimate. The local state estimates are then combined
according to (37) to obtain a final state estimate µq , whose
covariance Σq is determined by (38). Here, the weight wk

equals the posterior probability of the model assumed by the
kth Kalman filter.

B. Log-linear Pooling

The fusion of the Gaussian pdfs qk(θ) in (35) by the log-
linear pooling function in (4) results in an aggregate pdf that
is also Gaussian, i.e.,

q(θ) = N (θ;µq,Σq),

with mean vector

µq =

(
K∑

k=1

wkΣ
−1
qk

)−1 K∑
j=1

wjΣ
−1
qj µqj (39)

and covariance matrix

Σq =

(
K∑

k=1

wkΣ
−1
qk

)−1

. (40)

Unlike the case of linear pooling, since the aggregate pdf q(θ)
is Gaussian, it is unimodal and symmetric about the mean µq ,
and it is moreover fully characterized by the mean µq and
covariance Σq .

There is a strong link between log-linear pooling of Gaus-
sian pdfs and a second-order fusion method called covariance
intersection [29], [32], which is often employed in distributed
(decentralized) Kalman filter implementations [3], [41], [94].
In the covariance intersection context, there are K agents,
each of which uses its own local observations to form a local
estimate of an unknown quantity θ. The goal of covariance
intersection is to fuse the local estimates in a way that does not
underestimate the overall covariance of the fused estimate. Let
µqk

be the local estimate of the kth agent, whose covariance
is denoted by Σqk . The fused state estimate µq is determined
according to (39), while the corresponding covariance matrix
Σq is given by (40). The weights w1, . . . , wK used in (39)
and (40) are typically chosen to minimize the determinant or
the trace of Σq [29].
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C. Other Pooling Functions

Finally, we consider the Hölder pooling functions. The
normalization factor c in the Hölder pooling function in (8)
for general α ∈ R \ {0, 1}, involves an intractable integral
and cannot be evaluated, even if the agent pdfs are Gaussian.
Therefore, typically, the aggregate pdf q(θ) resulting from the
Hölder pooling function is only known up to a normalization
factor. Computing expected values with respect to q(θ) would
require the use of numerical integration techniques such as
the trapezoidal quadrature rule or Monte Carlo methods [177].
Because numerical integration techniques are plagued by the
curse of dimensionality [178], computing expectations with
respect to q(θ) under the Hölder pooling function becomes
challenging when the dimension of θ is large.

To illustrate the behavior of the linear and log-linear pooling
functions, and to demonstrate the effect of different choices
of α on the Hölder pooling function, we present in Fig. 5
simulation results for two different sets of K = 2 Gaussian
agent pdfs qk(θ) with θ ∈ R. We used the trapezoidal
quadrature rule to compute the normalization factor of the
aggregate pdf. Fig. 5a shows the fusion of two Gaussian
pdfs with different means but the same variance. In this case,
the value of α in the Hölder pooling function controls the
multimodality of the aggregate pdf, in the sense that smaller
(larger) values of α attenuate (enhance) the modes of the agent
pdfs in the aggregate pdf. Fig. 5b shows the fusion of two
Gaussian pdfs with the same mean but different variances. In
this case, the value of α controls the shape of the tails of the
aggregate pdf, in the sense that smaller (larger) values of α
lead to less heavy (heavier) tails.

VII. CHOOSING THE POOLING PARAMETERS

An important consideration in opinion pooling is the choice
of the parameters involved in the various pooling functions.
While most of our discussion will be in regard to the weights
w1, . . . , wK , we also provide some insight on the choice of
the parameter α in the Hölder pooling function.

The problem of choosing the weights in probabilistic opin-
ion pooling is well researched. The simplest approach is to
assign equal weights to all agents, i.e., wk = 1/K for all k
[55]. However, alternative strategies for assigning weights have
been proposed for linear [179]–[181] and log-linear [159],
[182], [183] pooling. These strategies are usually based on
solving some optimization problem, where the definition of the
objective function depends on how the weights are interpreted
by the fusion center. In some instances, the optimization
of the weights solely depends on the agent pdfs. In other
scenarios, weight assignment takes into consideration data
that are observed at the fusion center, and is based on a
Bayesian interpretation involving likelihood functions or pos-
terior distributions. These data-dependent methods have also
been extended to the sequential case, where observed data are
streamed and the weights are updated when new data become
available [179].

In the following, we describe several options for choosing
the weights in linear and log-linear pooling. We focus on
methods that do not assume that the fusion center has observed

any data. At this point, it is important to emphasize that in both
the axiomatic and optimization approaches to probabilistic
opinion pooling, the weights wk were assumed fixed, i.e.,
not dependent on the agent pdfs qk(θ). If, on the other hand,
the weights are chosen adaptively according to an additional
optimization procedure that involves the agent pdfs qk(θ),
then this implies a deviation from the strict mathematical
framework established by both the axiomatic and optimization
approaches. For example, the linear pooling function with
adaptively chosen weights is no longer linear in the agent pdfs
qk(θ).

A. Linear Pooling

The problem of assigning the weights in the linear pooling
function has been considered in many works; see [179] for a
review. One approach is based on interpreting the weight wk

as a veridical probability, i.e, as the probability that the true
pdf of θ is qk(θ) [184]. Accordingly, wk is chosen to equal a
prior or posterior estimate of that probability. This approach
is connected to the model-averaging view of linear opinion
pooling mentioned in Section III-B1, since in (2), P (Mk)
equals the probability that the model of the kth agent, Mk,
is the correct one. When data are considered, the weights
wk equal the posterior probabilities of the models Mk, and
this is exactly how they are assigned in the MMAE algorithm
mentioned in Section VI-A [174], [176].

Alternatively, the weights can be assigned according to the
predictive performance of each agent by viewing the weights
as outranking probabilities [185]. In this view, wk is the prob-
ability that predictions made based on qk(θ) will outperform
the predictions based on the pdfs of the other agents. This
rationale for choosing the weights requires consideration of
data and a mechanism for assessing the predictive performance
of the agents.

Another idea is to interpret the weights as a measure of
distance [186]. Based on this interpretation, agents that have
“middle of the road” opinions are assigned higher weights,
while those that have more extreme (controversial) opinions
are assigned lower weights. The opposite strategy would
in principle also be possible, namely, giving more weight
to controversial opinions. Such weight assignments can be
achieved by assigning a nonnegative score γk to each agent
pdf qk(θ). For example, one can choose the score γk to be
inversely related to the maximum discrepancy between agent
k and the other agents, i.e.,

γk =
1

max
j∈{1,...,K}

DKL(qk∥qj)
≥ 0, k = 1, . . . ,K. (41)

Here, the KLD is used to measure the discrepancy between
agents, although other divergences can be used instead. The
weight of each agent is then obtained as a normalized version
of γk, i.e.,

wk =
γk∑K
j=1 γj

, k = 1, . . . ,K.

Finally, there are also iterative schemes for weight assign-
ment, where each agent considers itself to be a fusion center



19

−10 −5 0 5 10
θ

0.00

0.25

0.50

0.75

1.00

1.25

pd
f

α= -100

−10 −5 0 5 10
θ

0.0

0.2

0.4

0.6

0.8

pd
f

α= − 1 (Inverse-Linear)

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

pd
f

α→ 0 (Log-Linear)

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

pd
f

α= 0.25

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

pd
f

α= 1 (Linear)

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

pd
f

α= 100

q1(θ)
q2(θ)
q(θ)

(a) Different means, same variance.

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

0.5

pd
f

α= -100

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

0.5

pd
f

α= − 1 (Inverse-Linear)

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

0.5

pd
f

α→ 0 (Log-Linear)

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

0.5

pd
f

α= 0.25

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

0.5

pd
f

α= 1 (Linear)

−10 −5 0 5 10
θ

0.0

0.1

0.2

0.3

0.4

0.5

pd
f

α= 100

q1(θ)
q2(θ)
q(θ)

(b) Same mean, different variances.

Figure 5: Results of Hölder pooling of two pdfs q1(θ) and q2(θ) using weights w1 = w2 = 0.5 and different values of α.
The pdfs are defined as follows: (a) q1(θ) = N (θ;−2.5, 1) and q2(θ) = N (θ; 2.5, 1) (different means, same variance), and
(b) q1(θ) = N (θ; 0, 5) and q2(θ) = N (θ; 0, 0.5) (same mean, different variances). Note that α = −1, α → 0, and α = 1
correspond to the inverse-linear, log-linear, and linear pooling functions, respectively.
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and assigns weights to all the other agents. The weights are
iteratively updated until a consensus is reached. In [187], the
weight vector of each agent is updated by multiplying it by
a transition matrix, and under some conditions a consensus is
reached asymptotically. The work [188] builds on this idea,
but updates the weights according to how closely the agent
pdfs agree, using a scoring function similar to (41).

B. Log-linear Pooling
The choice of the weights in the log-linear pooling function

has been considered less intensely in the literature. Some of
the aforementioned methods for linear opinion pooling can
also be applied to log-linear opinion pooling; for example, the
scoring rule in (41) is still reasonable. Moreover, as mentioned
in Section VI-B, for Gaussian agent pdfs, log-linear pooling
corresponds to the covariance intersection fusion method.
Here, the weights can be chosen using schemes proposed in
the covariance intersection literature, such as minimizing the
trace or determinant of the covariance matrix in (40) [29].

One criterion proposed in the literature that does not require
the consideration of data is the minimum KLD criterion [183].
If there is no basis for determining the reliability of each
agent, one can choose the weights such that the aggregate
pdf is maximally close to all the agent pdfs simultaneously.
This is the criterion that was used in Section V to find an
optimal pooling function for given weights wk. Similarly to
Section V-A, the criterion can be formulated as a minimization
of the average of the KLDs between the agent pdfs qk(θ)
and the aggregate pdf q(θ). Introducing the weight vector
w ≜ (w1, . . . , wK), the optimal weights are defined as

w⋆ = argmin
w∈SK

L(w),

with

L(w) ≜
1

K

K∑
k=1

DKL(qk∥q)

=
1

K

K∑
k=1

DKL

(
qk

∥∥∥∥ c K∏
ℓ=1

(qℓ(θ))
wℓ

)
,

where expression (4) was inserted for q(θ). Using the KLD
definition (23), one can obtain [183]

L(w) = − log c(w) +
1

K

K∑
k=1

∑
j ̸=k

wjDKL(qk∥qj). (42)

Here, c(w) is the normalization factor in (5), which depends
on w. The objective function L(w) is convex, since the first
term − log c(w) is convex [159] and the second term is a linear
function of w. Therefore, tools from convex optimization can
be used to compute the optimal weight vector w⋆. We note
that the minimum KLD criterion would also be a reasonable
criterion for use with other pooling functions; however, the
expression for L(w) in (42) applies specifically to the log-
linear pooling function.

Furthermore, we remark that if the average of the reverse
KLDs, i.e.,

L̃(w) ≜
1

K

K∑
k=1

DKL(q∥qk)

=
1

K

K∑
k=1

DKL

(
c

K∏
ℓ=1

(qℓ(θ))
wℓ

∥∥∥∥ qk), (43)

was chosen as the objective function to be minimized, the
optimal weights would be given by

argmin
w∈SK

L̃(w) =

(
1

K
, . . . ,

1

K

)
. (44)

Indeed, let q⋆(θ) be defined by (4) with weights w =
( 1
K , . . . ,

1
K ), i.e.,

q⋆(θ) ≜ c

K∏
k=1

(qk(θ))
1/K

. (45)

By Theorem 13, q⋆(θ) minimizes the objective function in
(43) over all pdfs φ, i.e.,

q⋆ = argmin
φ∈P

1

K

K∑
k=1

DKL(φ∥qk) . (46)

Thus, we have

L̃(w)
(43)
=

1

K

K∑
k=1

DKL

(
c

K∏
ℓ=1

(qℓ(θ))
wℓ

∥∥∥∥ qk)
(46)
≥ 1

K

K∑
k=1

DKL(q
⋆∥qk)

(45)
=

1

K

K∑
k=1

DKL

(
c

K∏
ℓ=1

(qℓ(θ))
1/K

∥∥∥∥ qk)
(43)
= L̃

((
1
K , . . . ,

1
K

))
.

Thus, for any w, L̃(w) is lower bounded by L̃
((

1
K , . . . ,

1
K

))
.

This proves (44).
Other approaches minimize an alternative KLD criterion

[182], [189] or take a Bayesian approach by specifying a prior
distribution over the weights [183]. However, these approaches
require data to be available, and usually lead to closed form
solutions only if the prior pdfs take the form of conjugate
priors for the considered likelihood functions.

C. Hölder Pooling

In addition to the weights, the parameter α involved in the
Hölder pooling function in (8) strongly impacts the resulting
aggregate pdf, as was demonstrated in Fig. 5. An appropriate
choice of α depends on the application at hand. For example,
in risk assessment, the choice of α is relevant to a quantifica-
tion of uncertainty. In a risk-averse scenario, one may opt to
choose a larger value of α, or at least a positive α. Indeed, for
any α > 0, the supports of the agent pdfs are preserved by the
fusion in the sense that the support of the aggregate pdf equals
the union of the supports of all the agent pdfs. Furthermore,
a larger α tends to yield a larger uncertainty in the aggregate
pdf. This latter characteristic is related to the fact, shown in
Fig. 5, that a larger α tends to promote multimodality and/or
heavy-tailed properties in the aggregate pdf.

If one instead chooses a small value of α, then components
of different agent pdfs that occur at different θ locations will
have substantially less influence on the aggregate pdf. This
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means, in particular, that an “outlier behavior” of one agent
will tend to be attenuated in the fusion process. Furthermore,
for α = 0, if the pdf of any agent k is zero for some θ0,
i.e., qk(θ0) = 0, this implies that the aggregate pdf is also
zero at θ0 irrespectively of the values of the other agent pdfs.
This “veto property” can be problematic in certain situations.
Finally, for α < 0, Hölder pooling is restricted to positive
opinion profiles, which implies that all agents have to agree
on the support Θ of θ.

Hölder pooling appears to be practically relevant mostly
for values of α in [0, 1]. Here, we recall that α = 0 and
α = 1 correspond to the log-linear pooling function and the
linear pooling function, respectively; furthermore, values of
α between 0 and 1 correspond to pooling functions whose
characteristics—e.g., with regard to multimodality and tail
decay—are intermediate between those of the linear and
log-linear pooling functions, as demonstrated by Fig. 5. An
application where this observation is potentially relevant was
considered in Section II-A.

VIII. THE SUPRA-BAYESIAN FRAMEWORK

The supra-Bayesian framework is fundamentally different
from the approaches discussed so far. In this section, we
consider θ to be a random variable with prior pdf p(θ) and
assume that the fusion center follows a Bayesian update rule
to derive a posterior pdf. Our focus will be on scenarios where
observations (data) that depend on θ are obtained by the agents
but are not known to the fusion center. We will start this
section with a formulation using conditionally independent
observations, and extend from there to the general supra-
Bayesian framework.

A. Agents Collecting Conditionally Independent Observations

Let us consider a scenario with K agents where each agent
k ∈ {1, . . . ,K} obtains observations yk ∈ Rdyk . These obser-
vations are statistically related to the random vector θ ∈ Rdθ

according to the “local” likelihood functions p(yk |θ). We
consider the observations fixed (i.e., already observed) and
emphasize the dependence of p(yk |θ) on θ by writing the
local likelihood functions as ℓk(θ) ≜ p(yk |θ). Furthermore,
each agent has access to the prior pdf p(θ) and is thus able
to calculate its local posterior πk(θ) ≜ p(θ |yk) according to
Bayes’ rule:

πk(θ) = p(θ |yk) =
ℓk(θ)p(θ)∫

Θ
ℓk(θ

′)p(θ′) dθ′ . (47)

We further assume that the local observations yk are condition-
ally independent given θ for all k ∈ {1, . . . ,K}. This implies
that the “global” likelihood function ℓ(θ) ≜ p(y |θ) for
y ≜ [y⊺

1 , . . . ,y
⊺
K ]⊺ factors into the local likelihood functions

ℓk(θ) = p(yk |θ), i.e.,

ℓ(θ) =

K∏
k=1

ℓk(θ) . (48)

The task of the fusion center is to fuse the local posteriors
πk(θ) provided by the agents into an aggregate (fused) pdf

g[π1, . . . , πK ](θ). We assume that the fusion center is aware
of the statistical properties of all the observations (i.e., the
conditional pdfs p(yk |θ)) and of the prior p(θ) but does not
have access to the observations yk directly. From a Bayesian
viewpoint, the best possible fusion result is the posterior pdf
of θ using the observations from all the agents as represented
by the total observation vector y, i.e., p(θ |y). We will refer to
p(θ |y) as oracle posterior because the fusion center does not
know the observations y explicitly. Nevertheless, the following
result shows that the fusion center is still able to fuse the πk(θ)
into the oracle posterior p(θ |y).

Theorem 18. Let θ be a random vector with prior p(θ).
Furthermore, let the local observations y1, . . . , yK given θ be
mutually independent and distributed according to p(yk |θ).
Then the global posterior p(θ |y) with y = [y⊺

1 , . . . ,y
⊺
K ]⊺ is

given by

p(θ |y) = g[π1, . . . , πK ](θ) = c (p(θ))1−K
K∏

k=1

πk(θ) , (49)

where c = 1/
∫
Θ
(p(θ))1−K

(∏K
k=1 πk(θ)

)
dθ is a normaliza-

tion factor and the local posteriors πk(θ) are given by (47).

Proof. We recall that ℓ(θ) = p(y |θ), ℓk(θ) = p(yk |θ), and
πk(θ) = p(θ |yk). We have by Bayes’ rule that

p(θ |y) ∝ p(θ)ℓ(θ)

(48)
= p(θ)

K∏
k=1

ℓk(θ)

∝ p(θ)

K∏
k=1

p(θ |yk)

p(θ)

= (p(θ))1−K
K∏

k=1

πk(θ) . (50)

Since p(θ |y) is a conditional pdf, normalizing the function
in (50) gives (49).

The fusion rule in (49) is recognized to be an instance of the
multiplicative pooling function in (10), where the calibrating
pdf q0(θ) is given by the prior p(θ). Thus, Theorem 18 states
that the multiplicative pooling function applied to the local
posteriors πk(θ) provides the oracle posterior p(θ |y) in the
case of conditionally independent local observations yk.

We note that the fusion center could calculate p(θ |y)
equally well from the local likelihood functions ℓk(θ) =
p(yk |θ), rather than from the local posteriors πk(θ). Indeed,
the fusion rule (49) can be interpreted as first dividing each
local posterior πk(θ) by the prior p(θ) to obtain the local
likelihood function p(yk |θ), then fusing (multiplying) the
local likelihood functions into the global likelihood function
p(y |θ), and finally multiplying by the prior to obtain the
oracle posterior p(θ |y). (This corresponds to reading the
proof of Theorem 18 bottom up.) Thus, in the present scenario
of conditionally independent observations yk, the agents may
also communicate their local likelihood functions ℓk(θ) to the
fusion center, rather than their posteriors πk(θ).
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B. The Supra-Bayesian Framework and Local Statistics

To generalize the scenario considered in Section VIII-A,
we take the perspective of the fusion center. In our Bayesian
setting, the fusion center aims to calculate the posterior distri-
bution of θ, given all the information it has access to. However,
in more general settings than the case of conditionally inde-
pendent observations discussed in Section VIII-A, we cannot
expect that the fusion center is able to calculate the oracle
posterior p(θ |y). This is because the fusion center does not
have direct access to the observations yk; rather, it observes
the effect of the yk only indirectly through the local posteriors
πk(θ) = p(θ |yk). In addition to knowing the local posteriors
πk(θ), the fusion center is aware of the prior p(θ) and the
conditional distribution p(y |θ) (as a function of y and θ, not
for the fixed, observed y). Finally, the fusion center knows
how the agents derive their local posteriors πk(θ) = p(θ |yk)
given their local observations yk, i.e., it is aware that each πk
depends on θ in a well-defined probabilistic way, namely, by
the two-step process of first generating a random yk given θ
according to the conditional pdf p(yk |θ) and then deriving
πk from yk using (47).

This setup can be formulated generically via an abstract
“observation model” p(π1, . . . , πK |θ) in which the local
posteriors πK are considered as “observations.” This approach
is known in the literature as the supra-Bayesian model [87],
[88]. In this abstract setting, we no longer have to consider
the intermediate step of generating the observations yk given
θ, and we no longer have to assume that the local pdfs πk
are generated as posteriors. Instead, we directly define an
observation model by specifying a probability distribution over
the local pdfs πk given θ. Thus, at the fusion center, the
local pdfs of all agents are considered as observations, i.e.,
as random objects whose statistical relation to θ is described
by the “likelihood function” p(π1, . . . , πK |θ). As always in
Bayesian settings, we need in addition some prior p(θ). By
Bayes’ theorem, we can then express the posterior distribution
of θ given the local pdfs πk as

p(θ |π1, . . . , πK) =
p(π1, . . . , πK |θ)p(θ)∫

Θ
p(π1, . . . , πK |θ′)p(θ′) dθ′ , (51)

which is considered to be the supra-Bayesian fusion result,
also to be referred to as “supra-Bayesian posterior.”

For any given θ, p(π1, . . . , πK |θ) is a probability distri-
bution over the infinite-dimensional space of functions that
is given by the K-fold Cartesian product of the space of all
pdfs P . It is both mathematically and practically convenient to
restrict to a finite-dimensional subset of this space. Indeed, a
finite-dimensional parameterization is very often used in prac-
tical applications. In particular, if πk depends deterministically
on some finite-dimensional observation yk, then πk is obvi-
ously restricted to a finite-dimensional subset. Thus, we will
hereafter assume that each πk depends deterministically and
in a one-to-one manner on a finite-dimensional random vector
tk ∈ Rdtk . Then the probability distribution p(π1, . . . , πK |θ)
simplifies to a conventional conditional pdf p(t1, . . . , tK |θ).
This finite-dimensional setting is formalized by the following
definition.

Definition 1. A finite-dimensional supra-Bayesian model for
a parameter θ ∈ Θ ⊆ Rdθ consists of:

• a prior pdf p(θ);
• a conditional pdf p(t |θ), where t = [t⊺1 , . . . , t

⊺
K ]

⊺ with
tk ∈ Rdtk for k = 1, . . . ,K;

• for each k ∈ {1, . . . ,K}, a one-to-one mapping
ψk : Rdtk → P .

The vectors tk are referred to as local statistics and the
functions πk(θ) = ψk[tk](θ) as local pdfs.

In a finite-dimensional supra-Bayesian model, each local pdf
πk is uniquely defined by a corresponding local statistic tk. As
a consequence, the conditional distribution p(π1, . . . , πK |θ)
is implicitly given by the conditional pdf p(t |θ) with t =
[t⊺1 , . . . , t

⊺
K ]

⊺, and we will refer to λ(θ) ≜ p(t |θ) as global
likelihood function. The function ψk specifies which family
of distributions πk belongs to. For example, if we want to
model the fact that πk(θ) belongs to the family of Gaussian
distributions with fixed and known covariance matrix Σ, then
we define ψk[µk](θ) = N (θ;µk,Σ). In this example, then,
tk = µk.

In Definition 1, we further assumed that there is a one-to-
one relation between the local pdf πk and tk, i.e., two different
vectors tk and t̃k correspond to different pdfs πk and π̃k.
In addition to the fact that the pdf πk is uniquely specified
by the vector tk, this assumption also implies that we can
uniquely determine tk from πk, i.e., tk is a function of πk and
we can thus interpret it as a statistic of πk. This justifies the
designation of the vectors tk as local statistics. In summary,
the local statistic tk represents the information provided by
the pdf πk of agent k in a more accessible, finite-dimensional
way.

The following result is an immediate consequence of our
definition of a finite-dimensional supra-Bayesian model (Def-
inition 1) and Bayes’ theorem: the one-to-one relationship
between πk and tk for each k ∈ {1, . . . ,K} implies that
p(θ |π1, . . . , πK) = p(θ | t), and Bayes’ theorem implies that
p(θ | t) ∝ p(t |θ)p(θ).

Theorem 19. In a finite-dimensional supra-Bayesian model,
the supra-Bayesian fusion result (or supra-Bayesian posterior)
is given by

p(θ |π1, . . . , πK) = p(θ | t) = λ(θ)p(θ)∫
Θ
λ(θ′)p(θ′)dθ′ , (52)

where λ(θ) = p(t |θ).

Since the fusion center knows t, p(t |θ), and p(θ), it is able
to calculate (52). However, in general, (52) does not provide an
explicit rule for fusing the pdfs πk(θ) into the supra-Bayesian
posterior p(θ | t), i.e., it does not specify a pooling function
g such that p(θ | t) = g[π1, . . . , πK ](θ). Nevertheless, we can
already deduce an interesting fact from the structure of (52):
The supra-Bayesian posterior is proportional to the product
of the prior p(θ) and the global likelihood function λ(θ),
and thus depends on the pdfs πk(θ) only indirectly via the
global likelihood function λ(θ). Hence, the actual task in
supra-Bayesian fusion is to establish a rule for obtaining the
global likelihood function λ(θ) = p(t |θ) from the local
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posteriors πk(θ) or, equivalently, from the vector of local
statistics t = [t⊺1 , . . . , t

⊺
K ]

⊺. In what follows, we will see
that this approach can result in interesting fusion rules for
specific scenarios. In particular, we will consider conditionally
independent agents in Section VIII-C and dependent agents in
Section VIII-D. Furthermore, the special case given by the
linear Gaussian model will be studied in Section IX.

C. Supra-Bayesian Fusion for Conditionally Independent
Agents

Generalizing the scenario in Section VIII-A, we assume
that, given θ, the information provided by each agent to the
fusion center is conditionally independent of the information
provided by the other agents. In our finite-dimensional supra-
Bayesian model this means that the tk are conditionally
independent given θ, i.e., the global likelihood function λ(θ)
factors according to

λ(θ) = p(t |θ) =
K∏

k=1

p(tk |θ) =
K∏

k=1

λk(θ), (53)

where we introduced the local likelihood functions λk(θ) ≜
p(tk |θ). Because conditional independence of the tk is equiv-
alent to conditional independence of the random local pdfs πk,
we immediately obtain the following corollary by inserting
(53) into (52).

Corollary 20. In a finite-dimensional supra-Bayesian model
where the local pdfs πk are conditionally independent given θ,
the supra-Bayesian fusion result (or supra-Bayesian posterior)
is given by

p(θ |π1, . . . , πK) = p(θ | t) =
(∏K

k=1 λk(θ)
)
p(θ)∫

Θ

(∏K
k=1 λk(θ

′)
)
p(θ′) dθ′ ,

(54)
where λk(θ) = p(tk |θ).

To establish a link to the scenario of Section VIII-A, let
us consider the local statistics tk and the global likelihood
function λ(θ) = p(t |θ) in that scenario. Recall that in
Section VIII-A, we assumed that each agent has observations
yk ∈ Rdyk related to θ according to the local observation
likelihood function ℓk(θ) = p(yk |θ), and these observations
are conditionally independent given θ. The local pdfs πk(θ)—
which, in this scenario, are the local posteriors p(θ |yk)—are
given by (47), and they are thus parametrized by the local
observations yk. However, in common observation models,
the observations yk cannot be uniquely reconstructed from the
posterior pdf πk(θ). Indeed, local statistics tk that parametrize
the local posteriors πk(θ) in a one-to-one manner are usually
obtained as some function Tk(yk) of the observations, where
Tk : Rdyk → Rdtk with dtk ≤ dyk

is in general not invertible.
The random variable tk = Tk(yk) is then a sufficient statistic
[190, Sec. 6.2] of yk for θ, i.e.,

p(θ |yk) = p(θ | tk) . (55)

Thus, our local statistic tk uniquely parametrizing the local
posterior πk(θ) is given by tk = Tk(yk), with a noninvertible,
possibly dimension-reducing function Tk. The local statistics
tk given θ are conditionally independent for k = 1, . . . ,K

because they are deterministic functions of the conditionally
independent observations yk. Hence, the factorization (53)
holds, and indeed we have a finite-dimensional supra-Bayesian
model with a prior p(θ), a likelihood function p(t |θ), and
local pdfs πk that are given by πk(θ) = p(θ | tk), i.e.,
ψk[tk](θ) = p(θ | tk). Thus, the supra-Bayesian fusion result
p(θ | t) is given by the expression in (54). We will now
demonstrate that p(θ | t) coincides with the fusion result given
in (49). Recalling that λk(θ) = p(tk |θ), the supra-Bayesian
fusion result (54) becomes

p(θ | t) ∝
( K∏

k=1

p(tk |θ)
)
p(θ)

∝
( K∏

k=1

p(θ | tk)
p(θ)

)
p(θ)

= (p(θ))1−K
K∏

k=1

p(θ | tk),

where we used Bayes’ theorem. By (55), we further have

p(θ | t) ∝ (p(θ))1−K
K∏

k=1

p(θ |yk)

= (p(θ))1−K
K∏

k=1

πk(θ) , (56)

which indeed equals the fusion rule (49). In particular, a
comparison with (49) shows that for conditionally independent
yk, the supra-Bayesian posterior p(θ | t) coincides with the
oracle posterior p(θ |y). Thus, in this case, t is a sufficient
statistic of y for θ.

Example 1 (Exponential Families). A convenient and ver-
satile class of likelihood functions is given by exponential
families [191]. We thus specialize the results discussed above
to these models. A local observation likelihood function of the
exponential family type can be written as

p(yk |θ) = hk(yk) exp
(
η(θ)⊺Tk(yk)−Ak(θ)

)
, (57)

with some functions hk(yk) ≥ 0, η(θ) ∈ Rdθ , and Tk(yk) ∈
Rdθ . The function Ak(θ) is determined by the other functions
via the fact that p(yk |θ) is normalized. We assume that the
observations yk are conditionally independent given θ. Fur-
thermore, the fusion center is supposed to know the conditional
pdfs p(yk |θ) in terms of the functions η, hk, Tk, and Ak for
all k (but, as always, it does not know the yk), and to be also
aware of the prior p(θ).

It is known that the local statistic tk = Tk(yk) is a sufficient
statistic of yk for θ [191, Prop. 1.5]. To verify that there is a
one-to-one relation between the local posterior πk and tk, we
have to show that tk can be recovered from πk. We have

πk(θ) ∝ p(θ)p(yk |θ) ∝ p(θ) exp(η(θ)⊺tk −Ak(θ)) . (58)

Then

log

(
πk(θ)

p(θ)
exp(Ak(θ))

)
= η(θ)⊺tk + C , (59)
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where C is a constant that does not depend on θ. To be able
to solve (59) for tk and C, we make the technical assumption
that there exist dθ + 1 different θj such that the matrix

B ≜

 η(θ1)
⊺ 1

...
...

η(θdθ+1)
⊺ 1

 ∈ R(dθ+1)×(dθ+1) (60)

is nonsingular. Then, evaluating (59) at θ1, . . . ,θdθ+1 gives a
system of dθ + 1 equations that can be written as

B

(
tk
C

)
=


log

(
πk(θ1)
p(θ1)

exp(Ak(θ1))

)
...

log

(
πk(θdθ+1)

p(θdθ+1)
exp(Ak(θdθ+1))

)
 .

Because B is nonsingular, this equation can be solved for tk
and C. Thus, we are able to recover tk from πk. We conclude
that our exponential family model is a finite-dimensional
supra-Bayesian model.

Using (58) in (56), the supra-Bayesian fusion result is
obtained as

p(θ | t) ∝ p(θ)1−K
K∏

k=1

p(θ) exp
(
η(θ)⊺tk −Ak(θ)

)
= p(θ) exp

(
η(θ)⊺t̄− Ā(θ)

)
, (61)

with

t̄ =

K∑
k=1

tk, Ā(θ) =

K∑
k=1

Ak(θ) .

We see that, for conditionally independent observations yk,
p(θ | t) depends on the observations yk only via the local
statistics tk = Tk(yk), and furthermore, supra-Bayesian
fusion essentially amounts to the summation of the local
statistics tk and of the normalization functions Ak(θ).

This simple summation rule is augmented when the prior
p(θ) is chosen as

p(θ) ∝ exp(η(θ)⊺t0 −A0(θ)), (62)

for some vector t0 and function A0(θ). Inserting (62) into
(61), we obtain

p(θ | t) ∝ exp
(
η(θ)⊺tpost −Apost(θ)

)
, (63)

with

tpost = t̄+ t0 =

K∑
k=0

tk (64)

and

Apost(θ) = Ā(θ) +A0(θ) =
K∑

k=0

Ak(θ) . (65)

In particular, when all Ak(θ) for k = 1, . . . ,K are equal to
the same A(θ) and A0(θ) = a0A(θ), then the prior becomes
the conjugate prior [191, Def. 4.18]

p(θ) ∝ exp(η(θ)⊺t0 − a0A(θ)),

with the two hyperparameters t0 and a0 > 0. Here, the supra-
Bayesian fusion result simplifies to

p(θ | t) ∝ exp
(
η(θ)⊺tpost − (K + a0)A(θ)

)
.

We see that p(θ | t) has the same form as the prior p(θ), while
the hyperparameters t0 and a0 are replaced by tpost = t0 + t̄
and a0 +K, respectively.

An important special case of the exponential family setting
is given by linear Gaussian observations. This case will be
considered in Section IX, both for conditionally dependent
and independent observations (see in particular Example 2 in
Section IX-A).

D. Supra-Bayesian Fusion for Agents Collecting Dependent
Observations

Similar to the setting of independent agents studied above,
we consider K agents that obtain observations yk ∈ Rdyk

distributed according to the local observation likelihood func-
tions p(yk |θ), with k ∈ {1, . . . ,K}. Again, each agent has
access also to the prior pdf p(θ), and the local posterior pdfs
πk(θ) are still given by (47). However, in contrast to the pre-
vious subsection, we do not assume that the observations are
conditionally independent. We assume that the fusion center
is aware of the conditional pdf7 p(y |θ) of all observations
y = [y⊺

1 , . . . ,y
⊺
K ]

⊺ given θ, the prior pdf p(θ), and the local
posterior pdfs πk(θ) = p(θ |yk). We emphasize that although
the fusion center has access to p(y |θ) as a function of y and
θ, it does not know the global observation y and thus cannot
use p(y |θ) as a global likelihood function.

To establish a supra-Bayesian fusion scheme for this sce-
nario, we again consider a finite-dimensional supra-Bayesian
model, i.e., for each agent k there exists a local statistic
tk such that πk(θ) = ψk[tk](θ), and there is a one-to-
one relation between tk and the local posterior πk. Because
πk(θ) = p(θ |yk), the local pdf πk is also uniquely deter-
mined by yk, and thus the one-to-one relation between πk
and tk implies that there exists a function Tk : Rdyk → Rdtk

such that tk = Tk(yk). As before, the function Tk is not one-
to-one in general, i.e., it is not possible to recover yk from
tk. However, tk is again a sufficient statistic of yk for θ, i.e.,
p(θ |yk) = p(θ | tk).

Because the local observations yk are subvectors of the
global observation y = [y⊺

1 , . . . ,y
⊺
K ]

⊺ ∈ Rdy , we can
introduce T : Rdy → R

∑K
k=1 dtk as

T (y) = [T1(y1)
⊺, . . . , TK(yK)⊺]

⊺
,

and thus we have

t = [t⊺1 , . . . , t
⊺
K ]

⊺
= T (y) .

The random vector t summarizes all the information that the
agents communicate to the fusion center, and it is thus known
to the fusion center (whereas y is not). Note that although
each tk is a sufficient statistic of yk for θ, the global statistic
t is, in general, not a sufficient statistic of y. This is due to

7Note that the conditional pdfs p(yk |θ) are marginals of the conditional
pdf p(y |θ).
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the fact that t generally does not capture all the dependencies
between the individual yk.

Because t = T (y), we can use the general change-of-
variables formula [192, Sec. 3.4.3] to calculate the conditional
pdf p(t |θ) from the conditional pdf p(y |θ), provided the
function T is differentiable. Since t summarizes the infor-
mation communicated by the agents to the fusion center,
λ(θ) = p(t |θ) is the global likelihood function that the fusion
center has to use in the calculation of the supra-Bayesian
posterior p(θ | t) according to (52). Therefore, to obtain the
supra-Bayesian fusion rule g[π1, . . . , πK ], based on (52), we
have to perform the following three steps:

1) Identify the local statistics tk that uniquely represent the
local posterior pdfs πk within the given statistical model;

2) apply the general change-of-variables formula to trans-
form the (known) conditional pdf p(y |θ) into the global
likelihood function λ(θ) = p(t |θ);

3) calculate the supra-Bayesian posterior p(θ | t) according
to (52).

While this three-step process can in principle be performed
in any setting satisfying our assumptions, an explicit charac-
terization of the resulting supra-Bayesian fusion rule (pooling
function) g[π1, . . . , πK ] can only be derived for special cases.
The important case of a linear Gaussian model will be explored
in the following.

IX. SUPRA-BAYESIAN FUSION FOR THE LINEAR
GAUSSIAN MODEL

We consider supra-Bayesian pdf fusion for the linear obser-
vation model

y = Hθ + n, (66)

where H ∈ Rdy×dθ is a known observation matrix and
n ∈ Rdy is additive zero-mean Gaussian noise with a known
covariance matrix Σ, i.e., p(n) = N (n;0,Σ). Thus, y given
θ is Gaussian distributed with mean Hθ and covariance matrix
Σ, i.e.,

p(y |θ) = N (y;Hθ,Σ) . (67)

The local observation at agent k is given as yk = Hkθ+nk ∈
Rdyk , where

H =


H1

H2

...
HK

 , (68)

with Hk ∈ Rdyk
×dθ , and n = [n⊺

1 , . . . ,n
⊺
K ]

⊺. Thus, each local
observation yk given θ is again Gaussian with mean Hkθ and
covariance matrix Σkk ∈ Rdyk

×dyk . We note that the overall
covariance matrix Σ is block-structured according to

Σ =

Σ11 · · · Σ1K

...
. . .

...
ΣK1 · · · ΣKK

 , (69)

where the off-diagonal cross-covariance matrices Σkk′ for
k ̸= k′ describe the conditional dependency between the
observations of different agents. The case of conditionally
independent observations yk is obtained for Σkk′ = 0 for

all k ̸= k′. For simplicity, we further assume that for all
k = 1, . . . ,K, dyk

≥ dθ, Hk has full rank, and Σkk is positive
definite. The local observation likelihood functions are here
given by

ℓk(θ) = p(yk |θ)
= N (yk;Hkθ,Σkk)

∝ exp

(
−
(yk −Hkθ)

⊺Σ−1
kk (yk −Hkθ)

2

)
. (70)

A. Local Statistics

We can rewrite (70) as

ℓk(θ) ∝ exp

(
−
(θ −Vkyk)

⊺H⊺
kΣ

−1
kkHk(θ −Vkyk)

2

)
= exp

(
−
(θ − tk)

⊺H⊺
kΣ

−1
kkHk(θ − tk)

2

)
, (71)

where

Vk = (H⊺
kΣ

−1
kkHk)

−1H⊺
kΣ

−1
kk (72)

and

tk = Vkyk = (H⊺
kΣ

−1
kkHk)

−1H⊺
kΣ

−1
kk yk. (73)

The proportionality in (71) is as a function of θ, i.e., the
proportionality constant will depend on yk.

We claim that tk in (73) qualifies as a local statistic in
a finite-dimensional supra-Bayesian model. For a proof, we
note that the local posteriors are again given as πk(θ) =
p(θ |yk) ∝ ℓk(θ)p(θ). To see that there is a one-to-one rela-
tion between the local posterior πk and the finite-dimensional
parameter tk ∈ Rdθ , recall that the fusion center is aware of
the prior p(θ) and the matrices H and Σ. In particular, the
fusion center is aware of Hk and Σkk, and thus it is able to
recover from tk the local observation likelihood function ℓk(θ)
in (71) and, in turn, the local posterior πk(θ) ∝ ℓk(θ)p(θ).
Conversely, the fusion center is able to obtain tk from the
local posterior πk(θ) by first dividing by the prior p(θ)
and normalizing as a function of θ (to obtain a function
proportional to ℓk(θ)), and finally calculating the mean of the
resulting pdf in θ (which is tk according to (71)). Thus, tk is
related to πk in a one-to-one manner, and hence it is a local
statistic.

Example 2 (Conditionally Independent Agents). In the case
of conditionally independent agents, i.e., the observations yk

are conditionally independent given θ, we can easily calculate
the supra-Bayesian posterior. Indeed, the structure of the local
likelihood function in (71) shows that we are in the exponential
family setting of Example 1. More specifically, we can rewrite
(71) as

ℓk(θ) ∝ exp

(
θ⊺t̃k −

θ⊺H⊺
kΣ

−1
kkHkθ

2

)
, (74)

where

t̃k = H⊺
kΣ

−1
kkHktk = H⊺

kΣ
−1
kk yk



26

is a bijective transformation of tk and thus also a valid choice
for a local statistic. Considering a Gaussian prior p(θ) with
mean µ0 and covariance matrix Σ0, we can rewrite p(θ) as

p(θ) ∝ exp

(
θ⊺t̃0 −

θ⊺Σ−1
0 θ

2

)
, (75)

where t̃0 = Σ−1
0 µ0. Comparing (74) with (57) and (75)

with (62), we see that ℓk(θ) = p(yk |θ) belongs to the
exponential family (57) with tk formally replaced by t̃k and
Ak(θ) =

θ⊺H⊺
kΣ

−1
kk Hkθ

2 . Furthermore, p(θ) conforms to (62)

with A0(θ) =
θ⊺Σ−1

0 θ
2 . With our assumption of conditionally

independent agents, we can use the result (63)–(65) and obtain
for the supra-Bayesian fusion result

p(θ | t)

∝ exp

(
θ⊺
( K∑

k=0

t̃k

)
−

θ⊺(Σ−1
0 +

∑K
k=1 H

⊺
kΣ

−1
kkHk

)
θ

2

)
.

(76)

This is again a Gaussian pdf, with mean

µ1 = Σ1

K∑
k=0

t̃k = Σ1

(
Σ−1

0 µ0 +

K∑
k=1

H⊺
kΣ

−1
kk yk

)
and covariance matrix

Σ1 =

(
Σ−1

0 +

K∑
k=1

H⊺
kΣ

−1
kkHk

)−1

.

It is straightforward to verify that (76) is equal to the oracle
posterior p(θ |y). Thus, we see once again (cf. Section VIII-C)
that although the supra-Bayesian fusion result depends on the
observations yk only via the local statistics t̃k, it still equals
the oracle posterior p(θ |y), as if the fusion center had access
to all observations yk directly. As we will see below, this
crucially depends on our assumption of conditionally inde-
pendent agents and is no longer true if we assume conditional
dependencies between the observations.

B. Global Likelihood Function

In the previous subsection, for the general linear Gaussian
model with conditionally dependent yk, we identified local
statistics tk = Tk(yk) = Vkyk that are related in a one-to-
one manner to the local posteriors πk. The next step according
to our three-step program from Section VIII-D is to calculate
the global likelihood function λ(θ) = p(t |θ) by transforming
the conditional pdf p(y |θ) into the conditional pdf p(t |θ).
According to (67), the conditional pdf of y given θ is8

p(y |θ) ∝ exp

(
− (y −Hθ)⊺Σ−1(y −Hθ)

2

)
. (77)

We further have that

t = [t⊺1 , . . . , t
⊺
K ]

⊺
= Vy , (78)

8This conditional pdf only exists if the covariance matrix Σ is positive
definite. However, the derivations that follow do not require the existence of
a pdf and are also valid if Σ is positive semidefinite.

where V = diag(V1, . . . ,VK) denotes the block-diagonal
matrix with block entries Vk on the diagonal. Thus, t is a
linear function of y and hence t given θ is Gaussian and has
mean VHθ and covariance matrix

Σ̃ = VΣV⊺. (79)

We assume that Σ̃ is nonsingular. The mean can be simplified
to

VHθ =


V1H1

V2H2

...
VKHK

θ =


Idθ

Idθ

...
Idθ

θ =


θ
θ
...
θ

 = 1K ⊗ θ ,

where we used (68) and the fact that, by (72),

VkHk = Idθ
. (80)

The global likelihood function λ(θ) is thus obtained as

λ(θ) = p(t |θ)
= N (t;1K ⊗ θ, Σ̃)

∝ exp

(
− (t− 1K ⊗ θ)⊺Σ̃−1(t− 1K ⊗ θ)

2

)
. (81)

To summarize, for the linear Gaussian model, local statistics
tk characterizing the local posteriors πk are given by (73), and
the corresponding global likelihood function λ(θ) = p(t |θ)
is given by (81).

C. Supra-Bayesian Fusion Rule for a Scalar θ

After identifying local statistics tk and calculating the
global likelihood function λ(θ) = p(t |θ), the final step in
the derivation of the supra-Bayesian fusion rule is to calculate
the supra-Bayesian posterior p(θ | t) according to (52). We
first develop the supra-Bayesian fusion rule for the case that
dθ = 1, i.e., for a scalar random variable θ ∈ R. Here, the
observation matrix H reduces to a vector h ∈ Rdy and the
observation model (66) is given by

y = h θ + n .

Similarly, the local observation at agent k is given as yk =
hkθ + nk with hk ∈ Rdyk , and the local statistic at agent k
follows from (73) as

tk = v⊺
kyk ∈ R , (82)

where Vk reduces to the (row) vector

v⊺
k =

1

h⊺
kΣ

−1
kk hk

h⊺
kΣ

−1
kk . (83)

Note that V = diag(v⊺
1 , . . . ,v

⊺
K) is still a matrix. In this case,

we can give the following explicit fusion rule, which is derived
in Appendix K-A.

Theorem 21. For dθ = 1, let ℓk(θ) = p(yk | θ) denote
the local observation likelihood functions given by (70) for
k = 1, . . . ,K and let λ(θ) = p(t | θ) be the global likelihood
function given by (81). Then

λ(θ) ∝
K∏

k=1

(ℓk(θ))
wk , (84)
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where

wk =
1⊺
KΣ̃−1ek

h⊺
kΣ

−1
kk hk

, (85)

with Σ̃ = VΣV⊺ and ek denoting the kth unit vector in
RK . Furthermore, for a given prior p(θ) and local posteriors
πk(θ) = p(θ |yk) ∝ p(θ)ℓk(θ), the supra-Bayesian fusion
result g[π1, . . . , πK ](θ) = p(θ | t) ∝ p(θ)λ(θ) is given by

g[π1, . . . , πK ](θ) ∝ (p(θ))1−
∑K

k=1 wk

K∏
k=1

(πk(θ))
wk . (86)

We emphasize that in this theorem we do not assume that
the observations yk are conditionally independent given θ.
Furthermore, it should be noted that the weights wk in (85) do
not generally sum to one, and they may be negative. Thus, the
fusion rule (86) is an instance of the generalized multiplicative
pooling function in (11).

Finally, if the prior p(θ) is Gaussian, we can show that
the supra-Bayesian fusion result p(θ | t) is again Gaussian and
reduce the fusion rule (86) to a second-order rule involving
only the mean and variance:

Corollary 22. Under the assumptions of Theorem 21, let the
prior p(θ) be Gaussian with mean µ0 and variance σ2

0 , i.e.,
p(θ) = N (θ;µ0, σ

2
0). Then the supra-Bayesian fusion result

p(θ | t) is again Gaussian, i.e., p(θ | t) = N (θ;µ1, σ
2
1), with

mean

µ1 =
σ̂2σ2

0

σ̂2 + σ2
0

1⊺
KΣ̃−1t+

σ̂2

σ̂2 + σ2
0

µ0 (87)

and variance

σ2
1 =

σ̂2σ2
0

σ̂2 + σ2
0

,

where
σ̂2 =

1

1⊺
KΣ̃−11K

(88)

and t = [t⊺1 , . . . , t
⊺
K ]

⊺ is given by (82) and (83).

As mentioned before, the supra-Bayesian fusion result
p(θ | t) is in general different from the oracle posterior p(θ |y).
Indeed, the oracle posterior is proportional to the product of
the prior p(θ) and the global observation likelihood function
p(y | θ) in (77). It can then easily be seen that the oracle
posterior p(θ |y) is also Gaussian but with mean

µ2 =
σ̂2
2σ

2
0

σ̂2 + σ2
0

h⊺Σ−1y +
σ̂2
2

σ̂2
2 + σ2

0

µ0 (89)

and variance

σ2
2 =

σ̂2
2σ

2
0

σ̂2
2 + σ2

0

,

where
σ̂2
2 =

1

h⊺Σ−1h
. (90)

To better understand the difference, we note that in (87)

1⊺
KΣ̃−1t = h⊺V⊺(VΣV⊺)−1Vy

and in (88)

1⊺
KΣ̃−11K = h⊺V⊺(VΣV⊺)−1Vh ,

where we used (78)–(80). Comparing with h⊺Σ−1y and
h⊺Σ−1h arising in (89) and (90), respectively, we conclude
that the difference between the oracle posterior and the supra-
Bayesian posterior is that the matrix Σ−1 is replaced by
V⊺(VΣV⊺)−1V.

A simplified version of Theorem 21 has been shown in [91]
and is the setting of the early supra-Bayesian approaches.
More specifically, it is assumed in [91] that a fusion center
obtains from K agents estimates µk of a scalar random
variable θ. These estimates can be interpreted as our local
statistics tk. Furthermore, the fusion center has a Gaussian
prior for θ and knows that the vector of the estimation errors of
all agents, u = [u1, . . . , uK ]

⊺ with uk = µk − θ, also follows
a Gaussian distribution with zero mean and some covariance
matrix Σ̃ (in general, the errors may be correlated). Equiv-
alently, conditionally on θ, the estimates µ = [µ1, . . . , µK ]

⊺

follow a Gaussian distribution with mean 1Kθ and the same
covariance matrix Σ̃. Thus, the setting in [91] directly assumes
the conditional distribution of t given θ without starting from
any detailed observation model.

To get a better intuition about the role of the weights wk and
the meaning of negative weights in the setting of Theorem 21,
we will consider a specific example.
Example 3 (Private and Shared Observations). We assume
that agent k has rk private observations, i.e., observations
that no other agent observes, and r0 shared observations, i.e.,
observations that all agents know jointly. The resulting total
number of observations is thus dy =

∑K
k=1(r0+rk). However,

there are only r0+
∑K

k=1 rk different observations. We assume
that these different observations given θ are independent and
have variance one and mean θ. To embed this scenario into
our linear model, we choose hk = 1r0+rk and the submatrices
of the covariance matrix Σ in (69) as

Σkk′ =

(
Ir0 0r0×rk′

0rk×r0 0rk×rk′

)
∈ R(r0+rk)×(r0+rk′ ) (91)

for k ̸= k′ and
Σkk = Ir0+rk .

Thus, we have that

yk = 1r0+rkθ + nk ,

where nk is a vector of independent and identically dis-
tributed standard Gaussian random variables, i.e., p(nk) =
N (nk;0(r0+rk)×1, Ir0+rk). The covariance structure (91) be-
tween the nk, for k ∈ {1, . . . ,K}, implies that for i ∈
{1, . . . , r0} the ith entry of nk and the ith entry of nk′ with
k′ ̸= k coincide with probability one:

E[(nk,i − nk′,i)
2] = E[n2k,i]︸ ︷︷ ︸

=1

+E[n2k′,i]︸ ︷︷ ︸
=1

−2E[nk,ink′,i]︸ ︷︷ ︸
=1

= 0 .

Thus, the first r0 observations are the same for all agents.
With these choices and assuming that rk > 0 and r0 >

0, a tedious but straightforward calculation (for details see
Appendix K-B) shows that the weights wk in (85) simplify to

wk = 1− K − 1

rk

( K∑
k′=0

1

rk′

)−1

. (92)
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In particular, we see that all weights are upper-bounded by 1
and are emphasized according to their amount of independent
information as given by rk. More surprising is the possibility
of negative weights for agents with few private observations
(e.g., the setting K = 3, r1 = 1, and r0 = r2 = r3 = 4 gives
w1 = −1/7). An explanation for this result is that negatively
weighting agents with few private observations can counteract
the multiple-counting of the shared observations that are part
of all agents’ posteriors. More generally, it follows from (92)
that wk ≥ 0 if and only if

rk ≥ (K − 1)

(
K∑

k′=0

1

rk′

)−1

or, equivalently,
K∑

k′=0

rk
rk′

≥ K − 1.

The sum of all weights is given by
K∑

k=1

wk = K − (K − 1)

( K∑
k′=0

1

rk′

)−1 K∑
k=1

1

rk
. (93)

From this expression, we readily conclude that

1 ≤
K∑

k=1

wk ≤ K. (94)

Indeed, this follows from the fact that the second term on
the right-hand side of (93), (K−1)

(∑K
k′=0

1
rk′

)−1∑K
k=1

1
rk

,
is nonnegative and upper-bounded by K − 1 since(∑K

k′=0
1
rk′

)−1∑K
k=1

1
rk

≤ 1. The double bound (94) shows
that although some weights may be negative, the sum of all
weights is always between the sum of all weights in the log-
linear pooling function in (4) (there, the sum was 1) and the
sum of all weights in the multiplicative pooling function in
(10) (there, all weights were 1, and hence the sum was K).

Another conclusion we can draw is that varying the number
of shared observations r0—while keeping the number of pri-
vate observations rk fixed—corresponds to an “interpolation”
between the multiplicative pooling function and the log-linear
pooling function. Consider first the case that the agents have
the same number of private observations, i.e., r1 = · · · = rK .
When r0 = 0, a derivation similar to that in Appendix K-B
gives wk = 1. This implies that when the agents do not share
any observations, the pooling function in (86) corresponds
exactly to the standard multiplicative pooling function in (10).
On the other hand, as the number of shared observations r0
increases, the pooling function behaves closer to a symmetric
log-linear pooling function (i.e., using wk = 1/K). Indeed, it
follows from (92) that

lim
r0→∞

wk =
1

K
.

If we remove the restriction that r1 = · · · = rK , the
connection to multiplicative pooling still holds; however, the
connection to log-linear pooling only holds under the condition
of nonnegative weights, i.e., wk ≥ 0 for all k, which may be
violated if some agents hold only few private observations as
compared to the total number of observations.

D. Supra-Bayesian Fusion Rule for a Vector θ

We can generalize Theorem 21 to a vector θ ∈ Rdθ with
dθ > 1. However, formally, the weights wk in (85) become
matrices Wk and thus cannot be used as powers in a fusion
rule. Hence, the following fusion result is more complicated
and the relation to the one-dimensional case is not obvious. A
proof is provided in Appendix L-A.

Theorem 23. Let ℓk(θ) = p(yk |θ) denote the local observa-
tion likelihood functions given by (70) for k = 1, . . . ,K and
let λ(θ) = p(t |θ) be the global likelihood function given by
(81). Then

λ(θ) ∝ ξ0(θ)

K∏
k=1

ℓk(Wkθ) (95)

where

Wk = (H⊺
kΣ

−1
kkHk)

−1(ek ⊗ Idθ
)⊺Σ̃−1(1K ⊗ Idθ

), (96)

with ek denoting the kth unit vector in RK and Σ̃ = VΣV⊺,
and

ξ0(θ) = exp

(
−θ⊺Gθ

2

)
. (97)

Here,

G = Σ̂−1 −
K∑

k=1

W⊺
kH

⊺
kΣ

−1
kkHkWk (98)

with
Σ̂−1 = (1K ⊗ Idθ

)⊺Σ̃−1(1K ⊗ Idθ
) . (99)

Furthermore, for a given prior p(θ) and local posteriors
πk(θ) = p(θ |yk) ∝ p(θ)ℓk(θ), the supra-Bayesian fusion
result g[π1, . . . , πK ](θ) = p(θ | t) ∝ p(θ)λ(θ) is given by

g[π1, . . . , πK ](θ) ∝ p(θ)ξ0(θ)

K∏
k=1

πk(Wkθ)

p(Wkθ)
. (100)

Finally, if the prior p(θ) is Gaussian, then the supra-
Bayesian fusion result p(θ | t) is again Gaussian and the fusion
rule (100) can be reduced to a second-order rule involving only
the mean and covariance matrix:

Corollary 24. Under the assumptions of Theorem 23, let the
prior p(θ) be Gaussian with mean µ0 and covariance matrix
Σ0, i.e., p(θ) = N (θ;µ0,Σ0). Then the supra-Bayesian
fusion result p(θ | t) is again Gaussian, i.e., p(θ | t) =
N (θ;µ1,Σ1), with mean

µ1 =
(
Σ̂−1 +Σ−1

0

)−1(
(1K ⊗ Idθ

)⊺Σ̃−1t+Σ−1
0 µ0

)
(101)

and covariance matrix

Σ1 =
(
Σ̂−1 +Σ−1

0

)−1
. (102)

Here, we recall that t = [t⊺1 , . . . , t
⊺
K ]

⊺ with tk given by
(73). A proof of Corollary 24 is provided in Appendix L-B.

The supra-Bayesian fusion result in (100) has an intriguing
structure in that the agent pdfs are first preprocessed by
a multiplication in the argument and then combined via a
generalized multiplicative pooling function. The relevance of
this fusion rule beyond the linear Gaussian setting, especially
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for approximately linear Gaussian observation models, is an
open issue.

As in the scalar case, the supra-Bayesian fusion result
p(θ | t) is in general different from the oracle posterior
p(θ |y). Again, the oracle posterior is proportional to the
product of the prior p(θ) and the global observation likelihood
function p(y |θ) in (77); it is easily seen that p(θ |y) is also
Gaussian but with mean

µ2 =
(
Σ̂−1

2 +Σ−1
0

)−1(
H⊺Σ−1y +Σ−1

0 µ0

)
(103)

and covariance matrix

Σ2 =
(
Σ̂−1

2 +Σ−1
0

)−1
,

where
Σ̂−1

2 = H⊺Σ−1H . (104)

The difference can be better understood by noting that in (101)

(1K ⊗ Idθ
)⊺Σ̃−1t = H⊺V⊺(VΣV⊺)−1Vy

and in (99)

(1K ⊗ Idθ
)⊺Σ̃−1(1K ⊗ Idθ

) = H⊺V⊺(VΣV⊺)−1VH ,

where we used (78)–(80). Comparing with H⊺Σ−1y and
H⊺Σ−1H in (103) and (104), respectively, we conclude that,
as in the scalar case considered earlier, the difference between
the oracle posterior and the supra-Bayesian posterior is that
Σ−1 is replaced by V⊺(VΣV⊺)−1V.

X. OUTLOOK

The fusion of pdfs presents numerous interesting aspects
beyond those considered in our treatment. Moreover, certain
extensions can be envisioned. In what follows, we suggest
some related directions of future research.

• Our discussion of pdf fusion emphasized theoretical
considerations. In practical implementations, a finite-
dimensional representation or parametrization of the
agent pdfs qk(θ) is required. Popular examples are Gaus-
sian, Gaussian mixture, and particle representations [31],
[68], [69]. Since these representations are usually approx-
imations of the true pdfs, a relevant issue is the tradeoff
between low representation complexity (small number of
parameters) and high accuracy of approximation. Further-
more, algorithms implementing a given pooling function
for a given type of parametric representation are required.
Examples of finite-dimensional parametric fusion rules
were considered in Sections VI and IX.

• In the case of a centralized agent network where each
agent pdf qk(θ) is transmitted to the fusion center via a
channel, communication cost is another practical issue.
Although a low-dimensional parametric representation of
the agent pdfs may be used to achieve a low commu-
nication cost, the reduction of communication cost is
ultimately a source coding (rate-distortion) problem.

• In many cases, the aggregate pdf q(θ) = g[q1, . . . , qK ](θ)
is not used as the final result but arises as part of a
method performing a statistical inference task such as
estimation, detection, classification, or clustering. In this

setting, the pooling function (or certain parameters within
a given family of pooling functions) should be chosen
or optimized such that the performance of the statistical
inference method is maximized. Note that this is different
from the optimization approach considered in Section V.

• Our discussion assumed the existence of a fusion center
that has access to all pdfs qk(θ). In a decentralized
agent network, there is no fusion center and each agent
is able to communicate only with certain neighboring
agents. Besides the basic necessity of using a distributed
communication-and-fusion protocol, challenging aspects
in the decentralized setting include communication cost,
efficient representation of pdfs, and double counting of
information along cycles in the network graph.

• In many scenarios, the agent pdfs qk(θ) are time-varying
and a temporal sequence q(n)k (θ), where n = 1, 2, . . . is
a discrete time index, is available at the kth agent. This
serial setting suggests a sequential variant of pdf fusion
in which at each time n the fused pdf is not calculated
from scratch but the previous fusion result is updated
using the new set of q(n)k (θ). Practical implementations
of sequential updating can be based on both parametric
and nonparametric representations of the pdfs.

• The fusion of multiobject pdfs or probability hypothesis
densities of finite point processes (random finite sets),
especially in the context of multitarget tracking, is a topic
of active research [2], [8], [44], [110], [111]. While the
current focus is on the finite point process counterparts
of the linear and log-linear pooling functions, it would
also be interesting to investigate the applicability of
the other pooling functions considered in Sections III
and V. In particular, the fact that the family of Hölder
pooling functions offers fusion characteristics that are
intermediate between those of the linear and log-linear
pooling functions may be relevant to multitarget tracking.
Furthermore, it may be rewarding to reformulate and
develop our results on supra-Bayesian pdf fusion in the
context of finite point processes.

• Big data problems allow a natural application of pdf
fusion. When the data to be processed are so large in
size that they exceed the capacity of a single computer, it
is logical to partition them and process the different parts
separately. Furthermore, data related to some quantity
of interest may be available in heterogeneous form, so
that all of the data cannot be processed within a single
framework and hence different parts have to be processed
separately. In either case, the individual processing results
can be represented as summaries, which then need to
be fused into one overall summary. The concepts and
techniques presented in this article provide suggestions
regarding the construction and fusion of the summaries.
This is of particular interest in the context of modern
machine learning methods [65]–[67], [136], [193].

• Ensemble learning [128], [130], i.e., the combination of
the results of multiple learning algorithms, is currently
one of the most successful learning paradigms. At the
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same time, there is a growing demand for probabilistic
machine learning methods that provide along with a point
estimate also a measure of reliability. Until now, only
few works have considered ensembles of probabilistic
machine learning methods. We conjecture that the success
of the ensemble learning paradigm will soon lead to its
increased use also in probabilistic machine learning. At
that point, it is likely that probabilistic opinion pooling
will outperform the simple linear voting rules that are
currently used to combine point estimates.

• With a collaborative machine learning methodology
known as federated learning, a learning algorithm is
trained across multiple decentralized edge devices or
servers that hold local data, which are not exchanged
[134]. In other words, model parameters are learned
collectively by many interconnected devices without shar-
ing or disclosing local training data. The devices send
summaries instead of raw data to a server for fusion.
Here, again, fusion plays a central role. The fusion
process can be challenging in the case of a large number
of heterogeneous devices with different constraints. Using
pdfs to represent the local summaries enables the use
of different pdf representations at the individual devices,
from simple parametric models to complex kernel density
estimates, which can still be combined in a meaningful
way. Moreover, different levels of quality of the local data
can be taken into account by using appropriate weights
in the pooling function used for pdf fusion.

• A potential theoretical basis of pdf fusion that has not
been explored in this work is information geometry,
which studies probability theory and statistics using tools
from differential geometry [42]. The focus of informa-
tion geometry is on statistical manifolds whose points
correspond to probability distributions. This theoretical
framework can be exploited for fusion by assuming that
local estimates are posterior pdfs that correspond to a
parametric family with the structure of a Riemannian
manifold [42]. One can then formulate pdf fusion, e.g., by
considering the fused pdf to be an informative barycenter
of the manifold [194].

• Within the finite-dimensional supra-Bayesian setting, an
explicit fusion rule was obtained only for linear Gaussian
observation models (see Section IX). This fusion rule can
formally be used also for nonlinear/non-Gaussian models
with known first and second moments. However, it is here
unclear how close the obtained fusion result will be to the
true supra-Bayesian fusion result. A characterization of
the error for approximately linear Gaussian observation
models is an interesting topic for future research. An-
other interesting topic is the derivation of explicit supra-
Bayesian fusion rules for simple nonlinear/non-Gaussian
observation models.

• Our supra-Bayesian framework is currently limited to a
finite-dimensional setting. Although this is the setting
most frequently encountered in practical applications, it
would be interesting to find a definition of a likelihood

function for random pdfs that do not admit a finite-
dimensional parameterization. For this, nonparametric
Bayesian models [195] appear to be a feasible starting
point. The challenge is to model a useful and nontrivial
dependence on the parameter θ that accounts for the
constraint that random pdfs must be nonnegative and
integrate to one with probability one.

XI. CONCLUDING REMARKS

The problem of fusing multiple pdfs qk(θ), k = 1, . . . ,K
of a continuous random vector θ into an aggregate pdf
q(θ) = g[q1, . . . , qK ](θ) has many possible solutions and,
indeed, several different approaches to this fusion problem
have been developed in the past decades. We have attempted
to survey and study these approaches and the related solutions
in a structured and coherent manner. Our discussion has
emphasized a first basic distinction between the axiomatic
approach, the optimization approach, and the conceptually
more complex supra-Bayesian framework.

Regarding the axiomatic approach, we formulated a set
of axioms and determined the axioms satisfied by each
considered pooling function. This analysis demonstrated the
prominent role of the linear, log-linear, and multiplicative
pooling functions within the axiomatic framework. However,
it also revealed that several desirable axioms are effectively
incompatible and postulating those simultaneously implies a
dictatorship pooling function.

Regarding the optimization approach, besides other results,
we proved that the minimization of the weighted sum of
α-divergences yields the family of Hölder mean pooling
functions. This family contains the two most popular pooling
functions—the linear and log-linear pooling functions—as
special cases. Moreover, it offers an infinite number of further
interesting pooling functions with different multimodality and
tail decay characteristics depending on the choice of a single
parameter.

The supra-Bayesian framework is different from the classi-
cal probabilistic opinion pooling framework in that the pdfs
qk(θ) are modeled as random observations, and additional
information regarding the statistical structure of θ is available
to the fusion center. In this framework, the optimal aggregate
pdf q(θ) is the global posterior pdf of θ given the pdfs
qk(θ). Since random functions are difficult to work with,
we introduced the finite-dimensional supra-Bayesian model
based on random “local statistics.” Using this framework,
we formulated a general procedure for obtaining the supra-
Bayesian posterior pdf conditioned on all the local statistics,
and we derived explicit fusion rules for special cases.

While the theory of pdf fusion appears mature, interesting
directions of future work are related to implementation and
application aspects. We provided some suggestions including
implementations using parametric representations, integration
into probabilistic methods for multisensor signal processing
and machine learning, and extensions to decentralized scenar-
ios and point processes.
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APPENDIX A
PROOF OF THEOREM 1

A. Axioms Satisfied by the Linear Pooling Function

We first show that all the mentioned axioms are satis-
fied by the linear pooling function. Let g[q1, . . . , qK ](θ) =∑K

k=1 wkqk(θ) with (w1, . . . , wK) ∈ SK . We first show the
ZPP (A2). Assume that for some event A, we have Qk(A) = 0
for all k = 1, . . . ,K. Because Qk(A) =

∫
A qk(θ) dθ and

qk(θ) is nonnegative, this implies qk(θ) = 0 for almost all
θ ∈ A and all k = 1, . . . ,K. Thus,

q(θ) = g[q1, . . . , qK ](θ) =

K∑
k=1

wkqk(θ) = 0 ,

for almost all θ ∈ A. Hence, Q(A) =
∫
A q(θ) dθ = 0, which

concludes the proof of the ZPP.
We next show unanimity preservation (A3). To this end,

assume that qk(θ) = q0(θ) for all k = 1, . . . ,K. Then

q(θ) = g[q1, . . . , qK ](θ)

=

K∑
k=1

wkqk(θ)

= q0(θ)

K∑
k=1

wk

= q0(θ) ,

which shows unanimity preservation.
To show the SSFP (A4), we define h : [0, 1]K → [0, 1] as

h(p1, . . . , pK) ≜
K∑

k=1

wkpk . (105)

For an arbitrary set A ⊆ Θ and any opinion profile
(q1, . . . , qK), we have that

Q(A) =

∫
A
q(θ) dθ

=

∫
A

K∑
k=1

wkqk(θ) dθ

=

K∑
k=1

wk

∫
A
qk(θ) dθ

=

K∑
k=1

wkQk(A)

= h(Q1(A), . . . , QK(A)) ,

i.e., h satisfies the condition stated in A4.

The WSFP (A5) follows by setting hA = h with h given
in (105). The likelihood principles (A6 and A7) are obviously
satisfied with

h(t1, . . . , tK) ≜
K∑

k=1

wktk

and hθ = h, respectively, as is the symmetry statement.

B. Equivalence Statement

We now prove the other direction, namely, that each of the
assumptions (ii)–(iv) stated in Theorem 1 implies that g is
a linear pooling function. More specifically, we will show
the chain of implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i). Because
we already showed (i) ⇒ (iv), this implies that (i)–(iv) are
equivalent, and thus concludes the proof.

1) (iv) implies (iii): We assume that g satisfies (iv), i.e.,
the WSFP (A5) and unanimity preservation (A3). We will
show that this implies that g satisfies the ZPP (A2), i.e., (iv)
implies (iii). Let hA : [0, 1]K → [0, 1] denote the function
satisfying (16) for all opinion profiles. For any set A that
satisfies |Ac| > 0, let us choose qk(θ) = 1Ac(θ)/|Ac| for all
k = 1, . . . ,K. Then Qk(A) =

∫
A qk(θ)dθ = 0 for all k. By

unanimity preservation, this implies Q(A) = 0. On the other
hand, we have

Q(A)
(16)
= hA(Q1(A), . . . , QK(A)) = hA(0, . . . , 0)

and hence
hA(0, . . . , 0) = 0 (106)

for any set A such that |Ac| > 0.
To show the ZPP, assume that for a given opinion profile

(q1, . . . , qK), we have Qk(A) = 0 for all k = 1, . . . ,K. Note
that this is only possible if |Ac| > 0 as otherwise Qk(Θ) =
Qk(A) +Qk(Ac) = 0. Thus, we can calculate Q(A) as

Q(A)
(16)
= hA(Q1(A), . . . , QK(A)) = hA(0, . . . , 0)

(106)
= 0 ,

which shows that the ZPP (A2) is satisfied.
2) (iii) implies (ii): Next we show that (iii), i.e., the WSFP

(A5) and the ZPP (A2), implies (ii), i.e., the SSFP (A4). Let
again hA : [0, 1]K → [0, 1] denote the function satisfying (16)
for all opinion profiles. Our proof consists of three steps:

1) Show that for two nontrivial events A and B (i.e.,
|A|, |Ac|, |B|, |Bc| > 0) that have a nontrivial intersec-
tion and a nontrivial union, we have hA = hB.

2) Show that for any nontrivial events A and B, there exists
a nontrivial event C such that A∩ C, A∪ C, B ∩ C, and
B ∪ C are all nontrivial. This implies by step 1 that
hA = hC and hB = hC , and thus hA = hB. Thus,
setting h ≜ hA, we have hA′ = h for all nontrivial
events A′, and hence the same function h satisfies (14)
for all nontrivial events.

3) Show that the function h satisfies (14) also for trivial
events.

To show step 1, we consider two nontrivial events A and B
that have a nontrivial intersection, in particular, |A ∩ B| > 0,
and a nontrivial union, in particular, |(A ∪ B)c| > 0. We
fix arbitrary (p1, . . . , pK) ∈ [0, 1]K and will show that
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hA(p1, . . . , pK) = hB(p1, . . . , pK). Because |A ∩ B| > 0 and
|(A ∪ B)c| > 0, there exists an opinion profile (q1, . . . , qK)
such that

Qk(A ∩ B) = pk (107)

and
Qk

(
(A ∪ B)c

)
= 1− pk , (108)

for all k = 1, . . . ,K. Because Θ = (A ∪ B) ∪ (A ∪ B)c is a
disjoint union and Qk(Θ) = 1, (108) implies Qk(A∪B) = pk.
Hence, as also Qk(A ∩ B) = pk by (107), the difference set
(A ∪ B) \ (A ∩ B) satisfies

Qk

(
(A ∪ B) \ (A ∩ B)

)
= 0 . (109)

Because (A∪B) \ (A∩B) = (A \B)∪ (B \A), this implies
Qk(A \ B) = 0 and Qk(B \ A) = 0. Thus,

Qk(A) = Qk

(
(A \ B) ∪ (A ∩ B)

)
= Qk(A \ B) +Qk(A ∩ B)
= pk (110)

and, similarly,
Qk(B) = pk . (111)

Furthermore,

Qk

(
(A \ B) ∪ (B \ A)

)
= Qk

(
(A ∪ B) \ (A ∩ B)

) (109)
= 0 ,

(112)

for all k = 1, . . . ,K. By the ZPP, (112) implies Q
(
(A\B)∪

(B \ A)
)
= 0 and, in turn, Q

(
(A \ B)

)
= Q

(
(B \ A)

)
= 0.

Thus,

Q(A) = Q(A \ B) +Q(A ∩ B)
= Q(A ∩ B)
= Q(B \ A) +Q(A ∩ B)
= Q(B) . (113)

For the functions hA and hB, these properties imply

hA(p1, . . . , pK)
(110)
= hA(Q1(A), . . . , QK(A))

(16)
= Q(A)

(113)
= Q(B)

(16)
= hB(Q1(B), . . . , QK(B))

(111)
= hB(p1, . . . , pK) ,

i.e.,
hA(p1, . . . , pK) = hB(p1, . . . , pK) (114)

for any nontrivial events A,B ⊆ Θ that have a nontrivial
intersection and a nontrivial union.

To show step 2, we first construct a set C ⊆ A∪B such that
A∩C, B∩C, A∪C, and B∪C are nontrivial. If |A∩B| > 0,
then C = A∩B can easily be seen to satisfy these assumptions.
If |A ∩ B| = 0, we choose C = CA ∪ CB where CA ⊆ A with
|CA|, |A \ CA| > 0 and CB ⊆ B with |CB|, |B \ CB| > 0. The
separations A = CA ∪ (A \ CA) and B = CB ∪ (B \ CB) are
possible because the Lebesgue measure is nonatomic, i.e., any
set of positive Lebesgue measure can be separated into two
disjoint sets of positive Lebesgue measure.

We now choose

h(p1, . . . , pK) = hA(p1, . . . , pK) (115)

for any nontrivial set A. Then, for any nontrivial set B ⊆ Θ,
we construct C as above and obtain

h(Q1(B), . . . , QK(B)) (115)
= hA(Q1(B), . . . , QK(B))

(114)
= hC(Q1(B), . . . , QK(B))

(114)
= hB(Q1(B), . . . , QK(B))

(16)
= Q(B) , (116)

i.e., (14) is satisfied for any nontrivial set B.
It remains to show step 3, i.e., that with this choice of h,

(14) is also satisfied by trivial sets. For trivial sets A, i.e., such
that |A| = 0 or |Ac| = 0, we have Qk(A) = 0 or Qk(A) = 1
for all k = 1, . . . ,K, respectively. Also the fused result must
satisfy Q(A) = 0 or Q(A) = 1, respectively. Thus, we have
to show h(0, . . . , 0) = 0 and h(1, . . . , 1) = 1 for our choice
of h in (115). To this end, let B ⊆ Θ be any nontrivial set and
choose an opinion profile (q1, . . . , qK) such that Qk(B) = 0
for all k = 1, . . . ,K. Then the ZPP implies Q(B) = 0. On
the other hand, since B is a nontrivial set and thus (116) is
satisfied, we have

h(0, . . . , 0) = h(Q1(B), . . . , QK(B)) (116)
= Q(B) .

Thus, h(0, . . . , 0) = 0. Furthermore, Qk(B) = 0 and Q(B) =
0 imply Qk(Bc) = 1 and Q(Bc) = 1, respectively. Hence,

h(1, . . . , 1) = h(Q1(Bc), . . . , QK(Bc))
(116)
= Q(Bc) .

Thus, h(1, . . . , 1) = 1. Hence, we identified a function h such
that (14) holds for all sets A ⊆ Θ. This concludes the proof
that (iii) implies (ii).

3) (ii) implies (i): Finally, we show that (ii), i.e., the SSFP
(A4) implies (i), i.e., that g is a linear pooling function.
Let h denote the function satisfying (14). Furthermore, let
A,B, C ⊆ Θ be disjoint events of positive Lebesgue measure.
For arbitrary p1, p̃1, . . . , pK , p̃K ∈ [0, 1] satisfying pk+p̃k ≤ 1
for all k = 1, . . . ,K, we define an opinion profile (q1, . . . , qK)
such that Qk(A) = pk, Qk(B) = p̃k, and Qk(C) = 1−pk−p̃k.
Because A and B are disjoint, Qk(A ∪ B) = pk + p̃k and
Q(A ∪ B) = Q(A) +Q(B). Thus,

h(p1 + p̃1, . . . , pK + p̃K)

= h(Q1(A ∪ B), . . . , QK(A ∪ B))
(14)
= Q(A ∪ B)
= Q(A) +Q(B)

(14)
= h(Q1(A), . . . , QK(A)) + h(Q1(B), . . . , QK(B))
= h(p1, . . . , pK) + h(p̃1, . . . , p̃K) ,

i.e., h is an additive function on its domain [0, 1]K . It can
moreover be extended to an additive function on RK . Because
h is also bounded by 1 on [0, 1]K , it must be linear according
to [196, Th. 1, p. 215], i.e.,

h(p1, . . . , pK) =

K∑
k=1

wkpk . (117)
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Here, the weights wk must be in [0, 1] because
h(p1, . . . , pK) ∈ [0, 1] for all (p1, . . . , pK) ∈ [0, 1]K .
Furthermore, because 1 = Q(Θ) = h(Q1(Θ), . . . , QK(Θ)) =
h(1, . . . , 1) =

∑K
k=1 wk, the weights must sum to one. We

thus have for any event A ⊆ Θ∫
A
q(θ) dθ = Q(A)

(14)
= h(Q1(A), . . . , QK(A))

(117)
=

K∑
k=1

wkQk(A)

=

∫
A

K∑
k=1

wkqk(θ) dθ ,

which implies q(θ) =
∑K

k=1 wkqk(θ).

APPENDIX B
PROOF OF THEOREM 2

A. Axioms Satisfied by the Generalized Linear Pooling Func-
tion

We first show that all the mentioned axioms are sat-
isfied by the generalized linear pooling function. Let
g[q1, . . . , qK ](θ) =

∑K
k=0 wkqk(θ) with (w0, . . . , wK) ∈

SK+1. To show the WSFP (A5), we define for an event A ⊆ Θ

hA(p1, . . . , pK) = w0

∫
A
q0(θ) dθ +

K∑
k=1

wkpk , (118)

for all (p1, . . . , pK) ∈ [0, 1]K . For any opinion profile
(q1, . . . , qK), we then have that

Q(A) =

∫
A
q(θ) dθ

=

∫
A

K∑
k=0

wkqk(θ) dθ

=

K∑
k=0

wk

∫
A
qk(θ) dθ

= w0

∫
A
q0(θ) dθ +

K∑
k=1

wkQk(A)

(118)
= hA(Q1(A), . . . , QK(A)) ,

i.e., hA satisfies the condition stated in A5. The weak likeli-
hood principle (A7) is obviously satisfied with

hθ(t1, . . . , tK) = w0q0(θ) +

K∑
k=1

wktk ,

as is the symmetry statement in Theorem 2.

B. Converse Statement

We now prove the converse statement in Theorem 2, i.e.,
that any pooling function g that satisfies the WSFP (A5) is a
generalized linear pooling function. For each event A ⊆ Θ, let
hA : [0, 1]K → [0, 1] denote the function satisfying (16) for all

opinion profiles. Our proof consists of three steps: First, we
construct the pdf q0 and the corresponding weight w0 ≤ 1. In
the second step, we show that by adapting each function hA
to h̃A =

(
hA −w0

∫
A q0(θ) dθ

)
/(1−w0), we obtain a linear

pooling function. Finally, we show that this implies that g is
a generalized linear pooling function.

Step 1: Construct q0 and w0: We define

Q0(A) = hA(0, . . . , 0) (119)

for all nontrivial (i.e., |A|, |Ac| > 0) events A ⊆ Θ. The pdf
q0 will be a weighted version of a density associated with Q0.
Thus, we first show that Q0 can be expressed as an integral
Q0(A) =

∫
A q̃0(θ) dθ.

Let A0 be a fixed nontrivial event. Because |Ac
0| > 0,

there exists an opinion profile (q
(A0)
1 , . . . , q

(A0)
K ) such that

Q
(A0)
k (A0) =

∫
A0
q
(A0)
k (θ) dθ = 0 for all k = 1, . . . ,K.

We denote the fused pdf of this particular profile as q(A0)(θ)
and the resulting probability measure as

Q(A0)(A) =

∫
A0

q(A0)(θ) dθ . (120)

Then,

Q(A0)(A)
(16)
= hA(Q

(A0)
1 (A), . . . , Q

(A0)
K (A)) .

In particular, for any event A ⊆ A0, we have Q(A0)
k (A) = 0

for all k = 1, . . . ,K (because Q(A0)
k (A) ≤ Q

(A0)
k (A0) = 0),

and thus we obtain further

Q(A0)(A) = hA(0, . . . , 0)
(119)
= Q0(A) .

Recalling (120), we conclude that the fused pdf q(A0)(θ)
satisfies

Q0(A) =

∫
A
q(A0)(θ) dθ for any event A ⊆ A0. (121)

Following the same steps with A0 replaced by Ac
0, we obtain

a pdf q(A
c
0)(θ) such that we have

Q0(A) =

∫
A
q(A

c
0)(θ) dθ for any event A ⊆ Ac

0. (122)

Now for an arbitrary nontrivial event B ⊆ Θ, there exists
an opinion profile (q

(B)
1 , . . . , q

(B)
K ) such that Q

(B)
k (B) =∫

B q
(B)
k (θ) dθ = 0 for all k = 1, . . . ,K. Again we denote

the fused probability measure as Q(B). We thus obtain for
Q0(B) as defined by (119)

Q0(B) = hB(0, . . . , 0)

= hB(Q
(B)
1 (B), . . . , Q(B)

K (B))
(16)
= Q(B)(B) . (123)

Because B can be decomposed into disjoint subsets according
to B = (B ∩ A0) ∪ (B ∩ Ac

0), we further obtain from (123)

Q0(B) = Q(B)(B ∩ A0) +Q(B)(B ∩ Ac
0)

(16)
= hB∩A0

(Q
(B)
1 (B ∩ A0), . . . , Q

(B)
K (B ∩ A0))

+ hB∩Ac
0
(Q

(B)
1 (B ∩ Ac

0), . . . , Q
(B)
K (B ∩ Ac

0))

(a)
= hB∩A0

(0, . . . , 0) + hB∩Ac
0
(0, . . . , 0)
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(119)
= Q0(B ∩ A0) +Q0(B ∩ Ac

0) ,

where we used Q
(B)
k (B) = 0 in (a). Using (121) with A =

B ∩ A0 and (122) with A = B ∩ Ac
0, this implies

Q0(B) =
∫
B∩A0

q(A0)(θ) dθ +

∫
B∩Ac

0

q(A
c
0)(θ) dθ

=

∫
B
q̃0(θ) dθ ,

where we defined

q̃0(θ) ≜

{
q(A0)(θ) if θ ∈ A0

q(A
c
0)(θ) if θ ∈ Ac

0.

We thus found an integral representation for Q0 and can define

Q0(B) =
∫
B
q̃0(θ) dθ (124)

also for trivial events B. The nonnegativity of q(A0)(θ) and
q(A

c
0)(θ) implies that q̃0(θ) is nonnegative and, in turn, that

Q0 is a measure. However, q̃0(θ) is not a pdf in general.
We define

w0 ≜ Q0(Θ) (125)

(note that this implies w0 ≥ 0) and

q0(θ) ≜
q̃0(θ)

w0
, (126)

provided w0 ̸= 0. If w0 = 0, we choose q0(θ) as an arbitrary
pdf. We claim that w0 ≤ 1. To prove this claim, let Bn be
a sequence of nontrivial events such that Bn ⊆ Bn+1 and
limn→∞ Bn = Θ. For each Bn, there exists an opinion profile
(q

(Bn)
1 , . . . , q

(Bn)
K ) such that Q(Bn)

k (Bn) =
∫
Bn
q
(Bn)
k (θ) dθ =

0 for all k = 1, . . . ,K. Again we denote the sequence of fused
probability measures as Q(Bn). Following the steps in (123),
we have that

Q0(Bn) = Q(Bn)(Bn) ≤ 1 ,

because Q(Bn) is a probability measure. The continuity from
below of measures [197, Lem. 3.4] implies w0 = Q0(Θ) =
limn→∞Q0(Bn) ≤ 1.

A similar argument can be employed to show (for later use)
that for any nontrivial event A ⊆ Θ and arbitrary probabilities
pk

hA(p1, . . . , pK) ≥ Q0(A) . (127)

Indeed, for any nontrivial event A ⊆ Θ, let Bn ⊆ A be a
sequence satisfying |A \ Bn| > 0, Bn ⊆ Bn+1 for all n ∈ N,
and limn→∞ Bn = A. Then for each n ∈ N there exists an
opinion profile (q

(Bn)
1 , . . . , q

(Bn)
K ) satisfying Q

(Bn)
k (Bn) = 0,

Q
(Bn)
k (A\Bn) = pk, and, in turn, Q(Bn)

k (A) = pk. Again we
denote the sequence of fused probability measures as Q(Bn).
Following the steps in (123), Q0(Bn) = Q(Bn)(Bn). Thus, we
have

hA(p1, . . . , pK) = hA(Q
(Bn)
1 (A), . . . , Q

(Bn)
K (A))

(16)
= Q(Bn)(A)

≥ Q(Bn)(Bn)

= Q0(Bn) . (128)

Here, hA(p1, . . . , pK) does not depend on n. Hence, we can
take the limit on the right-hand side of (128) and obtain

hA(p1, . . . , pK) ≥ lim
n→∞

Q0(Bn) = Q0(A) ,

using again the continuity from below of Q0.
Step 2: Define h̃A and prove that it defines a linear pooling

function: We define

h̃A(p1, . . . , pK) ≜
hA(p1, . . . , pK)−Q0(A)

1− w0
. (129)

Here, we have to assume that w0 < 1. Thus, we first show that
g is a generalized linear pooling function in the case w0 = 1.
In this case, for any nontrivial event A ⊆ Θ and arbitrary
probabilities pk, we choose an opinion profile that satisfies
Qk(A) = pk and hence Qk(Ac) = 1−pk for all k = 1, . . . ,K.
We then have

1 = Q(A) +Q(Ac)
(16)
= hA(p1, . . . , pK) + hAc(1− p1, . . . , 1− pK)

(127)
≥ Q0(A) +Q0(Ac)

(125)
= w0

= 1 .

Thus, the inequality in the third line is actually an equal-
ity, which is only possible if hA(p1, . . . , pK) = Q0(A).
Because A and the pk were chosen arbitrarily, we have
hA(p1, . . . , pK) = Q0(A) independently of the probabilities
pk. By (16), this further implies for any opinion profile
(q1, . . . , qK) that the aggregate pdf q satisfies∫

A
q(θ) dθ = Q(A)

(16)
= hA(Q1(A), . . . , QK(A))

= Q0(A)

(124)
=

∫
A
q̃0(θ) dθ

for all events A. Hence, q(θ) = q̃0(θ), which implies that
g is a dogmatic pooling function (which is a special case of
a generalized linear pooling function with weights w0 = 1,
wk = 0 for k = 1, . . . ,K). This concludes the proof for the
special case w0 = 1, and thus we can assume w0 < 1 in what
follows.

We define a new fusion rule g̃ by

g̃[q1, . . . , qK ](θ) ≜
g[q1, . . . , qK ](θ)− w0q0(θ)

1− w0
(130)

and claim that it satisfies the WSFP with the functions h̃A
defined by (129). Indeed, we have for any opinion profile
(q1, . . . , qK) and any event A ⊆ Θ that

Q̃(A) =

∫
A
g̃[q1, . . . , qK ](θ) dθ

=

∫
A

g[q1, . . . , qK ](θ)− w0q0(θ)

1− w0
dθ
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(a)
=

hA(Q1(A), . . . , QK(A))−
∫
A q̃0(θ) dθ

1− w0

(124)
=

hA(Q1(A), . . . , QK(A))−Q0(A)

1− w0

(129)
= h̃A(Q1(A), . . . , QK(A)) , (131)

where we used in (a) that, by (16), hA(Q1(A), . . . ,
QK(A)) = Q(A) =

∫
A g[q1, . . . , qK ](θ) and, by (126),

w0q0(θ) = q̃0(θ). Furthermore, we claim that g̃ satisfies the
ZPP. To prove this, let (q1, . . . , qK) be an opinion profile
and A a nontrivial event such that Qk(A) = 0 for all
k = 1, . . . ,K. Because hA(0, . . . , 0) = Q0(A),

Q̃(A)
(131)
= h̃A(Q1(A), . . . , QK(A))

= h̃A(0, . . . , 0)

(129)
=

hA(0, . . . , 0)−Q0(A)

1− w0

=
Q0(A)−Q0(A)

1− w0

= 0 ,

proving the ZPP.
Finally, to see that g̃ is a valid pooling function, we

first show that for any (p1, . . . , pK) ∈ [0, 1]K , the function
h̃A(p1, . . . , pK) is nonnegative. This follows from (129),
(127), and our assumption w0 < 1. Hence, the mea-
sure Q̃ is nonnegative and thus also the associated den-
sity g̃[q1, . . . , qK ](θ) must be nonnegative. The fact that
g̃[q1, . . . , qK ](θ) integrates to one follows directly from the
definition (130) and the fact that g[q1, . . . , qK ](θ) and q0 are
pdfs.

Because g̃ is a pooling function that satisfies the WSFP and
the ZPP, Theorem 1 implies that it is a linear pooling function,
i.e.,

g̃[q1, . . . , qK ](θ) =

K∑
k=1

wkqk(θ) , (132)

with (w1, . . . , wK) ∈ SK .
Step 3: Conclude that g̃ is a generalized linear pooling

function: Combining (130) and (132), we obtain

K∑
k=1

wkqk(θ) =
g[q1, . . . , qK ](θ)− w0q0(θ)

1− w0

or, equivalently,

g[q1, . . . , qK ](θ) = w0q0(θ) +

K∑
k=1

(1− w0)wkqk(θ) .

From
∑K

k=1 wk = 1, it follows that w0 +
∑K

k=1(1 − w0)wk

is one. Thus, g is a generalized linear pooling function.

APPENDIX C
PROOF OF THE EQUIVALENCE STATEMENT IN THEOREM 6

We only show that (ii), i.e., g satisfies individualized
Bayesianity (A11) and g[q0, . . . , q0](θ) = q0(θ) for some pdf
q0, implies (i), i.e., g is a multiplicative pooling function. The
other direction is obvious.

Thus, let us assume that g[q0, . . . , q0](θ) = q0(θ) for
some pdf q0. We have to show that, for any opinion profile
(q1, . . . , qK) such that qk/q0 is bounded for all k = 1, . . . ,K
(recall that we only consider those opinion profiles in the
multiplicative pooling function), q is of the form (10), i.e.,

g[q1, . . . , qK ](θ) ∝ (q0(θ))
1−K

K∏
k=1

qk(θ) .

To this end, we first note that qk = q
(ℓk)
0 (see (17)) with

ℓk = qk/q0 for all k = 1, . . . ,K. Thus,

g[q1, . . . , qK ](θ) = g
[
q
(q1/q0)
0 , . . . , q

(qK/q0)
0

]
(θ) .

By iteratively using individualized Bayesianity (19) with ℓ =
qk/q0 for each k = 1, . . . ,K, we obtain further

g[q1, . . . , qK ](θ) ∝ g
[
q0, q

(q2/q0)
0 , . . . , q

(qK/q0)
0

]
(θ)

q1(θ)

q0(θ)

∝ g[q0, . . . , q0](θ)

K∏
k=1

qk(θ)

q0(θ)

= (q0(θ))
1−K

K∏
k=1

qk(θ) ,

which is (10) and thus concludes the proof.

APPENDIX D
PARTIAL PROOF OF THEOREM 8

1) (iii) implies (ii): We first show that (iii), i.e., the WSFP
(A5) and independence preservation (A8), implies (ii), i.e., the
SSFP (A4) and independence preservation (A8). To this end,
we show that independence preservation implies the ZPP (A2).
The ZPP and the assumed WSFP in turn imply the SSFP by
Theorem 1.

To show that independence preservation implies the ZPP,
assume that for some event A, we have Qk(A) = 0 for all
k = 1, . . . ,K. This implies that

Qk(A ∩A) = Qk(A) = 0 = Qk(A)Qk(A) .

Independence preservation now implies that also Q must sat-
isfy Q(A∩A) = Q(A)Q(A), and thus that either Q(A) = 0
or Q(A) = 1. In the first case, the proof of the ZPP is finished.
In the second case, i.e., Q(A) = 1, there must exist a subset
B ⊆ A such that Q(B) = 1/2. However, because B ⊆ A and
Qk(A) = 0, we have that also Qk(B) = 0, and thus we again
have that Qk(B ∩ B) = 0 = Qk(B)Qk(B). This implies that
Q(B) is either 0 or 1, which is a contradiction to Q(B) = 1/2.
Thus, Q(A) = 0 is the only valid conclusion, which proves
that the ZPP is satisfied.

2) (v) implies (iv): We next show that (v), i.e., the WSFP
(A5) and external Bayesianity (A10), implies (iv), i.e., the
SSFP (A4) and external Bayesianity (A10). Thus, we have to
show that the WSFP and external Bayesianity imply the SSFP.

By Theorem 2, the WSFP implies the weak likelihood prin-
ciple (A7). Furthermore, by Theorem 4, the weak likelihood
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principle and external Bayesianity imply that g is a generalized
log-linear pooling function, i.e.,

g[q1, . . . , qK ](θ) = c ξ0(θ)

K∏
k=1

(qk(θ))
wk (133)

for all positive opinion profiles. Finally, by Theorem 2, the
WSFP implies that g is also a generalized linear pooling
function, i.e.,

g[q1, . . . , qK ](θ) =

K∑
k=0

w′
kqk(θ) (134)

for all opinion profiles. Thus, combining (133) and (134), we
have

c ξ0(θ)

K∏
k=1

(qk(θ))
wk =

K∑
k=0

w′
kqk(θ) (135)

for all positive opinion profiles. Note that q0(θ) is not neces-
sarily positive, i.e., it may be zero for certain values of θ.

We choose an arbitrary positive pdf q̃0(θ) and ε ∈ (0, 1)
and consider the opinion profile (εq̃0 + (1 − ε)q0, . . . , εq̃0 +
(1 − ε)q0). Since q̃0(θ) is positive, this is a positive opinion
profile for any ε ∈ (0, 1). Using it in (135) gives

c ξ0(θ)
(
εq̃0(θ) + (1− ε)q0(θ)

)
= w′

0q0(θ) + (1− w′
0)
(
εq̃0(θ) + (1− ε)q0(θ)

)
,

where
∑K

k=1 wk = 1 and
∑K

k=0 w
′
k = 1 were used, or,

equivalently,

c ξ0(θ) = w′
0

q0(θ)

εq̃0(θ) + (1− ε)q0(θ)
+ 1− w′

0 . (136)

Taking the limit ε→ 0 in (136), we obtain

c ξ0(θ) =

{
1 if q0(θ) > 0

1− w′
0 if q0(θ) = 0 .

(137)

Inserting into (133) and evaluating (133) for the opinion profile
(q̃0, . . . , q̃0) yields

g[q̃0, . . . , q̃0](θ) =

{
q̃0(θ) if q0(θ) > 0

(1− w′
0)q̃0(θ) if q0(θ) = 0 .

Because g[q̃0, . . . , q̃0](θ) is a pdf, this implies

1 =

∫
Θ

g[q̃0, . . . , q̃0](θ) dθ

=

∫
{θ∈Θ:q0(θ)>0}

q̃0(θ) dθ

+ (1− w′
0)

∫
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ . (138)

On the other hand, because q̃0(θ) is a pdf, we have

1 =

∫
Θ

q̃0(θ) dθ

=

∫
{θ∈Θ:q0(θ)>0}

q̃0(θ) dθ +

∫
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ .

(139)

Combining (138) and (139), we obtain

(1− w′
0)

∫
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ =

∫
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ

or equivalently

w′
0

∫
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ = 0 .

Since q̃0(θ) is a positive pdf on Θ, this can only hold if either
w′

0 = 0 or |{θ ∈ Θ : q0(θ) = 0}| = 0. In the first case, (134)
implies that g is actually a linear pooling function and thus, by
Theorem 1, g satisfies the SSFP. In the second case, q0(θ) > 0
almost everywhere and thus (137) states that c ξ0(θ) = 1.
Using the opinion profile (q1, . . . , qK) = (q̃0, . . . , q̃0) in (135)
now gives

q̃0(θ) = w′
0q0(θ) + (1− w′

0)q̃0(θ) . (140)

In particular, let us partition Θ into disjoint sets A1, A2

satisfying
∫
A1
q0(θ)dθ =

∫
A2
q0(θ)dθ = 1/2, and let us

choose

q̃0(θ) =

{
3
2q0(θ) if θ ∈ A1

1
2q0(θ) if θ ∈ A2 .

Then (140) yields for all θ ∈ A1

3

2
q0(θ) = w′

0q0(θ) + (1− w′
0)
3

2
q0(θ) =

(
3

2
− 1

2
w′

0

)
q0(θ) .

This implies w′
0 = 0, and hence we again conclude from

(134) that g is actually a linear pooling function, and thus,
by Theorem 1, that g satisfies the SSFP.

3) (vi) implies (i): Finally, we prove that (vi), i.e., the SSFP
(A4) and generalized Bayesianity (A12), implies (i), i.e., that
g is a dictatorship pooling function. By Theorem 1, the SSFP
implies that g is a linear pooling function, i.e.,

g[q1, . . . , qK ](θ) =

K∑
k=1

wkqk(θ) (141)

with (w1, . . . , wK) ∈ SK . We will show that for an arbitrary
k the weight wk is either 0 or 1, which is equivalent to g being
a dictatorship pooling function.

We first choose a positive function f and two disjoint
sets A and B such that Θ = A ∪ B and

∫
A f(θ) dθ =∫

B f(θ) dθ = 1. We fix an arbitrary k and define an opinion
profile (q1, . . . , qK) by setting

qk(θ) =

{
1
3f(θ) if θ ∈ A
2
3f(θ) if θ ∈ B

and qk′ = q0 for all k′ ̸= k, where

q0(θ) =
1

2
f(θ) . (142)

Inserting this opinion profile into the fusion rule (141) and
using

∑
k′ ̸=k wk′ = 1− wk gives

g[q1, . . . , qK ](θ) =

{(
1
3wk + 1

2 (1− wk)
)
f(θ) if θ ∈ A(

2
3wk + 1

2 (1− wk)
)
f(θ) if θ ∈ B

=

{(
1
2 − 1

6wk

)
f(θ) if θ ∈ A(

1
2 + 1

6wk

)
f(θ) if θ ∈ B .

(143)
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Next, we use generalized Bayesianity with ℓk′ = ℓ for all
k′ = 1, . . . ,K, where

ℓ(θ) =

{
1 if θ ∈ A
2 if θ ∈ B .

We easily obtain (see (17))

q
(ℓ)
k (θ) =

{
1
5f(θ) if θ ∈ A
4
5f(θ) if θ ∈ B ,

and

q
(ℓ)
0 (θ) =

{
1
3f(θ) if θ ∈ A
2
3f(θ) if θ ∈ B .

(144)

Now, (141) gives

g[q
(ℓ)
1 , . . . , q

(ℓ)
K ](θ) =

{(
1
5wk + 1

3 (1− wk)
)
f(θ) if θ ∈ A(

4
5wk + 2

3 (1− wk)
)
f(θ) if θ ∈ B

=

{(
1
3 − 2

15wk

)
f(θ) if θ ∈ A(

2
3 + 2

15wk

)
f(θ) if θ ∈ B .

(145)

On the other hand, because g satisfies generalized Bayesianity,
there exists a function h[ℓ, . . . , ℓ] such that

g
[
q
(ℓ)
1 , . . . , q

(ℓ)
K

]
(θ) =

g[q1, . . . , qK ](θ)h[ℓ, . . . , ℓ](θ)

cℓ
,

(146)
where cℓ =

∫
Θ
g[q1, . . . , qK ](θ)h[ℓ, . . . , ℓ](θ) dθ. Inserting

(143) and (145) into (146) gives

1

3
− 2

15
wk =

(
1
2 − 1

6wk

)
h[ℓ, . . . , ℓ](θ)

cℓ
(147)

for all θ ∈ A and

2

3
+

2

15
wk =

(
1
2 + 1

6wk

)
h[ℓ, . . . , ℓ](θ)

cℓ
(148)

for all θ ∈ B.
Using again the generalized Bayesianity of g, we also have

g
[
q
(ℓ)
0 , . . . , q

(ℓ)
0

]
(θ) =

g[q0, . . . , q0](θ)h[ℓ, . . . , ℓ](θ)

c0,ℓ
, (149)

where c0,ℓ =
∫
Θ
g[q0, . . . , q0](θ)h[ℓ, . . . , ℓ](θ) dθ. Because

linear pooling functions are unanimity preserving (see The-
orem 1), we have g

[
q
(ℓ)
0 , . . . , q

(ℓ)
0

]
(θ) = q

(ℓ)
0 (θ) and

g[q0, . . . , q0](θ) = q0(θ), and thus (149) is equivalent to

q
(ℓ)
0 (θ) =

q0(θ)h[ℓ, . . . , ℓ](θ)

c0,ℓ
,

or, inserting (144) and (142),

1

3
=

1
2h[ℓ, . . . , ℓ](θ)

c0,ℓ

for all θ ∈ A and

2

3
=

1
2h[ℓ, . . . , ℓ](θ)

c0,ℓ

for all θ ∈ B. We thus obtain

h[ℓ, . . . , ℓ](θ) =

{
2
3c0,ℓ if θ ∈ A
4
3c0,ℓ if θ ∈ B .

Inserting this into (147) and (148) yields

1

3
− 2

15
wk =

(
1
2 − 1

6wk

)
2
3c0,ℓ

cℓ

and
2

3
+

2

15
wk =

(
1
2 + 1

6wk

)
4
3c0,ℓ

cℓ

or, equivalently,
1
3 − 2

15wk

1
3 − 1

9wk

=
c0,ℓ
cℓ

=
2
3 + 2

15wk

2
3 + 2

9wk

.

This amounts to the quadratic equation w2
k − wk = 0, which

has the solutions wk = 0 and wk = 1. Since k was arbitrary,
this concludes the proof.

APPENDIX E
PROOF OF LEMMA 9

By Theorem 2, the WSFP implies that g is a generalized
linear pooling function, i.e.,

g[q1, . . . , qK ](θ) =

K∑
k=0

wkqk(θ) (150)

with (w0, . . . , wK) ∈ SK+1. We will show that w0 is either
0 or 1, which is equivalent to g being either a linear pooling
function or a dogmatic pooling function.

We first choose two disjoint sets A and B such that Θ =
A ∪ B and

∫
A q0(θ) dθ =

∫
B q0(θ) dθ = 1/2. Furthermore,

we choose an opinion profile (q1, . . . , qK) as

qk(θ) =

{
2
3q0(θ) if θ ∈ A
4
3q0(θ) if θ ∈ B

for all k = 1, . . . ,K. Inserting this opinion profile into (150)
and using

∑K
k=1 wk = 1− w0 gives

g[q1, . . . , qK ](θ) =

{(
w0 +

2
3 (1− w0)

)
q0(θ) if θ ∈ A(

w0 +
4
3 (1− w0)

)
q0(θ) if θ ∈ B

=

{(
2
3 + 1

3w0

)
q0(θ) if θ ∈ A(

4
3 − 1

3w0

)
q0(θ) if θ ∈ B .

(151)

Next, we use generalized Bayesianity with ℓk = ℓ for all
k = 1, . . . ,K, where

ℓ(θ) =

{
1 if θ ∈ A
2 if θ ∈ B .

(152)

We easily obtain (see (17))

q
(ℓ)
k (θ) =

{
2
5q0(θ) if θ ∈ A
8
5q0(θ) if θ ∈ B

and then (150) gives

g[q
(ℓ)
1 , . . . , q

(ℓ)
K ](θ) =

{(
w0 +

2
5 (1− w0)

)
q0(θ) if θ ∈ A(

w0 +
8
5 (1− w0)

)
q0(θ) if θ ∈ B

=

{(
2
5 + 3

5w0

)
q0(θ) if θ ∈ A(

8
5 − 3

5w0

)
q0(θ) if θ ∈ B .

(153)
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Because g satisfies generalized Bayesianity, we have that there
exists a function h[ℓ, . . . , ℓ] such that

g
[
q
(ℓ)
1 , . . . , q

(ℓ)
K

]
(θ) =

g[q1, . . . , qK ](θ)h[ℓ, . . . , ℓ](θ)

cℓ
,

(154)
where cℓ =

∫
Θ
g[q1, . . . , qK ](θ)h[ℓ, . . . , ℓ](θ)dθ. Inserting

(151) and (153) into (154) gives

2

5
+

3

5
w0 =

(
2
3 + 1

3w0

)
h[ℓ, . . . , ℓ](θ)

cℓ
(155)

for all θ ∈ A and

8

5
− 3

5
w0 =

(
4
3 − 1

3w0

)
h[ℓ, . . . , ℓ](θ)

cℓ
(156)

for all θ ∈ B.
Using again the generalized Bayesianity of g, we also have

g
[
q
(ℓ)
0 , . . . , q

(ℓ)
0

]
(θ) =

g[q0, . . . , q0](θ)h[ℓ, . . . , ℓ](θ)

c0,ℓ
, (157)

where c0,ℓ =
∫
Θ
g[q0, . . . , q0](θ)h[ℓ, . . . , ℓ](θ)dθ. Using (152)

and (17), we obtain

q
(ℓ)
0 (θ) =

{
2
3q0(θ) if θ ∈ A
4
3q0(θ) if θ ∈ B .

Inserting into (150) yields

g
[
q
(ℓ)
0 , . . . , q

(ℓ)
0

]
(θ) =

{(
w0 +

2
3 (1− w0)

)
q0(θ) if θ ∈ A(

w0 +
4
3 (1− w0)

)
q0(θ) if θ ∈ B

=

{(
2
3 + 1

3w0

)
q0(θ) if θ ∈ A(

4
3 − 1

3w0

)
q0(θ) if θ ∈ B .

(158)

Furthermore, again by (150), g[q0, . . . , q0](θ) = q0(θ). Insert-
ing this and (158) into (157), we obtain

2

3
+

1

3
w0 =

h[ℓ, . . . , ℓ](θ)

c0,ℓ

for all θ ∈ A and
4

3
− 1

3
w0 =

h[ℓ, . . . , ℓ](θ)

c0,ℓ

for all θ ∈ B. Thus,

h[ℓ, . . . , ℓ](θ) =

{(
2
3 + 1

3w0

)
c0,ℓ if θ ∈ A(

4
3 − 1

3w0

)
c0,ℓ if θ ∈ B .

Inserting this into (155) and (156) gives

2

5
+

3

5
w0 =

(
2
3 + 1

3w0

)2
c0,ℓ

cℓ

and
8

5
− 3

5
w0 =

(
4
3 − 1

3w0

)2
c0,ℓ

cℓ

or, equivalently,
2
5 + 3

5w0(
2
3 + 1

3w0

)2 =
c0,ℓ
cℓ

=
8
5 − 3

5w0(
4
3 − 1

3w0

)2 .
This amounts to the cubic equation w3

0 − 3w2
0 + 2w0 = 0,

which has the solutions w0 = 0, w0 = 1, and w0 = 2. Since

w0 cannot be larger than one, only the solutions w0 = 0
and w0 = 1 remain. In the first case, g is a linear pooling
function, which satisfies the SSFP by Theorem 1. Hence,
since g satisfies both the SSFP and generalized Bayesiantity,
it reduces to a dictatorship pooling function by Theorem 8. In
the second case, g is a dogmatic pooling function.

APPENDIX F
PROOF OF THEOREM 11

The implications in (i) follow from Theorem 1 because
the SSFP implies that g is a linear pooling function and
in turn satisfies the ZPP (A2), unanimity preservation (A3),
the WSFP (A5), the likelihood principle (A6), and the weak
likelihood principle (A7). Similarly, the implications in (ii)
follow from Theorem 2. Implication (iii) follows directly from
the concerned axioms. Implication (iv) is shown in the first
part of the proof of Theorem 8 in Appendix D. It remains
to show implication (v), i.e., that individualized Bayesianity
implies generalized Bayesianity. This can easily be seen by
defining

h[ℓ1, . . . , ℓK ](θ) ≜
K∏

k=1

ℓk(θ) . (159)

Indeed, because g satisfies individualized Bayesianity, iterative
application of (19) implies

g[q
(ℓ1)
1 , . . . , q

(ℓK)
K ](θ) ∝ g

[
q1, q

(ℓ2)
2 , . . . , q

(ℓK)
K

]
(θ)ℓ1(θ)

∝ g[q1, . . . , qK ](θ)

K∏
k=1

ℓk(θ)

∝ g[q1, . . . , qK ]

(∏K
k=1 ℓk

)
(θ).

Thus, (20) is satisfied by h defined in (159).

APPENDIX G
PROOF OF THEOREM 14 (CONSTRAINED MINIMIZATION OF

THE WEIGHTED AVERAGE OF α-DIVERGENCES)

Let fα(x) = xα−1
α(α−1) . The inverse function is given by

f−1
α (x) = (xα(α− 1) + 1)

1/α
. (160)

Furthermore, we have that for two functions p1(θ) and p2(θ)

fα

(
p1(θ)

p2(θ)

)
=

(
p1(θ)
p2(θ)

)α
− 1

α(α− 1)

=
(p1(θ))

α − (p2(θ))
α

(p2(θ))αα(α− 1)

=
(p1(θ))

α − 1

(p2(θ))αα(α− 1)
− (p2(θ))

α − 1

(p2(θ))αα(α− 1)

=
fα(p1(θ))− fα(p2(θ))

(p2(θ))α
. (161)
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Therefore, the objective function in (22) for f(x) = fα(x)
can be written as

K∑
k=1

wkDα(qk∥φ)

=

K∑
k=1

wk

∫
Θ

φ(θ)fα

(
qk(θ)

φ(θ)

)
dθ

(161)
=

K∑
k=1

wk

∫
Θ

φ(θ)
fα(qk(θ))− fα(φ(θ))

(φ(θ))
α dθ.

Interchanging the summation and the integral gives
K∑

k=1

wkDα(qk∥φ)

=

∫
Θ

φ(θ)

K∑
k=1

wk
fα(qk(θ))− fα(φ(θ))

(φ(θ))
α dθ

(a)
=

∫
Θ

φ(θ)

(∑K
k=1 wkfα(qk(θ))

)
− fα(φ(θ))

(φ(θ))
α dθ

=

∫
Θ

φ(θ)
fα

(
f−1
α

(∑K
k=1 wkfα(qk(θ))

))
− fα(φ(θ))

(φ(θ))
α dθ

(161)
=

∫
Θ

φ(θ)fα

f−1
α

(∑K
k=1 wkfα(qk(θ))

)
φ(θ)

 dθ,

where we used in (a) that
∑K

k=1 wk = 1. Since φ is a pdf and
fα(x) =

xα−1
α(α−1) is a convex function for α ∈ R \ {0, 1}, we

can apply Jensen’s inequality9 to obtain the following lower
bound on the objective function:∫

Θ

φ(θ)fα

f−1
α

(∑K
k=1 wkfα(qk(θ))

)
φ(θ)

 dθ

≥ fα

∫
Θ

φ(θ)
f−1
α

(∑K
k=1 wkfα(qk(θ))

)
φ(θ)

dθ


= fα

(∫
Θ

f−1
α

(
K∑

k=1

wkfα(qk(θ))

)
dθ

)
, (162)

with equality if and only if the function

ζ(θ) ≜
f−1
α

(∑K
k=1 wkfα(qk(θ))

)
φ(θ)

is constant almost everywhere. Note that this is equivalent to
φ(θ) ∝ f−1

α (
∑K

k=1 wkfα(qk(θ))). Since the right-hand side
of (162) is independent of φ, it is a lower bound for any choice
of φ, and hence the function φ(θ) minimizing the objective
function (which is the desired solution q(θ) in (22)) is the one
for which this lower bound is achieved with equality, i.e.,

q(θ) ∝ f−1
α

(
K∑

k=1

wkfα(qk(θ))

)
9Jensen’s inequality [198, Th. 3.3] asserts that for a pdf φ(·), a measurable

function ζ(·), and a convex function ψ(·) we have that
∫
ψ(ζ(θ))φ(θ)dθ ≥

ψ
( ∫

ζ(θ)φ(θ)dθ
)
, with equality if and only if the function ζ is constant

almost everywhere.

(160)
=

((
K∑

k=1

wkfα(qk(θ))

)
α(α− 1) + 1

)1/α

=

(
K∑

k=1

wk (qk(θ))
α −

K∑
k=1

wk + 1

)1/α

=

(
K∑

k=1

wk (qk(θ))
α

)1/α

.

We conclude that the solution to (22) when f(x) =

fα(x) is q(θ) = c
(∑K

k=1 wk(qk(θ))
α
)1/α

, where c =

1/
∫
Θ

(∑K
k=1 wk(qk(θ))

α
)1/α

dθ.

APPENDIX H
CHARACTERIZATION OF THE REVERSE α-DIVERGENCE

We will show that Dα(φ∥qk) = Dα∗(qk∥φ), where α∗ =
1 − α. To this end, we will use (27) with f(x) = fα(x) =
xα−1

α(α−1) . By f∗(x) = xf(1/x), we have

f∗α(x) = x
x−α − 1

α(α− 1)

=
x−α+1 − x

α(α− 1)

=
x−(α−1) − 1

α(α− 1)
− 1

α(α− 1)
(x− 1)

= fα∗(x)− 1

α(α− 1)
(x− 1) .

Thus, up to the additive term − 1
α(α−1) (x − 1), the function

f∗α(x) is equal to fα∗(x). Now, by [164, Prop. 1], an f -
divergence does not change if f(x) is replaced by f(x) +
c(x − 1) for an arbitrary c ∈ R. Hence, f∗α and fα∗ result in
the same f -divergence, and (27) together with (24) implies

Dα(φ∥qk) = Dfα(φ∥qk)
= Df∗

α
(qk∥φ)

= Dfα∗ (qk∥φ)
= Dα∗(qk∥φ) .

APPENDIX I
PROOF OF THEOREM 16 (CONSTRAINED MINIMIZATION OF

THE WEIGHTED AVERAGE OF SQUARED L2 DISTANCES)

We want to find

q = argmin
φ∈P

K∑
k=1

wk∥qk − φ∥22. (163)

To this end, we note that

min
φ∈P

K∑
k=1

wk∥qk − φ∥22

= min
φ∈P

∫
Θ

K∑
k=1

wk

(
qk(θ)− φ(θ)

)2
dθ

≥
∫
Θ

min
φ(θ)≥0

{ K∑
k=1

wk

(
qk(θ)− φ(θ)

)2}
dθ . (164)



40

For each fixed θ, the function value φ(θ) that achieves the
minimum minφ(θ)≥0

∑K
k=1 wk

(
qk(θ)−φ(θ)

)2
is easily seen

to be

φ∗(θ) =

K∑
k=1

wkqk(θ) .

Because φ∗ ∈ P (due to (w1, . . . , wK) ∈ SK), we have that

K∑
k=1

wk∥qk − φ∗∥22 ≥ min
φ∈P

K∑
k=1

wk∥qk − φ∥22

(164)
≥
∫
Θ

K∑
k=1

wk

(
qk(θ)− φ∗(θ)

)2
dθ

=

K∑
k=1

wk∥qk − φ∗∥22. (165)

Thus, all inequalities in (165) are actually equalities. In
particular,

K∑
k=1

wk∥qk − φ∗∥22 =min
φ∈P

K∑
k=1

wk∥qk − φ∥22,

i.e., q = φ∗ solves (163).

APPENDIX J
PROOF OF THEOREM 17 (UNCONSTRAINED MINIMIZATION

OF THE WEIGHTED AVERAGE OF GENERAL DISTANCES)

Let χφ(θ) ≜ χ(φ(θ)) and χqk(θ) ≜ χ(qk(θ)). We want to
find

q̃ = argmin
φ

K∑
k=1

wk∥χqk − χφ∥22. (166)

To this end, we first derive

χ∗ = argmin
χ

K∑
k=1

wk∥χqk − χ∥22. (167)

Following the same steps as in Appendix I with qk replaced
by χqk and φ replaced by χ, it is easy to see that

χ∗(θ) =

K∑
k=1

wkχ(qk(θ)) . (168)

Because χ(qk(θ)) ∈ (a, b), the convex combination∑K
k=1 wkχ(qk(θ)) is again in (a, b). Thus, χ∗(θ) is in the

range of χ and we can define

φ∗(θ) ≜ χ−1
(
χ∗(θ)

)
. (169)

This implies

χφ∗(θ) = χ(φ∗(θ)) = χ∗(θ) . (170)

We claim that q̃ defined in (166) equals φ∗. Indeed, we have
for any φ

K∑
k=1

wk∥χqk − χφ∥22 ≥ min
χ

K∑
k=1

wk∥χqk − χ∥22

(167)
=

K∑
k=1

wk∥χqk − χ∗∥22

(170)
=

K∑
k=1

wk∥χqk − χφ∗∥22,

from which we conclude that φ∗ achieves the minimum
in (166) and thus equals q̃. We then obtain the optimal
nonnormalized pooling function as

q̃(θ) = φ∗(θ)
(169)
= χ−1

(
χ∗(θ)

) (168)
= χ−1

( K∑
k=1

wkχ(qk(θ))

)
.

APPENDIX K
PROOFS OF THE FUSION RULE FOR A SCALAR PARAMETER

A. Proof of Theorem 21

For dθ = 1, the local observation likelihood functions from
(71) are given by

ℓk(θ) ∝ exp

(
−
θ2h⊺

kΣ
−1
kk hk

2
+ θh⊺

kΣ
−1
kk hktk

)
, (171)

where tk = v⊺
kyk = h⊺

kΣ
−1
kk yk/(h

⊺
kΣ

−1
kk hk) according to (82)

and (83). Furthermore, the global likelihood function (81) can
be rewritten as

λ(θ) ∝ exp

(
− (t− 1Kθ)

⊺Σ̃−1(t− 1Kθ)

2

)
∝ exp

(
− θ2

2σ̂2
+ θ1⊺

KΣ̃−1t

)
, (172)

where σ̂2 = 1/(1⊺
KΣ̃−11K). The relation (84) follows from

K∏
k=1

(ℓk(θ))
wk

(171)∝ exp

( K∑
k=1

wk

(
−
θ2h⊺

kΣ
−1
kk hk

2
+ θh⊺

kΣ
−1
kk hktk

))
(85)
= exp

(
−
∑K

k=1 θ
21⊺

KΣ̃−1ek
2

+

K∑
k=1

θ1⊺
KΣ̃−1ektk

)
(a)
= exp

(
− θ2

2σ̂2
+ θ1⊺

KΣ̃−1t

)
(172)∝ λ(θ) ,

where we used in (a) that
∑K

k=1 ek = 1K and
∑K

k=1 ektk =
t. Finally, the fusion rule for the posteriors in (86) easily
follows from (84):

p(θ | t) ∝ p(θ)λ(θ)

(84)∝ p(θ)

K∏
k=1

(ℓk(θ))
wk

∝ p(θ)

K∏
k=1

(
πk(θ)

p(θ)

)wk

= (p(θ))1−
∑K

k=1 wk

K∏
k=1

(πk(θ))
wk .



41

B. Calculation of the Weights in Example 3

We will show expression (92) for wk. The vectors v⊺
k in

(83) are given as

v⊺
k =

1

1⊺
r0+rk

1r0+rk

1⊺
r0+rk

=
1

r0 + rk
1⊺
r0+rk

,

and, in turn, the matrix Σ̃ in (79) is given by the entries

Σ̃kk′ = v⊺
kΣkk′vk′

=
1

r0 + rk
1⊺
r0+rk

Σkk′
1

r0 + rk′
1r0+rk′

=
r0

(r0 + rk)(r0 + rk′)

for k ̸= k′ and

Σ̃kk =
1

r0 + rk
.

It is easily verified that we can rewrite Σ̃ as the following sum
of a diagonal matrix and a rank one matrix

Σ̃ =


r1

(r0+r1)2

. . .
rK

(r0+rK)2



+


1

r0+r1
...
1

r0+rK

 r0
(

1
r0+r1

· · · 1
r0+rK

)
.

By the matrix inversion lemma [199, eq. (0.7.4.2)], we can
hence calculate Σ̃−1 as

Σ̃−1 =


(r0+r1)

2

r1
. . .

(r0+rK)2

rK


−
( K∑

k=0

1

rk

)−1


r0+r1
r1
...

r0+rK
rK

( r0+r1
r1

· · · r0+rK
rK

)
.

To calculate the weights wk in (85), we have to sum over the
kth column of Σ̃−1 and divide by 1⊺

r0+rk
1r0+rk = r0 + rk,

i.e.,

wk =
1

r0 + rk

(
(r0 + rk)

2

rk
−
∑K

k′=1
(r0+rk)(r0+rk′ )

rkrk′∑K
k′=0

1
rk′

)

=
r0 + rk
rk

−
∑K

k′=1
r0+rk′
rkrk′∑K

k′=0
1
rk′

=
r0 + rk
rk

−
K
rk

+ r0
rk

∑K
k′=1

1
rk′∑K

k′=0
1
rk′

=
r0 + rk
rk

−
K−1
rk

+ r0
rk

∑K
k′=0

1
rk′∑K

k′=0
1
rk′

=
r0
rk

+ 1−
K−1
rk∑K

k′=0
1
rk′

− r0
rk

= 1− K − 1

rk

( K∑
k′=0

1

rk′

)−1

.

APPENDIX L
PROOFS OF THE FUSION RULE FOR A VECTOR PARAMETER

A. Proof of Theorem 23

We can rewrite (81) as

λ(θ)

∝ exp

(
− ((1K ⊗ Idθ

)θ − t)⊺Σ̃−1((1K ⊗ Idθ
)θ − t)

2

)
∝ exp

(
−θ⊺(1K ⊗ Idθ

)⊺Σ̃−1(1K ⊗ Idθ
)θ

2

+ θ⊺(1K ⊗ Idθ
)⊺Σ̃−1t

)
(99)
= exp

(
−θ⊺Σ̂−1θ

2
+ θ⊺(1K ⊗ Idθ

)⊺Σ̃−1t

)
. (173)

Furthermore, from (71), we see that

ℓk(θ) ∝ exp

(
−
θ⊺H⊺

kΣ
−1
kkHkθ

2
+ θ⊺H⊺

kΣ
−1
kkHktk

)
,

where tk = Vkyk. Thus, we have

K∏
k=1

ℓk(Wkθ)

∝ exp

(
−
θ⊺(∑K

k=1 W
⊺
kH

⊺
kΣ

−1
kkHkWk

)
θ

2

+ θ⊺
K∑

k=1

W⊺
kH

⊺
kΣ

−1
kkHktk

)
(98)
= exp

(
−
θ⊺(Σ̂−1 −G

)
θ

2
+ θ⊺

K∑
k=1

W⊺
kH

⊺
kΣ

−1
kkHktk

)

=
1

ξ0(θ)
exp

(
−θ⊺Σ̂−1θ

2
+ θ⊺

K∑
k=1

W⊺
kH

⊺
kΣ

−1
kkHktk

)
,

(174)

with ξ0(θ) as defined in (97). By comparing (173) and (174),
we see that (95) holds, provided that

(1K ⊗ Idθ
)⊺Σ̃−1t =

K∑
k=1

W⊺
kH

⊺
kΣ

−1
kkHktk. (175)

Inserting (96) into the right-hand side of (175), we obtain

K∑
k=1

W⊺
kH

⊺
kΣ

−1
kkHktk = (1K ⊗ Idθ

)⊺Σ̃−1
K∑

k=1

(ek ⊗ Idθ
)tk

= (1K ⊗ Idθ
)⊺Σ̃−1t ,

concluding the proof of (95).
Finally, the fusion rule (100) easily follows from (95):

p(θ | t) ∝ p(θ)λ(θ)

∝ p(θ)ξ0(θ)

K∏
k=1

ℓk(Wkθ)

∝ p(θ)ξ0(θ)

K∏
k=1

πk(Wkθ)

p(Wkθ)
.
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B. Proof of Corollary 24
We start directly from p(θ | t) ∝ p(θ)λ(θ). By (173) and

our choice of prior p(θ) = N (θ;µ0,Σ0) ∝ exp
(
−θ⊺Σ−1

0 θ
2 +

θ⊺Σ−1
0 µ0

)
, we have that

p(θ)λ(θ) ∝ exp

(
−θ⊺Σ̂−1θ + θ⊺Σ−1

0 θ

2

+ θ⊺(1K ⊗ Idθ
)⊺Σ̃−1t+ θ⊺Σ−1

0 µ0

)
= exp

(
−
θ⊺(Σ̂−1 +Σ−1

0

)
θ

2

+ θ⊺((1K ⊗ Idθ
)⊺Σ̃−1t+Σ−1

0 µ0

))
= exp

(
−θ⊺Σ−1

1 θ

2
+ θ⊺Σ−1

1 µ1

)
∝ exp

(
− (θ − µ1)

⊺Σ−1
1 (θ − µ1)

2

)
, (176)

with µ1 and Σ1 given by (101) and (102), respectively.
Expression (176) is proportional to the pdf of a Gaussian with
mean µ1 and covariance matrix Σ1.
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[75] M. Woźniak, M. Graña, and E. Corchado, “A survey of multiple
classifier systems as hybrid systems,” Inform. Fusion, vol. 16, pp. 3–17,
2014.

[76] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach, 2nd ed. New
York, NY: Springer, 2002.

[77] K. F. Wallis, “Combining forecasts–forty years later,” Appl. Financial
Econ., vol. 21, no. 1–2, pp. 33–41, 2011.

[78] R. M. Cooke, Experts in Uncertainty: Opinion and Subjective Proba-
bility in Science. New York, NY: Oxford University Press, 1991.

[79] R. T. Clemen and R. L. Winkler, “Combining probability distributions
from experts in risk analysis,” Risk Anal., vol. 19, no. 2, pp. 187–203,
1999.

[80] F. Dietrich and C. List, “Probabilistic opinion pooling,” in The Oxford
Handbook of Probability and Philosophy. Oxford, UK: Oxford
University Press, 2016.

[81] R. T. Stewart and I. O. Quintana, “Probabilistic opinion pooling with
imprecise probabilities,” J. Philos. Log., vol. 47, no. 1, pp. 17–45, 2018.

[82] ——, “Learning and pooling, pooling and learning,” Erkenntnis,
vol. 83, no. 3, pp. 369–389, 2018.

[83] A. E. Abbas, “A Kullback-Leibler view of linear and log-linear pools,”
Decis. Anal., vol. 6, no. 1, pp. 25–37, 2009.

[84] A. Garg, T. S. Jayram, S. Vaithyanathan, and H. Zhu, “Generalized
opinion pooling,” in Proc. Int. Symp. Artif. Intell. Math. (ISAIM 2004),
Fort Lauderdale, FL, 2004.

[85] K. Da, T. Li, Y. Zhu, H. Fan, and Q. Fu, “Kullback-Leibler averaging
for multitarget density fusion,” in Proc. Int. Symp. Distrib. Comput.
Artif. Intell. (DCAI 2019), Ávila, Spain, 2019.
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